Package ‘RSNNS’

January 30, 2026

Maintainer Christoph Bergmeir <c.bergmeir@decsai.ugr.es>
License LGPL (>=2) | file LICENSE

Title Neural Networks using the Stuttgart Neural Network Simulator
(SNNS)

LinkingTo Rcpp
Type Package
LazyLoad yes

Copyright Original SNNS software Copyright (C) 1990-1995 SNNS Group,
IPVR, Univ. Stuttgart, FRG; 1996-1998 SNNS Group, WSI, Univ.
Tuebingen, FRG. R interface Copyright (C) DiCITS Lab, Sci2s
group, DECSALI, University of Granada.

Description The Stuttgart Neural Network Simulator (SNNS) is a library
containing many standard implementations of neural networks. This
package wraps the SNNS functionality to make it available from
within R. Using the 'RSNNS' low-level interface, all of the
algorithmic functionality and flexibility of SNNS can be accessed.
Furthermore, the package contains a convenient high-level
interface, so that the most common neural network topologies and
learning algorithms integrate seamlessly into R.

Version 0.4-18
URL https://github.com/cbergmeir/RSNNS

BugReports https://github.com/cbergmeir/RSNNS/issues
MailingList rsnns@ googlegroups.com

Date 2026-01-30

Depends R (>=2.10.0), methods, Rcpp (>=0.8.5)

Suggests scatterplot3d,NeuralNetTools,plot3D

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation yes

https://github.com/cbergmeir/RSNNS
https://github.com/cbergmeir/RSNNS/issues

2 Contents

Author Christoph Bergmeir [aut, cre, cph],
José M. Benitez [ths],
Andreas Zell [ctb] (Part of original SNNS development team),
Niels Mache [ctb] (Part of original SNNS development team),
Giinter Mamier [ctb] (Part of original SNNS development team),
Michael Vogt [ctb] (Part of original SNNS development team),
Sven Doring [ctb] (Part of original SNNS development team),
Ralf Hiibner [ctb] (Part of original SNNS development team),
Kai-Uwe Herrmann [ctb] (Part of original SNNS development team),
Tobias Soyez [ctb] (Part of original SNNS development team),
Michael Schmalzl [ctb] (Part of original SNNS development team),
Tilman Sommer [ctb] (Part of original SNNS development team),
Artemis Hatzigeorgiou [ctb] (Part of original SNNS development team),
Dietmar Posselt [ctb] (Part of original SNNS development team),
Tobias Schreiner [ctb] (Part of original SNNS development team),
Bernward Kett [ctb] (Part of original SNNS development team),
Martin Reczko [ctb] (Part of original SNNS external contributors),
Martin Riedmiller [ctb] (Part of original SNNS external contributors),
Mark Seemann [ctb] (Part of original SNNS external contributors),
Marcus Ritt [ctb] (Part of original SNNS external contributors),
Jamie DeCoster [ctb] (Part of original SNNS external contributors),
Jochen Biedermann [ctb] (Part of original SNNS external contributors),
Joachim Danz [ctb] (Part of original SNNS development team),
Christian Wehrfritz [ctb] (Part of original SNNS development team),
Patrick Kursawe [ctb] (Contributors to SNNS Version 4.3),
Andre El-Ama [ctb] (Contributors to SNNS Version 4.3)

Repository CRAN
Date/Publication 2026-01-30 06:11:03 UTC

Contents
RSNNS-package e 4
analyzeClassification o 6
artl . L e e e 7
art2 L L e e e 10
AMTMAD . .« o o e e e e e e e e e e e e e 12
ASSOZ . v v v e e e e e e e e e e e e e e e e e e 15
confusionMatrixX L. e e e e e e e 17
decodeClassLabels e 17
denormalizeData 18
dlvg . . . e 19
elman L e e e 21
encodeClassLabels e 23
exportToSnnsNetFile 24
extractNetInfo 24
getNormParameters L. 25

getSnnsRDefine 26

Contents

3
getSnnsRFunctionTable 26
inputColumns e 27
jordan e 27
matrixToActMapList e 30
MIP . . e e e 31
normalizeData oL 33
normTrainingAndTestSet 34
outputColumns L. e e e e e e e 35
plotActMap e 36
plotlterativeError 36
plotRegressionError oL 37
PIOtROC e e e 37
PrediCtrsnnso L e e e e e e e 38
PINLISONS .« . . . v v v o ottt e e e e e e e e e e e e 38
) 39
DDA . . L 41
readPatFile 43
readResFile 43
resolveSnnsRDefine L 44
rsnnsObjectFactory 44
savePatFile 46
setSnnsRSeedValue 46
snnsData L e 47
SnnsR-class 47
SnnsRObjectFactory e e e 49
SnnsRObjectMethodCaller 50
SnnsRObject$createNet L 51
SnnsRObject$createPatSet 52
SnnsRObject$extractNetInfo 52
SnnsRObject$extractPatternso 53
SnnsRObject$getAllHiddenUnits oo 53
SnnsRObject$getAlllnputUnits oo v vt o 54
SnnsRObject$getAllOutputUnits 54
SnnsRObject$getAllUNIts L 55
SnnsRObject$get AllUnItsTType o o o v v vt i e e e e e 55
SnnsRObject$getCompleteWeightMatrix 56
SnnsRObject$getinfoHeader 56
SnnsRObject$getSiteDefinitions 57
SnnsRObject$getTypeDefinitions 57
SnnsRObject$getUnitDefinitions L 58
SnnsRObject$getUnitsByName 58
SnnsRObject$getWeightMatrix 59
SnnsRObject$initializeNet 59
SnnsRObject$predictCurrPatSet 60
SnnsRObject$resetRSNNS 60
SnnsRObject$setTTypeUnitsActFunc 61
SnnsRObject$setUnitDefaults L 61

SnnsRObject$somPredictComponentMaps 62

4 RSNNS-package

SnnsRObject$somPredictCurrPatSetWinners 63
SnnsRObject$somPredictCurrPatSetWinnersSpanTree 64
SnnsRObject$train 64
SnnsRObject$whereAreResults 66
SOML . o v v v e e e e e e e e 66
splitForTrainingAndTest 69
SUMMATY.ISINS .+« . v v v v v e e v e e e e e e e e e e e e e e e e e 70
toNumericClassLabels 71
rain L e e e e 71
vectorTOACtMap e 72
weightMatriX L e 73

Index 74

RSNNS-package Getting started with the RSNNS package
Description

The Stuttgart Neural Network Simulator (SNNS) is a library containing many standard implemen-
tations of neural networks. This package wraps the SNNS functionality to make it available from
within R.

Details

If you have problems using RSNNS, find a bug, or have suggestions, please do not write to the
general R lists or contact the authors of the original SNNS software. Instead, you should: File an
issue on github (bugs/suggestions), Ask your question on Stackoverflow under the tag RSNNS, or
write to the mailing list (rsnns @ googlegroups.com). If all that fails, then you can also contact the
maintainer directly by email.

If you use the package, please cite the following work in your publications:

Bergmeir, C. and Benitez, J.M. (2012), Neural Networks in R Using the Stuttgart Neural Network
Simulator: RSNNS. Journal of Statistical Software, 46(7), 1-26.

The package has a hierarchical architecture with three levels:

* RSNNS high-level api (rsnns)
* RSNNS low-level api (SnnsR)
* The api of our C++ port of SNNS (SnnsCLib)
Many demos for using both low-level and high-level api of the package are available. To get a list
of them, type:
library(RSNNS)
demo ()

It is a good idea to start with the demos of the high-level api (which is much more convenient to
use). E.g., to access the iris classification demo type:

demo(iris)

RSNNS-package 5

or for the laser regression demo type:
demo(laser)

As the high-level api is already quite powerful and flexible, you’ll most probably normally end up
using one of the functions: mlp, dlvq, rbf, rbfDDA, elman, jordan, som, artl, art2, artmap, or
assoz, with some pre- and postprocessing. These S3 classes are all subclasses of rsnns.

You might also want to have a look at the original SNNS program and the SNNS User Manual 4.2,
especially pp 67-87 for explications on all the parameters of the learning functions, and pp 145-215
for detailed (theoretical) explications of the methods and advice on their use. And, there is also
the javaNNS, the sucessor of SNNS from the original authors. It makes the C core functionality
available from a Java GUIL

Demos ending with "SnnsR" show the use of the low-level api. If you want to do special things with
neural networks that are currently not implemented in the high-level api, you can see in this demos
how to do it. Many demos are present both as high-level and low-level versions.

The low-level api consists mainly of the class SnnsR-class, which internally holds a pointer to
a C++ object of the class SnnsCLib, i.e., an instance of the SNNS kernel. The class furthermore
implements a calling mechanism for methods of the SnnsCLib object, so that they can be called
conveniently using the "$"-operator. This calling mechanism also allows for transparent mask-
ing of methods or extending the kernel with new methods from within R. See $,SnnsR-method.
R-functions that are added by RSNNS to the kernel are documented in this manual under topics be-
ginning with SnnsRObject$. Documentation of the original SNNS kernel user interface functions
can be found in the SNNS User Manual 4.2 pp 290-314. A call to, e.g., the SNNS kernel function
krui_getNoOfUnits(...) can be done with SnnsRObject$getNoOfUnits(...). However, a few
functions were excluded from the wrapping for various reasons. Fur more details and other known
issues see the file /inst/doc/Knownlssues.

Another nice tool is the NeuralNetTools package, that can be used to visualize and analyse the
networks generated with RSNNS.

Most of the example data included in SNNS is also present in this package, see snnsData.

A comprehensive report with many examples showing the usage of RSNNS, developed by Seymour
Shlien, is available here:

https://ifdo.ca/~seymour/R/

Author(s)

Christoph Bergmeir <c.bergmeir@decsai.ugr.es>
and José M. Benitez <j.m.benitez@decsai.ugr.es>
DiCITS Lab, Sci2s group, DECSAI, University of Granada.

References
Bergmeir, C. and Benitez, J.M. (2012), ’Neural Networks in R Using the Stuttgart Neural Network
Simulator: RSNNS’, Journal of Statistical Software, 46(7), 1-26.
General neural network literature:
Bishop, C. M. (2003), Neural networks for pattern recognition, University Press, Oxford.

Haykin, S. S. (1999), Neural networks :a comprehensive foundation, Prentice Hall, Upper Saddle
River, NIJ.

https://ifdo.ca/~seymour/R/

6 analyzeClassification

Kriesel, D. (2007), A Brief Introduction to Neural Networks. http://www.dkriesel.com

Ripley, B. D. (2007), Pattern recognition and neural networks, Cambridge University Press, Cam-
bridge.

Rojas, R. (1996), Neural networks :a systematic introduction, Springer-Verlag, Berlin.

Rumelhart, D. E.; Clelland, J. L. M. & Group, P. R. (1986), Parallel distributed processing :explo-
rations in the microstructure of cognition, Mit, Cambridge, MA etc..

Literature on the original SNNS software:

Zell, A. etal. (1998), ’SNNS Stuttgart Neural Network Simulator User Manual, Version 4.2°, IPVR,
University of Stuttgart and WSI, University of Tiibingen. https://www.ra.cs.uni-tuebingen.
de/SNNS/welcome.html

javaNNS, the sucessor of the original SNNS with a Java GUI: https://github.com/mwri/javanns
Zell, A. (1994), Simulation Neuronaler Netze, Addison-Wesley.
Other resources:

A function to plot networks from the mlp function: https://beckmw.wordpress.com/2013/11/
14/visualizing-neural-networks-in-r-update/

See Also

mlp, dlvq, rbf, rbfDDA, elman, jordan, som, art1, art2, artmap, assoz

analyzeClassification Converts continuous outputs to class labels

Description

This function converts the continuous outputs to binary outputs that can be used for classification.
The two methods 402040, and winner-takes-all (WTA), are implemented as described in the SNNS
User Manual 4.2.

Usage

analyzeClassification(y, method = "WTA", 1 = @, h = 0)

Arguments
y inputs
method "WTA" or "402040"
1 lower bound, e.g. in 402040: 1=0.4

h upper bound, e.g. in 402040: h=0.6

https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html
https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html
https://github.com/mwri/javanns
https://beckmw.wordpress.com/2013/11/14/visualizing-neural-networks-in-r-update/
https://beckmw.wordpress.com/2013/11/14/visualizing-neural-networks-in-r-update/

artl

Details

The following text is an edited citation from the SNNS User Manual 4.2 (pp 269):

402040 A pattern is recognized as classified correctly, if (i) the output of exactly one output unit is

>= h (ii) the teaching output of this unit is the maximum teaching output (> 0) of the pattern
(iii) the output of all other output units is <= 1.

A pattern is recognized as classified incorrectly, if (i) and (iii) hold as above, but for (ii) holds
that the teaching output is not the maximum teaching output of the pattern or there is no
teaching output > 0.

A pattern is recognized as unclassified in all other cases.
The method derives its name from the commonly used default values 1 = 0.4, h = 0.6.

WTA A pattern is recognized as classified correctly, if (i) there is an output unit with the value

Value

greater than the output value of all other output units (this output value is supposed to be a)
(i1) a > h (iii) the teaching output of this unit is the maximum teaching output of the pattern (>
0) (iv) the output of all other unitsis < a- L.

A pattern is recognized as classified incorrectly, if (i), (ii), and (iv) hold as above, but for (iii)
holds that the teaching output of this unit is not the maximum teaching output of the pattern
or there is no teaching output > 0.

A pattern is recognized as unclassified in all other cases.

Commonly used default values for this method are: 1 = 0.0, h =0.0.

the position of the winning unit (i.e., the winning class), or zero, if no classification was done.

References

Zell, A. etal. (1998), ’SNNS Stuttgart Neural Network Simulator User Manual, Version 4.2°, IPVR,
University of Stuttgart and WSI, University of Tiibingen. https://www.ra.cs.uni-tuebingen.
de/SNNS/welcome.html

See Also

encodeClasslLabels

arti

Create and train an artl network

Description

Adaptive resonance theory (ART) networks perform clustering by finding prototypes. They are
mainly designed to solve the stability/plasticity dilemma (which is one of the central problems in
neural networks) in the following way: new input patterns may generate new prototypes (plasticity),
but patterns already present in the net (represented by their prototypes) are only altered by similar
new patterns, not by others (stability). ART1 is for binary inputs only, if you have real-valued input,
use art?2 instead.

https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html
https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html

8 artl

Learning in an ART network works as follows: A new input is intended to be classified according
to the prototypes already present in the net. The similarity between the input and all prototypes is
calculated. The most similar prototype is the winner. If the similarity between the input and the
winner is high enough (defined by a vigilance parameter), the winner is adapted to make it more
similar to the input. If similarity is not high enough, a new prototype is created. So, at most the
winner is adapted, all other prototypes remain unchanged.

Usage

art1(x, ...)

Default S3 method:

artl1(
X,
dimX,
dimy,
f2Units = nrow(x),
maxit = 100,
initFunc = "ART1_Weights",
initFuncParams = c(1, 1),
learnFunc = "ART1",
learnFuncParams = c(0.9, 0, 0),
updateFunc = "ART1_Stable"”,
updateFuncParams = c(9),
shufflePatterns = TRUE,

)
Arguments
X a matrix with training inputs for the network
additional function parameters (currently not used)
dimX x dimension of inputs and outputs
dimy y dimension of inputs and outputs
f2Units controls the number of clusters assumed to be present
maxit maximum of iterations to learn
initFunc the initialization function to use

initFuncParams the parameters for the initialization function

learnFunc the learning function to use
learnFuncParams
the parameters for the learning function

updateFunc the update function to use
updateFuncParams

the parameters for the update function
shufflePatterns

should the patterns be shuffled?

artl 9

Details

The architecture of an ART network is the following: ART is based on the more general concept
of competitive learning. The networks have two fully connected layers (in both directions), the
input/comparison layer and the recognition layer. They propagate activation back and forth (reso-
nance). The units in the recognition layer have lateral inhibition, so that they show a winner-takes-all
behaviour, i.e., the unit that has the highest activation inhibits activation of other units, so that after
a few cycles its activation will converge to one, whereas the other units activations converge to zero.
ART stabilizes this general learning mechanism by the presence of some special units. For details
refer to the referenced literature.

The default initialization function, ART1_Weights, is the only one suitable for ART1 networks. It
has two parameters, which are explained in the SNNS User Manual pp.189. A default of 1.0 for
both is usually fine. The only learning function suitable for ART1 is ART1. Update functions are
ART1_Stable and ART1_Synchronous. The difference between the two is that the first one updates
until the network is in a stable state, and the latter one only performs one update step. Both the
learning function and the update functions have one parameter, the vigilance parameter.

In its current implementation, the network has two-dimensional input. The matrix x contains all
(one dimensional) input patterns. Internally, every one of these patterns is converted to a two-
dimensional pattern using parameters dimX and dimY. The parameter f2Units controls the number
of units in the recognition layer, and therewith the maximal amount of clusters that are assumed to
be present in the input patterns.

A detailed description of the theory and the parameters is available from the SNNS documentation
and the other referenced literature.

Value

an rsnns object. The fitted.values member of the object contains a list of two-dimensional
activation patterns.

References

Carpenter, G. A. & Grossberg, S. (1987), ’A massively parallel architecture for a self-organizing
neural pattern recognition machine’, Comput. Vision Graph. Image Process. 37, 54-115.

Grossberg, S. (1988), Adaptive pattern classification and universal recoding. I.: parallel devel-
opment and coding of neural feature detectors, MIT Press, Cambridge, MA, USA, chapter I, pp.
243-258.

Herrmann, K.-U. (1992), ’ART — Adaptive Resonance Theory — Architekturen, Implementierung
und Anwendung’, Master’s thesis, IPVR, University of Stuttgart. (in German)

Zell, A. etal. (1998), ’SNNS Stuttgart Neural Network Simulator User Manual, Version 4.2°, IPVR,
University of Stuttgart and WSI, University of Tiibingen. https://www.ra.cs.uni-tuebingen.
de/SNNS/welcome.html

Zell, A. (1994), Simulation Neuronaler Netze, Addison-Wesley. (in German)

See Also

art2, artmap

https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html
https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html

10 art2

Examples

Not run: demo(arti_letters)
Not run: demo(arti_lettersSnnsR)

data(snnsData)
patterns <- snnsData$artl_letters.pat

inputMaps <- matrixToActMapList(patterns, nrow=7)
par(mfrow=c(3,3))
for (i in 1:9) plotActMap(inputMaps[[i]])

model <- artl(patterns, dimX=7, dimY=5)
encodeClassLabels(model$fitted.values)

art2 Create and train an art2 network

Description

ART?2 is very similar to ART1, but for real-valued input. See art1 for more information. Opposed
to the ART1 implementation, the ART2 implementation does not assume two-dimensional input.

Usage

art2(x, ...)

Default S3 method:

art2(
X,
f2Units = 5,
maxit = 100,

initFunc = "ART2_Weights",

initFuncParams = c(0.9, 2),

learnFunc = "ART2",

learnFuncParams = c(0.98, 10, 10, 0.1, 0),
updateFunc = "ART2_Stable"”,
updateFuncParams = c(0.98, 10, 10, 0.1, 0),
shufflePatterns = TRUE,

Arguments

X a matrix with training inputs for the network
additional function parameters (currently not used)

f2Units controls the number of clusters assumed to be present

art2 11

maxit maximum of iterations to learn
initFunc the initialization function to use
initFuncParams the parameters for the initialization function

learnFunc the learning function to use
learnFuncParams

the parameters for the learning function
updateFunc the update function to use
updateFuncParams

the parameters for the update function
shufflePatterns

should the patterns be shuffled?

Details

As comparison of real-valued vectors is more difficult than comparison of binary vectors, the com-
parison layer is more complex in ART2, and actually consists of three layers. With a more complex
comparison layer, also other parts of the network enhance their complexity. In SNNS, this enhanced
complexity is reflected by the presence of more parameters in initialization-, learning-, and update
function.

In analogy to the implementation of ART1, there are one initialization function, one learning func-
tion and two update functions suitable for ART2. The learning and update functions have five
parameters, the initialization function has two parameters. For details see the SNNS User Manual,
p. 67 and pp. 192.

Value

an rsnns object. The fitted.values member contains the activation patterns for all inputs.

References

Carpenter, G. A. & Grossberg, S. (1987), ’ART 2: self-organization of stable category recognition
codes for analog input patterns’, Appl. Opt. 26(23), 4919-4930.

Grossberg, S. (1988), Adaptive pattern classification and universal recoding. 1.: parallel devel-
opment and coding of neural feature detectors, MIT Press, Cambridge, MA, USA, chapter I, pp.
243-258.

Herrmann, K.-U. (1992), ’ART — Adaptive Resonance Theory — Architekturen, Implementierung
und Anwendung’, Master’s thesis, IPVR, University of Stuttgart. (in German)

Zell, A. etal. (1998), ’SNNS Stuttgart Neural Network Simulator User Manual, Version 4.2°, IPVR,
University of Stuttgart and WSI, University of Tiibingen. https://www.ra.cs.uni-tuebingen.
de/SNNS/welcome.html

Zell, A. (1994), Simulation Neuronaler Netze, Addison-Wesley. (in German)

See Also

arti, artmap

https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html
https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html

12 artmap

Examples

Not run: demo(art2_tetra)
Not run: demo(art2_tetraSnnsR)

data(snnsData)
patterns <- snnsData$art2_tetra_med.pat

model <- art2(patterns, f2Units=5, learnFuncParams=c(0.99, 20, 20, 0.1, @),
updateFuncParams=c(0.99, 20, 20, 0.1, 0))
model

testPatterns <- snnsData$art2_tetra_high.pat
predictions <- predict(model, testPatterns)

Not run: library(scatterplot3d)
Not run: par(mfrow=c(2,2))

Not run: scatterplot3d(patterns, pch=encodeClassLabels(model$fitted.values))
Not run: scatterplot3d(testPatterns, pch=encodeClassLabels(predictions))

artmap Create and train an artmap network

Description

An ARTMAP performs supervised learning. It consists of two coupled ART networks. In theory,
these could be ART1, ART2, or others. However, in SNNS ARTMAP is implemented for ART1
only. So, this function is to be used with binary input. As explained in the description of art1,
ART aims at solving the stability/plasticity dilemma. So the advantage of ARTMAP is that it is a
supervised learning mechanism that guarantees stability.

Usage

artmap(x, ...)

Default S3 method:
artmap(
X,
nInputsTrain,
nlnputsTargets,
nUnitsRecLayerTrain,
nUnitsReclLayerTargets,
maxit = 1,
nRowInputsTrain = 1,
nRowInputsTargets = 1,
nRowUnitsRecLayerTrain = 1,

nRowUnitsRecLayerTargets 1,

artmap 13

initFunc = "ARTMAP_Weights",
initFuncParams = c(1, 1, 1, 1, 9),
learnFunc = "ARTMAP",

learnFuncParams = c(0.8, 1, 1, 0, 0),
updateFunc = "ARTMAP_Stable”,
updateFuncParams = c(0.8, 1, 1, 0, 0),
shufflePatterns = TRUE,

Arguments

X a matrix with training inputs and targets for the network
additional function parameters (currently not used)
nInputsTrain the number of columns of the matrix that are training input

nInputsTargets the number of columns that are target values

nUnitsRecLayerTrain
number of units in the recognition layer of the training data ART network

nUnitsReclLayerTargets
number of units in the recognition layer of the target data ART network
maxit maximum of iterations to perform

nRowInputsTrain
number of rows the training input units are to be organized in (only for visual-
ization purposes of the net in the original SNNS software)

nRowInputsTargets
same, but for the target value input units

nRowUnitsRecLayerTrain
same, but for the recognition layer of the training data ART network

nRowUnitsReclLayerTargets
same, but for the recognition layer of the target data ART network

initFunc the initialization function to use
initFuncParams the parameters for the initialization function

learnFunc the learning function to use
learnFuncParams

the parameters for the learning function
updateFunc the update function to use

updateFuncParams
the parameters for the update function

shufflePatterns
should the patterns be shuffled?

14 artmap

Details

See also the details section of art1. The two ART1 networks are connected by a map field. The
input of the first ART1 network is the training input, the input of the second network are the target
values, the teacher signals. The two networks are often called ARTa and ARTb, we call them here
training data network and target data network.

In analogy to the ART1 and ART2 implementations, there are one initialization function, one learn-
ing function, and two update functions present that are suitable for ARTMAP. The parameters are
basically as in ART1, but for two networks. The learning function and the update functions have
3 parameters, the vigilance parameters of the two ART1 networks and an additional vigilance pa-
rameter for inter ART reset control. The initialization function has four parameters, two for every
ART1 network.

A detailed description of the theory and the parameters is available from the SNNS documentation
and the other referenced literature.

Value

an rsnns object. The fitted.values member of the object contains a list of two-dimensional
activation patterns.

References

Carpenter, G. A.; Grossberg, S. & Reynolds, J. H. (1991), ’ARTMAP: Supervised real-time learning
and classification of nonstationary data by a self-organizing neural network’, Neural Networks 4(5),
565-588.

Grossberg, S. (1988), Adaptive pattern classification and universal recoding. I.: parallel devel-
opment and coding of neural feature detectors, MIT Press, Cambridge, MA, USA, chapter I, pp.
243-258.

Herrmann, K.-U. (1992), ’ART - Adaptive Resonance Theory — Architekturen, Implementierung
und Anwendung’, Master’s thesis, IPVR, University of Stuttgart. (in German)

Zell, A. etal. (1998), ’SNNS Stuttgart Neural Network Simulator User Manual, Version 4.2°, IPVR,
University of Stuttgart and WSI, University of Tiibingen. https://www.ra.cs.uni-tuebingen.
de/SNNS/welcome.html

Zell, A. (1994), Simulation Neuronaler Netze, Addison-Wesley. (in German)

See Also

artl, art2

Examples

Not run: demo(artmap_letters)
Not run: demo(artmap_lettersSnnsR)

data(snnsData)
trainData <- snnsData$artmap_train.pat
testData <- snnsData$artmap_test.pat

https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html
https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html

assoz 15

model <- artmap(trainData, nInputsTrain=7@, nInputsTargets=5,
nUnitsRecLayerTrain=50, nUnitsReclLayerTargets=26)
model$fitted.values

predict(model, testData)

assoz Create and train an (auto-)associative memory

Description

The autoassociative memory performs clustering by finding a prototype to the given input. The
implementation assumes two-dimensional input and output (cf. art1).

Usage

assoz(x, ...)

Default S3 method:

assoz(
X,
dimX,
dimy,
maxit = 100,
initFunc = "RM_Random_Weights",
initFuncParams = c(1, -1),
learnFunc = "RM_delta”,
learnFuncParams = c(0.01, 100, @, 0, 0),
updateFunc = "Auto_Synchronous”,
updateFuncParams = c(50),
shufflePatterns = TRUE,

)
Arguments
X a matrix with training inputs for the network
additional function parameters (currently not used)
dimX x dimension of inputs and outputs
dimy y dimension of inputs and outputs
maxit maximum of iterations to learn
initFunc the initialization function to use

initFuncParams the parameters for the initialization function

learnFunc the learning function to use

16 assoz

learnFuncParams
the parameters for the learning function

updateFunc the update function to use
updateFuncParams

the parameters for the update function
shufflePatterns

should the patterns be shuffled?

Details

The default initialization and update functions are the only ones suitable for this kind of network.
The update function takes one parameter, which is the number of iterations that will be performed.
The default of 50 usually does not have to be modified. For learning, RM_delta and Hebbian
functions can be used, though the first one usually performs better.

A more detailed description of the theory and the parameters is available from the SNNS documen-
tation and the other referenced literature.
Value

an rsnns object. The fitted.values member contains the activation patterns for all inputs.

References

Palm, G. (1980), *On associative memory’, Biological Cybernetics 36, 19-31.
Rojas, R. (1996), Neural networks :a systematic introduction, Springer-Verlag, Berlin.

Zell, A. etal. (1998), ’SNNS Stuttgart Neural Network Simulator User Manual, Version 4.2°, IPVR,
University of Stuttgart and WSI, University of Tiibingen. https://www.ra.cs.uni-tuebingen.
de/SNNS/welcome.html

See Also

artl, art2

Examples

Not run: demo(assoz_letters)
Not run: demo(assoz_lettersSnnsR)

data(snnsData)

patterns <- snnsData$artl_letters.pat

model <- assoz(patterns, dimX=7, dimY=5)

actMaps <- matrixToActMapList(model$fitted.values, nrow=7)

par(mfrow=c(3,3))
for (i in 1:9) plotActMap(actMaps[[il])

https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html
https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html

confusionMatrix 17

confusionMatrix Computes a confusion matrix

Description

The confusion matrix shows how many times a pattern with the real class x was classified as class
y. A perfect method should result in a diagonal matrix. All values not on the diagonal are errors of
the method.

Usage

confusionMatrix(targets, predictions)

Arguments

targets the known, correct target values

predictions the corresponding predictions of a method for the targets
Details

If the class labels are not already encoded, they are encoded using encodeClassLabels (with de-
fault values).

Value

the confusion matrix

decodeClassLabels Decode class labels to a binary matrix

Description

This method decodes class labels from a numerical or levels vector to a binary matrix, i.e., it con-
verts the input vector to a binary matrix.

Usage

decodeClasslLabels(x, valTrue = 1, valFalse = @)

Arguments
X class label vector
valTrue see Details paragraph

valFalse see Details paragraph

18 denormalizeData

Details

In the matrix, the value valTrue (e.g. 1) is present exactly in the column given by the value in the
input vector, and the value valFalse (e.g. 0) in the other columns. The number of columns of the
resulting matrix depends on the number of unique labels found in the vector. E.g. the input c(1, 3,
2, 3) will result in an output matrix with rows: 100 001 010 001

Value

a matrix containing the decoded class labels

Author(s)

The implementation is a slightly modified version of the function class. ind from the nnet package
of Brian Ripley.

References

Venables, W. N. and Ripley, B. D. (2002), "Modern Applied Statistics with S’, Springer-Verlag.

Examples
decodeClassLabels(c(1,3,2,3))
decodeClassLabels(c("r","b","b","r", "g". "g"})

data(iris)
decodeClasslLabels(iris[,5])

denormalizeData Revert data normalization

Description

Column-wise normalization of the input matrix is reverted, using the given parameters.

Usage

denormalizeData(x, normParams)

Arguments
X input data
normParams the parameters generated by an earlier call to normalizeData that will be used
for reverting normalization
Details

The input matrix is column-wise denormalized using the parameters given by normParams. E.g., if
normParams contains mean and sd for every column, the values are multiplied by sd and the mean
is added

dlvq 19

Value

column-wise denormalized input

See Also

normalizeData, getNormParameters

Examples

data(iris)
values <- normalizeData(iris[,1:41)
denormalizeData(values, getNormParameters(values))

dlvq Create and train a dlvg network

Description

Dynamic learning vector quantization (DLVQ) networks are similar to self-organizing maps (SOM,
som). But they perform supervised learning and lack a neighborhood relationship between the
prototypes.

Usage
dlvg(x, ...)

Default S3 method:

dlvq(
X,
Y,
initFunc = "DLVQ_Weights",
initFuncParams = c(1, -1),
learnFunc = "Dynamic_LVQ",
learnFuncParams = c(0.03, .03, 10),
updateFunc = "Dynamic_LVQ",
updateFuncParams = c(90),
shufflePatterns = TRUE,

)
Arguments
X a matrix with training inputs for the network
additional function parameters (currently not used)
y the corresponding target values

initFunc the initialization function to use

20

divq

initFuncParams the parameters for the initialization function

learnFunc the learning function to use
learnFuncParams

the parameters for the learning function
updateFunc the update function to use

updateFuncParams

the parameters for the update function
shufflePatterns

should the patterns be shuffled?

Details

The input data has to be normalized in order to use DLVQ.

Learning in DLVQ: For each class, a mean vector (prototype) is calculated and stored in a (newly
generated) hidden unit. Then, the net is used to classify every pattern by using the nearest proto-
type. If a pattern gets misclassified as class y instead of class x, the prototype of class y is moved
away from the pattern, and the prototype of class x is moved towards the pattern. This procedure is
repeated iteratively until no more changes in classification take place. Then, new prototypes are in-
troduced in the net per class as new hidden units, and initialized by the mean vector of misclassified
patterns in that class.

Network architecture: The network only has one hidden layer, containing one unit for each proto-
type. The prototypes/hidden units are also called codebook vectors. Because SNNS generates the
units automatically, and does not need their number to be specified in advance, the procedure is
called dynamic LVQ in SNNS.

The default initialization, learning, and update functions are the only ones suitable for this kind of
network. The three parameters of the learning function specify two learning rates (for the cases
correctly/uncorrectly classified), and the number of cycles the net is trained before mean vectors are
calculated.

A detailed description of the theory and the parameters is available, as always, from the SNNS
documentation and the other referenced literature.

Value

an rsnns object. The fitted.values member contains the activation patterns for all inputs.

References

Kohonen, T. (1988), Self-organization and associative memory, Vol. 8, Springer-Verlag.

Zell, A. etal. (1998), ’SNNS Stuttgart Neural Network Simulator User Manual, Version 4.2°, IPVR,
University of Stuttgart and WSI, University of Tiibingen. https://www.ra.cs.uni-tuebingen.
de/SNNS/welcome.html

Zell, A. (1994), Simulation Neuronaler Netze, Addison-Wesley. (in German)

https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html
https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html

elman 21

Examples

Not run: demo(dlvg_ziff)
Not run: demo(dlvg_ziffSnnsR)

data(snnsData)
dataset <- snnsData$dlvq_ziff_100.pat

inputs <- dataset[,inputColumns(dataset)]
outputs <- dataset[,outputColumns(dataset)]

model <- dlvq(inputs, outputs)

fitted(model) == outputs
mean(fitted(model) - outputs)

elman Create and train an Elman network

Description

Elman networks are partially recurrent networks and similar to Jordan networks (function jordan).
For details, see explanations there.

Usage

elman(x, ...)

Default S3 method:

elman(
X,
Y,
size = c(5),
maxit = 100,

initFunc = "JE_Weights”,
initFuncParams = c(1, -1, 0.3, 1, 0.5),
learnFunc = "JE_BP",
learnFuncParams = c(0.2),
updateFunc = "JE_Order”,
updateFuncParams = c(9),
shufflePatterns = FALSE,
1linOut = TRUE,

outContext = FALSE,
inputsTest = NULL,
targetsTest = NULL,

22 elman

Arguments
X a matrix with training inputs for the network
additional function parameters (currently not used)
y the corresponding targets values
size number of units in the hidden layer(s)
maxit maximum of iterations to learn
initFunc the initialization function to use

initFuncParams the parameters for the initialization function
learnFunc the learning function to use
learnFuncParams

the parameters for the learning function

updateFunc the update function to use
updateFuncParams
the parameters for the update function
shufflePatterns
should the patterns be shuffled?
linOut sets the activation function of the output units to linear or logistic
outContext if TRUE, the context units are also output units (untested)
inputsTest a matrix with inputs to test the network
targetsTest the corresponding targets for the test input
Details

Learning in Elman networks: Same as in Jordan networks (see jordan).

Network architecture: The difference between Elman and Jordan networks is that in an Elman net-
work the context units get input not from the output units, but from the hidden units. Furthermore,
there is no direct feedback in the context units. In an Elman net, the number of context units and
hidden units has to be the same. The main advantage of Elman nets is that the number of context
units is not directly determined by the output dimension (as in Jordan nets), but by the number of
hidden units, which is more flexible, as it is easy to add/remove hidden units, but not output units.

A detailed description of the theory and the parameters is available, as always, from the SNNS
documentation and the other referenced literature.

Value

an rsnns object.

References

Elman, J. L. (1990), ’Finding structure in time’, Cognitive Science 14(2), 179-211.

Zell, A. etal. (1998), ’SNNS Stuttgart Neural Network Simulator User Manual, Version 4.2°, IPVR,
University of Stuttgart and WSI, University of Tiibingen. https://www.ra.cs.uni-tuebingen.
de/SNNS/welcome.html

Zell, A. (1994), Simulation Neuronaler Netze, Addison-Wesley. (in German)

https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html
https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html

encodeClassLabels 23

See Also

jordan

Examples

Not run: demo(iris)

Not run: demo(laser)

Not run: demo(eight_elman)

Not run: demo(eight_elmanSnnsR)

data(snnsData)
inputs <- snnsData$eight_016.pat[,inputColumns(snnsData$eight_016.pat)]
outputs <- snnsData$eight_016.pat[,outputColumns(snnsData$eight_016.pat)]

par(mfrow=c(1,2))

modelElman <- elman(inputs, outputs, size=8, learnFuncParams=c(0.1), maxit=1000)
modelElman

modelJordan <- jordan(inputs, outputs, size=8, learnFuncParams=c(0.1), maxit=1000)
modelJordan

plotIterativeError(modelElman)
plotIterativeError(modelJordan)

summary (modelElman)
summary (modelJordan)

encodeClasslLabels Encode a matrix of (decoded) class labels

Description

Applies analyzeClassification row-wise to a matrix.

Usage

encodeClassLabels(x, method = "WTA", 1 =0, h = @)

Arguments
X inputs
method see analyzeClassification
1 idem

h idem

24 extractNetInfo

Value

a numeric vector, each number represents a different class. A zero means that no class was assigned
to the pattern.

See Also

analyzeClassification

Examples

data(iris)
labels <- decodeClassLabels(iris[,5])
encodeClassLabels(labels)

exportToSnnsNetFile Export the net to a file in the original SNNS file format

Description

Export the net that is present in the rsnns object in the original (.net) SNNS file format.

Usage

exportToSnnsNetFile(object, filename, netname = "RSNNS_untitled”)

Arguments
object the rsnns object
filename path and filename to be written to
netname name that is given to the network in the file
extractNetInfo Extract information from a network
Description

This function generates a list of data.frames containing the most important information that defines
a network, in a format that is easy to use. To get the full definition in the original SNNS format, use
summary.rsnns or exportToSnnsNetFile instead.

Usage

extractNetInfo(object)

getNormParameters 25

Arguments

object the rsnns object

Details

Internally, a call to SnnsRObject$extractNetInfo is done, and the results of this call are returned.

Value

a list containing information extracted from the network (see SnnsRObject$extractNetInfo).

See Also

SnnsRObject$extractNetInfo

getNormParameters Get normalization parameters of the input data

Description

Get the normalization parameters that are appended by normalizeData as attributes to the input
data.

Usage

getNormParameters(x)

Arguments

X input data

Details

This function is equivalent to calling attr(x, "normParams™).

Value

the parameters generated by an earlier call to normalizeData

See Also

normalizeData, denormalizeData

26 getSnnsRFunctionTable

getSnnsRDefine Get a define of the SNNS kernel

Description

Get a define of the SNNS kernel from a defines-list. All defines-lists present can be shown with
RSNNS: : : SnnsDefines.

Usage

getSnnsRDefine(defList, defValue)

Arguments
deflList the defines-list from which to get the define from
defValue the value in the list

Value

a string with the name of the define

See Also

resolveSnnsRDefine

Examples

getSnnsRDefine("topologicalUnitTypes”,3)
getSnnsRDefine("errorCodes”,-50)

getSnnsRFunctionTable Get SnnsR function table

Description

Get the function table of available SNNS functions.

Usage

getSnnsRFunctionTable()

inputColumns 27

Value

a data.frame with columns:

name name of the function
type the type of the function (learning, init, update,...)
#inParams the number of input parameters of the function
#outParams the number of output parameters of the function
inputColumns Get the columns that are inputs
Description

This function extracts all columns from a matrix whose column names begin with "in". The example
data of this package follows this naming convention.

Usage

inputColumns(patterns)

Arguments
patterns matrix or data.frame containing the patterns
jordan Create and train a Jordan network
Description

Jordan networks are partially recurrent networks and similar to Elman networks (see elman). Par-

tially recurrent networks are useful when working with time series data. I.e., when the output of the

network not only should depend on the current pattern, but also on the patterns presented before.
Usage

jordan(x, ...)

Default S3 method:

jordan(
X)
Y,
size = c(5),
maxit = 100,

initFunc = "JE_Weights”,

28

jordan

initFuncParams = c(1, -1, 0.3, 1, 0.5),
learnFunc = "JE_BP",

learnFuncParams = c(0.2),

updateFunc = "JE_Order”,
updateFuncParams = c(90),
shufflePatterns = FALSE,

linOut = TRUE,

inputsTest = NULL,
targetsTest NULL,
)
Arguments
X a matrix with training inputs for the network
additional function parameters (currently not used)
y the corresponding targets values
size number of units in the hidden layer(s)
maxit maximum of iterations to learn
initFunc the initialization function to use
initFuncParams the parameters for the initialization function
learnFunc the learning function to use
learnFuncParams
the parameters for the learning function
updateFunc the update function to use
updateFuncParams
the parameters for the update function
shufflePatterns
should the patterns be shuffled?
linOut sets the activation function of the output units to linear or logistic
inputsTest a matrix with inputs to test the network
targetsTest the corresponding targets for the test input
Details

Learning on Jordan networks: Backpropagation algorithms for feed-forward networks can be adapted
for their use with this type of networks. In SNNS, there exist adapted versions of several backpropagation-
type algorithms for Jordan and Elman networks.

Network architecture: A Jordan network can be seen as a feed-forward network with additional
context units in the input layer. These context units take input from themselves (direct feedback),
and from the output units. The context units save the current state of the net. In a Jordan net, the
number of context units and output units has to be the same.

Initialization of Jordan and Elman nets should be done with the default init function JE_Weights,
which has five parameters. The first two parameters define an interval from which the forward

jordan

29

connections are randomly chosen. The third parameter gives the self-excitation weights of the
context units. The fourth parameter gives the weights of context units between them, and the fifth
parameter gives the initial activation of context units.

Learning functions are JE_BP, JE_BP_Momentum, JE_Quickprop, and JE_Rprop, which are all
adapted versions of their standard-procedure counterparts. Update functions that can be used are
JE_Order and JE_Special.

A detailed description of the theory and the parameters is available, as always, from the SNNS
documentation and the other referenced literature.

Value

an rsnns object.

References

Jordan, M. 1. (1986), ’Serial Order: A Parallel, Distributed Processing Approach’, Advances in
Connectionist Theory Speech 121(ICS-8604), 471-495.

Zell, A. etal. (1998), ’SNNS Stuttgart Neural Network Simulator User Manual, Version 4.2°, IPVR,
University of Stuttgart and WSI, University of Tiibingen. https://www.ra.cs.uni-tuebingen.
de/SNNS/welcome.html

Zell, A. (1994), Simulation Neuronaler Netze, Addison-Wesley. (in German)

See Also
elman
Examples
Not run: demo(iris)
Not run: demo(laser)
Not run: demo(eight_elman)
Not run: demo(eight_elmanSnnsR)
data(snnsData)

inputs <- snnsData$laser_1000.pat[,inputColumns(snnsData$laser_1000.pat)]
outputs <- snnsData$laser_1000.pat[,outputColumns(snnsData$laser_1000.pat)]

patterns <- splitForTrainingAndTest(inputs, outputs, ratio=0.15)

modelJordan <- jordan(patterns$inputsTrain, patterns$targetsTrain,

size=c(8), learnFuncParams=c(0.1), maxit=100,
inputsTest=patterns$inputsTest,
targetsTest=patterns$targetsTest, 1inOut=FALSE)

names(modelJordan)

par(mfrow=c(3,3))
plotIterativeError(modelJordan)

https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html
https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html

30 matrixToActMapList

plotRegressionError(patterns$targetsTrain, modelJordan$fitted.values)
plotRegressionError(patterns$targetsTest, modelJordan$fittedTestValues)
hist(modelJordan$fitted.values - patterns$targetsTrain, col="lightblue")

plot(inputs, type="1")

plot(inputs[1:100], type="1")

lines(outputs[1:100], col="red")
lines(modelJordan$fitted.values[1:100], col="green")

matrixToActMaplList Convert matrix of activations to activation map list

Description

Organize a matrix containing 1d vectors of network activations as 2d maps.

Usage

matrixToActMapList(m, nrow = @, ncol = @)

Arguments
m the matrix containing one activation pattern in every row
nrow number of rows the resulting matrices will have
ncol number of columns the resulting matrices will have
Details

The input to this function is a matrix containing in each row an activation pattern/output of a neural
network. This function uses vectorToActMap to reorganize the matrix to a list of matrices, whereby
each row of the input matrix is converted to a matrix in the output list.

Value

a list containing the activation map matrices

See Also

vectorToActMap plotActMap

mlp 31

mlp Create and train a multi-layer perceptron (MLP)

Description

This function creates a multilayer perceptron (MLP) and trains it. MLPs are fully connected feed-
forward networks, and probably the most common network architecture in use. Training is usually
performed by error backpropagation or a related procedure.

There are a lot of different learning functions present in SNNS that can be used together with
this function, e.g., Std_Backpropagation, BackpropBatch, BackpropChunk, BackpropMomentum,
BackpropWeightDecay, Rprop, Quickprop, SCG (scaled conjugate gradient), ...

Usage
mlp(x, ...)

Default S3 method:

mlp(
X,
Y,
size = c(5),
maxit = 100,
initFunc = "Randomize_Weights",
initFuncParams = c(-0.3, 0.3),
learnFunc = "Std_Backpropagation”,

learnFuncParams = c(0.2, 0),
updateFunc = "Topological_Order”,
updateFuncParams = c(9),
hiddenActFunc = "Act_Logistic”,
shufflePatterns = TRUE,

1inOut = FALSE,

outputActFunc = if (linOut) "Act_Identity” else "Act_Logistic",
inputsTest = NULL,

targetsTest = NULL,

pruneFunc = NULL,

pruneFuncParams = NULL,

)
Arguments
X a matrix with training inputs for the network
additional function parameters (currently not used)
y the corresponding targets values

size number of units in the hidden layer(s)

32 mlp

maxit maximum of iterations to learn

initFunc the initialization function to use

initFuncParams the parameters for the initialization function

learnFunc the learning function to use

learnFuncParams
the parameters for the learning function

updateFunc the update function to use

updateFuncParams
the parameters for the update function

hiddenActFunc the activation function of all hidden units

shufflePatterns
should the patterns be shuffled?

linOut sets the activation function of the output units to linear or logistic (ignored if
outputActFunc is given)

outputActFunc the activation function of all output units

inputsTest a matrix with inputs to test the network

targetsTest the corresponding targets for the test input

pruneFunc the pruning function to use

pruneFuncParams
the parameters for the pruning function. Unlike the other functions, these have
to be given in a named list. See the pruning demos for further explanation.

Details

Std_Backpropagation, BackpropBatch, e.g., have two parameters, the learning rate and the max-
imum output difference. The learning rate is usually a value between 0.1 and 1. It specifies the
gradient descent step width. The maximum difference defines, how much difference between out-
put and target value is treated as zero error, and not backpropagated. This parameter is used to
prevent overtraining. For a complete list of the parameters of all the learning functions, see the
SNNS User Manual, pp. 67.

The defaults that are set for initialization and update functions usually don’t have to be changed.

Value

an rsnns object.

References

Rosenblatt, F. (1958), *The perceptron: A probabilistic model for information storage and organi-
zation in the brain’, Psychological Review 65(6), 386—408.

Rumelhart, D. E.; Clelland, J. L. M. & Group, P. R. (1986), Parallel distributed processing :explo-
rations in the microstructure of cognition, Mit, Cambridge, MA etc.

Zell, A. etal. (1998), ’SNNS Stuttgart Neural Network Simulator User Manual, Version 4.2°, IPVR,
University of Stuttgart and WSI, University of Tiibingen. https://www.ra.cs.uni-tuebingen.
de/SNNS/welcome.html

Zell, A. (1994), Simulation Neuronaler Netze, Addison-Wesley. (in German)

https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html
https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html

normalizeData

Examples

Not run: demo(iris)
Not run: demo(laser)
Not run: demo(encoderSnnsCLib)

data(iris)

#shuffle the vector
iris <- iris[sample(1:nrow(iris),length(1:nrow(iris))),1:ncol(iris)]

irisvValues <- iris[,1:4]
irisTargets <- decodeClasslLabels(iris[,5])
#irisTargets <- decodeClasslLabels(iris[,5], valTrue=0.9, valFalse=0.1)

iris <- splitForTrainingAndTest(irisValues, irisTargets, ratio=0.15)
iris <- normTrainingAndTestSet(iris)

model <- mlp(iris$inputsTrain, iris$targetsTrain, size=5, learnFuncParams=c(0.1),
maxit=50, inputsTest=iris$inputsTest, targetsTest=iris$targetsTest)

summary (model)

model
weightMatrix(model)
extractNetInfo(model)

par(mfrow=c(2,2))
plotIterativeError(model)

predictions <- predict(model,iris$inputsTest)
plotRegressionError(predictions[,2], iris$targetsTest[,2])

confusionMatrix(iris$targetsTrain,fitted.values(model))
confusionMatrix(iris$targetsTest,predictions)

plotROC(fitted.values(model)[,2], iris$targetsTrain[,2])
plotROC(predictions[,2], iris$targetsTest[,2])

#confusion matrix with 402040-method
confusionMatrix(iris$targetsTrain, encodeClassLabels(fitted.values(model),
method="402040", 1=0.4, h=0.6))

normalizeData Data normalization

Description

The input matrix is column-wise normalized.

34 normTrainingAndTestSet

Usage
normalizeData(x, type = "norm")
Arguments
X input data
type either type string specifying the type of normalization. Implemented are "0_1",
"center", and "norm"
or attribute list of a former call to this method to apply e.g. normalization of
the training data to the test data
Details

The parameter type specifies, how normalization takes place:

0_1 values are normalized to the [0,1]-interval. The minimum in the data is mapped to zero, the
maximum to one.

center the data is centered, i.e. the mean is substracted

norm the data is normalized to mean zero, variance one

Value

column-wise normalized input. The normalization parameters that were used for the normalization
are present as attributes of the output. They can be obtained with getNormParameters.

See Also

denormalizeData, getNormParameters

normTrainingAndTestSet
Function to normalize training and test set

Description

Normalize training and test set as obtained by splitForTrainingAndTest in the following way:
The inputsTrain member is normalized using normalizeData with the parameters given in type.
The normalization parameters obtained during this normalization are then used to normalize the
inputsTest member. if dontNormTargets is not set, then the targets are normalized in the same
way. In classification problems, normalizing the targets normally makes no sense. For regression,
normalizing also the targets is usually a good idea. The default is to not normalize targets values.

Usage

normTrainingAndTestSet(x, dontNormTargets = TRUE, type = "norm")

outputColumns 35

Arguments
X a list containing training and test data. Usually the output of splitForTrainingAndTest.
dontNormTargets
should the target values also be normalized?
type type of the normalization. This parameter is passed to normalizeData.
Value

a named list with the same elements as splitForTrainingAndTest, but with normalized val-
ues. The normalization parameters are appended to each member of the list as attributes, as in

normalizeData.

See Also

splitForTrainingAndTest, normalizeData, denormalizeData, getNormParameters

Examples

data(iris)
#shuffle the vector
iris <- iris[sample(1:nrow(iris),length(1:nrow(iris))),1:ncol(iris)]

irisValues <- iris[,1:4]
irisTargets <- decodeClasslLabels(iris[,5])

iris <- splitForTrainingAndTest(irisValues, irisTargets, ratio=0.15)
normTrainingAndTestSet(iris)

outputColumns Get the columns that are targets

Description

This function extracts all columns from a matrix whose column names begin with "out". The
example data of this package follows this naming convention.

Usage

outputColumns(patterns)

Arguments

patterns matrix or data.frame containing the patterns

36

plotlterativeError

plotActMap Plot activation map

Description

Plot an activation map as a heatmap.

Usage
plotActMap(x, ...)
Arguments
X the input data matrix
parameters passed to image
See Also

vectorToActMap matrixToActMapList

plotIterativeError Plot iterative errors of an rsnns object

Description

Plot the iterative training and test error of the net of this rsnns object.

Usage

plotIterativeError(object, ...)

S3 method for class 'rsnns'

plotIterativeError(object, ...)
Arguments
object a rsnns object

parameters passed to plot

Details

Plots (if present) the class members IterativeFitError (as black line) and IterativeTestError

(as red line).

plotRegressionError 37

plotRegressionError Plot a regression error plot

Description

The plot shows target values on the x-axis and fitted/predicted values on the y-axis. The optimal
fit would yield a line through zero with gradient one. This optimal line is shown in black color. A
linear fit to the actual data is shown in red color.

Usage

plotRegressionError(targets, fits, ...)
Arguments

targets the target values

fits the values predicted/fitted by the model

parameters passed to plot
plotROC Plot a ROC curve

Description

This function plots a receiver operating characteristic (ROC) curve.

Usage
plotROC(T, D, ...)

Arguments
T predictions
D targets
parameters passed to plot
Author(s)

Code is taken from R news Volume 4/1, June 2004.

References

R news Volume 4/1, June 2004

38

print.rsnns

predict.rsnns Generic predict function for rsnns object

Description

Predict values using the given network.

Usage
S3 method for class 'rsnns'
predict(object, newdata, ...)
Arguments
object the rsnns object
newdata the new input data which is used for prediction

additional function parameters (currently not used)

Value

the predicted values

print.rsnns Generic print function for rsnns objects

Description

Print out some characteristics of an rsnns object.

Usage
S3 method for class 'rsnns'
print(x, ...)

Arguments
X the rsnns object

additional function parameters (currently not used)

rbf 39

rbof Create and train a radial basis function (RBF) network

Description

The use of an RBF network is similar to that of an mlp. The idea of radial basis function net-
works comes from function interpolation theory. The RBF performs a linear combination of n basis
functions that are radially symmetric around a center/prototype.

Usage
rbf(x, ...)
Default S3 method:
rbf(
X)
Y,
size = c(5),
maxit = 100,

initFunc = "RBF_Weights",

initFuncParams = c(@, 1, 0, 0.02, 0.04),
learnFunc = "RadialBasislLearning”,
learnFuncParams = c(1e-05, @, 1e-05, 0.1, 0.8),
updateFunc = "Topological_Order”,
updateFuncParams = c(90),

shufflePatterns = TRUE,

linOut = TRUE,

inputsTest = NULL,

targetsTest = NULL,

)
Arguments
X a matrix with training inputs for the network
additional function parameters (currently not used)
y the corresponding targets values
size number of units in the hidden layer(s)
maxit maximum of iterations to learn
initFunc the initialization function to use

initFuncParams the parameters for the initialization function

learnFunc the learning function to use
learnFuncParams
the parameters for the learning function

40 rbf
updateFunc the update function to use
updateFuncParams
the parameters for the update function
shufflePatterns
should the patterns be shuffled?
linOut sets the activation function of the output units to linear or logistic
inputsTest a matrix with inputs to test the network
targetsTest the corresponding targets for the test input
Details

RBF networks are feed-forward networks with one hidden layer. Their activation is not sigmoid
(as in MLP), but radially symmetric (often gaussian). Thereby, information is represented locally
in the network (in contrast to MLP, where it is globally represented). Advantages of RBF networks
in comparison to MLPs are mainly, that the networks are more interpretable, training ought to be
easier and faster, and the network only activates in areas of the feature space where it was actually
trained, and has therewith the possibility to indicate that it "just doesn’t know".

Initialization of an RBF network can be difficult and require prior knowledge. Before use of this
function, you might want to read pp 172-183 of the SNNS User Manual 4.2. The initialization is
performed in the current implementation by a call to RBF_Weights_Kohonen(0,0,0,0,0) and a
successive call to the given initFunc (usually RBF_Weights). If this initialization doesn’t fit your
needs, you should use the RSNNS low-level interface to implement your own one. Have a look then
at the demos/examples. Also, we note that depending on whether linear or logistic output is chosen,
the initialization parameters have to be different (normally c(@,1, . ..) for linear and c(-4,4,...)
for logistic output).

Value

an rsnns object.

References

Poggio, T. & Girosi, F. (1989), A Theory of Networks for Approximation and Learning’(A.IL.
Memo No.1140, C.B.I.P. Paper No. 31), Technical report, MIT ARTIFICIAL INTELLIGENCE
LABORATORY.

Vogt, M. (1992), 'Implementierung und Anwendung von Generalized Radial Basis Functions in
einem Simulator neuronaler Netze’, Master’s thesis, [IPVR, University of Stuttgart. (in German)

Zell, A. etal. (1998), ’SNNS Stuttgart Neural Network Simulator User Manual, Version 4.2°, IPVR,
University of Stuttgart and WSI, University of Tiibingen. https://www.ra.cs.uni-tuebingen.
de/SNNS/welcome.html

Zell, A. (1994), Simulation Neuronaler Netze, Addison-Wesley. (in German)

Examples

Not run: demo(rbf_irisSnnsR)
Not run: demo(rbf_sin)
Not run: demo(rbf_sinSnnsR)

https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html
https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html

rbfDDA 41

inputs <- as.matrix(seq(9,10,0.1))
outputs <- as.matrix(sin(inputs) + runif(inputs*0.2))
outputs <- normalizeData(outputs, "@_1")

model <- rbf(inputs, outputs, size=40, maxit=1000,
initFuncParams=c(0, 1, @, .01, 0.01),
learnFuncParams=c(1e-8, @, 1e-8, 0.1, 0.8), linOut=TRUE)

par(mfrow=c(2,1))
plotIterativeError(model)

plot(inputs, outputs)

lines(inputs, fitted(model), col="green")

rbfDDA Create and train an RBF network with the DDA algorithm

Description

Create and train an RBF network with the dynamic decay adjustment (DDA) algorithm. This type
of network can only be used for classification. The training typically begins with an empty network,
i.e., a network only consisting of input and output units, and adds new units successively. It is a lot
easier to use than normal RBF, because it only requires two quite uncritical parameters.

Usage
rbfDDA(x, ...)

Default S3 method:

rbfDDA(
X?
Y,
maxit = 1,
initFunc = "Randomize_Weights",
initFuncParams = c(-0.3, 0.3),
learnFunc = "RBF-DDA",
learnFuncParams = c(0.4, 0.2, 5),
updateFunc = "Topological_Order”,
updateFuncParams = c(0),
shufflePatterns = TRUE,
linOut = FALSE,

Arguments

X a matrix with training inputs for the network

42 rbfDDA

additional function parameters (currently not used)

y the corresponding targets values
maxit maximum of iterations to learn
initFunc the initialization function to use

initFuncParams the parameters for the initialization function

learnFunc the learning function to use
learnFuncParams
the parameters for the learning function

updateFunc the update function to use
updateFuncParams

the parameters for the update function
shufflePatterns

should the patterns be shuffled?

linOut sets the activation function of the output units to linear or logistic

Details

The default functions do not have to be altered. The learning function RBF-DDA has three parameters:
a positive threshold, and a negative threshold, that controls adding units to the network, and a
parameter for display purposes in the original SNNS. This parameter has no effect in RSNNS. See
p 74 of the original SNNS User Manual for details.

Value

an rsnns object.

References

Berthold, M. R. & Diamond, J. (1995), Boosting the Performance of RBF Networks with Dynamic
Decay Adjustment, in *Advances in Neural Information Processing Systems’, MIT Press, , pp.
521-528.

Hudak, M. (1993), 'RCE classifiers: theory and practice’, Cybernetics and Systems 23(5), 483-515.

Zell, A. etal. (1998), ’SNNS Stuttgart Neural Network Simulator User Manual, Version 4.2°, IPVR,
University of Stuttgart and WSI, University of Tiibingen. https://www.ra.cs.uni-tuebingen.
de/SNNS/welcome.html

Examples

Not run: demo(iris)
Not run: demo(rbfDDA_spiralsSnnsR)

data(iris)

iris <- iris[sample(1:nrow(iris),length(1:nrow(iris))),1:ncol(iris)]
irisvValues <- iris[,1:4]

irisTargets <- decodeClasslLabels(iris[,5])

iris <- splitForTrainingAndTest(irisValues, irisTargets, ratio=0.15)

https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html
https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html

readPatFile 43

iris <- normTrainingAndTestSet(iris)
model <- rbfDDA(iris$inputsTrain, iris$targetsTrain)

summary (model)
plotIterativeError(model)

readPatFile Load data from a pat file

Description
This function generates an SnnsR-class object, loads the given .pat file there as a pattern set and
then extracts the patterns to a matrix, using SnnsRObject$extractPatterns.

Usage

readPatFile(filename)

Arguments

filename the name of the .pat file

Value

a matrix containing the data loaded from the .pat file.

readResFile Rudimentary parser for res files.

Description
This function contains a rudimentary parser for SNNS .res files. It is completely implemented in R
and doesn’t make use of SNNS functionality.

Usage

readResFile(filename)

Arguments

filename the name of the .res file

Value

a matrix containing the predicted values that were found in the .res file

44 rsnnsObjectFactory

resolveSnnsRDefine Resolve a define of the SNNS kernel

Description

Resolve a define of the SNNS kernel using a defines-list. All defines-lists present can be shown
with RSNNS: : : SnnsDefines.

Usage

resolveSnnsRDefine(defList, def)

Arguments
defList the defines-list from which to resolve the define from
def the name of the define

Value

the value of the define

See Also

getSnnsRDefine

Examples

resolveSnnsRDefine("topologicalUnitTypes”,"UNIT_HIDDEN")

rsnnsObjectFactory Object factory for generating rsnns objects

Description

The object factory generates an rsnns object and initializes its member variables with the values
given as parameters. Furthermore, it generates an object of SnnsR-class. Later, this information
is to be used to train the network.

rsnnsObjectFactory 45

Usage

rsnnsObjectFactory(
subclass,
nInputs,
maxit,
initFunc,
initFuncParams,
learnFunc,
learnFuncParams,
updateFunc,
updateFuncParams,
shufflePatterns = TRUE,
computelterativeError = TRUE,
pruneFunc = NULL,
pruneFuncParams = NULL

)
Arguments
subclass the subclass of rsnns to generate (vector of strings)
nInputs the number of inputs the network will have
maxit maximum of iterations to learn
initFunc the initialization function to use

initFuncParams the parameters for the initialization function

learnFunc the learning function to use
learnFuncParams

the parameters for the learning function
updateFunc the update function to use
updateFuncParams

the parameters for the update function
shufflePatterns

should the patterns be shuffled?
computelterativeError

should the error be computed in every iteration?
pruneFunc the pruning function to use
pruneFuncParams

the parameters for the pruning function. Unlike the other functions, these have
to be given in a named list. See the pruning demos for further explanation.

Details
The typical procedure implemented in rsnns subclasses is the following:

* generate the rsnns object with this object factory

* generate the network according to the architecture needed

46 setSnnsRSeedValue

e train the network (with train)

In every rsnns object, the iterative error is the summed squared error (SSE) of all patterns. If the
SSE is computed on the test set, then it is weighted to take care of the different amount of patterns
in the sets.

Value

a partly initialized rsnns object

See Also

mlp, dlvq, rbf, rbfDDA, elman, jordan, som, art1, art2, artmap, assoz

savePatFile Save data to a pat file

Description
This function generates an SnnsR-class object, loads the given data there as a pattern set and then
uses the functionality of SNNS to save the data as a .pat file.

Usage

savePatFile(inputs, targets, filename)

Arguments
inputs a matrix with input values
targets a matrix with target values
filename the name of the .pat file
setSnnsRSeedValue DEPRECATED, Set the SnnsR seed value
Description

DEPRECATED, now just calls R’s set.seed(), that should be used instead.

Usage

setSnnsRSeedValue(seed)

Arguments

seed the seed to use. If 0, a seed based on the system time is generated.

snnsData 47

snnsData Example data of the package

Description

This is data from the original SNNS examples directory ported to R and stored as one list. The
function readPatFile was used to parse all pattern files (.pat) from the original SNNS examples
directory. Due to limitations of that function, pattern files containing patterns with variable size
were omitted.

Examples

data(snnsData)
names(snnsData)

SnnsR-class The main class of the package

Description

An S4 class that is the main class of RSNNS. Each instance of this class contains a pointer to a C++
object of type SnnsCLib, i.e. an instance of the SNNS kernel.

Details

The only slot variables holds an environment with all member variables. Currently, there are two
members (constructed by the object factory):

snnsCLibPointer A pointer to the corresponding C++ object

serialization a serialization of the C++ object, in SNNS .net format

The member variables are not directly present as slots but wrapped in an environment to allow for
changing the serialization (by call by reference).

An object of this class is used internally by all the models in the package. The object is always
accessible by model$snnsObject$. . .

To make full use of the SNNS functionalities, you might want to use this class directly. Always use
the object factory SnnsRObjectFactory to construct an object, and the calling mechanism $ to call
functions. Through the calling mechanism, many functions of SnnsCLib are present that are not
documented here, but in the SNNS User Manual. So, if you choose to use the low-level interface, it
is highly recommended to have a look at the demos and at the SNNS User Manual.

References

Zell, A. etal. (1998), ’SNNS Stuttgart Neural Network Simulator User Manual, Version 4.2°, IPVR,
University of Stuttgart and WSI, University of Tiibingen. https://www.ra.cs.uni-tuebingen.
de/SNNS/welcome.html

https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html
https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html

48

See Also

$, SnnsRObjectFactory

Examples

#it
##
#it
#it
##
#it
#it
#i#
#it

Not
Not
Not
Not
Not
Not
Not
Not
Not

run:
run:
run:
run:
run:
run:
run:
run:
run:

demo(encoderSnnsCLib)
demo(arti_lettersSnnsR)
demo(art2_tetraSnnsR)
demo(artmap_lettersSnnsR)
demo(eight_elmanSnnsR)
demo(rbf_irisSnnsR)
demo(rbf_sinSnnsR)
demo(rbfDDA_spiralsSnnsR)
demo (som_cubeSnnsR)

#This is the demo eight_elmanSnnsR
#Here, we train an Elman network

#and save a trained and an untrained version
#to disk, as well as the used training data

basePath <- ("./")

data(snnsData)

inputs <- snnsData$eight_016.pat[,inputColumns(snnsData$eight_016.pat)]
outputs <- snnsData$eight_016.pat[,outputColumns(snnsData$eight_016.pat)]

snnsObject <- SnnsRObjectFactory()

snnsObject$setlLearnFunc('JE_BP")
snnsObject$setUpdateFunc('JE_Order')

snnsObject$setUnitDefaults(1,0,1,0,1, 'Act_Logistic', 'Out_Identity')
snnsObject$elman_createNet(c(2,8,2),c(1,1,1),FALSE)

patset <- snnsObject$createPatSet(inputs, outputs)
snnsObject$setCurrPatSet(patset$set_no)

snnsObject$initializeNet(c(1.0,

snnsObject$shufflePatterns(TRUE)
snnsObject$DefTrainSubPat ()

-1.0,

SnnsR-class

Not run: snnsObject$saveNet(paste(basePath,"eight_elmanSnnsR_untrained.net”, sep=""),

End(Not run)

parameters <- c(0.2, 0, 0, 0, 0)
maxit <- 1000

error <- vector()

"eight_elmanSnnsR_untrained")

SnnsRObjectFactory 49

for(i in 1:maxit) {
res <- snnsObject$learnAllPatterns(parameters)
if(res[[1]] !'= @) print(paste("Error at iteration ", i, " : ", res, sep=""))
error[i] <- res[[2]]

}

error[1:500]
plot(error, type="1")

Not run: snnsObject$saveNet(paste(basePath,"eight_elmanSnnsR.net”,sep=""),
"eight_elmanSnnsR")
End(Not run)
Not run: snnsObject$saveNewPatterns(paste(basePath,”eight_elmanSnnsR.pat"”,sep=""),
patset$set_no)
End(Not run)

SnnsRObjectFactory SnnsR object factory

Description

Object factory to create a new object of type SnnsR-class.

Usage

SnnsRObjectFactory(x = NULL)

Arguments

X (optional) object of class SnnsR-class, to be deep-copied

Details

This function creates a new object of class SnnsR-class, initializes its only slot variables with a
new environment, generates a new C++ object of class SnnsCLib, and an empty object serialization.

See Also

$, SnnsR-class

Examples

mySnnsObject <- SnnsRObjectFactory()
mySnnsObject$setlLearnFunc('Quickprop"')
mySnnsObject$setUpdateFunc('Topological_Order')

50

SnnsRObjectMethodCaller

SnnsRObjectMethodCaller
Method caller for SnnsR objects

Description

Enable calling of C++ functions as methods of SnnsR-class objects.

Usage

S4 method for signature 'SnnsR'
x$name

Arguments

X object of class SnnsR-class

name function to call

Details

This function makes methods of SnnsR__ and SnnsCLib__ accessible via "$". If no SnnsR__
method is present, then the according SnnsCLib__ method is called. This enables a very flexible
method handling. To mask a method from SnnsCLib, e.g. to do some parameter checking or
postprocessing, only a method with the same name, but beginning with SnnsR__ has to be present
inR. See e.g. SnnsRObject$initializeNet for such an implementation.

Error handling is also done within the method caller. If the result of a function is a list with a member
err, then SnnsCLib__error is called to use the SNNS kernel function to get the corresponding error
message code and an R warning is thrown containing this message.

Furthermore, a serialization mechanism is implemented which all models present in the package
use to be able to be saved and loaded by R’s normal save/load mechanism (as RData files).

The completely trained object can be serialized with
s <- snnsObject$serializeNet ("RSNNS_untitled")
snnsObject@variables$serialization <- s$serialization

For the models implemented, this is done in SnnsRObject$train. If the S4 object is then saved and
loaded, the calling mechanism will notice on the next use of a function that the pointer to the C++
SnnsCLib object is nil, and if a serialization is present, the object is restored from this serialization
before the method is called.

SnnsRObject$createNet 51

SnnsRObject$createNet Create a layered network

Description

This function creates a layered network in the given SnnsR object. This is an SnnsR low-level
function. You may want to have a look at SnnsR-class to find out how to properly use it.

Usage

S4 method for signature 'SnnsR'
createNet (unitsPerLayer, fullyConnectedFeedForward = TRUE, iNames = NULL, oNames = NULL)

Arguments

unitsPerLayer a vector of integers that represents the number of units in each layer, including
input and output layer

fullyConnectedFeedForward

if TRUE, the network is fully connected as a feed-forward network. If FALSE, no
connections are created

iNames names of input units
oNames names of output units
See Also

SnnsR-class

Examples

obj1 <- SnnsRObjectFactory()
objl$createNet(c(2,2), FALSE)
objl$getUnitDefinitions()

obj2 <- SnnsRObjectFactory()
obj2$createNet(c(8,5,5,2), TRUE)
obj2$getUnitDefinitions()

52 SnnsRObject$extractNetInfo

SnnsRObject$createPatSet
Create a pattern set

Description
SnnsR low-level function to create a pattern set in the SNNS kernel from the values given, so that
they are available in the SNNS kernel for use.

Usage

S4 method for signature 'SnnsR'
createPatSet(inputs, targets)

Arguments
inputs the input values
targets the target values
Value

a list with elements err and set_no. The latter one identifies the pattern set within the SnnsR-class
object

SnnsRObject$extractNetInfo
Get characteristics of the network.

Description

The returned list has three members:

* infoHeader general information about the network
* unitDefinitions information about the units

* fullWeightMatrix weight matrix of the connections

Usage
S4 method for signature 'SnnsR'
extractNetInfo()

Value

a list of data frames containing information extracted from the network.

SnnsRObject$extractPatterns 53

SnnsRObject$extractPatterns
Extract the current pattern set to a matrix

Description

SnnsR low-level function that extracts all patterns of the current pattern set and returns them as a
matrix. Columns are named with the prefix "in" or "out", respectively.

Usage

S4 method for signature 'SnnsR'
extractPatterns()

Value

a matrix containing the patterns of the currently loaded patern set.

SnnsRObject$getAllHiddenUnits
Get all hidden units of the net

Description

SnnsR low-level function to get all units from the net with the ttype "UNIT_HIDDEN". This func-
tion calls SnnsRObject$getAllUnitsTType with the parameter "UNIT_HIDDEN".

Usage

S4 method for signature 'SnnsR'
getAllHiddenUnits()

Value

a vector with integer numbers identifying the units.

See Also

SnnsRObject$get AllUnitsTType

54 SnnsRObject$getAllOutputUnits

SnnsRObject$getAllInputUnits
Get all input units of the net

Description
SnnsR low-level function to get all units from the net with the ttype "UNIT_INPUT". This function
calls SnnsRObject$getAllUnitsTType with the parameter "UNIT_INPUT".
Usage
S4 method for signature 'SnnsR'
getAllInputUnits()
Value

a vector with integer numbers identifying the units.

See Also
SnnsRObject$get AllUnitsTType

SnnsRObject$getAllOutputUnits
Get all output units of the net.

Description
SnnsR low-level function to get all units from the net with the ttype "UNIT_OUTPUT". This
function calls SnnsRObject$getAllUnitsTType with the parameter "UNIT_OUTPUT".
Usage
S4 method for signature 'SnnsR'
getAllOutputUnits()
Value

a vector with integer numbers identifying the units.

See Also

SnnsRObject$getAllUnitsTType

SnnsRObject$getAllUnits 55

SnnsRObject$getAllUnits
Get all units present in the net.

Description

Get all units present in the net.

Usage
S4 method for signature 'SnnsR'
getAllUnits()

Value

a vector with integer numbers identifying the units.

SnnsRObject$getAllUnitsTType
Get all units in the net of a certain ttype.

Description
SnnsR low-level function to get all units in the net of a certain ttype. Possible ttype defined by
SNNS are, among others: "UNIT_OUTPUT", "UNIT_INPUT", and "UNIT_HIDDEN". For a full
list, call RSNNS: : : SnnsDefines$topologicalUnitTypes As this is an SnnsR low-level function,
you may want to have a look at SnnsR-class to find out how to properly use it.

Usage
S4 method for signature 'SnnsR'
getAllUnitsTType(ttype)

Arguments

ttype a string containing the ttype.

Value

a vector with integer numbers identifying the units.

See Also
SnnsRObject$getAllOutputUnits, SnnsRObject$get AlllnputUnits, SnnsRObject$get AlIHiddenUnits

56 SnnsRObject$getIinfoHeader

SnnsRObject$getCompleteWeightMatrix
Get the complete weight matrix.

Description

Get a weight matrix containing all weights of all neurons present in the net.

Usage

S4 method for signature 'SnnsR'
getCompleteWeightMatrix (setDimNames)

Arguments
setDimNames indicates, whether names of units are extracted and set as row/col names in the
weight matrix
Value

the complete weight matrix

SnnsRObject$getInfoHeader
Get an info header of the network.

Description

Get an info header of the network.

Usage

S4 method for signature 'SnnsR'
getInfoHeader ()

Value

a data frame containing some general characteristics of the network.

SnnsRObject$getSiteDefinitions

57

SnnsRObject$getSiteDefinitions
Get the sites definitions of the network.

Description

Get the sites definitions of the network.

Usage

S4 method for signature 'SnnsR'
getSiteDefinitions()

Value

a data frame containing information about all sites present in the network.

SnnsRObject$getTypeDefinitions
Get the FType definitions of the network.

Description

Get the FType definitions of the network.
Usage
S4 method for signature 'SnnsR'

getTypeDefinitions()

Value

a data frame containing information about FType units present in the network.

58 SnnsRObject$getUnitsByName

SnnsRObject$getUnitDefinitions
Get the unit definitions of the network.

Description

Get the unit definitions of the network.

Usage

S4 method for signature 'SnnsR'
getUnitDefinitions()

Value

a data frame containing information about all units present in the network.

SnnsRObject$getUnitsByName
Find all units whose name begins with a given prefix.

Description

Find all units whose name begins with a given prefix.

Usage

S4 method for signature 'SnnsR'
getUnitsByName (prefix)

Arguments

prefix a prefix that the names of the units to find have.

Value

a vector with integer numbers identifying the units.

SnnsRObject$get WeightMatrix 59

SnnsRObject$getWeightMatrix

Get the weight matrix between two sets of units

Description

SnnsR low-level function to get the weight matrix between two sets of units.

Usage

S4 method for signature 'SnnsR'
getWeightMatrix(unitsSource, unitsTarget, setDimNames)

Arguments

unitsSource
unitsTarget
setDimNames

Value

a vector with numbers identifying the source units
a vector with numbers identifying the target units

indicates, whether names of units are extracted and set as row/col names in the
weight matrix

the weight matrix between the two sets of neurons

See Also

SnnsRObject$get AllUnitsTType

SnnsRObject$initializeNet

Initialize the network

Description

This SnnsR low-level function masks the SNNS kernel function of the same name to allow for both
giving the initialization function directly in the call or to use the one that is currently set.

Usage

S4 method for signature 'SnnsR'
initializeNet(parameterInArray, initFunc)

Arguments

parameterInArray

initFunc

the parameters of the initialization function

the name of the initialization function

60 SnnsRObject$resetRSNNS

SnnsRObject$predictCurrPatSet
Predict values with a trained net

Description

SnnsR low-level function to predict values with a trained net.

Usage

S4 method for signature 'SnnsR'

predictCurrPatSet (outputMethod="reg_class"”, updateFuncParams=c(0.0))
Arguments

outputMethod is passed to SnnsRObject$where AreResults

updateFuncParams
parameters passed to the networks update function

Details

This function has to be used embedded in a step of loading and afterwards removing the patterns
into the SnnsR-class object. As SNNS only supports 2 pattern sets in parallel, removing unneeded
pattern sets is quite important.

Value

the predicted values

SnnsRObject$resetRSNNS
Reset the SnnsR object.

Description
SnnsR low-level function to delete all pattern sets and delete the current net in the SnnsR-class
object.

Usage

S4 method for signature 'SnnsR'
resetRSNNS()

SnnsRObject$set TTypeUnitsActFunc 61

SnnsRObject$setTTypeUnitsActFunc
Set the activation function for all units of a certain ttype.

Description

The function uses the function SnnsRObject$getAllUnitsTType to find all units of a certain
ttype, and sets the activation function of all these units to the given activation function.

Usage

S4 method for signature 'SnnsR'
setTTypeUnitsActFunc(ttype, act_func)

Arguments

ttype a string containing the ttype.

act_func the name of the activation function to set.
See Also

SnnsRObject$getAllUnitsTType

Examples

Not run: SnnsRObject$setTTypeUnitsActFunc(”UNIT_HIDDEN", "Act_Logistic")

SnnsRObject$setUnitDefaults
Set the unit defaults

Description

This SnnsR low-level function masks the SNNS kernel function of the same name to allow both for
giving the parameters directly or as a vector. If the second parameter, bias, is missing, it is assumed
that the first parameter should be interpreted as a vector containing all parameters.

Usage

S4 method for signature 'SnnsR'
setUnitDefaults(act, bias, st, subnet_no, layer_no, act_func, out_func)

62 SnnsRObject$somPredictComponentMaps

Arguments
act same as SNNS kernel function
bias idem
st idem
subnet_no idem
layer_no idem
act_func idem
out_func idem

SnnsRObject$somPredictComponentMaps
Calculate the som component maps

Description

SnnsR low-level function to calculate the som component maps.

Usage

S4 method for signature 'SnnsR'
somPredictComponentMaps (updateFuncParams=c(0.0, 0.0, 1.0))

Arguments
updateFuncParams
parameters passed to the networks update function
Value

a matrix containing all componant maps as 1d vectors

See Also

som

SnnsRObject$somPredictCurrPatSetWinners 63

SnnsRObject$somPredictCurrPatSetWinners
Get most of the relevant results from a som

Description

SnnsR low-level function to get most of the relevant results from a SOM.

Usage

S4 method for signature 'SnnsR'
somPredictCurrPatSetWinners(updateFuncParams=c(0.0, 0.0, 1.90),
saveWinnersPerPattern=TRUE, targets=NULL)

Arguments
updateFuncParams
parameters passed to the networks update function
saveWinnersPerPattern
should a list with the winners for every pattern be saved?

targets optional target classes of the patterns

Value
a list with three elements:

nWinnersPerUnit
For each unit, the amount of patterns where this unit won is given. So, this is a
1d vector representing the normal version of the som.

winnersPerPattern
a vector where for each pattern the number of the winning unit is given. This is
an intermediary result that normally won’t be saved.

labeledUnits a matrix which — if the targets parameter is given — contains for each unit
(rows) and each class present in the targets (columns), the amount of patterns
of the class where the unit has won. From the labeledUnits, the labeledMap
can be computed, e.g. by voting of the class labels for the final label of the unit.

See Also

som

64 SnnsRObject$train

SnnsRObject$somPredictCurrPatSetWinnersSpanTree
Get the spanning tree of the SOM

Description

SnnsR low-level function to get the spanning tree of the SOM, This function calls directly the
corresponding SNNS kernel function (the only one available for SOM). Advantage are faster com-
putation, disadvantage is somewhat limited information in the output.

Usage

S4 method for signature 'SnnsR'
somPredictCurrPatSetWinnersSpanTree()

Value
the spanning tree, which is the som, showing for each unit a number identifying the last pattern for
which this unit won. (We note that, also if there are more than one patterns, only the last one is
saved)

See Also

som

SnnsRObject$train Train a network and test it in every training iteration

Description

SnnsR low-level function to train a network and test it in every training iteration.

Usage

S4 method for signature 'SnnsR'

train(inputsTrain, targetsTrain=NULL,
initFunc="Randomize_Weights"”, initFuncParams=c(1.0, -1.0),
learnFunc="Std_Backpropagation”, learnFuncParams=c(0.2, @),
updateFunc="Topological_Order"”, updateFuncParams=c(0.0),
outputMethod="reg_class”, maxit=100, shufflePatterns=TRUE,
computeError=TRUE, inputsTest=NULL, targetsTest=NULL,
pruneFunc=NULL, pruneFuncParams=NULL)

SnnsRObject$train 65

Arguments

inputsTrain a matrix with inputs for the network
targetsTrain the corresponding targets

initFunc the initialization function to use
initFuncParams the parameters for the initialization function

learnFunc the learning function to use

learnFuncParams
the parameters for the learning function

updateFunc the update function to use

updateFuncParams
the parameters for the update function

outputMethod the output method of the net

maxit maximum of iterations to learn

shufflePatterns
should the patterns be shuffled?

computeError should the error be computed in every iteration?

inputsTest a matrix with inputs to test the network
targetsTest the corresponding targets for the test input
pruneFunc the pruning function to use
pruneFuncParams

the parameters for the pruning function. Unlike the other functions, these have
to be given in a named list. See the pruning demos for further explanation.

Value

a list containing:

fitValues the fitted values, i.e. outputs of the training inputs

IterativeFitError
The SSE in every iteration/epoch on the training set

testValues the predicted values, i.e. outputs of the test inputs

IterativeTestError
The SSE in every iteration/epoch on the test set

66 som

SnnsRObject$whereAreResults
Get a list of output units of a net

Description

SnnsR low-level function to get a list of output units of a net.

Usage
S4 method for signature 'SnnsR'
whereAreResults (outputMethod="output")
Arguments

outputMethod a string defining the output method of the net. Possible values are: "art1", "art2",

non non non

"artmap", "assoz", "som", "output".

Details

Depending on the network architecture, output is present in hidden units, in output units, etc. In
some network types, the output units have a certain name prefix in SNNS. This function finds the
output units according to certain network types. The type is specified by outputMethod. If the
given outputMethod is unknown, the function defaults to "output”.

Value

a list of numbers identifying the units

som Create and train a self-organizing map (SOM)

Description

This function creates and trains a self-organizing map (SOM). SOMs are neural networks with one
hidden layer. The network structure is similar to LVQ, but the method is unsupervised and uses
a notion of neighborhood between the units. The general idea is that the map develops by itself a
notion of similarity among the input and represents this as spatial nearness on the map. Every hidden
unit represents a prototype. The goal of learning is to distribute the prototypes in the feature space
such that the (probability density of the) input is represented well. SOMs are usually built with 1d,
2d quadratic, 2d hexagonal, or 3d neighborhood, so that they can be visualized straightforwardly.
The SOM implemented in SNNS has a 2d quadratic neighborhood.

As the computation of this function might be slow if many patterns are involved, much of its output
is made switchable (see comments on return values).

som

Usage

som(x, ...)

Default S3 method:

som(
X,
mapX = 16,
mapY = 16,
maxit = 100,

initFuncParams = c(1, -1),

learnFuncParams = c(0.5, mapX/2, 0.8, 0.8, mapX),
updateFuncParams = c(0, 0, 1),

shufflePatterns = TRUE,

calculateMap = TRUE,

calculateActMaps = FALSE,

calculateSpanningTree = FALSE,
saveWinnersPerPattern = FALSE,

targets = NULL,

)
Arguments
X a matrix with training inputs for the network
additional function parameters (currently not used)
mapX the x dimension of the som
mapY the y dimension of the som
maxit maximum of iterations to learn

initFuncParams the parameters for the initialization function
learnFuncParams

the parameters for the learning function
updateFuncParams

the parameters for the update function
shufflePatterns

should the patterns be shuffled?
calculateMap should the som be calculated?

calculateActMaps
should the activation maps be calculated?

calculateSpanningTree
should the SNNS kernel algorithm for generating a spanning tree be applied?

saveWinnersPerPattern
should a list with the winners for every pattern be saved?

targets optional target classes of the patterns

68

Details

som

Internally, this function uses the initialization function Kohonen_Weights_v3. 2, the learning func-
tion Kohonen, and the update function Kohonen_Order of SNNS.

Value

an rsnns object. Depending on which calculation flags are switched on, the som generates some

special members:

map

componentMaps

actMaps

the som. For each unit, the amount of patterns where this unit won is given.

a map for every input component, showing where in the map this component
leads to high activation.

a list containing for each pattern its activation map, i.e. all unit activations.
The actMaps are an intermediary result, from which all other results can be
computed. This list can be very long, so normally it won’t be saved.

winnersPerPattern

labeledUnits

labeledMap

spanningTree

References

a vector where for each pattern the number of the winning unit is given. Also,
an intermediary result that normally won’t be saved.

a matrix which — if the targets parameter is given — contains for each unit
(rows) and each class present in the targets (columns), the amount of patterns
of the class where the unit has won. From the labeledUnits, the labeledMap
can be computed, e.g. by voting of the class labels for the final label of the unit.

a labeled som that is computed from labeledUnits using decodeClassLabels.

the result of the original SNNS function to calculate the map. For each unit,
the last pattern where this unit won is present. As the other results are more
informative, the spanning tree is only interesting, if the other functions are too
slow or if the original SNNS implementation is needed.

Kohonen, T. (1988), Self-organization and associative memory, Vol. 8, Springer-Verlag.

Zell, A. etal. (1998), ’SNNS Stuttgart Neural Network Simulator User Manual, Version 4.2°, IPVR,
University of Stuttgart and WSI, University of Tiibingen. https://www.ra.cs.uni-tuebingen.
de/SNNS/welcome.html

Zell, A. (1994), Simulation Neuronaler Netze, Addison-Wesley. (in German)

Examples

Not run: demo(som_iris)
Not run: demo(som_cubeSnnsR)

data(iris)

inputs <- normalizeData(iris[,1:4], "norm")

model <- som(inputs, mapX=16, mapY=16, maxit=500,

calculateActMaps=TRUE, targets=iris[,5])

https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html
https://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html

splitForTrainingAndTest 69

par(mfrow=c(3,3))
for(i in 1:ncol(inputs)) plotActMap(model$componentMaps[[i]],
col=rev(topo.colors(12)))

plotActMap(model$map, col=rev(heat.colors(12)))

plotActMap(log(model$map+1), col=rev(heat.colors(12)))

persp(1:model$archParams$mapX, 1:model$archParams$mapyY, log(model$map+1),
theta = 30, phi = 30, expand = 0.5, col = "lightblue")

plotActMap(model$labeledMap)
model $componentMaps
model$labeledUnits

model$map

names (model)

splitForTrainingAndTest
Function to split data into training and test set

Description

Split the input and target values to a training and a test set. Test set is taken from the end of the data.
If the data is to be shuffled, this should be done before calling this function.

Usage

splitForTrainingAndTest(x, y, ratio = 0.15)

Arguments

X inputs

y targets

ratio ratio of training and test sets (default: 15% of the data is used for testing)
Value

a named list with the following elements:

inputsTrain a matrix containing the training inputs
targetsTrain a matrix containing the training targets
inputsTest a matrix containing the test inputs

targetsTest a matrix containing the test targets

70 summary.rsnns

Examples

data(iris)
#shuffle the vector
iris <- iris[sample(1:nrow(iris),length(1:nrow(iris))),1:ncol(iris)]

irisValues <- iris[,1:4]
irisTargets <- decodeClasslLabels(iris[,5])

splitForTrainingAndTest(irisValues, irisTargets, ratio=0.15)

summary.rsnns Generic summary function for rsnns objects

Description

Prints out a summary of the network. The printed information can be either all information of
the network in the original SNNS file format, or the information given by extractNetInfo. This
behaviour is controlled with the parameter origSnnsFormat.

Usage

S3 method for class 'rsnns'
summary(object, origSnnsFormat = TRUE, ...)

Arguments

object the rsnns object

origSnnsFormat show data in SNNS’s original format in which networks are saved, or show
output of extractNetInfo

additional function parameters (currently not used)

Value

Either the contents of the .net file that SNNS would generate from the object, as a string. Or the
output of extractNetInfo.

See Also

extractNetInfo

toNumericClassLabels 71

toNumericClassLabels Convert a vector (of class labels) to a numeric vector

Description

This function converts a vector (of class labels) to a numeric vector.

Usage

toNumericClassLabels(x)

Arguments

X inputs

Value

the vector converted to a numeric vector

Examples

data(iris)
toNumericClassLabels(iris[,5])

train Internal generic train function for rsnns objects

Description

The function calls SnnsRObject$train and saves the result in the current rsnns object. This
function is used internally by the models (e.g. mlp) for training. Unless you are not about to
implement a new model on the S3 layer you most probably don’t want to use this function.

Usage

train(object, ...)

S3 method for class 'rsnns'
train(
object,
inputsTrain,
targetsTrain = NULL,
inputsTest = NULL,
targetsTest = NULL,
serializeTrainedObject = TRUE,

72
Arguments
object the rsnns object
additional function parameters (currently not used)
inputsTrain training input
targetsTrain training targets
inputsTest test input
targetsTest test targets
serializeTrainedObject
parameter passed to SnnsRObject$train
Value

an rsnns object, to which the results of training have been added.

vectorToActMap

vectorToActMap Convert a vector to an activation map

Description

Organize network activation as 2d map.

Usage

vectorToActMap(v, nrow = @, ncol = 0)

Arguments
v the vector containing the activation pattern
nrow number of rows the resulting matrices will have
ncol number of columns the resulting matrices will have
Details

The input to this function is a vector containing in each row an activation pattern/output of a neural
network. This function reorganizes the vector to a matrix. Normally, only the number of rows nrow

will be used.

Value

a matrix containing the 2d reorganized input

See Also
matrixToActMapList plotActMap

weightMatrix 73

weightMatrix Function to extract the weight matrix of an rsnns object

Description

The function calls SnnsRObject$getCompleteWeightMatrix and returns its result.

Usage

weightMatrix(object, ...)

S3 method for class 'rsnns'

weightMatrix(object, ...)
Arguments
object the rsnns object

additional function parameters (currently not used)

Value

a matrix with all weights from all neurons present in the net.

Index

* SNNS
RSNNS-package, 4
+ data
snnsData, 47
* networks
RSNNS-package, 4
* neural
RSNNS-package, 4
+ package
RSNNS-package, 4
$, 4749
$ (SnnsRObjectMethodCaller), 50
$,SnnsR-method
(SnnsRObjectMethodCaller), 50

analyzeClassification, 6, 24
art1,5,6,7,10-12, 14-16, 46
art2, 5-7,9, 10, 14, 16, 46
artmap, 5, 6,9, 11, 12,46
assoz, 5, 6, 15, 46

confusionMatrix, 17

createNet, SnnsR-method
(SnnsRObject$createNet), 51

createPatSet, SnnsR-method
(SnnsRObject$createPatSet), 52

decodeClasslLabels, 17, 68
denormalizeData, 18, 25, 34, 35
dlvq, 5, 6, 19, 46

elman, 5, 6, 21, 27, 29, 46

encodeClasslLabels, 7, 17,23

exportToSnnsNetFile, 24, 24

extractNetInfo, 24, 70

extractNetInfo,SnnsR-method
(SnnsRObject$extractNetInfo),
52

extractPatterns, SnnsR-method
(SnnsRObject$extractPatterns),
53

74

getAllHiddenUnits, SnnsR-method
(SnnsRObject$getAllHiddenUnits),
53

getAllInputUnits, SnnsR-method
(SnnsRObject$getAllInputUnits),
54

getAllOutputUnits, SnnsR-method
(SnnsRObject$getAllOutputUnits),
54

getAllUnits, SnnsR-method
(SnnsRObject$getAllUnits), 55

getAllUnitsTType, SnnsR-method
(SnnsRObject$getAllUnitsTType),
55

getCompleteWeightMatrix, SnnsR-method

(SnnsRObject$getCompleteWeightMatrix),

56
getInfoHeader, SnnsR-method
(SnnsRObject$getInfoHeader), 56
getNormParameters, 19, 25, 34, 35
getSiteDefinitions, SnnsR-method
(SnnsRObject$getSiteDefinitions),
57
getSnnsRDefine, 26, 44
getSnnsRFunctionTable, 26
getTypeDefinitions, SnnsR-method
(SnnsRObject$getTypeDefinitions),
57
getUnitDefinitions, SnnsR-method
(SnnsRObject$getUnitDefinitions),
58
getUnitsByName, SnnsR-method
(SnnsRObject$getUnitsByName),
58
getWeightMatrix, SnnsR-method
(SnnsRObject$getWeightMatrix),
59

initializeNet, SnnsR-method
(SnnsRObject$initializeNet), 59

INDEX

inputColumns, 27
jordan, 5, 6, 21-23, 27, 46

matrixToActMapList, 30, 36, 72
mlp, 5, 6, 31, 39,46, 71

normalizeData, I8, 19, 25, 33, 34, 35
normTrainingAndTestSet, 34

outputColumns, 35

plotActMap, 30, 36, 72

plotIterativeError, 36

plotRegressionError, 37

plotROC, 37

predict.rsnns, 38

predictCurrPatSet, SnnsR-method
(SnnsRObject$predictCurrPatSet),
60

print.rsnns, 38

rbf, 5, 6, 39, 46

rbfDDA, 5, 6, 41, 46

readPatFile, 43, 47

readResFile, 43

resetRSNNS, SnnsR-method
(SnnsRObject$resetRSNNS), 60

resolveSnnsRDefine, 26, 44

RSNNS (RSNNS-package), 4

rsnns, 5,9, 11, 14, 16, 20, 22, 24, 25, 29, 32,
36, 38, 40, 42, 68, 70-73

rsnns (rsnnsObjectFactory), 44

RSNNS-package, 4

rsnnsObjectFactory, 44

savePatFile, 46
setSnnsRSeedValue, 46
setTTypeUnitsActFunc, SnnsR-method

(SnnsRObject$setTTypeUnitsActFunc),

61
setUnitDefaults, SnnsR-method
(SnnsRObject$setUnitDefaults),
61
snnsData, 5, 47
SnnsR-class, 43, 46, 47, 49, 50
SnnsR__createNet
(SnnsRObject$createNet), 51
SnnsR__createPatSet
(SnnsRObject$createPatSet), 52

75

SnnsR__extractNetInfo
(SnnsRObject$extractNetInfo),
52

SnnsR__extractPatterns
(SnnsRObject$extractPatterns),
53

SnnsR__getAllHiddenUnits
(SnnsRObject$getAllHiddenUnits),
53

SnnsR__getAllInputUnits
(SnnsRObject$getAllInputUnits),
54

SnnsR__getAllOutputUnits
(SnnsRObject$getAllOutputUnits),
54

SnnsR__getAllUnits
(SnnsRObject$getAllUnits), 55

SnnsR__getAllUnitsTType
(SnnsRObject$getAllUnitsTType),
55

SnnsR__getCompleteWeightMatrix

(SnnsRObject$getCompleteWeightMatrix),

56

SnnsR__getInfoHeader
(SnnsRObject$getInfoHeader), 56

SnnsR__getSiteDefinitions
(SnnsRObject$getSiteDefinitions),
57

SnnsR__getTypeDefinitions
(SnnsRObject$getTypeDefinitions),
57

SnnsR__getUnitDefinitions
(SnnsRObject$getUnitDefinitions),
58

SnnsR__getUnitsByName
(SnnsRObject$getUnitsByName),
58

SnnsR__getWeightMatrix
(SnnsRObject$getWeightMatrix),
59

SnnsR__initializeNet
(SnnsRObject$initializeNet), 59

SnnsR__predictCurrPatSet
(SnnsRObject$predictCurrPatSet),
60

SnnsR__resetRSNNS
(SnnsRObject$resetRSNNS), 60

SnnsR__setTTypeUnitsActFunc

76 INDEX

(SnnsRObject$setTTypeUnitsActFunc), SnnsRObject$whereAreResults, 60, 66

61 SnnsRObjectFactory, 47, 48, 49
SnnsR__setUnitDefaults SnnsRObjectMethodCaller, 50
(SnnsRObject$setUnitDefaults), som, 5, 6, 19, 46, 62—64, 66
61 somPredictComponentMaps, SnnsR-method
SnnsR__somPredictComponentMaps (SnnsRObject$somPredictComponentMaps),
(SnnsRObject$somPredictComponentMaps), 62
62 somPredictCurrPatSetWinners, SnnsR-method
SnnsR__somPredictCurrPatSetWinners (SnnsRObject$somPredictCurrPatSetWinners),
(SnnsRObject$somPredictCurrPatSetWinners), 63
63 somPredictCurrPatSetWinnersSpanTree, SnnsR-method
SnnsR__somPredictCurrPatSetWinnersSpanTree (SnnsRObject$somPredictCurrPatSetWinnersSpanTree),
(SnnsRObject$somPredictCurrPatSetWinnersSpanThéde),
64 splitForTrainingAndTest, 34, 35, 69
SnnsR__train (SnnsRObject$train), 64 summary.rsnns, 24, 70
SnnsR__whereAreResults]
(SnnsRObject$whereAreResults), toNumericClassLabels, 71
66 train, 46,71

train, SnnsR-method (SnnsRObject$train),

SnnsRObject$createNet, 51 64

SnnsRObject$createPatSet, 52
SnnsRObject$extractNetInfo, 25, 52

) vectorToActMap, 30, 36, 72
SnnsRObject$extractPatterns, 43, 53

SnnsRObject$getAllHiddenUnits, 53, 55 weightMatrix, 73
SnnsRObject$getAllInputUnits, 54, 55 whereAreResults, SnnsR-method
SnnsRObject$getAllOutputUnits, 54, 55 (SnnsRObject$whereAreResults),
SnnsRObject$getAllUnits, 55 66
SnnsRObject$getAllUnitsTType, 53, 54, 55,

59,61
SnnsRObject$getCompleteWeightMatrix,

56, 73

SnnsRObject$getInfoHeader, 56
SnnsRObject$getSiteDefinitions, 57
SnnsRObject$getTypeDefinitions, 57
SnnsRObject$getUnitDefinitions, 58
SnnsRObject$getUnitsByName, 58
SnnsRObject$getWeightMatrix, 59
SnnsRObject$initializeNet, 50, 59
SnnsRObject$predictCurrPatSet, 60
SnnsRObject$resetRSNNS, 60
SnnsRObject$setTTypeUnitsActFunc, 61
SnnsRObject$setUnitDefaults, 61
SnnsRObject$somPredictComponentMaps,

62
SnnsRObject$somPredictCurrPatSetWinners,

63
SnnsRObject$somPredictCurrPatSetWinnersSpanTree,

64
SnnsRObject$train, 50, 64, 71, 72

	RSNNS-package
	analyzeClassification
	art1
	art2
	artmap
	assoz
	confusionMatrix
	decodeClassLabels
	denormalizeData
	dlvq
	elman
	encodeClassLabels
	exportToSnnsNetFile
	extractNetInfo
	getNormParameters
	getSnnsRDefine
	getSnnsRFunctionTable
	inputColumns
	jordan
	matrixToActMapList
	mlp
	normalizeData
	normTrainingAndTestSet
	outputColumns
	plotActMap
	plotIterativeError
	plotRegressionError
	plotROC
	predict.rsnns
	print.rsnns
	rbf
	rbfDDA
	readPatFile
	readResFile
	resolveSnnsRDefine
	rsnnsObjectFactory
	savePatFile
	setSnnsRSeedValue
	snnsData
	SnnsR-class
	SnnsRObjectFactory
	SnnsRObjectMethodCaller
	SnnsRObject$createNet
	SnnsRObject$createPatSet
	SnnsRObject$extractNetInfo
	SnnsRObject$extractPatterns
	SnnsRObject$getAllHiddenUnits
	SnnsRObject$getAllInputUnits
	SnnsRObject$getAllOutputUnits
	SnnsRObject$getAllUnits
	SnnsRObject$getAllUnitsTType
	SnnsRObject$getCompleteWeightMatrix
	SnnsRObject$getInfoHeader
	SnnsRObject$getSiteDefinitions
	SnnsRObject$getTypeDefinitions
	SnnsRObject$getUnitDefinitions
	SnnsRObject$getUnitsByName
	SnnsRObject$getWeightMatrix
	SnnsRObject$initializeNet
	SnnsRObject$predictCurrPatSet
	SnnsRObject$resetRSNNS
	SnnsRObject$setTTypeUnitsActFunc
	SnnsRObject$setUnitDefaults
	SnnsRObject$somPredictComponentMaps
	SnnsRObject$somPredictCurrPatSetWinners
	SnnsRObject$somPredictCurrPatSetWinnersSpanTree
	SnnsRObject$train
	SnnsRObject$whereAreResults
	som
	splitForTrainingAndTest
	summary.rsnns
	toNumericClassLabels
	train
	vectorToActMap
	weightMatrix
	Index

