
Package ‘CAST’
January 26, 2026

Type Package

Title 'caret' Applications for Spatial-Temporal Models

Version 1.0.4

Author Hanna Meyer [cre, aut],
Carles Milà [aut],
Marvin Ludwig [aut],
Jan Linnenbrink [aut],
Fabian Schumacher [aut],
Philipp Otto [ctb],
Chris Reudenbach [ctb],
Thomas Nauss [ctb],
Edzer Pebesma [ctb],
Jakub Nowosad [ctb]

Maintainer Hanna Meyer <hanna.meyer@uni-muenster.de>

Description Supporting functionality to run 'caret' with spatial or spatial-temporal data. 'caret' is a fre-
quently used package for model training and prediction using machine learning. CAST in-
cludes functions to improve spatial or spatial-temporal modelling tasks using 'caret'. It in-
cludes the newly suggested 'Nearest neighbor distance matching' cross-validation to esti-
mate the performance of spatial prediction models and allows for spatial variable selection to se-
lects suitable predictor variables in view to their contribution to the spatial model perfor-
mance. CAST further includes functionality to estimate the (spatial) area of applicability of pre-
diction models. Methods are de-
scribed in Meyer et al. (2018) <doi:10.1016/j.envsoft.2017.12.001>; Meyer et al. (2019) <doi:10.1016/j.ecolmodel.2019.108815>; Meyer and Pebesma (2021) <doi:10.1111/2041-
210X.13650>; Milà et al. (2022) <doi:10.1111/2041-
210X.13851>; Meyer and Pebesma (2022) <doi:10.1038/s41467-022-29838-9>; Linnen-
brink et al. (2024) <doi:10.5194/gmd-17-5897-2024>; Schu-
macher et al. (2025) <doi:10.5194/gmd-18-10185-2025>. The package is described in de-
tail in Meyer et al. (2026) <doi:10.1007/978-3-031-99665-8_11>.

License GPL (>= 2)

URL https://github.com/HannaMeyer/CAST,

https://hannameyer.github.io/CAST/

Encoding UTF-8

LazyData false

1

https://doi.org/10.1016/j.envsoft.2017.12.001
https://doi.org/10.1016/j.ecolmodel.2019.108815
https://doi.org/10.1111/2041-210X.13650
https://doi.org/10.1111/2041-210X.13650
https://doi.org/10.1111/2041-210X.13851
https://doi.org/10.1111/2041-210X.13851
https://doi.org/10.1038/s41467-022-29838-9
https://doi.org/10.5194/gmd-17-5897-2024
https://doi.org/10.5194/gmd-18-10185-2025
https://doi.org/10.1007/978-3-031-99665-8_11
https://github.com/HannaMeyer/CAST
https://hannameyer.github.io/CAST/

2 Contents

Depends R (>= 4.1.0)

BugReports https://github.com/HannaMeyer/CAST/issues/

Imports caret, stats, utils, ggplot2, graphics, FNN, plyr, zoo,
methods, grDevices, data.table, sf, forcats, twosamples, terra,
sp, parallel

Suggests doParallel, lubridate, randomForest, knitr, geodata, mapview,
rmarkdown, scales, gridExtra, viridis, stars, scam,
rnaturalearth, MASS, RColorBrewer, tmap, PCAmixdata, gower,
clustMixType, testthat (>= 3.0.0)

RoxygenNote 7.3.2

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Repository CRAN

Date/Publication 2026-01-26 12:30:02 UTC

Contents

aoa . 3
bss . 7
CAST . 9
clustered_sample . 10
cookfarm . 11
CreateSpacetimeFolds . 12
errorProfiles . 14
ffs . 17
geodist . 20
global_validation . 24
knndm . 25
nndm . 30
normalize_DI . 35
plot . 36
print . 38
splotdata . 39
trainDI . 40

Index 43

https://github.com/HannaMeyer/CAST/issues/

aoa 3

aoa Area of Applicability

Description

This function estimates the Dissimilarity Index (DI) and the derived Area of Applicability (AOA)
of spatial prediction models by considering the distance of new data (i.e. a SpatRaster of spatial
predictors used in the models) in the predictor variable space to the data used for model training.
Predictors can be weighted based on the internal variable importance of the machine learning al-
gorithm used for model training. The AOA is derived by applying a threshold on the DI which
is the (outlier-removed) maximum DI of the cross-validated training data. Optionally, the local
point density is calculated which indicates the number of similar training data points up to the DI
threshold.

Usage

aoa(
newdata,
model = NA,
trainDI = NA,
train = NULL,
weight = NA,
variables = "all",
CVtest = NULL,
CVtrain = NULL,
method = "L2",
useWeight = TRUE,
useCV = TRUE,
LPD = FALSE,
maxLPD = 1,
indices = FALSE,
parallel = FALSE,
cores = 4,
verbose = TRUE,
algorithm = "brute"

)

Arguments

newdata A SpatRaster, stars object or data.frame containing the data the model was meant
to make predictions for.

model A train object created with caret used to extract weights from (based on variable
importance) as well as cross-validation folds. See examples for the case that no
model is available or for models trained via e.g. mlr3.

trainDI A trainDI object. Optional if trainDI was calculated beforehand.

4 aoa

train A data.frame containing the data used for model training. Optional. Only re-
quired when no model is given

weight A data.frame containing weights for each variable. Optional. Only required if
no model is given.

variables character vector of predictor variables. if "all" then all variables of the model
are used or if no model is given then of the train dataset.

CVtest list or vector. Either a list where each element contains the data points used for
testing during the cross validation iteration (i.e. held back data). Or a vector that
contains the ID of the fold for each training point. Only required if no model is
given.

CVtrain list. Each element contains the data points used for training during the cross
validation iteration (i.e. held back data). Only required if no model is given
and only required if CVtrain is not the opposite of CVtest (i.e. if a data point
is not used for testing, it is used for training). Relevant if some data points are
excluded, e.g. when using nndm.

method Character. Method used for distance calculation. Currently euclidean distance
(L2) and Mahalanobis distance (MD) are implemented but only L2 is tested.
Note that MD takes considerably longer.

useWeight Logical. Only if a model is given. Weight variables according to importance in
the model?

useCV Logical. Only if a model is given. Use the CV folds to calculate the DI thresh-
old?

LPD Logical. Indicates whether the local point density should be calculated or not.

maxLPD numeric or integer. Only if LPD = TRUE. Number of nearest neighbors to be con-
sidered for the calculation of the LPD. Either define a number between 0 and 1
to use a percentage of the number of training samples for the LPD calculation or
a whole number larger than 1 and smaller than the number of training samples.
CAUTION! If not all training samples are considered, a fitted relationship be-
tween LPD and error metric will not make sense (@seealso DItoErrormetric)

indices logical. Calculate indices of the training data points that are responsible for
the LPD of a new prediction location? Output is a matrix with the dimensions
num(raster_cells) x maxLPD. Each row holds the indices of the training data
points that are relevant for the specific LPD value at that location. Can be used
in combination with exploreAOA(aoa) function from the CASTvis package for
a better visual interpretation of the results. Note that the matrix can be quite big
for examples with a high resolution and a larger number of training samples,
which can cause memory issues.

parallel Logical. Parallelization the process. Only possible if LPD = TRUE. Can reduce
computation time significantly.

cores Integer or Character. Number of cores to use for the the parallelization. You can
use "auto" to set your cores to detectCores()/2 (see detectCores).

verbose Logical. Print progress or not?

algorithm see knnx.dist and knnx.index

https://github.com/fab-scm/CASTvis

aoa 5

Details

The Dissimilarity Index (DI), the Local Data Point Density (LPD) and the corresponding Area of
Applicability (AOA) are calculated. If variables are factors, dummy variables are created prior to
weighting and distance calculation.

Interpretation of results: If a location is very similar to the properties of the training data it will have
a low distance in the predictor variable space (DI towards 0) while locations that are very different
in their properties will have a high DI. For easier interpretation see normalize_DI See Meyer and
Pebesma (2021) for the full documentation of the methodology.

Value

An object of class aoa containing:

parameters object of class trainDI. see trainDI

DI SpatRaster, stars object or data frame. Dissimilarity index of newdata

LPD SpatRaster, stars object or data frame. Local Point Density of newdata.

AOA SpatRaster, stars object or data frame. Area of Applicability of newdata. AOA
has values 0 (outside AOA) and 1 (inside AOA)

Note

If classification models are used, currently the variable importance can only be automatically re-
trieved if models were trained via train(predictors,response) and not via the formula-interface. Will
be fixed.

Author(s)

Hanna Meyer, Fabian Schumacher

References

Meyer, H., Pebesma, E. (2021): Predicting into unknown space? Estimating the area of applicability
of spatial prediction models. Methods in Ecology and Evolution 12: 1620-1633. doi:10.1111/2041-
210X.13650

Schumacher, F., Knoth, C., Ludwig, M., Meyer, H. (2025): Estimation of local training data point
densities to support the assessment of spatial prediction uncertainty. Geosci. Model Dev., 18,
10185–10202. doi:10.5194/gmd18101852025

See Also

trainDI, normalize_DI, errorProfiles

Examples

Not run:
library(sf)
library(terra)
library(caret)

https://doi.org/10.1111/2041-210X.13650
https://doi.org/10.1111/2041-210X.13650
https://doi.org/10.5194/gmd-18-10185-2025

6 aoa

library(viridis)

prepare sample data:
data(cookfarm)
dat <- aggregate(cookfarm[,c("VW","Easting","Northing")],

by=list(as.character(cookfarm$SOURCEID)),mean)
pts <- st_as_sf(dat,coords=c("Easting","Northing"),crs=26911)
pts$ID <- 1:nrow(pts)
set.seed(100)
pts <- pts[1:30,]
studyArea <- rast(system.file("extdata","predictors_2012-03-25.tif",package="CAST"))[[1:8]]
trainDat <- extract(studyArea,pts,na.rm=FALSE)
trainDat <- merge(trainDat,pts,by.x="ID",by.y="ID")

visualize data spatially:
plot(studyArea)
plot(studyArea$DEM)
plot(pts[,1],add=TRUE,col="black")

train a model:
set.seed(100)
variables <- c("DEM","NDRE.Sd","TWI")
model <- train(trainDat[,which(names(trainDat)%in%variables)],
trainDat$VW, method="rf", importance=TRUE, tuneLength=1,
trControl=trainControl(method="cv",number=5,savePredictions=T))
print(model) #note that this is a quite poor prediction model
prediction <- predict(studyArea,model,na.rm=TRUE)
plot(varImp(model,scale=FALSE))

#...then calculate the AOA of the trained model for the study area:
AOA <- aoa(studyArea, model)
plot(AOA)
plot(AOA$AOA)
#... or if preferred calculate the aoa and the LPD of the study area:
AOA <- aoa(studyArea, model, LPD = TRUE)
plot(AOA$LPD)

#note that it is not required to use Random Forests. The method is model agnostic.
Let's chnage to SVM:
model <- train(trainDat[,which(names(trainDat)%in%variables)],
trainDat$VW, method="svmRadial", importance=TRUE, tuneLength=1,
trControl=trainControl(method="cv",number=5,savePredictions=T))
AOA <- aoa(studyArea, model, LPD = TRUE)
plot(AOA$LPD)

####
#The AOA can also be calculated without a trained model.
#All variables are weighted equally in this case:
####

AOA <- aoa(studyArea,train=trainDat,variables=variables)

####

bss 7

The AOA can also be used for models trained via mlr3 (parameters have to be assigned manually):
####

library(mlr3)
library(mlr3learners)
library(mlr3spatial)
library(mlr3spatiotempcv)
library(mlr3extralearners)

initiate and train model:
train_df <- trainDat[, c("DEM","NDRE.Sd","TWI", "VW")]
backend <- as_data_backend(train_df)
task <- as_task_regr(backend, target = "VW")
lrn <- lrn("regr.randomForest", importance = "mse")
lrn$train(task)

cross-validation folds
rsmp_cv <- rsmp("cv", folds = 5L)$instantiate(task)

predict:
prediction <- predict(studyArea,lrn$model,na.rm=TRUE)

Estimate AOA
AOA <- aoa(studyArea,

train = as.data.frame(task$data()),
variables = task$feature_names,
weight = data.frame(t(lrn$importance())),
CVtest = rsmp_cv$instance[order(row_id)]$fold)

End(Not run)

bss Best subset feature selection

Description

Evaluate all combinations of predictors during model training

Usage

bss(
predictors,
response,
method = "rf",
metric = ifelse(is.factor(response), "Accuracy", "RMSE"),
maximize = ifelse(metric == "RMSE", FALSE, TRUE),
globalval = FALSE,
trControl = caret::trainControl(),

8 bss

tuneLength = 3,
tuneGrid = NULL,
seed = 100,
verbose = TRUE,
...

)

Arguments

predictors see train

response see train

method see train

metric see train

maximize see train

globalval Logical. Should models be evaluated based on ’global’ performance? See
global_validation

trControl see train

tuneLength see train

tuneGrid see train

seed A random number

verbose Logical. Should information about the progress be printed?

... arguments passed to the classification or regression routine (such as randomFor-
est).

Details

bss is an alternative to ffs and ideal if the training set is small. Models are iteratively fitted using all
different combinations of predictor variables. Hence, 2^X models are calculated. Don’t try running
bss on very large datasets because the computation time is much higher compared to ffs.

The internal cross validation can be run in parallel. See information on parallel processing of carets
train functions for details.

Value

A list of class train. Beside of the usual train content the object contains the vector "selectedvars"
and "selectedvars_perf" that give the best variables selected as well as their corresponding perfor-
mance. It also contains "perf_all" that gives the performance of all model runs.

Note

This variable selection is particularly suitable for spatial cross validations where variable selection
MUST be based on the performance of the model for predicting new spatial units. Note that bss
is very slow since all combinations of variables are tested. A more time efficient alternative is the
forward feature selection (ffs).

CAST 9

Author(s)

Hanna Meyer

See Also

train,ffs, trainControl,CreateSpacetimeFolds, nndm

Examples

Not run:
data(iris)
bssmodel <- bss(iris[,1:4],iris$Species)
bssmodel$perf_all
plot(bssmodel)

End(Not run)

CAST ’caret’ Applications for Spatial-Temporal Models

Description

Supporting functionality to run ’caret’ with spatial or spatial-temporal data. ’caret’ is a frequently
used package for model training and prediction using machine learning. CAST includes functions
to improve spatial-temporal modelling tasks using ’caret’. It includes the newly suggested ’Nearest
neighbor distance matching’ cross-validation to estimate the performance of spatial prediction mod-
els and allows for spatial variable selection to selects suitable predictor variables in view to their
contribution to the spatial model performance. CAST further includes functionality to estimate the
(spatial) area of applicability of prediction models by analysing the similarity between new data
and training data. Methods are described in Meyer et al. (2018); Meyer et al. (2019); Meyer and
Pebesma (2021); Milà et al. (2022); Meyer and Pebesma (2022); Linnenbrink et al. (2023). The
package is described in detail in Meyer et al. (2024).

Details

’caret’ Applications for Spatio-Temporal models

Author(s)

Hanna Meyer, Carles Milà, Marvin Ludwig, Jan Linnenbrink, Fabian Schumacher

References

• Meyer, H., Ludwig, L., Milà, C., Linnenbrink, J., Schumacher, F. (2026): The CAST package
for training and assessment of spatial prediction models in R. In: Rocchini, D. (eds) R Coding
for Ecology. Use R!. Springer, Cham.

10 clustered_sample

• Schumacher, F., Knoth, C., Ludwig, M., Meyer, H. (2025): Estimation of local training data
point densities to support the assessment of spatial prediction uncertainty. Geosci. Model
Dev., 18, 10185–10202.

• Linnenbrink, J., Milà, C., Ludwig, M., and Meyer, H. (2024): kNNDM: k-fold Nearest Neigh-
bour Distance Matching Cross-Validation for map accuracy estimation, Geosci. Model Dev.,
17, 5897–5912.

• Milà, C., Mateu, J., Pebesma, E., Meyer, H. (2022): Nearest Neighbour Distance Matching
Leave-One-Out Cross-Validation for map validation. Methods in Ecology and Evolution 13,
1304– 1316.

• Meyer, H., Pebesma, E. (2022): Machine learning-based global maps of ecological variables
and the challenge of assessing them. Nature Communications. 13.

• Meyer, H., Pebesma, E. (2021): Predicting into unknown space? Estimating the area of appli-
cability of spatial prediction models. Methods in Ecology and Evolution. 12, 1620– 1633.

• Meyer, H., Reudenbach, C., Wöllauer, S., Nauss, T. (2019): Importance of spatial predictor
variable selection in machine learning applications - Moving from data reproduction to spatial
prediction. Ecological Modelling. 411, 108815.

• Meyer, H., Reudenbach, C., Hengl, T., Katurji, M., Nauß, T. (2018): Improving perfor-
mance of spatio-temporal machine learning models using forward feature selection and target-
oriented validation. Environmental Modelling & Software 101: 1-9.

See Also

Useful links:

• https://github.com/HannaMeyer/CAST

• https://hannameyer.github.io/CAST/

• Report bugs at https://github.com/HannaMeyer/CAST/issues/

clustered_sample Clustered samples simulation

Description

A simple procedure to simulate clustered points based on a two-step sampling.

Usage

clustered_sample(sarea, nsamples, nparents, radius)

Arguments

sarea polygon. Area where samples should be simulated.

nsamples integer. Number of samples to be simulated.

nparents integer. Number of parents.

radius integer. Radius of the buffer around each parent for offspring simulation.

https://github.com/HannaMeyer/CAST
https://hannameyer.github.io/CAST/
https://github.com/HannaMeyer/CAST/issues/

cookfarm 11

Details

A simple procedure to simulate clustered points based on a two-step sampling. First, a pre-specified
number of parents are simulated using random sampling. For each parent, ‘(nsamples-nparents)/nparents‘
are simulated within a radius of the parent point using random sampling.

Value

sf object with the simulated points and the parent to which each point belongs to.

Author(s)

Carles Milà

Examples

Simulate 100 points in a 100x100 square with 5 parents and a radius of 10.
library(sf)
library(ggplot2)

set.seed(1234)
simarea <- list(matrix(c(0,0,0,100,100,100,100,0,0,0), ncol=2, byrow=TRUE))
simarea <- sf::st_polygon(simarea)
simpoints <- clustered_sample(simarea, 100, 5, 10)
simpoints$parent <- as.factor(simpoints$parent)
ggplot() +

geom_sf(data = simarea, alpha = 0) +
geom_sf(data = simpoints, aes(col = parent))

cookfarm Cookfarm soil logger data

Description

spatio-temporal data of soil properties and associated predictors for the Cookfarm in Washington,
USA. The data are a subset of the cookfarm dataset provided with the GSIF package.

Usage

data(cookfarm)

Format

A sf data.frame with 128545 rows and 17 columns:

SOURCEID ID of the logger

VW Response Variable - Soil Moisture

altitude Measurement depth of VW

https://CRAN.R-project.org/package=GSIF

12 CreateSpacetimeFolds

Date, cdata Measurement Date, Cumulative Date

Easting, Northing Location Coordinates (EPSG:26911)

DEM, TWI, NDRE.M, NDRE.Sd, Precip_wrcc, MaxT_wrcc, MinT_wrcc, Precip_cum Predictor
Variables

References

• Gash et al. 2015 - Spatio-temporal interpolation of soil water, temperature, and electrical
conductivity in 3D + T: The Cook Agronomy Farm data set doi:10.1016/j.spasta.2015.04.001

• Meyer et al. 2018 - Improving performance of spatio-temporal machine learning models using
forward feature selection and target-oriented validation doi:10.1016/j.envsoft.2017.12.001

CreateSpacetimeFolds Create Space-time Folds

Description

Create spatial, temporal or spatio-temporal Folds for cross validation based on pre-defined groups

Usage

CreateSpacetimeFolds(
x,
spacevar = NA,
timevar = NA,
k = 10,
class = NA,
seed = sample(1:1000, 1)

)

Arguments

x data.frame containing spatio-temporal data

spacevar Character indicating which column of x identifies the spatial units (e.g. ID of
weather stations)

timevar Character indicating which column of x identifies the temporal units (e.g. the
day of the year)

k numeric. Number of folds. If spacevar or timevar is NA and a leave one location
out or leave one time step out cv should be performed, set k to the number of
unique spatial or temporal units.

class Character indicating which column of x identifies a class unit (e.g. land cover)

seed numeric. See ?seed

https://doi.org/10.1016/j.spasta.2015.04.001
https://doi.org/10.1016/j.envsoft.2017.12.001

CreateSpacetimeFolds 13

Details

The function creates train and test sets by taking (spatial and/or temporal) groups into account. In
contrast to nndm, it requires that the groups are already defined (e.g. spatial clusters or blocks or
temporal units). Using "class" is helpful in the case that data are clustered in space and are cat-
egorical. E.g This is the case for land cover classifications when training data come as training
polygons. In this case the data should be split in a way that entire polygons are held back (space-
var="polygonID") but at the same time the distribution of classes should be similar in each fold
(class="LUC").

Value

A list that contains a list for model training and a list for model validation that can directly be used
as "index" and "indexOut" in caret’s trainControl function. "cluster" gives us the information to
which validation fold a sample belongs.

Note

Standard k-fold cross-validation can lead to considerable misinterpretation in spatial-temporal mod-
elling tasks. This function can be used to prepare a Leave-Location-Out, Leave-Time-Out or Leave-
Location-and-Time-Out cross-validation as target-oriented validation strategies for spatial-temporal
prediction tasks. See Meyer et al. (2018) for further information. CreateSpaceTimeFolds is just a
very simple approach and the suitability depends on the choice of the groups. You may check
the suitability with geodist. Consider nndm or knndm as alternatives or other approaches such as
Spatial Blocks. For spatial visualization of fold affiliation see examples.

Author(s)

Hanna Meyer

References

Meyer, H., Reudenbach, C., Hengl, T., Katurji, M., Nauß, T. (2018): Improving performance of
spatio-temporal machine learning models using forward feature selection and target-oriented vali-
dation. Environmental Modelling & Software 101: 1-9.

See Also

trainControl,ffs, nndm, geodist

Examples

Not run:
data(cookfarm)
Prepare for 10-fold Leave-Location-and-Time-Out cross validation
indices <- CreateSpacetimeFolds(cookfarm,"SOURCEID","Date")
str(indices)
Prepare for 10-fold Leave-Location-Out cross validation
indices <- CreateSpacetimeFolds(cookfarm,spacevar="SOURCEID")
str(indices)
Prepare for leave-One-Location-Out cross validation

14 errorProfiles

indices <- CreateSpacetimeFolds(cookfarm,spacevar="SOURCEID",
k=length(unique(cookfarm$SOURCEID)))

str(indices)

example from splotopen and visualization
data(splotdata)
indices <- CreateSpacetimeFolds(splotdata,spacevar="Country")
ggplot() +
geom_sf(data = splotdata, aes(col = factor(indices$cluster)))
is this representative?
data(splotdata)
studyArea <- rnaturalearth::ne_countries(continent = "South America", returnclass = "sf")
dist <- geodist(splotdata, studyArea,cvfolds=indices$cluster)
plot(dist)+ scale_x_log10(labels=round)

End(Not run)

errorProfiles Model and inspect the relationship between the prediction error and
measures of dissimilarities and distances

Description

Performance metrics are calculated for moving windows of dissimilarity values based on cross-
validated training data

Usage

errorProfiles(
model,
trainDI = NULL,
locations = NULL,
variable = "DI",
multiCV = FALSE,
length.out = 10,
window.size = 5,
calib = "scam",
method = "L2",
useWeight = TRUE,
k = 6,
m = 2

)

Arguments

model the model used to get the AOA

trainDI the result of trainDI or aoa object aoa

errorProfiles 15

locations Optional. sf object for the training data used in model. Only used if vari-
able=="geodist". Note that they must be in the same order as model$trainingData.

variable Character. Which dissimilarity or distance measure to use for the error metric.
Current options are "DI" or "LPD"

multiCV Logical. Re-run model fitting and validation with different CV strategies. See
details.

length.out Numeric. Only used if multiCV=TRUE. Number of cross-validation folds. See
details.

window.size Numeric. Size of the moving window. See rollapply.

calib Character. Function to model the DI/LPD~performance relationship. Currently
lm and scam are supported

method Character. Method used for distance calculation. Currently euclidean distance
(L2) and Mahalanobis distance (MD) are implemented but only L2 is tested.
Note that MD takes considerably longer. See ?aoa for further explanation

useWeight Logical. Only if a model is given. Weight variables according to importance in
the model?

k Numeric. See mgcv::s

m Numeric. See mgcv::s

Details

If multiCV=TRUE the model is re-fitted and validated by length.out new cross-validations where the
cross-validation folds are defined by clusters in the predictor space, ranging from three clusters to
LOOCV. Hence, a large range of dissimilarity values is created during cross-validation. If the AOA
threshold based on the calibration data from multiple CV is larger than the original AOA threshold
(which is likely if extrapolation situations are created during CV), the AOA threshold changes
accordingly. See Meyer and Pebesma (2021) for the full documentation of the methodology.

Value

A scam, linear model or exponential model

Author(s)

Hanna Meyer, Marvin Ludwig, Fabian Schumacher

References

Meyer, H., Pebesma, E. (2021): Predicting into unknown space? Estimating the area of applicability
of spatial prediction models. doi:10.1111/2041210X.13650

See Also

aoa

https://doi.org/10.1111/2041-210X.13650

16 errorProfiles

Examples

Not run:
library(CAST)
library(sf)
library(terra)
library(caret)

data(splotdata)
predictors <- terra::rast(system.file("extdata","predictors_chile.tif", package="CAST"))

model <- caret::train(st_drop_geometry(splotdata)[,6:16], splotdata$Species_richness,
ntree = 10, trControl = trainControl(method = "cv", savePredictions = TRUE))

AOA <- aoa(predictors, model, LPD = TRUE, maxLPD = 1)

DI ~ error
errormodel_DI <- errorProfiles(model, AOA, variable = "DI")
plot(errormodel_DI)
summary(errormodel_DI)

expected_error_DI = terra::predict(AOA$DI, errormodel_DI)
plot(expected_error_DI)

LPD ~ error
errormodel_LPD <- errorProfiles(model, AOA, variable = "LPD")
plot(errormodel_LPD)
summary(errormodel_DI)

expected_error_LPD = terra::predict(AOA$LPD, errormodel_LPD)
plot(expected_error_LPD)

geodist ~ error
errormodel_geodist = errorProfiles(model, locations=splotdata, variable = "geodist")
plot(errormodel_geodist)
summary(errormodel_DI)

dist <- terra::distance(predictors[[1]],vect(splotdata))
names(dist) <- "geodist"
expected_error_DI <- terra::predict(dist, errormodel_geodist)
plot(expected_error_DI)

with multiCV = TRUE (for DI ~ error)
errormodel_DI = errorProfiles(model, AOA, multiCV = TRUE, length.out = 3, variable = "DI")
plot(errormodel_DI)

expected_error_DI = terra::predict(AOA$DI, errormodel_DI)
plot(expected_error_DI)

mask AOA based on new threshold from multiCV
mask_aoa = terra::mask(expected_error_DI, AOA$DI > attr(errormodel_DI, 'AOA_threshold'),

maskvalues = 1)

ffs 17

plot(mask_aoa)

End(Not run)

ffs Forward feature selection

Description

A simple forward feature selection algorithm

Usage

ffs(
predictors,
response,
method = "rf",
metric = ifelse(is.factor(response), "Accuracy", "RMSE"),
maximize = ifelse(metric == "RMSE", FALSE, TRUE),
globalval = FALSE,
withinSE = FALSE,
minVar = 2,
trControl = caret::trainControl(),
tuneLength = 3,
tuneGrid = NULL,
seed = sample(1:1000, 1),
verbose = TRUE,
cores = 1,
...

)

Arguments

predictors see train

response see train

method see train

metric see train

maximize see train

globalval Logical. Should models be evaluated based on ’global’ performance? See
global_validation

withinSE Logical Models are only selected if they are better than the currently best models
Standard error

minVar Numeric. Number of variables to combine for the first selection. See Details.

18 ffs

trControl see train

tuneLength see train

tuneGrid see train

seed A random number used for model training

verbose Logical. Should information about the progress be printed?

cores Numeric. If > 2, mclapply will be used. see mclapply

... arguments passed to the classification or regression routine (such as randomFor-
est).

Details

Models with two predictors are first trained using all possible pairs of predictor variables. The
best model of these initial models is kept. On the basis of this best model the predictor variables
are iteratively increased and each of the remaining variables is tested for its improvement of the
currently best model. The process stops if none of the remaining variables increases the model
performance when added to the current best model.

The forward feature selection can be run in parallel with forking on Linux systems (mclapply). Each
fork computes a model, which drastically speeds up the runtime - especially of the initial predictor
search. The internal cross validation can be run in parallel on all systems. See information on
parallel processing of carets train functions for details.

Using withinSE will favour models with less variables and probably shorten the calculation time

Per Default, the ffs starts with all possible 2-pair combinations. minVar allows to start the selection
with more than 2 variables, e.g. minVar=3 starts the ffs testing all combinations of 3 (instead of
2) variables first and then increasing the number. This is important for e.g. neural networks that
often cannot make sense of only two variables. It is also relevant if it is assumed that the optimal
variables can only be found if more than 2 are considered at the same time.

Value

A list of class train. Beside of the usual train content the object contains the vector "selectedvars"
and "selectedvars_perf" that give the order of the best variables selected as well as their correspond-
ing performance (starting from the first two variables). It also contains "perf_all" that gives the
performance of all model runs.

Note

This variable selection is particularly suitable for spatial cross validations where variable selection
MUST be based on the performance of the model for predicting new spatial units. See Meyer et al.
(2018) and Meyer et al. (2019) for further details.

Author(s)

Hanna Meyer

ffs 19

References

• Gasch, C.K., Hengl, T., Gräler, B., Meyer, H., Magney, T., Brown, D.J. (2015): Spatio-
temporal interpolation of soil water, temperature, and electrical conductivity in 3D+T: the
Cook Agronomy Farm data set. Spatial Statistics 14: 70-90.

• Meyer, H., Reudenbach, C., Hengl, T., Katurji, M., Nauß, T. (2018): Improving perfor-
mance of spatio-temporal machine learning models using forward feature selection and target-
oriented validation. Environmental Modelling & Software 101: 1-9. doi:10.1016/j.envsoft.2017.12.001

• Meyer, H., Reudenbach, C., Wöllauer, S., Nauss, T. (2019): Importance of spatial predictor
variable selection in machine learning applications - Moving from data reproduction to spatial
prediction. Ecological Modelling. 411, 108815. doi:10.1016/j.ecolmodel.2019.108815.

• Ludwig, M., Moreno-Martinez, A., Hölzel, N., Pebesma, E., Meyer, H. (2023): Assessing and
improving the transferability of current global spatial prediction models. Global Ecology and
Biogeography. doi:10.1111/geb.13635.

See Also

train,bss, trainControl,CreateSpacetimeFolds,nndm

Examples

Not run:
data(splotdata)
ffsmodel <- ffs(splotdata[,6:12], splotdata$Species_richness, ntree = 20)

ffsmodel$selectedvars
ffsmodel$selectedvars_perf
plot(ffsmodel)
#or only selected variables:
plot(ffsmodel,plotType="selected")

End(Not run)

or perform model with target-oriented validation (LLO CV)
#the example is described in Gasch et al. (2015). The ffs approach for this dataset is described in
#Meyer et al. (2018). Due to high computation time needed, only a small and thus not robust example
#is shown here.

Not run:
run the model on three cores (see vignette for details):
library(doParallel)
library(lubridate)
cl <- makeCluster(3)
registerDoParallel(cl)

#load and prepare dataset:
data(cookfarm)
trainDat <- cookfarm[cookfarm$altitude==-0.3&

year(cookfarm$Date)==2012&week(cookfarm$Date)%in%c(13:14),]

#visualize dataset:

https://doi.org/10.1016/j.envsoft.2017.12.001
https://doi.org/10.1016/j.ecolmodel.2019.108815
https://doi.org/10.1111/geb.13635

20 geodist

ggplot(data = trainDat, aes(x=Date, y=VW)) + geom_line(aes(colour=SOURCEID))

#create folds for Leave Location Out Cross Validation:
set.seed(10)
indices <- CreateSpacetimeFolds(trainDat,spacevar = "SOURCEID",k=3)
ctrl <- trainControl(method="cv",index = indices$index)

#define potential predictors:
predictors <- c("DEM","TWI","BLD","Precip_cum","cday","MaxT_wrcc",
"Precip_wrcc","NDRE.M","Bt","MinT_wrcc","Northing","Easting")

#run ffs model with Leave Location out CV
set.seed(10)
ffsmodel <- ffs(trainDat[,predictors],trainDat$VW,method="rf",
tuneLength=1,trControl=ctrl)
ffsmodel
plot(ffsmodel)
#or only selected variables:
plot(ffsmodel,plotType="selected")

#compare to model without ffs:
model <- train(trainDat[,predictors],trainDat$VW,method="rf",
tuneLength=1, trControl=ctrl)
model
stopCluster(cl)

End(Not run)

Not run:
on linux machines, you can also run the ffs in parallel with forks:
data("splotdata")
spatial_cv = CreateSpacetimeFolds(splotdata, spacevar = "Biome", k = 5)
ctrl <- trainControl(method="cv",index = spatial_cv$index)

ffsmodel <- ffs(predictors = splotdata[,6:16],
response = splotdata$Species_richness,
tuneLength = 1,
method = "rf",
trControl = ctrl,
ntree = 20,
seed = 1,
cores = 4)

End(Not run)

geodist Calculate euclidean nearest neighbor distances in geographic space
or feature space

geodist 21

Description

Calculates nearest neighbor distances in geographic space or feature space between training data
as well as between training data and prediction locations. Optional, the nearest neighbor distances
between training data and test data or between training data and CV iterations is computed.

Usage

geodist(
x,
modeldomain = NULL,
type = "geo",
cvfolds = NULL,
cvtrain = NULL,
testdata = NULL,
preddata = NULL,
samplesize = 2000,
sampling = "regular",
variables = NULL,
timevar = NULL,
time_unit = "auto",
algorithm = "brute"

)

Arguments

x object of class sf, training data locations

modeldomain SpatRaster, stars or sf object defining the prediction area (see Details)

type "geo" or "feature". Should the distance be computed in geographic space or in
the normalized multivariate predictor space (see Details)

cvfolds optional. list or vector. Either a list where each element contains the data points
used for testing during the cross validation iteration (i.e. held back data). Or a
vector that contains the ID of the fold for each training point. See e.g. ?create-
Folds or ?CreateSpacetimeFolds or ?nndm

cvtrain optional. List of row indices of x to fit the model to in each CV iteration. If
cvtrain is null but cvfolds is not, all samples but those included in cvfolds are
used as training data

testdata optional. object of class sf: Point data used for independent validation

preddata optional. object of class sf: Point data indicating the locations within the mod-
eldomain to be used as target prediction points. Useful when the prediction
objective is a subset of locations within the modeldomain rather than the whole
area.

samplesize numeric. How many prediction samples should be used?

sampling character. How to draw prediction samples? See spsample. Use sampling =
"Fibonacci" for global applications.

variables character vector defining the predictor variables used if type="feature. If not
provided all variables included in modeldomain are used.

22 geodist

timevar optional. character. Column that indicates the date. Only used if type="time".

time_unit optional. Character. Unit for temporal distances See ?difftime.Only used if
type="time".

algorithm see knnx.dist and knnx.index

Details

The modeldomain is a sf polygon or a raster that defines the prediction area. The function takes a
regular point sample (amount defined by samplesize) from the spatial extent. If type = "feature",
the argument modeldomain (and if provided then also the testdata and/or preddata) has to include
predictors. Predictor values for x, testdata and preddata are optional if modeldomain is a raster. If
not provided they are extracted from the modeldomain rasterStack. If some predictors are categori-
cal (i.e., of class factor or character), gower distances will be used. W statistic describes the match
between the distributions. See Linnenbrink et al (2023) for further details.

Value

A data.frame containing the distances. Unit of returned geographic distances is meters. attributes
contain W statistic between prediction area and either sample data, CV folds or test data. See
details.

Note

See Meyer and Pebesma (2022) for an application of this plotting function

Author(s)

Hanna Meyer, Edzer Pebesma, Marvin Ludwig, Jan Linnenbrink

See Also

nndm knndm

Examples

Not run:
library(CAST)
library(sf)
library(terra)
library(caret)
library(rnaturalearth)
library(ggplot2)

data(splotdata)
studyArea <- rnaturalearth::ne_countries(continent = "South America", returnclass = "sf")

########### Distance between training data and new data:
dist <- geodist(splotdata, studyArea)
With density functions
plot(dist)
Or ECDFs (relevant for nndm and knnmd methods)

geodist 23

plot(dist, stat="ecdf")

########### Distance between training data, new data and test data (here Chile):
plot(splotdata[,"Country"])
dist <- geodist(splotdata[splotdata$Country != "Chile",], studyArea,

testdata = splotdata[splotdata$Country == "Chile",])
plot(dist)

########### Distance between training data, new data and CV folds:
folds <- createFolds(1:nrow(splotdata), k=3, returnTrain=FALSE)
dist <- geodist(x=splotdata, modeldomain=studyArea, cvfolds=folds)
Using density functions
plot(dist)
Using ECDFs (relevant for nndm and knnmd methods)
plot(dist, stat="ecdf")

########### Distances in the feature space:
predictors <- terra::rast(system.file("extdata","predictors_chile.tif", package="CAST"))
dist <- geodist(x = splotdata,

modeldomain = predictors,
type = "feature",
variables = c("bio_1","bio_12", "elev"))

plot(dist)

dist <- geodist(x = splotdata[splotdata$Country != "Chile",],
modeldomain = predictors, cvfolds = folds,
testdata = splotdata[splotdata$Country == "Chile",],
type = "feature",
variables=c("bio_1","bio_12", "elev"))

plot(dist)

############Distances in temporal space
library(lubridate)
library(ggplot2)
data(cookfarm)
dat <- st_as_sf(cookfarm,coords=c("Easting","Northing"))
st_crs(dat) <- 26911
trainDat <- dat[dat$altitude==-0.3&lubridate::year(dat$Date)==2010,]
predictionDat <- dat[dat$altitude==-0.3&lubridate::year(dat$Date)==2011,]
trainDat$week <- lubridate::week(trainDat$Date)
cvfolds <- CreateSpacetimeFolds(trainDat,timevar = "week")

dist <- geodist(trainDat,preddata = predictionDat,cvfolds = cvfolds$indexOut,
type="time",time_unit="days")

plot(dist)+ xlim(0,10)

############ Example for a random global dataset
############ (refer to figure in Meyer and Pebesma 2022)

Define prediction area (here: global):
ee <- st_crs("+proj=eqearth")
co <- ne_countries(returnclass = "sf")

24 global_validation

co.ee <- st_transform(co, ee)

Simulate a spatial random sample
(alternatively replace pts_random by a real sampling dataset (see Meyer and Pebesma 2022):
sf_use_s2(FALSE)
pts_random <- st_sample(co.ee, 2000, exact=FALSE)

See points on the map:
ggplot() + geom_sf(data = co.ee, fill="#00BFC4",col="#00BFC4") +

geom_sf(data = pts_random, color = "#F8766D",size=0.5, shape=3) +
guides(fill = "none", col = "none") +
labs(x = NULL, y = NULL)

plot distances:
dist <- geodist(pts_random,co.ee)
plot(dist) + scale_x_log10(labels=round)

End(Not run)

global_validation Evaluate ’global’ cross-validation

Description

Calculate validation metric using all held back predictions at once

Usage

global_validation(model)

Arguments

model an object of class train

Details

Relevant when folds are not representative for the entire area of interest. In this case, metrics like
R2 are not meaningful since it doesn’t reflect the general ability of the model to explain the entire
gradient of the response. Comparable to LOOCV, predictions from all held back folds are used here
together to calculate validation statistics.

Value

regression (postResample) or classification (confusionMatrix) statistics

knndm 25

Author(s)

Hanna Meyer

See Also

CreateSpacetimeFolds

Examples

Not run:
library(caret)
data(cookfarm)
dat <- cookfarm[sample(1:nrow(cookfarm),500),]
indices <- CreateSpacetimeFolds(dat,"SOURCEID","Date")
ctrl <- caret::trainControl(method="cv",index = indices$index,savePredictions="final")
model <- caret::train(dat[,c("DEM","TWI","BLD")],dat$VW, method="rf", trControl=ctrl, ntree=10)
global_validation(model)

End(Not run)

knndm K-fold Nearest Neighbour Distance Matching

Description

This function implements the kNNDM algorithm and returns the necessary indices to perform a
k-fold NNDM CV for map validation.

Usage

knndm(
tpoints,
modeldomain = NULL,
predpoints = NULL,
space = "geographical",
k = 10,
maxp = 0.5,
clustering = "hierarchical",
linkf = "ward.D2",
samplesize = 1000,
sampling = "regular",
useMD = FALSE,
algorithm = "brute"

)

26 knndm

Arguments

tpoints sf or sfc point object, or data.frame if space = "feature". Contains the training
points samples.

modeldomain sf polygon object or SpatRaster defining the prediction area. Optional; alterna-
tive to predpoints (see Details).

predpoints sf or sfc point object, or data.frame if space = "feature". Contains the target
prediction points. Optional; alternative to modeldomain (see Details).

space character. Either "geographical" or "feature".

k integer. Number of folds desired for CV. Defaults to 10.

maxp numeric. Maximum fold size allowed, defaults to 0.5, i.e. a single fold can hold
a maximum of half of the training points.

clustering character. Possible values include "hierarchical" and "kmeans". See details.

linkf character. Only relevant if clustering = "hierarchical". Link function for agglom-
erative hierarchical clustering. Defaults to "ward.D2". Check ‘stats::hclust‘ for
other options.

samplesize numeric. How many points in the modeldomain should be sampled as prediction
points? Only required if modeldomain is used instead of predpoints.

sampling character. How to draw prediction points from the modeldomain? See ‘sf::st_sample‘.
Only required if modeldomain is used instead of predpoints.

useMD boolean. Only for ‘space‘=feature: shall the Mahalanobis distance be calculated
instead of Euclidean? Only works with numerical variables.

algorithm see knnx.dist and knnx.index

Details

knndm is a k-fold version of NNDM LOO CV for medium and large datasets. Brielfy, the algorithm
tries to find a k-fold configuration such that the integral of the absolute differences (Wasserstein W
statistic) between the empirical nearest neighbour distance distribution function between the test and
training data during CV (Gj*), and the empirical nearest neighbour distance distribution function
between the prediction and training points (Gij), is minimised. It does so by performing clustering
of the training points’ coordinates for different numbers of clusters that range from k to N (number
of observations), merging them into k final folds, and selecting the configuration with the lowest W.

Using a projected CRS in ‘knndm‘ has large computational advantages since fast nearest neighbour
search can be done via the ‘FNN‘ package, while working with geographic coordinates requires
computing the full spherical distance matrices. As a clustering algorithm, ‘kmeans‘ can only be used
for projected CRS while ‘hierarchical‘ can work with both projected and geographical coordinates,
though it requires calculating the full distance matrix of the training points even for a projected
CRS.

In order to select between clustering algorithms and number of folds ‘k‘, different ‘knndm‘ config-
urations can be run and compared, being the one with a lower W statistic the one that offers a better
match. W statistics between ‘knndm‘ runs are comparable as long as ‘tpoints‘ and ‘predpoints‘ or
‘modeldomain‘ stay the same.

Map validation using ‘knndm‘ should be used using ‘CAST::global_validation‘, i.e. by stacking
all out-of-sample predictions and evaluating them all at once. The reasons behind this are 1) The

knndm 27

resulting folds can be unbalanced and 2) nearest neighbour functions are constructed and matched
using all CV folds simultaneously.

If training data points are very clustered with respect to the prediction area and the presented ‘kn-
ndm‘ configuration still show signs of Gj* > Gij, there are several things that can be tried. First,
increase the ‘maxp‘ parameter; this may help to control for strong clustering (at the cost of having
unbalanced folds). Secondly, decrease the number of final folds ‘k‘, which may help to have larger
clusters.

The ‘modeldomain‘ is either a sf polygon that defines the prediction area, or alternatively a Spa-
tRaster out of which a polygon, transformed into the CRS of the training points, is defined as the
outline of all non-NA cells. Then, the function takes a regular point sample (amount defined by
‘samplesize‘) from the spatial extent. As an alternative use ‘predpoints‘ instead of ‘modeldomain‘,
if you have already defined the prediction locations (e.g. raster pixel centroids). When using either
‘modeldomain‘ or ‘predpoints‘, we advise to plot the study area polygon and the training/prediction
points as a previous step to ensure they are aligned.

‘knndm‘ can also be performed in the feature space by setting ‘space‘ to "feature". Euclidean
distances or Mahalanobis distances can be used for distance calculation, but only Euclidean are
tested. In this case, nearest neighbour distances are calculated in n-dimensional feature space rather
than in geographical space. ‘tpoints‘ and ‘predpoints‘ can be data frames or sf objects containing
the values of the features. Note that the names of ‘tpoints‘ and ‘predpoints‘ must be the same.
‘predpoints‘ can also be missing, if ‘modeldomain‘ is of class SpatRaster. In this case, the values of
of the SpatRaster will be extracted to the ‘predpoints‘. In the case of any categorical features, Gower
distances will be used to calculate the Nearest Neighbour distances [Experimental]. If categorical
features are present, and ‘clustering‘ = "kmeans", K-Prototype clustering will be performed instead.

Value

An object of class knndm consisting of a list of eight elements: indx_train, indx_test (indices of the
observations to use as training/test data in each kNNDM CV iteration), Gij (distances for G function
construction between prediction and target points), Gj (distances for G function construction during
LOO CV), Gjstar (distances for modified G function during kNNDM CV), clusters (list of cluster
IDs), W (Wasserstein statistic), and space (stated by the user in the function call).

Note

For spatial visualization of fold affiliation see examples.

Author(s)

Carles Milà and Jan Linnenbrink

References

• Linnenbrink, J., Milà, C., Ludwig, M., and Meyer, H. (2024): kNNDM: k-fold Nearest Neigh-
bour Distance Matching Cross-Validation for map accuracy estimation. Geosci. Model Dev.,
17, 5897–5912. https://doi.org/10.5194/gmd-17-5897-2024.

• Milà, C., Mateu, J., Pebesma, E., Meyer, H. (2022): Nearest Neighbour Distance Matching
Leave-One-Out Cross-Validation for map validation. Methods in Ecology and Evolution 13,
1304– 1316. https://doi.org/10.1111/2041-210X.13851.

28 knndm

See Also

geodist, nndm

Examples

##
Example 1: Simulated data - Randomly-distributed training points
##

library(sf)
library(ggplot2)

Simulate 1000 random training points in a 100x100 square
set.seed(1234)
simarea <- list(matrix(c(0,0,0,100,100,100,100,0,0,0), ncol=2, byrow=TRUE))
simarea <- sf::st_polygon(simarea)
train_points <- sf::st_sample(simarea, 1000, type = "random")
pred_points <- sf::st_sample(simarea, 1000, type = "regular")
plot(simarea)
plot(pred_points, add = TRUE, col = "blue")
plot(train_points, add = TRUE, col = "red")

Run kNNDM for the whole domain, here the prediction points are known.
knndm_folds <- knndm(train_points, predpoints = pred_points, k = 5)
knndm_folds
plot(knndm_folds)
plot(knndm_folds, type = "simple") # For more accessible legend labels
plot(knndm_folds, type = "simple", stat = "density") # To visualize densities rather than ECDFs
folds <- as.character(knndm_folds$clusters)
ggplot() +

geom_sf(data = simarea, alpha = 0) +
geom_sf(data = train_points, aes(col = folds))

##
Example 2: Simulated data - Clustered training points
##
Not run:
library(sf)
library(ggplot2)

Simulate 1000 clustered training points in a 100x100 square
set.seed(1234)
simarea <- list(matrix(c(0,0,0,100,100,100,100,0,0,0), ncol=2, byrow=TRUE))
simarea <- sf::st_polygon(simarea)
train_points <- clustered_sample(simarea, 1000, 50, 5)
pred_points <- sf::st_sample(simarea, 1000, type = "regular")
plot(simarea)
plot(pred_points, add = TRUE, col = "blue")
plot(train_points, add = TRUE, col = "red")

Run kNNDM for the whole domain, here the prediction points are known.
knndm_folds <- knndm(train_points, predpoints = pred_points, k = 5)

knndm 29

knndm_folds
plot(knndm_folds)
plot(knndm_folds, type = "simple") # For more accessible legend labels
plot(knndm_folds, type = "simple", stat = "density") # To visualize densities rather than ECDFs
folds <- as.character(knndm_folds$clusters)
ggplot() +

geom_sf(data = simarea, alpha = 0) +
geom_sf(data = train_points, aes(col = folds))

End(Not run)
##
Example 3: Real- world example; using a modeldomain instead of previously
sampled prediction locations
##
Not run:
library(sf)
library(terra)
library(ggplot2)

prepare sample data:
data(cookfarm)
dat <- aggregate(cookfarm[,c("DEM","TWI", "NDRE.M", "Easting", "Northing","VW")],

by=list(as.character(cookfarm$SOURCEID)),mean)
pts <- dat[,-1]
pts <- st_as_sf(pts,coords=c("Easting","Northing"))
st_crs(pts) <- 26911
studyArea <- rast(system.file("extdata","predictors_2012-03-25.tif",package="CAST"))
pts <- st_transform(pts, crs = st_crs(studyArea))
terra::plot(studyArea[["DEM"]])
terra::plot(vect(pts), add = T)

knndm_folds <- knndm(pts, modeldomain=studyArea, k = 5)
knndm_folds
plot(knndm_folds)
folds <- as.character(knndm_folds$clusters)
ggplot() +

geom_sf(data = pts, aes(col = folds))

#use for cross-validation:
library(caret)
ctrl <- trainControl(method="cv",

index=knndm_folds$indx_train,
savePredictions='final')

model_knndm <- train(dat[,c("DEM","TWI", "NDRE.M")],
dat$VW,
method="rf",
trControl = ctrl)

global_validation(model_knndm)

End(Not run)
##
Example 4: Real- world example; kNNDM in feature space
##

30 nndm

Not run:
library(sf)
library(terra)
library(ggplot2)

data(splotdata)
splotdata <- splotdata[splotdata$Country == "Chile",]

predictors <- c("bio_1", "bio_4", "bio_5", "bio_6",
"bio_8", "bio_9", "bio_12", "bio_13",
"bio_14", "bio_15", "elev")

trainDat <- sf::st_drop_geometry(splotdata)
predictors_sp <- terra::rast(system.file("extdata", "predictors_chile.tif",package="CAST"))

terra::plot(predictors_sp[["bio_1"]])
terra::plot(vect(splotdata), add = T)

knndm_folds <- knndm(trainDat[,predictors], modeldomain = predictors_sp, space = "feature",
clustering="kmeans", k=4, maxp=0.8)

plot(knndm_folds)

End(Not run)

nndm Nearest Neighbour Distance Matching (NNDM) algorithm

Description

This function implements the NNDM algorithm and returns the necessary indices to perform a
NNDM LOO CV for map validation.

Usage

nndm(
tpoints,
modeldomain = NULL,
predpoints = NULL,
space = "geographical",
samplesize = 1000,
sampling = "regular",
phi = "max",
min_train = 0.5,
algorithm = "brute"

)

nndm 31

Arguments

tpoints sf or sfc point object, or data.frame if space = "feature". Contains the training
points samples.

modeldomain sf polygon object or SpatRaster defining the prediction area. Optional; alterna-
tive to predpoints (see Details).

predpoints sf or sfc point object, or data.frame if space = "feature". Contains the target
prediction points. Optional; alternative to modeldomain (see Details).

space character. Either "geographical" or "feature". Feature space is still experimental,
so use with caution.

samplesize numeric. How many points in the modeldomain should be sampled as prediction
points? Only required if modeldomain is used instead of predpoints.

sampling character. How to draw prediction points from the modeldomain? See ‘sf::st_sample‘.
Only required if modeldomain is used instead of predpoints.

phi Numeric. Estimate of the landscape autocorrelation range in the same units as
the tpoints and predpoints for projected CRS, in meters for geographic CRS. Per
default (phi="max"), the maximum distance found in the training and prediction
points is used. See Details.

min_train Numeric between 0 and 1. Minimum proportion of training data that must be
used in each CV fold. Defaults to 0.5 (i.e. half of the training points).

algorithm see knnx.dist and knnx.index

Details

NNDM proposes a LOO CV scheme such that the nearest neighbour distance distribution function
between the test and training data during the CV process is matched to the nearest neighbour dis-
tance distribution function between the prediction and training points. Details of the method can be
found in Milà et al. (2022).

Specifying phi allows limiting distance matching to the area where this is assumed to be relevant
due to spatial autocorrelation. Distances are only matched up to phi. Beyond that range, all data
points are used for training, without exclusions. When phi is set to "max", nearest neighbor distance
matching is performed for the entire prediction area. Euclidean distances are used for projected and
non-defined CRS, great circle distances are used for geographic CRS (units in meters).

The modeldomain is either a sf polygon that defines the prediction area, or alternatively a SpatRaster
out of which a polygon, transformed into the CRS of the training points, is defined as the outline of
all non-NA cells. Then, the function takes a regular point sample (amount defined by samplesize)
from the spatial extent. As an alternative use predpoints instead of modeldomain, if you have already
defined the prediction locations (e.g. raster pixel centroids). When using either modeldomain or
predpoints, we advise to plot the study area polygon and the training/prediction points as a previous
step to ensure they are aligned.

Value

An object of class nndm consisting of a list of six elements: indx_train, indx_test, and indx_exclude
(indices of the observations to use as training/test/excluded data in each NNDM LOO CV iteration),
Gij (distances for G function construction between prediction and target points), Gj (distances for

32 nndm

G function construction during LOO CV), Gjstar (distances for modified G function during NNDM
LOO CV), phi (landscape autocorrelation range). indx_train and indx_test can directly be used as
"index" and "indexOut" in caret’s trainControl function or used to initiate a custom validation
strategy in mlr3.

Note

NNDM is a variation of LOOCV and therefore may take a long time for large training data sets.
See knndm for a more efficient k-fold variant of the method.

Author(s)

Carles Milà

References

• Milà, C., Mateu, J., Pebesma, E., Meyer, H. (2022): Nearest Neighbour Distance Matching
Leave-One-Out Cross-Validation for map validation. Methods in Ecology and Evolution 00,
1– 13.

• Meyer, H., Pebesma, E. (2022): Machine learning-based global maps of ecological variables
and the challenge of assessing them. Nature Communications. 13.

See Also

geodist, knndm

Examples

##
Example 1: Simulated data - Randomly-distributed training points
##

library(sf)

Simulate 100 random training points in a 100x100 square
set.seed(123)
poly <- list(matrix(c(0,0,0,100,100,100,100,0,0,0), ncol=2, byrow=TRUE))
sample_poly <- sf::st_polygon(poly)
train_points <- sf::st_sample(sample_poly, 100, type = "random")
pred_points <- sf::st_sample(sample_poly, 100, type = "regular")
plot(sample_poly)
plot(pred_points, add = TRUE, col = "blue")
plot(train_points, add = TRUE, col = "red")

Run NNDM for the whole domain, here the prediction points are known
nndm_pred <- nndm(train_points, predpoints=pred_points)
nndm_pred
plot(nndm_pred)
plot(nndm_pred, type = "simple") # For more accessible legend labels

...or run NNDM with a known autocorrelation range of 10

nndm 33

to restrict the matching to distances lower than that.
nndm_pred <- nndm(train_points, predpoints=pred_points, phi = 10)
nndm_pred
plot(nndm_pred)

##
Example 2: Simulated data - Clustered training points
##

library(sf)

Simulate 100 clustered training points in a 100x100 square
set.seed(123)
poly <- list(matrix(c(0,0,0,100,100,100,100,0,0,0), ncol=2, byrow=TRUE))
sample_poly <- sf::st_polygon(poly)
train_points <- clustered_sample(sample_poly, 100, 10, 5)
pred_points <- sf::st_sample(sample_poly, 100, type = "regular")
plot(sample_poly)
plot(pred_points, add = TRUE, col = "blue")
plot(train_points, add = TRUE, col = "red")

Run NNDM for the whole domain
nndm_pred <- nndm(train_points, predpoints=pred_points)
nndm_pred
plot(nndm_pred)
plot(nndm_pred, type = "simple") # For more accessible legend labels

##
Example 3: Real- world example; using a SpatRast modeldomain instead
of previously sampled prediction locations
##
Not run:
library(sf)
library(terra)

prepare sample data:
data(cookfarm)
dat <- aggregate(cookfarm[,c("DEM","TWI", "NDRE.M", "Easting", "Northing","VW")],

by=list(as.character(cookfarm$SOURCEID)),mean)
pts <- dat[,-1]
pts <- st_as_sf(pts,coords=c("Easting","Northing"))
st_crs(pts) <- 26911
studyArea <- rast(system.file("extdata","predictors_2012-03-25.tif",package="CAST"))
pts <- st_transform(pts, crs = st_crs(studyArea))
terra::plot(studyArea[["DEM"]])
terra::plot(vect(pts), add = T)

nndm_folds <- nndm(pts, modeldomain = studyArea)
plot(nndm_folds)

#use for cross-validation:
library(caret)
ctrl <- trainControl(method="cv",

34 nndm

index=nndm_folds$indx_train,
indexOut=nndm_folds$indx_test,
savePredictions='final')

model_nndm <- train(dat[,c("DEM","TWI", "NDRE.M")],
dat$VW,
method="rf",
trControl = ctrl)

global_validation(model_nndm)

End(Not run)

##
Example 4: Real- world example; nndm in feature space
##
Not run:
library(sf)
library(terra)
library(ggplot2)

Prepare the splot dataset for Chile
data(splotdata)
splotdata <- splotdata[splotdata$Country == "Chile",]

Select a series of bioclimatic predictors
predictors <- c("bio_1", "bio_4", "bio_5", "bio_6",

"bio_8", "bio_9", "bio_12", "bio_13",
"bio_14", "bio_15", "elev")

predictors_sp <- terra::rast(system.file("extdata", "predictors_chile.tif", package="CAST"))

Data visualization
terra::plot(predictors_sp[["bio_1"]])
terra::plot(vect(splotdata), add = T)

Run and visualise the nndm results
nndm_folds <- nndm(splotdata[,predictors], modeldomain = predictors_sp, space = "feature")
plot(nndm_folds)

#use for cross-validation:
library(caret)
ctrl <- trainControl(method="cv",

index=nndm_folds$indx_train,
indexOut=nndm_folds$indx_test,
savePredictions='final')

model_nndm <- train(st_drop_geometry(splotdata[,predictors]),
splotdata$Species_richness,
method="rf",
trControl = ctrl)

global_validation(model_nndm)

End(Not run)

normalize_DI 35

normalize_DI Normalize DI values

Description

The DI is normalized by the DI threshold to allow for a more straightforward interpretation. A value
in the resulting DI larger 1 means that the data are more dissimilar than what has been observed
during cross-validation. The returned threshold is adjusted accordingly and is, as a consequence, 1.

Usage

normalize_DI(AOA)

Arguments

AOA An AOA object

Value

An object of class aoa

See Also

aoa

Examples

Not run:
library(sf)
library(terra)
library(caret)

prepare sample data:
data(cookfarm)
dat <- aggregate(cookfarm[,c("VW","Easting","Northing")],

by=list(as.character(cookfarm$SOURCEID)),mean)
pts <- st_as_sf(dat,coords=c("Easting","Northing"))
pts$ID <- 1:nrow(pts)
set.seed(100)
pts <- pts[1:30,]
studyArea <- rast(system.file("extdata","predictors_2012-03-25.tif",package="CAST"))[[1:8]]
trainDat <- extract(studyArea,pts,na.rm=FALSE)
trainDat <- merge(trainDat,pts,by.x="ID",by.y="ID")

train a model:
set.seed(100)
variables <- c("DEM","NDRE.Sd","TWI")
model <- train(trainDat[,which(names(trainDat)%in%variables)],
trainDat$VW, method="rf", importance=TRUE, tuneLength=1,

36 plot

trControl=trainControl(method="cv",number=5,savePredictions=T))

#...then calculate the AOA of the trained model for the study area:
AOA <- aoa(studyArea, model)
plot(AOA)
plot(AOA$DI)

#... then normalize the DI
DI_norm <- normalize_DI(AOA)
plot(DI_norm)
plot(DI_norm$DI)

End(Not run)

plot Plot CAST classes

Description

Generic plot function for CAST Classes

A plotting function for a forward feature selection result. Each point is the mean performance of a
model run. Error bars represent the standard errors from cross validation. Marked points show the
best model from each number of variables until a further variable could not improve the results. If
type=="selected", the contribution of the selected variables to the model performance is shown.

Density plot of nearest neighbor distances in geographic space or feature space between training
data as well as between training data and prediction locations. Optional, the nearest neighbor dis-
tances between training data and test data or between training data and CV iterations is shown. The
plot can be used to check the suitability of a chosen CV method to be representative to estimate
map accuracy.

Plot the DI/LPD and errormetric from Cross-Validation with the modeled relationship

Usage

S3 method for class 'trainDI'
plot(x, ...)

S3 method for class 'aoa'
plot(x, samplesize = 1000, variable = "DI", ...)

S3 method for class 'nndm'
plot(x, type = "strict", stat = "ecdf", ...)

S3 method for class 'knndm'
plot(x, type = "strict", stat = "ecdf", ...)

S3 method for class 'ffs'

plot 37

plot(
x,
plotType = "all",
palette = rainbow,
reverse = FALSE,
marker = "black",
size = 1.5,
lwd = 0.5,
pch = 21,
...

)

S3 method for class 'geodist'
plot(x, unit = "m", stat = "density", ...)

S3 method for class 'errorModel'
plot(x, ...)

Arguments

x errorModel, see DItoErrormetric

... other params

samplesize numeric. How many prediction samples should be plotted?

variable character. Variable for which to generate the density plot. ’DI’ or ’LPD’

type String, defaults to "strict" to show the original nearest neighbour distance defi-
nitions in the legend. Alternatively, set to "simple" to have more intuitive labels.

stat "density" for density plot or "ecdf" for empirical cumulative distribution func-
tion plot.

plotType character. Either "all" or "selected"

palette A color palette

reverse Character. Should the palette be reversed?

marker Character. Color to mark the best models

size Numeric. Size of the points

lwd Numeric. Width of the error bars

pch Numeric. Type of point marking the best models

unit character. Only if type=="geo" and only applied to the plot. Supported: "m" or
"km".

Value

a ggplot

a ggplot

38 print

Author(s)

Marvin Ludwig, Hanna Meyer

Carles Milà

Examples

Not run:
data(splotdata)
splotdata <- st_drop_geometry(splotdata)
ffsmodel <- ffs(splotdata[,6:16], splotdata$Species_richness, ntree = 10)
plot(ffsmodel)
#plot performance of selected variables only:
plot(ffsmodel,plotType="selected")

End(Not run)

print Print CAST classes

Description

Generic print function for trainDI and aoa

Usage

S3 method for class 'trainDI'
print(x, ...)

show.trainDI(x, ...)

S3 method for class 'aoa'
print(x, ...)

show.aoa(x, ...)

S3 method for class 'nndm'
print(x, ...)

show.nndm(x, ...)

S3 method for class 'knndm'
print(x, ...)

show.knndm(x, ...)

S3 method for class 'ffs'
print(x, ...)

splotdata 39

show.ffs(x, ...)

Arguments

x An object of type ffs

... other arguments.

splotdata sPlotOpen Data of Species Richness

Description

sPlotOpen Species Richness for South America with associated predictors

Usage

data(splotdata)

Format

A sf points / data.frame with 703 rows and 17 columns:

PlotObeservationID, GIVD_ID, Country, Biome sPlotOpen Metadata

Species_richness Response Variable - Plant species richness from sPlotOpen

bio_x, elev Predictor Variables - Worldclim and SRTM elevation

geometry Lat/Lon

Source

• Plot with Species_richness from sPlotOpen

• predictors acquired via R package geodata

References

• Sabatini, F. M. et al. sPlotOpen – An environmentally balanced, open-access, global dataset
of vegetation plots. (2021). doi:10.1111/geb.13346

• Lopez-Gonzalez, G. et al. ForestPlots.net: a web application and research tool to manage and
analyse tropical forest plot data: ForestPlots.net. Journal of Vegetation Science (2011).

• Pauchard, A. et al. Alien Plants Homogenise Protected Areas: Evidence from the Landscape
and Regional Scales in South Central Chile. in Plant Invasions in Protected Areas (2013).

• Peyre, G. et al. VegPáramo, a flora and vegetation database for the Andean páramo. phyto-
coenologia (2015).

• Vibrans, A. C. et al. Insights from a large-scale inventory in the southern Brazilian Atlantic
Forest. Scientia Agricola (2020).

https://onlinelibrary.wiley.com/doi/full/10.1111/geb.13346
https://github.com/rspatial/geodata
https://doi.org/10.1111/geb.13346

40 trainDI

trainDI Calculate Dissimilarity Index of training data

Description

This function estimates the Dissimilarity Index (DI) within the training data set used for a prediction
model. Optionally, the local point density can also be calculated. Predictors can be weighted based
on the internal variable importance of the machine learning algorithm used for model training.

Usage

trainDI(
model = NA,
train = NULL,
variables = "all",
weight = NA,
CVtest = NULL,
CVtrain = NULL,
method = "L2",
useWeight = TRUE,
useCV = TRUE,
LPD = FALSE,
verbose = TRUE,
algorithm = "brute"

)

Arguments

model A train object created with caret used to extract weights from (based on variable
importance) as well as cross-validation folds

train A data.frame containing the data used for model training. Only required when
no model is given

variables character vector of predictor variables. if "all" then all variables of the model
are used or if no model is given then of the train dataset.

weight A data.frame containing weights for each variable. Only required if no model is
given.

CVtest list or vector. Either a list where each element contains the data points used for
testing during the cross validation iteration (i.e. held back data). Or a vector that
contains the ID of the fold for each training point. Only required if no model is
given.

CVtrain list. Each element contains the data points used for training during the cross
validation iteration (i.e. held back data). Only required if no model is given
and only required if CVtrain is not the opposite of CVtest (i.e. if a data point
is not used for testing, it is used for training). Relevant if some data points are
excluded, e.g. when using nndm.

trainDI 41

method Character. Method used for distance calculation. Currently euclidean distance
(L2) and Mahalanobis distance (MD) are implemented but only L2 is tested.
Note that MD takes considerably longer.

useWeight Logical. Only if a model is given. Weight variables according to importance in
the model?

useCV Logical. Only if a model is given. Use the CV folds to calculate the DI thresh-
old?

LPD Logical. Indicates whether the local point density should be calculated or not.

verbose Logical. Print progress or not?

algorithm see knnx.dist and knnx.index

Value

A list of class trainDI containing:

train A data frame containing the training data

weight A data frame with weights based on the variable importance.

variables Names of the used variables

catvars Which variables are categorial

scaleparam Scaling parameters. Output from scale

trainDist_avrg A data frame with the average distance of each training point to every other point
trainDist_avrgmean

The mean of trainDist_avrg. Used for normalizing the DI

trainDI Dissimilarity Index of the training data

threshold The DI threshold used for inside/outside AOA

trainLPD LPD of the training data

avrgLPD Average LPD of the training data

Note

This function is called within aoa to estimate the DI and AOA of new data. However, it may also
be used on its own if only the DI of training data is of interest, or to facilitate a parallelization of
aoa by avoiding a repeated calculation of the DI within the training data.

Author(s)

Hanna Meyer, Marvin Ludwig, Fabian Schumacher

References

Meyer, H., Pebesma, E. (2021): Predicting into unknown space? Estimating the area of applicability
of spatial prediction models. doi:10.1111/2041210X.13650

See Also

aoa

https://doi.org/10.1111/2041-210X.13650

42 trainDI

Examples

Not run:
library(sf)
library(terra)
library(caret)
library(CAST)

prepare sample data:
data("splotdata")
splotdata = st_drop_geometry(splotdata)

train a model:
set.seed(100)
model <- caret::train(splotdata[,6:16],

splotdata$Species_richness,
importance=TRUE, tuneLength=1, ntree = 15, method = "rf",
trControl = trainControl(method="cv", number=5, savePredictions=T))

variable importance is used for scaling predictors
plot(varImp(model,scale=FALSE))

calculate the DI of the trained model:
DI = trainDI(model=model)
plot(DI)

#...or calculate the DI and LPD of the trained model:
DI = trainDI(model=model, LPD = TRUE)

the DI can now be used to compute the AOA (here with LPD):
studyArea = rast(system.file("extdata/predictors_chile.tif", package = "CAST"))
AOA = aoa(studyArea, model = model, trainDI = DI, LPD = TRUE, maxLPD = 1)
print(AOA)
plot(AOA)
plot(AOA$AOA)
plot(AOA$LPD)

End(Not run)

Index

∗ datasets
cookfarm, 11
splotdata, 39

∗ package
CAST, 9

aoa, 3, 14, 15, 35, 41

bss, 7, 19

CAST, 9
CAST-package (CAST), 9
clustered_sample, 10
confusionMatrix, 24
cookfarm, 11
CreateSpacetimeFolds, 9, 12, 19, 25

detectCores, 4
DItoErrormetric, 4, 37
DItoErrormetric (errorProfiles), 14

errorProfiles, 5, 14

ffs, 8, 9, 13, 17

geodist, 13, 20, 28, 32
global_validation, 8, 17, 24

knndm, 13, 22, 25, 32
knnx.dist, 4, 22, 26, 31, 41
knnx.index, 4, 22, 26, 31, 41

mclapply, 18

nndm, 4, 9, 13, 19, 22, 28, 30, 40
normalize_DI, 5, 35

plot, 36
postResample, 24
print, 38

rollapply, 15

show.aoa (print), 38
show.ffs (print), 38
show.knndm (print), 38
show.nndm (print), 38
show.trainDI (print), 38
splotdata, 39
spsample, 21

train, 8, 9, 17–19, 24
trainControl, 9, 13, 19, 32
trainDI, 3, 5, 14, 40

43

	aoa
	bss
	CAST
	clustered_sample
	cookfarm
	CreateSpacetimeFolds
	errorProfiles
	ffs
	geodist
	global_validation
	knndm
	nndm
	normalize_DI
	plot
	print
	splotdata
	trainDI
	Index

