ltx-talk — A class for typesetting presentations”

Joseph Wright!

Released 2026-01-09

Contents

1 Introduction

2 Submitting ideas

3 Simple example documents

4 Class structure and design decisions
5 Differences from beamer

6 Creating frames
6.1 The frame environment 0.
6.2 Components of a frame L.
6.2.1 The frame title oo L
6.3 Frame and marginsize. Lo L
6.4 Restricting the slides of a frame

7 Creating overlays

7.1 The \pause command L oL
7.2 The general concept of overlay specifications
7.3 Commands with overlay specifications
7.4 Environments with overlay specifications
7.5 Dynamically changing text or images
7.6 Advanced overlay specificationso o0

7.6.1 Mode specifications

7.6.2 Action specifications L o

7.6.3 Incremental specifications

8 Structuring a presentation: the global structure
8.1 Adding a title frame oL Lo

*This file describes v0.3.7, last revised 2026-01-09.
TE-mail: joseph@texdev.net

mailto:joseph@texdev.net

9 Structuring a presentation: the local structure 17

9.1 TItemizations, enumerations and descriptions 18
9.2 Highlighting o 19
9.3 Block environmentso 19
9.4 Figuresand tables Lo 19
9.5 Splitting a frame into multiple columns L. 19
10 Creating alternative output formats 20
10.1 Creating handouts using the handout mode 20
11 Creating tagging PDF output 21
12 Changing the way things look 21
12.1 Font choice 21
12.2 Template floatenv 21
12.3 Template footer 21
12.4 Template header o i v e 22
Index 23

1 Introduction

The beamer class was first released in 2003, and rapidly became the most popular method
for producing presentations in I¥TEX. As detailed in the beamer manual

Till Tantau created beamer mainly in his spare time. Many other people
have helped by sending him emails containing suggestions for improvement
or corrections or patches or whole new themes (by now, this amounts to over
a thousand emails concerning beamer). Indeed, most of the development was
only initiated by feature requests and bug reports. Without this feedback,
beamer would still be what it was originally intended to be: a small private
collection of macros that make using the seminar class easier. Till created the
first version of beamer for his PhD defense presentation in February 2003. A
month later, he put the package on CTAN at the request of some colleagues.
After that, things somehow got out of hand.

Despite the very large amount of work Till (and others) put into beamer, there are
several challenges which confront us today.

1. The document interface is flexible but in places deviates from normal IATEX con-
ventions

2. Internally, the code makes use of whatever methods would give the visual results
but not necessarily the most idiomatic style

3. Till made few comments in the code or in commit messages in the code history

4. The underlying box structure of a beamer document is very different from the
standard IATEX model, and a lot of material is boxed up multiple times

5. Engine, font and macro development over the past 20 years offers new approaches
for some areas

These all feed into an issue addressing a major requirement today: accessibility. Broadly,
the internal structure (and to some extent the user interface) of beamer means that it is
not possible to “retrofit” PDF tagging into the class.

Instead, the approach is to develop a new class, Itx-talk, which takes ideas from
beamer but with tagging and accessibility of structure as a design aim from the beginning.
In contrast to work by the IXTEX Project Team on making the core classes accessible,
the expectation for Itx-talk is that users will need to change their sources. Unlike other
documents, presentations tend to be “single use”: revised and adjusted each time they
are used. The need to edit sources should therefore not be an insurmountable barrier.

At present, this code is experimental: only a (small) subset of beamer functionality
is implemented, some things are being done differently, and almost everything is still
subject to discussion. Some document commands are stubs: either doing nothing at all
or dropping optional arguments. This is to allow testing of existing beamer sources with
minimal changes.

2 Submitting ideas

As noted in Section 1, the class is at present experimental. As such, missing features or
restrictions should be expected throughout. Over time, the aim is to address many of
the things that beamer can do (though there may be some that are not included).

At present, prioritization of requests will be focussed on the need to provide accessible
content. This means that structural issues are likely to be handled before design aspects.

3 Simple example documents

Using ltx-talk absolutely requires the use of the \DocumentMetadata command. As such,
the most basic Itx-talk document is

\DocumentMetadata{} % likely with "tagging = on"
\documentclass{ltx-talk}
\begin{document}
\begin{frame}
Some content here
\end{frame}
\end{document}

A slightly more useful version, which generates multiple slides and shows some (cur-
rent) features, is

\DocumentMetadata{}
\documentclass{ltx-talk}
\begin{document}
\begin{frame}
\frametitle{An example frame}
\begin{itemizel} [action-spec = <+->]
\item This will be on slide one onward
\item This will be on slide two onward

\item<.-> So will this
\item But this will only appear on slide three
\end{itemize}
Back to appearing on all slides
\end{frame}
\end{document}

Tagging is activated for the standard (projector) output of Itx-talk, but it is perhaps
more useful in handout mode, which is activated using a class option.

\DocumentMetadata{}
\documentclass[mode = handout]{ltx-talk}
\begin{document}
\begin{frame}
\frametitle{An example frame}
\begin{itemize} [action-spec = <+->]
\item This will be on slide one onward
\item This will be on slide two onward
\item<.-> So will this
\item But this will only appear on slide three
\end{itemize}
Back to appearing on all slides
\end{frame}
\end{document}

For convenience, this option is also available as simply handout, to match the beamer
syntax.

A larger set of examples which can be edited and typeset in the browser are available
at https://www.texdev.net/ltx-talk/examples/.

4 Class structure and design decisions

As covered in Section 1, the ltx-talk class is currently highly experimental. Active dis-
cussion is ongoing around many aspects of the way that things should work, and very
little is therefore at all stable. That said, some decisions have been made: some of this
is re-stating ideas which carry forward from beamer.

e The basic structure of a presentation is made up of frame environments, which are
made up of one or more slides.

e Variable content is indicated by an overlay specification, given in optional angle
brackets (< ... >).

o Slides have a fized height of 100 mm.

e The default font will be sans-serif using established standard implementations (cur-
rently sansmathfonts with Latin Modern for text for pdfTEX and New Computer
Modern for OpenType engines).

https://www.texdev.net/ltx-talk/examples/

frame (env.)

5 Differences from beamer

The following key differences between beamer and Itx-talk are important to note for the
user.

e The default font setup in ltx-talk is all sans-serif, in particular \mathrm and \textrm
will give a sans-serif font

e Overlay specifications can only be given as the first argument to commands

e Where a command takes a star as an option, this comes before the overlay argu-
ment, e.g. \includegraphics*<...>: this reflects the fact that the star is usually
described as part of the command name rather than as an argument

e There are no optional braced arguments in Itx-talk, in particular frame titles are
given using \frametitle and not as \begin{frame}{...}

e New overlay-aware commands and environments should be defined using ltcmd
(\NewDocumentCommand and so on): no changes are made to the behavior of
\newcommand or \newenvironment

o There are no commands containing the class name (or beamer): rather, methods
from the kernel or other standard packages should be used (these are documented
where needed)

e The class features are specifically focussed on presentation and avoid as far as pos-
sible other changes from standard IATEX; in particular, the various math-focussed
additions which beamer make (such as various theorem environments) are not in-
cluded

6 Creating frames

6.1 The frame environment

A presentation consists of a series of frames. Each frame consists of a series of slides.
You create a frame using the frame environment. All of the text that is not tagged
by overlay specifications is shown on all slides of the frame. (Overlay specifications are
explained in more detail in later sections. For the moment, let’s just say that an overlay
specification is a list of numbers or number ranges in angle brackets that is put after
certain commands as in \uncover<1,2>{Text}.) If a frame contains commands that
have an overlay specification, the frame will contain multiple slides; otherwise it contains
only one slide.

\begin{frame}<(overlay spec)>[(options)]
(environment contents)
\end{frame}

The (overlay spec) dictates which slides of a frame are to be shown. If left out, the
number is calculated automatically. The (environment contents) can be normal IXTEX
text, but may not contain \verb commands or verbatim environments or any environ-
ment that changes the character codes.

framex (env.)

\frametitle
\framesubtitle

frame-title-arg

aspect-ratio

\begin{frame}
\frametitle{A title}
Some content

\end{frame}

The frame* environment works exactly the same way as the frame one, except that
it can contain \verb commands or verbatim environments or any environment that
changes the character codes. The frame* environment however cannot be used inside
the argument of another command.

\begin{framex}
\frametitle{A title}
Some content \verb|$%#|.

\end{frame*}

In contrast to beamer’s fragile frame option, the frame* environment does not
use external files to handle verbatim material. As such, there is very little performance
impact processing frames containing category code changes.

6.2 Components of a frame

6.2.1 The frame title

\frametitle<(overlay spec)>[(options)]{(frame title)}
\framesubtitle<(overlay spec)>[(options)]{(frame subtitle)}

The frame title is shown prominently at the top of the frame and can be specified with
the command \frametitle. You should end the (frame title) with a period, if the
title is a proper sentence. Otherwise, there should not be a period. A frame subtitle may
also be given; this is typically used where a series of related frames are given with clearly
distinct content.

Currently, the (frame subtitle) is not used in output: this will be addressed in
later releases. The (options) for both commands are currently unused.

For compatibly with beamer, the class can be loaded with the option frame-title-
arg. When this is active, the frame environment requires an argument in all cases

\begin{frame}{Frame title here}

This interface is less flexible than using \frametitle, which is therefore the recommended
approach. Note that this option does not influence frame subtitles, which can only be
given using \framesubitle.

6.3 Frame and margin size

The size of a frame is actually the “paper size” of a presentation, and it is variable. The
standard size of a frame is 100 mm height with an aspect ratio of 16 : 9. It is the job of
the presentation program to display the slides at full screen size. The main advantage
of using a small “paper size” is that you can use all your normal fonts at their natural
sizes. In particular, inserting a graphic with 11 pt labels will result in reasonably sized
text during the presentation.

The aspect ratio of the slides can be adjusted by setting the aspect-ratio load-time

\pause

option, which takes two integer values separated by a colon. These values are the relative
width and height of the slide: in contrast to beamer, the absolute height is a fixed value
of 100 mm.

Aside from using these options, you should refrain from changing the “paper size”.
However, you can change the size of the left and right margins, which default to 10 mm.
These should be set using the interfaces from the geometry package, for example

\geometry{lmargin = 15mm, rmargin = 15mm}

6.4 Restricting the slides of a frame

The number of slides in a frame is automatically calculated. If the largest number
mentioned in any overlay specification inside the frame is 4, four slides are introduced
(despite the fact that a specification like <4-> might suggest that more than four slides
would be possible).

7 Creating overlays

7.1 The \pause command

The \pause command offers an easy, but not very flexible way of creating frames that
are uncovered piecewise. If you say \pause somewhere in a frame, only the text on
the frame up to the \pause command is shown on the first slide. On the second slide,
everything is shown up to the second \pause, and so forth. You can also use \pause
inside environments; its effect will last after the environment. However, taking this to
extremes and using \pause deeply within a nested environment may not have the desired
result.

A much more fine-grained control over what is shown on each slide can be attained
using overlay specifications, see the next sections. However, for many simple cases the
\pause command is sufficient.

The \pause command takes an optional argument

\pause [(overlay spec)]

This causes the text following it to be shown only from the next slide on, or, if the
optional (overlay spec) is given, from the slide with the number (overlay spec). If
the optional (overlay spec) is given, the counter pauses is set to this number. This
command uses the \onslide command internally. The effect of \pause lasts till the next
\pause, \onslide, or the end of the frame.

\begin{frame}
\begin{itemize}
\item
Shown from first slide on.
\pause
\item
Shown from second slide on.
\begin{itemize}
\item
Shown from second slide on.
\pause

\item
Shown from third slide on.

\end{itemize}
\item

Shown from third slide on.
\pause
\item

Shown from fourth slide on.
\end{itemize}

Shown from fourth slide on.

\begin{itemize}
\onslide
\item
Shown from first slide on.
\pause
\item
Shown from fifth slide on.
\end{itemize}
\end{frame}

This command does not work correctly inside math mode environments like align
and pgf environments like tikzpicture or tcolorbox, since these do really wicked things.

To “unpause” some text, that is, to temporarily suspend pausing, use the command
\onslide, see below.

7.2 The general concept of overlay specifications

Whilst the \pause command is easy to understand, it is quite limited and so is best suited
only to simple cases. The Itx-talk class therefore supports a different approach. The idea
is to add overlay specifications to commands. These specifications are always given in
pointed brackets and follow the command as the first argument. In the simplest case, the
specification contains just a number. A command with an overlay specification following
it will only have “effect” on the slide(s) mentioned in the specification. What exactly
“having an effect” means, depends on the command. Consider the following example.

\begin{frame}
\textbf{This line is bold on all three slides.}
\textbf<2>{This line is bold only on the second slide.}
\textbf<3>{This line is bold only on the third slide.}
\end{frame}

For the command \textbf, the overlay specification causes the text to be set in
boldface only on the specified slides. On all other slides, the text is set in a normal font.
For a second example, consider the following frame:

\begin{frame}
\only<1>{This line is inserted only on slide~1.}
\only<2>{This line is inserted only on slide~2.}
\end{frame}

\onslide

The command \only normally simply inserts its parameter into the current frame.
However, if an overlay specification is present, it “throws away” its parameter on slides
that are not mentioned.

Overlay specifications can only be written behind certain commands, not every com-
mand. Which commands you can use and which effects this will have is explained in the
next section. However, it is quite easy to redefine an existing command such that it
becomes “overlay specification aware”, see also Section 7.3.

The syntax of (basic) overlay specifications is the following: they are comma-
separated lists of slides and ranges. Ranges are specified like this: 2-5, which means
slide two through to five. The start or the end of a range can be omitted. For example,
3- means “slides three, four, five, and so on” and -5 means the same as 1-5. A compli-
cated example is -3,6-8,10,12-15, which selects the slides 1, 2, 3, 6, 7, 8, 10, 12, 13, 14
and 15.

7.3 Commands with overlay specifications

For the following commands, adding an overlay specification causes the command to be
simply ignored on slides that are not included in the specification: \textbf, \textit,
\textmd, \textnormal, \textrm, \textsc, \textsf, \textsl, \texttt, \textup,
\emph; \color, \mathcolor, \textcolor; \alert; \includegraphics; \label.

If a command takes several arguments, like \color, the specification should directly
follow the command as in the following example:

\begin{frame}
\color<2-3>[rgb]{1,0,0} This text is red on slides 2 and 3, otherwise
black.
\end{frame}

For the following commands, the effect of an overlay specification is special:

\onslide<(overlay spec)>

All text following this command will only be shown (uncovered) on the specified slides. On
non-specified slides, the text still occupies space. If no slides are specified, the following
text is always shown. You need not call this command in the same TEX group, its effect
transcends block groups.

\begin{frame}
Shown on first slide.
\onslide<2-3>
Shown on second and third slide.
\begin{itemize}
\item
Still shown on the second and third slide.
\onslide<4->
\item
Shown from slide~4 on.
\end{itemize}
Shown from slide~4 on.
\onslide
Shown on all slides.
\end{frame}

\only

\uncover

\visible

\invisible

\alt

\temporal

\only<(overlay spec)>{(text)}

The (text) is inserted only into the specified slides. For other slides, the text is simply
thrown away. In particular, it occupies no space.

\only<3->{Text inserted from slide 3 on.}

\uncover<(overlay spec)>{(text)}

If the (overlay spec) is present, the (text) is shown (“uncovered”) only on the specified
slides. On other slides, the text still occupies space and it is still typeset, but it is not
shown or only shown as if transparent. For details on how to specify whether the text is
invisible or just transparent see Section 77.

\uncover<3->{Text shown from slide 3 on.}

\visible<(overlay spec)>{(text)}

This command does almost the same as \uncover. The only difference is that if the text
is not shown, it is never shown in a transparent way, but rather it is not shown at all.
Thus, for this command the transparency settings have no effect.

\visible<2->{Text shown from slide 2 on.}

\invisible<(overlay spec)>{(text)}
This command does the opposite of \visible.

\invisible<2->{Text hidden from slide~2 on.}

\alt<(overlay spec)>{(default text)}{(alternative text)}
The default text is shown on the specified slides, otherwise the alternative text.

\alt<2>{0n slide~2}{Not on slide~2.}

\temporal<(overlay spec)>{(before slide text)}{(default text)} {(after slide
text)}

This command alternates between three different texts, depending on whether the current
slide is temporally before the specified slides, is one of the specified slides, or comes after
them. If the (overlay spec) is not an interval (that is, if it has a “hole”), the “hole” is
considered to be part of the before slides.

\temporal<3-4>{Shown on 1, 2}{Shown on 3, 4}{Shown 5, 6, 7, ...}
\temporal<3,5>{Shown on 1, 2, 4}{Shown on 3, 5}{Shown 6, 7, 8, ...}

10

As a possible application of the \temporal command consider the following example:

\NewDocumentCommand\colorize{D<>{all}}{%
\temporal<#1>{\color{red!50}}{\color{black}}{\color{black!50}}}
\begin{frame}
\begin{itemize}
\colorize<1> \item First item.
\colorize<2> \item Second item.
\colorize<3> \item Third item.
\colorize<4> \item Fourth item.
\end{itemize}
\end{frame}

\item
\item<({action spec)>[{item label)]

The effect of (action spec) is described in Section 7.6.2; this extends the (overlay
spec) to include the potential to “alert” items.

\begin{frame}
\begin{itemize}
\item<1-> First point, shown on all slides.
\item<2-> Second point, shown on slide~2 and later.
\item<2-> Third point, also shown on slide~2 and later.
\item<3-> Fourth point, shown on slide~3.
\end{itemize}

\end{frame}

\begin{frame}
\begin{enumerate}
\item<3-| alert@3>[0.] A zeroth point, shown at the very end.
\item<1-| alert@1> The first and main point.
\item<2-| alert@2> The second point.
\end{enumerate}
\end{frame}

7.4 Environments with overlay specifications

For each of the basic commands \only, \visible, \uncover and \invisible there exists

onlyenv .)
.) “environment versions” onlyenv, visibleenv, uncoverenv and invisibleenv. Except

en
for onlyenv, these environments do the same as the commands.

For the onlyenv environment, the contents of the environment is inserted into the
text only on the specified slides. The difference to \only is, that the text is actually
typeset inside a box that is then thrown away, whereas \only immediately throws away
its contents. If the text is not “typesettable”, the onlyenv may produce an error where
\only would not.

uncoverenv

(
invisibleenv (en

(en

(

[SEERS NS A~

visibleenv (en

\begin{frame}
This line is always shown.
\begin{onlyenv}<2>
This line is inserted on slide-~2.
\end{onlyenv}
\end{frame}

11

7.5 Dynamically changing text or images

You may sometimes wish to have some part of a frame change dynamically from slide
to slide. On each slide of the frame, something different should be shown inside this
area. You could achieve the effect of dynamically changing text by giving a list of \only
commands like this:

\only<1>{Initial text.}
\only<2>{Replaced by this on second slide.}
\only<3>{Replaced again by this on third slide.}

The trouble with this approach is that it may lead to slight, but annoying differences
in the heights of the lines, which may cause the whole frame to “wobble” from slide to
slide. This problem becomes much more severe if the replacement text is several lines
long.

To solve this problem, you can use two environments: overlayarea and overprint.
The first is more flexible, but less user-friendly.

overlayarea (env.)

\begin{overlayarea}{{area width)}{(area height)}

Everything within the environment will be placed in a rectangular area of the specified
size. The area will have the same size on all slides of a frame, regardless of its actual
contents.

\begin{overlayarea}{\textwidth}{3cm}
\only<1>{Some text for the first slide.\\Possibly several lines long.}
\only<2>{Replacement on the second slide.}

\end{overlayarea}

overprint (env.)

\begin{overprint}[(area width)]

The (area width) defaults to the text width. Inside the environment, use \only or
onlyenv to specify different things that should be shown for this environment on differ-
ent slides. Everything within the environment will be placed in a rectangular area of the
specified width. The height and depth of the area are chosen large enough to accommo-
date the largest contents of the area. Two compilations will be needed to allow IXTEX to
track the tallest version of the frame contents.

\begin{overprint}
\only<1|handout:1>{%
Some text for the first slide.\\
Possibly several lines long.
Yh
\only<2|handout:0>{%
Replacement on the second slide. Suppressed for handout.
Yh
\end{overprint}
Following text

A similar need for dynamical changes arises when you have, say, a series of pictures
named first, second, and third that show different stages of some process. To make a
frame that shows these pictures on different slides, the following code might be used:

12

\begin{frame}
\frametitle{The Three Process Stages}

\includegraphics<i>{first}

\includegraphics<2>{second}

\includegraphics<3>{third}
\end{frame}

7.6 Advanced overlay specifications
7.6.1 Mode specifications

This section is only important if you use the mode mechanism to create different versions
of your presentation. If you are not familiar with modes, please skip this section or read
Section 10 first.

In certain cases you may wish to have different overlay specifications to apply to a
command in different modes. For example, you might wish a certain text to appear only
from the third slide on during your presentation, but in a handout for the audience there
should be no third slide and the text should appear already on the second slide. In this
case you could write

\only<3| handout:2>{Some text}

The vertical bar separates the two different specifications 3 and handout:2. By
writing a mode name before a colon, you specify that the following specification only
applies to that mode. If no mode is given, as in 3, the mode projector is automatically
added. For this reason, if you write \only<3>{Text} and you are in handout mode, the
text will be shown on all slides since there is no restriction specified for handouts and
since the 3 is the same as projector:3.

It is also possible to give an overlay specification that contains only a mode name
(or several, separated by vertical bars):

\only<handout>{This text is shown only in handout mode.}

An overlay specification that does not contain any slide numbers is called a (pure)
mode specification. If a mode specification is given, all modes that are not mentioned
are automatically suppressed. Thus <projector:1-> means “on all slides in projector
mode and also on all slides in all other modes, since nothing special is specified for
them”, whereas <projector> means “on all slides in projector mode and not on any
other slide”.

You can also mix pure mode specifications and overlay specifications, although this
can get confusing:

\only<article| projector:1>{Riddle}

This will cause the text Riddle to be inserted in article mode and on the first slide
of a frame in projector mode, but not at all in handout mode.

13

actionenv (env.)

\action

7.6.2 Action specifications

This section also introduces a rather advanced concept. You may also wish to skip it on
first reading.

Some overlay specification-aware commands can handle not only normal overlay
specifications, but also a so called action spec. In an action specification, the list of slide
numbers and ranges is prefixed by (action)@, where (action) is the name of a certain
action to be taken on the specified slides:

\item<3-|alert@3> Shown from slide~3 on, alerted on slide~3.

In the above example, the \item command, which allows actions to be specified, will
uncover the item text from slide three on and it will, additionally, alert this item exactly
on slide 3.

Not all commands can take an action specification. Currently, only \item, \action,
the environment actionenv, and the block environments (like block) handle them.

By default, the following actions are available:

e alert alters the item or block.
e uncover uncovers the item or block (this is the default, if no action is specified).
e only causes the whole item or block to be inserted only on the specified slides.

o visible causes the text to become visible only on the specified slides (the difference
between uncover and visible is the same as between \uncover and \visible).

e invisible causes the text to become invisible on the specified slides.

The whole action mechanism is based on the following environment:

\begin{actionenv}<({action spec)>

This environment extracts all actions from the (action spec) for the current mode. For
each action of the form (action)@(slide numbers), it inserts the equivalent internal
code to: \begin{(action)env}<(slide number)> at the beginning of the environment
and the text \end{(action)env} at the end. An (overlay spec) without an action is
promoted to uncover@({overlay spec).

\begin{frame}
\begin{actionenv}<2-|alert@3-4,6>
This text is shown the same way as the text below.
\end{actionenv}

\begin{uncoverenv}<2->
\begin{alertenv}<3-4,6>
This text is shown the same way as the text above.
\end{alertenv}
\end{uncoverenv}
\end{frame}

\action<(action spec)>{(text)}

This has the same effect as putting (text) in an actionenv.

14

7.6.3 Incremental specifications

This section is mostly important for people who have already used overlay specifications
a lot and have grown tired of writing things like <1->, <2-> <3-> and so on again and
again. You should skip this section on first reading.

Often you want to have overlay specifications that follow a pattern similar to the
following:

\begin{itemize}
\item<1-> Apple
\item<2-> Peach
\item<3-> Plum
\item<4-> Orange

\end{itemize}

The problem starts if you decide to insert a new fruit, say, at the beginning. In this
case, you would have to adjust all of the overlay specifications. Also, if you add a \pause
command before the itemize, you would also have to update the overlay specifications.

The class offers a special syntax to make creating lists as the one above more con-
venient. You can replace it by the following list of incremental overlay specifications:

\begin{itemize}
\item<+-> Apple
\item<+-> Peach
\item<+-> Plum
\item<+-> Orange

\end{itemize}

The effect of the + sign is the following. You can use it in any overlay specification
at any point where you would usually use a number. If a + sign is encountered, it is
replaced by one more than the current value of the IWTEX counter pauses; that is 0 at
the beginning of the frame, so the first possible replacement value is 1. At the end of the
overlay specification, the pauses counter is incremented. This only happens once even if
the specification contains multiple + signs (they are replaced by the same number, which
is also the new value of pauses).

In the above example, the first specification is replaced by <1->. Then the second
is replaced by <2-> and so forth. We can now easily insert new entries, without having
to change anything else. We might also write the following:

\begin{itemize}
\item<+-| alert@+> Apple
\item<+-| alert@+> Peach
\item<+-| alert@+> Plum
\item<+-| alert@+> Orange
\end{itemize}

This will alert the current item when it is uncovered. For example, the first spec-
ification <+-| alert@+> is replaced by <1-| alert@1>, the second is replaced by <2-
| alert@2>, and so on. Since the itemize environment also allows you to specify a
default overlay specification, see the documentation of that environment, the above ex-
ample can be written even more economically as follows:

15

\begin{itemize} [<+-| alert@+>]
\item Apple
\item Peach
\item Plum
\item Orange
\end{itemize}

The \pause command also updates the counter pauses. You can change this counter
yourself using the normal IATEX commands \setcounter or \addtocounter

Any occurrence of a + sign may be followed by an offset in round brackets. This offset
will be added to the value of the pauses counter. Thus, if pauses is 2, then <+(1)->
expands to <3-> and <+(-1)-+> expands to <1-2>. For example

\begin{itemize}
\item<2-> Apple
\item<3-> Peach
\item<4-> Plum
\item<5-> Orange

\end{itemize}

and

\begin{itemizel} [<+(1)->]
\item Apple
\item Peach
\item Plum
\item Orange
\end{itemize}

are equivalent.

There is another special sign you can use in an overlay specification that behaves
similarly to the + sign: a dot. When you write <.->, a similar process occurs to that for
<+-> except that the counter pauses is used unchanged. Thus a dot, possibly followed
by an offset, just expands to the current value of the counter pauses, possibly offset.
This dot notation can be useful in case like the following:

\begin{itemize} [<+->]
\item Apple
\item<.-> Peach
\item Plum
\item Orange

\end{itemize}

In the example, the second item is shown at the same time as the first one since it
does not update the counter.

In the following example, each time an item is uncovered, the specified text is alerted.
When the next item is uncovered, this altering ends.

\begin{itemize} [<+->]
\item This is \alert<.>{important}.
\item We want to \alert<.>{highlight} this and \alert<.>{this}.
\item What is the \alert<.>{matrix}?

\end{itemize}

16

\maketitle

\author
\date
\institute
\subtitle
\title

The replacements of the + sign and the . sign are no less than zero. This prevents
errors when encountering large negative offsets, for example <+(-7)-> is converted to
<0-> rather than <-6->.

8 Structuring a presentation: the global structure

This section lists the commands that are used for structuring a presentation “globally”
using commands like \section or \part. These commands are used to create a static
structure, meaning that the resulting presentation is normally presented one slide after
the other in the order the slides occur.

8.1 Adding a title frame

You can use the standard \maketitle command to insert a title frame. As standard,
it will arrange the following elements on the title page: the document title and subtitle,
the authors’ names, their affiliation, and the date.

\maketitle[(settings)]

The \maketitle command may be inserted either inside or outside of a frame envi-
ronment; the result will be a full frame in either case. The optional argument to the
command is used to specify the following (settings)

e element-order which determines which entries are printed and the order they
appear: a comma-list

e frame-style sets the frame style
e horizontal-alignment

e vertical-alignment

\author [{options)]{(author)}

\date [(options)]{(date)}
\institute[(options)]{(institute)}
\subtitle[{options)]{(subtitle)}
\title[{options)]{(title)}

As well as the standard IATEX elements \author, \title and \date, ltx-talk supports
\subtitle and \institute. These working the same way as the standard commands
for providing metadata. The (options) may be used to set the short- version of each
item: if no key name is given, the entire optional argument is used as the short version.
If multiple (options) are given, they are interpreted as key-values.

9 Structuring a presentation: the local structure
IATEX provides different commands for structuring text “locally”, for example, via the

itemize environment. These environments are also available in the ltx-talk class, although
their appearance has been slightly changed.

17

9.1 Itemizations, enumerations and descriptions

description (env.) There are three predefined environments for creating lists, namely enumerate, itemize,
enumerate (env.) and description. The first two can be nested to depth three, but nesting them to this
itemize (env.) depth creates totally unreadable slides.
\item The \item command is overlay specification-aware. If an overlay specification is
provided, the item will only be shown on the specified slides, see the following example.
If the \item command is to take an optional argument and an overlay specification, the
overlay specification comes first as in \item<1>[Cat].

\begin{frame}
There are three important points:
\begin{enumerate}
\item<1-> A first one,
\item<2-> a second one with a bunch of subpoints,
\begin{itemize}
\item first subpoint. (Only shown from second slide on!).
\item<3-> second subpoint added on third slide.
\item<4-> third subpoint added on fourth slide.
\end{itemize}
\item<5-> and a third one.
\end{enumerate}
\end{frame}

The list environments have syntax

\begin{(list type)}[(options)]

If the option action-spec is given, in every occurrence of an \item command that
does not have an overlay specification attached to it, the (overlay specification)
is used. By setting this specification to be an incremental overlay specification, see
Section 7.6.3, you can implement, for example, a stepwise uncovering of the items.
The (overlay specification) is inherited by sub-environments. Naturally, in a sub-
environment you can reset it locally by setting it to <1-> (the subitems will be shown on
all slides) or <.-> (the subitems will be shown starting from the same slide as the parent
item).

\begin{itemize} [action-spec = <+->]

\item This is shown from the first slide on.

\item This is shown from the second slide on.

\item This is shown from the third slide on.

\item<1-> This is shown from the first slide on.

\item This is shown from the fourth slide on.

\end{itemize}

If you do not need to give any other options for the list environment, you may use the
shortened format [<...>], which matches the beamer syntax:

\begin{itemize} [<+->]
\item This is shown from the first slide on.
\item This is shown from the second slide on.
\item This is shown from the third slide on.
\item<1-> This is shown from the first slide on.
\item This is shown from the fourth slide on.
\end{itemize}

18

\alert

alertenv (env.)

columns (env.)

9.2 Highlighting

\alert<(overlay spec)>{(text)}

The given (text) is highlighted, typically by coloring the text red. If the (overlay spec)
is present, the command only has an effect on the specified slides.

This is \alert{important}.

\begin{alertenv}<(overlay spec)>

Environment version of the \alert command.

9.3 Block environments

9.4 Figures and tables

You can use the standard KTEX environments figure and table much the same way you
would normally use them. However, any placement specification will be ignored. Figures
and tables are immediately inserted where the environments start. If there are too many
of them to fit on the frame, you must manually split them among additional frames.

\begin{frame}
\begin{figure}
\includegraphics{myfigure}
\caption{This caption is placed below the figure.}
\end{figure}

\begin{figure}
\caption{This caption is placed above the figure.}
\includegraphics{myotherfigure}
\end{figure}
\end{frame}

Note that at present the standard setting for Itx-talk place the float content left-
aligned. This is similar to the IATEX base classes and contrasts with beamer. See the
example directory for the supported method to center content in floats.

The floating environments, like other blocks, accept a first action argument. This
can be used to apply an overlay to the entire content, most obviously a graphics and the
associated caption.

9.5 Splitting a frame into multiple columns

The class offers several commands and environments for splitting (perhaps only part
of) a frame into multiple columns. These commands have nothing to do with IXTEX’s
commands for creating columns. Columns are especially useful for placing a graphic next
to a description/explanation.

The main environment for creating columns is called columns. Inside this environ-
ment, you can place several column environments, each of which creates a new column.

19

\begin{columns}<(action spec)>[(options)]

A multi-column area. If the (action spec) is present, the given actions are taken on the
specified slides, see Section 7.6.2. The following (options) may be given:

e vertical-alignment a choice of one of bottom, center or top; this causes the
content of the columns to be aligned as specified. The standard setting is center.
For compatibility with beamer, the short options b, ¢ and t are available.

e width will cause the columns to occupy (width): the standard setting is
\textwidth.

column (env.)

\begin{column}<(action spec)>[(placement)]{{column width)}
To create a column, you can use the column environment.

\begin{columns}
\begin{column}{5cm}
Two\\lines.
\end{column}
\begin{column}{5cm}
One line (but aligned).
\end{column}
\end{columns}

Creates a single column of width (column width). If the (action specification)
is present, the given actions are taken on the specified slides, see Section 7.6.2. The
vertical placement of the enclosing columns environment can be overruled by specifying
a specific (placement).

10 Creating alternative output formats

mode The Itx-talk class allows you to select different output formats from the same source using
the option mode. This works with the overlay specification to typeset some of the input
selectively.

10.1 Creating handouts using the handout mode

During a presentation it is very much desirable that the audience has a handout or even
lecture notes available to it. A handout allows everyone in the audience to individually
go back to things they have not understood.

The easiest way of creating a handout for your audience is to set the mode option
set to (handout). This will cause the document to be typeset in handout mode. It will
look like a presentation, but it can be printed or annotated more easily (the overlays are
“flattened”).

20

tag-slides

11 Creating tagging PDF output

As detailed in the introduction (Section 1), the Itx-talk class has been written from the
start with tagging in mind. As such, where possible, tagging is generated automatically.
This works best with predictable frame structure, for example the classical “uncover a
list one item at a time” approach.

To enable control tagging of slides, the frame option tag-slides is available. This
can be used to list which slides in a frame are tagged: those omitted are marked as
artifacts. The setting should be a comma-list of slide numbers, which an include n as
a marker to mean the last slide of the frame. The standard setting is tag-slides = n,
meaning only the last slide of the frame is tagged. You may use mode specifications in
the tag-slides option, for example tag-slides = nl|lhandout:1,n would tag the last
slide in the frame in projector mode and the first and last for handout mode.

12 Changing the way things look

The design of frames in ltx-talk is controlled by templates, a feature introduced in the
IATEX kernel in the 2024-06-01 release. The general concept is currently documented in
lttemplates.pdf with some coverage in clsguide.pdf.

Several of the templates are illustrated in the examples, available along with this
document or at https://www.texdev.net/ltx-talk/examples/ as live demonstrations.

12.1 Font choice

For pdfTEX users, font choice will typically be determined by the available IATEX font
packages. For LuaTgX users, the font choice will be partly determined by the system
fonts installed. To get consistent appearance for text and math mode material, LuaTEX
users are strongly encouraged to choose a font available with Unicode math support.
A demonstration of the majority of current options in this area is available at https:
//mathfonts.github.io/latex-table.html, where you can also try out the appearance
of expressions you choose.

12.2 Template floatenv

This template is used to create environments which map to the floats in a starndard
IXTEX document. Note that they do not float in an Itx-talk document. The template
takes two arguments: options to apply to an individual environment, and the type of
“float”. The standard template is talk, which recognizes the keys

o float-placement Ignored at present

e horizontal-alignment Takes a choice of left, center or right

12.3 Template footer

This template is used to populate the footer area of the slide: this takes no arguments.
The standard template is talk, which recognizes the keys

e background-color The color of the background of the entire footer area

e color The color of the text in the footer area

21

https://www.texdev.net/ltx-talk/examples/
https://mathfonts.github.io/latex-table.html
https://mathfonts.github.io/latex-table.html

element-order A comma-separated list of metadata elements to print: this can
include the framenumber. Where available, “short” versions of the metadata items
are printed.

font Font for printing elements

left-hspace Margin on left of footer
right-hspace Margin on right of footer
separator Tokens inserted between elements.
The current list of supported metadata entries is
author

date

framenumber

institute

subtitle

title

totalframes

Two instances of this template are pre-defined: std and wallpaper. The wallpaper

version omits any elements, meaning that it only applies a colored background to the
footer.

12.4 Template header

This template is used to populate the header area of the slide: this takes no arguments.

The

standard template is talk, which recognizes the keys
background-color The color of the background of the entire footer area
color The color of the text in the footer area
font Font for printing elements
height The overall height of the header background area
left-hspace Margin on left of footer
print-frame-title A boolean to turn title printing on and off
right-hspace Margin on right of footer

Two instances of this template are pre-defined: std and wallpaper. The wallpaper

version sets print-frame-title to false, and thus only adds the background color to
the header.

22

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

A
\action, 14
\action 14
actionenv (env.) 14
\addtocounter 16
\alert i 19
\alert 9, 19
alertenv (env.) 19
Nalt 10
Nalt 10
aspect-ratio (option) 6
\author 17
\author 17
B
\begin 5, 12, 14, 18-20
C
\NCOLOT . ot 9
column (env.) 20
columns (env.) 19
D
\date 17
\date 17
description (env.) 18
\DocumentMetadata 3
E
Nemph, 9
Nend ...)
enumerate (env.) 18
environments:
actionenv 14
alertenv, 19
column, 20
columns 19
description 18
enumerate 18
frame o L.)
framex 6
invisibleenv 11
itemize 18
onlyenv 11
overlayarea 12
overprint 12
UNCOVETENV . . vv vt e i e et 11
visibleenv 11

F
frame (env.) 5
frame* (env.) 6
frame-title-arg (option) 6
\framesubitle 6
\framesubtitle 6
\framesubtitle 6
\frametitle 6
\frametitle 5, 6
1
\includegraphics 9
\institute 17
\institute 17
\invisible 10
\invisible 10, 11
invisibleenv (env.) 11
\itemo 11, 18
NEEOM oo e 11, 14, 18
itemize (env.) 18
L
\label, 9
M
\maketitle 17
\maketitle 17
\mathcolor 9
\mathrm)
mode (option) 20
N
\newcommand 5
\NewDocumentCommand)
\newenvironment 5
(0}
Nonly . ..ooiiii 9
\only, 8, 9, 11, 12
onlyenv (env.) 11
\onslide 9
\onslide 79
options:
aspect-ratio 6
frame-title-arg 6
mode 20
tag-slides 21
overlayarea (emnv.) 12
overprint (emv.) 12

\setcounter

tag-slides (option)

\textnormal

\textrm, 5, 9

\texXtsSc ... 9
\textsf 9
\textsl 9
\texttt 9
\textup 9
\textwidth 20
\title . .oiii 17
\title 17
U
\UDCOVET . .t vttt it 10
\uncover 10, 11, 14
uncoverenv (env.) 11
\%
\visible 10
\visible 10, 11, 14
visibleenv (env.) 11

24

	Contents
	1 Introduction
	2 Submitting ideas
	3 Simple example documents
	4 Class structure and design decisions
	5 Differences from beamer
	6 Creating frames
	6.1 The frame environment
	6.2 Components of a frame
	6.2.1 The frame title

	6.3 Frame and margin size
	6.4 Restricting the slides of a frame

	7 Creating overlays
	7.1 The \pause command
	7.2 The general concept of overlay specifications
	7.3 Commands with overlay specifications
	7.4 Environments with overlay specifications
	7.5 Dynamically changing text or images
	7.6 Advanced overlay specifications
	7.6.1 Mode specifications
	7.6.2 Action specifications
	7.6.3 Incremental specifications

	8 Structuring a presentation: the global structure
	8.1 Adding a title frame

	9 Structuring a presentation: the local structure
	9.1 Itemizations, enumerations and descriptions
	9.2 Highlighting
	9.3 Block environments
	9.4 Figures and tables
	9.5 Splitting a frame into multiple columns

	10 Creating alternative output formats
	10.1 Creating handouts using the handout mode

	11 Creating tagging PDF output
	12 Changing the way things look
	12.1 Font choice
	12.2 Template floatenv
	12.3 Template footer
	12.4 Template header

	Index
	A
	B
	C
	D
	E
	F
	I
	L
	M
	N
	O
	P
	S
	T
	U
	V

