Package ‘PFIM’

January 30, 2026
Type Package

Title Population Fisher Information Matrix

Version 7.0.2

Date 2026-01-30

Maintainer Romain Leroux <romainlerouxPFIM@gmail.com>
NeedsCompilation no

Description Evaluate or optimize designs for nonlinear mixed effects models using the Fisher Infor-
mation matrix. Methods used in the package refer to
Mentré F, Mallet A, Baccar D (1997) <doi:10.1093/biomet/84.2.429>,
Retout S, Comets E, Samson A, Mentré F (2007) <doi:10.1002/sim.2910>,
Bazzoli C, Retout S, Mentré F (2009) <doi:10.1002/sim.3573>,
Le Nagard H, Chao L, Tenaillon O (2011) <doi:10.1186/1471-2148-11-326>,
Combes FP, Retout S, Frey N, Mentré F (2013) <doi:10.1007/s11095-013-1079-3> and
Seurat J, Tang Y, Mentré F, Nguyen TT (2021) <doi:10.1016/j.cmpb.2021.106126>.

URL http://www.pfim.biostat.fr/, https://github.com/packagePFIM

BugReports https://github.com/packagePFIM/PFIM/issues
Depends R (>=4.0.0)

License GPL (>= 3)

Encoding UTF-8

VignetteBuilder knitr

Imports utils, inline, Deriv, methods, deSolve, purrr, stringr, S7,
Matrix, ggplot2, Rcpp, ReppArmadillo, pracma, kableExtra,
tibble, scales, knitr

Collate 'Administration.R' 'AdministrationConstraints.R' 'Fim.R'
'PFIMProject.R' 'Optimization.R' 'PGBOAIgorithm.R'
'PSOAlgorithm.R' 'SimplexAlgorithm.R' 'FedorovWynnAlgorithm.R'
‘MultiplicativeAlgorithm.R' 'Model.R' 'Arm.R' 'BayesianFim.R'
'ModelError.R' 'Combined1.R' 'Constant.R' 'Design.R'

'Distribution.R" 'Evaluation.R' IndividualFim.R'
'LibraryOfModels.R' LibraryOfPDModels.R' 'LibraryOfPKModels.R'
'"LogNormal.R' 'ModelODE.R' 'ModelAnalytic.R' 'Modellnfusion.R'

1

https://doi.org/10.1093/biomet/84.2.429
https://doi.org/10.1002/sim.2910
https://doi.org/10.1002/sim.3573
https://doi.org/10.1186/1471-2148-11-326
https://doi.org/10.1007/s11095-013-1079-3
https://doi.org/10.1016/j.cmpb.2021.106126
http://www.pfim.biostat.fr/
https://github.com/packagePFIM
https://github.com/packagePFIM/PFIM/issues

2 Contents

'ModelAnalyticInfusion.R' 'ModelAnalyticInfusionSteadyState.R'
'ModelAnalyticSteadyState.R' 'ModelODEBolus.R'
'ModelODEDoseInEquations.R' 'ModelODEDoseNotInEquations.R'
'ModelODElInfusion.R' 'ModelODEInfusionDoselnEquation.R’
'ModelParameter.R' Normal.R' 'PFIM-package.R'
'"PopulationFim.R' Proportional.R' 'SamplingTimeConstraints.R'
'SamplingTimes.R' 'zzz.R'

RoxygenNote 7.3.3
Suggests rmarkdown, testthat (>= 3.0.0)

Author Romain Leroux [aut, cre] (ORCID:
<https://orcid.org/0009-0009-5779-5303>),
France Mentré [aut] (ORCID: <https://orcid.org/0000-0002-7045-1275>),
Jérémy Seurat [ctb]

Repository CRAN
Date/Publication 2026-01-30 13:30:02 UTC

Contents
PFIM-package o o e e 5
adjustGradient oL e 7
Administrationo e e 7
AdministrationConstraints L. L e 8
Arm . .. e 8
armAdministration e e 9
BayesianFim 10
checkSamplingTimeConstraintsForMetaheuristic 10
checkValiditySamplingConstraint 11
Combined]l e 11
computeVMat e e 12
Constant e e e e 13
constraintsTableForReport L 13
convertPKModelAnalyticTOPKModelODE 14
Deriterion e 14
defineFim 15
defineModelAdministration oL 15
defineModelEquationsFromLibraryOfModel 16
defineModelType 16
defineModelWrapper e e e 17
defineOptimizationAlgorithm L o 18
definePKModel 18
definePKPDModel 19
Design 19
Distribution 20
evaluate Arm L. e e 20
evaluateDesign e 21

evaluateErrorModelDerivatives 21

https://orcid.org/0009-0009-5779-5303
https://orcid.org/0000-0002-7045-1275

Contents

3
evaluateFim L 22
evaluateInitialConditions oL 22
evaluateModel L 23
evaluateModelGradient L 24
evaluateModelVariance L o 24
evaluateVarianceFIM oL 25
Evaluation 25
FedorovWynnAlgorithm 26
FedorovWynnAlgorithm_Repp o o 27
Fim . . . e 28
finiteDifferenceHessian oL 29
fisherSimplex e 30
fun.amoeba 30
generateDosesCombination oL 31
generateFimsFromConstraints L 31
generateReportEvaluationo 0 Lo 32
generateReportOptimization 32
generateSamplingsFromSamplingConstraints 33
generateSamplingTimesCombination 34
getArmConstraints L e 34
getArmData L. 35
getCorrelationMatriX e e e 35
getDeriterion L 36
getDeterminant Lo e 36
getFim e e 37
getFisherMatrix L e 37
getListLastName 38
getModelErrorData 38
getModelParametersData 39
getRSE . . e 39
getSamplingData e 40
CetSE L . e e 40
getShrinkage e 41
IndividualFim 41
LibraryOfModels 42
LibraryOfPDModels 42
LibraryOfPKModels e 43
Linear2BolusSingleDose_CIQVIV2 43
Linear2BolusSingleDose_kk12k21Vo o 43
Linear2BolusSteadyState_CIQVIV2tau, 44
Linear2BolusSteadyState_kk12k21Vtau 44
Linear2FirstOrderSingleDose_kaCIQVIV2 44
Linear2FirstOrderSingleDose_kakk12k21V 45
Linear2FirstOrderSteadyState_kaCIQV1V2tau 45
Linear2FirstOrderSteadyState_kakk12k21Vtau 45
Linear2InfusionSingleDose_CIQVIV2. 46
Linear2InfusionSingleDose_kk12k21V oL 46

Linear2InfusionSteadyState_CIQV1V2tau 46

Contents

Linear2InfusionSteadyState_kk12k21Vtau, 47
LogNormal e 47
Model e 47
ModelAnalytic e 49
ModelAnalyticInfusion 50
ModelAnalyticInfusionSteadyState Lo 52
ModelAnalyticSteadyState 53
ModelError e e 55
Modellnfusion. e e 56
ModelODE 57
ModelODEBolus e 58
ModelODEDoselnEquations 60
ModelODEDoseNotInEquations L Lo 61
ModelODEInfusion e 62
ModelODElInfusionDoselnEquation 64
ModelParameter e e e e 65
MultiplicativeAlgorithm 66
MultiplicativeAlgorithm_Repp 67
Normal e 68
Optimization o i e 69
optimizeDesign e 70
PFIMProject e e e e e 70
PGBOAlgorithm 71
plotEvaluation 73
plotEvaluationResults 73
plotEvaluationSI L 74
plotFrequencies 74
plotFrequenciesFedorovWynnAlgorithm 0. 75
PIOtRSE . . . e 75
PIotRSEFIM 76
PIOtSE . . e 76
PIotSEFIM e 77
plotSensitivityIndices L. oo 77
plotShrinkage 78
plotWeights L 78
plotWeightsMultiplicativeAlgorithm 78
PopulationFim 79
processArmEvaluationResults oL o 80
processArmEvaluationSIo 80
Proportional 81
PSOAlgorithm 81
replaceVariablesLibraryOfModels 83
Report e e 84
TUIL .« o vt ot e 84
SamplingTimeConstraints 85
SamplingTimes o e e e e 85
setEvaluationFim L 86

setOptimalArms 86

PFIM-package 5

setSamplingConstraintForOptimization 87
show . . . L 87
showFIM e 88
SimplexAlgorithm 88
tablesForReport 90
updateSamplingTimes L 90
Index 91
PFIM-package Fisher Information matrix for design evaluation/optimization for non-

linear mixed effects models.

Description

Evaluate or optimize designs for nonlinear mixed effects models using the Fisher Information ma-
trix. Methods used in the package refer to Mentré F, Mallet A, Baccar D (1997) doi:10.1093/
biomet/84.2.429, Retout S, Comets E, Samson A, Mentré F (2007) doi:10.1002/sim.2910, Bazzoli
C, Retout S, Mentré F (2009) doi:10.1002/sim.3573, Le Nagard H, Chao L, Tenaillon O (2011)
doi:10.1186/1471214811326, Combes FP, Retout S, Frey N, Mentré F (2013) doi:10.1007/s11095-
01310793 and Seurat J, Tang Y, Mentré F, Nguyen TT (2021) doi:10.1016/j.cmpb.2021.106126.

Description

Nonlinear mixed effects models (NLMEM) are widely used in model-based drug development and
use to analyze longitudinal data. The use of the "population" Fisher Information Matrix (FIM) is a
good alternative to clinical trial simulation to optimize the design of these studies. The present ver-
sion, **PFIM 7.0%*, is an R package that uses the S4 object system for evaluating and/or optimizing
population designs based on FIM in NLMEMs.

This version of **PFIM** now includes a library of models implemented also using the object
oriented system S4 of R. This library contains two libraries of pharmacokinetic (PK) and/or phar-
macodynamic (PD) models. The PK library includes model with different administration routes
(bolus, infusion, first-order absorption), different number of compartments (from 1 to 3), and dif-
ferent types of eliminations (linear or Michaelis-Menten). The PD model library, contains direct
immediate models (e.g. Emax and Imax) with various baseline models, and turnover response mod-
els. The PK/PD models are obtained with combination of the models from the PK and PD model
libraries. **PFIM** handles both analytical and ODE models and offers the possibility to the user
to define his/her own model(s). In **PFIM 7.0%*, the FIM is evaluated by first order linearization
of the model assuming a block diagonal FIM as in Mentré et al. (1997). The Bayesian FIM is
also available to give shrinkage predictions (Combes et al., 2013). **PFIM 7.0** includes several
algorithms to conduct design optimization based on the D-criterion, given design constraints: the
simplex algorithm (Nelder-Mead) (Nelder & Mead, 1965), the multiplicative algorithm (Seurat et
al., 2021), the Fedorov-Wynn algorithm (Fedorov, 1972), PSO (*Particle Swarm Optimization*)
and PGBO (*Population Genetics Based Optimizer*) (Le Nagard et al., 2011).

Documentation

Documentation and user guide are available at http://www.pfim.biostat.fr/

https://doi.org/10.1093/biomet/84.2.429
https://doi.org/10.1093/biomet/84.2.429
https://doi.org/10.1002/sim.2910
https://doi.org/10.1002/sim.3573
https://doi.org/10.1186/1471-2148-11-326
https://doi.org/10.1007/s11095-013-1079-3
https://doi.org/10.1007/s11095-013-1079-3
https://doi.org/10.1016/j.cmpb.2021.106126
http://www.pfim.biostat.fr/

6 PFIM-package

Validation

**PFIM 7.0%* also provides quality control with tests and validation using the evaluated FIM to
assess the validity of the new version and its new features. Finally, **PFIM 7.0** displays all the
results with both clear graphical form and a data summary, while ensuring their easy manipulation
in R. The standard data visualization package ggplot2 for R is used to display all the results with
clear graphical form (Wickham, 2016). A quality control using the D-criterion is also provided.

Organization of the source files in the ‘/R¢ folder

PFIM 7.0 contains a hierarchy of S4 classes with corresponding methods and functions serving
as constructors. All of the source code related to the specification of a certain class is contained in
a file named ‘[Name_of_the_class]-Class.R‘. These classes include:

1. all roxygen ‘@include to insure the correctly generated collate for the DESCRIPTION file, 2.
a description of purpose and slots of the class, 3. specification of an initialize method, 4. all getter
and setter, respectively returning attributes of the object and associated objects.

Author(s)

Maintainer: Romain Leroux <romainlerouxPFIM@gmail.com> (ORCID)

Authors:
e France Mentré <france.mentre@inserm. fr> (ORCID)
Other contributors:

* Jérémy Seurat <jeremy.seurat@inserm.fr> [contributor]

References

Dumont C, Lestini G, Le Nagard H, Mentré F, Comets E, Nguyen TT, et al. PFIM 4.0, an extended R
program for design evaluation and optimization in nonlinear mixed-effect models. Comput Methods
Programs Biomed. 2018;156:217-29.

Chambers JM. Object-Oriented Programming, Functional Programming and R. Stat Sci. 2014;29:167-
80.

Mentré F, Mallet A, Baccar D. Optimal Design in Random-Effects Regression Models. Biometrika.
1997;84:429-42.

Combes FP, Retout S, Frey N, Mentré F. Prediction of shrinkage of individual parameters using the
Bayesian information matrix in nonlinear mixed effect models with evaluation in pharmacokinetics.
Pharm Res. 2013;30:2355-67.

Nelder JA, Mead R. A simplex method for function minimization. Comput J. 1965;7:308-13.

Seurat J, Tang Y, Mentré F, Nguyen, TT. Finding optimal design in nonlinear mixed effect models
using multiplicative algorithms. Computer Methods and Programs in Biomedicine, 2021.

Fedorov VV. Theory of Optimal Experiments. Academic Press, New York, 1972.

Eberhart RC, Kennedy J. A new optimizer using particle swarm theory. Proc. of the Sixth Interna-
tional Symposium on Micro Machine and Human Science, Nagoya, 4-6 October 1995, 39-43.

Le Nagard H, Chao L, Tenaillon O. The emergence of complexity and restricted pleiotropy in adapt-
ing networks. BMC Evol Biol. 2011;11:326.

https://orcid.org/0009-0009-5779-5303
https://orcid.org/0000-0002-7045-1275

adjustGradient 7
Wickham H. ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New York, 2016.

See Also
Useful links:
e http://www.pfim.biostat.fr/

e https://github.com/packagePFIM
* Report bugs at https://github.com/packagePFIM/PFIM/issues

adjustGradient adjustGradient: adjust the gradient for the log normal distribution.

Description

adjustGradient: adjust the gradient for the log normal distribution.

Arguments

distribution An object Distribution giving the distribution.

gradient The gradient of the model responses.

Value

The adjusted gradient of the model responses.

Administration Administration

Description

The class Administration represents the administration and stores information concerning the
administration for the dosage regimen.

Usage

Administration(
outcome = character(0),
timeDose = numeric(Q),
dose = numeric(0),
Tinf = numeric(0),
tau = 0

http://www.pfim.biostat.fr/
https://github.com/packagePFIM
https://github.com/packagePFIM/PFIM/issues

8 Arm

Arguments
outcome A string giving the outcome for the administration.
timeDose A vector of double giving the time doses.
dose A vector of double giving the doses.
Tinf A vector of double giving the time for infusion Tinf.
tau An integer giving the tau value for repeated dose or steady state.

AdministrationConstraints
AdministrationConstraints

Description
The class AdministrationConstraints represents the constraint of an input to the system. The
class stores information concerning the constraints for the dosage regimen.

Usage

AdministrationConstraints(outcome = character(@), doses = list())

Arguments
outcome A string giving the outcome for the administration.
doses A vector of double giving the doses.
Arm Arm
Description

The class Arm represents an arm and stores information concerning an arm.

Usage

Arm(
name = character(9),
size = numeric(Q),
administrations = list(),
initialConditions = list(),
samplingTimes = list(),
administrationsConstraints = list(),
samplingTimesConstraints = list(),
evaluationModel = list(),
evaluationGradients = list(),
evaluationVariance = list(),
evaluationFim = Fim()

armAdministration

Arguments

name A string giving the name of the arm.

size A integer giving the size of the arm.
administrations

A list giving the objects of class Administration that define the administrations

of the arm.
initialConditions

A list giving the initial conditions for the ode model where the names are string

that define the variable and their value are giving by double

samplingTimes A list giving the objects of class SamplingTime that define the sampling time of

the arm.
administrationsConstraints

A list giving the objects of class AdministrationsConstraints that define the

administration constraints of the arm.
samplingTimesConstraints

A list giving the objects of class SamplingTimeConstraints that define the

sampling time constraints of the arm.

evaluationModel
A list giving the evaluation of the responses of the arm.

evaluationGradients
A list giving the evaluation of the responses gradient of the arm.

evaluationVariance
A list giving the evaluation of the variance.

evaluationFim A object of class Fim giving the Fisher Information Matrix.

armAdministration getArmAdministration: get the administration parameters of an arm.

Description

getArmAdministration: get the administration parameters of an arm.

Arguments

arm A object of class Arm giving the arm.

Value

A list giving the administration parameters of an arm.

10 checkSampling TimeConstraintsForMetaheuristic

BayesianFim BayesianFim

Description

The class BayesianFim represents and stores information for the Bayesian Fim.

Usage

BayesianFim(
fisherMatrix = numeric(@),
fixedEffects = numeric(0),
varianceEffects = numeric(0),
SEANARSE = list(),
condNumberFixedEffects = 0,
condNumberVarianceEffects = 0,
shrinkage = numeric(Q)

Arguments

fisherMatrix A matrix giving the numerical values of the Fim.

fixedEffects A matrix giving the numerical values of the fixedEffects of the Fim.
varianceEffects

A matrix giving the numerical values of varianceEffects of the Fim.
SEANdRSE A data frame giving the value of the SE and RSE.

condNumberFixedEffects

The conditional number of the fixedEffects of the Fim.
condNumberVarianceEffects

The conditional number of the varianceEffects of the Fim.

shrinkage A vector giving the shrinkage values.

checkSamplingTimeConstraintsForMetaheuristic
checkSamplingTimeConstraintsForMetaheuristic

Description

checkSamplingTimeConstraintsForMetaheuristic

check ValiditySamplingConstraint 11

Arguments

samplingTimesConstraints
An object SamplingTimeConstraints.

arm An object Arm.
newSamplings A vector of numeric for the new samplings.
outcome A string giving the outcome.

Value

A boolean TRUE/FALSE, with a message error if FALSE.

checkValiditySamplingConstraint
checkValiditySampling Constraint: check if the constraints used for the
design optimization are valid.

Description
checkValiditySamplingConstraint: check if the constraints used for the design optimization are
valid.

Arguments

design An object Design giving the design.

Value

A boolean TRUE / FALSE, if FALSE it also gives an error message.

Combined1 Combinedl

Description

The class Combined1 represents and stores information for the error model Combined]1.

Usage

Combined1(
output = character(0),
equation = expression(sigmalnter + sigmaSlope * output),
derivatives = list(),
sigmalnter = 0,
sigmaSlope = 0,

sigmalnterFixed = FALSE,
sigmaSlopeFixed = FALSE,
cError =1

12 compute VMat

Arguments
output A string giving the model error output.
equation A expression giving the model error equation.
derivatives A list giving the derivatives of the model error equation.
sigmalnter A double giving the sigma inter.
sigmaSlope A double giving the sigma slope
sigmalnterFixed
A Boolean giving if the sigma inter is fixed or not. - not in the v7.0
sigmaSlopeFixed
A Boolean giving if the sigma slope is fixed or not. - not in the v7.0
cError A integer giving the power parameter.
computeVMat computeVMat
Description
computeVMat
Usage

computeVMat(varParaml, varParam2, invCholV)

Arguments
varParaml varParam1
varParam?2 varParam?2
invCholV invCholV
Value

VMat

Constant

13

Constant

Constant

Description

The class Constant represents and stores information for the error model Constant.

Usage

Constant(

output = character(9),

equation = expression(sigmalnter),
derivatives = list(),
sigmalnter = 0,
sigmaSlope = 0,
sigmalnterFixed = FALSE,
sigmaSlopeFixed = FALSE,
cError =1
)
Arguments
output A string giving the model error output.
equation A expression giving the model error equation.
derivatives A list giving the derivatives of the model error equation.
sigmalnter A double giving the sigma inter.
sigmaSlope A double giving the sigma slope
sigmalnterFixed
A boolean giving if the sigma inter is fixed or not.
sigmaSlopeFixed
A boolean giving if the sigma slope is fixed or not.
cError A integer giving the power parameter.

constraintsTableForReport

constraintsTableForReport: table of the PGBOAlgorithm constraints
for the report.

Description

constraintsTableForReport
constraintsTableForReport
constraintsTableForReport
constraintsTableForReport

constraintsTableForReport

: table of the PGBOAIlgorithm constraints for the report.
: table of the PSOAlgorithm constraints for the report.

: table of the SimplexAlgorithm constraints for the report.

: table of the MultiplicativeAlgorithm constraints for the report.

14 Dcriterion

Arguments

optimizationAlgorithm
A objectMultiplicativeAlgorithm.

arms List of the arms.

Value

The table for the constraints in the arms.
The table for the constraints in the arms.
The table for the constraints in the arms.
armsConstraintsTable

The table for the constraints in the arms.

convertPKModelAnalyticToPKModelODE
convertPKModelAnalyticToPKModelODE: conversion from analytic
to ode

Description

convertPKModelAnalyticToPKModelODE: conversion from analytic to ode
convertPKModelAnalyticToPKModelODE: conversion from analytic to ode
convertPKModelAnalyticToOPKModelODE: conversion from analytic infusion to ode

Arguments
pkModel An object of class ModelAnalyticInfusion that defines the model.
Dcriterion Dcriterion: get the D-criterion of the Fim.
Description

Dcriterion: get the D-criterion of the Fim.

Arguments

Fim A object Fim giving the Fim.

Value

A double giving the D-criterion of the Fim.

defineFim 15

defineFim define the type of Fisher information matrix: population, individual or
Bayesian

Description

define the type of Fisher information matrix: population, individual or Bayesian

Arguments

pfimproject An object PFIMProject.

Value

An object Fim.

defineModelAdministration
defineModelAdministration: define the administration

Description

defineModel Administration: define the administration
defineModel Administration: define the administration
defineModel Administration: define the administration
defineModelAdministration: define the administration
defineModelAdministration: define the administration
defineModelAdministration: define the administration

defineModelAdministration: define the administration

Arguments
model An object of class ModelODEInfusionDoseInEquation that defines the model.
arm An object of class Arm that defines the arm.

Value

The model with samplings, solverInputs
The model with samplings, solverInputs
The model with samplings, solverInputs
The model with updated slots.

The model with samplings, solverInputs
The model with samplings, solverInputs
The model with updated slots.

16 defineModelType

defineModelEquationsFromLibraryOfModel
defineModelEquationsFromLibraryOfModel: define the model equa-
tions giving the models in the library of models.

Description

defineModelEquationsFromLibraryOfModel: define the model equations giving the models in the
library of models.

Arguments

pfimproject An object PFIMProject giving the evaluation to be run.

Value

A list giving the model equations.

defineModelType defineModelType: define the class of the model to be evaluated.

Description

defineModelType: define the class of the model to be evaluated.

Arguments

pfimproject An object PFIMProject giving the evaluation to be run.

Value

An object Model giving the model to be evaluated with its modelParameters, odeSolverParameters,
modelError, modelEquations.

defineModelWrapper

17

defineModelWrapper

defineModelWrapper: define the model wrapper for the ode solver

Description

defineModelWrapper:
defineModelWrapper:
defineModelWrapper:
defineModelWrapper:
defineModelWrapper:
defineModelWrapper:
defineModelWrapper:

defineModelWrapper:

Arguments

define the model wrapper for the ode solver
define the model wrapper for the ode solver
define the model wrapper for the ode solver
define the model wrapper for the ode solver
define the model wrapper for the ode solver
define the model wrapper for the ode solver
define the model wrapper for the ode solver

define the model wrapper for the ode solver

model An object of class ModelODEInfusionDoseInEquation that defines the model.

evaluation An object of class Evaluation that defines the evaluation

Value

The model with wrapperModelAnalytic, functionArgumentsModel Analytic, functionArgumentsSym-
bolModelAnalytic, outputNames, outcomes WithAdministration

The model with wrapperModelAnalyticInfusion, functionArgumentsModel AnalyticInfusion, func-
tionArgumentsSymbolModel AnalyticInfusion, outputNames, outcomesWithAdministration

The model with wrapperModelAnalyticInfusion, functionArgumentsModel AnalyticInfusion, func-
tionArgumentsSymbolModel AnalyticInfusion, outputNames, outcomesWithAdministration

The model with wrapperModelAnalytic, functionArgumentsModel Analytic, functionArgumentsSym-
bolModelAnalytic, outputNames, outcomes WithAdministration

The model with updated slots.

The model with the updated slots.

The model with the updated slots.

The model with updated slots.

18 definePKModel

defineOptimizationAlgorithm
Define optimization algorithm

Description

Define optimization algorithm

Arguments

optimization An Optimization object.

Value

An optimization algorithm.

definePKModel definePKModel: define a PK model from library of model

Description

definePKModel: define a PK model from library of model
definePKModel Model AnalyticInfusion

definePKModel

definePKModel

definePKModel: define PK model ode bolus
definePKModel: define a PK model from library of model
definePKModel: define a PK model from library of model
definePKModel: define PK model ode bolus

Arguments

pkModel An object of class Mode10ODEInfusionDoseInEquation that defines the PK model.
pfimproject An object of class PFIMProject that defines the pfimproject.

definePKPDModel

19

definePKPDModel definePKPDModel: define a PKPD model from library of model

Description

definePKPDModel: define a PKPD model from library of model
definePKPDModel: define a PKPD model from library of model
definePKPDModel ModelAnalyticInfusion, ModelAnalytic
definePKPDModel ModelAnalyticInfusion, ModelODE
definePKPDModel

definePKPDModel

definePKPDModel

definePKPDModel: define a PKPD model from library of model

Arguments

pkModel An object of class ModelODE that defines the PD model.
pfimproject An object of class PFIMProject that defines the pfimproject.

Design Design

Description

The class Design represents and stores information for the Design.

Usage
Design(
name = character(0),
size = 0,
arms = list(),
evaluationArms = list(),
numberOfArms = 0,
fim = Fim()
)
Arguments
name A string giving the name of the design.
size A integer giving the size of the design.
arms A list giving the arms of the design.

evaluationArms A list giving the valuation of the arms of the design.
numberOfArms A integer giving the number of arms.
fim A object Fim giving the Fim of the design.

20 evaluateArm

Details

Design

Distribution Distribution

Description

The class Distribution represents and stores information for the parameter distribution.

Usage

Distribution(name = character(@), mu = @, omega = 0)

Arguments
name A string giving the name of the distribution.
mu A double giving the mean mu.
omega A double giving omega.
evaluateArm evaluateArm: evaluation of the model with the arm parameters.
Description

evaluateArm: evaluation of the model with the arm parameters.

Arguments
arm A object of class Arm giving the arm.
model A object of class Model giving the model.
fim A object of class Fim giving the fim.
Value

The object arm with the slots evaluationModel, evaluationGradients, evaluationVariance and evalu-
ationFim.

evaluateDesign 21

evaluateDesign evaluateDesign: evaluation of a design.

Description

evaluateDesign: evaluation of a design.

Arguments
design An object Design giving the design.
model An object Model giving the model.
fim An object Fim giving the Fim.
Value

The object Design with its evaluation results.

evaluateErrorModelDerivatives

evaluateErrorModelDerivatives; evaluate the derivatives of the model
error.

Description

evaluateErrorModelDerivatives; evaluate the derivatives of the model error.

Arguments
modelError An object ModelError that defines the model error.
evaluationModel
A dataframe giving the outputs for the model evaluation.
Value

The matrices sigmaDerivatives and errorVariance.

22

evaluatelnitial Conditions

evaluateFim evaluateFim: evaluation of the Fim

Description

evaluateFim: evaluation of the Fim
evaluateFim: evaluation of the Fim

evaluateFim: evaluation of the Fim

Arguments
fim An object PopulationFim giving the Fim.
model An object Model giving the model.
arm An object Arm giving the arm.

Value

The object Fim with the fisherMatrix and the shrinkage.
The object IndividualFim with the fisherMatrix and the shrinkage.
The object IndividualFim with the fisherMatrix and the shrinkage.

evaluateInitialConditions

evaluatelnitialConditions: evaluate the initial conditions.

Description

evaluatelnitialConditions: evaluate the initial conditions.
evaluatelnitialConditions: evaluate the initial conditions.

evaluatelnitialConditions: evaluate the initial conditions.

Arguments
arm A object of class Arm giving the arm.
model A object of class ModelODEInfusion giving the model.
doseEvent A data frame giving the dose event for the ode solver.
Value

A list giving the evaluated initial conditions.

evaluateModel

23

evaluateModel evaluateModel: evaluate the model

Description

evaluateModel: evaluate the model

evaluateModel: evaluate the ModelAnalyticInfusion
evaluateModel: evaluate the ModelAnalyticInfusion
evaluateModel: evaluate the ModelAnalyticInfusion
evaluateModel

evaluateModel

evaluateModel: evaluate the model

evaluateModel: evaluate the model

evaluateModel
Arguments

arm A object of class Arm giving the arm.

model A object of class ModelODEInfusionDoseInEquation giving the model.
Value

A list of dataframes that contains the results for the evaluation of the model.
A list of dataframes that contains the results for the evaluation of the model.
A list of dataframes that contains the results for the evaluation of the model.
A list of dataframes that contains the results for the evaluation of the model.
A list of dataframes that contains the evaluation of the model.

A data frame giving the output of the model evaluation.

A list of dataframes that contains the results for the evaluation of the model.
A list of dataframes that contains the results for the evaluation of the model.

A data frame giving the output of the model evaluation.

24 evaluateModel Variance

evaluateModelGradient evaluateModelGradient: evaluate the gradient of the model

Description

evaluateModelGradient: evaluate the gradient of the model

Arguments
model An object Model that defines the model.
arm A object Arm giving the arm

Value

A data frame that contains the gradient of the model.

evaluateModelVariance evaluateModelVariance: evaluate the variance of the model

Description

evaluateModel Variance: evaluate the variance of the model

Arguments
model A object Model giving the model.
arm A object Arm giving the arm
Value

A list giving errorVariance and sigmaDerivatives.

evaluate VarianceFIM 25

evaluateVarianceFIM evaluateVarianceFIM: evaluate the variance

Description
evaluateVarianceFIM: evaluate the variance
evaluateVarianceFIM: evaluate the variance

evaluateVarianceFIM: evaluate the variance

Arguments

arm A object of class Arm giving the arm.

model A object of class Model giving the model.

fim A object of class PopulationFim giving the Fim.
Value

The matrices MFbeta and V.
The matrices MFbeta and V.

The matrices MFVar and V.
Evaluation Evaluation
Description

The class Evaluation represents and stores information for the evaluation of a design

Usage

Evaluation(
evaluationDesign = list(),
name = character(0),
modelParameters = list(),
modelEquations = list(),
modelFromLibrary = list(),
modelError = list(),
designs = list(),
outputs = list(),
fimType = character(0),
odeSolverParameters = list()

26 FedorovWynnAlgorithm

Arguments

evaluationDesign
A list giving the evaluation of the design.
name A string giving the name of the design evaluation.
modelParameters
A list giving the model parameters.
modelEquations A list giving the model equations.
modelFromLibrary
A list giving the model equations from the library of model.

modelError A list giving the model error.

designs A list giving the designs to be evaluated.
outputs A list giving the model outputs.

fimType A string giving the type of Fim being evaluated.
odeSolverParameters

A list giving the atol and rtol parameters for the ode solver.

FedorovWynnAlgorithm FedorovWynnAlgorithm

Description

The class FedorovWynnAlgorithm implements the FedorovWynn algorithm.

Usage

FedorovWynnAlgorithm(
name = character(9),
modelEquations = list(),
modelFromLibrary = list(),
modelParameters = list(),
modelError = list(),
optimizer = character(Q),
optimizerParameters = list(),
outputs = list(),

designs = list(),
fimType = character(0),
fim = Fim(),

odeSolverParameters = list(),
optimisationDesign = list(),
optimisationAlgorithmOutputs = list(),
elementaryProtocols = list(),
numberOfSubjects = 0,
proportionsOfSubjects = 0,

showProcess = FALSE,
FedorovWynnAlgorithmOutputs = list()

FedorovWynnAlgorithm_Rcpp

Arguments

name A string giving the name of the design evaluation.

modelEquations A list giving the model equations.
modelFromLibrary

A list giving the model equations from the library of model.
modelParameters

A list giving the model parameters.

modelError A list giving the model error.
optimizer A string giving the name of the optimization algorithm being used.
optimizerParameters

A list giving the parameters of the optimization algorithm.

outputs A list giving the model outputs.

designs A list giving the designs to be evaluated.
fimType A string giving the type of Fim being evaluated.
fim A object Fim giving the Fim.
odeSolverParameters

A list giving the atol and rtol parameters for the ode solver.
optimisationDesign
A list giving the evaluation of initial and optimal design.

optimisationAlgorithmOutputs
A list giving the outputs of the optimization process.

elementaryProtocols
List of elementary protocols

numberOfSubjects
Numeric vector specifying number of subjects

proportionsOfSubjects
Numeric vector of subject proportions
showProcess Logical indicating whether to show process

FedorovWynnAlgorithmOutputs
A list giving the output of the optimization algorithm.

FedorovWynnAlgorithm_Rcpp
Fedorov-Wynn algorithm in Repp.

Description

Run the FedorovWynnAlgorithm in Rcpp

28 Fim

Usage

FedorovWynnAlgorithm_Rcpp(
protocols_input,
ndimen_input,
nbprot_input,
numprot_input,
freq_input,
nbdata_input,
vectps_input,
fisher_input,
nok_input,
protdep_input,
freqdep_input

Arguments

protocols_input
parameter protocols_input

ndimen_input parameter ndimen_input
nbprot_input parameter nbprot_input
numprot_input parameter numprot_input
freq_input parameter freq_input
nbdata_input parameter nbdata_input
vectps_input parameter vectps_input
fisher_input parameter fisher_input
nok_input parameter nok_input
protdep_input parameter protdep_input

freqdep_input parameter freqdep_input

Value

A list giving the results of the outputs of the FedorovWynn algorithm.

Fim Fim

Description

The class Fim represents and stores information for the Fim.

finiteDifferenceHessian

Usage

Fim(
fisherMatrix = numeric(@),
fixedEffects = numeric(0),
varianceEffects = numeric(0),
SEAndRSE = 1list(),
condNumberFixedEffects = 0,
condNumberVarianceEffects = 0,
shrinkage = numeric(0)

Arguments

fisherMatrix A matrix giving the numerical values of the Fim.

fixedEffects A matrix giving the numerical values of the fixedEffects of the Fim.
varianceEffects

A matrix giving the numerical values of varianceEffects of the Fim.
SEANdRSE A data frame giving the value of the SE and RSE.

condNumberFixedEffects

The conditional number of the fixedEffects of the Fim.
condNumberVarianceEffects

The conditional number of the varianceEffects of the Fim.

shrinkage A vector giving the shrinkage values.

finiteDifferenceHessian
finiteDifferenceHessian: compute the Hessian

Description

finiteDifferenceHessian: compute the Hessian

Arguments

model A object Model giving the model.

Value

The model with the slots parametersForComputingGradient with XcolsInv, shifted, frac.

30

fun.amoeba

fisherSimplex Compute the fisher.simplex

Description

Compute the fisher.simplex

Arguments
simplex A list giving the parameters of the simplex.
optimizationObject
An object Optimization.
outcomes A vector giving the outcomes of the arms.
Value

A list giving the results of the optimization.

fun.amoeba Compute the fun.amoeba

Description

Compute the fun.amoeba

Usage

fun.amoeba(p, y, ftol, itmax, funk, outcomes, data, showProcess)

Arguments
p parameter p
y parameter y
ftol parameter ftol
itmax parameter itmax
funk parameter funk
outcomes The model outcomes.
data parameter data
showProcess Boolean.

Value

fun.amoeba

generateDosesCombination 31

generateDosesCombination
generateDosesCombination: generate the combination for the doses.

Description

generateDosesCombination: generate the combination for the doses.

Arguments

design An object Design giving the design.

Value

dosesForFIMs, numberOfDoses used in the design optimization.

generateFimsFromConstraints
Generate FIMs from constraints

Description

Generate FIMs from constraints

Arguments

optimization An Optimization object.

Value

A list containing FIMs from constraints.

32 generateReportOptimization

generateReportEvaluation
generateReportEvaluation: generate the report for the model evalua-
tion.

Description

generateReportEvaluation: generate the report for the model evaluation.

generateReportEvaluation: generate the report for the model evaluation.

generateReportEvaluation: generate the report for the model evaluation.

Arguments
fim An object PopulationFim giving the Fim.
tablesForReport
The output list giving by the method tablesForReport.
Value

The html report for the design evaluation.

The html report for the model evaluation.

The html report for the model evaluation.

generateReportOptimization
generateReportOptimization: generate the report for the design opti-

mization.

Description

generateReportOptimization:
generateReportOptimization:
generateReportOptimization:
generateReportOptimization:
generateReportOptimization:
generateReportOptimization:
generateReportOptimization:
generateReportOptimization:
generateReportOptimization:
generateReportOptimization:
generateReportOptimization:

generateReportOptimization:

generate the report for the design optimization.
generate the report for the design optimization.
generate the report for the design optimization.
generate the report for the design optimization.
generate the report for the design optimization.
generate the report for the design optimization.
generate the report for the design optimization.
generate the report for the design optimization.
generate the report for the design optimization.
generate the report for the design optimization.
generate the report for the design optimization.

generate the report for the design optimization.

generateSamplingsFromSamplingConstraints

Arguments

fim An object PopulationFim giving the Fim.
optimizationAlgorithm

An object PGBOAlgorithm giving the PGBOAIgorithm
tablesForReport

The output list giving by the method tablesForReport.

Value

The html report for the design optimization.
The html report for the design optimization.
The html report.
The html report.
The html report.
The html report.
The html report.
The html report.
The html report.
The html report.
The html report.
The html report.

33

generateSamplingsFromSamplingConstraints
generateSamplingsFromSampling Constraints

Description

generateSamplingsFromSamplingConstraints

Arguments

samplingTimeConstraints
An object SamplingTimeConstraints

Value

A list intervalsConstraints.

34 getArmConstraints

generateSamplingTimesCombination
generateSamplingTimesCombination: generate the combination for
the samplings.

Description

generateSamplingTimesCombination: generate the combination for the samplings.

Arguments

design An object Design giving the design.

Value

samplingTimesCombinations used in the design optimization.

getArmConstraints getArmConstraints: get the administration and sampling time con-
straints for the MultiplicativeAlgorithm.

Description
getArmConstraints: get the administration and sampling time constraints for the Multiplicative Al-
gorithm.

getArmConstraints: get the administration and sampling time constraints for the FedorovWynnAl-
gorithm.

getArmConstraints: get the administration and sampling time constraints for the SimplexAlgorithm.
getArmConstraints: get the administration and sampling time constraints for the PSOAlgorithm.

getArmConstraints: get the administration and sampling time constraints for the PGBOAIlgorithm.

Arguments

arm A object of class Arm giving the arm.
optimizationAlgorithm
A object of class Optimization giving the optimization algorithm.

Value

A list giving the administration and sampling time constraints for the Multiplicative Algorithm.
A list giving the administration and sampling time constraints for the FedorovWynnAlgorithm.
A list giving the administration and sampling time constraints for the SimplexAlgorithm.

A list giving the administration and sampling time constraints for the PSOAlgorithm.

A list giving the administration and sampling time constraints for the PGBOAIgorithm.

getArmData 35

getArmData getArmData: extract arm data for The Report

Description

getArmData: extract arm data for The Report

Arguments

arm A object of class Arm giving the arm.

Value

A list giving the name, Number of subjects, Outcome, Dose and Sampling times of the arm.

getCorrelationMatrix gerCorrelationMatrix : get the correlation matrix

Description

getCorrelationMatrix : get the correlation matrix

getCorrelationMatrix : get the correlation matrix

Arguments

pfimproject A object PFIMProject giving the Evaluation.

Value

The correlation matrix

The Dcriterion

36 getDeterminant

getDcriterion getDcriterion : get the Dcriterion

Description

getDcriterion : get the Dcriterion

getDcriterion : get the Dcriterion

Arguments

pfimproject A object PFIMProject giving the Evaluation.

Value

The Dcriterion of the FIM.

The Dcriterion

getDeterminant getDeterminant: get the determinant

Description

getDeterminant: get the determinant

getDeterminant: get the determinant

Arguments

pfimproject A object PFIMProject giving the Evaluation.

Value

The determinant of the FIM.

The determinant

getFim 37

getFim getFim: get the Fisher matrix.

Description

getFim: get the Fisher matrix.

Arguments

evaluation An object Evaluation giving the evaluation to be run.

Value

The matrices fisherMatrix, fixedEffects, varianceEffects.

getFisherMatrix getFisherMatrix: display the Fisher matrix components

Description

getFisherMatrix: display the Fisher matrix components

getFisherMatrix: display the Fisher matrix components

Arguments

evaluation An object Evaluation giving the evaluation to be run.

Value

The matrices fisherMatrix, fixedEffects, varianceEffects.

The matrices fisherMatrix, fixedEffects, varianceEffects.

38 getModelErrorData

getlListLastName getListLastName: routine to get the names of last element of a nested
list.

Description

getListLastName: routine to get the names of last element of a nested list.

Usage

getlListLastName(list)

Arguments

list The list to be used.

Value

The names of last element.

getModelErrorData getModelErrorData: get the parameters sigma slope and sigma inter
(used for the report).

Description

getModelErrorData: get the parameters sigma slope and sigma inter (used for the report).

Arguments

modelError An object ModelError that defines the model error.

Value

A list of dataframe with outcome, type of model error and sigma slope and inter.

getModelParametersData

39

getModelParametersData
getModelParametersData: get model parameters data for report.

Description

getModelParametersData: get model parameters data for report.

Arguments

modelParameter An object if class Model giving the model.

Value

A data frame with the data of all the parameters.

getRSE getRSE: get the RSE

Description

getRSE: get the RSE
getRSE: get the RSE

Arguments

pfimproject A object PFIMProject giving the Evaluation.

Value

The RSE of the parameters.
The RSE

40 getSE

getSamplingData getSamplingData: extract sampling times and max sampling time used
for plot.

Description

getSamplingData: extract sampling times and max sampling time used for plot.

Arguments

arm A object of class Arm giving the arm.

Value

A list giving the samplingTimes object, the vector samplings and the double samplingMax.

getSE getSE: get the SE

Description

getSE: get the SE
getSE: get the SE

Arguments

pfimproject A object PFIMProject giving the Evaluation.

Value

The SE of the parameters.
The SE.

getShrinkage 41

getShrinkage getShrinkage: get the shrinkage

Description

getShrinkage: get the shrinkage
getShrinkage: get the shrinkage

Arguments

pfimproject A object PFIMProject giving the Evaluation.

Value

The shrinkage of the FIM.
The shrinkage

IndividualFim IndividualFim

Description

The class IndividualFim represents and stores information for the IndividualFim.

Usage

IndividualFim(
fisherMatrix = numeric(@),
fixedEffects = numeric(@),
varianceEffects = numeric(@),
SEANdRSE = list(),
condNumberFixedEffects = 0,
condNumberVarianceEffects = 0,
shrinkage = numeric(@)

Arguments

fisherMatrix A matrix giving the numerical values of the Fim.

fixedEffects A matrix giving the numerical values of the fixedEffects of the Fim.
varianceEffects
A matrix giving the numerical values of varianceEffects of the Fim.

SEANdRSE A data frame giving the value of the SE and RSE.

42 LibraryOfPDModels

condNumberFixedEffects

The conditional number of the fixedEffects of the Fim.
condNumberVarianceEffects

The conditional number of the varianceEffects of the Fim.

shrinkage A vector giving the shrinkage values.
LibraryOfModels LibraryOfModels
Description

The class LibraryOfModels represents and stores information for the LibraryOfModels.

Usage

LibraryOfModels(models = list())

Arguments
models A list giving all the PK and PD models.
LibraryOfPDModels LibraryOfPDModels
Description

The class LibraryOfPDModels represents and stores information for the LibraryOfPDModels.

Usage

LibraryOfPDModels

Format

An object of class PFIM: : LibraryOfPDModels (inherits from PFIM: : LibraryOfModels, S7_object)
of length 1.

LibraryOfPKModels 43

LibraryOfPKModels LibraryOfPKModels

Description

The class LibraryOfPKModels represents and stores information for the LibraryOfPKModels.

Usage
LibraryOfPKModels

Format

An object of class PFIM: :LibraryOfPKModels (inherits from PFIM: :LibraryOfModels, S7_object)
of length 1.

Linear2BolusSingleDose_ClQV1V2
Model Linear2BolusSingleDose_CIQVIV2

Description

Model Linear2BolusSingleDose_CIQV1V2

Usage
Linear2BolusSingleDose_ClQV1V2()

Linear2BolusSingleDose_kk12k21V
Model Linear2BolusSingleDose_kk12k21V

Description

Model Linear2BolusSingleDose_kk12k21V

Usage

Linear2BolusSingleDose_kk12k21V()

44 Linear2FirstOrderSingleDose_kaCIQV1V2

Linear2BolusSteadyState_C1QV1V2tau
Model Linear2BolusSteadyState_CIQVIV2tau

Description

Model Linear2BolusSteadyState_CIQV1V2tau

Usage

Linear2BolusSteadyState_ClQViV2tau()

Linear2BolusSteadyState_kk12k21Vtau
Model Linear2BolusSteadyState_kk12k21Vtau

Description

Model Linear2BolusSteadyState_kk12k21Vtau

Usage

Linear2BolusSteadyState_kk12k21Vtau()

Linear2FirstOrderSingleDose_kaClQVv1V2
Model Linear2FirstOrderSingleDose_kaCIQVIV2

Description

Model Linear2FirstOrderSingleDose_kaClQV1V2

Usage

Linear2FirstOrderSingleDose_kaClQVv1Vv2()

Linear2FirstOrderSingleDose_kakk12k21V 45

Linear2FirstOrderSingleDose_kakk12k21V
Model Linear2FirstOrderSingleDose_kakk12k21V

Description

Model Linear2FirstOrderSingleDose_kakk12k21V

Usage

Linear2FirstOrderSingleDose_kakk12k21V()

Linear2FirstOrderSteadyState_kaClQV1V2tau
Model Linear2FirstOrderSteadyState_kaCIQVIV2tau

Description

Model Linear2FirstOrderSteadyState_kaClQV1V2tau

Usage

Linear2FirstOrderSteadyState_kaClQV1Vv2tau()

Linear2FirstOrderSteadyState_kakk12k21Vtau
Model Linear2FirstOrderSteadyState_kakk12k21Vtau

Description

Model Linear2FirstOrderSteadyState_kakk12k21Vtau

Usage

Linear2FirstOrderSteadyState_kakk12k21Vtau()

46 Linear2InfusionSteadyState_CIQV1V2tau

Linear2InfusionSingleDose_ClQV1V2
Model Linear2InfusionSingleDose_CIQVIV2

Description

Model Linear2InfusionSingleDose_CIQV1V2

Usage

Linear2InfusionSingleDose_ClQV1V2()

Linear2InfusionSingleDose_kk12k21V
Model Linear2InfusionSingleDose_kk12k21V

Description

Model Linear2InfusionSingleDose_kk12k21V

Usage

Linear2InfusionSingleDose_kk12k21V()

Linear2InfusionSteadyState_ClQV1V2tau
Model Linear2InfusionSteadyState_CIQVI1V2tau

Description

Model Linear2InfusionSteadyState_CIQV1V2tau

Usage

Linear2InfusionSteadyState_C1QV1V2tau()

Linear2InfusionSteadyState_kk12k21Vtau

47

Linear2InfusionSteadyState_kk12k21Vtau
Model Linear2InfusionSteadyState_kk12k21Vtau

Description

Model Linear2InfusionSteadyState_kk12k21Vtau

Usage

Linear2InfusionSteadyState_kk12k21Vtau()

LogNormal LogNormal

Description

The class LogNormal implements the LogNormal distribution.

Usage

LogNormal (name = character(@), mu = @, omega = 0)

Arguments
name A string giving the name of the distribution.
mu A double giving the mean mu.
omega A double giving omega.
Model Model
Description

The class Model represents and stores information for a model.

48

Usage

Model (
name = character(9),
modelParameters = list(),
samplings = numeric(Q),
modelEquations = list(),
wrapper = function() NULL,
outputFormula = list(),
outputNames = character(0),
variableNames = character(9),
outcomesWithAdministration = character(0),
outcomesWithNoAdministration = character(9),
modelError = list(),
odeSolverParameters = list(),
parametersForComputingGradient = list(),
initialConditions = numeric(9@),
functionArguments = character(Q),
functionArgumentsSymbol = list()

)
Arguments
name Character vector specifying the model name
modelParameters
List of model parameters
samplings Numeric vector of sampling times

modelEquations List containing the model equations

wrapper Function wrapper for the model (default: function () NULL)
outputFormula List of output formulas

outputNames Character vector of output names

variableNames Character vector of variable names
outcomesWithAdministration

Character vector of outcomes with administration
outcomesWithNoAdministration

Character vector of outcomes without administration
modelError List defining the error model
odeSolverParameters

List of ODE solver parameters
parametersForComputingGradient

List of parameters for gradient computation
initialConditions

Numeric vector of initial conditions
functionArguments

Character vector of function arguments
functionArgumentsSymbol
List of function argument symbols

Model

ModelAnalytic 49

ModelAnalytic ModelAnalytic

Description

The class ModelAnalytic is used to defined an analytic model.

Usage

ModelAnalytic(
name = character(9),
modelParameters = list(),
samplings = numeric(Q),
modelEquations = list(),
wrapper = function() NULL,
outputFormula = list(),
outputNames = character (@),
variableNames = character(9),
outcomesWithAdministration = character(0),
outcomesWithNoAdministration = character(9),
modelError = list(),
odeSolverParameters = list(),
parametersForComputingGradient = list(),
initialConditions = numeric(9@),
functionArguments = character(9),
functionArgumentsSymbol = list(),
wrapperModelAnalytic = list(),
functionArgumentsModelAnalytic = list(),
functionArgumentsSymbolModelAnalytic = list(),
solverInputs = list()

)
Arguments
name Character vector specifying the model name
modelParameters
List of model parameters
samplings Numeric vector of sampling times

modelEquations List containing the model equations

wrapper Function wrapper for the model (default: function () NULL)
outputFormula List of output formulas

outputNames Character vector of output names

variableNames Character vector of variable names
outcomesWithAdministration

Character vector of outcomes with administration

50

ModelAnalyticIntusion

outcomesWithNoAdministration
Character vector of outcomes without administration

modelError List defining the error model
odeSolverParameters
List of ODE solver parameters
parametersForComputingGradient
List of parameters for gradient computation
initialConditions
Numeric vector of initial conditions
functionArguments
Character vector of function arguments
functionArgumentsSymbol
List of function argument symbols
wrapperModelAnalytic
Wrapper for the ode solver.
functionArgumentsModelAnalytic
A list giving the functionArguments of the wrapper for the analytic model.
functionArgumentsSymbolModelAnalytic
A list giving the functionArgumentsSymbol of the wrapper for the analytic
model

solverInputs A list giving the solver inputs.

ModelAnalyticInfusion ModelAnalyticInfusion

Description

The class ModelAnalyticInfusion is used to defined an analytic model in infusion.

Usage

ModelAnalyticInfusion(
name = character(9),
modelParameters = list(),
samplings = numeric(Q),
modelEquations = list(),
wrapper = function() NULL,
outputFormula = list(),
outputNames = character(0),
variableNames = character(9),
outcomesWithAdministration = character(9),
outcomesWithNoAdministration = character(9),
modelError = list(),
odeSolverParameters = list(),
parametersForComputingGradient = list(),

ModelAnalyticInfusion 51

initialConditions = numeric(9@),

functionArguments = character(0),
functionArgumentsSymbol = list(),
wrapperModelAnalyticInfusion = list(),
functionArgumentsModelAnalyticInfusion = list(),
functionArgumentsSymbolModelAnalyticInfusion = list(),
solverInputs = list()

)
Arguments
name Character vector specifying the model name
modelParameters
List of model parameters
samplings Numeric vector of sampling times

modelEquations List containing the model equations

wrapper Function wrapper for the model (default: function () NULL)
outputFormula List of output formulas

outputNames Character vector of output names

variableNames Character vector of variable names

outcomesWithAdministration

Character vector of outcomes with administration
outcomesWithNoAdministration
Character vector of outcomes without administration

modelError List defining the error model
odeSolverParameters
List of ODE solver parameters
parametersForComputingGradient
List of parameters for gradient computation
initialConditions
Numeric vector of initial conditions
functionArguments
Character vector of function arguments
functionArgumentsSymbol
List of function argument symbols
wrapperModelAnalyticInfusion
Wrapper for the ode solver.
functionArgumentsModelAnalyticInfusion
A list giving the functionArguments of the wrapper for the analytic model in
infusion.
functionArgumentsSymbolModelAnalyticInfusion
A list giving the functionArgumentsSymbol of the wrapper for the analytic
model in infusion.

solverInputs A list giving the solver inputs.

52 ModelAnalyticIntfusionSteadyState

ModelAnalyticInfusionSteadyState
ModelAnalyticInfusionSteadyState

Description

The class ModelAnalyticInfusionSteadyState is used to defined an analytic model in infusion
steady state.

Usage

ModelAnalyticInfusionSteadyState(
name = character(0),
modelParameters = list(),
samplings = numeric(Q),
modelEquations = list(),
wrapper = function() NULL,
outputFormula = list(),
outputNames = character(0),
variableNames = character(0),
outcomesWithAdministration = character(0),
outcomesWithNoAdministration = character(0),
modelError = list(),
odeSolverParameters = list(),
parametersForComputingGradient = list(),
initialConditions = numeric(9),
functionArguments = character(9),
functionArgumentsSymbol = list(),
wrapperModelAnalyticInfusion = list(),
functionArgumentsModelAnalyticInfusion = list(),
functionArgumentsSymbolModelAnalyticInfusion = list(),
solverInputs = list()

)
Arguments
name Character vector specifying the model name
modelParameters
List of model parameters
samplings Numeric vector of sampling times

modelEquations List containing the model equations

wrapper Function wrapper for the model (default: function () NULL)
outputFormula List of output formulas

outputNames Character vector of output names

variableNames Character vector of variable names

ModelAnalyticSteadyState 53

outcomesWithAdministration

Character vector of outcomes with administration
outcomesWithNoAdministration

Character vector of outcomes without administration

modelError List defining the error model
odeSolverParameters
List of ODE solver parameters
parametersForComputingGradient
List of parameters for gradient computation
initialConditions
Numeric vector of initial conditions
functionArguments
Character vector of function arguments
functionArgumentsSymbol
List of function argument symbols
wrapperModelAnalyticInfusion
Wrapper for the ode solver.
functionArgumentsModelAnalyticInfusion
A list giving the functionArguments of the wrapper for the analytic model in
infusion.
functionArgumentsSymbolModelAnalyticInfusion
A list giving the functionArgumentsSymbol of the wrapper for the analytic
model in infusion.

solverInputs A list giving the solver inputs.

Details

ModelAnalyticInfusionSteadyState

ModelAnalyticSteadyState
ModelAnalyticSteadyState

Description

The class ModelAnalyticSteadyState is used to defined an analytic model in steady state.

Usage

ModelAnalyticSteadyState(
name = character(0),
modelParameters = list(),
samplings = numeric(0),
modelEquations = list(),
wrapper = function() NULL,

54 ModelAnalyticSteadyState

outputFormula = list(),

outputNames = character(0),

variableNames = character(0),
outcomesWithAdministration = character(0),
outcomesWithNoAdministration = character(0),
modelError = list(),

odeSolverParameters = list(),
parametersForComputingGradient = list(),
initialConditions = numeric(9),
functionArguments = character(9),
functionArgumentsSymbol = list(),
wrapperModelAnalytic = list(),
functionArgumentsModelAnalytic = list(),
functionArgumentsSymbolModelAnalytic = list(),
solverInputs = list()

)
Arguments
name Character vector specifying the model name
modelParameters
List of model parameters
samplings Numeric vector of sampling times

modelEquations List containing the model equations
wrapper Function wrapper for the model (default: function () NULL)
outputFormula List of output formulas
outputNames Character vector of output names
variableNames Character vector of variable names
outcomesWithAdministration

Character vector of outcomes with administration
outcomesWithNoAdministration

Character vector of outcomes without administration

modelError List defining the error model
odeSolverParameters

List of ODE solver parameters
parametersForComputingGradient

List of parameters for gradient computation
initialConditions

Numeric vector of initial conditions
functionArguments

Character vector of function arguments
functionArgumentsSymbol

List of function argument symbols
wrapperModelAnalytic

Wrapper for the ode solver.

ModelError 55

functionArgumentsModelAnalytic
A list giving the functionArguments of the wrapper for the analytic model in
steady state.

functionArgumentsSymbolModelAnalytic
A list giving the functionArgumentsSymbol of the wrapper for the analytic
model in steady state.

solverInputs A list giving the solver inputs.

Details

ModelAnalyticSteadyState

ModelError ModelError

Description

The class ModelError is used to defined a model error.

Usage

ModelError(
output = "output”,
equation = expression(),
derivatives = list(),
sigmalnter = 0.1,
sigmaSlope = 0,

sigmalnterFixed = FALSE,
sigmaSlopeFixed = FALSE,
cError =1
)
Arguments
output A string giving the model error output.
equation A expression giving the model error equation.
derivatives A list giving the derivatives of the model error equation.
sigmalnter A double giving the sigma inter.
sigmaSlope A double giving the sigma slope
sigmalnterFixed
A boolean giving if the sigma inter is fixed or not. - not in the v7.0
sigmaSlopeFixed
A boolean giving if the sigma slope is fixed or not. - not in the v7.0
cError A integer giving the power parameter.
Details

ModelError

56 Modellnfusion

ModelInfusion Modellnfusion

Description

The class ModelInfusion is used to defined a model in infusion.

Usage

ModelInfusion(
name = character(9),
modelParameters = list(),
samplings = numeric(Q),
modelEquations = list(),
wrapper = function() NULL,
outputFormula = list(),
outputNames = character(0),
variableNames = character(9),
outcomesWithAdministration = character(9),
outcomesWithNoAdministration = character(0),
modelError = list(),
odeSolverParameters = list(),
parametersForComputingGradient = list(),
initialConditions = numeric(9@),
functionArguments = character(0),
functionArgumentsSymbol = list()

)
Arguments
name Character vector specifying the model name
modelParameters
List of model parameters
samplings Numeric vector of sampling times

modelEquations List containing the model equations

wrapper Function wrapper for the model (default: function () NULL)
outputFormula List of output formulas

outputNames Character vector of output names

variableNames Character vector of variable names
outcomesWithAdministration

Character vector of outcomes with administration
outcomesWithNoAdministration

Character vector of outcomes without administration

modelError List defining the error model

ModelODE 57

odeSolverParameters

List of ODE solver parameters
parametersForComputingGradient

List of parameters for gradient computation
initialConditions

Numeric vector of initial conditions
functionArguments

Character vector of function arguments
functionArgumentsSymbol

List of function argument symbols

ModelODE ModelODE

Description

The class ModelODE is used to defined a ode model.

Usage

ModelODE(
name = character(9),
modelParameters = list(),
samplings = numeric(Q),
modelEquations = list(),
wrapper = function() NULL,
outputFormula = list(),
outputNames = character(0),
variableNames = character(0),
outcomesWithAdministration = character(9),
outcomesWithNoAdministration = character(0),
modelError = list(),
odeSolverParameters = list(),
parametersForComputingGradient = list(),
initialConditions = numeric(9@),
functionArguments = character(0),
functionArgumentsSymbol = list()

)
Arguments
name Character vector specifying the model name
modelParameters
List of model parameters
samplings Numeric vector of sampling times

modelEquations List containing the model equations

58 ModelODEBolus

wrapper Function wrapper for the model (default: function () NULL)
outputFormula List of output formulas

outputNames Character vector of output names

variableNames Character vector of variable names

outcomesWithAdministration

Character vector of outcomes with administration
outcomesWithNoAdministration

Character vector of outcomes without administration

modelError List defining the error model
odeSolverParameters

List of ODE solver parameters
parametersForComputingGradient

List of parameters for gradient computation
initialConditions

Numeric vector of initial conditions
functionArguments

Character vector of function arguments
functionArgumentsSymbol

List of function argument symbols

ModelODEBolus ModelODEBolus

Description

The class Mode10ODEBolus is used to defined a model ode admin bolus.

Usage

ModelODEBolus(
name = character(0),
modelParameters = list(),
samplings = numeric(Q),
modelEquations = list(),
wrapper = function() NULL,
outputFormula = list(),
outputNames = character(9),
variableNames = character(0),
outcomesWithAdministration = character(0),
outcomesWithNoAdministration = character(0),
modelError = list(),
odeSolverParameters = list(),
parametersForComputingGradient = 1list(),
initialConditions = numeric(9),
functionArguments = character(9),

ModelODEBolus

functionArgumentsSymbol = list(),
modelODE = function() NULL,
doseEvent = list(),

solverInputs = list()

Arguments

name

modelParameters

samplings
modelEquations
wrapper
outputFormula
outputNames

variableNames

Character vector specifying the model name

List of model parameters

Numeric vector of sampling times

List containing the model equations

Function wrapper for the model (default: function () NULL)
List of output formulas

Character vector of output names

Character vector of variable names

outcomesWithAdministration

Character vector of outcomes with administration

outcomesWithNoAdministration

modelError

Character vector of outcomes without administration

List defining the error model

odeSolverParameters

List of ODE solver parameters

parametersForComputingGradient

List of parameters for gradient computation

initialConditions

Numeric vector of initial conditions

functionArguments

Character vector of function arguments

functionArgumentsSymbol

modelODE
doseEvent

solverInputs

List of function argument symbols
An object mode10DE.
A dataframge given the doseEvent for the ode solver.

A list giving the solver inputs.

59

60 ModelODEDoselnEquations

ModelODEDoseInEquations
ModelODEDoseNotInEquations

Description

The class Mode10DEDoseNotInEquations is used to defined a ModelODEDoseNotInEquations

Usage

ModelODEDoseInEquations(
name = character(0),
modelParameters = list(),
samplings = numeric(Q),
modelEquations = list(),
wrapper = function() NULL,
outputFormula = list(),
outputNames = character(9),
variableNames = character(9),
outcomesWithAdministration = character(0),
outcomesWithNoAdministration = character(0),
modelError = list(),
odeSolverParameters = list(),
parametersForComputingGradient = list(),
initialConditions = numeric(9),
functionArguments = character (@),
functionArgumentsSymbol = list(),
modelODEDoseInEquations = function() NULL,
solverInputs = list()

)
Arguments
name Character vector specifying the model name
modelParameters
List of model parameters
samplings Numeric vector of sampling times

modelEquations List containing the model equations

wrapper Function wrapper for the model (default: function () NULL)
outputFormula List of output formulas

outputNames Character vector of output names

variableNames Character vector of variable names
outcomesWithAdministration
Character vector of outcomes with administration

ModelODEDoseNotInEquations 61

outcomesWithNoAdministration

Character vector of outcomes without administration
modelError List defining the error model
odeSolverParameters

List of ODE solver parameters
parametersForComputingGradient

List of parameters for gradient computation
initialConditions

Numeric vector of initial conditions
functionArguments

Character vector of function arguments
functionArgumentsSymbol

List of function argument symbols
modelODEDoseInEquations

An object model0ODEDoseInEquations.
solverInputs A list giving the solver inputs.

ModelODEDoseNotInEquations
ModelODEDoseNotInEquations

Description

The class Mode10DEDoseNotInEquations is used to defined a ModelODEDoseNotInEquations

Usage

ModelODEDoseNotInEquations(
name = character(9),
modelParameters = list(),
samplings = numeric(Q),
modelEquations = list(),
wrapper = function() NULL,
outputFormula = list(),
outputNames = character(0),
variableNames = character(9),
outcomesWithAdministration = character(0),
outcomesWithNoAdministration = character(0),
modelError = list(),
odeSolverParameters = list(),
parametersForComputingGradient = list(),
initialConditions = numeric(9@),
functionArguments = character(9),
functionArgumentsSymbol = list(),
modelODE = function() NULL,
doseEvent = list(),
solverInputs = list()

62

Arguments

name

modelParameters

samplings
modelEquations
wrapper
outputFormula
outputNames

variableNames

ModelODEInfusion

Character vector specifying the model name

List of model parameters

Numeric vector of sampling times

List containing the model equations

Function wrapper for the model (default: function () NULL)
List of output formulas

Character vector of output names

Character vector of variable names

outcomesWithAdministration

Character vector of outcomes with administration

outcomesWithNoAdministration

modelError

Character vector of outcomes without administration

List defining the error model

odeSolverParameters

List of ODE solver parameters

parametersForComputingGradient

List of parameters for gradient computation

initialConditions

Numeric vector of initial conditions

functionArguments

Character vector of function arguments

functionArgumentsSymbol

List of function argument symbols

modelODE An object mode10DE.
doseEvent A dataframge given the doseEvent for the ode solver.
solverInputs A list giving the solver inputs.
ModelODEInfusion ModelODEInfusion
Description

The class ModelODEInfusion is used to defined a model ModelODEInfusion.

ModelODElInfusion

Usage

ModelODEInfusion(
name = character(9),
modelParameters = list(),
samplings = numeric(Q),
modelEquations = list(),
wrapper = function() NULL,
outputFormula = list(),
outputNames = character(0),
variableNames = character(9),
outcomesWithAdministration = character(0),
outcomesWithNoAdministration = character(9),
modelError = list(),
odeSolverParameters = list(),
parametersForComputingGradient = list(),
initialConditions = numeric(9@),
functionArguments = character(Q),
functionArgumentsSymbol = list()

)
Arguments
name Character vector specifying the model name
modelParameters
List of model parameters
samplings Numeric vector of sampling times

modelEquations List containing the model equations

wrapper Function wrapper for the model (default: function () NULL)
outputFormula List of output formulas

outputNames Character vector of output names

variableNames Character vector of variable names
outcomesWithAdministration

Character vector of outcomes with administration
outcomesWithNoAdministration

Character vector of outcomes without administration
modelError List defining the error model
odeSolverParameters

List of ODE solver parameters
parametersForComputingGradient

List of parameters for gradient computation
initialConditions

Numeric vector of initial conditions
functionArguments

Character vector of function arguments
functionArgumentsSymbol
List of function argument symbols

64 ModelODEInfusionDoselnEquation

ModelODEInfusionDoseInEquation
ModelODEInfusionDoselnEquation

Description

The class ModelODEInfusionDoseInEquation is used to defined a ModelODEInfusionDoselnEqua-
tion

Usage

ModelODEInfusionDoseInEquation(
name = character(9),
modelParameters = list(),
samplings = numeric(Q),
modelEquations = list(),
wrapper = function() NULL,
outputFormula = list(),
outputNames = character(0),
variableNames = character(9),
outcomesWithAdministration = character(9),
outcomesWithNoAdministration = character(9),
modelError = list(),
odeSolverParameters = list(),
parametersForComputingGradient = list(),
initialConditions = numeric(@),
functionArguments = character(0),
functionArgumentsSymbol = list(),
modelODE = function() NULL,
wrapperModelInfusion = list(),
solverInputs = list()

)
Arguments
name Character vector specifying the model name
modelParameters
List of model parameters
samplings Numeric vector of sampling times

modelEquations List containing the model equations

wrapper Function wrapper for the model (default: function () NULL)
outputFormula List of output formulas

outputNames Character vector of output names

variableNames Character vector of variable names

ModelParameter

outcomesWithAdministration

Character vector of outcomes with administration
outcomesWithNoAdministration

Character vector of outcomes without administration
modelError List defining the error model
odeSolverParameters

List of ODE solver parameters
parametersForComputingGradient

List of parameters for gradient computation
initialConditions

Numeric vector of initial conditions
functionArguments

Character vector of function arguments
functionArgumentsSymbol
List of function argument symbols

modelODE An object modelODE.
wrapperModelInfusion
Wrapper for solver.
solverInputs A list giving the solver inputs.
ModelParameter ModelParameter
Description

The class ModelParameter is used to defined the model parameters.

Usage
ModelParameter(
name = character(9),
distribution = Distribution(),
fixedMu = FALSE,
fixedOmega = FALSE
)
Arguments
name A string giving the name of the parameter.
distribution A string giving the distribution of the parameter.
fixedMu A Boolean setting TRUE/FALSE if the mu is estimated or not.
fixedOmega A Boolean setting TRUE/FALSE if the omega is estimated or not.
Details

ModelParameter

66 MultiplicativeAlgorithm

MultiplicativeAlgorithm
MultiplicativeAlgorithm

Description

The class MultiplicativeAlgorithm implements the multiplicative algorithm.

Usage

MultiplicativeAlgorithm(
name = character(9),
modelEquations = list(),
modelFromLibrary = list(),
modelParameters = list(),
modelError = list(),
optimizer = character(0),
optimizerParameters = list(),
outputs = list(),

designs = list(),
fimType = character(0),
fim = Fim(),

odeSolverParameters = list(),
optimisationDesign = list(),
optimisationAlgorithmOutputs = list(),
lambda = 0,

delta = 0,

numberOflIterations = 0,

weightThreshold = 9,

showProcess = FALSE,
multiplicativeAlgorithmOutputs = list()

Arguments

name A string giving the name of the design evaluation.

modelEquations A list giving the model equations.
modelFromLibrary

A list giving the model equations from the library of model.
modelParameters

A list giving the model parameters.

modelError A list giving the model error.
optimizer A string giving the name of the optimization algorithm being used.
optimizerParameters

A list giving the parameters of the optimization algorithm.

MultiplicativeAlgorithm_Rcpp

outputs A list giving the model outputs.

designs A list giving the designs to be evaluated.
fimType A string giving the type of Fim being evaluated.
fim A object Fim giving the Fim.
odeSolverParameters

A list giving the atol and rtol parameters for the ode solver.
optimisationDesign

A list giving the evaluation of initial and optimal design.
optimisationAlgorithmOutputs

A list giving the outputs of the optimization process.

lambda A numeric giving the parameter lambda.

delta A numeric giving the parameter delta
numberOfIterations

A numeric giving the number of iterations.
weightThreshold

A numeric giving the weight threshold.
showProcess A Boolean for displaying the process or not.

multiplicativeAlgorithmOutputs
A list giving the output of the optimization algorithm.

MultiplicativeAlgorithm_Rcpp
Function MultiplicativeAlgorithm_Rcpp

Description

Run the Multiplicative Algorithm_Rcpp in Rcpp.

Usage

MultiplicativeAlgorithm_Rcpp(
fisherMatrices_input,
numberOfFisherMatrices_input,
weights_input,
numberOfParameters_input,
dim_input,
lambda_input,
delta_input,
iterationInit_input

68 Normal

Arguments

fisherMatrices_input
The parameter fotfisherMatrices_input.

numberOfFisherMatrices_input
The parameter numberOfFisherMatrices_input.

weights_input The parameter weights_input.

numberOfParameters_input
The parameter numberOfParameters_input.

dim_input The parameter dim_input.
lambda_input The parameter lambda_input.

delta_input The parameter delta_input.

iterationInit_input
The parameter iterationlnit_input.

Value

The list output with the outputs of the Multiplicative Algorithm_Rcpp.

Normal Normal

Description

The class Normal implements the Normal distribution.

Usage

Normal(name = character(@), mu = @, omega = 0)

Arguments
name A string giving the name of the distribution.
mu A double giving the mean mu.

omega A double giving omega.

Optimization

Optimization Optimization

Description

The class Optimization implements the Optimization.

Usage

Optimization(
name = character(9),
modelEquations = list(),
modelFromLibrary = list(),
modelParameters = list(),
modelError = list(),
optimizer = character(9),
optimizerParameters = list(),
outputs = list(),
designs = list(),
fimType = character(0),
fim = Fim(),
odeSolverParameters = list(),
optimisationDesign = list(),
optimisationAlgorithmOutputs = list()

Arguments

name A string giving the name of the design evaluation.

modelEquations A list giving the model equations.
modelFromLibrary

A list giving the model equations from the library of model.
modelParameters

A list giving the model parameters.

modelError A list giving the model error.
optimizer A string giving the name of the optimization algorithm being used.
optimizerParameters

A list giving the parameters of the optimization algorithm.

outputs A list giving the model outputs.

designs A list giving the designs to be evaluated.
fimType A string giving the type of Fim being evaluated.
fim A object Fim giving the Fim.
odeSolverParameters

A list giving the atol and rtol parameters for the ode solver.

70 PFIMProject

optimisationDesign

A list giving the evaluation of initial and optimal design.
optimisationAlgorithmOutputs

A list giving the outputs of the optimization process.

optimizeDesign Optimization PGBOAlgorithm

Description

Optimization PGBOAIgorithm
Optimization PSOAlgorithm
Optimization SimplexAlgorithm
Optimization FedorovWynnAlgorithm

Optimization MultiplicativeAlgorithm

Arguments

optimizationObject
A object Optimization.

optimizationAlgorithm
A objectMultiplicativeAlgorithm.

Value

The object optimizationObject with the slots updated.
The object optimizationObject with the slots updated.
The object optimizationObject with the slots updated.
The object optimizationObject with the slots updated.
The object optimizationObject with the slots updated.

PFIMProject PFIMProject

Description

The class PFIMProject implements the PFIM project.

PGBOAIgorithm

Usage

PFIMProject(
name = character(9),
modelEquations = list(),
modelFromLibrary = list(),
modelParameters = list(),
modelError = list(),
optimizer = character(9),
optimizerParameters = list(),
outputs = list(),
designs = list(),
fimType = character(0),

fim = Fim(),
odeSolverParameters = list()
)
Arguments
name A string giving the name of the design evaluation.

modelEquations A list giving the model equations.
modelFromLibrary

A list giving the model equations from the library of model.
modelParameters

A list giving the model parameters.

modelError A list giving the model error.
optimizer A string giving the name of the optimization algorithm being used.
optimizerParameters

A list giving the parameters of the optimization algorithm.

outputs A list giving the model outputs.

designs A list giving the designs to be evaluated.
fimType A string giving the type of Fim being evaluated.
fim A object Fim giving the Fim.
odeSolverParameters

A list giving the atol and rtol parameters for the ode solver.

PGBOAlgorithm PGBOAlgorithm

Description

The class PGBOAlgorithm implements the PGBO algorithm.

72 PGBOAIgorithm

Usage

PGBOAlgorithm(
name = character(9),
modelEquations = list(),
modelFromLibrary = list(),
modelParameters = list(),
modelError = list(),
optimizer = character(9),
optimizerParameters = list(),
outputs = list(),

designs = list(),
fimType = character(0),
fim = Fim(),

odeSolverParameters = list(),
optimisationDesign = list(),
optimisationAlgorithmOutputs = list(),
N = numeric(9Q),

muteEffect = numeric(Q),

maxIteration = numeric(9),
purgelteration = numeric(Q),

seed = numeric(0),

showProcess = FALSE

Arguments

name A string giving the name of the design evaluation.

modelEquations A list giving the model equations.
modelFromLibrary

A list giving the model equations from the library of model.
modelParameters

A list giving the model parameters.

modelError A list giving the model error.
optimizer A string giving the name of the optimization algorithm being used.
optimizerParameters

A list giving the parameters of the optimization algorithm.

outputs A list giving the model outputs.

designs A list giving the designs to be evaluated.
fimType A string giving the type of Fim being evaluated.
fim A object Fim giving the Fim.
odeSolverParameters

A list giving the atol and rtol parameters for the ode solver.
optimisationDesign
A list giving the evaluation of initial and optimal design.

plotEvaluation 73

optimisationAlgorithmOutputs

A list giving the outputs of the optimization process.
N A numeric giving the parameter N.
muteEffect A numeric giving the parameter muteEffect.
maxIteration A numeric giving the parameter maxIteration.
purgelteration A numeric giving the parameter purgelteration.

seed A numeric giving the parameter seed.
showProcess A Boolean giving showProcess.
plotEvaluation plotEvaluation: plots for the evaluation of the model responses.
Description

plotEvaluation: plots for the evaluation of the model responses.

Arguments
pfimproject A object PFIMProject.
plotOptions A list giving the plot options.
Value

All the plots for the evaluation of the model responses.

plotEvaluationResults plotEvaluationResults: process for the evaluation of the responses.

Description

plotEvaluationResults: process for the evaluation of the responses.

Arguments
arm A object of class Arm giving the arm.
evaluationModel
A list giving the evaluation of the model.
outputNames A list of string giving the output of the evaluation of the model.
samplingData A list giving the sampling data from the method getSamplingData.
unitXAxis A list giving the unit of the x-axis.
unitYAxis A list giving the unit of the y-axis.
designName A string giving the design name.
Value

A list giving the plot of the evaluation of the model responses.

74 plotFrequencies

plotEvaluationSI plotEvaluationSI: process for the evaluation of the gradient of the re-
sponses.

Description

plotEvaluationSI: process for the evaluation of the gradient of the responses.

Arguments

arm A object of class Arm giving the arm.
evaluationModelGradient
A list giving the evaluation of the gradient of the model responses.
parametersNames
A vector of string giving the parameter names?
outputNames A list of string giving the name of the outputs.

samplingData A list giving the sampling data from the method getSamplingData.

unitXAxis A list giving the unit of the x-axis.

unitYAxis A list giving the unit of the y-axis.

designName A string giving the design name.
Value

A list giving the plot of the evaluation of gradient of the model responses.

plotFrequencies Plot frequencies for the FedorovWynn algorithm

Description

Plot frequencies for the FedorovWynn algorithm

Arguments

optimization An Optimization object.

Value

Graph of the optimal frequencies.

plotFrequenciesFedorovWynnAlgorithm

75

plotFrequenciesFedorovWynnAlgorithm
plotFrequenciesFedorovWynnAlgorithm

Description

plotFrequenciesFedorovWynnAlgorithm

Arguments

optimization optimization

optimizationAlgorithm
optimizationAlgorithm

Value

plotFrequenciesFedorovWynnAlgorithm

plotRSE Plot relative standard errors

Description

Plot relative standard errors

plotRSE: bar plot of the RSE.

Arguments

optimization An Optimization object.

pfimproject A object PFIMProject giving the Evaluation.

Value

Graph of relative standard errors

The bar plot of the RSE.

76

plotSE

plotRSEFIM plotRSEFIM: barplot for the RSE

Description

plotRSEFIM: barplot for the RSE
plotRSEFIM: barplot for the RSE
plotRSEFIM: barplot for the RSE

Arguments

fim An object PopulationFim giving the Fim.

evaluation An object Evaluation giving the evaluation of the model.
Value

The bar plot of the RSE.

The bar plot of the RSE.

The bar plot of the RSE.

plotSE Plot standard errors

Description

Plot standard errors

plotSE: bar plot of the SE.

Arguments

optimization An Optimization object.

pfimproject A object PFIMProject giving the Evaluation.

Value

Graph of standard errors

The bar plot of the SE.

plotSEFIM

77

plotSEFIM plotSEFIM: barplot for the SE

Description

plotSEFIM: barplot for the SE
plotSEFIM: barplot for the SE
plotSEFIM: barplot for the SE

Arguments

fim An object PopulationFim giving the Fim.

evaluation An object Evaluation giving the evaluation of the model.
Value

The bar plot of the SE.

The bar plot of the SE.

The bar plot of the SE.

plotSensitivityIndices
Plot sensitivity indices.

Description

Plot sensitivity indices.

plotSensitivityIndices: plots for the evaluation of the gradient of the model responses.

Arguments

optimization An Optimization object.
pfimproject A object PFIMProject giving the Evaluation.
plotOptions A list giving the plot options.

Value

Graph of sensitivity indices.

All the plots for the evaluation of the gradient of the model responses.

78 plotWeightsMultiplicativeAlgorithm

plotShrinkage plotShrinkage: plot the shrinkage values.

Description

plotShrinkage: plot the shrinkage values.

Arguments

fim An object BayesianFim giving the Fim.

evaluation An object Evaluation giving the evaluation of the model.
Value

The bar plot of the shrinkage.

plotWeights Plot weights for the multiplicative algorithm

Description

Plot weights for the multiplicative algorithm

Arguments

optimization An Optimization object.

Value

Plot of weights

plotWeightsMultiplicativeAlgorithm
plotWeightsMultiplicativeAlgorithm: plot the optimal weight.

Description

plotWeightsMultiplicativeAlgorithm: plot the optimal weight.

Arguments

optimization A object Optimization.
optimizationAlgorithm
A objectMultiplicativeAlgorithm.

PopulationFim

Value

The graph plotWeight.

79

PopulationFim PopulationFim

Description

The class PopulationFim represents and stores information for the PopulationFim.

Usage

PopulationFim(
fisherMatrix = numeric(0),
fixedEffects = numeric(0),
varianceEffects = numeric(0),
SEANdRSE = list(),
condNumberFixedEffects = 0,
condNumberVarianceEffects = 0,
shrinkage = numeric(@)

Arguments

fisherMatrix A matrix giving the numerical values of the Fim.

fixedEffects A matrix giving the numerical values of the fixedEffects of the Fim.

varianceEffects

A matrix giving the numerical values of varianceEffects of the Fim.

SEANdRSE A data frame giving the value of the SE and RSE.

condNumberFixedEffects
The conditional number of the fixedEffects of the Fim.

condNumberVarianceEffects
The conditional number of the varianceEffects of the Fim.

shrinkage A vector giving the shrinkage values.

80 processArmEvaluationSI

processArmEvaluationResults
processArmEvaluationResults: process for the evaluation of an arm.

Description

processArmEvaluationResults: process for the evaluation of an arm.

Arguments
arm A object of class Arm giving the arm.
model A object of class Model giving the model.
fim A object of class Fim giving the fim.
designName A string giving the name of the design.

plotOptions A list giving the plot options.

Value

A list of ggplot object giving the plot of the responses ans the gradient responses of the the model.

processArmEvaluationSI
processArmEvaluationSI: process for the evaluation of the gradient of
the responses.

Description

processArmEvaluationSI: process for the evaluation of the gradient of the responses.

Arguments
arm A object of class Arm giving the arm.
model A object of class Model giving the model.
fim A object of class Fim giving the fim.
designName A string giving the name of the design.
Value

A list giving the ggplot object of the plots of the gradient.

Proportional

81

Proportional Proportional

Description

The class Proportional is used to defined a model error.

Usage

Proportional(
output = character(0),
equation = expression(sigmaSlope),
derivatives = list(),
sigmalnter = 0,
sigmaSlope = 0,

sigmalnterFixed = FALSE,
sigmaSlopeFixed = FALSE,
cError =1
)
Arguments
output A string giving the model error output.
equation A expression giving the model error equation.
derivatives A list giving the derivatives of the model error equation.
sigmalnter A double giving the sigma inter.
sigmaSlope A double giving the sigma slope
sigmalnterFixed
A Boolean giving if the sigma inter is fixed or not. - not in the v7.0
sigmaSlopeFixed
A Boolean giving if the sigma slope is fixed or not. - not in the v7.0
cError A integer giving the power parameter.
PSOAlgorithm PSOAlgorithm
Description

The class PSOAlgorithm implements the PSO algorithm.

82 PSOAIgorithm

Usage

PSOAlgorithm(
name = character(9),
modelEquations = list(),
modelFromLibrary = list(),
modelParameters = list(),
modelError = list(),
optimizer = character(9),
optimizerParameters = list(),
outputs = list(),

designs = list(),
fimType = character(0),
fim = Fim(),

odeSolverParameters = list(),
optimisationDesign = list(),
optimisationAlgorithmOutputs = list(),
maxIteration = numeric(Q),

populationSize = numeric(Q),

seed = numeric(Q),
personallLearningCoefficient = numeric(@),
globallLearningCoefficient = numeric(9@),
showProcess = FALSE

Arguments

name A string giving the name of the design evaluation.

modelEquations A list giving the model equations.
modelFromLibrary

A list giving the model equations from the library of model.
modelParameters

A list giving the model parameters.

modelError A list giving the model error.
optimizer A string giving the name of the optimization algorithm being used.
optimizerParameters

A list giving the parameters of the optimization algorithm.

outputs A list giving the model outputs.

designs A list giving the designs to be evaluated.
fimType A string giving the type of Fim being evaluated.
fim A object Fim giving the Fim.
odeSolverParameters

A list giving the atol and rtol parameters for the ode solver.
optimisationDesign
A list giving the evaluation of initial and optimal design.

replace VariablesLibraryOfModels
optimisationAlgorithmOutputs
A list giving the outputs of the optimization process.
maxIteration A numeric giving the maxIteration.
populationSize A numeric giving the populationSize.

seed A numeric giving the seed.

personallLearningCoefficient
A numeric giving the personalLearningCoefficient.

globallearningCoefficient
A numeric giving the globalL.earningCoefficient.

showProcess A Boolean giving the showProcess.

replaceVariableslLibraryOfModels

replaceVariablesLibraryOfModels: replace variable in the LibraryOf-
Models

Description

replaceVariablesLibraryOfModels: replace variable in the LibraryOfModels

Usage

replaceVariableslLibraryOfModels(text, old, new)

Arguments
text the text
old old string
new new string
Value

text with new string

84

run

Report Generate optimization report

Description

Generate optimization report

Report: generate the report.

Arguments

optimization An Optimization object.

pfimproject A object PFIMProject giving the Evaluation or Optimization.

outputPath A string giving the path where the output are saved.
outputFile A string giving the name of the output file.
plotOptions A list giving the plot options.

Value

Generated report.

The html report of the design evaluation or optimization.

run Run optimization

Description

Run optimization

run: run the evaluation of a design.

Arguments

optimization An Optimization object.

pfimproject A object PFIMProject giving the Evaluation.

Value

The optimization design results.

The object Evaluation giving the design evaluation.

Sampling TimeConstraints

85

SamplingTimeConstraints
SamplingTimeConstraints

Description

The class "SamplingTimeConstraints" implements the constraints for the sampling times.

Usage

SamplingTimeConstraints(
outcome = character(0),
initialSamplings = 0,
fixedTimes = 0,
numberOfsamplingsOptimisable = 9,
samplingsWindows = list(),
numberOfTimesByWindows = 0,
minSampling = @

)
Arguments
outcome A string giving the outcome.
initialSamplings
A vector of numeric giving the initialSamplings.
fixedTimes A vector of numeric giving the fixedTimes.

numberOfsamplingsOptimisable

A vector of numeric giving the numberOfsamplingsOptimisable.
samplingsWindows

A vector of numeric giving the samplingsWindows.
numberOfTimesByWindows

A vector of numeric giving the numberOfTimesByWindows.

minSampling A vector of numeric giving the minSampling.
SamplingTimes Sampling Times
Description

The class SamplingTimes is used to defined SamplingTimes.

Usage

SamplingTimes(outcome = character(@), samplings = numeric(@))

86 setOptimal Arms

Arguments
outcome A string giving the outcome.
samplings A vector of numeric giving the samplings.
setEvaluationFim setEvaluationFim: set the Fim results.
Description

setEvaluationFim: set the Fim results.
setEvaluationFim: set the Fim results.

setEvaluationFim: set the Fim results.

Arguments

fim An object PopulationFim giving the Fim.

evaluation An object Evaluation giving the evaluation of the model.
Value

The object Fim with its fisherMatrix, fixedEffects, shrinkage, condNumberFixedEffects, SEAn-
dRSE.

The object IndividualFim with its fisherMatrix, fixedEffects, shrinkage, condNumberFixedEf-
fects, SEAndRSE.

The object PopulationFim with its fisherMatrix, fixedEffects, shrinkage, condNumberFixedEf-
fects, SEAndRSE.

setOptimalArms setOptimalArms: set the optimal arms of an optimization algorithm.

Description

setOptimal Arms: set the optimal arms of an optimization algorithm.
setOptimalArms: set the optimal arms of an optimization algorithm.
setOptimalArms: set the optimal arms of an optimization algorithm.
setOptimal Arms: set the optimal arms of an optimization algorithm.
setOptimal Arms: set the optimal arms of an optimization algorithm.

setOptimal Arms: set the optimal arms of an optimization algorithm.

setSamplingConstraintForOptimization 87

Arguments

fim An object PopulationFim giving the Fim.
optimizationAlgorithm
An object FedorovWynnAlgorithm giving the optimization algorithm.

Value

The optimal arms.
The optimal arms.
The list optimal Arms.
The list optimal Arms.
The list optimal Arms.
The list optimal Arms.

setSamplingConstraintForOptimization
setSampling ConstraintForOptimization: set the sampling time con-
straints for an arm for the design optimization.

Description
setSamplingConstraintForOptimization: set the sampling time constraints for an arm for the design
optimization.

Arguments

design An object Design giving the design.

Value

The arm with the sampling time constraint for the design optimization.

show Show optimization results

Description

Show optimization results

show: show the evaluation in the R console.

Arguments

optimization An Optimization object.

pfimproject A object PFIMProject giving the Evaluation.

88 SimplexAlgorithm

Value

Prints results to console.

The show of the evaluation of the design.

showFIM showFIM: show the Fim in the R console.

Description

showFIM: show the Fim in the R console.
showFIM: show the Fim in the R console.

showFIM: show the Fim in the R console.

Arguments

fim An object IndividualFim giving the Fim.

Value
The fisherMatrix, fixedEffects, Determinant, condition numbers and D-criterion, Shrinkage and
Parameters estimation

The fisherMatrix, fixedEffects, Determinant, condition numbers and D-criterion, Shrinkage and
Parameters estimation

The fisherMatrix, fixedEffects, Determinant, condition numbers and D-criterion, Shrinkage and
Parameters estimation

SimplexAlgorithm SimplexAlgorithm

Description

The class SimplexAlgorithm implements the Simplex algorithm.

Usage

SimplexAlgorithm(
name = character(9),
modelEquations = list(),
modelFromLibrary = list(),
modelParameters = list(),
modelError = list(),
optimizer = character(90),
optimizerParameters = list(),
outputs = list(),

SimplexAlgorithm

designs = list(),

fimType = character(0),

fim = Fim(),

odeSolverParameters = list(),
optimisationDesign = list(),
optimisationAlgorithmOutputs = list(),
pctInitialSimplexBuilding = numeric(9),
maxIteration = numeric(9Q),

seed = numeric(Q),

tolerance = numeric(0),

showProcess = FALSE

Arguments

name A string giving the name of the design evaluation.

modelEquations A list giving the model equations.
modelFromLibrary

A list giving the model equations from the library of model.
modelParameters

A list giving the model parameters.

modelError A list giving the model error.
optimizer A string giving the name of the optimization algorithm being used.
optimizerParameters

A list giving the parameters of the optimization algorithm.

outputs A list giving the model outputs.

designs A list giving the designs to be evaluated.
fimType A string giving the type of Fim being evaluated.
fim A object Fim giving the Fim.
odeSolverParameters

A list giving the atol and rtol parameters for the ode solver.
optimisationDesign

A list giving the evaluation of initial and optimal design.
optimisationAlgorithmOutputs

A list giving the outputs of the optimization process.
pctInitialSimplexBuilding

A numeric giving the pctlnitialSimplexBuilding.
maxIteration A numeric giving the maxIteration.
seed A numeric giving the seed.
tolerance A numeric giving the tolerance.

showProcess A Boolean giving the showProcess.

90 updateSamplingTimes

tablesForReport tablesForReport: generate the table for the report.

Description

tablesForReport: generate the table for the report.
tablesForReport: generate the table for the report.
tablesForReport: generate the table for the report.

Arguments

fim An object PopulationFim giving the Fim.

evaluation An object Evaluation giving the evaluation of the model.
Value

fixedEffectsTable, FIMCriteriaTable, SEAndRSETable.
fixedEffectsTable, FIMCriteriaTable, SEAndRSETable.
fixedEffectsTable, FIMCriteriaTable, SEAndRSETable.

updateSamplingTimes updateSamplingTimes: update sampling times for plotting used for
plot

Description

updateSamplingTimes: update sampling times for plotting used for plot

Arguments

arm A object of class Arm giving the arm.

samplingData The list giving as output in the method getSamplingData.

Value

The updated sampling times.

Index

x datasets
LibraryOfPDModels, 42
LibraryOfPKModels, 43

adjustGradient, 7
Administration, 7
AdministrationConstraints, 8
Arm, 8

armAdministration, 9

BayesianFim, 10

checkSamplingTimeConstraintsForMetaheuristic

10
checkValiditySamplingConstraint, 11
Combined1, 11
computeVMat, 12
Constant, 13
constraintsTableForReport, 13
convertPKModelAnalyticToPKModelODE, 14

Dcriterion, 14

defineFim, 15

defineModelAdministration, 15

defineModelEquationsFromLibraryOfModel,
16

defineModelType, 16

defineModelWrapper, 17

defineOptimizationAlgorithm, 18

definePKModel, 18

definePKPDModel, 19

Design, 19

Distribution, 20

evaluateArm, 20
evaluateDesign, 21
evaluateErrorModelDerivatives, 21
evaluateFim, 22
evaluateInitialConditions, 22
evaluateModel, 23
evaluateModelGradient, 24

91

evaluateModelVariance, 24
evaluateVarianceFIM, 25
Evaluation, 25

FedorovWynnAlgorithm, 26
FedorovWynnAlgorithm_Rcpp, 27
Fim, 28
finiteDifferenceHessian, 29
fisherSimplex, 30
fun.amoeba, 30

generateDosesCombination, 31
generateFimsFromConstraints, 31
generateReportEvaluation, 32
generateReportOptimization, 32
generateSamplingsFromSamplingConstraints,
33
generateSamplingTimesCombination, 34
getArmConstraints, 34
getArmData, 35
getCorrelationMatrix, 35
getDcriterion, 36
getDeterminant, 36
getFim, 37
getFisherMatrix, 37
getlListLastName, 38
getModelErrorData, 38
getModelParametersData, 39
getRSE, 39
getSamplingData, 40
getSE, 40
getShrinkage, 41

IndividualFim, 41

LibraryOfModels, 42
LibraryOfPDModels, 42
LibraryOfPKModels, 43
Linear2BolusSingleDose_ClQV1V2, 43
Linear2BolusSingleDose_kk12k21V, 43

92

Linear2BolusSteadyState_C1QV1V2tau, 44
Linear2BolusSteadyState_kk12k21Vtau,

44
Linear2FirstOrderSingleDose_kaClQV1V2,

44
Linear2FirstOrderSingleDose_kakk12k21V,

45
Linear2FirstOrderSteadyState_kaClQV1V2tau,

45
Linear2FirstOrderSteadyState_kakk12k21Vtau,

45
Linear2InfusionSingleDose_ClQV1V2, 46
Linear2InfusionSingleDose_kk12k21V, 46
Linear2InfusionSteadyState_ClQV1V2tau,

46
Linear2InfusionSteadyState_kk12k21Vtau,

47
LogNormal, 47

Model, 47

ModelAnalytic, 49
ModelAnalyticInfusion, 50
ModelAnalyticInfusionSteadyState, 52
ModelAnalyticSteadyState, 53
ModelError, 55

ModelInfusion, 56

ModelODE, 57

ModelODEBolus, 58
ModelODEDoseInEquations, 60
ModelODEDoseNotInEquations, 61
ModelODEInfusion, 62
ModelODEInfusionDoseInEquation, 64
ModelParameter, 65
MultiplicativeAlgorithm, 66
MultiplicativeAlgorithm_Rcpp, 67

Normal, 68

Optimization, 69
optimizeDesign, 70

package-PFIM (PFIM-package), 5
PFIM (PFIM-package), 5

PFIM, (PFIM-package), 5
PFIM-package, 5
PFIMProject, 70
PGBOAlgorithm, 71
plotEvaluation, 73
plotEvaluationResults, 73

INDEX

plotEvaluationSI, 74

plotFrequencies, 74

plotFrequenciesFedorovWynnAlgorithm,
75

plotRSE, 75

plotRSEFIM, 76

plotSE, 76

plotSEFIM, 77

plotSensitivityIndices, 77

plotShrinkage, 78

plotWeights, 78

plotWeightsMultiplicativeAlgorithm, 78

PopulationFim, 79

processArmEvaluationResults, 80

processArmEvaluationSI, 80

Proportional, 81

PSOAlgorithm, 81

replaceVariablesLibraryOfModels, 83
Report, 84
run, 84

SamplingTimeConstraints, 85

SamplingTimes, 85

setEvaluationFim, 86

setOptimalArms, 86

setSamplingConstraintForOptimization,
87

show, 87

showFIM, 88

SimplexAlgorithm, 88

tablesForReport, 90

updateSamplingTimes, 90

	PFIM-package
	adjustGradient
	Administration
	AdministrationConstraints
	Arm
	armAdministration
	BayesianFim
	checkSamplingTimeConstraintsForMetaheuristic
	checkValiditySamplingConstraint
	Combined1
	computeVMat
	Constant
	constraintsTableForReport
	convertPKModelAnalyticToPKModelODE
	Dcriterion
	defineFim
	defineModelAdministration
	defineModelEquationsFromLibraryOfModel
	defineModelType
	defineModelWrapper
	defineOptimizationAlgorithm
	definePKModel
	definePKPDModel
	Design
	Distribution
	evaluateArm
	evaluateDesign
	evaluateErrorModelDerivatives
	evaluateFim
	evaluateInitialConditions
	evaluateModel
	evaluateModelGradient
	evaluateModelVariance
	evaluateVarianceFIM
	Evaluation
	FedorovWynnAlgorithm
	FedorovWynnAlgorithm_Rcpp
	Fim
	finiteDifferenceHessian
	fisherSimplex
	fun.amoeba
	generateDosesCombination
	generateFimsFromConstraints
	generateReportEvaluation
	generateReportOptimization
	generateSamplingsFromSamplingConstraints
	generateSamplingTimesCombination
	getArmConstraints
	getArmData
	getCorrelationMatrix
	getDcriterion
	getDeterminant
	getFim
	getFisherMatrix
	getListLastName
	getModelErrorData
	getModelParametersData
	getRSE
	getSamplingData
	getSE
	getShrinkage
	IndividualFim
	LibraryOfModels
	LibraryOfPDModels
	LibraryOfPKModels
	Linear2BolusSingleDose_ClQV1V2
	Linear2BolusSingleDose_kk12k21V
	Linear2BolusSteadyState_ClQV1V2tau
	Linear2BolusSteadyState_kk12k21Vtau
	Linear2FirstOrderSingleDose_kaClQV1V2
	Linear2FirstOrderSingleDose_kakk12k21V
	Linear2FirstOrderSteadyState_kaClQV1V2tau
	Linear2FirstOrderSteadyState_kakk12k21Vtau
	Linear2InfusionSingleDose_ClQV1V2
	Linear2InfusionSingleDose_kk12k21V
	Linear2InfusionSteadyState_ClQV1V2tau
	Linear2InfusionSteadyState_kk12k21Vtau
	LogNormal
	Model
	ModelAnalytic
	ModelAnalyticInfusion
	ModelAnalyticInfusionSteadyState
	ModelAnalyticSteadyState
	ModelError
	ModelInfusion
	ModelODE
	ModelODEBolus
	ModelODEDoseInEquations
	ModelODEDoseNotInEquations
	ModelODEInfusion
	ModelODEInfusionDoseInEquation
	ModelParameter
	MultiplicativeAlgorithm
	MultiplicativeAlgorithm_Rcpp
	Normal
	Optimization
	optimizeDesign
	PFIMProject
	PGBOAlgorithm
	plotEvaluation
	plotEvaluationResults
	plotEvaluationSI
	plotFrequencies
	plotFrequenciesFedorovWynnAlgorithm
	plotRSE
	plotRSEFIM
	plotSE
	plotSEFIM
	plotSensitivityIndices
	plotShrinkage
	plotWeights
	plotWeightsMultiplicativeAlgorithm
	PopulationFim
	processArmEvaluationResults
	processArmEvaluationSI
	Proportional
	PSOAlgorithm
	replaceVariablesLibraryOfModels
	Report
	run
	SamplingTimeConstraints
	SamplingTimes
	setEvaluationFim
	setOptimalArms
	setSamplingConstraintForOptimization
	show
	showFIM
	SimplexAlgorithm
	tablesForReport
	updateSamplingTimes
	Index

