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CoSMoS-package CoSMoS: Complete Stochastic Modelling Solution

Description

CoSMoS is an R package that makes time series generation with desired properties easy. Just choose
the characteristics of the time series you want to generate, and it will do the rest.

Details

The generated time series preserve any probability distribution and any linear autocorrelation struc-
ture. Users can generate as many and as long time series from processes such as precipitation,
wind, temperature, relative humidity etc. It is based on a framework that unified, extended, and
improved a modelling strategy that generates time series by transforming "parent" Gaussian time
series having specific characteristics (Papalexiou, 2018).

Funding

The package was partly funded by the Global institute for Water Security (GIWS; https://water.usask.ca/)
and the Global Water Futures (GWF; https://gwf.usask.ca/) program.

Author(s)

Coded by: Filip Strnad <strnadf@fzp.czu.cz> and Francesco Serinaldi <francesco.serinaldi@ncl.ac.uk>

Conceptual design by: Simon Michael Papalexiou <sm.papalexiou@usask.ca>

Tested and documented by: Yannis Markonis <markonis@fzp.czu.cz>

Maintained by: Kevin Shook <kevin.shook@usask.ca>

References

Papalexiou, S.M. (2018). Unified theory for stochastic modelling of hydroclimatic processes: Pre-
serving marginal distributions, correlation structures, and intermittency. Advances in Water Re-
sources 115, 234-252, doi:10.1016/j.advwatres.2018.02.013

Papalexiou, S.M., Markonis, Y., Lombardo, F., AghaKouchak, A., Foufoula-Georgiou, E. (2018).
Precise Temporal Disaggregation Preserving Marginals and Correlations (DiPMaC) for Station-
ary and Nonstationary Processes. Water Resources Research, 54(10), 7435-7458, doi:10.1029/
2018WR022726

Papalexiou, S.M., Serinaldi, F. (2020). Random Fields Simplified: Preserving Marginal Distribu-
tions, Correlations, and Intermittency, With Applications From Rainfall to Humidity. Water Re-
sources Research, 56(2), e2019WR026331, doi:10.1029/2019WR026331

Papalexiou, S.M., Serinaldi, F., Porcu, E. (2021). Advancing Space-Time Simulation of Random
Fields: From Storms to Cyclones and Beyond. Water Resources Research, 57, e2020WR029466,
doi:10.1029/2020WR029466
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See Also

Useful links:

• https://github.com/TycheLab/CoSMoS

acs AutoCorrelation Structure

Description

Provides a parametric function that describes the values of the linear autocorrelation up to desired
lags. For more details on the parametric autocorrelation structures see section 3.2 in Papalexiou
(2018).

Usage

acs(id, ...)

Arguments

id autocorrelation structure id

... other arguments (t as lag and acs parameters)

References

Papalexiou, S.M. (2018). Unified theory for stochastic modelling of hydroclimatic processes: Pre-
serving marginal distributions, correlation structures, and intermittency. Advances in Water Re-
sources, 115, 234-252, doi:10.1016/j.advwatres.2018.02.013

Examples

library(CoSMoS)
library(data.table)

## specify lag
t <- 0:10

## get the ACS
f <- acs('fgn', t = t, H = .75)
b <- acs('burrXII', t = t, scale = 1, shape1 = .6, shape2 = .4)
w <- acs('weibull', t = t, scale = 2, shape = 0.8)
p <- acs('paretoII', t = t, scale = 3, shape = 0.3)

## visualize the ACS
dta <- data.table(t, f, b, w, p)

m.dta <- melt(dta, id.vars = 't')

ggplot(m.dta,

https://github.com/TycheLab/CoSMoS
https://doi.org/10.1016/j.advwatres.2018.02.013
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aes(x = t,
y = value,
group = variable,
colour = variable)) +

geom_point(size = 2.5) +
geom_line(lwd = 1) +
scale_color_manual(values = c('steelblue4', 'red4', 'green4', 'darkorange'),

labels = c('FGN', 'Burr XII', 'Weibull', 'Pareto II'),
name = '') +

labs(x = bquote(lag ~ tau),
y = 'Acf') +

scale_x_continuous(breaks = t) +
theme_classic()

actpnts AutoCorrelation Transformed Points

Description

Transforms a Gaussian process in order to match a target marginal lowers its autocorrelation values.
The actpnts evaluates the corresponding autocorrelations for the given target marginal for a set of
Gaussian correlations, i.e., it returns (ρx, ρz) points where ρx and ρz represent, respectively, the
autocorrelations of the target and Gaussian process.

Usage

actpnts(margdist, margarg, p0 = 0, distbounds = c(-Inf, Inf))

Arguments

margdist target marginal distribution

margarg list of marginal distribution arguments

p0 probability zero

distbounds distribution bounds (default set to c(-Inf, Inf))

Examples

library(CoSMoS)

## here we target to a process that has the Pareto type II
## marginal distribution with scale parameter 1 and shape parameter 0.3
## (note that all parameters have to be named)
dist <- 'paretoII'
distarg <- list(scale = 1, shape = .3)

x <- actpnts(margdist = dist, margarg = distarg, p0 = 0)
x
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## you can see the points by using
ggplot(x,

aes(x = rhox,
y = rhoz)) +

geom_point(colour = 'royalblue4', size = 2.5) +
geom_abline(lty = 5) +
labs(x = bquote(Autocorrelation ~ rho[x]),

y = bquote(Gaussian ~ rho[z])) +
scale_x_continuous(limits = c(0, 1)) +
scale_y_continuous(limits = c(0, 1)) +
theme_classic()

advectionF Advection fields

Description

Provides parametric functions that describe different types of advection fields.

Usage

advectionF(id, ...)

Arguments

id advection type id (uniform, rotation, spiral, spiralCE, radial, and hyperbolic)

... other arguments (vector of coordinates and parameters of advection field func-
tions)

References

Papalexiou, S.M., Serinaldi, F., Porcu, E. (2021). Advancing Space-Time Simulation of Random
Fields: From Storms to Cyclones and Beyond. Water Resources Research, 57, e2020WR029466,
doi:10.1029/2020WR029466

Examples

library(ggquiver)
library(ggplot2)

## specify coordinates
m = 25
aux <- seq(0, m - 1, length = m)
coord <- expand.grid(aux, aux)

## get the advection field
af <- advectionF('spiral',

https://doi.org/10.1029/2020WR029466
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spacepoints = coord,
x0 = floor(m / 2),
y0 = floor(m / 2),
a = 3,
b = 2,
rotation = 1)

## visualize advection field
dta <- data.frame(lon = coord[ ,1], lat = coord[ ,2], u = af[ ,1], v = af[ ,2])
ggplot(dta, aes(x = lon, y = lat, u = u, v = v)) +
geom_quiver() +
theme_light()

advectionFhyperbolic Hyperbolic advection field

Description

Provides an advection field with hyperbolic trajectories.

Usage

advectionFhyperbolic(spacepoints, x0, y0, a, b)

Arguments

spacepoints vector of coordinates (2 x d), where d is the number of locations/grid points

x0 x coordinate of the center of hyperbola

y0 y coordinate of the center of hyperbola

a parameter controlling the x component of rotational velocity

b parameter controlling the y component of rotational velocity

Note

• if a > 0, b > 0: toward bottom-left and top-right corner

• if a < 0, b < 0: toward top-left and bottom-right corner

References

Papalexiou, S.M., Serinaldi, F., Porcu, E. (2021). Advancing Space-Time Simulation of Random
Fields: From Storms to Cyclones and Beyond. Water Resources Research, 57, e2020WR029466,
doi:10.1029/2020WR029466

https://doi.org/10.1029/2020WR029466
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Examples

library(ggquiver)
library(ggplot2)
## specify coordinates
m = 25
aux <- seq(0, m - 1, length = m)
coord <- expand.grid(aux, aux)

af <- advectionFhyperbolic(spacepoints = coord,
x0 = floor(m / 2),
y0 = floor(m / 2),
a = 3,
b = 2)

## visualize advection field
dta <- data.frame(lon = coord[ ,1], lat = coord[ ,2], u = af[ ,1], v = af[ ,2])
ggplot(dta, aes(x = lon, y = lat, u = u, v = v)) +
geom_quiver() +
theme_light()

advectionFradial Radial advection field

Description

Provides an advection field corresponding to radial motion from or towards a specified reference
point.

Usage

advectionFradial(spacepoints, x0, y0, a, b)

Arguments

spacepoints vector of coordinates (2 x d), where d is the number of locations/grid points

x0 x coordinate of the center of radial motion

y0 y coordinate of the center of radial motion

a parameter controlling the x component of radial velocity

b parameter controlling the y component of radial velocity

Note

• if a > 0, b > 0: divergence from (x0, y0) (source point effect)

• if a < 0, b < 0: convergence to (x0, y0) (sink effect)
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References

Papalexiou, S.M., Serinaldi, F., Porcu, E. (2021). Advancing Space-Time Simulation of Random
Fields: From Storms to Cyclones and Beyond. Water Resources Research, 57, e2020WR029466,
doi:10.1029/2020WR029466

Examples

library(ggquiver)
library(ggplot2)

## specify coordinates
m = 25
aux <- seq(0, m - 1, length = m)
coord <- expand.grid(aux, aux)

af <- advectionFradial(spacepoints = coord,
x0 = floor(m / 2),
y0 = floor(m / 2),
a = 3,
b = 2)

## visualize advection field
dta <- data.frame(lon = coord[ ,1], lat = coord[ ,2], u = af[ ,1], v = af[ ,2])
ggplot(dta, aes(x = lon, y = lat, u = u, v = v)) +
geom_quiver() +
theme_light()

advectionFrotation Rotational advection field

Description

Provides an advection field corresponding to rotation around a specified center.

Usage

advectionFrotation(spacepoints, x0, y0, a, b)

Arguments

spacepoints vector of coordinates (2 x d), where d is the number of locations/grid points

x0 x coordinate of the center of rotation

y0 y coordinate of the center of rotation

a parameter controlling the x component of rotational velocity

b parameter controlling the y component of rotational velocity

https://doi.org/10.1029/2020WR029466
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Note

• if a > 0, b > 0: clockwise rotation around (x0, y0)

• if a < 0, b < 0: counter-clockwise rotation around (x0, y0)

References

Papalexiou, S.M., Serinaldi, F., Porcu, E. (2021). Advancing Space-Time Simulation of Random
Fields: From Storms to Cyclones and Beyond. Water Resources Research, 57, e2020WR029466,
doi:10.1029/2020WR029466

Examples

library(ggquiver)
library(ggplot2)
## specify coordinates
m = 25
aux <- seq(0, m - 1, length = m)
coord <- expand.grid(aux, aux)

af <- advectionFrotation(spacepoints = coord,
x0 = floor(m / 2),
y0 = floor(m / 2),
a = 3,
b = 2)

## visualize advection field
dta <- data.frame(lon = coord[ ,1], lat = coord[ ,2], u = af[ ,1], v = af[ ,2])
ggplot(dta, aes(x = lon, y = lat, u = u, v = v)) +
geom_quiver() +
theme_light()

advectionFspiral Spiraling advection field

Description

Provides an advection field corresponding to a spiral motion to/from a specified reference point
(sink).

Usage

advectionFspiral(spacepoints, x0, y0, a, b, rotation = 1)

Arguments

spacepoints vector of coordinates (2 x d), where d is the number of locations/grid points

x0 x coordinate of reference point (sink)

y0 y coordinate of reference point (sink)

https://doi.org/10.1029/2020WR029466
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a parameter controlling the x component of rotational velocity

b parameter controlling the y component of rotational velocity

rotation parameter controlling the rotational direction. The following combinations hold:

• if a > 0, b > 0, and direction = 1: spiraling CLOCKWISE TO (x0, y0)
• if a < 0, b < 0, and direction = 1: spiraling COUNTER-CLOCKWISE

FROM (x0, y0)
• if a > 0, b > 0, and direction = 2: spiraling COUNTER-CLOCKWISE TO

(x0, y0)
• if a < 0, b < 0, and direction = 2: spiraling CLOCKWISE FROM (x0, y0)

References

Papalexiou, S.M., Serinaldi, F., Porcu, E. (2021). Advancing Space-Time Simulation of Random
Fields: From Storms to Cyclones and Beyond. Water Resources Research, 57, e2020WR029466,
doi:10.1029/2020WR029466

Examples

library(ggquiver)
library(ggplot2)
## specify coordinates
m = 25
aux <- seq(0, m - 1, length = m)
coord <- expand.grid(aux, aux)

af <- advectionFspiral(spacepoints = coord,
x0 = floor(m / 2),
y0 = floor(m / 2),
a = 3,
b = 2,
rotation = 1)

## visualize advection field
dta <- data.frame(lon = coord[ ,1], lat = coord[ ,2], u = af[ ,1], v = af[ ,2])
ggplot(dta, aes(x = lon, y = lat, u = u, v = v)) +
geom_quiver() +
theme_light()

advectionFspiralCE Spiraling advection field satisfying continuity equation

Description

Provides an advection field corresponding to a spiral motion to/from a specified reference point
(sink) satisfying continuity equation (from GitHub).

https://doi.org/10.1029/2020WR029466
https://github.com/johannesgerer/jburkardt-m/blob/master/spiral_data/spiral_data.html
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Usage

advectionFspiralCE(spacepoints, a, C)

Arguments

spacepoints vector of coordinates (2 x d), where d is the number of locations/grid points

a parameter controlling the intensity of rotational velocity (a > 0 clokwise; a < 0
conter-clockwise)

C parameter ranging in (0, 2*pi)

References

Papalexiou, S.M., Serinaldi, F., Porcu, E. (2021). Advancing Space-Time Simulation of Random
Fields: From Storms to Cyclones and Beyond. Water Resources Research, 57, e2020WR029466,
doi:10.1029/2020WR029466

Examples

library(ggquiver)
library(ggplot2)
## specify coordinates
m = 25
aux <- seq(0, m - 1, length = m)
coord <- expand.grid(aux, aux)

af <- advectionFspiralCE(spacepoints = coord,
a = 5,
C = 1)

## visualize advection field
dta <- data.frame(lon = coord[ ,1], lat = coord[ ,2], u = af[ ,1], v = af[ ,2])
ggplot(dta, aes(x = lon, y = lat, u = u, v = v)) +
geom_quiver() +
theme_light()

advectionFuniform Uniform advection field

Description

Provides an advection field with constant orthogonal (u and v) components at each grid point. This
mimics rigid translation in a given direction according to the components u and v of the velocity
vector.

Usage

advectionFuniform(spacepoints, u, v)

https://doi.org/10.1029/2020WR029466
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Arguments

spacepoints vector of coordinates (2 x d), where d is the number of locations/grid points

u velocity component along the x axis

v velocity component along the y axis

References

Papalexiou, S.M., Serinaldi, F., Porcu, E. (2021). Advancing Space-Time Simulation of Random
Fields: From Storms to Cyclones and Beyond. Water Resources Research, 57, e2020WR029466,
doi:10.1029/2020WR029466

Examples

library(ggquiver)
library(ggplot2)
## specify coordinates
m = 25
aux <- seq(0, m - 1, length = m)
coord <- expand.grid(aux, aux)

af <- advectionFuniform(spacepoints = coord,
u = 2,
v = 6)

## visualize advection field
dta <- data.frame(lon = coord[ ,1], lat = coord[ ,2], u = af[ ,1], v = af[ ,2])
ggplot(dta, aes(x = lon, y = lat, u = u, v = v)) +
geom_quiver() +
theme_light()

analyzeTS The Functions analyzeTS, reportTS, and simulateTS

Description

Provide a complete set of tools to make time series analysis a piece of cake - analyzeTS automat-
ically performs seasonal analysis, fits distributions and correlation structures, reportTS provides
visualizations of the fitted distributions and correlation structures, and a table with the values of
the fitted parameters and basic descriptive statistics, simulateTS automatically takes the results of
analyzeTS and generates synthetic ones.

Usage

analyzeTS(
TS,
season = "month",
dist = "ggamma",

https://doi.org/10.1029/2020WR029466
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acsID = "weibull",
norm = "N1",
n.points = 30,
lag.max = 30,
constrain = FALSE,
opts = NULL

)

reportTS(aTS, method = "dist")

simulateTS(aTS, from = NULL, to = NULL)

Arguments

TS time series in format - date, value

season name of the season (e.g. month, week)

dist name of the distribution to be fitted

acsID ID of the autocorrelation structure to be fitted

norm norm used for distribution fitting - id (’N1’, ’N2’, ’N3’, ’N4’)

n.points number of points to be subsetted from ecdf

lag.max max lag for the empirical autocorrelation structure

constrain logical - constrain shape2 parametes for finite tails

opts minimization options

aTS analyzed timeseries

method report method - dist for distribution fits, acs for ACS fits and stat for basic
statistical report

from starting date/time of the simulation

to end date/time of the simulation

Details

In practice, we usually want to simulate a natural process using some sampled time series. To
generate a synthetic time series with similar characteristics to the observed values, we have to
determine marginal distribution, autocorrelation structure and probability zero for each individual
month. This can is done by fitting distributions and autocorrelation structures with analyzeTS.
Result can be checked with reportTS. Syynthetic time series with the same statistical properties
can be produced with simulateTS.

Recomended distributions for variables:

• precipitation: ggamma (Generalized Gamma), burr### (Burr type)

• streamflow: ggamma (Generalized Gamma), burr### (Burr type)

• relative humidity: beta

• temperature: norm (Normal distribution)
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Examples

library(CoSMoS)
library(data.table)

## Load data included in the package
## (to find out more about the data use ?precip)
data('precip')

## Fit seasonal ACSs and distributions to the data
a <- analyzeTS(precip)

reportTS(a, 'dist') ## show seasonal distribution fit
reportTS(a, 'acs') ## show seasonal ACS fit
reportTS(a, 'stat') ## display basic descriptive statisctics

######################################
## 'duplicate' analyzed time series ##
sim <- simulateTS(a)

## plot the result
precip[, id := 'observed']
sim[, id := 'simulated']

dta <- rbind(precip, sim)

ggplot(dta) +
geom_line(aes(x = date, y = value)) +
facet_wrap(~id, ncol = 1) +
theme_classic()

################################################
## or simulate timeseries of different length ##
sim <- simulateTS(a,

from = as.POSIXct('1978-12-01 00:00:00'),
to = as.POSIXct('2008-12-01 00:00:00'))

## and plot the result
precip[, id := 'observed']
sim[, id := 'simulated']

dta <- rbind(precip, sim)

ggplot(dta) +
geom_line(aes(x = date, y = value)) +
facet_wrap(~id, ncol = 1) +
theme_classic()
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anisotropyT Anisotropy transformation

Description

Provides parametric functions that describe different types of planar deformation fields, including
affine (rotation and stretching), and swirl-like deformation. For more details see Papalexiou et
al.(2021) and references therein.

Usage

anisotropyT(id, ...)

Arguments

id anisotropy type id (affine, swirl, and wave)

... additional arguments (vector of coordinates and parameters of the anisotropy
transformations)

References

Papalexiou, S. M., Serinaldi, F., Porcu, E. (2021). Advancing Space-Time Simulation of Random
Fields: From Storms to Cyclones and Beyond, Water Resources Research, doi:10.1029/2020WR029466

Examples

library(CoSMoS)

## specify coordinates
m = 25
aux <- seq(0, m - 1, length = m)
coord <- expand.grid(aux, aux)

## get the anisotropy field
at1 <- anisotropyT('affine',

spacepoints = coord,
phi1 = 0.5,
phi2 = 2,
phi12 = 0,
theta = -pi/3)

at2 <- anisotropyT('swirl',
spacepoints = coord,
x0 = floor(m / 2),
y0 = floor(m / 2),
b = 10,
alpha = 1.5 * pi)

at3 <- anisotropyT('wave',
spacepoints = coord,
phi1 = 0.5,

https://doi.org/10.1029/2020WR029466
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phi2 = 2,
beta = 3,
theta = 0)

## visualize anisotropy field
aux = data.frame(lon = at2[ ,1], lat = at2[ ,2], id1 = rep(1:m, each = m), id2 = rep(1:m, m))
ggplot(aux, aes(x = lon, y = lat)) +
geom_path(aes(group = id1)) +
geom_path(aes(group = id2)) +
geom_point(col = 2) +
theme_light()

anisotropyTaffine Affine anisotropy transformation

Description

Affine anisotropy transformation.

Usage

anisotropyTaffine(spacepoints, phi1, phi2, phi12, theta)

Arguments

spacepoints vector of coordinates (2 x d), where d is the number of locations/grid points

phi1 stretching parameter along the x axis

phi2 stretching parameter along the y axis

phi12 shear effect

theta rotation angle

References

Allard, D., Senoussi, R., Porcu, E. (2016). Anisotropy Models for Spatial Data. Mathematical
Geosciences, 48(3), 305-328, doi:10.1007/s110040159594x

Papalexiou, S.M., Serinaldi, F., Porcu, E. (2021). Advancing Space-Time Simulation of Random
Fields: From Storms to Cyclones and Beyond. Water Resources Research, 57, e2020WR029466,
doi:10.1029/2020WR029466

Examples

## specify coordinates
m = 25
aux <- seq(0, m - 1, length = m)
coord <- expand.grid(aux, aux)

https://doi.org/10.1007/s11004-015-9594-x
https://doi.org/10.1029/2020WR029466
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at <- anisotropyTaffine(spacepoints = coord,
phi1 = 0.5,
phi2 = 2,
phi12 = 0,
theta = -pi/3)

## visualize transformed coordinate system
aux = data.frame(lon = at[ ,1], lat = at[ ,2], id1 = rep(1:m, each = m), id2 = rep(1:m, m))
ggplot(aux, aes(x = lon, y = lat)) +
geom_path(aes(group = id1)) +
geom_path(aes(group = id2)) +
geom_point(col = 2) +
theme_light()

anisotropyTswirl Swirl anisotropy transformation

Description

Swirl anisotropy transformation.

Usage

anisotropyTswirl(spacepoints, x0, y0, b, alpha)

Arguments

spacepoints vector of coordinates (2 x d), where d is the number of locations/grid points

x0 x coordinate of the center of the swirl deformation

y0 y coordinate of the center of the swirl deformation

b scaling parameter controlling the swirl deformation

alpha rotation angle

References

Ligas, M., Banas, M., Szafarczyk, A. (2019). A method for local approximation of a planar defor-
mation field. Reports on Geodesy and Geoinformatics, 108(1), 1-8, doi:10.2478/rgg20190007

Papalexiou, S.M., Serinaldi, F., Porcu, E. (2021). Advancing Space-Time Simulation of Random
Fields: From Storms to Cyclones and Beyond. Water Resources Research, 57, e2020WR029466,
doi:10.1029/2020WR029466

https://doi.org/10.2478/rgg-2019-0007
https://doi.org/10.1029/2020WR029466
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Examples

## specify coordinates
m = 25
aux <- seq(0, m - 1, length = m)
coord <- expand.grid(aux, aux)

at <- anisotropyTswirl(spacepoints = coord,
x0 = floor(m / 2),
y0 = floor(m / 2),
b = 10,
alpha = 1.5 * pi)

## visualize transformed coordinate system
aux = data.frame(lon = at[ ,1], lat = at[ ,2], id1 = rep(1:m, each = m), id2 = rep(1:m, m))
ggplot(aux, aes(x = lon, y = lat)) +
geom_path(aes(group = id1)) +
geom_path(aes(group = id2)) +
geom_point(col = 2) +
theme_light()

anisotropyTwave Wave anisotropy transformation

Description

Wave anisotropy transformation.

Usage

anisotropyTwave(spacepoints, phi1, phi2, beta, theta)

Arguments

spacepoints vector of coordinates (2 x d), where d is the number of locations/grid points

phi1 stretching parameter along the x axis

phi2 stretching parameter along the y axis

beta amplitude of sinusoidal wave

theta rotation angle

References

Papalexiou, S.M., Serinaldi, F., Porcu, E. (2021). Advancing Space-Time Simulation of Random
Fields: From Storms to Cyclones and Beyond. Water Resources Research, 57, e2020WR029466,
doi:10.1029/2020WR029466

https://doi.org/10.1029/2020WR029466
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Examples

## specify coordinates
m = 25
aux <- seq(0, m - 1, length = m)
coord <- expand.grid(aux, aux)

at <- anisotropyTwave(spacepoints = coord,
phi1 = 0.5,
phi2 = 2,
beta = 3,
theta = 0)

## visualize transformed coordinate system
aux = data.frame(lon = at[ ,1], lat = at[ ,2], id1 = rep(1:m, each = m), id2 = rep(1:m, m))
ggplot(aux, aes(x = lon, y = lat)) +
geom_path(aes(group = id1)) +
geom_path(aes(group = id2)) +
geom_point(col = 2) +
theme_light()

BurrIII Burr Type III distribution

Description

Provides density, distribution function, quantile function, random value generation, and raw mo-
ments of order r for the Burr Type III distribution.

Usage

dburrIII(x, scale, shape1, shape2, log = FALSE)

pburrIII(q, scale, shape1, shape2, lower.tail = TRUE, log.p = FALSE)

qburrIII(p, scale, shape1, shape2, lower.tail = TRUE, log.p = FALSE)

rburrIII(n, scale, shape1, shape2)

mburrIII(r, scale, shape1, shape2)

Arguments

x, q vector of quantiles.
scale, shape1, shape2

scale and shape parameters; the shape arguments cannot be a vectors (must have
length one).

log, log.p logical; if TRUE, probabilities p are given as log(p).
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lower.tail logical; if TRUE (default), probabilities are P [X ≤ x] otherwise, P [X > x].

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

r raw moment order

Examples

## plot the density

ggplot(data.frame(x = c(1, 15)),
aes(x)) +

stat_function(fun = dburrIII,
args = list(scale = 5,

shape1 = .25,
shape2 = .75),

colour = 'royalblue4') +
labs(x = '',

y = 'Density') +
theme_classic()

BurrXII Burr Type XII distribution

Description

Provides density, distribution function, quantile function, random value generation, and raw mo-
ments of order r for the Burr Type XII distribution.

Usage

dburrXII(x, scale, shape1, shape2, log = FALSE)

pburrXII(q, scale, shape1, shape2, lower.tail = TRUE, log.p = FALSE)

qburrXII(p, scale, shape1, shape2, lower.tail = TRUE, log.p = FALSE)

rburrXII(n, scale, shape1, shape2)

mburrXII(r, scale, shape1, shape2)

Arguments

x, q vector of quantiles.
scale, shape1, shape2

scale and shape parameters; the shape arguments cannot be a vector (must have
length one).
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log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x] otherwise, P [X > x].

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

r raw moment order

Examples

## plot the density

ggplot(data.frame(x = c(0, 10)),
aes(x)) +

stat_function(fun = dburrXII,
args = list(scale = 5,

shape1 = .25,
shape2 = .75),

colour = 'royalblue4') +
labs(x = '',

y = 'Density') +
theme_classic()

checkRF Numerical and visual check of generated random fields

Description

Compares generated random fields sample statistics with the theoretically expected values (similar
to checkTS). It also returns graphical output for visual check.

Usage

checkRF(RF, lags = 30, nfields = 49, method = "stat")

Arguments

RF output of generateRF

lags number of lags of empirical STCF to be considered in the graphical output (de-
fault set to 30)

nfields number of fields to be used in the numerical and graphical output (default set
to 49). As the plots are arranged in a matrix with nrows as close as possible to
ncol, we suggest using values such as 3x3, 3x4, 7x8, etc.

method report method - 'stat' for basic statistical report, 'statplot' for graphical
check of lagged SCS, target STCS, and marginal distribution, 'field' for plot-
ting a matrix of the first nfields, and 'movie' to save the first nfields as a
GIF file named "movieRF.gif" in the current working directory
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Examples

## The example below refers to the fitting and simulation of 10 random fields
## of size 10x10 with AR(1) temporal correlation. As the fitting algorithm has
## O((mxm)^3) complexity for a mxm field, this setting allows for quick fitting
## and simulation (short CPU time). However, for a more effective visualization
## and reliable performance assessment, we suggest to generate a larger number
## of fields (e.g. 100 or more) of size about 30X30. This setting needs more
## CPU time but enables more effective comparison of theoretical and
## empirical statistics. Sizes larger than about 50x50 can be unpractical
## on standard machines.

fit <- fitVAR(
spacepoints = 10,
p = 1,
margdist ='burrXII',
margarg = list(scale = 3, shape1 = .9, shape2 = .2),
p0 = 0.8,
stcsid = "clayton",
stcsarg = list(scfid = "weibull", tcfid = "weibull",

copulaarg = 2,
scfarg = list(scale = 20, shape = 0.7),

tcfarg = list(scale = 1.1, shape = 0.8))
)

sim <- generateRF(n = 12,
STmodel = fit)

checkRF(RF = sim,
lags = 10,
nfields = 12)

checkTS Check generated timeseries

Description

Compares generated time series sample statistics with the theoretically expected values.

Usage

checkTS(TS, distbounds = c(-Inf, Inf))

Arguments

TS generated timeseries

distbounds distribution bounds (default set to c(-Inf, Inf))
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Examples

library(CoSMoS)

## check your generated timeseries
x <- generateTS(margdist = 'burrXII',

margarg = list(scale = 1,
shape1 = .75,
shape2 = .25),

acsvalue = acs(id = 'weibull',
t = 0:30,
scale = 10,
shape = .75),

n = 1000, p = 30, p0 = .5, TSn = 5)

checkTS(x)

disch Daily streamflow data data

Description

Station details

• Name: Nassawango Creek near Snow Hill, Worcester County, Maryland, Hydrologic Unit
02080111

• Network Id: , USGS 01485500
• Latitude/Longitude: 38°13’44.1", 75°28’17.2"
• Elevation: 11.49 ft above North American Vertical Datum of 1988.
• Measurement unit: cubic feet per second

Usage

disch

Format

A data.table with 23315 rows and 2 variables:

date POSIXct format date/time
value daily avarage values

Details

more details can be found here.

Source

The United States Geological Survey (USGS) National Water Information System (NWIS)

https://waterdata.usgs.gov/nwis/dv?referred_module=sw&site_no=01485500
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fitactf Fit the AutoCorrelation Transformation Function

Description

Fits the ACTF (Autocorrelation Transformation Function) to the estimated points (ρx, ρz) using
nls.

Usage

fitactf(actpnts, discrete = FALSE)

Arguments

actpnts estimated ACT points

discrete logical - is the marginal distribution discrete?

Examples

library(CoSMoS)

## choose the marginal distribution as Pareto type II
## with corresponding parameters
dist <- 'paretoII'
distarg <- list(scale = 1, shape = .3)

## estimate rho 'x' and 'z' points using ACTI
p <- actpnts(margdist = dist, margarg = distarg, p0 = 0)

## fit ACTF
fit <- fitactf(p)

## plot the result
plot(fit)

fitDist Distribution fitting

Description

Uses Nelder-Mead simplex algorithm to minimize fitting norms.



26 fitVAR

Usage

fitDist(
data,
dist,
n.points,
norm,
constrain,
opts = list(algorithm = "NLOPT_LN_NELDERMEAD", xtol_rel = 1e-08, maxeval = 10000)

)

Arguments

data value to be fitted

dist name of the distribution to be fitted

n.points number of points to be subsetted from ecdf

norm norm used for distribution fitting - id (’N1’, ’N2’, ’N3’, ’N4’)

constrain logical - constrain shape2 parametes for finite tails

opts minimization options

Examples

x <- fitDist(rnorm(1000), 'norm', 30, 'N1', FALSE)
x

fitVAR VAR model parameters to simulate correlated parent Gaussian ran-
dom vectors and fields

Description

Compute VAR model parameters to simulate parent Gaussian random vectors with specified spa-
tiotemporal correlation structure using the method described by Biller and Nelson (2003).

Usage

fitVAR(
spacepoints,
p,
margdist,
margarg,
p0,
distbounds = c(-Inf, Inf),
stcsid,
stcsarg,
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scalefactor = 1,
anisotropyid = "affine",
anisotropyarg = list(phi1 = 1, phi2 = 1, phi12 = 0, theta = 0),
advectionid = "uniform",
advectionarg = list(u = 0, v = 0)

)

Arguments

spacepoints it can be a numeric integer, which is interpreted as the side length m of the square
field (m x m), or a matrix (d x 2) of coordinates (e.g. longitude and latitude) of
d spatial locations (e.g. d gauge stations)

p order of VAR(p) model

margdist target marginal distribution of the field

margarg list of marginal distribution arguments. Please consult the documentation of the
selected marginal distribution indicated in the argument margdist for the list of
required parameters

p0 probability zero

distbounds distribution bounds (default set to c(-Inf, Inf))

stcsid spatiotemporal correlation structure ID

stcsarg list of spatiotemporal correlation structure arguments. Please consult the doc-
umentation of the selected spatiotemporal correlation structure indicated in the
argument stcsid for the list of required parameters

scalefactor factor specifying the distance between the centers of two pixels (default set to 1)

anisotropyid spatial anisotropy ID (affine by default, swirl or wave)

anisotropyarg list of arguments characterizing the spatial anisotropy according to the syntax of
the function anisotropyT. Isotropic fields by default

advectionid advection field ID (uniform by default, rotation, spiral, spiralCE, radial,
or hyperbolic)

advectionarg list of arguments characterizing the advection field according to the syntax of
the function advectionF. No advection by default

Details

The fitting algorithm has O(m∗m)3 complexity for a (m∗m) field or equivalently O(d3) complex-
ity for a d-dimensional vector. Very large values of (m ∗m) (or d) and high order AR correlation
structures can be unpractical on standard machines.

Here, we give indicative CPU times for some settings, referring to a Windows 10 Pro x64 laptop
with Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz, 4-core, 8 logical processors, and 32GB
RAM.
: CPU time:
d = 100 or m = 10, p = 1: ~ 0.4s
d = 900 or m = 30, p = 1: ~ 6.0s
d = 900 or m = 30, p = 5: ~ 47.0s
d = 2500 or m = 50, p = 1: ~100.0s
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Note

While all the advection types can be applied to isotropic random fields, anisotropic random fields
require more care. We suggest combining affine anysotropy with uniform advection, and swirl
anisotropy with rotation or spiral advection with the same rotation center.

References

Biller, B., Nelson, B.L. (2003). Modeling and generating multivariate time-series input processes
using a vector autoregressive technique. ACM Trans. Model. Comput. Simul. 13(3), 211-237,
doi:10.1145/937332.937333

Papalexiou, S.M. (2018). Unified theory for stochastic modelling of hydroclimatic processes: Pre-
serving marginal distributions, correlation structures, and intermittency. Advances in Water Re-
sources, 115, 234-252, doi:10.1016/j.advwatres.2018.02.013

Papalexiou, S.M., Serinaldi, F. (2020). Random Fields Simplified: Preserving Marginal Distribu-
tions, Correlations, and Intermittency, With Applications From Rainfall to Humidity. Water Re-
sources Research, 56(2), e2019WR026331, doi:10.1029/2019WR026331

Papalexiou, S.M., Serinaldi, F., Porcu, E. (2021). Advancing Space-Time Simulation of Random
Fields: From Storms to Cyclones and Beyond. Water Resources Research, 57, e2020WR029466,
doi:10.1029/2020WR029466

Examples

## for multivariate simulation
coord <- cbind(runif(4)*30, runif(4)*30)

fit <- fitVAR(
spacepoints = coord,
p = 1,
margdist ='burrXII',
margarg = list(scale = 3,

shape1 = .9,
shape2 = .2),

p0 = 0.8,
stcsid = "clayton",
stcsarg = list(scfid = "weibull",

tcfid = "weibull",
copulaarg = 2,
scfarg = list(scale = 20,

shape = 0.7),
tcfarg = list(scale = 1.1,

shape = 0.8))
)

dim(fit$alpha)
dim(fit$res.cov)

fit$m
fit$margarg
fit$margdist

https://doi.org/10.1145/937332.937333
https://doi.org/10.1016/j.advwatres.2018.02.013
https://doi.org/10.1029/2019WR026331
https://doi.org/10.1029/2020WR029466
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## for random fields simulation
fit <- fitVAR(

spacepoints = 10,
p = 1,
margdist ='burrXII',
margarg = list(scale = 3, shape1 = .9, shape2 = .2),
p0 = 0.8,
stcsid = "clayton",
stcsarg = list(scfid = "weibull", tcfid = "weibull",

copulaarg = 2,
scfarg = list(scale = 20, shape = 0.7),
tcfarg = list(scale = 1.1, shape = 0.8))

)

dim(fit$alpha)
dim(fit$res.cov)

fit$m
fit$margarg
fit$margdist

generateMTS Simulation of multiple time series with given marginals and spatiotem-
poral properties

Description

Generates multiple time series with given marginals and spatiotemporal properties, just provide (1)
the output of fitVAR function, and (2) the number of time steps to simulate.

Usage

generateMTS(n, STmodel)

Arguments

n number of fields (time steps) to simulate

STmodel list of arguments resulting from fitVAR function

Details

Referring to the documentation of fitVAR for details on computational complexity of the fitting
algorithm, here we report indicative simulation CPU times for some settings, assuming that the
model parameters are already evaluated. CPU times refer to a Windows 10 Pro x64 laptop with
Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz, 4-core, 8 logical processors, and 32GB RAM.
CPU time:
d = 900, p = 1, n = 1000: ~17s
d = 900, p = 1, n = 10000: ~75s
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d = 900, p = 5, n = 100: ~280s
d = 900, p = 5, n = 1000: ~302s
d = 2500, p = 1, n = 1000 : ~160s
d = 2500, p = 1, n = 10000 : ~570s
where d denotes the number of spatial locations

Examples

## Simulation of a 4-dimensional vector with VAR(1) correlation structure
coord <- cbind(runif(4)*30, runif(4)*30)

fit <- fitVAR(
spacepoints = coord,
p = 1,
margdist ='burrXII',
margarg = list(scale = 3,

shape1 = .9,
shape2 = .2),

p0 = 0.8,
stcsid = "clayton",
stcsarg = list(scfid = "weibull",

tcfid = "weibull",
copulaarg = 2,
scfarg = list(scale = 20,

shape = 0.7),
tcfarg = list(scale = 1.1,

shape = 0.8))
)

sim <- generateMTS(n = 100,
STmodel = fit)

generateMTSFast Faster simulation of multiple time series with approximately separable
spatiotemporal correlation structure

Description

For more details see section 6 in Serinaldi and Kilsby (2018), and section 2.4 in Papalexiou and
Serinaldi (2020).

Usage

generateMTSFast(
n,
spacepoints,
margdist,
margarg,
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p0,
distbounds = c(-Inf, Inf),
stcsid,
stcsarg,
scalefactor = 1,
anisotropyid = "affine",
anisotropyarg = list(phi1 = 1, phi2 = 1, phi12 = 0, theta = 0)

)

Arguments

n number of fields (time steps) to simulate

spacepoints matrix (d x 2) of coordinates (e.g. longitude and latitude) of d spatial locations
(e.g. d gauge stations)

margdist target marginal distribution

margarg list of marginal distribution arguments. Please consult the documentation of the
selected marginal distribution indicated in the argument margdist for the list of
required parameters

p0 probability zero

distbounds distribution bounds (default set to c(-Inf, Inf))

stcsid spatiotemporal correlation structure ID

stcsarg list of spatiotemporal correlation structure arguments. Please consult the doc-
umentation of the selected spatiotemporal correlation structure indicated in the
argument stcsid for the list of required parameters

scalefactor factor specifying the distance between the centers of two pixels (default set to 1)

anisotropyid spatial anisotropy ID (affine by default, swirl or wave)

anisotropyarg list of arguments characterizing the spatial anisotropy according to the syntax of
the function anisotropyT. Isotropic fields by default

Details

generateMTSFast provides a faster approach to multivariate simulation compared to generateMTS
by exploiting circulant embedding fast Fourier transformation. However, this approach is feasible
only for approximately separable target spatiotemporal correlation functions. generateMTSFast
comprises fitting and simulation in a single function. Here, we give indicative CPU times for some
settings, referring to a Windows 10 Pro x64 laptop with Intel(R) Core(TM) i7-6700HQ CPU @
2.60GHz, 4-core, 8 logical processors, and 32GB RAM.
CPU time:
d = 2500, n = 1000: ~58s
d = 2500, n = 10000: ~160s
d = 10000, n = 1000: ~2955s (~50min)
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References

Serinaldi, F., Kilsby, C.G. (2018). Unsurprising Surprises: The Frequency of Record-breaking and
Overthreshold Hydrological Extremes Under Spatial and Temporal Dependence. Water Resources
Research, 54(9), 6460-6487, doi:10.1029/2018WR023055

Papalexiou, S.M., Serinaldi, F. (2020). Random Fields Simplified: Preserving Marginal Distribu-
tions, Correlations, and Intermittency, With Applications From Rainfall to Humidity. Water Re-
sources Research, 56(2), e2019WR026331, doi:10.1029/2019WR026331

Examples

coord <- cbind(runif(4)*30, runif(4)*30)

sim <- generateMTSFast(
n = 50,
spacepoints = coord,
p0 = 0.7,
margdist ='paretoII',
margarg = list(scale = 1,

shape = .3),
stcsarg = list(scfid = "weibull",

tcfid = "weibull",
scfarg = list(scale = 20,

shape = 0.7),
tcfarg = list(scale = 1.1,

shape = 0.8))
)

generateRF Simulation of random field with given marginals and spatiotemporal
properties

Description

Generates random field with given marginals and spatiotemporal properties, just provide (1) the
output of fitVAR function, and (2) the number of time steps to simulate.

Usage

generateRF(n, STmodel)

Arguments

n number of fields (time steps) to simulate

STmodel list of arguments resulting from fitVAR function

https://doi.org/10.1029/2018WR023055
https://doi.org/10.1029/2019WR026331
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Details

Referring to the documentation of fitVAR for details on computational complexity of the fitting
algorithm, here we report indicative simulation CPU times for some settings, assuming that the
model parameters are already evaluated. CPU times refer to a Windows 10 Pro x64 laptop with
Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz, 4-core, 8 logical processors, and 32GB RAM.
CPU time:
m = 30, p = 1, n = 1000: ~17s
m = 30, p = 1, n = 10000: ~75s
m = 30, p = 5, n = 100: ~280s
m = 30, p = 5, n = 1000: ~302s
m = 50, p = 1, n = 1000 : ~160s
m = 50, p = 1, n = 10000 : ~570s where m denotes the side length of a square field (mxm)

Examples

## The example below refers to the simulation of few random fields of
## size 10x10 with AR(1) temporal correlation for the sake of illustration.
## For a more effective visualization and reliable performance assessment,
## we suggest to generate a larger number of fields (e.g. 100 or more)
## of size about 30X30.
## See section 'Details' for additional information on running times
## with different settings.

fit <- fitVAR(
spacepoints = 10,
p = 1,
margdist ='burrXII',
margarg = list(scale = 3, shape1 = .9, shape2 = .2),
p0 = 0.8,
stcsid = "clayton",
stcsarg = list(scfid = "weibull", tcfid = "weibull",

copulaarg = 2,
scfarg = list(scale = 20, shape = 0.7),

tcfarg = list(scale = 1.1, shape = 0.8))
)

sim <- generateRF(n = 12,
STmodel = fit)

checkRF(sim,
lags = 10,
nfields = 12)

generateRFFast Faster simulation of random fields with approximately separable spa-
tiotemporal correlation structure
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Description

For more details see section 6 in Serinaldi and Kilsby (2018), and section 2.4 in Papalexiou and
Serinaldi (2020).

Usage

generateRFFast(
n,
spacepoints,
margdist,
margarg,
p0,
distbounds = c(-Inf, Inf),
stcsid,
stcsarg,
scalefactor = 1,
anisotropyid = "affine",
anisotropyarg = list(phi1 = 1, phi2 = 1, phi12 = 0, theta = 0)

)

Arguments

n number of fields (time steps) to simulate

spacepoints side length m of the square field (m x m)

margdist target marginal distribution of the field

margarg list of marginal distribution arguments. Please consult the documentation of the
selected marginal distribution indicated in the argument margdist for the list of
required parameters

p0 probability zero

distbounds distribution bounds (default set to c(-Inf, Inf))

stcsid spatiotemporal correlation structure ID

stcsarg list of spatiotemporal correlation structure arguments. Please consult the doc-
umentation of the selected spatiotemporal correlation structure indicated in the
argument stcsid for the list of required parameters

scalefactor factor specifying the distance between the centers of two pixels (default set to 1)

anisotropyid spatial anisotropy ID (affine by default, swirl or wave)

anisotropyarg list of arguments characterizing the spatial anisotropy according to the syntax of
the function anisotropyT. Isotropic fields by default

Details

generateRFFast provides a faster approach to RF simulation compared to generateRF by exploit-
ing circulant embedding fast Fourier transformation. However, this approach is feasible only for
approximately separable target spatiotemporal correlation functions. generateRFFast comprises
fitting and simulation in a single function. Here, we give indicative CPU times for some settings,
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referring to a Windows 10 Pro x64 laptop with Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz,
4-core, 8 logical processors, and 32GB RAM.
CPU time:
m = 50, n = 1000: ~58s
m = 50, n = 10000: ~160s
m = 100, n = 1000: ~2955s (~50min)

References

Serinaldi, F., Kilsby, C.G. (2018). Unsurprising Surprises: The Frequency of Record-breaking and
Overthreshold Hydrological Extremes Under Spatial and Temporal Dependence. Water Resources
Research, 54(9), 6460-6487, doi:10.1029/2018WR023055

Papalexiou, S.M., Serinaldi, F. (2020). Random Fields Simplified: Preserving Marginal Distribu-
tions, Correlations, and Intermittency, With Applications From Rainfall to Humidity. Water Re-
sources Research, 56(2), e2019WR026331, doi:10.1029/2019WR026331

Examples

sim <- generateRFFast(
n = 50,
spacepoints = 3,
p0 = 0.7,
margdist ='paretoII',
margarg = list(scale = 1,

shape = .3),
stcsarg = list(scfid = "weibull",

tcfid = "weibull",
scfarg = list(scale = 20,

shape = 0.7),
tcfarg = list(scale = 1.1,

shape = 0.8))
)

checkRF(sim,
lags = 10,
nfields = 49)

generateTS Generate timeseries

Description

Generates timeseries with given properties, just provide (1) the target marginal distribution and
its parameters, (2) the target autocorrelation structure or individual autocorrelation values up to a
desired lag, and (3) the probablility zero if you wish to simulate an intermittent process.

https://doi.org/10.1029/2018WR023055
https://doi.org/10.1029/2019WR026331
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Usage

generateTS(
n,
margdist,
margarg,
p = NULL,
p0 = 0,
TSn = 1,
distbounds = c(-Inf, Inf),
acsvalue = NULL

)

Arguments

n number of values

margdist target marginal distribution

margarg list of marginal distribution arguments

p integer - model order (if NULL - limits maximum model order according to
auto-correlation structure values)

p0 probability zero

TSn number of timeseries to be generated

distbounds distribution bounds (default set to c(-Inf, Inf))

acsvalue target auto-correlation structure (from lag 0)

Details

A step-by-step guide:

• First define the target marginal (margdist), that is, the probability distribution of the gener-
ated data. For example set margdist = 'ggamma' if you wish to generate data following the
Generalized Gamma distribution, margidst = 'burrXII' for Burr type XII distribution etc.
For a full list of the distributions we support see the help vignette. In general, the package
supports all build-in distribution functions of R and of other packages.

• Define the parameters’ values (margarg) of the distribution you selected. For example the
Generalized Gamma has one scale and two shape parameters so set the desired value, e.g.,
margarg = list(scale = 2, shape1 = 0.9, shape2 = 0.8). Note distributions might have
different number of parameters and different type of parameters (location, scale, shape). See
the help vignette for details on the parameters of each distribution we support.

• If you wish your time series to be intermittent (e.g., precipitation), then define the probability
zero. For example, set p0 = 0.9, if you wish your generated data to have 90% of zero values
(dry days).

• Define your linear autocorrelations.

– You can supply specific lag autocorrelations starting from lag 0 and up to a desired lag,
e.g., acs = c(1, 0.9, 0.8, 0.7); this will generate a process with lag1, 2 and 3 autocor-
relations equal with 0.9, 0.8 and 0.7.

https://CRAN.R-project.org/package=CoSMoS/vignettes/vignette.html
https://CRAN.R-project.org/package=CoSMoS/vignettes/vignette.html
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– Alternatively, you can use a parametric autocorrelation structure (see section 3.2 in Pa-
palexiou (2018). We support the following autocorrelation structures (acs) weibull, pare-
toII, fgn and burrXII. See also acs examples.

• Define the order to the autoregressive model p. For example if you aim to preserve the first 10
lag autocorrelations then just set p = 10. Otherwise set it p = NULL and the model will decide
the value of p in order to preserve the whole autocorrelation structure.

• Lastly just define the time series length, e.g., n = 1000 and number of time series you wish to
generate, e.g., TSn = 10.

Play around with the following given examples which will make the whole process a piece of cake.

References

Papalexiou, S.M. (2018). Unified theory for stochastic modelling of hydroclimatic processes: Pre-
serving marginal distributions, correlation structures, and intermittency. Advances in Water Re-
sources, 115, 234-252, doi:10.1016/j.advwatres.2018.02.013

Examples

library(CoSMoS)

## Case1:
## You wish to generate 3 time series of size 1000 each
## that follow the Generalized Gamma distribution with parameters
## scale = 1, shape1 = 0.8, shape2 = 0.8
## and autocorrelation structure the ParetoII
## with parameters scale = 1 and shape = .75
x <- generateTS(margdist = 'ggamma',

margarg = list(scale = 1,
shape1 = .8,
shape2 = .8),

acsvalue = acs(id = 'paretoII',
t = 0:30,
scale = 1,
shape = .75),

n = 1000,
p = 30,
TSn = 3)

## see the results
plot(x)

## Case2:
## You wish to generate time series the same distribution
## and autocorrelations as is Case1 but intermittent
## with probability zero equal to 90%
y <- generateTS(margdist = 'ggamma',

margarg = list(scale = 1,
shape1 = .8,

https://doi.org/10.1016/j.advwatres.2018.02.013
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shape2 = .8),
acsvalue = acs(id = 'paretoII',

t = 0:30,
scale = 1,
shape = .75),

p0 = .9,
n = 1000,
p = 30,
TSn = 3)

## see the results
plot(y)

## Case3:
## You wish to generate a time series of size 1000
## that follows the Beta distribution
## (e.g., relative humidity ranging from 0 to 1)
## with parameters shape1 = 0.8, shape2 = 0.8, is defined from 0 to 1
## and autocorrelation structure the ParetoII
## with parameters scale = 1 and shape = .75
z <- generateTS(margdist = 'beta',

margarg = list(shape1 = .6,
shape2 = .8),

distbounds = c(0, 1),
acsvalue = acs(id = 'paretoII',

t = 0:30,
scale = 1,
shape = .75),

n = 1000,
p = 20)

## see the results
plot(z)

## Case4:
## Same in previous case but now you provide specific
## autocorrelation values for the first three lags,
## ie.., lag 1 to 3 equal to 0.9, 0.8 and 0.7

z <- generateTS(margdist = 'beta',
margarg = list(shape1 = .6,

shape2 = .8),
distbounds = c(0, 1),
acsvalue = c(1, .9, .8, .7),
n = 1000,
p = TRUE)

## see the results
plot(z)
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GEV Generalized extreme value distribution

Description

Provides density, distribution function, quantile function, and random value generation, for the
generalized extreme value distribution.

Usage

dgev(x, loc, scale, shape, log = FALSE)

pgev(q, loc, scale, shape, lower.tail = TRUE, log.p = FALSE)

qgev(p, loc, scale, shape, lower.tail = TRUE, log.p = FALSE)

rgev(n, loc, scale, shape)

mgev(r, loc, scale, shape)

Arguments

x, q vector of quantiles.
loc, scale, shape

location, scale and shape parameters.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x] otherwise, P [X > x].

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

r raw moment order

Examples

## plot the density

ggplot(data.frame(x = c(0, 20)),
aes(x)) +

stat_function(fun = dgev,
args = list(loc = 1,

scale = .5,
shape = .15),

colour = 'royalblue4') +
labs(x = '',

y = 'Density') +
theme_classic()
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GGamma Generalized gamma distribution

Description

Provides density, distribution function, quantile function, random value generation, and raw mo-
ments of order r for the generalized gamma distribution.

Usage

dggamma(x, scale, shape1, shape2, log = FALSE)

pggamma(q, scale, shape1, shape2, lower.tail = TRUE, log.p = FALSE)

qggamma(p, scale, shape1, shape2, lower.tail = TRUE, log.p = FALSE)

rggamma(n, scale, shape1, shape2)

mggamma(r, scale, shape1, shape2)

Arguments

x, q vector of quantiles.
scale, shape1, shape2

scale and shape parameters; the shape arguments cannot be a vectors (must have
length one).

log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P [X ≤ x] otherwise, P [X > x].
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the number

required.
r raw moment order

Examples

## plot the density

ggplot(data.frame(x = c(0, 20)),
aes(x)) +

stat_function(fun = dggamma,
args = list(scale = 5,

shape1 = .25,
shape2 = .75),

colour = 'royalblue4') +
labs(x = '',

y = 'Density') +
theme_classic()
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moments Numerical estimation of moments

Description

Uses numerical integration to caclulate the theoretical raw or central moments of the specified
distribution.

Usage

moments(
dist,
distarg,
p0 = 0,
raw = T,
central = T,
coef = T,
distbounds = c(-Inf, Inf),
order = 1:4

)

Arguments

dist distribution
distarg list of distribution arguments
p0 probability zero
raw logical - calculate raw moments?
central logical - calculate central moments?
coef logical - calculate coefficients (coefficient of variation, skewness and kurtosis)?
distbounds distribution bounds (default set to c(-Inf, Inf))
order vector of integers - raw moment orders

Examples

library(CoSMoS)

## Normal Distribution
moments('norm', list(mean = 2, sd = 1))

## Pareto type II
scale <- 1
shape <- .2

moments(dist = 'paretoII',
distarg = list(shape = shape,

scale = scale))
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ParetoII Pareto type II distribution

Description

Provides density, distribution function, quantile function, random value generation and raw mo-
ments of order r for the Pareto type II distribution.

Usage

dparetoII(x, scale, shape, log = FALSE)

pparetoII(q, scale, shape, lower.tail = TRUE, log.p = FALSE)

qparetoII(p, scale, shape, lower.tail = TRUE, log.p = FALSE)

rparetoII(n, scale, shape)

mparetoII(r, scale, shape)

Arguments

x, q vector of quantiles.

scale, shape scale and shape parameters; the shape argument cannot be a vector (must have
length one).

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x] otherwise, P [X > x].

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the number
required.

r raw moment order

Examples

## plot the density

ggplot(data.frame(x = c(0, 20)),
aes(x)) +

stat_function(fun = dparetoII,
args = list(scale = 1,

shape = .3),
colour = 'royalblue4') +

labs(x = '',
y = 'Density') +

theme_classic()
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plot.acti AutoCorrelation Transformation Function visualisation

Description

Visualizes the autocorrelation tranformation integral (there are two possible methods for plotting -
base graphics and ggplot2 package).

Usage

## S3 method for class 'acti'
plot(x, ...)

Arguments

x fitactf result object
... other arguments

Examples

library(CoSMoS)

## choose the marginal distribution as Pareto type II with corresponding parameters
dist <- 'paretoII'
distarg <- list(scale = 1, shape = .3)

## estimate rho 'x' and 'z' points using ACTI
p <- actpnts(margdist = dist, margarg = distarg, p0 = 0)

## fit ACTF
fit <- fitactf(p)

## plot the results
plot(fit)
plot(fit, main = 'Pareto type II distribution \nautocorrelation tranformation')

plot.checkTS Plot method for check results

Description

Plot method for check results.

Usage

## S3 method for class 'checkTS'
plot(x, ...)
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Arguments

x check result

... other args

Examples

library(CoSMoS)

## check your generated timeseries
x <- generateTS(margdist = 'burrXII',

margarg = list(scale = 1,
shape1 = .75,
shape2 = .15),

acsvalue = acs(id = 'weibull',
t = 0:30,
scale = 10,
shape = .75),

n = 1000, p = 30, p0 = .25, TSn = 100)

chck <- checkTS(x)

plot(chck)

plot.cosmosts Plot generated Timeseries

Description

Visualizes Timeseries generated by the package CoSMoS.

Usage

## S3 method for class 'cosmosts'
plot(x, ...)

Arguments

x fitactf result object

... other arguments

Examples

library(CoSMoS)

## generate TS
ts <- generateTS(margdist = 'ggamma',

margarg = list(scale = 1,
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shape1 = .8,
shape2 = .8),

acsvalue = acs(id = 'paretoII',
t = 0:30,
scale = 1,
shape = .75),

n = 1000,
p = 30,
TSn = 2)

## plot the TS
plot(ts)

precip Hourly station precipitation data

Description

Station details

• Name: Philadelphia International Airport

• Network ID: COOP:366889

• Latitude/Longitude: 39.87327°, -75.22678°

• Elevation: 3m

Usage

precip

Format

A data.table with 79633 rows and 2 variables:

date POSIXct format date/time

value precipitation totals

Details

more details can be found here.

Source

The National Oceanic and Atmospheric Administration (NOAA)

https://www.ncdc.noaa.gov/cdo-web/datasets/PRECIP_HLY/stations/COOP:366889/detail
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quickTSPlot Quick visualization of basic timeseries properties

Description

Return timeseries diagram, empirical density function, and empirical autocorrelation function.

Usage

quickTSPlot(TS, ci = 0.95)

Arguments

TS timeseries to plot

ci confidence interval around the zero autocorrelation value (default set to 0.95, i.e.
95% CI)

Examples

no <- 1000
ggamma_sim <- rggamma(n = no, scale = 1, shape1 = 1, shape2 = .5)
quickTSPlot(ggamma_sim)

regenerateTS Bulk Timeseries generation

Description

Resamples given timeseries.

Usage

regenerateTS(ts, TSn = 1)

Arguments

ts generated timeseries using ARp

TSn number of timeseries to be (re)generated

Details

You have used the generateTS function and you wish to generate more time series. Instead of re-
running generateTS you can use regenerateTS, which generates timeseries using the parameters
previously calculated by the generateTS function, and thus it is faster.
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Examples

library(CoSMoS)

## define marginal distribution and arguments with target
## autocorrelation structure
x <- generateTS(margdist = 'burrXII',

margarg = list(scale = 1,
shape1 = .75,
shape2 = .25),

acsvalue = acs(id = 'weibull',
t = 0:30,
scale = 10,
shape = .75),

n = 1000, p = 30, p0 = .5, TSn = 3)

## generate new values with same parameters
r <- regenerateTS(x)

plot(r)

sample.moments Estimation of sample moments

Description

Estimation of sample moments.

Usage

sample.moments(x, na.rm = FALSE, raw = T, central = T, coef = T, order = 1:4)

Arguments

x a numeric vector of values

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds

raw logical - calculate raw moments?

central logical - calculate central moments?

coef logical - calculate coefficients (coefficient of variation, skewness and kurtosis)?

order vector of integers - raw moment orders
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Examples

library(CoSMoS)

x <- rnorm(1000)
sample.moments(x)

y <- rparetoII(1000, 10, .1)
sample.moments(y)

stcfclayton Clayton SpatioTemporal Correlation Structure

Description

Provides spatiotemporal correlation structure function based on Clayton copula. For more details
on the parametric spatiotemporal correlation structures see section 2.3 and 2.4 in Papalexiou and
Serinaldi (2020).

Usage

stcfclayton(t, s, scfid, tcfid, copulaarg, scfarg, tcfarg)

Arguments

t time lag

s spatial lag (distance)

scfid ID of the spatial (marginal) correlation structure (e.g. weibull)

tcfid ID of the temporal (marginal) correlation structure (e.g. weibull)

copulaarg parameter of the Clayton copula linking the marginal correlation structures

scfarg parameters of spatial (marginal) correlation structure

tcfarg parameters of temporal (marginal) correlation structure

References

Papalexiou, S.M., Serinaldi, F. (2020). Random Fields Simplified: Preserving Marginal Distribu-
tions, Correlations, and Intermittency, With Applications From Rainfall to Humidity. Water Re-
sources Research, 56(2), e2019WR026331, doi:10.1029/2019WR026331

Papalexiou, S.M., Serinaldi, F., Porcu, E. (2021). Advancing Space-Time Simulation of Random
Fields: From Storms to Cyclones and Beyond. Water Resources Research, 57, e2020WR029466,
doi:10.1029/2020WR029466

https://doi.org/10.1029/2019WR026331
https://doi.org/10.1029/2020WR029466
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Examples

library(plot3D)

## specify grid of spatial and temporal lags
d <- 31
st <- expand.grid(0:(d - 1),

0:(d - 1))

## get the STCS
wc <- stcfclayton(t = st[, 1],

s = st[, 2],
scfid = 'weibull',
tcfid = 'weibull',
copulaarg = 2,
scfarg = list(scale = 20,

shape = 0.7),
tcfarg = list(scale = 1.1,

shape = 0.8))

## visualize the STCS
wc.m <- matrix(wc,

nrow = d)

persp3D(z = wc.m, x = 1: nrow(wc.m), y = 1:ncol(wc.m),
expand = 1, main = "", scale = TRUE, facets = TRUE,
xlab="Time lag", ylab = "Distance", zlab = "STCF",
colkey = list(side = 4, length = 0.5), phi = 20, theta = 120,
resfac = 5, col= gg2.col(100))

stcfgneiting14 Gneiting-14 SpatioTemporal Correlation Structure

Description

Provides spatiotemporal correlation structure function proposed by Gneiting (2002; Eq.14 at p.
593).

Usage

stcfgneiting14(t, s, a, c, alpha, beta, gamma, tau)

Arguments

t time lag

s spatial lag (distance)

a nonnegative scaling parameter of time

c nonnegative scaling parameter of space
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alpha smoothness parameter of time. Valid range: (0, 1]

beta space-time interaction parameter. Valid range: [0, 1]

gamma smoothness parameter of space. Valid range: (0, 1]

tau space-time interaction parameter. Valid range: ≥ 1 (for 2-dimensional fields)

References

Gneiting, T. (2002). Nonseparable, Stationary Covariance Functions for Space-Time Data, Journal
of the American Statistical Association, 97:458, 590-600, doi:10.1198/016214502760047113

Examples

library(plot3D)

## specify grid of spatial and temporal lags
d <- 31
st <- expand.grid(0:(d - 1),

0:(d - 1))

## get the STCS
g14 <- stcfgneiting14(t = st[, 1],

s = st[, 2],
a = 1/50,
c = 1/10,
alpha = 1,
beta = 1,
gamma = 0.5,
tau = 1)

## visualize the STCS

g14.m <- matrix(g14,
nrow = d)

persp3D(z = g14.m, x = 1: nrow(g14.m), y = 1:ncol(g14.m),
expand = 1, main = "", scale = TRUE, facets = TRUE,
xlab="Time lag", ylab = "Distance", zlab = "STCF",
colkey = list(side = 4, length = 0.5), phi = 20, theta = 120,
resfac = 5, col= gg2.col(100))

stcfgneiting16 Gneiting-16 SpatioTemporal Correlation Structure

Description

Provides spatiotemporal correlation structure function proposed by Gneiting (2002; Eq.16 at p.
594).

https://doi.org/10.1198/016214502760047113
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Usage

stcfgneiting16(t, s, a, c, alpha, beta, nu, tau)

Arguments

t time lag

s spatial lag (distance)

a nonnegative scaling parameter of time

c nonnegative scaling parameter of space

alpha smoothness parameter of time. Valid range: (0, 1]

beta space-time interaction parameter. Valid range: [0, 1]

nu smoothness parameter of space. Valid range: > 0

tau space-time interaction parameter. Valid range: ≥ 1 (for 2-dimensional fields)

References

Gneiting, T. (2002). Nonseparable, Stationary Covariance Functions for Space-Time Data, Journal
of the American Statistical Association, 97:458, 590-600, doi:10.1198/016214502760047113

Examples

library(plot3D)

## specify grid of spatial and temporal lags
d <- 31
st <- expand.grid(0:(d - 1),

0:(d - 1))

## get the STCS
g16 <- stcfgneiting16(t = st[, 1],

s = st[, 2],
a = 1/50,
c = 1/10,
alpha = 1,
beta = 1,
nu = 0.5, tau = 1)

## visualize the STCS

g16.m <- matrix(g16,
nrow = d)

persp3D(z = g16.m, x = 1: nrow(g16.m), y = 1:ncol(g16.m),
expand = 1, main = "", scale = TRUE, facets = TRUE,
xlab="Time lag", ylab = "Distance", zlab = "STCF",
colkey = list(side = 4, length = 0.5), phi = 20, theta = 120,
resfac = 5, col= gg2.col(100))

https://doi.org/10.1198/016214502760047113
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stcs SpatioTemporal Correlation Structure

Description

Provides a parametric function that describes the values of the linear spatiotemporal autocorrelation
up to desired lags. For more details on the parametric spatiotemporal correlation structures see
section 2.3 and 2.4 in Papalexiou and Serinaldi (2020).

Usage

stcs(id, ...)

Arguments

id spatiotemporal correlation structure ID

... additional arguments (t as time lag, s as spatial lag (distance), and stcs parame-
ters)

References

Papalexiou, S.M., Serinaldi, F. (2020). Random Fields Simplified: Preserving Marginal Distribu-
tions, Correlations, and Intermittency, With Applications From Rainfall to Humidity. Water Re-
sources Research, 56(2), e2019WR026331, doi:10.1029/2019WR026331

Papalexiou, S.M., Serinaldi, F., Porcu, E. (2021). Advancing Space-Time Simulation of Random
Fields: From Storms to Cyclones and Beyond. Water Resources Research, 57, e2020WR029466,
doi:10.1029/2020WR029466

Examples

library(plot3D)

## specify grid of spatial and temporal lags
d <- 31
st <- expand.grid(0:(d-1),

0:(d-1))

## get the STCS
wc <- stcs("clayton",

t = st[, 1],
s = st[, 2],
scfid = 'weibull',
tcfid = 'weibull',
copulaarg = 2,
scfarg = list(scale = 20,

shape = 0.7),
tcfarg = list(scale = 1.1,

shape = 0.8))

https://doi.org/10.1029/2019WR026331
https://doi.org/10.1029/2020WR029466
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g14 <- stcs("gneiting14",
t = st[, 1],
s = st[, 2],
a = 1/50,
c = 1/10,
alpha = 1,
beta = 1,
gamma = 0.5,
tau = 1)

g16 <- stcs("gneiting16",
t = st[, 1],
s = st[, 2],
a = 1/50,
c = 1/10,
alpha = 1,
beta = 1,
nu = 0.5,
tau = 1)

## note: for nu = 0.5 stcfgneiting16 is equivalent to
## stcfgneiting14 with gamma = 0.5

## visualize the STCS

wc.m <- matrix(wc,
nrow = d)

persp3D(z = wc.m, x = 1: nrow(wc.m), y = 1:ncol(wc.m),
expand = 1, main = "", scale = TRUE, facets = TRUE,
xlab="Time lag", ylab = "Distance", zlab = "STCF",
colkey = list(side = 4, length = 0.5), phi = 20, theta = 120,
resfac = 5, col= gg2.col(100))

g14.m <- matrix(g14,
nrow = d)

persp3D(z = g14.m, x = 1: nrow(wc.m), y = 1:ncol(wc.m),
expand = 1, main = "", scale = TRUE, facets = TRUE,
xlab="Time lag", ylab = "Distance", zlab = "STCF",
colkey = list(side = 4, length = 0.5), phi = 20, theta = 120,
resfac = 5, col= gg2.col(100))



Index

∗ Continuous
BurrIII, 20
BurrXII, 21
GEV, 39
GGamma, 40
ParetoII, 42

∗ Univariate
BurrIII, 20
BurrXII, 21
GEV, 39
GGamma, 40
ParetoII, 42

∗ datasets
disch, 24
precip, 45

∗ distribution
BurrIII, 20
BurrXII, 21
GEV, 39
GGamma, 40
ParetoII, 42

∗ moments
moments, 41
sample.moments, 47

∗ package
CoSMoS-package, 3

acs, 4, 37
actpnts, 5
advectionF, 6, 27
advectionFhyperbolic, 7
advectionFradial, 8
advectionFrotation, 9
advectionFspiral, 10
advectionFspiralCE, 11
advectionFuniform, 12
analyzeTS, 13
anisotropyT, 16, 27, 31, 34
anisotropyTaffine, 17
anisotropyTswirl, 18

anisotropyTwave, 19

BurrIII, 20
BurrXII, 21

checkRF, 22
checkTS, 22, 23
CoSMoS (CoSMoS-package), 3
CoSMoS-package, 3

dburrIII (BurrIII), 20
dburrXII (BurrXII), 21
dgev (GEV), 39
dggamma (GGamma), 40
disch, 24
dparetoII (ParetoII), 42

fitactf, 25, 43, 44
fitDist, 25
fitVAR, 26, 29, 32, 33

generateMTS, 29, 31
generateMTSFast, 30, 31
generateRF, 22, 32, 34
generateRFFast, 33, 34
generateTS, 35, 46
GEV, 39
GGamma, 40

mburrIII (BurrIII), 20
mburrXII (BurrXII), 21
mgev (GEV), 39
mggamma (GGamma), 40
moments, 41
mparetoII (ParetoII), 42

ParetoII, 42
pburrIII (BurrIII), 20
pburrXII (BurrXII), 21
pgev (GEV), 39
pggamma (GGamma), 40

54



INDEX 55

plot.acti, 43
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regenerateTS, 46, 46
reportTS (analyzeTS), 13
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