Package ‘PatientProfiles’

January 21, 2026

Type Package

Title Identify Characteristics of Patients in the OMOP Common Data
Model

Version 1.4.5
Maintainer Marti Catala <marti.catalasabate@ndorms.ox.ac.uk>

Description Identify the characteristics of patients in data mapped to the
Observational Medical Outcomes Partnership (OMOP) common data model.

License Apache License (>=2)
Encoding UTF-8
RoxygenNote 7.3.3

Suggests bit64, CDMConnector (>= 1.3.1), CodelistGenerator,
CohortConstructor, covr, DBI, dbplyr, DT, duckdb (>= 0.9.0),
ggplot2, glue, gt, here, Hmisc, knitr, odbc, omock, patchwork,
rmarkdown, RPostgres, scales, spelling, testthat (>= 3.1.5),
tictoc, withr

Imports cli, clock, dplyr, lifecycle, omopgenerics (>= 1.3.1), purrr,
rlang, stringr, tidyr

URL https://darwin-eu.github.io/PatientProfiles/

BugReports https://github.com/darwin-eu/PatientProfiles/issues
Language en-US

Depends R (>=4.1.0)

Config/testthat/edition 3

Config/testthat/parallel true

VignetteBuilder knitr

NeedsCompilation no

Author Marti Catala [aut, cre] (ORCID:
<https://orcid.org/0000-0003-3308-9905>),
Yuchen Guo [aut] (ORCID: <https://orcid.org/0000-0002-0847-4855>),
Mike Du [aut] (ORCID: <https://orcid.org/0000-0002-9517-8834>),
Kim Lopez-Guell [aut] (ORCID: <https://orcid.org/0000-0002-8462-8668>),

1

https://darwin-eu.github.io/PatientProfiles/
https://github.com/darwin-eu/PatientProfiles/issues
https://orcid.org/0000-0003-3308-9905
https://orcid.org/0000-0002-0847-4855
https://orcid.org/0000-0002-9517-8834
https://orcid.org/0000-0002-8462-8668

Edward Burn [aut] (ORCID: <https://orcid.org/0000-0002-9286-1128>),

Nuria Mercade-Besora [aut] (ORCID:
<https://orcid.org/0009-0006-7948-3747>),

Xintong Li [ctb] (ORCID: <https://orcid.org/0000-0002-6872-5804>),

Xihang Chen [ctb] (ORCID: <https://orcid.org/0009-0001-8112-8959>)

Repository CRAN
Date/Publication 2026-01-21 06:41:33 UTC

Contents

addAge L
addAgeQuery e
addCategories e e e e e e e
addCdmName
addCohortIntersectCount
addCohortIntersectDate oL
addCohortIntersectDays Lo
addCohortIntersectFlag
addCohortName e
addConceptIntersectCount L
addConceptlntersectDate
addConceptIntersectDays oL
addConceptlntersectField oL 0oL
addConceptintersectFlag
addConceptName
addDateOfBirth
addDateOfBirthQuery
addDeathDate
addDeathDays e
addDeathFlag
addDemographics L
addDemographicsQuery
addFutureObservation
addFutureObservationQuery
addInObservation L e
addInObservationQuery
addObservationPeriodld L oL
addObservationPeriodIdQuery,
addPriorObservation
addPriorObservationQuery e
addSex
addSexQuery
addTableIntersectCount
addTableIntersectDate
addTablelntersectDays
addTableIntersectField
addTablelntersectFlag

Contents

https://orcid.org/0000-0002-9286-1128
https://orcid.org/0009-0006-7948-3747
https://orcid.org/0000-0002-6872-5804
https://orcid.org/0009-0001-8112-8959

addAge 3
availableEstimates 46
benchmarkPatientProfiles 46
endDateColumn 47
filterCohortld 48
filterInObservation e 48
mockDisconnect L. e e 49
mockPatientProfiles 49
sourceConceptldColumn 50
standardConceptldColumn 0oL 51
startDateColumn 51
summariseResult 52
variableTypes e 53

Index 55

addAge Compute the age of the individuals at a certain date

Description

Compute the age of the individuals at a certain date
Usage

addAge(

X ’

indexDate = "cohort_start_date”,

ageName = "age",

ageGroup = NULL,

ageMissingMonth = 1,

ageMissingDay = 1,

ageImposeMonth = FALSE,

agelmposeDay = FALSE,

missingAgeGroupValue = "None",

name = NULL
)

Arguments
X Table with individuals in the cdm.
indexDate Variable in x that contains the date to compute the age.
ageName Name of the new column that contains age.
ageGroup List of age groups to be added.
ageMissingMonth
Month of the year assigned to individuals with missing month of birth. By

default: 1.

4 addAgeQuery

ageMissingDay day of the month assigned to individuals with missing day of birth. By default:
1.

ageImposeMonth Whether the month of the date of birth will be considered as missing for all the
individuals.

agelImposeDay Whether the day of the date of birth will be considered as missing for all the
individuals.

missingAgeGroupValue
Value to include if missing age.

name Name of the new table, if NULL a temporary table is returned.

Value

tibble with the age column added.

Examples

library(PatientProfiles)
cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohortl |>
addAge ()

addAgeQuery Query to add the age of the individuals at a certain date

Description

‘r lifecycle::badge("experimental")‘ Same as ‘addAge(), except query is not computed to a table.

Usage
addAgeQuery(
X’
indexDate = "cohort_start_date”,
ageName = "age",

ageGroup = NULL,
ageMissingMonth = 1,
ageMissingDay = 1,
ageImposeMonth = FALSE,
ageImposeDay = FALSE,
missingAgeGroupValue = "None”

addCategories 5

Arguments

X Table with individuals in the cdm.

indexDate Variable in x that contains the date to compute the age.

ageName Name of the new column that contains age.

ageGroup List of age groups to be added.

ageMissingMonth
Month of the year assigned to individuals with missing month of birth. By
default: 1.

ageMissingDay day of the month assigned to individuals with missing day of birth. By default:
1.

ageImposeMonth Whether the month of the date of birth will be considered as missing for all the
individuals.

ageImposeDay Whether the day of the date of birth will be considered as missing for all the
individuals.

missingAgeGroupValue
Value to include if missing age.

Value

tibble with the age column added.

Examples

library(PatientProfiles)
cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohortl |>
addAgeQuery ()

addCategories Categorize a numeric variable

Description

Categorize a numeric variable

6 addCategories

Usage

addCategories(
X,
variable,
categories,
missingCategoryValue = "None",
overlap = FALSE,
includelLowerBound = TRUE,

includeUpperBound = TRUE,
name = NULL
)
Arguments
X Table with individuals in the cdm.
variable Target variable that we want to categorize.
categories List of lists of named categories with lower and upper limit.
missingCategoryValue
Value to assign to those individuals not in any named category. If NULL or NA,
missing values will not be changed.
overlap TRUE if the categories given overlap.
includelowerBound
Whether to include the lower bound in the group.
includeUpperBound
Whether to include the upper bound in the group.
name Name of the new table, if NULL a temporary table is returned.
Value

The x table with the categorical variable added.
Examples

library(PatientProfiles)

cdm <- mockPatientProfiles(source = "duckdb")

result <- cdm$cohortl |>

addAge() |>
addCategories(
variable = "age",
categories = list("age_group” = list(

"9 to 39" = c(0, 39), "40 to 79" = c(40, 79), "80 to 150" = c(80, 150)
))
)

addCdmName

addCdmName Add cdm name

Description

Add cdm name

Usage

addCdmName (table, cdm = omopgenerics::cdmReference(table))

Arguments

table Table in the cdm

cdm A cdm reference object
Value

Table with an extra column with the cdm names

Examples
library(PatientProfiles)
cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohortl |>
addCdmName ()

addCohortIntersectCount

It creates columns to indicate number of occurrences of intersection
with a cohort

Description

It creates columns to indicate number of occurrences of intersection with a cohort

8 addCohortlntersectCount

Usage

addCohortIntersectCount(
X,
targetCohortTable,
targetCohortId = NULL,
indexDate = "cohort_start_date"”,
censorDate = NULL,
targetStartDate = "cohort_start_date”,
targetEndDate = "cohort_end_date",
window = list(c(@, Inf)),

nameStyle = "{cohort_name}_{window_name}",
name = NULL
)
Arguments
X Table with individuals in the cdm.
targetCohortTable

name of the cohort that we want to check for overlap.

targetCohortId vector of cohort definition ids to include.

indexDate Variable in x that contains the date to compute the intersection.
censorDate whether to censor overlap events at a specific date or a column date of x.
targetStartDate
date of reference in cohort table, either for start (in overlap) or on its own (for
incidence).

targetEndDate date of reference in cohort table, either for end (overlap) or NULL (if incidence).

window window to consider events of.
nameStyle naming of the added column or columns, should include required parameters.
name Name of the new table, if NULL a temporary table is returned.

Value

table with added columns with overlap information.

Examples

library(PatientProfiles)
cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohortl |>
addCohortIntersectCount(
targetCohortTable = "cohort2”
)

addCohortIntersectDate 9

addCohortIntersectDate
Date of cohorts that are present in a certain window

Description

Date of cohorts that are present in a certain window

Usage

addCohortIntersectDate(
X,
targetCohortTable,
targetCohortId = NULL,
indexDate = "cohort_start_date",
censorDate = NULL,
targetDate = "cohort_start_date”,
order = "first",
window = c(@, Inf),
nameStyle = "{cohort_name}_{window_name}",
name = NULL

Arguments

X Table with individuals in the cdm.
targetCohortTable
Cohort table to.

targetCohortId Cohort IDs of interest from the other cohort table. If NULL, all cohorts will be
used with a time variable added for each cohort of interest.

indexDate Variable in x that contains the date to compute the intersection.

censorDate whether to censor overlap events at a specific date or a column date of x.

targetDate Date of interest in the other cohort table. Either cohort_start_date or cohort_end_date.

order date to use if there are multiple records for an individual during the window of
interest. Either first or last.

window Window of time to identify records relative to the indexDate. Records outside
of this time period will be ignored.

nameStyle naming of the added column or columns, should include required parameters.

name Name of the new table, if NULL a temporary table is returned.

Value

x along with additional columns for each cohort of interest.

10 addCohortIntersectDays

Examples

library(PatientProfiles)
cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohortl |>
addCohortIntersectDate(targetCohortTable = "cohort2")

addCohortIntersectDays
It creates columns to indicate the number of days between the current
table and a target cohort

Description

It creates columns to indicate the number of days between the current table and a target cohort

Usage

addCohortIntersectDays(
X,
targetCohortTable,
targetCohortId = NULL,
indexDate = "cohort_start_date”,
censorDate = NULL,
targetDate = "cohort_start_date”,
order = "first",
window = c(@, Inf),
nameStyle = "{cohort_name}_{window_name}",
name = NULL

Arguments

X Table with individuals in the cdm.
targetCohortTable
Cohort table to.

targetCohortId Cohort IDs of interest from the other cohort table. If NULL, all cohorts will be
used with a days variable added for each cohort of interest.

indexDate Variable in x that contains the date to compute the intersection.
censorDate whether to censor overlap events at a specific date or a column date of x.

targetDate Date of interest in the other cohort table. Either cohort_start_date or cohort_end_date.

addCohortIntersectFlag 11

order

window

nameStyle

name

Value

date to use if there are multiple records for an individual during the window of
interest. Either first or last.

Window of time to identify records relative to the indexDate. Records outside
of this time period will be ignored.

naming of the added column or columns, should include required parameters.

Name of the new table, if NULL a temporary table is returned.

x along with additional columns for each cohort of interest.

Examples

library(PatientProfiles)

cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohort1

|>

addCohortIntersectDays(targetCohortTable = "cohort2")

addCohortIntersectFlag

It creates columns to indicate the presence of cohorts

Description

It creates columns to indicate the presence of cohorts

Usage

addCohortIntersectFlag(

X,

targetCohortTable,
targetCohortId = NULL,

indexDate

= "cohort_start_date”,

censorDate = NULL,

targetStartDate = "cohort_start_date"”,
targetEndDate = "cohort_end_date"”,

window = list(c(@, Inf)),

nameStyle = "{cohort_name}_{window_name}",

name =

NULL

12 addCohortName

Arguments
X Table with individuals in the cdm.
targetCohortTable

name of the cohort that we want to check for overlap.

targetCohortId vector of cohort definition ids to include.

indexDate Variable in x that contains the date to compute the intersection.
censorDate whether to censor overlap events at a specific date or a column date of x.
targetStartDate
date of reference in cohort table, either for start (in overlap) or on its own (for
incidence).

targetEndDate date of reference in cohort table, either for end (overlap) or NULL (if incidence).

window window to consider events of.
nameStyle naming of the added column or columns, should include required parameters.
name Name of the new table, if NULL a temporary table is returned.

Value

table with added columns with overlap information.

Examples

library(PatientProfiles)
cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohortl |>
addCohortIntersectFlag(
targetCohortTable = "cohort2”
)

addCohortName Add cohort name for each cohort_definition_id

Description

Add cohort name for each cohort_definition_id

Usage

addCohortName (cohort)

addConceptIntersectCount

Arguments

cohort cohort to which add the cohort name

Value

cohort with an extra column with the cohort names

Examples
library(PatientProfiles)
cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohortl |>
addCohortName ()

addConceptIntersectCount
It creates column to indicate the count overlap information between a
table and a concept

Description

It creates column to indicate the count overlap information between a table and a concept

Usage
addConceptIntersectCount(
X7
conceptSet,
indexDate = "cohort_start_date",

censorDate = NULL,

window = list(c(@, Inf)),
targetStartDate = "event_start_date”,
targetEndDate = "event_end_date"”,
inObservation = TRUE,

nameStyle = "{concept_name}_{window_name}",
name = NULL
)
Arguments
X Table with individuals in the cdm.
conceptSet Concept set list.
indexDate Variable in x that contains the date to compute the intersection.

censorDate whether to censor overlap events at a date column of x

14

window
targetStartDate

targetEndDate
inObservation
nameStyle

name

Value

addConceptlntersectDate

window to consider events in.

Event start date to use for the intersection.

Event end date to use for the intersection.

If TRUE only records inside an observation period will be considered.
naming of the added column or columns, should include required parameters.

Name of the new table, if NULL a temporary table is returned.

table with added columns with overlap information

Examples

library(PatientPr
library(omopgener
library(dplyr, wa

cdm <- mockPatien

concept <- tibble
concept_id = c(
domain_id = "Dr
vocabulary_id =
concept_class_i
standard_concep
concept_code =
valid_start_dat
valid_end_date
invalid_reason

R
mutate(concept_

cdm <- insertTabl

cdm$cohortl |>
addConceptInter

ofiles)
ics, warn.conflicts = TRUE)
rn.conflicts = TRUE)

tProfiles(source = "duckdb")

(

1125315),

ug”,

NA_character_,

d = "Ingredient”,

t ="S",

NA_character_,

e = as.Date("1900-01-01"),
= as.Date("2099-01-01"),

= NA_character_

name = paste@("concept: ", .data$concept_id))
e(cdm, "concept”, concept)

sectCount(conceptSet = list("acetaminophen” = 1125315))

addConceptIntersectDate

It creates column to indicate the date overlap information between a
table and a concept

Description

It creates column to indicate the date overlap information between a table and a concept

addConceptlntersectDate 15

Usage

addConceptIntersectDate(

X!

conceptSet,

indexDate = "cohort_start_date”,
censorDate = NULL,

window = list(c(@, Inf)),

targetDate = "event_start_date”,
order = "first”,
inObservation = TRUE,
nameStyle = "{concept_name}_{window_name}",
name = NULL
)
Arguments
X Table with individuals in the cdm.
conceptSet Concept set list.
indexDate Variable in x that contains the date to compute the intersection.
censorDate whether to censor overlap events at a date column of x
window window to consider events in.
targetDate Event date to use for the intersection.
order last or first date to use for date/days calculations.

inObservation If TRUE only records inside an observation period will be considered.

nameStyle naming of the added column or columns, should include required parameters.
name Name of the new table, if NULL a temporary table is returned.
Value

table with added columns with overlap information

Examples

library(PatientProfiles)
library(omopgenerics, warn.conflicts = TRUE)
library(dplyr, warn.conflicts = TRUE)

cdm <- mockPatientProfiles(source = "duckdb")

concept <- tibble(

concept_id = ¢(1125315),

domain_id = "Drug”,
vocabulary_id = NA_character_,
concept_class_id = "Ingredient”,
standard_concept = "S",

concept_code = NA_character_,
valid_start_date = as.Date("1900-01-01"),

16 addConceptlntersectDays

valid_end_date = as.Date("2099-01-01"),

invalid_reason = NA_character_
) 1>

mutate(concept_name = paste@("concept: ", .data$concept_id))
cdm <- insertTable(cdm, "concept”, concept)

cdm$cohortl |>
addConceptIntersectDate(conceptSet = list("acetaminophen” = 1125315))

addConceptIntersectDays

It creates column to indicate the days of difference from an index date
to a concept

Description

It creates column to indicate the days of difference from an index date to a concept

Usage
addConceptIntersectDays(
X,
conceptSet,
indexDate = "cohort_start_date"”,

censorDate = NULL,
window = list(c(@, Inf)),

targetDate = "event_start_date”,
order = "first",
inObservation = TRUE,
nameStyle = "{concept_name}_{window_name}",
name = NULL
)
Arguments
X Table with individuals in the cdm.
conceptSet Concept set list.
indexDate Variable in x that contains the date to compute the intersection.
censorDate whether to censor overlap events at a date column of x
window window to consider events in.
targetDate Event date to use for the intersection.
order last or first date to use for date/days calculations.

inObservation If TRUE only records inside an observation period will be considered.
nameStyle naming of the added column or columns, should include required parameters.
name Name of the new table, if NULL a temporary table is returned.

addConceptlntersectField 17

Value

table with added columns with overlap information

Examples

library(PatientProfiles)
library(omopgenerics, warn.conflicts = TRUE)
library(dplyr, warn.conflicts = TRUE)

cdm <- mockPatientProfiles(source = "duckdb")

concept <- tibble(
concept_id = ¢(1125315),

domain_id = "Drug",
vocabulary_id = NA_character_,
concept_class_id = "Ingredient”,
standard_concept = "S",

concept_code = NA_character_,

valid_start_date = as.Date("1900-01-01"),

valid_end_date = as.Date("2099-01-01"),

invalid_reason = NA_character_
) 1>

mutate(concept_name = paste@("concept: ", .data$concept_id))
cdm <- insertTable(cdm, "concept”, concept)

cdm$cohortl |>
addConceptIntersectDays(conceptSet = list("acetaminophen” = 1125315))

addConceptIntersectField
It adds a custom column (field) from the intersection with a certain
table subsetted by concept id. In general it is used to add the first
value of a certain measurement.

Description

It adds a custom column (field) from the intersection with a certain table subsetted by concept id.
In general it is used to add the first value of a certain measurement.

Usage

addConceptIntersectField(
X!
conceptSet,
field,
indexDate = "cohort_start_date"”,

18 addConceptlntersectField

censorDate = NULL,

window = list(c(@, Inf)),
targetDate = "event_start_date”,
order = "first",

inObservation = TRUE,
allowDuplicates = FALSE,

nameStyle = "{field}_{concept_name}_{window_name}",
name = NULL
)
Arguments
X Table with individuals in the cdm.
conceptSet Concept set list.
field Column in the standard omop table that you want to add.
indexDate Variable in x that contains the date to compute the intersection.
censorDate Whether to censor overlap events at a date column of x
window Window to consider events in.
targetDate Event date to use for the intersection.
order ’last’ or “first’ to refer to which event consider if multiple events are present in

the same window.

inObservation If TRUE only records inside an observation period will be considered.
allowDuplicates

Whether to allow multiple records with same conceptSet, person_id and target-
Date. If switched to TRUE, the created new columns (field) will be collapsed to
a character vector separated by ‘;‘ to account for multiple values per person.

nameStyle naming of the added column or columns, should include required parameters.
name Name of the new table, if NULL a temporary table is returned.
Value

Table with the ‘field‘ value obtained from the intersection

Examples

library(PatientProfiles)
library(omopgenerics, warn.conflicts = TRUE)
library(dplyr, warn.conflicts = TRUE)

cdm <- mockPatientProfiles(source = "duckdb")

concept <- tibble(
concept_id = c¢(1125315),

domain_id = "Drug",
vocabulary_id = NA_character_,
concept_class_id = "Ingredient”,

standard_concept = "S",

addConceptIntersectFlag

concept_code = NA_character_,

valid_start_date = as.Date("1900-01-01"),

valid_end_date = as.Date(”2099-01-01"),

invalid_reason = NA_character_
) 1>

mutate(concept_name = paste@("”concept: ", .data$concept_id))
cdm <- insertTable(cdm, "concept”, concept)

cdm$cohortl |>
addConceptIntersectField(
conceptSet = list("acetaminophen” = 1125315),
field = "drug_type_concept_id"
)

addConceptIntersectFlag
It creates column to indicate the flag overlap information between a
table and a concept

Description

It creates column to indicate the flag overlap information between a table and a concept

Usage
addConceptIntersectFlag(
X’
conceptSet,
indexDate = "cohort_start_date”,

censorDate = NULL,

window = list(c(@, Inf)),
targetStartDate = "event_start_date”,
targetEndDate = "event_end_date”,
inObservation = TRUE,

nameStyle = "{concept_name}_{window_name}",
name = NULL
)
Arguments
X Table with individuals in the cdm.
conceptSet Concept set list.
indexDate Variable in x that contains the date to compute the intersection.

censorDate whether to censor overlap events at a date column of x

20

window
targetStartDate

targetEndDate

inObservation

nameStyle

name

Value

addConceptName

window to consider events in.

Event start date to use for the intersection.

Event end date to use for the intersection.

If TRUE only records inside an observation period will be considered.
naming of the added column or columns, should include required parameters.

Name of the new table, if NULL a temporary table is returned.

table with added columns with overlap information

Examples

library(PatientProfiles)
library(omopgenerics, warn.conflicts = TRUE)
library(dplyr, warn.conflicts = TRUE)

cdm <- mockPatientProfiles(source = "duckdb")

concept <- tibble(

)

concept_id = c(
domain_id = "Dr
vocabulary_id =
concept_class_i
standard_concep
concept_code =
valid_start_dat
valid_end_date
invalid_reason
|>

mutate(concept_

1125315),

ug”,

NA_character_,

d = "Ingredient”,

t ="S",

NA_character_,

e = as.Date("1900-01-01"),
= as.Date("2099-01-01"),

= NA_character_

n

name = paste@("concept: ", .data$concept_id))

cdm <- insertTable(cdm, "concept”, concept)

cdm$cohortl |>

addConceptInter

sectFlag(conceptSet = list("acetaminophen” = 1125315))

addConceptName

Add concept name for each concept_id

Description

Add concept name for each concept_id

addDateOfBirth 21

Usage

addConceptName(table, column = NULL, nameStyle = "{column}_name")

Arguments
table cdm_table that contains column.
column Column to add the concept names from. If NULL any column that its name ends
with ‘concept_id* will be used.
nameStyle Name of the new column.
Value

table with an extra column with the concept names.

Examples

library(PatientProfiles)
library(omock)
library(dplyr, warn.conflicts = FALSE)

cdm <- mockCdmFromDataset(datasetName = "GiBleed"”, source = "duckdb")

cdm$drug_exposure |>
addConceptName(column = "drug_concept_id"”, nameStyle = "drug_name”) |[>

glimpse()

cdm$drug_exposure |>
addConceptName() |>

glimpse()

addDateOfBirth Add a column with the individual birth date

Description

Add a column with the individual birth date

Usage

addDateOfBirth(
X,
dateOfBirthName = "date_of_birth",
missingDay = 1,
missingMonth = 1,
imposeDay = FALSE,
imposeMonth = FALSE,
name = NULL

22 addDateOfBirthQuery

Arguments
X Table in the cdm that contains ’person_id’ or ’subject_id’.
dateOfBirthName
Name of the column to be added with the date of birth.
missingDay Day of the individuals with no or imposed day of birth.

missingMonth Month of the individuals with no or imposed month of birth.
imposeDay Whether to impose day of birth.
imposeMonth Whether to impose month of birth.

name Name of the new table, if NULL a temporary table is returned.

Value

The function returns the table x with an extra column that contains the date of birth.

Examples

library(PatientProfiles)
cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohortl [|>
addDateOfBirth()

addDateOfBirthQuery Query to add a column with the individual birth date

Description

‘r lifecycle::badge("experimental")‘ Same as ‘addDateOfBirth(), except query is not computed to
a table.

Usage

addDateOfBirthQuery(
X,
dateOfBirthName = "date_of_birth”,
missingDay = 1,
missingMonth = 1,
imposeDay = FALSE,
imposeMonth = FALSE

addDeathDate 23

Arguments
X Table in the cdm that contains ’person_id’ or ’subject_id’.
dateOfBirthName
Name of the column to be added with the date of birth.
missingDay Day of the individuals with no or imposed day of birth.

missingMonth Month of the individuals with no or imposed month of birth.
imposeDay Whether to impose day of birth.
imposeMonth Whether to impose month of birth.

Value

The function returns the table x with an extra column that contains the date of birth.

Examples

library(PatientProfiles)
cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohortl |>
addDateOfBirthQuery()

addDeathDate Add date of death for individuals. Only death within the same obser-
vation period than ‘indexDate ‘ will be observed.

Description

Add date of death for individuals. Only death within the same observation period than ‘indexDate’
will be observed.

Usage

addDeathDate(
X,
indexDate = "cohort_start_date",
censorDate = NULL,
window = c(@, Inf),
deathDateName = "date_of_death”,
name = NULL

24 addDeathDays
Arguments
X Table with individuals in the cdm.
indexDate Variable in x that contains the window origin.
censorDate Name of a column to stop followup.
window window to consider events over.
deathDateName name of the new column to be added.
name Name of the new table, if NULL a temporary table is returned.
Value
table x with the added column with death information added.
Examples
library(PatientProfiles)
cdm <- mockPatientProfiles(source = "duckdb")
cdm$cohortl [|>
addDeathDate ()
addDeathDays Add days to death for individuals. Only death within the same obser-
vation period than ‘indexDate ‘ will be observed.
Description
Add days to death for individuals. Only death within the same observation period than ‘indexDate’
will be observed.
Usage
addDeathDays (
X ’
indexDate = "cohort_start_date",

censorDate = NULL,

window = c(@, Inf),
deathDaysName = "days_to_death”,
name = NULL

addDeathFlag 25

Arguments
X Table with individuals in the cdm.
indexDate Variable in x that contains the window origin.
censorDate Name of a column to stop followup.
window window to consider events over.

deathDaysName name of the new column to be added.

name Name of the new table, if NULL a temporary table is returned.

Value

table x with the added column with death information added.

Examples

library(PatientProfiles)
cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohortl [|>

addDeathDays ()
addDeathFlag Add flag for death for individuals. Only death within the same obser-
vation period than ‘indexDate ‘ will be observed.
Description

Add flag for death for individuals. Only death within the same observation period than ‘indexDate’
will be observed.

Usage

addDeathFlag(
X,
indexDate = "cohort_start_date",
censorDate = NULL,
window = c(@, Inf),
deathFlagName = "death”,
name = NULL

26 addDemographics

Arguments
X Table with individuals in the cdm.
indexDate Variable in x that contains the window origin.
censorDate Name of a column to stop followup.
window window to consider events over.

deathFlagName name of the new column to be added.

name Name of the new table, if NULL a temporary table is returned.

Value

table x with the added column with death information added.
Examples

library(PatientProfiles)

cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohortl [|>
addDeathFlag()

addDemographics Compute demographic characteristics at a certain date

Description

Compute demographic characteristics at a certain date

Usage

addDemographics(
X,
indexDate = "cohort_start_date"”,
age = TRUE,
ageName = "age",
ageMissingMonth =
ageMissingDay = 1,
agelmposeMonth = FALSE,
ageImposeDay = FALSE,
ageGroup = NULL,
missingAgeGroupValue = "None",
sex = TRUE,

n n

sexName = "sex”,

T,

addDemographics 27

missingSexValue = "None",

priorObservation = TRUE,

priorObservationName = "prior_observation”,
priorObservationType = "days",
futureObservation = TRUE,
futureObservationName = "future_observation”,
futureObservationType = "days”,

dateOfBirth = FALSE,
dateOfBirthName = "date_of_birth",

name = NULL
)
Arguments
X Table with individuals in the cdm.
indexDate Variable in x that contains the date to compute the demographics characteristics.
age TRUE or FALSE. If TRUE, age will be calculated relative to indexDate.
ageName Age variable name.
ageMissingMonth

Month of the year assigned to individuals with missing month of birth.
ageMissingDay day of the month assigned to individuals with missing day of birth.

ageImposeMonth TRUE or FALSE. Whether the month of the date of birth will be considered as
missing for all the individuals.

ageImposeDay TRUE or FALSE. Whether the day of the date of birth will be considered as
missing for all the individuals.

ageGroup if not NULL, a list of ageGroup vectors.

missingAgeGroupValue
Value to include if missing age.

sex TRUE or FALSE. If TRUE, sex will be identified.

sexName Sex variable name.
missingSexValue
Value to include if missing sex.
priorObservation
TRUE or FALSE. If TRUE, days of between the start of the current observation
period and the indexDate will be calculated.
priorObservationName
Prior observation variable name.
priorObservationType

Whether to return a "date" or the number of "days".
futureObservation

TRUE or FALSE. If TRUE, days between the indexDate and the end of the
current observation period will be calculated.

futureObservationName
Future observation variable name.

28 addDemographicsQuery

futureObservationType
Whether to return a "date" or the number of "days".

dateOfBirth TRUE or FALSE, if true the date of birth will be return.
dateOfBirthName
dateOfBirth column name.

name Name of the new table, if NULL a temporary table is returned.

Value

cohort table with the added demographic information columns.

Examples

library(PatientProfiles)
cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohortl |>
addDemographics()

addDemographicsQuery Query to add demographic characteristics at a certain date

Description

‘r lifecycle::badge("experimental")‘ Same as ‘addDemographics()‘, except query is not computed

to a table.
Usage

addDemographicsQuery(
X)
indexDate = "cohort_start_date"”,
age = TRUE,
ageName = "age”,
ageMissingMonth = 1,

ageMissingDay = 1,
agelmposeMonth = FALSE,
ageImposeDay = FALSE,

ageGroup = NULL,
missingAgeGroupValue = "None”,
sex = TRUE,

sexName = "sex",
missingSexValue = "None",

addDemographicsQuery 29

priorObservation = TRUE,

priorObservationName = "prior_observation”,
priorObservationType = "days",
futureObservation = TRUE,
futureObservationName = "future_observation”,
futureObservationType = "days”,

dateOfBirth = FALSE,
dateOfBirthName = "date_of_birth"

)

Arguments
X Table with individuals in the cdm.
indexDate Variable in x that contains the date to compute the demographics characteristics.
age TRUE or FALSE. If TRUE, age will be calculated relative to indexDate.
ageName Age variable name.
ageMissingMonth

Month of the year assigned to individuals with missing month of birth.
ageMissingDay day of the month assigned to individuals with missing day of birth.

ageImposeMonth TRUE or FALSE. Whether the month of the date of birth will be considered as
missing for all the individuals.

ageImposeDay TRUE or FALSE. Whether the day of the date of birth will be considered as
missing for all the individuals.

ageGroup if not NULL, a list of ageGroup vectors.
missingAgeGroupValue

Value to include if missing age.
sex TRUE or FALSE. If TRUE, sex will be identified.
sexName Sex variable name.
missingSexValue

Value to include if missing sex.
priorObservation

TRUE or FALSE. If TRUE, days of between the start of the current observation
period and the indexDate will be calculated.
priorObservationName

Prior observation variable name.
priorObservationType

Whether to return a "date" or the number of "days".

futureObservation
TRUE or FALSE. If TRUE, days between the indexDate and the end of the
current observation period will be calculated.

futureObservationName

Future observation variable name.
futureObservationType

Whether to return a "date" or the number of "days".
dateOfBirth TRUE or FALSE, if true the date of birth will be return.
dateOfBirthName

dateOfBirth column name.

30 addFutureObservation

Value

cohort table with the added demographic information columns.

Examples

library(PatientProfiles)
cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohort1 |>
addDemographicsQuery()

addFutureObservation Compute the number of days till the end of the observation period at a
certain date

Description

Compute the number of days till the end of the observation period at a certain date

Usage
addFutureObservation(
X’
indexDate = "cohort_start_date”,
futureObservationName = "future_observation”,
futureObservationType = "days”,
name = NULL
)
Arguments
X Table with individuals in the cdm.
indexDate Variable in x that contains the date to compute the future observation.

futureObservationName

name of the new column to be added.
futureObservationType

Whether to return a "date" or the number of "days".

name Name of the new table, if NULL a temporary table is returned.

Value

cohort table with added column containing future observation of the individuals.

addFutureObservationQuery 31

Examples
library(PatientProfiles)
cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohortl |>
addFutureObservation()

addFutureObservationQuery
Query to add the number of days till the end of the observation period
at a certain date

Description

‘r lifecycle::badge("experimental") Same as ‘addFutureObservation()*, except query is not com-
puted to a table.

Usage
addFutureObservationQuery (
X)
indexDate = "cohort_start_date",
futureObservationName = "future_observation”,
futureObservationType = "days"”
)
Arguments
X Table with individuals in the cdm.
indexDate Variable in x that contains the date to compute the future observation.

futureObservationName
name of the new column to be added.

futureObservationType
Whether to return a "date" or the number of "days".

Value

cohort table with added column containing future observation of the individuals.

32 addInObservation

Examples

library(PatientProfiles)
cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohortl |>
addFutureObservationQuery ()

addInObservation Indicate if a certain record is within the observation period

Description

Indicate if a certain record is within the observation period

Usage
addInObservation(
X,
indexDate = "cohort_start_date”,

window = c(0, 0),
completelnterval = FALSE,

nameStyle = "in_observation”,
name = NULL
)
Arguments
X Table with individuals in the cdm.
indexDate Variable in x that contains the date to compute the observation flag.
window window to consider events of.
completelnterval
If the individuals are in observation for the full window.
nameStyle Name of the new columns to create, it must contain "window_name" if multiple
windows are provided.
name Name of the new table, if NULL a temporary table is returned.
Value

cohort table with the added numeric column assessing observation (1 in observation, 0 not in obser-
vation).

addInObservationQuery 33

Examples

library(PatientProfiles)
cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohortl |>
addInObservation()

addInObservationQuery Query to add a new column to indicate if a certain record is within the
observation period

Description

‘r lifecycle::badge("experimental")* Same as ‘addInObservation(), except query is not computed

to a table.
Usage
addInObservationQuery(
X’
indexDate = "cohort_start_date”,

window = c(0, 0),
completeInterval = FALSE,

nameStyle = "in_observation”
)
Arguments
X Table with individuals in the cdm.
indexDate Variable in x that contains the date to compute the observation flag.
window window to consider events of.
completelnterval
If the individuals are in observation for the full window.
nameStyle Name of the new columns to create, it must contain "window_name" if multiple
windows are provided.
Value

cohort table with the added numeric column assessing observation (1 in observation, 0 not in obser-
vation).

34 addObservationPeriodld

Examples
library(PatientProfiles)
cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohortl |>
addInObservationQuery()

addObservationPeriodId
Add the ordinal number of the observation period associated that a
given date is in.

Description

Add the ordinal number of the observation period associated that a given date is in.

Usage
addObservationPeriodId(
X,
indexDate = "cohort_start_date”,
nameObservationPeriodId = "observation_period_id",
name = NULL
)
Arguments
X Table with individuals in the cdm.
indexDate Variable in x that contains the date to compute the observation flag.

nameObservationPeriodId
Name of the new column.

name Name of the new table, if NULL a temporary table is returned.

Value

Table with the current observation period id added.

addObservationPeriodldQuery 35

Examples

library(PatientProfiles)
cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohortl |>
addObservationPeriodId()

addObservationPeriodIdQuery
Add the ordinal number of the observation period associated that a
given date is in. Result is not computed, only query is added.

Description

Add the ordinal number of the observation period associated that a given date is in. Result is not
computed, only query is added.

Usage
addObservationPeriodIdQuery(
X’
indexDate = "cohort_start_date”,
nameObservationPeriodId = "observation_period_id”
)
Arguments
X Table with individuals in the cdm.
indexDate Variable in x that contains the date to compute the observation flag.

nameObservationPeriodId
Name of the new column.

Value

Table with the current observation period id added.
Examples

library(PatientProfiles)

cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohortl |>
addObservationPeriodIdQuery()

36 addPriorObservation

addPriorObservation Compute the number of days of prior observation in the current obser-
vation period at a certain date

Description

Compute the number of days of prior observation in the current observation period at a certain date

Usage
addPriorObservation(
X,
indexDate = "cohort_start_date”,
priorObservationName = "prior_observation”,
priorObservationType = "days",
name = NULL
)
Arguments
X Table with individuals in the cdm.
indexDate Variable in x that contains the date to compute the prior observation.

priorObservationName

name of the new column to be added.
priorObservationType

Whether to return a "date" or the number of "days".

name Name of the new table, if NULL a temporary table is returned.

Value

cohort table with added column containing prior observation of the individuals.
Examples

library(PatientProfiles)

cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohortl |>
addPriorObservation()

addPriorObservationQuery 37

addPriorObservationQuery
Query to add the number of days of prior observation in the current
observation period at a certain date

Description

‘r lifecycle::badge("experimental")‘ Same as ‘addPriorObservation()*, except query is not computed

to a table.
Usage
addPriorObservationQuery(
X)
indexDate = "cohort_start_date”,
priorObservationName = "prior_observation”,
priorObservationType = "days"
)
Arguments
X Table with individuals in the cdm.
indexDate Variable in x that contains the date to compute the prior observation.

priorObservationName

name of the new column to be added.
priorObservationType

Whether to return a "date" or the number of "days".

Value

cohort table with added column containing prior observation of the individuals.

Examples

library(PatientProfiles)
cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohortl [|>
addPriorObservationQuery()

38 addSexQuery

addSex Compute the sex of the individuals

Description

Compute the sex of the individuals

Usage

addSex(x, sexName = "sex", missingSexValue = "None"”, name = NULL)
Arguments

X Table with individuals in the cdm.

sexName name of the new column to be added.

missingSexValue

Value to include if missing sex.

name Name of the new table, if NULL a temporary table is returned.

Value

table x with the added column with sex information.
Examples

library(PatientProfiles)

cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohortl |>
addSex ()

addSexQuery Query to add the sex of the individuals

Description

‘r lifecycle::badge("experimental")‘ Same as ‘addSex()‘, except query is not computed to a table.

Usage

n

addSexQuery(x, sexName = "sex", missingSexValue = "None")

addTablelntersectCount

Arguments
X Table with individuals in the cdm.
sexName name of the new column to be added.
missingSexValue
Value to include if missing sex.
Value

table x with the added column with sex information.

Examples

library(PatientProfiles)
cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohortl |>
addSexQuery ()

39

addTableIntersectCount

Compute number of intersect with an omop table.

Description

Compute number of intersect with an omop table.

Usage
addTableIntersectCount(
X,
tableName,
indexDate = "cohort_start_date”,

censorDate = NULL,
window = list(c(@, Inf)),

targetStartDate = startDateColumn(tableName),

targetEndDate = endDateColumn(tableName),
inObservation = TRUE,

nameStyle = "{table_name}_{window_name}",
name = NULL

40 addTablelntersectDate

Arguments

X Table with individuals in the cdm.

tableName Name of the table to intersect with. Options: visit_occurrence, condition_occurrence,
drug_exposure, procedure_occurrence, device_exposure, measurement, obser-
vation, drug_era, condition_era, specimen, episode.

indexDate Variable in x that contains the date to compute the intersection.

censorDate whether to censor overlap events at a specific date or a column date of x.

window window to consider events in.

targetStartDate

Column name with start date for comparison.
targetEndDate Column name with end date for comparison.

inObservation If TRUE only records inside an observation period will be considered.

nameStyle naming of the added column or columns, should include required parameters.
name Name of the new table, if NULL a temporary table is returned.
Value

table with added columns with intersect information.
Examples

library(PatientProfiles)

cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohort1 |>
addTablelIntersectCount(tableName = "visit_occurrence”)

addTableIntersectDate Compute date of intersect with an omop table.

Description

Compute date of intersect with an omop table.

Usage
addTableIntersectDate(
X’
tableName,
indexDate = "cohort_start_date”,

censorDate = NULL,

addTablelntersectDate 41

window = list(c(@, Inf)),
targetDate = startDateColumn(tableName),
inObservation = TRUE,

order = "first",
nameStyle = "{table_name}_{window_name}",
name = NULL
)
Arguments
X Table with individuals in the cdm.
tableName Name of the table to intersect with. Options: visit_occurrence, condition_occurrence,
drug_exposure, procedure_occurrence, device_exposure, measurement, obser-
vation, drug_era, condition_era, specimen, episode.
indexDate Variable in x that contains the date to compute the intersection.
censorDate whether to censor overlap events at a specific date or a column date of x.
window window to consider events in.
targetDate Target date in tableName.

inObservation If TRUE only records inside an observation period will be considered.

order which record is considered in case of multiple records (only required for date
and days options).

nameStyle naming of the added column or columns, should include required parameters.
name Name of the new table, if NULL a temporary table is returned.
Value

table with added columns with intersect information.

Examples
library(PatientProfiles)
cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohortl |>
addTableIntersectDate(tableName = "visit_occurrence")

42

addTablelntersectDays

addTableIntersectDays Compute time to intersect with an omop table.

Description

Compute time to intersect with an omop table.

Usage

addTableIntersectDays(

X,
tableName,
indexDate =
censorDate

"cohort_start_date”,
NULL,

window = list(c(@, Inf)),

targetDate = startDateColumn(tableName),
inObservation = TRUE,
order = "first"”,
nameStyle = "{table_name}_{window_name}",
name = NULL
)
Arguments
X Table with individuals in the cdm.
tableName Name of the table to intersect with. Options: visit_occurrence, condition_occurrence,
drug_exposure, procedure_occurrence, device_exposure, measurement, obser-
vation, drug_era, condition_era, specimen, episode.
indexDate Variable in x that contains the date to compute the intersection.
censorDate whether to censor overlap events at a specific date or a column date of x.
window window to consider events in.
targetDate Target date in tableName.
inObservation If TRUE only records inside an observation period will be considered.
order which record is considered in case of multiple records (only required for date
and days options).
nameStyle naming of the added column or columns, should include required parameters.
name Name of the new table, if NULL a temporary table is returned.
Value

table with added columns with intersect information.

addTablelntersectField 43

Examples

library(PatientProfiles)
cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohortl |>
addTableIntersectDays(tableName = "visit_occurrence")

addTablelntersectField
Intersecting the cohort with columns of an OMOP table of user’s
choice. It will add an extra column to the cohort, indicating the in-
tersected entries with the target columns in a window of the user’s
choice.

Description

Intersecting the cohort with columns of an OMOP table of user’s choice. It will add an extra column
to the cohort, indicating the intersected entries with the target columns in a window of the user’s
choice.

Usage

addTableIntersectField(
X,
tableName,
field,
indexDate = "cohort_start_date",
censorDate = NULL,
window = list(c(@, Inf)),
targetDate = startDateColumn(tableName),
inObservation = TRUE,

order = "first",
allowDuplicates = FALSE,
nameStyle = "{table_name}_{extra_value}_{window_name}",
name = NULL

)

Arguments
X Table with individuals in the cdm.
tableName Name of the table to intersect with. Options: visit_occurrence, condition_occurrence,

drug_exposure, procedure_occurrence, device_exposure, measurement, obser-
vation, drug_era, condition_era, specimen, episode.

44 addTablelntersectFlag

field The columns from the table in tableName to intersect over. For example, if
the user uses visit_occurrence in tableName then for field the possible options
include visit_occurrence_id, visit_concept_id, visit_type_concept_id.

indexDate Variable in x that contains the date to compute the intersection.

censorDate whether to censor overlap events at a specific date or a column date of x.

window window to consider events in when intersecting with the chosen column.

targetDate The dates in the target columns in tableName that the user may want to restrict
to.

inObservation If TRUE only records inside an observation period will be considered.

order which record is considered in case of multiple records (only required for date
and days options).

allowDuplicates
Whether to allow multiple records with same conceptSet, person_id and target-
Date. If switched to TRUE, the created new columns (field) will be collapsed to
a character vector separated by ‘;‘ to account for multiple values per person.

nameStyle naming of the added column or columns, should include required parameters.
name Name of the new table, if NULL a temporary table is returned.
Value

table with added columns with intersect information.

Examples

library(PatientProfiles)
cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohortl |>
addTableIntersectField(

tableName = "visit_occurrence”,
field = "visit_concept_id",
order = "last”,

window = c(-Inf, -1)

addTableIntersectFlag Compute a flag intersect with an omop table.

Description

Compute a flag intersect with an omop table.

addTablelntersectFlag 45

Usage

addTableIntersectFlag(

X,

tableName,

indexDate = "cohort_start_date”,

censorDate = NULL,

window = list(c(@, Inf)),

targetStartDate = startDateColumn(tableName),
targetEndDate = endDateColumn(tableName),
inObservation = TRUE,

nameStyle = "{table_name}_{window_name}",
name = NULL
)
Arguments
X Table with individuals in the cdm.
tableName Name of the table to intersect with. Options: visit_occurrence, condition_occurrence,
drug_exposure, procedure_occurrence, device_exposure, measurement, obser-
vation, drug_era, condition_era, specimen, episode.
indexDate Variable in x that contains the date to compute the intersection.
censorDate whether to censor overlap events at a specific date or a column date of x.
window window to consider events in.
targetStartDate

Column name with start date for comparison.

targetEndDate Column name with end date for comparison.

inObservation If TRUE only records inside an observation period will be considered.

nameStyle naming of the added column or columns, should include required parameters.
name Name of the new table, if NULL a temporary table is returned.
Value

table with added columns with intersect information.

Examples

library(PatientProfiles)

cdm <- mockPatientProfiles(source = "duckdb")

cdm$cohortl |>

addTableIntersectFlag(tableName = "visit_occurrence")

46 benchmarkPatientProfiles

availableEstimates Show the available estimates that can be used for the different vari-
able_type supported.

Description

Show the available estimates that can be used for the different variable_type supported.

Usage

availableEstimates(variableType = NULL, fullQuantiles = FALSE)

Arguments

variableType A set of variable types.

fullQuantiles Whether to display the exact quantiles that can be computed or only the ¢XX to
summarise all of them.

Value

A tibble with the available estimates.

Examples

library(PatientProfiles)

availableEstimates()
availableEstimates("numeric"”)
availableEstimates(c("numeric”, "categorical”))

benchmarkPatientProfiles
Benchmark intersections and demographics functions for a certain
source (cdm).

Description

Benchmark intersections and demographics functions for a certain source (cdm).

Usage

benchmarkPatientProfiles(cdm, n = 50000, iterations = 1)

endDateColumn

Arguments
cdm A cdm_reference object.
n Size of the synthetic cohorts used to benchmark.
iterations Number of iterations to run the benchmark.
Value

A summarise_result object with the summary statistics.

47

endDateColumn Get the name of the end date column for a certain table in the cdm

Description

Get the name of the end date column for a certain table in the cdm

Usage

endDateColumn(tableName)

Arguments

tableName Name of the table.

Value

Name of the end date column in that table.

Examples
library(PatientProfiles)

endDateColumn("”condition_occurrence")

48 filterInObservation

filterCohortlId Filter a cohort according to cohort_definition_id column, the result is
not computed into a table. only a query is added. Used usually as
internal functions of other packages.

Description

Filter a cohort according to cohort_definition_id column, the result is not computed into a table.
only a query is added. Used usually as internal functions of other packages.

Usage

filterCohortId(cohort, cohortId = NULL)

Arguments
cohort A ‘cohort_table‘ object.
cohortId A vector with cohort ids.
Value

A ‘cohort_table‘ object.

filterInObservation Filter the rows of a ‘cdm_table to the ones in observation that ‘index-
Date* is in observation.

Description

Filter the rows of a ‘cdm_table‘ to the ones in observation that ‘indexDate‘ is in observation.

Usage

filterInObservation(x, indexDate)

Arguments

X A ‘cdm_table‘ object.

indexDate Name of a column of x that is a date.
Value

A ‘cdm_table‘ that is a subset of the original table.

mockDisconnect 49

Examples

Not run:

library(PatientProfiles)

library(omock)

cdm <- mockCdmFromDataset(datasetName = "GiBleed"”, source = "duckdb")
cdm$condition_occurrence |>

filterInObservation(indexDate = "condition_start_date”)

End(Not run)

mockDisconnect Deprecated

Description

Deprecated

Usage

mockDisconnect (cdm)

Arguments

cdm A cdm_reference object.

mockPatientProfiles It creates a mock database for testing PatientProfiles package

Description

It creates a mock database for testing PatientProfiles package

Usage

mockPatientProfiles(
numberIndividuals = 10,
source = "local”,
con = lifecycle: :deprecated(),
writeSchema = lifecycle: :deprecated(),
seed = lifecycle: :deprecated()

50 sourceConceptldColumn

Arguments
numberIndividuals
Number of individuals to create in the cdm reference.
User self defined tables to put in cdm, it can input as many as the user want.
source Source for the mock cdm, it can either be ’local’ or duckdb’.
con deprecated.
writeSchema deprecated.
seed deprecated.
Value

A mock cdm_reference object created following user’s specifications.

Examples

library(PatientProfiles)

cdm <- mockPatientProfiles()

sourceConceptIdColumn Get the name of the source concept_id column for a certain table in
the cdm

Description

Get the name of the source concept_id column for a certain table in the cdm

Usage

sourceConceptIdColumn(tableName)

Arguments

tableName Name of the table.

Value

Name of the source_concept_id column in that table.

Examples

library(PatientProfiles)

sourceConceptIdColumn(”condition_occurrence”)

standardConceptldColumn 51

standardConceptIdColumn
Get the name of the standard concept_id column for a certain table in
the cdm

Description

Get the name of the standard concept_id column for a certain table in the cdm

Usage

standardConceptIdColumn(tableName)

Arguments

tableName Name of the table.

Value

Name of the concept_id column in that table.

Examples

library(PatientProfiles)

standardConceptIdColumn(”condition_occurrence")

startDateColumn Get the name of the start date column for a certain table in the cdm

Description

Get the name of the start date column for a certain table in the cdm

Usage

startDateColumn(tableName)

Arguments

tableName Name of the table.

Value

Name of the start date column in that table.

52 summariseResult

Examples

library(PatientProfiles)

startDateColumn("”condition_occurrence")

summariseResult Summarise variables using a set of estimate functions. The output will
be a formatted summarised_result object.

Description

Summarise variables using a set of estimate functions. The output will be a formatted summarised_result
object.

Usage

summariseResult(
table,
group = list(),
includeOverallGroup = FALSE,
strata = list(),
includeOverallStrata = TRUE,
variables = NULL,
estimates = NULL,
counts = TRUE,
weights = NULL

)
Arguments

table Table with different records.

group List of groups to be considered.

includeOverallGroup
TRUE or FALSE. If TRUE, results for an overall group will be reported when a
list of groups has been specified.

strata List of the stratifications within each group to be considered.

includeOverallStrata
TRUE or FALSE. If TRUE, results for an overall strata will be reported when a
list of strata has been specified.

variables Variables to summarise, it can be a list to point to different set of estimate names.

estimates Estimates to obtain, it can be a list to point to different set of variables.

counts Whether to compute number of records and number of subjects.

weights Name of the column in the table that contains the weights to be used when

measuring the estimates.

variableTypes 53

Value

A summarised_result object with the summarised data of interest.

Examples

library(PatientProfiles)
cdm <- mockPatientProfiles(source = "duckdb")

x <- cdm$cohortl |>
addDemographics()

summarise all variables with default estimates
result <- summariseResult(x)
result

get only counts of records and subjects
result <- summariseResult(x, variables = character())
result

specify variables and estimates
result <- summariseResult(

table = x,
variables = c("cohort_start_date”, "age"),
estimates = c("mean”, "median"”, "density")
)
result

different estimates for each variable
result <- summariseResult(

table = x,
variables = list(c("age", "prior_observation”), "sex"),
estimates = list(c("min", "max"), c("count”, "percentage"))
)
variableTypes Classify the variables between 5 types: 'numeric", "categorical”,
"logical", "date", "integer", or NA.
Description

Classify the variables between 5 types: "numeric", "categorical”, "logical", "date", "integer", or
NA.

Usage

variableTypes(table)

54 variableTypes

Arguments

table Tibble.

Value

Tibble with the variables type and classification.

Examples

library(PatientProfiles)
library(dplyr, warn.conflicts = TRUE)

x <- tibble(
person_id = c(1, 2),
start_date = as.Date(c("2020-05-02", "2021-11-19")),
asthma = c(0, 1)

)

variableTypes(x)

Index

addAge, 3

addAgeQuery, 4
addCategories, 5
addCdmName, 7
addCohortIntersectCount, 7
addCohortIntersectDate, 9
addCohortIntersectDays, 10
addCohortIntersectFlag, 11
addCohortName, 12
addConceptIntersectCount, 13
addConceptIntersectDate, 14
addConceptlIntersectDays, 16
addConceptIntersectField, 17
addConceptlIntersectFlag, 19
addConceptName, 20
addDateOfBirth, 21
addDateOfBirthQuery, 22
addDeathDate, 23
addDeathDays, 24
addDeathFlag, 25
addDemographics, 26
addDemographicsQuery, 28
addFutureObservation, 30
addFutureObservationQuery, 31
addInObservation, 32
addInObservationQuery, 33
addObservationPeriodId, 34

addObservationPeriodIdQuery, 35

addPriorObservation, 36
addPriorObservationQuery, 37
addSex, 38

addSexQuery, 38
addTableIntersectCount, 39
addTableIntersectDate, 40
addTableIntersectDays, 42
addTableIntersectField, 43
addTableIntersectFlag, 44
availableEstimates, 46

benchmarkPatientProfiles, 46

55

endDateColumn, 47

filterCohortlId, 48
filterInObservation, 48

mockDisconnect, 49
mockPatientProfiles, 49

sourceConceptIdColumn, 50
standardConceptIdColumn, 51
startDateColumn, 51
summariseResult, 52

variableTypes, 53

	addAge
	addAgeQuery
	addCategories
	addCdmName
	addCohortIntersectCount
	addCohortIntersectDate
	addCohortIntersectDays
	addCohortIntersectFlag
	addCohortName
	addConceptIntersectCount
	addConceptIntersectDate
	addConceptIntersectDays
	addConceptIntersectField
	addConceptIntersectFlag
	addConceptName
	addDateOfBirth
	addDateOfBirthQuery
	addDeathDate
	addDeathDays
	addDeathFlag
	addDemographics
	addDemographicsQuery
	addFutureObservation
	addFutureObservationQuery
	addInObservation
	addInObservationQuery
	addObservationPeriodId
	addObservationPeriodIdQuery
	addPriorObservation
	addPriorObservationQuery
	addSex
	addSexQuery
	addTableIntersectCount
	addTableIntersectDate
	addTableIntersectDays
	addTableIntersectField
	addTableIntersectFlag
	availableEstimates
	benchmarkPatientProfiles
	endDateColumn
	filterCohortId
	filterInObservation
	mockDisconnect
	mockPatientProfiles
	sourceConceptIdColumn
	standardConceptIdColumn
	startDateColumn
	summariseResult
	variableTypes
	Index

