Package ‘admiral’

February 3, 2026

Type Package
Title ADaM in R Asset Library
Version 1.4.1

Description A toolbox for programming Clinical Data Interchange Standards
Consortium (CDISC) compliant Analysis Data Model (ADaM) datasets in R.
ADaM datasets are a mandatory part of any New Drug or Biologics
License Application submitted to the United States Food and Drug
Administration (FDA). Analysis derivations are implemented in
accordance with the ™~ Analysis Data Model Implementation Guide" (CDISC
Analysis Data Model Team, 2021,
<https://www.cdisc.org/standards/foundational/adam>).

License Apache License (>=2)

URL https://pharmaverse.github.io/admiral/,
https://github.com/pharmaverse/admiral

BugReports https://github.com/pharmaverse/admiral/issues
Depends R (>=4.1)

Imports admiraldev (>= 1.4.0), cli (>=3.6.2), dplyr (>=1.1.1), hms
(>=0.5.3), lifecycle (>= 0.1.0), lubridate (>= 1.7.4),
magrittr (>= 1.5), purrr (>= 0.3.3), rlang (>= 0.4.4), stringr
(>=1.4.0), tidyr (>= 1.0.2), tidyselect (>= 1.1.0)

Suggests diffdf, DT, here, htmltools, knitr, methods, pharmaversesdtm
(>= 1.0.0), reactable, readxl, rmarkdown, testthat (>= 3.0.0),
tibble, withr

VignetteBuilder knitr
Config/Needs/website gert, rmarkdown
Config/testthat/edition 3

Encoding UTF-8

Language en-US

LazyData true

RoxygenNote 7.3.3

https://www.cdisc.org/standards/foundational/adam
https://pharmaverse.github.io/admiral/
https://github.com/pharmaverse/admiral
https://github.com/pharmaverse/admiral/issues

NeedsCompilation no

Author Ben Straub [aut, cre],
Stefan Bundfuss [aut] (ORCID: <https://orcid.org/0009-0005-0027-1198>),
Matt Bearham [aut],
Arianna Cascone [aut] (ORCID: <https://orcid.org/0000-0001-5948-2831>),
KTristin Dahnert [aut],
Jeffrey Dickinson [aut],
Ross Farrugia [aut],
Fanny Gautier [aut],
Edoardo Mancini [aut] (ORCID: <https://orcid.org/0009-0006-4899-8641>),
Gordon Miller [aut],
Lina Patil [aut],
Jim Rothstein [aut] (ORCID: <https://orcid.org/0009-0009-8659-6071>),
F. Hoffmann-La Roche AG [cph, fnd],
GlaxoSmithKline LLC [cph, fnd]

Maintainer Ben Straub <ben.x.straub@gsk.com>
Repository CRAN
Date/Publication 2026-02-03 10:20:11 UTC

Contents

admiral_adlb
admiral_adsl
atoxXgr_Criteria_Ctcv4 e e e e
atOXEr_Criteria_CtCv4_USCV v v v vt e et e e e e e e
atoxgr_Criteria_Ctevs e e e
atoxgr_criteria_CtcvS_USCV
atoxgr_criteria_ctcvh L L. L.
atoxgr_criteria_CtcvO_USCV e
atoxgr_criteria_daids L.
atoxgr_criteria_daids_uscv
basket_select e
call_derivation e
call_user_fun e
CENSOT_SOUICTE . . & « v v v e v e
chr2vars e e e e
COMPULE_AZE_YOATS . .« + v v v v v e v e e e e e e e e e e e e e e e
compute_bmi e e e e e
Compute_bSa e e e e e e e e
compute_dtf L
compute_durationo e e e e e
compute_egfr L.
compute_framingham
COMPUEE_MAP v v v v v e e e e e e e e e e e e e e e e e
compute_qtC L. e e e e e e
compute_qual_imputation

Contents

https://orcid.org/0009-0005-0027-1198
https://orcid.org/0000-0001-5948-2831
https://orcid.org/0009-0006-4899-8641
https://orcid.org/0009-0009-8659-6071

Contents

3
compute_qual_imputation_dec 39
COMPULE_IT .« . o v v v v ettt e e e e et e e e e e e e e e 40
compute_scale L e 41
compute_tmf 42
consolidate_metadata e e 44
convert_blanks to na e e 45
convert_date_to dtm e e 47
convert_dtc_to_dt e e e 50
convert_dtc_to_dtm e e e 52
convert_ na_to_blanks e 55
convert_xxtpt_to_hours 56
country_code_lookup e e 61
count_valso e e 62
create_period_dataset 63
create_query_data L. e e e e e e e e 66
create_single_dose_dataset 69
date_SOUICE o o o e 75
death_event e 76
default_qtc_paramecd 77
derivation_slice s 78
derive_basetype_records 79
derive_expected_records e 81
derive_extreme_evento e e e e e e e e e e 83
derive_extreme_recordso e e e 95
derive_locf records L e e 109
derive_param_bmi L. e e e 114
derive_param_bsa 117
derive_param_computedo e 121
derive_param_doseint L. e e 130
derive_param_exist_flag oL oo 133
derive_param_eXPOSUIE v v v v et e e e e e e e e e e e e 136
derive_param_extreme_recordo e e e 140
derive_param_framinghamo L L L 142
derive_param_map e e e e e 147
derive_param_(qtC e e e e 150
derive_param_IT Lt e e e e e e e e 153
derive_param_tte e e e e 155
derive_param_wbc_abs Lo 168
derive_summary_records e e e 171
derive_vars_aageo e e e e e e e e 179
derive_vars_atC 181
derive_vars_Cat e e e e e 183
derive_vars_computed e 189
derive_vars_crit_flag 192
derive_vars_dt e 196
derive_vars_dtm e e 205
derive_vars dtm_to dt e 212

derive_vars_dtm_to_tm e e 214

Contents

derive_vars_duration e e e e e 215
derive_vars_dy 219
derive_vars_extreme_eVENt o i e e e e e e e 221
derive_vars_joined e 225
derive_vars_joined_summary e e e e e e e e e 242
derive_vars_merged L. e 251
derive_vars_merged_lookup oL 260
derive_vars_merged_Summaryo u e e e e e e e e e e 263
derive_vars_period e 266
derive_vars_qUery ot e e e 269
derive_vars_transposedo 271
derive_var_age_yearst e i e e e e e e e e e e e e 274
derive_var_analysis_ratio 275
derive_var_anrind e e 277
derive_var_atoXgr v it e e e e e e e e e e e e e 279
derive_var_atoxgr_dir 280
derive_var_base e 284
derive_var_chg e e 286
derive_var_dthcaus e e 287
derive_var_extreme_dt e 290
derive_var_extreme_dtm e e e 294
derive_var_extreme_flag 299
derive_var_joined_exist_flag oL oo 308
derive_var_merged_ef_msrc oL 323
derive_var_merged_exist_flag L o 327
derive_var_merged_summaryo u et e e e e e e e 330
derive_var_nfrlt e 332
derive_var_obs_number e e 348
derive_var_ontrtfl 350
derive_var_pchg 354
derive_var_relative_flag 355
derive_var_shift e 358
derive_var_trtdurd L e e 360
derive_var_trtemfl L 362
desc . .. e e e e e 370
dose_freq_lookup 370
dthcaus_source e e e 371
EVENL i e e e e e e e e 373
event_joined L L e e e 375
EVENL_SOUICE v v v e e e e e e e e e e e e e e e e 380
example_gso e e e e 382
BXPIS « v v e e e e e e e e e e e e e e e e e e 382
EXIract_UNit e e e e e e e e e e e e 383
ex_singleo 383
Alter_exist e e 384
filter_extreme e e e e 386
filter joined L 388

filter_NOt_eXiSt e e 398

admiral_adlb 5

filter_relative L e e 400
flag_event e e 403
get_admiral_option L e e 404
get_duplicates_dataset 405
get_flagged_records 406
get_many_to_one_dataset. 408
get_not_mapped e e e e e e e 409
get_one_to_many_dataseto i e e e 409
get_summary_recordSo e e e e 410
QL VAIS_QUETY « « v v v v v e 413
impute_dtc_dt e 414
impute_dtc_dtm e 418
list_all_templates e e e e 422
list_tte_source_objects i e e e e 423
max_cond e e e s 424
min_cond 425
NEZALE_VAIS . « . . v v v e e e e e e e e e e e e e e e e e e 426
PATAIS o vt e e e e e e e e e e e e e e e 426
QUETIES .+ v v v v o e e e e e e e e e e e e e e e e e e 428
queries_mh e e e e 429
QUETY . v v v v i e e e e e e e e e e e 430
records_SOUICE v v v e e e e e e e e e e e 432
restrict_derivation e e 433
set_admiral_options e e e 435
slice_derivation L e e e 437
transform_range L. L. e e e e e 439
e _SOUICE . . v v v v v o e e e e e e e e e e e s 441
use_ad_template 442
YO_LO_NUMETIC . . o v v v o e v vt e e e e e e e e e e e e 443
Do>% e 444
Index 445
admiral_adlb Lab Analysis Dataset
Description

An example of lab analysis dataset

Usage
admiral_adlb

Format

An object of class tbl_df (inherits from tbl, data. frame) with 330 rows and 115 columns.

6 atoxgr_criteria_ctcv4

Source

Derived from the adlb template, then further filtered due to dataset size by the following USUB-
JIDs: 01-701-1015, 01-701-1023, 01-701-1028, 01-701-1033, 01-701-1034, 01-701-1047, 01-701-
1097, 01-705-1186, 01-705-1292, 01-705-1310, 01-708-1286

See Also

Other datasets: admiral_adsl, ex_single, example_gs, queries, queries_mh

admiral_adsl Subject Level Analysis Dataset

Description

An example subject level analysis dataset

Usage

admiral_adsl

Format

An object of class tb1_df (inherits from tbl, data. frame) with 306 rows and 54 columns.

Source

Derived from the dm and ds datasets using {admiral} (https://github.com/pharmaverse/admiral/
blob/main/inst/templates/ad_adsl.R)

See Also

Other datasets: admiral_adlb, ex_single, example_gs, queries, queries_mh

atoxgr_criteria_ctcv4 Metadata Holding Grading Criteria for NCI-CTCAEv4 using SI unit
where applicable

Description

Metadata Holding Grading Criteria for NCI-CTCAEv4 using SI unit where applicable

Usage

atoxgr_criteria_ctcv4

https://github.com/pharmaverse/admiral/blob/main/inst/templates/ad_adsl.R
https://github.com/pharmaverse/admiral/blob/main/inst/templates/ad_adsl.R

atoxgr_criteria_ctcv4 7

Format

An object of class data. frame with 42 rows and 13 columns.

Details

This metadata has its origin in the ADLB Grading Spec json file data-raw/adlb_grading/ncictcaev4. json.
The variables GRADE_NA_CODE, GRADE_4_CODE, GRADE_3_CODE, GRADE_2_CODE and GRADE_1_CODE

in the json file are combined to create GRADE_CRITERIA_CODE, and then dropped from metadata.

The dataset contains the following columns:

* SOC: variable to hold the SOC of the lab test criteria.
e TERM: variable to hold the term describing the criteria applied to a particular lab test, eg.
’Anemia’ or "INR Increased’. Note: the variable is case insensitive.

e Grade 1: Criteria defining lab value as Grade 1.

* Grade 2: Criteria defining lab value as Grade 2.
* Grade 3: Criteria defining lab value as Grade 3.
* Grade 4: Criteria defining lab value as Grade 4.

5:

* Grade 5: Criteria defining lab value as Grade 5.

* Definition: Holds the definition of the lab test abnormality.
* GRADE_CRITERIA_CODE: variable to hold code that creates grade based on defined criteria.

* UNIT_CHECK: variable to hold SI unit of particular lab test. Used to check against input data if
criteria is based on absolute values.

* VAR_CHECK: List of variables required to implement lab grade criteria. Use to check against
input data.

* DIRECTION: variable to hold the direction of the abnormality of a particular lab test value. "L’
is for LOW values, "H’ is for HIGH values. Note: the variable is case insensitive.

* COMMENT: Holds any information regarding rationale behind implementation of grading crite-
ria.

Note: Variables SOC, TERM, Grade 1, Grade 2,Grade 3,Grade 4,Grade 5, Definition are from
the source document on NCI-CTC website defining the grading criteria. Common Terminology
Criteria for Adverse Events (CTCAE)v4.0 From these variables only "TERM’ is used in the
{admiral} code, the rest are for information and traceability only.

See Also

Other metadata: atoxgr_criteria_ctcv4_uscv, atoxgr_criteria_ctcv5, atoxgr_criteria_ctcv5_uscy,
atoxgr_criteria_ctcv6, atoxgr_criteria_ctcv6_uscv, atoxgr_criteria_daids, atoxgr_criteria_daids_uscv,
country_code_lookup, dose_freq_lookup

https://dctd.cancer.gov/research/ctep-trials/trial-development#ctcae-and-ctep-codes
https://dctd.cancer.gov/research/ctep-trials/trial-development#ctcae-and-ctep-codes

8 atoxgr_criteria_ctcv4_uscv

atoxgr_criteria_ctcv4_uscv
Metadata Holding Grading Criteria for NCI-CTCAEv4 using USCV
unit where applicable

Description

Metadata Holding Grading Criteria for NCI-CTCAEv4 using USCV unit where applicable

Usage

atoxgr_criteria_ctcv4_uscv

Format

An object of class data. frame with 48 rows and 13 columns.

Details

This metadata has its origin in the ADLB Grading Spec json file data-raw/adlb_grading/ncictcaev4_uscv. json.
The variables GRADE_NA_CODE, GRADE_4_CODE, GRADE_3_CODE, GRADE_2_CODE and GRADE_1_CODE

in the json file are combined to create GRADE_CRITERIA_CODE, and then dropped from metadata.

The dataset contains the following columns:

* SOC: variable to hold the SOC of the lab test criteria.

e TERM: variable to hold the term describing the criteria applied to a particular lab test, eg.
’Anemia’ or ’INR Increased’. Note: the variable is case insensitive.

* Grade 1: Criteria defining lab value as Grade 1.

* Grade 2: Criteria defining lab value as Grade 2.

* Grade 3: Criteria defining lab value as Grade 3.

e Grade 4: Criteria defining lab value as Grade 4.

* Grade 5: Criteria defining lab value as Grade 5.

* Definition: Holds the definition of the lab test abnormality.

* GRADE_CRITERIA_CODE: variable to hold code that creates grade based on defined criteria.

e UNIT_CHECK: variable to hold USCV unit of particular lab test. Used to check against input
data if criteria is based on absolute values.

* VAR_CHECK: List of variables required to implement lab grade criteria. Use to check against
input data.

e DIRECTION: variable to hold the direction of the abnormality of a particular lab test value. "L’
is for LOW values, "H’ is for HIGH values. Note: the variable is case insensitive.

* COMMENT: Holds any information regarding rationale behind implementation of grading crite-
ria.

Note: Variables SOC, TERM, Grade 1, Grade 2,Grade 3,Grade 4,Grade 5, Definition are from
the source document on NCI-CTC website defining the grading criteria. Common Terminology
Criteria for Adverse Events (CTCAE)v4.0 From these variables only "TERM’ is used in the
{admiral} code, the rest are for information and traceability only.

https://dctd.cancer.gov/research/ctep-trials/trial-development#ctcae-and-ctep-codes
https://dctd.cancer.gov/research/ctep-trials/trial-development#ctcae-and-ctep-codes

atoxgr_criteria_ctcv5 9

See Also

Other metadata: atoxgr_criteria_ctcv4, atoxgr_criteria_ctcv5, atoxgr_criteria_ctcv5_uscy,
atoxgr_criteria_ctcv6, atoxgr_criteria_ctcv6_uscyv, atoxgr_criteria_daids, atoxgr_criteria_daids_uscv,
country_code_lookup, dose_freq_lookup

atoxgr_criteria_ctcvbs Metadata Holding Grading Criteria for NCI-CTCAEVS using SI unit
where applicable

Description

Metadata Holding Grading Criteria for NCI-CTCAEvVS using SI unit where applicable

Usage

atoxgr_criteria_ctcv5h

Format

An object of class data. frame with 39 rows and 13 columns.

Details

This metadata has its origin in the ADLB Grading Spec json file data-raw/adlb_grading/ncictcaev5. json.
The variables GRADE_NA_CODE, GRADE_4_CODE, GRADE_3_CODE, GRADE_2_CODE and GRADE_1_CODE

in the json file are combined to create GRADE_CRITERIA_CODE, and then dropped from metadata.

The dataset contains the following columns:

* SOC: variable to hold the SOC of the lab test criteria.
* TERM: variable to hold the term describing the criteria applied to a particular lab test, eg.
’Anemia’ or ’INR Increased’. Note: the variable is case insensitive.

e Grade 1: Criteria defining lab value as Grade 1.

* Grade 2: Criteria defining lab value as Grade 2.

* Grade 3: Criteria defining lab value as Grade 3.

* Grade 4: Criteria defining lab value as Grade 4.

* Grade 5: Criteria defining lab value as Grade 5.

* Definition: Holds the definition of the lab test abnormality.
* GRADE_CRITERIA_CODE: variable to hold code that creates grade based on defined criteria.

* UNIT_CHECK: variable to hold SI unit of particular lab test. Used to check against input data if
criteria is based on absolute values.

* VAR_CHECK: List of variables required to implement lab grade criteria. Use to check against
input data.

* DIRECTION: variable to hold the direction of the abnormality of a particular lab test value. "L’
is for LOW values, "H’ is for HIGH values. Note: the variable is case insensitive.

10 atoxgr_criteria_ctcv5_uscv

* COMMENT: Holds any information regarding rationale behind implementation of grading crite-
ria.

Note: Variables SOC, TERM, Grade 1, Grade 2,Grade 3,Grade 4,Grade 5, Definition are from
the source document on NCI-CTC website defining the grading criteria. Common Terminology
Criteria for Adverse Events (CTCAE)vS5.0 From these variables only "TERM’ is used in the
{admiral} code, the rest are for information and traceability only.

See Also

Other metadata: atoxgr_criteria_ctcv4, atoxgr_criteria_ctcv4_uscv, atoxgr_criteria_ctcv5_uscy,
atoxgr_criteria_ctcv6, atoxgr_criteria_ctcv6_uscv, atoxgr_criteria_daids, atoxgr_criteria_daids_uscy,
country_code_lookup, dose_freq_lookup

atoxgr_criteria_ctcv5_uscv
Metadata Holding Grading Criteria for NCI-CTCAEvS using USCV
unit where applicable

Description

Metadata Holding Grading Criteria for NCI-CTCAEvVS using USCV unit where applicable

Usage

atoxgr_criteria_ctcv5_uscv

Format

An object of class data. frame with 45 rows and 13 columns.

Details

This metadata has its origin in the ADLB Grading Spec json file data-raw/adlb_grading/ncictcaev5_uscv. json.
The variables GRADE_NA_CODE, GRADE_4_CODE, GRADE_3_CODE, GRADE_2_CODE and GRADE_1_CODE

in the json file are combined to create GRADE_CRITERIA_CODE, and then dropped from metadata.

The dataset contains the following columns:

* SOC: variable to hold the SOC of the lab test criteria.
* TERM: variable to hold the term describing the criteria applied to a particular lab test, eg.
’Anemia’ or ’INR Increased’. Note: the variable is case insensitive.

e Grade 1: Criteria defining lab value as Grade 1.

e Grade 2: Criteria defining lab value as Grade 2.

* Grade 3: Criteria defining lab value as Grade 3.

* Grade 4: Criteria defining lab value as Grade 4.

* Grade 5: Criteria defining lab value as Grade 5.

* Definition: Holds the definition of the lab test abnormality.

https://dctd.cancer.gov/research/ctep-trials/for-sites/adverse-events#ctep-ctcae
https://dctd.cancer.gov/research/ctep-trials/for-sites/adverse-events#ctep-ctcae

atoxgr_criteria_ctcvo 11

* GRADE_CRITERIA_CODE: variable to hold code that creates grade based on defined criteria.

* UNIT_CHECK: variable to hold USCV unit of particular lab test. Used to check against input
data if criteria is based on absolute values.

* VAR_CHECK: List of variables required to implement lab grade criteria. Use to check against
input data.

* DIRECTION: variable to hold the direction of the abnormality of a particular lab test value. "L’
is for LOW values, "H’ is for HIGH values. Note: the variable is case insensitive.

* COMMENT: Holds any information regarding rationale behind implementation of grading crite-
ria.

Note: Variables SOC, TERM, Grade 1, Grade 2,Grade 3,Grade 4,Grade 5, Definition are from
the source document on NCI-CTC website defining the grading criteria. Common Terminology
Criteria for Adverse Events (CTCAE)vS5.0 From these variables only "TERM’ is used in the
{admiral} code, the rest are for information and traceability only.

See Also

Other metadata: atoxgr_criteria_ctcv4, atoxgr_criteria_ctcv4_uscv, atoxgr_criteria_ctcv5,
atoxgr_criteria_ctcv6, atoxgr_criteria_ctcv6_uscv, atoxgr_criteria_daids, atoxgr_criteria_daids_uscyv,
country_code_lookup, dose_freq_lookup

atoxgr_criteria_ctcvé Metadata Holding Grading Criteria for NCI-CTCAEV6 using SI unit
where applicable

Description

Metadata Holding Grading Criteria for NCI-CTCAEv6 using SI unit where applicable

Usage

atoxgr_criteria_ctcv6

Format

An object of class data. frame with 43 rows and 13 columns.

Details

This metadata has its origin in the ADLB Grading Spec json file data-raw/adlb_grading/ncictcaevé6. json.
The variables GRADE_NA_CODE, GRADE_4_CODE, GRADE_3_CODE, GRADE_2_CODE and GRADE_1_CODE

in the json file are combined to create GRADE_CRITERIA_CODE, and then dropped from metadata.

The dataset contains the following columns:

¢ SOC: variable to hold the SOC of the lab test criteria.

e TERM: variable to hold the term describing the criteria applied to a particular lab test, eg.
’Anemia’ or ’INR Increased’. Note: the variable is case insensitive.

https://dctd.cancer.gov/research/ctep-trials/for-sites/adverse-events#ctep-ctcae
https://dctd.cancer.gov/research/ctep-trials/for-sites/adverse-events#ctep-ctcae

12 atoxgr_criteria_ctcv6_uscv

e Grade 1: Criteria defining lab value as Grade 1.
* Grade 2: Criteria defining lab value as Grade 2.
* Grade 3: Criteria defining lab value as Grade 3.
* Grade 4: Criteria defining lab value as Grade 4.
* Grade 5: Criteria defining lab value as Grade 5.

* Definition: Holds the definition of the lab test abnormality.
* GRADE_CRITERIA_CODE: variable to hold code that creates grade based on defined criteria.

* UNIT_CHECK: variable to hold SI unit of particular lab test. Used to check against input data if
criteria is based on absolute values.

* VAR_CHECK: List of variables required to implement lab grade criteria. Use to check against
input data.

* DIRECTION: variable to hold the direction of the abnormality of a particular lab test value. "L’
is for LOW values, "H’ is for HIGH values. Note: the variable is case insensitive.

* COMMENT: Holds any information regarding rationale behind implementation of grading crite-
ria.

Note: Variables SOC, TERM, Grade 1, Grade 2,Grade 3,Grade 4,Grade 5, Definition are from
the source document on NCI-CTC website defining the grading criteria. Common Terminology
Criteria for Adverse Events (CTCAE)v6.0 From these variables only "TERM’ is used in the
{admiral} code, the rest are for information and traceability only.

See Also

Other metadata: atoxgr_criteria_ctcv4, atoxgr_criteria_ctcv4_uscv, atoxgr_criteria_ctcvs5,
atoxgr_criteria_ctcv5_uscv, atoxgr_criteria_ctcv6_uscv, atoxgr_criteria_daids, atoxgr_criteria_daids_u:
country_code_lookup, dose_freq_lookup

atoxgr_criteria_ctcv6_uscv
Metadata Holding Grading Criteria for NCI-CTCAEvV6 using USCV
unit where applicable

Description

Metadata Holding Grading Criteria for NCI-CTCAEv6 using USCV unit where applicable

Usage

atoxgr_criteria_ctcv6_uscv

Format

An object of class data. frame with 48 rows and 13 columns.

https://dctd.cancer.gov/research/ctep-trials/for-sites/adverse-events#ctep-ctcae
https://dctd.cancer.gov/research/ctep-trials/for-sites/adverse-events#ctep-ctcae

atoxgr_criteria_daids 13

Details

This metadata has its origin in the ADLB Grading Spec json file data-raw/adlb_grading/ncictcaev6_uscv. json.
The variables GRADE_NA_CODE, GRADE__4_CODE, GRADE_3_CODE, GRADE_2_CODE and GRADE_1_CODE
in the json file are combined to create GRADE_CRITERIA_CODE, and then dropped from metadata.
The dataset contains the following columns:
* SOC: variable to hold the SOC of the lab test criteria.

e TERM: variable to hold the term describing the criteria applied to a particular lab test, eg.
’Anemia’ or ’INR Increased’. Note: the variable is case insensitive.

* GRADE_1: Criteria defining lab value as Grade 1.

* GRADE_2: Criteria defining lab value as Grade 2.

* GRADE_3: Criteria defining lab value as Grade 3.

* GRADE_4: Criteria defining lab value as Grade 4.

* GRADE_5: Criteria defining lab value as Grade 5.

* Definition: Holds the definition of the lab test abnormality.

* GRADE_CRITERIA_CODE: variable to hold code that creates grade based on defined criteria.

e UNIT_CHECK: variable to hold USCV unit of particular lab test. Used to check against input
data if criteria is based on absolute values.

* VAR_CHECK: List of variables required to implement lab grade criteria. Use to check against
input data.

e DIRECTION: variable to hold the direction of the abnormality of a particular lab test value. 'L’
is for LOW values, "H’ is for HIGH values. Note: the variable is case insensitive.

* COMMENT: Holds any information regarding rationale behind implementation of grading crite-
ria.

Note: Variables SOC, TERM, Grade 1, Grade 2,Grade 3,Grade 4,Grade 5, Definition are from
the source document on NCI-CTC website defining the grading criteria. Common Terminology
Criteria for Adverse Events (CTCAE)v6.0 From these variables only "TERM’ is used in the
{admiral} code, the rest are for information and traceability only.

See Also

Other metadata: atoxgr_criteria_ctcv4, atoxgr_criteria_ctcv4_uscv, atoxgr_criteria_ctcvs5,
atoxgr_criteria_ctcv5_uscv, atoxgr_criteria_ctcv6, atoxgr_criteria_daids, atoxgr_criteria_daids_uscv,
country_code_lookup, dose_freq_lookup

atoxgr_criteria_daids Metadata Holding Grading Criteria for DAIDs using SI unit where
applicable

Description

Metadata Holding Grading Criteria for DAIDs using SI unit where applicable

https://dctd.cancer.gov/research/ctep-trials/for-sites/adverse-events#ctep-ctcae
https://dctd.cancer.gov/research/ctep-trials/for-sites/adverse-events#ctep-ctcae

14 atoxgr_criteria_daids

Usage

atoxgr_criteria_daids

Format

An object of class data. frame with 63 rows and 14 columns.

Details

This metadata has its origin in the ADLB Grading Spec json file data-raw/adlb_grading/DAIDS. json.
The variables GRADE_NA_CODE, GRADE_4_CODE, GRADE_3_CODE, GRADE_2_CODE and GRADE_1_CODE

in the json file are combined to create GRADE_CRITERIA_CODE, and then dropped from metadata.

The dataset contains the following columns:

* SOC: variable to hold the SOC of the lab test criteria.

e TERM: variable to hold the term describing the criteria applied to a particular lab test, eg.
’Anemia’ or ’INR Increased’. Note: the variable is case insensitive.

* SUBGROUP : Description of sub-group of subjects were grading will be applied (i.e. >= 18
years)

* Grade 1: Criteria defining lab value as Grade 1.

* Grade 2: Criteria defining lab value as Grade 2.

* Grade 3: Criteria defining lab value as Grade 3.

* Grade 4: Criteria defining lab value as Grade 4.

* Grade 5: Criteria defining lab value as Grade 5.

* Definition: Holds the definition of the lab test abnormality.

* FILTER : admiral code to apply the filter based on SUBGROUP column.

* GRADE_CRITERIA_CODE: variable to hold code that creates grade based on defined criteria.

* UNIT_CHECK: variable to hold SI unit of particular lab test. Used to check against input data if
criteria is based on absolute values.

* VAR_CHECK: List of variables required to implement lab grade criteria. Use to check against
input data.

* DIRECTION: variable to hold the direction of the abnormality of a particular lab test value. "L’
is for LOW values, "H’ is for HIGH values. Note: the variable is case insensitive.

* COMMENT: Holds any information regarding rationale behind implementation of grading crite-
ria.

Note: Variables SOC, TERM, SUBGROUP, Grade 1, Grade 2,Grade 3,Grade 4,Grade 5, Definition
are from the source document on DAIDS website defining the grading criteria, (Division of AIDS
(DAIDS) Table for Grading the Severity of Adult and Pediatric Adverse Events). From these vari-
ables only "'TERM’ is used in the {admiral} code, the rest are for information and traceability
only.

See Also

Other metadata: atoxgr_criteria_ctcv4, atoxgr_criteria_ctcv4_uscv, atoxgr_criteria_ctcv5,
atoxgr_criteria_ctcv5_uscv, atoxgr_criteria_ctcv6, atoxgr_criteria_ctcv6_uscv, atoxgr_criteria_daids_u:
country_code_lookup, dose_freq_lookup

atoxgr_criteria_daids_uscv 15

atoxgr_criteria_daids_uscv
Metadata Holding Grading Criteria for DAIDs using USCV unit
where applicable

Description

Metadata Holding Grading Criteria for DAIDs using USCV unit where applicable

Usage

atoxgr_criteria_daids_uscv

Format

An object of class data. frame with 71 rows and 14 columns.

Details

This metadata has its origin in the ADLB Grading Spec json file data-raw/adlb_grading/DAIDS_uscv. json.
The variables GRADE_NA_CODE, GRADE_4_CODE, GRADE_3_CODE, GRADE_ _2_CODE and GRADE_1_CODE

in the json file are combined to create GRADE_CRITERIA_CODE, and then dropped from metadata.

The dataset contains the following columns:

¢ SOC: variable to hold the SOC of the lab test criteria.

e TERM: variable to hold the term describing the criteria applied to a particular lab test, eg.
’Anemia’ or 'INR Increased’. Note: the variable is case insensitive.

* SUBGROUP : Description of sub-group of subjects were grading will be applied (i.e. >= 18
years)

* Grade 1: Criteria defining lab value as Grade 1.

e Grade 2: Criteria defining lab value as Grade 2.

* Grade 3: Criteria defining lab value as Grade 3.

* Grade 4: Criteria defining lab value as Grade 4.

* Grade 5: Criteria defining lab value as Grade 5.

* Definition: Holds the definition of the lab test abnormality.

* FILTER: admiral code to apply the filter based on SUBGROUP column.

* GRADE_CRITERIA_CODE: variable to hold code that creates grade based on defined criteria.

e UNIT_CHECK: variable to hold USCV unit of particular lab test. Used to check against input
data if criteria is based on absolute values.

* VAR_CHECK: List of variables required to implement lab grade criteria. Use to check against
input data.

* DIRECTION: variable to hold the direction of the abnormality of a particular lab test value. "L’
is for LOW values, "H’ is for HIGH values. Note: the variable is case insensitive.

16 basket_select

* COMMENT: Holds any information regarding rationale behind implementation of grading crite-
ria.

Note: Variables SOC, TERM, SUBGROUP, Grade 1, Grade 2,Grade 3,Grade 4,Grade 5, Definition
are from the source document on DAIDS website defining the grading criteria. [Division of AIDS
(DAIDS) Table for Grading the Severity of Adult and Pediatric Adverse Events From these variables
only "'TERM’ is used in the {admiral} code, the rest are for information and traceability only.

See Also

Other metadata: atoxgr_criteria_ctcv4, atoxgr_criteria_ctcv4_uscv, atoxgr_criteria_ctcv5,
atoxgr_criteria_ctcv5_uscv, atoxgr_criteria_ctcv6, atoxgr_criteria_ctcv6_uscv, atoxgr_criteria_daids,
country_code_lookup, dose_freq_lookup

basket_select Create a basket_select object

Description

Create a basket_select object

Usage
basket_select(name = NULL, id = NULL, scope = NULL, type, ...)
Arguments
name Name of the query used to select the definition of the query from the company
database.
Default value NULL
id Identifier of the query used to select the definition of the query from the company
database.
Default value NULL
scope Scope of the query used to select the definition of the query from the company
database.
Permitted values "BROAD”, "NARROW", NA_character_
Default value NULL
type The type argument expects a character scalar. It is passed to the company spe-

cific get_terms() function such that the function can determine which sort of
basket is requested

Default value none

Any number of named function arguments. Can be used to pass in company
specific conditions or flags that will then be used in user-defined function that is
passed into argument get_terms_fun for function create_query_data().

Default value none

call derivation

Details

17

Exactly one of name or id must be specified.

Value

An object of class basket_select.

See Also

create_query_data(), query()

Source Objects: censor_source(), death_event, event(), event_joined(), event_source(),
flag_event(), query(), records_source(), tte_source()

call_derivation

Call a Single Derivation Multiple Times

Description

Call a single derivation multiple times with some parameters/arguments being fixed across iterations

and others varying.

Usage
call_derivation(dataset = NULL, derivation, variable_params, ...)
Arguments
dataset Input dataset
Default value NULL
derivation The derivation function to call

variable_params

A function that performs a specific derivation is expected. A derivation adds
variables or observations to a dataset. The first argument of a derivation must
expect a dataset and the derivation must return a dataset. All expected argu-
ments for the derivation function must be provided through the params() ob-
jects passed to the variable_params and . .. arguments.

Default value none

A list of function arguments that are different across iterations. Each set of
function arguments must be created using params().

Default value none

Any number of named function arguments that stay the same across iterations.
If a function argument is specified both inside variable_params and ... then
the value in variable_params overwrites the onein

@details

18 call_derivation

It is also possible to pass functions from outside the {admiral} package to
call_derivation(), e.g. an extension package function, or dplyr: :mutate().
The only requirement for a function being passed to derivation is that it must
take a dataset as its first argument and return a dataset.

Default value none

Value

The input dataset with additional records/variables added depending on which derivation has
been used.

See Also

params() restrict_derivation() call_derivation()

Higher Order Functions: derivation_slice(), restrict_derivation(), slice_derivation()

Examples

library(dplyr, warn.conflicts = FALSE)

adsl <- tribble(
~STUDYID, ~USUBJID, ~TRTSDT, ~TRTEDT,
"PILOT@1", "01-1307", NA, NA,
"PILOTO1", "@5-1377", "2014-01-04", "2014-01-25",
"PILOTQ1", "06-1384", "2012-09-15", "2012-09-24",
"PILOT@1", "15-1085", "2013-02-16", "2013-08-18",
"PILOT@1", "16-1298", "2013-04-08", "2013-06-28"

) %>%
mutate(
across(TRTSDT: TRTEDT, as.Date)
)
ae <- tribble(

~STUDYID, ~DOMAIN, ~USUBJID, ~AESTDTC, ~AEENDTC,
"PILOTO1", "AE", "06-1384", "2012-09-15", "2012-09-29",
"PILOTO1", "AE", "06-1384", "2012-09-15", "2012-09-29",
"PILOTO1", "AE", "06-1384", "2012-09-23", "2012-09-29",
"PILOTO1", "AE", "06-1384", "2012-09-23", "2012-09-29",
"PILOTO1", "AE", "06-1384", "2012-09-15", "2012-09-29",
"PILOTO1", "AE", "06-1384", "2012-09-15", "2012-09-29",
"PILOTO1", "AE", "06-1384", "2012-09-15", "2012-09-29",
"PILOTO1", "AE", "06-1384", "2012-09-15", "2012-09-29",
"PILOTO1", "AE", "06-1384", "2012-09-23", "2012-09-29",
"PILOTO1", "AE", "06-1384", "2012-09-23", "2012-09-29",
"PILOTO1", "AE", "16-1298", "2013-06-08", "2013-07-06",
"PILOTO1", "AE", "16-1298", "2013-06-08", "2013-07-06",
"PILOTO1", "AE", "16-1298", "2013-04-22", "2013-07-06",
"PILOTO1", "AE", "16-1298", "2013-04-22", "2013-07-06",
"PILOTO1", "AE", "16-1298", "2013-04-22", "2013-07-06",
"PILOTO1", "AE", "16-1298", "2013-04-22", "2013-07-06"

call_user_fun 19

adae <- ae %>%
derive_vars_merged(
dataset_add = adsl,
new_vars = exprs(TRTSDT, TRTEDT),
by_vars = exprs(USUBJID)
)

While ~derive_vars_dt()~ can only add one variable at a time, using “call_derivation()"
one can add multiple variables in one go
call_derivation(
dataset = adae,
derivation = derive_vars_dt,
variable_params = list(
params(dtc = AESTDTC, date_imputation = "first”, new_vars_prefix = "AST"),
params(dtc = AEENDTC, date_imputation = "last”, new_vars_prefix = "AEN")
),
min_dates = exprs(TRTSDT),
max_dates = exprs(TRTEDT)

The above call using “call_derivation()~ is equivalent to the following
adae %>%
derive_vars_dt(
new_vars_prefix
dtc = AESTDTC,
date_imputation = "first"”,
min_dates = exprs(TRTSDT),
max_dates = exprs(TRTEDT)

"AST",

) %%

derive_vars_dt(
new_vars_prefix = "AEN",
dtc = AEENDTC,
date_imputation = "last”,

min_dates = exprs(TRTSDT),
max_dates = exprs(TRTEDT)

call_user_fun Calls a Function Provided by the User

Description

[Deprecated]

Calls a function provided by the user and adds the function call to the error message if the call fails.

Usage

call_user_fun(call)

20 censor_source

Arguments
call Call to be executed
Default value none
Value

The return value of the function call

See Also

Other deprecated: date_source(), derive_param_extreme_record(), derive_var_dthcaus(),
derive_var_extreme_dt(), derive_var_extreme_dtm(), derive_var_merged_summary(), dthcaus_source(),
get_summary_records()

Examples

call_user_fun(compute_bmi (

height = 172,
weight = 60

)

try(call_user_fun(compute_bmi (
height = 172,
weight = "hallo”

)

censor_source Create a censor_source Object
Description

censor_source objects are used to define censorings as input for the derive_param_tte() func-
tion.

Note: This is a wrapper function for the more generic tte_source().

Usage

censor_source(
dataset_name,
filter = NULL,

date,

censor = 1,
set_values_to = NULL,
order = NULL

censor_source 21

Arguments

dataset_name The name of the source dataset

The name refers to the dataset provided by the source_datasets parameter of
derive_param_tte().

Default value none

filter An unquoted condition for selecting the observations from dataset which are
events or possible censoring time points.

Default value NULL

date A variable or expression providing the date of the event or censoring. A date, or
a datetime can be specified. An unquoted symbol or expression is expected.

Refer to derive_vars_dt () or convert_dtc_to_dt() to impute and derive a
date from a date character vector to a date object.

Default value none

censor Censoring value

CDISC strongly recommends using @ for events and positive integers for cen-
soring.

Default value 0

set_values_to A named list returned by exprs() defining the variables to be set for the event
or censoring, e.g. exprs(EVENTDESC = "DEATH"”, SRCDOM = "ADSL", SRCVAR =
"DTHDT"). The values must be a symbol, a character string, a numeric value, an
expression, or NA.

Default value NULL

order Sort order

An optional named list returned by exprs() defining additional variables that
the source dataset is sorted on after date.

Permitted values list of variables created by exprs() e.g. exprs(ASEQ).
Default value order

Value

An object of class censor_source, inheriting from class tte_source

See Also

derive_param_tte(), event_source()

Source Objects: basket_select(), death_event, event(), event_joined(), event_source(),
flag_event(), query(), records_source(), tte_source()

Examples
Last study date known alive censor

censor_source(
dataset_name = "adsl”,

22 chr2vars

date = LSTALVDT,

set_values_to = exprs(
EVNTDESC = "ALIVE",
SRCDOM = "ADSL",
SRCVAR = "LSTALVDT"

chr2vars Turn a Character Vector into a List of Expressions

Description

Turn a character vector into a list of expressions

Usage
chr2vars(chr)
Arguments
chr A character vector
Default value none
Value

A list of expressions as returned by exprs()

See Also

Utilities for working with quosures/list of expressions: negate_vars()

Examples

chr2vars(c("USUBJID", "AVAL"))

compute_age_years 23

compute_age_years Compute Age in Years

Description

Converts a set of age values from the specified time unit to years.

Usage

compute_age_years(age, age_unit)

Arguments
age The ages to convert.
A numeric vector is expected.
Default value none
age_unit Age unit.
Either a string containing the time unit of all ages in age or a character vector
containing the time units of each age in age is expected. Note that permitted
values are cases insensitive (e.g. "YEARS" is treated the same as "years” and
"Years").
Permitted values "years”, "months”, "weeks", "days”, "hours”, "minutes”,
"seconds”, NA_character_.
Default value none
Details

Returns a numeric vector of ages in years as doubles. Note that passing NA_character_ as a unit
will result in an NA value for the outputted age. Also note, underlying computations assume an equal
number of days in each year (365.25).

Value

The ages contained in age converted to years.

See Also

Date/Time Computation Functions that returns a vector: compute_dtf (), compute_duration(),
compute_tmf (), convert_date_to_dtm(), convert_dtc_to_dt(), convert_dtc_to_dtm(), convert_xxtpt_to_hours
impute_dtc_dt(), impute_dtc_dtm()

24 compute_bmi

Examples

compute_age_years(
age = c(240, 360, 480),
age_unit = "MONTHS"

)

compute_age_years(

age = c(10, 520, 3650, 1000),

age_unit = c("YEARS", "WEEKS", "DAYS", NA_character_)
)

compute_bmi Compute Body Mass Index (BMI)

Description

Computes BMI from height and weight

Usage
compute_bmi(height, weight)

Arguments
height HEIGHT value
It is expected that HEIGHT is in cm.

Permitted values numeric vector
Default value none

weight WEIGHT value
It is expected that WEIGHT is in kg.

Permitted values numeric vector
Default value none
Details

Usually this computation function can not be used with %>%.

Value

The BMI (Body Mass Index Area) in kg/m”2.

See Also

derive_param_bmi ()

BDS-Findings Functions that returns a vector: compute_bsa(), compute_egfr(), compute_framingham(),
compute_map(), compute_qgtc(), compute_qual_imputation(), compute_qual_imputation_dec(),
compute_rr(), compute_scale(), transform_range()

compute_bsa 25

Examples

compute_bmi(height = 170, weight = 75)

compute_bsa Compute Body Surface Area (BSA)

Description

Computes BSA from height and weight making use of the specified derivation method

Usage

compute_bsa(height = height, weight = weight, method)

Arguments

height HEIGHT value
It is expected that HEIGHT is in cm.

Permitted values numeric vector
Default value height

weight WEIGHT value
It is expected that WEIGHT is in kg.

Permitted values numeric vector
Default value weight

method Derivation method to use:
Mosteller: sqrt(height * weight / 3600)
DuBois-DuBois: 0.007184 * height A 0.725 * weight * 0.425
Haycock: 0.024265 * height » 0.3964 * weight » 0.5378
Gehan-George: 0.0235 * height » 0.42246 * weight » 0.51456
Boyd: 0.0003207 * (height ~ 0.3) * (1000 * weight) ~ (0.7285 - (0.0188 *
log10(1000 * weight)))
Fujimoto: 0.008883 * height » 0.663 * weight * 0.444
Takahira: 0.007241 * height » 0.725 * weight » 0.425

Permitted values character value
Default value none

Details

Usually this computation function can not be used with %>%.

Value

The BSA (Body Surface Area) in m”2.

26 compute_dtf

See Also

derive_param_bsa()

BDS-Findings Functions that returns a vector: compute_bmi (), compute_egfr(), compute_framingham(),
compute_map(), compute_qgtc(), compute_qual_imputation(), compute_qual_imputation_dec(),
compute_rr(), compute_scale(), transform_range()

Examples

Derive BSA by the Mosteller method
compute_bsa(

height = 170,
weight = 75,
method = "Mosteller”

)

Derive BSA by the DuBois & DuBois method
compute_bsa(
height = c(170, 185),

weight = c(75, 90),
method = "DuBois-DuBois”
)
compute_dtf Derive the Date Imputation Flag
Description

Derive the date imputation flag (xDTF) comparing a date character vector (--DTC) with a Date vector
(xDT).

Usage
compute_dtf(dtc, dt)

Arguments
dtc The date character vector (--DTC).
A character date is expected in a format like yyyy-mm-ddThh:mm: ss (partial or
complete).
Default value none
dt The Date vector to compare.
A date object is expected.
Default value none
Details

Usually this computation function can not be used with %>%.

compute_duration 27

Value

The date imputation flag (*DTF) (character value of "D", "M" , "Y" or NA)

See Also

Date/Time Computation Functions that returns a vector: compute_age_years(), compute_duration(),
compute_tmf (), convert_date_to_dtm(), convert_dtc_to_dt(), convert_dtc_to_dtm(), convert_xxtpt_to_hours
impute_dtc_dt(), impute_dtc_dtm()

Examples

compute_dtf(dtc = "2019-07", dt = as.Date("2019-07-18"))
compute_dtf(dtc = "2019", dt = as.Date("2019-07-18"))
compute_dtf(dtc = "--06-01T00:00", dt = as.Date("2022-06-01"))
compute_dtf(dtc = "2022-06--T00:00", dt = as.Date("2022-06-01"))
compute_dtf(dtc = "2022---01T00:00", dt = as.Date("2022-06-01"))
compute_dtf(dtc = "2022----T00:00", dt = as.Date("2022-06-01"))

compute_duration Compute Duration

Description

Compute duration between two dates, e.g., duration of an adverse event, relative day, age, ...

Usage

compute_duration(
start_date,
end_date,
in_unit = "days",
out_unit = "days"”,
floor_in = TRUE,
add_one = TRUE,
trunc_out = FALSE,

type = "duration”
)
Arguments
start_date The start date

A date or date-time object is expected.

Refer to derive_vars_dt() to impute and derive a date from a date character
vector to a date object.

Refer to convert_dtc_to_dt() to obtain a vector of imputed dates.

Default value none

compute_duration

end_date The end date
A date or date-time object is expected.

Refer to derive_vars_dt() to impute and derive a date from a date character
vector to a date object.

Refer to convert_dtc_to_dt() to obtain a vector of imputed dates.
Default value none

in_unit Input unit
See floor_in and add_one parameter for details.
Permitted Values (case-insensitive):

n o n n o n n o n non.n

For years: "year”, "years”, "yr", "yrs", "y

For months: "month”, "months”, "mo"”, "mos”
For days: "day”, "days”, "d"

For hours: "hour”, "hours", "hr", "hrs", "h"

n o n n on n on

For minutes: "minute”, "minutes”, "min”, "mins”

n o n n o n.n

For seconds: "second”, "seconds”, "sec”, "secs”,"s
Default value "days”

out_unit Output unit
The duration is derived in the specified unit
Permitted Values (case-insensitive):

n o n n o n n o n non.n

For years: "year", "years”, "yr", "yrs", "y

non n

For months: "month"”, "months”, "mo"”, "mos
For weeks: "week”, "weeks"”, "wk", "wks", "w"
For days: "day"”, "days", "d"

For hours: "hour”, "hours”, "hr", "hrs”, "h"

non non non

For minutes: "minute”, "minutes”, "min”, "mins"

n o n non_n

For seconds: "second”, "seconds”, "sec”, "secs”,"s
Default value "days”

floor_in Round down input dates?
The input dates are round down with respect to the input unit, e.g., if the input
unit is "days’, the time of the input dates is ignored.
Permitted values TRUE, FALSE
Default value TRUE

add_one Add one input unit?
If the duration is non-negative, one input unit is added. i.e., the duration can not
be zero.
Permitted values TRUE, FALSE
Default value TRUE

trunc_out Return integer part

The fractional part of the duration (in output unit) is removed, i.e., the integer
part is returned.

compute_duration 29

Permitted values TRUE, FALSE
Default value FALSE

type lubridate duration type.

See below for details.

n on

Permitted values "duration”, "interval”
Default value "duration”

Details

The output is a numeric vector providing the duration as time from start to end date in the specified
unit. If the end date is before the start date, the duration is negative.

Value

The duration between the two date in the specified unit

Duration Type

The lubridate package calculates two types of spans between two dates: duration and interval. While
these calculations are largely the same, when the unit of the time period is month or year the result
can be slightly different.

The difference arises from the ambiguity in the length of "1 month"” or "1 year”. Months may have
31, 30, 28, or 29 days, and years are 365 days and 366 during leap years. Durations and intervals
help solve the ambiguity in these measures.

The interval between 2000-02-01 and 2000-03-01 is 1 (i.e. one month). The duration between
these two dates is @. 95, which accounts for the fact that the year 2000 is a leap year, February has
29 days, and the average month length is 30.4375, i.e. 29 / 30.4375=0.95.

For additional details, review the lubridate time span reference page.

See Also

derive_vars_duration()

Date/Time Computation Functions that returns a vector: compute_age_years(), compute_dtf (),
compute_tmf (), convert_date_to_dtm(), convert_dtc_to_dt(), convert_dtc_to_dtm(), convert_xxtpt_to_hours
impute_dtc_dt(), impute_dtc_dtm()

Examples

library(lubridate)

Derive duration in days (integer), i.e., relative day
compute_duration(

start_date = ymd_hms("2020-12-06T715:00:00"),

end_date = ymd_hms("2020-12-24T708:15:00")
)

Derive duration in days (float)
compute_duration(

https://lubridate.tidyverse.org/
https://lubridate.tidyverse.org/reference/timespan.html

30 compute_egfr

start_date = ymd_hms("2020-12-06T715:00:00"),
end_date = ymd_hms("2020-12-24T08:15:00"),
floor_in = FALSE,
add_one = FALSE

)

Derive age in years
compute_duration(
start_date = ymd("1984-09-06"),
end_date = ymd("2020-02-24"),
trunc_out = TRUE,
out_unit = "years",
add_one = FALSE
)

Derive duration in hours

compute_duration(
start_date = ymd_hms("”2020-12-06T9:00:00"),
end_date = ymd_hms("2020-12-06T13:30:00"),
out_unit = "hours”,
floor_in = FALSE,
add_one = FALSE,

)
compute_egfr Compute Estimated Glomerular Filtration Rate (eGFR) for Kidney
Function
Description

Compute Kidney Function Tests:

 Estimated Creatinine Clearance (CRCL) by Cockcroft-Gault equation
 Estimated Glomerular Filtration Rate (¢GFR) by CKD-EPI or MDRD equations

Usage
compute_egfr(creat, creatu = "SI", age, weight, sex, race = NULL, method)
Arguments
creat Creatinine
A numeric vector is expected.
Default value none
creatu Creatinine Units

A character vector is expected.
Expected Values: "SI", "CV", "umol/L", "mg/dL"

Default value "SI”

compute_egtr 31

age Age (years)
A numeric vector is expected.

Default value none

weight Weight (kg)
A numeric vector is expected if method = "CRCL"

Default value none

sex Gender
A character vector is expected.
Expected Values: "M", "F"

Default value none

race Race
A character vector is expected if method = "MDRD"
Expected Values: "BLACK OR AFRICAN AMERICAN" and others

Default value NULL

method Method
A character vector is expected.
Expected Values: "CRCL", "CKD-EPI", "MDRD"

Default value none

Details

Calculates an estimate of Glomerular Filtration Rate (eGFR)
CRCL Creatinine Clearance (Cockcroft-Gault)

For Creatinine in umol/L:

(140 — age) x weight(kg) x constant

Serum Creatinine(umol /L)
Constant = 1.04 for females, 1.23 for males
For Creatinine in mg/dL:

(140 — age) x weight(kg) x (0.85if female)
72 x Serum Creatinine(mg/dL)

units = mL/min

CKD-EPI Chronic Kidney Disease Epidemiology Collaboration formula

eGFR = 142 x min(SCr/k,1)® x maz(SCr/r,1)"1200 x 0.993849¢ x 1.012[if female]

SCr = standardized serum creatinine in mg/dL (Note SCr(mg/dL) = Creat(umol/L) / 88.42)

32 compute_egfr

= 0.7 (females) or 0.9 (males)
«

=-0.241 (female) or -0.302 (male) units = mL/min/1.73 m2
MDRD Modification of Diet in Renal Disease formula

eGFR = 175 x (SCr) 115 x (age) 2% x 0.742[if female] x 1.212[if Black]

SCr = standardized serum creatinine in mg/dL (Note SCr(mg/dL) = Creat(umol/L) / 88.42)

units = mL/min/1.73 m2

Value

A numeric vector of egfr values

See Also

BDS-Findings Functions that returns a vector: compute_bmi (), compute_bsa(), compute_framingham(),
compute_map(), compute_qtc(), compute_qual_imputation(), compute_qual_imputation_dec(),
compute_rr(), compute_scale(), transform_range()

Examples

compute_egfr(
creat = 90, creatu = "umol/L", age

)

53, weight = 85, sex = "M", method = "CRCL"

compute_egfr(
creat = 90, creatu = "umol/L", age = 53, sex = "M", race = "ASIAN", method = "MDRD"
)

compute_egfr(
creat = 70, creatu = "umol/L", age = 52, sex = "F", race = "BLACK OR AFRICAN AMERICAN",
method = "MDRD"

)

compute_egfr(
creat = 90, creatu = "umol/L", age = 53, sex = "M", method = "CKD-EPI"
)

base <- tibble::tribble(
~STUDYID, ~USUBJID, ~AGE, ~SEX, ~RACE, ~WTBL, ~CREATBL, ~CREATBLU,
"PQ1", "PO1-1001", 55, "M", "WHITE", 90.7, 96.3, "umol/L",
"P@1", "P01-1002", 52, "F", "BLACK OR AFRICAN AMERICAN”, 68.5, 70, "umol/L",
"Po1", "P@1-1003", 67, "M", "BLACK OR AFRICAN AMERICAN", 85.0, 77, "umol/L",
"PQ1", "P@1-1004", 76, "F", "ASIAN", 60.7, 65, "umol/L",

compute_framingham 33

base %>%
dplyr: :mutate(

CRCL_CG = compute_egfr(
creat = CREATBL, creatu = CREATBLU, age = AGE, weight
method = "CRCL"

),

EGFR_EPI = compute_egfr(
creat = CREATBL, creatu = CREATBLU, age = AGE, weight
method = "CKD-EPI”

),

EGFR_MDRD = compute_egfr(
creat = CREATBL, creatu = CREATBLU, age = AGE, weight = WTBL, sex = SEX,
race = RACE, method = "MDRD"

WTBL, sex = SEX,

WTBL, sex = SEX,

) ’
)
compute_framingham Compute Framingham Heart Study Cardiovascular Disease 10-Year
Risk Score
Description

Computes Framingham Heart Study Cardiovascular Disease 10-Year Risk Score (FCVD101) based
on systolic blood pressure, total serum cholesterol (mg/dL), HDL serum cholesterol (mg/dL), sex,
smoking status, diabetic status, and treated for hypertension flag.

Usage

compute_framingham(sysbp, chol, cholhdl, age, sex, smokefl, diabetfl, trthypfl)

Arguments
sysbp Systolic blood pressure
A numeric vector is expected.
Default value none
chol Total serum cholesterol (mg/dL)

A numeric vector is expected.
Default value none

cholhdl HDL serum cholesterol (mg/dL)
A numeric vector is expected.

Default value none

age Age (years)
A numeric vector is expected.

Default value none

34

sex

smokefl

diabetfl

trthypfl

Details

Gender
A character vector is expected. Expected Values:

Default value none

Smoking Status
A character vector is expected. Expected Values:

Default value none

Diabetic Status
A character vector is expected. Expected Values:

Default value none

Treated for hypertension status
A character vector is expected. Expected Values:

Default value none

’M’

,Fs

compute_framingham

The predicted probability of having cardiovascular disease (CVD) within 10-years according to
Framingham formula. See AHA Journal article General Cardiovascular Risk Profile for Use in
Primary Care for reference.

For Women:

For Men:

Factor Amount

Age 2.32888

Total Chol ~ 1.20904

HDL Chol -0.70833

Sys BP 2.76157

Sys BP + Hypertension Meds ~ 2.82263
Smoker 0.52873

Non-Smoker 0
Diabetic 0.69154
Not Diabetic 0

Average Risk ~ 26.1931
Risk Period 0.95012

Factor Amount

Age 3.06117

Total Chol 1.12370

HDL Chol -0.93263

Sys BP 1.93303

Sys BP + Hypertension Meds ~ 2.99881
Smoker .65451

Non-Smoker 0

Diabetic 0.57367

compute_map 35

Not Diabetic 0
Average Risk ~ 23.9802
Risk Period 0.88936

The equation for calculating risk:

RiskFactors = (log(Age)xAgeFactor)+(log(TotalChol)*Total Chol Factor)+(log(Chol H DL)xChol H DL Factor

Risk = 100 * (1 — RiskPeriodFactor®xp(RiskFactors))

Value

A numeric vector of Framingham values

See Also

derive_param_framingham()

BDS-Findings Functions that returns a vector: compute_bmi (), compute_bsa(), compute_egfr(),
compute_map(), compute_qgtc(), compute_qual_imputation(), compute_qual_imputation_dec(),
compute_rr(), compute_scale(), transform_range()

Examples

compute_framingham(
sysbp = 133, chol = 216.16, cholhdl = 54.91, age = 53,
sex = "M", smokefl = "N", diabetfl = "N", trthypfl = "N"
)

compute_framingham(
sysbp = 161, chol = 186.39, cholhdl = 64.19, age = 52,
sex = "F", smokefl = "Y", diabetfl = "N", trthypfl = "Y"
)

compute_map Compute Mean Arterial Pressure (MAP)

Description
Computes mean arterial pressure (MAP) based on diastolic and systolic blood pressure. Optionally
heart rate can be used as well.

Usage

compute_map(diabp, sysbp, hr = NULL)

36 compute_map

Arguments
diabp Diastolic blood pressure
A numeric vector is expected.
Default value none
sysbp Systolic blood pressure
A numeric vector is expected.
Default value none
hr Heart rate
A numeric vector or NULL is expected.
Default value NULL
Details
2DIABP + SYSBP
3

if it is based on diastolic and systolic blood pressure and

40.74

ik (SY SBP — DIABP)

DIABP +0.01e*14-~

if it is based on diastolic, systolic blood pressure, and heart rate.

Usually this computation function can not be used with %>%.

Value

A numeric vector of MAP values

See Also

derive_param_map()

BDS-Findings Functions that returns a vector: compute_bmi (), compute_bsa(), compute_egfr(),
compute_framingham(), compute_qtc(), compute_qual_imputation(), compute_qual_imputation_dec(),
compute_rr(), compute_scale(), transform_range()

Examples

Compute MAP based on diastolic and systolic blood pressure
compute_map(diabp = 51, sysbp = 121)

Compute MAP based on diastolic and systolic blood pressure and heart rate
compute_map(diabp = 51, sysbp = 121, hr = 59)

compute_gqtc 37

compute_qtc Compute Corrected QT

Description

Computes corrected QT using Bazett’s, Fridericia’s or Sagie’s formula.

Usage

compute_qtc(qt, rr, method)

Arguments
qt QT interval
A numeric vector is expected. It is expected that QT is measured in ms or msec.
Default value none
rr RR interval
A numeric vector is expected. It is expected that RR is measured in ms or msec.
Default value none
method Method used to QT correction
Permitted values "Bazett”, "Fridericia”, "Sagie"
Default value none
Details

Depending on the chosen method one of the following formulae is used.

Bazett:
QT

RR
1000

Fridericia:
QT

3/ RR

1000

1000 (QT +0.154 <1 — RR))

Sagie:
1000 1000

Usually this computation function can not be used with %>%.

Value

QT interval in ms

38 compute_qual_imputation

See Also

derive_param_qtc()

BDS-Findings Functions that returns a vector: compute_bmi (), compute_bsa(), compute_egfr(),
compute_framingham(), compute_map(), compute_qual_imputation(), compute_qual_imputation_dec(),
compute_rr(), compute_scale(), transform_range()

Examples

compute_qtc(qt = 350, rr = 857, method = "Bazett")

compute_qgtc(gt = 350, rr = 857, method = "Fridericia”)

compute_qgtc(gqt = 350, rr = 857, method = "Sagie")

compute_qual_imputation
Function to Impute Values When Qualifier Exists in Character Result

Description

Derive an imputed value

Usage

compute_qual_imputation(character_value, imputation_type = 1, factor = @)

Arguments

character_value
Character version of value to be imputed

Default value none

imputation_type
(default value=1) Valid Values: 1: Strip <, >, = and convert to numeric. 2:
imputation_type=1 and if the character value contains a < or >, the number
of of decimals associated with the character value is found and then a factor of
1/10M(number of decimals + 1) will be added/subtracted from the numeric value.
If no decimals exists, a factor of 1/10 will be added/subtracted from the value.

Default value 1

factor Numeric value (default=0), when using imputation_type = 1, this value can
be added or subtracted when the qualifier is removed.

Default value 0

Value

The imputed value

compute_qual_imputation_dec 39

See Also

BDS-Findings Functions that returns a vector: compute_bmi (), compute_bsa(), compute_egfr(),
compute_framingham(), compute_map(), compute_qgtc(), compute_qual_imputation_dec(),
compute_rr(), compute_scale(), transform_range()

Examples

compute_qual_imputation(”<40")
compute_qual_imputation(c(”3", ">30.2"))

compute_qual_imputation_dec
Compute Factor for Value Imputations When Character Value Con-
tains < or >

Description

Function to compute factor for value imputation when character value contains < or >. The factor
is calculated using the number of decimals. If there are no decimals, the factor is 1, otherwise the
factor = 1/10~decimal place. For example, the factor for 100 = 1, the factor for 5.4 = 1/10"1, the
factor for 5.44 = 1/10”2. This results in no additional false precision added to the value. This is an
intermediate function.

Usage

compute_qual_imputation_dec(character_value_decimal)

Arguments

character_value_decimal
Character value to determine decimal precision

Default value none

Details

Derive an imputed value

Value

Decimal precision value to add or subtract

See Also

BDS-Findings Functions that returns a vector: compute_bmi (), compute_bsa(), compute_egfr(),
compute_framingham(), compute_map(), compute_qgtc(), compute_qual_imputation(), compute_rr(),
compute_scale(), transform_range()

40 compute_rr

Examples

compute_qual_imputation_dec("<40.1")
compute_qual_imputation_dec(c("@.35", "1"))

compute_rr Compute RR Interval From Heart Rate

Description

Computes RR interval from heart rate.

Usage

compute_rr(hr)

Arguments
hr Heart rate
A numeric vector is expected. It is expected that heart rate is measured in
beats/min.
Default value none
Details

Usually this computation function can not be used with %>%.

Value

RR interval in ms:
60000

See Also

derive_param_rr()

BDS-Findings Functions that returns a vector: compute_bmi (), compute_bsa(), compute_egfr(),
compute_framingham(), compute_map(), compute_qgtc(), compute_qual_imputation(), compute_qual_imputation_c
compute_scale(), transform_range()

Examples

compute_rr(hr = 70.14)

compute_scale

41

compute_scale

Compute Scale Parameters

Description

Computes the average of a set of source values and transforms the result from the source range to
the target range. For example, for calculating the average of a set of questionnaire response scores
and re-coding the average response to obtain a subscale score.

Usage

compute_scale(
source,
source_range
target_range

= NULL,
NULL,

flip_direction = FALSE,

min_n =1

Arguments

source

source_range

target_range

flip_direction

A vector of values to be scaled

A numeric vector is expected.
Default value none

The permitted source range

A numeric vector containing two elements is expected, representing the lower
and upper bounds of the permitted source range. Alternatively, if no argument
is specified for source_range and target_range, no transformation will be
performed.

Default value NULL

The target range

A numeric vector containing two elements is expected, representing the lower
and upper bounds of the target range. Alternatively, if no argument is specified
for source_range and target_range, no transformation will be performed.

Default value NULL

Flip direction of the scale?

The transformed values will be reversed within the target range, e.g. within the
range 0 to 100, 25 would be reversed to 75.

This argument will be ignored if source_range and target_range aren’t spec-
ified.

Permitted values TRUE, FALSE

Default value FALSE

42 compute_tmf

min_n Minimum number of values for computation

The minimum number of non-missing values in source for the computation to
be carried out. If the number of non-missing values is below min_n, the result
will be set to missing, i.e. NA.

A positive integer is expected.

Default value 1

Details

Returns a numeric value. If source contains less than min_n values, the result is set to NA. If
source_range and target_range aren’t specified, the mean will be computed without any trans-
formation being performed.

Value

The average of source transformed to the target range or NA if source doesn’t contain min_n values.

See Also

BDS-Findings Functions that returns a vector: compute_bmi (), compute_bsa(), compute_egfr(),
compute_framingham(), compute_map(), compute_qgtc(), compute_qual_imputation(), compute_qual_imputation_c
compute_rr(), transform_range()

Examples

compute_scale(
source = c(1, 4, 3, 5),
source_range = c(1, 5),
target_range = c(0, 100),
flip_direction = TRUE,

min_n = 3
)
compute_tmf Derive the Time Imputation Flag
Description

Derive the time imputation flag (*TMF) comparing a date character vector (--DTC) with a Datetime
vector (*DTM).

Usage

compute_tmf(dtc, dtm, ignore_seconds_flag = TRUE)

compute_tmf

Arguments

dtc

dtm

43

The date character vector (--DTC).
A character date is expected in a format like yyyy-mm-ddThh:mm: ss (partial or
complete).

Default value none

The Date vector to compare (*DTM).
A datetime object is expected.

Default value none

ignore_seconds_flag

Details

ADaM IG states that given SDTM (--DTC) variable, if only hours and minutes
are ever collected, and seconds are imputed in (*DTM) as 00, then it is not neces-
sary to set (*TMF) to "S".

By default it is assumed that no seconds are collected and *TMF shouldn’t be set
to "S". A user can set this to FALSE if seconds are collected.

The default value of ignore_seconds_flag is set to TRUE in admiral 1.4.0 and
later.

Permitted values TRUE, FALSE

Default value TRUE

Usually this computation function can not be used with %>%.

Value

The time imputation flag (*TMF) (character value of "H", "M" , "S" or NA)

See Also

Date/Time Computation Functions that returns a vector: compute_age_years(), compute_dtf(),
compute_duration(), convert_date_to_dtm(), convert_dtc_to_dt(), convert_dtc_to_dtm(),
convert_xxtpt_to_hours(), impute_dtc_dt(), impute_dtc_dtm()

Examples

library(lubridate)

compute_tmf (dtc
compute_tmf(dtc
compute_tmf(dtc
compute_tmf (dtc
compute_tmf(dtc
compute_tmf(

= "2019-07-18T15:25", dtm = ymd_hm("2019-07-18T15:25"))
= "2019-07-18T15", dtm = ymd_hm("2019-07-18T15:25"))

= "2019-07-18", dtm = ymd("2019-07-18"))

= "2022-05--T00:00", dtm = ymd_hm("”2022-05-15T23:59"))
= "2022-05--T23:00", dtm = ymd_hm("2022-05-15T23:59"))

dtc = "2022-05--T23:59:00",
dtm = ymd_hms("2022-05-15T723:59:59"),
ignore_seconds_flag = FALSE

)

44

consolidate_metadata

consolidate_metadata Consolidate Multiple Meta Datasets Into a Single One

Description

The purpose of the function is to consolidate multiple meta datasets into a single one. For example,
from global and project specific parameter mappings a single lookup table can be created.

Usage

consolidate_metadata(

datasets,
key_vars,
source_var
check_vars
check_type

Arguments

datasets

key_vars

source_var

check_vars

check_type

SOURCE,
"warning",
"error"”

List of datasets to consolidate

Permitted values A named list of datasets
Default value none

Key variables
The specified variables must be a unique of all input datasets.

Permitted values A list of variables created by exprs()
Default value none

Source variable

The specified variable is added to the output dataset. It is set the name of the
dataset the observation is originating from.

Permitted values A symbol

Default value SOURCE

Check variables?

If "message”, "warning", or "error” is specified, a message is issued if the
variable names differ across the input datasets (datasets).

non n o n n on

Permitted values "none”, "message”, "warning", "error”
Default value "warning”

Check uniqueness?

If "warning"” or "error” is specified, a message is issued if the key variables
(key_vars) are not a unique key in all of the input datasets (datasets).

non

Permitted values "none”, "warning”, "error”
Default value "error”

convert_blanks_to na 45

Details

All observations of the input datasets are put together into a single dataset. If a by group (defined
by key_vars) exists in more than one of the input datasets, the observation from the last dataset is
selected.

Value

A dataset which contains one row for each by group occurring in any of the input datasets.

See Also

Creating auxiliary datasets: create_period_dataset(), create_query_data(), create_single_dose_dataset()

Examples

library(tibble)
glob_ranges <- tribble(
~PARAMCD, ~ANRLO, ~ANRHI,

"PULSE”, 60, 100,
"SYSBP”, 99, 130,
"DIABP", 60, 80

)

proj_ranges <- tribble(
~PARAMCD, ~ANRLO, ~ANRHI,
"SYSBP", 100, 140,
"DIABP", 70, 90

)

stud_ranges <- tribble(
~PARAMCD, ~ANRLO, ~ANRHI,
"BMI", 18, 25

)

consolidate_metadata(
datasets = list(
global = glob_ranges,
project = proj_ranges,
study = stud_ranges
),
key_vars = exprs(PARAMCD)

)

convert_blanks_to_na Convert Blank Strings Into NAs

Description

Turn SAS blank strings into proper R NAs.

46 convert_blanks to_na
Usage
convert_blanks_to_na(x)

Default S3 method:
convert_blanks_to_na(x)

S3 method for class 'character'
convert_blanks_to_na(x)

S3 method for class 'list'
convert_blanks_to_na(x)

S3 method for class 'data.frame'
convert_blanks_to_na(x)

Arguments
X Any R object
Default value none
Details

The default methods simply returns its input unchanged. The character method turns every in-
stance of "" into NA_character_ while preserving all attributes. When given a data frame as input
the function keeps all non-character columns as is and applies the just described logic to character
columns. Once again all attributes such as labels are preserved.

Value

An object of the same class as the input

See Also

Utilities for Formatting Observations: convert_na_to_blanks(), yn_to_numeric()

Examples

library(tibble)
convert_blanks_to_na(c("a", "b", "", "d", ""))

df <- tribble(
~USUBJID, ~RFICDTC,
"1001", "2000-01-01",
"1002", "2001-01-01",
"1003",
)
print(df)
convert_blanks_to_na(df)

convert_date_to_dtm 47

convert_date_to_dtm Convert a Date into a Datetime Object

Description

Convert a date (datetime, date, or date character) into a Date vector (usually '--DTM").

Note: This is a wrapper function for the function convert_dtc_to_dtm().

Usage

convert_date_to_dtm(

dt,

highest_imputation = "h",
date_imputation = "first",
time_imputation = "first”,
min_dates = NULL,
max_dates = NULL,

preserve = FALSE

Arguments

dt The date to convert.
A date or character date is expected in a format like yyyy-mm-ddThh:mm:ss.

Default value none

highest_imputation
Highest imputation level
The highest_imputation argument controls which components of the --DTC
value are imputed if they are missing. All components up to the specified level
are imputed.
If a component at a higher level than the highest imputation level is miss-
ing, NA_character_ is returned. For example, for highest_imputation = "D"
"2020" results in NA_character_ because the month is missing.
If "n" is specified, no imputation is performed, i.e., if any component is missing,
NA_character_ is returned.
If "Y" is specified, date_imputation should be "first” or "last” and min_dates
or max_dates should be specified respectively. Otherwise, NA_character_ is
returned if the year component is missing.

Permitted values "Y" (year, highest level), "M" (month), "D" (day), "h" (hour),
"m"” (minute), "s" (second), "n" (none, lowest level)
Default value "h"
date_imputation
The value to impute the day/month when a datepart is missing.
A character value is expected.

convert_date_to_dtm

e Ifhighest_imputationis "M", month and day can be specified as "mm-dd":
e.g. "06-15" for the 15th of June
* When highest_imputation is "M" or "D", the following keywords are
available: "first”, "mid"”, "last” to impute to the first/mid/last day/month.
If "mid" is specified, missing components are imputed as the middle of the
possible range:
— If both month and day are missing, they are imputed as "06-30" (mid-
dle of the year).
— If only day is missing, it is imputed as "15" (middle of the month).

The year can not be specified; for imputing the year "first” or "last” together
with min_dates or max_dates argument can be used (see examples).

Permitted values "first”, "mid", "last”, or user-defined
Default value "first”
time_imputation
The value to impute the time when a timepart is missing.
A character value is expected, either as a

 format with hour, min and sec specified as "hh:mm:ss": e.g. "00:00:00"
for the start of the day,
 or as a keyword: "first","last” to impute to the start/end of a day.

The argument is ignored if highest_imputation = "n".

Permitted values "first”, "last”, or user-defined
Default value "first”

min_dates Minimum dates

A list of dates is expected. It is ensured that the imputed date is not before any
of the specified dates, e.g., that the imputed adverse event start date is not before
the first treatment date. Only dates which are in the range of possible dates of the
dtc value are considered. The possible dates are defined by the missing parts of
the dtc date (see example below). This ensures that the non-missing parts of the
dtc date are not changed. A date or date-time object is expected. For example

impute_dtc_dtm(
"2020-11",
min_dates = list(
ymd_hm("2020-12-06T12:12"),
ymd_hm("2020-11-11T11:11")
),
highest_imputation = "M"

)

returns "2020-11-11T11:11:11" because the possible dates for "2020-11" range

from "2020-11-01T00:00:00" to "2020-11-30T23:59:59". Therefore "2020-12-06T12:12:12"
is ignored. Returning "2020-12-06T12:12:12" would have changed the month

although it is not missing (in the dtc date).

For date variables (not datetime) in the list the time is imputed to "00:00:00".

Specifying date variables makes sense only if the date is imputed. If only time

is imputed, date variables do not affect the result.

convert_date_to_dtm 49

Permitted values alistof dates, e.g. list(ymd_hms("2021-07-01T04:03:01"),
ymd_hms ("2022-05-12T13:57:23"))

Default value NULL

max_dates Maximum dates

A list of dates is expected. It is ensured that the imputed date is not after any of
the specified dates, e.g., that the imputed date is not after the data cut off date.
Only dates which are in the range of possible dates are considered. A date or
date-time object is expected.

For date variables (not datetime) in the list the time is imputed to "23:59:59".
Specifying date variables makes sense only if the date is imputed. If only time
is imputed, date variables do not affect the result.

Permitted values alist of dates, e.g. 1list(ymd_hms("2021-07-01704:03:01"),
ymd_hms (" 2022-05-12T13:57:23"))
Default value NULL
preserve Preserve lower level date/time part when higher order part is missing, e.g. pre-
serve day if month is missing or preserve minute when hour is missing.
For example "2019---07" would return "2019-06-07 if preserve = TRUE (and
date_imputation = "mid").
Permitted values TRUE, FALSE
Default value FALSE

Details

Usually this computation function can not be used with %>%.

Value

A datetime object

See Also

Date/Time Computation Functions that returns a vector: compute_age_years(), compute_dtf (),
compute_duration(), compute_tmf (), convert_dtc_to_dt(), convert_dtc_to_dtm(), convert_xxtpt_to_hours(),
impute_dtc_dt(), impute_dtc_dtm()

Examples

convert_date_to_dtm("2019-07-18T15:25:00")
convert_date_to_dtm(Sys.time())
convert_date_to_dtm(as.Date(”2019-07-18"), time_imputation = "23:59:59")
convert_date_to_dtm("2019-07-18", time_imputation = "23:59:59")
convert_date_to_dtm(”2019-07-18")

50 convert_dtc_to_dt

convert_dtc_to_dt Convert a Date Character Vector into a Date Object

Description

Convert a date character vector (usually --DTC) into a Date vector (usually *DT).

Usage
convert_dtc_to_dt(
dtc,
highest_imputation = "n",
date_imputation = "first",
min_dates = NULL,
max_dates = NULL,
preserve = FALSE
)
Arguments
dtc The —-DTC date to convert.

Permitted values a character date vector
Default value none

highest_imputation
Highest imputation level
The highest_imputation argument controls which components of the --DTC
value are imputed if they are missing. All components up to the specified level
are imputed.
If a component at a higher level than the highest imputation level is miss-
ing, NA_character_ is returned. For example, for highest_imputation = "D"
"2020" results in NA_character_ because the month is missing.
If "n" (none, lowest level) is specified no imputation is performed, i.e., if any
component is missing, NA_character_ is returned.
If "Y" (year, highest level) is specified, date_imputation must be "first"” or
"last"” and min_dates or max_dates must be specified respectively. Other-
wise, an error is thrown.

Permitted values "Y" (year, highest level), "M" (month), "D"” (day), "n" (none,
lowest level)
Default value "n"
date_imputation
The value to impute the day/month when a datepart is missing.
A character value is expected.

e Ifhighest_imputationis "M", month and day can be specified as "mm-dd":
e.g. "06-15" for the 15th of June

convert_dtc_to_dt 51

* When highest_imputation is "M" or "D", the following keywords are
available: "first”, "mid”, "last” to impute to the first/mid/last day/month.
If "mid"” is specified, missing components are imputed as the middle of the
possible range:

— If both month and day are missing, they are imputed as "06-30" (mid-
dle of the year).

— If only day is missing, it is imputed as "15" (middle of the month).

The year can not be specified; for imputing the year "first"” or "last"” together
with min_dates or max_dates argument can be used (see examples).

Permitted values "first”, "mid”, "last", or user-defined
Default value "first”

min_dates Minimum dates

A list of dates is expected. It is ensured that the imputed date is not before any
of the specified dates, e.g., that the imputed adverse event start date is not before
the first treatment date. Only dates which are in the range of possible dates of the
dtc value are considered. The possible dates are defined by the missing parts of
the dtc date (see example below). This ensures that the non-missing parts of the
dtc date are not changed. A date or date-time object is expected. For example

impute_dtc_dtm(
"2020-11",
min_dates = list(
ymd_hms ("2020-12-06T12:12:12"),
ymd_hms ("2020-11-11T11:11:11")
),
highest_imputation = "M"

)

returns "2020-11-11T11:11:11" because the possible dates for "2020-11" range

from "2020-11-01T00:00:00" to "2020-11-30T23:59:59". Therefore "2020-12-06T12:12:12"
isignored. Returning "2020-12-06T12:12:12" would have changed the month

although it is not missing (in the dtc date).

Permitted values alist of dates, e.g. 1ist(ymd_hms("2021-07-01704:03:01"),
ymd_hms ("2022-05-12T13:57:23"))
Default value NULL

max_dates Maximum dates
A list of dates is expected. It is ensured that the imputed date is not after any of
the specified dates, e.g., that the imputed date is not after the data cut off date.
Only dates which are in the range of possible dates are considered. A date or
date-time object is expected.

Permitted values alist of dates, e.g. 1ist(ymd_hms("2021-07-01704:03:01"),
ymd_hms (”2022-05-12T13:57:23"))
Default value NULL

preserve Preserve day if month is missing and day is present

For example "2019---07" would return "2019-06-07 if preserve = TRUE (and
date_imputation = "MID").

52 convert_dtc_to_dtm

Permitted values TRUE, FALSE
Default value FALSE

Details

Usually this computation function can not be used with %>%.

Value

a date object

See Also

Date/Time Computation Functions that returns a vector: compute_age_years(), compute_dtf (),
compute_duration(), compute_tmf (), convert_date_to_dtm(), convert_dtc_to_dtm(), convert_xxtpt_to_hours(
impute_dtc_dt(), impute_dtc_dtm()

Examples

convert_dtc_to_dt("2019-07-18")
convert_dtc_to_dt("2019-07")

convert_dtc_to_dtm Convert a Date Character Vector into a Datetime Object

Description

Convert a date character vector (usually --DTC) into a Date vector (usually *DTM).

Usage
convert_dtc_to_dtm(
dtc,
highest_imputation = "h",
date_imputation = "first",
time_imputation = "first",

min_dates = NULL,
max_dates = NULL,
preserve = FALSE

Arguments

dtc The --DTC date to convert.

Permitted values a character date vector
Default value none

convert_dtc_to_dtm 53

highest_imputation
Highest imputation level
The highest_imputation argument controls which components of the --DTC
value are imputed if they are missing. All components up to the specified level
are imputed.

If a component at a higher level than the highest imputation level is miss-
ing, NA_character_ is returned. For example, for highest_imputation = "D"
"2020" results in NA_character_ because the month is missing.

If "n" is specified, no imputation is performed, i.e., if any component is missing,
NA_character_ is returned.

If "Y" is specified, date_imputation should be "first"” or "last” and min_dates
or max_dates should be specified respectively. Otherwise, NA_character_ is
returned if the year component is missing.

Permitted values "Y" (year, highest level), "M" (month), "D" (day), "h" (hour),
"m" (minute), "s" (second), "n" (none, lowest level)

Default value "h"

date_imputation
The value to impute the day/month when a datepart is missing.
A character value is expected.
» Ifhighest_imputationis "M", month and day can be specified as "mm-dd":

e.g. "06-15" for the 15th of June

* When highest_imputation is "M" or "D", the following keywords are
available: "first”, "mid”, "last” to impute to the first/mid/last day/month.
If "mid"” is specified, missing components are imputed as the middle of the
possible range:

— If both month and day are missing, they are imputed as "06-30" (mid-
dle of the year).

— If only day is missing, it is imputed as "15" (middle of the month).
The year can not be specified; for imputing the year "first"” or "last” together
with min_dates or max_dates argument can be used (see examples).
Permitted values "first”, "mid”, "last”, or user-defined
Default value "first”
time_imputation

The value to impute the time when a timepart is missing.
A character value is expected, either as a

 format with hour, min and sec specified as "hh:mm:ss": e.g. "00:00:00"

for the start of the day,

* oras akeyword: "first"”,"last” to impute to the start/end of a day.
The argument is ignored if highest_imputation = "n".
Permitted values "first”, "last”, or user-defined
Default value "first”

min_dates Minimum dates

A list of dates is expected. It is ensured that the imputed date is not before any
of the specified dates, e.g., that the imputed adverse event start date is not before

54 convert_dtc_to_dtm

the first treatment date. Only dates which are in the range of possible dates of the
dtc value are considered. The possible dates are defined by the missing parts of
the dtc date (see example below). This ensures that the non-missing parts of the
dtc date are not changed. A date or date-time object is expected. For example

impute_dtc_dtm(
"2020-11",
min_dates = list(
ymd_hm("2020-12-06T12:12"),
ymd_hm("2020-11-11T11:11")

),
highest_imputation = "M"

)

returns "2020-11-11T11:11:11" because the possible dates for "2020-11" range

from "2020-11-01T00:00:00" to "2020-11-30T23:59:59". Therefore "2020-12-06T12:12:12"
is ignored. Returning "2020-12-06T12:12:12" would have changed the month

although it is not missing (in the dtc date).

For date variables (not datetime) in the list the time is imputed to "00:00:00".
Specifying date variables makes sense only if the date is imputed. If only time
is imputed, date variables do not affect the result.

Permitted values alistof dates, e.g. list(ymd_hms("2021-07-01T04:03:01"),
ymd_hms ("2022-05-12T13:57:23"))
Default value NULL

max_dates Maximum dates

A list of dates is expected. It is ensured that the imputed date is not after any of
the specified dates, e.g., that the imputed date is not after the data cut off date.
Only dates which are in the range of possible dates are considered. A date or
date-time object is expected.

For date variables (not datetime) in the list the time is imputed to "23:59:59".
Specifying date variables makes sense only if the date is imputed. If only time
is imputed, date variables do not affect the result.

Permitted values alist of dates, e.g. 1list(ymd_hms("2021-07-01704:03:01"),
ymd_hms ("2022-05-12T13:57:23"))
Default value NULL
preserve Preserve lower level date/time part when higher order part is missing, e.g. pre-
serve day if month is missing or preserve minute when hour is missing.
For example "2019---07" would return "2019-06-07 if preserve = TRUE (and
date_imputation = "mid").
Permitted values TRUE, FALSE
Default value FALSE

Details

Usually this computation function can not be used with %>%.

convert_na_to_blanks 55

Value

A datetime object

See Also

Date/Time Computation Functions that returns a vector: compute_age_years(), compute_dtf (),
compute_duration(), compute_tmf (), convert_date_to_dtm(), convert_dtc_to_dt(), convert_xxtpt_to_hours(),
impute_dtc_dt (), impute_dtc_dtm()

Examples

convert_dtc_to_dtm("2019-07-18T15:25:00")
convert_dtc_to_dtm("2019-07-18T00:00:00") # note Time = 00:00:00 is not printed
convert_dtc_to_dtm("2019-07-18")

convert_na_to_blanks Convert NAs Into Blank Strings

Description

Turn NAs to blank strings .
Usage
convert_na_to_blanks(x)

Default S3 method:
convert_na_to_blanks(x)

S3 method for class 'character'
convert_na_to_blanks(x)

S3 method for class 'list'
convert_na_to_blanks(x)

S3 method for class 'data.frame'
convert_na_to_blanks(x)

Arguments
X Any R object
Default value none
Details

The default methods simply returns its input unchanged. The character method turns every in-
stance of NA_character_ or NA into ""” while preserving all attributes. When given a data frame
as input the function keeps all non-character columns as is and applies the just described logic to
character all attributes such as labels are preserved.

56 convert_xxtpt_to_hours

Value

An object of the same class as the input

See Also

Utilities for Formatting Observations: convert_blanks_to_na(), yn_to_numeric()
Examples

library(tibble)

convert_na_to_blanks(c("a", "b", NA, "d", NA))

df <- tribble(
~USUBJID, ~RFICDTC,

"1001", "2000-01-01",
"1002", "2001-01-01",
"1003", NA
)
print(df)

convert_na_to_blanks(df)

convert_xxtpt_to_hours
Convert XXTPT Strings to Hours

Description

[Experimental]

Converts CDISC timepoint strings (e.g., PCTPT, VSTPT, EGTPT, ISTPT, LBTPT) into numeric hours
for analysis. The function handles common dose-centric formats including pre-dose, post-dose
(hours/minutes), days, time ranges, and treatment-related time markers.

Usage
convert_xxtpt_to_hours(
xxtpt,
treatment_duration = 0,
range_method = "midpoint”
)
Arguments
xxtpt A character vector of timepoint descriptions from SDTM --TPT variables (e.g.,

PCTPT, VSTPT, EGTPT, ISTPT, LBTPT). Can contain NA values.

Permitted values character vector
Default value none

convert_xxtpt_to_hours 57

treatment_duration
Numeric value(s) specifying the duration of treatment in hours. Used to convert
"EOI/EOT" (End of Infusion/Treatment) patterns and patterns describing time
after end of treatment. Must be non-negative. Can be either:

* A single value (used for all timepoints), or

* A vector of the same length as xxtpt (one value per timepoint)
Default is 0 hours (for instantaneous treatments like oral medications).
Permitted values numeric scalar or vector (non-negative)

Default value 0

range_method Method for converting time ranges to single values. Options are "midpoint"
(default), "start", or "end". For example, "0-6h" with midpoint returns 3, with
start returns 0, with end returns 6.

"non

Permitted values character scalar ("midpoint", "start", or "end")
Default value "midpoint”

Details

The function recognizes the following patterns (all case-insensitive):

Special Cases:

e "Screening” ->0

e "Pre-dose”, "Predose”, "Pre-treatment”, "Pre-infusion”, "Pre-inf", "Before”, "Infusion”,
n n
OH" >0

e "EQI", "EOT", "End of Infusion”, "End of Treatment”, "After End of Infusion”, "After
End of Treatment” -> treatment_duration (default: 0)

e "Morning”, "Evening"” ->NA_real_

* Unrecognized values -> NA_real_
Time Ranges: Time ranges are converted based on the range_method parameter:

¢ "Q-6h Post-dose” with range_method = "midpoint"” (default) -> 3

e "@-6h Post-dose” with range_method = "start” ->0

e "@-6h Post-dose” with range_method = "end"” -> 6

* "Q-4H PRIOR START OF INFUSION" with midpoint -> -2 (negative for prior)

e "8-16H POST START OF INFUSION" with midpoint -> 12

* "@-4H AFTER EOI" with midpoint and treatment_duration=1 -> 3 (1 + 2)

e "@-4H EOT" with midpoint and treatment_duration=0 -> 2

* "4-8H AFTER END OF INFUSION" with midpoint and treatment_duration=1 ->7 (1 + 6)
e "4-8H POST INFUSION" with midpoint and treatment_duration=1 -> 7 (1 + 6)

e "4-8H POST-INF" with midpoint and treatment_duration=1 ->7 (1 + 6)

Time-based Conversions:

e Days: "Day 1" ->24, "2D" -> 48, "30 DAYS AFTER LAST" -> 720 (requires unit indicator; bare
numbers like "2" return NA)

58

convert_XxXxtpt_ to_hours

* Hours + Minutes: "1H30M" -> 1.5

e Hours: "2 hours” -> 2, "1 HOUR POST"” -> 1

¢ Minutes: "30M" -> 0.5, "30 MIN POST" -> 0.5

* Predose: "5 MIN PREDOSE" ->-0.0833, "5 MIN PRE-DOSE" ->-0.0833
* Before treatment: "5 MIN BEFORE"” -> -0.0833

¢ Post EOI/EOT: "1 HOUR POST EOI" -> treatment_duration + 1, "24 HR POST INF" -> treat-
ment_duration + 24, "24 HR POST-INF" -> treatment_duration + 24, "1 HOUR AFTER EOT" ->
treatment_duration + 1

o After end: "30MIN AFTER END OF INFUSION"” -> treatment_duration + 0.5

e Start of infusion/treatment: "8H PRIOR START OF INFUSION” -> -8, "8H BEFORE START OF
TREATMENT"” -> -8

¢ Pre EOI/EOT: "10MIN PRE EOI" -> treatment_duration - 1/6, "10MIN BEFORE EOT" -> treat-
ment_duration - 1/6

Supported Unit Formats:

* Hours: H, h, HR, hr, HOUR, hour (with optional plurals)

e Minutes: M, m, MIN, min, MINUTE, minute (with optional plurals)

* Days: D, d, DAY, day (with optional plurals)

* Flexible whitespace and optional "Post-dose", "POST", "After last" suffixes

* Hyphens in compound terms: "PRE-DOSE", "POST-INF", "POST-INFUSION"

Understanding POST/AFTER Patterns:

It’s important to distinguish between patterns relative to treatment start versus treatment end:

¢ Relative to START (treatment_duration NOT added):
— "THPOST"”, "1H AFTER", "30M POST" -> Time from dose/treatment start

— These patterns assume treatment starts at time 0
— Example: "1H POST" -> 1 hour (regardless of treatment_duration)
¢ Relative to END (treatment_duration IS added):
— "1H POST EOI", "1H AFTER EOT", "1H POST INFUSION" -> Time from treatment end
— These patterns account for when treatment ends (start + duration)
— Example: "1H POST EOI" with treatment_duration=2 -> 3 hours (2 + 1)

This distinction follows standard pharmacokinetic conventions where "post-dose" refers to time
from treatment initiation, while "post end of infusion" refers to time from treatment completion.
Vectorized Treatment Duration:

When treatment_duration is a vector, each timepoint uses its corresponding treatment duration
value. This is useful when different records have different treatment durations (e.g., different infu-
sion lengths).

convert_xxtpt_to_hours 59

Value
A numeric vector of timepoints in hours. Returns NA_real_ for:

* Input NA values
» Unrecognized timepoint formats

* Non-time descriptors (e.g., "Morning", "Evening")

Returns numeric (@) for empty input.

Examples

Basic timepoint patterns:
Convert basic dose-centric patterns to hours

convert_xxtpt_to_hours(c(
"Screening”,
"Pre-dose”,
"Pre-treatment”,
"Before”,
"30M",
"1H",
"2H POSTDOSE",
"Day 1"

))

#> [1] 0.0 0.0 0.0 0.0 0.5 1.0 2.0 24.0

Predose and before patterns:
Convert predose/before patterns that return negative times

convert_xxtpt_to_hours(c("5 MIN PREDOSE", "5 MIN PRE-DOSE", "1 HOUR BEFORE"))
#> [1] -0.08333333 -0.08333333 -1.00000000

Treatment-related patterns (oral medications):
With default treatment_duration = O for oral medications

convert_xxtpt_to_hours(c(
"EQT",
"1 HOUR POST EOT",
"1 HOUR AFTER EOT",
"After End of Treatment”

))
#> 110110

Infusion-related patterns:
With treatment_duration = 1 hour for IV infusions

convert_xxtpt_to_hours(
c(
"EQI",
"1 HOUR POST EOI",

convert_XxXxtpt_ to_hours

"24 HR POST INF",
"24 HR POST-INF",
"30MIN AFTER END OF INFUSION",
"8H PRIOR START OF INFUSION",
"1OMIN PRE EOI"

),

treatment_duration = 1

)
#> [1] 1.0000000 2.0000000 25.0000000 25.0000000 1.5000000 -8.0000000 ©.8333333

Vectorized treatment duration:
Different treatment durations per timepoint

convert_xxtpt_to_hours(
c("EOI", "1 HOUR POST EOI", "EOI", "1 HOUR POST EOI"),
treatment_duration = c(1, 1, 2, 2)

)
#>[0111223

Time ranges with midpoint method:
Default midpoint method for ranges

convert_xxtpt_to_hours(c(
"@-6h Post-dose”,
"@-4H PRIOR START OF INFUSION",
"8-16H POST START OF INFUSION"

))
[1]1 3 -212

Time ranges with custom methods:
Specify start or end method for ranges

convert_xxtpt_to_hours("0-6h Post-dose”, range_method = "end")
#> [1] 6

convert_xxtpt_to_hours("@-6h Post-dose”, range_method = "start")
#> [1] 0

Ranges relative to EOI/EOT:
Time ranges after end of infusion/treatment

convert_xxtpt_to_hours(

c(
"0-4H AFTER EOI",
"@-4H POST EOI",
"4-8H AFTER END OF INFUSION",
"4-8H AFTER EOT",
"4-8H POST INFUSION",
"4-8H POST-INF"

),

treatment_duration = 1

)
#[11337777

country_code_lookup 61

POST vs POST EOI distinction:
Difference between POST (from start) and POST EOI (from end)

convert_xxtpt_to_hours(
c("Pre-dose”, "1H POST", "2H POST", "4H POST"),
treatment_duration = 2

)
#> [1]1 01 2 4

convert_xxtpt_to_hours(
c("Pre-dose”, "EOI", "1H POST EOI", "2H POST EOI"),
treatment_duration = 2

)
#> 1110234

convert_xxtpt_to_hours(
c("1H POST", "1H POST EOI", "1H POST INFUSION"),
treatment_duration = 2

)
11133

See Also

Date/Time Computation Functions that returns a vector: compute_age_years(), compute_dtf (),
compute_duration(), compute_tmf (), convert_date_to_dtm(), convert_dtc_to_dt(), convert_dtc_to_dtm(),
impute_dtc_dt(), impute_dtc_dtm()

country_code_lookup Country Code Lookup

Description

These pre-defined country codes are sourced from ISO 3166 Standards. See also Wikipedia.

Usage

country_code_lookup

Format

An object of class tb1l_df (inherits from tbl, data. frame) with 249 rows and 3 columns.

Details

country_code is the 3-letter ISO 3166-1 county code commonly found in the ADSL COUNTRY vari-
able. country_name is the country long name corresponding to to the 3-letter code. country_number
is the numeric code corresponding to an alphabetic sorting of the 3-letter codes.

To see the entire table in the console, run print(country_code_lookup).

https://www.iso.org/iso-3166-country-codes.html
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-3

62 count_vals

See Also

dose_freq_lookup

Other metadata: atoxgr_criteria_ctcv4, atoxgr_criteria_ctcv4_uscyv, atoxgr_criteria_ctcv5,
atoxgr_criteria_ctcv5_uscv, atoxgr_criteria_ctcv6, atoxgr_criteria_ctcv6_uscv, atoxgr_criteria_daids,
atoxgr_criteria_daids_uscv, dose_freq_lookup

Examples

library(tibble)
library(dplyr, warn.conflicts = FALSE)

Create reference dataset for periods

adsl <- tribble(
~USUBJID, ~SEX, ~COUNTRY,
"STR1-01", "F", "AUT",
"STe1-02", "M", "MWI",
"STe1-03", "F", "GBR",
"STR1-04", "M", "CHE",
"STe1-05", "M", "NOR",
"ST@1-06", "F", "JPN",
"STR1-07", "F", "USA”"

)

adsl %>%
derive_vars_merged(
dataset_add = country_code_lookup,
new_vars = exprs(COUNTRYN = country_number, COUNTRYL = country_name),
by_vars = exprs(COUNTRY = country_code)
)

count_vals Count Number of Observations Where a Variable Equals a Value

Description

Count number of observations where a variable equals a value.

Usage

count_vals(var, val)

Arguments
var A vector
Default value none
val A value

Default value none

create_period_dataset 63

See Also

Utilities for Filtering Observations: filter_exist(), filter_extreme(), filter_joined(),
filter_not_exist(), filter_relative(), max_cond(), min_cond()

Examples

library(tibble)
library(dplyr, warn.conflicts = FALSE)
library(admiral)
data <- tribble(
~USUBJID, ~AVISITN, ~AVALC,

B 1, "PR",
"1, 2, "CR",
", 3, "NE",
B 4, "CR",
"1, 5, "NE",
"2", 1, "CR",
"2", 2, "PR",
"2", 3, "CR",
"3", 1, "CR",
"4", 1, "CR",
"4", 2, "NE",
"4", 3, "NE",
"4", 4, "CR",
"4", 5 "PR"

)

add variable providing the number of NEs for each subject
group_by(data, USUBJID) %>%
mutate(nr_nes = count_vals(var = AVALC, val = "NE"))

create_period_dataset Create a Reference Dataset for Subperiods, Periods, or Phases

Description

The function creates a reference dataset for subperiods, periods, or phases from the ADSL dataset.
The reference dataset can be used to derive subperiod, period, or phase variables like ASPER,
ASPRSDT, ASPREDT, APERIOD, APERSDT, APEREDT, TRTA, APHASEN, PHSDTM, PHEDTM, ... in OCCDS
and BDS datasets.

Usage

create_period_dataset(

dataset,

new_vars,

subject_keys = get_admiral_option("subject_keys")
)

64 create_period_dataset

Arguments
dataset Input dataset
The variables specified by the new_vars and subject_keys arguments are ex-
pected to be in the dataset. For each element of new_vars at least one variable
of the form of the right hand side value must be available in the dataset.
Default value none
new_vars New variables

A named list of variables like exprs (PHSDT = PHWSDT, PHEDT = PHWEDT, APHASE
= APHASEw) is expected. The left hand side of the elements defines a variable
of the output dataset, the right hand side defines the source variables from the
ADSL dataset in CDISC notation.

If the lower case letter "w" is used it refers to a phase variable, if the lower case
letters "xx" are used it refers to a period variable, and if both "xx" and "w" are
used it refers to a subperiod variable.

Only one type must be used, e.g., all right hand side values must refer to period
variables. It is not allowed to mix for example period and subperiod variables.
If period and subperiod variables are required, separate reference datasets must
be created.

Default value none

subject_keys Variables to uniquely identify a subject

A list of expressions where the expressions are symbols as returned by exprs()
is expected.

Default value get_admiral_option("subject_keys")

Details

For each subject and each subperiod/period/phase where at least one of the source variable is not NA
an observation is added to the output dataset.

Depending on the type of the source variable (subperiod, period, or phase) the variable ASPER,
APERIOD, or APHASEN is added and set to the number of the subperiod, period, or phase.

The variables specified for new_vars (left hand side) are added to the output dataset and set to the
value of the source variable (right hand side).

Value

A period reference dataset (see "Details" section)

See Also

derive_vars_period()

Creating auxiliary datasets: consolidate_metadata(), create_query_data(), create_single_dose_dataset()

create_period_dataset 65

Examples

library(tibble)
library(dplyr, warn.conflicts = FALSE)
library(lubridate)

Create reference dataset for periods
adsl <- tribble(

~USUBJID, ~APQ1SDT, ~APQ1EDT, ~APQ@2SDT, ~APQ2EDT, ~TRTO1A, ~TRTO2A,
" "2021-01-04", "2021-02-06", "2021-02-07", "2021-03-07", "A", "B,
o "2021-02-02", "2021-03-02", "2021-03-03", "2021-04-01", "B", AT
) %%
mutate(
across(matches("AP\\d\\d[ESIDT"), ymd)
) %%
mutate(
STUDYID = "xyz"
)

create_period_dataset(

adsl,

new_vars = exprs(APERSDT = APxxSDT, APEREDT = APxxEDT, TRTA = TRTxxA)
)

Create reference dataset for phases
adsl <- tribble(

~USUBJID, ~PH1SDT, ~PH1EDT, ~PH2SDT, ~PH2EDT, ~APHASET, ~APHASE?2,
"1, "2021-01-04", "2021-02-06", "2021-02-07", "2021-03-07", "TREATMENT", "FUP",
"2", "2021-02-02", "2021-03-02", NA, NA, "TREATMENT", NA
) %>%
mutate(
across(matches("PH\\d[ESIDT"), ymd)
) %>%
mutate(
STUDYID = "xyz"
)
create_period_dataset(
adsl,
new_vars = exprs(PHSDT = PHwSDT, PHEDT = PHwWEDT, APHASE = APHASEw)
)

Create reference datasets for subperiods
adsl <- tribble(

~USUBJID, ~P@1S1SDT, ~PO1S1EDT, ~P@1S2SDT, ~P@1S2EDT, ~P@2S1SDT, ~P@2S1EDT,
"y "2021-01-04", "2021-01-19", "2021-01-20", "2021-02-06", "2021-02-07", "2021-03-07",
"2, "2021-02-02", "2021-03-02", NA, NA, "2021-03-03", "2021-04-01"
) %%
mutate(
across(matches("P\\d\\dS\\d[ESIDT"), ymd)
) %%
mutate(

STUDYID = "xyz"

66 create_query_data

)

create_period_dataset(
adsl,
new_vars = exprs(ASPRSDT = PxxSwSDT, ASPREDT = PxxSwEDT)

)

create_query_data Creates a queries dataset as input dataset to the dataset_queries
argument in derive_vars_query()
Description

Creates a queries dataset as input dataset to the dataset_queries argument in the derive_vars_query()
function as defined in the vignette("queries_dataset").

Usage

create_query_data(queries, version = NULL, get_terms_fun = NULL)

Arguments
queries List of queries
A list of query () objects is expected.
Default value none
version Dictionary version

The dictionary version used for coding the terms should be specified. If any
of the queries is a basket (SMQ, SDG,) or a customized query including a
basket, the parameter needs to be specified.

Permitted values A character string (the expected format is company-specific)
Default value NULL

get_terms_fun Function which returns the terms
For each query specified for the queries parameter referring to a basket (i.e.,
those where the definition field is set to a basket_select() object or a list
which contains at least one basket_select() object) the specified function is
called to retrieve the terms defining the query. This function is not provided by
admiral as it is company specific, i.e., it has to be implemented at company level.
The function must return a dataset with all the terms defining the basket. The
output dataset must contain the following variables.
* SRCVAR: the variable to be used for defining a term of the basket, e.g.,
AEDECOD
* TERMCHAR: the name of the term if the variable SRCVAR is referring to is
character

e TERMNUM the numeric id of the term if the variable SRCVAR is referring to is
numeric

create_query_data 67

* GRPNAME: the name of the basket. The values must be the same for all
observations.

The function must provide the following parameters

* basket_select: A basket_select() object.

* version: The dictionary version. The value specified for the version in
the create_query_data() call is passed to this parameter.

* keep_id: If set to TRUE, the output dataset must contain the GRPID variable.
The variable must be set to the numeric id of the basket.

* temp_env: A temporary environment is passed to this parameter. It can be
used to store data which is used for all baskets in the create_query_data()
call. For example if SMQs need to be read from a database all SMQs can
be read and stored in the environment when the first SMQ is handled. For
the other SMQs the terms can be retrieved from the environment instead of
accessing the database again.

Default value NULL

Details

For each query () object listed in the queries argument, the terms belonging to the query (SRCVAR,
TERMCHAR, TERMNUM) are determined with respect to the definition field of the query: if the defi-
nition field of the query () object is

* abasket_select() object, the terms are read from the basket database by calling the function
specified for the get_terms_fun parameter.

¢ adata frame, the terms stored in the data frame are used.

* a list of data frames and basket_select() objects, all terms from the data frames and all
terms read from the basket database referenced by the basket_select () objects are collated.

The following variables (as described in vignette("queries_dataset") are created:

* PREFIX: Prefix of the variables to be created by derive_vars_query() as specified by the
prefix element.

* GRPNAME: Name of the query as specified by the name element.
* GRPID: Id of the query as specified by the id element. If the id element is not specified for a

query, the variable is set to NA. If the id element is not specified for any query, the variable is
not created.

* SCOPE: scope of the query as specified by the scope element of the basket_select() object.
For queries not defined by a basket_select() object, the variable is set to NA. If none of the
queries is defined by a basket_select() object, the variable is not created.

* SCOPEN: numeric scope of the query. It is set to 1 if the scope is broad. Otherwise it is set to 2.
If the add_scope_num element equals FALSE, the variable is set to NA. If the add_scope_num
element equals FALSE for all baskets or none of the queries is an basket , the variable is not
created.

* SRCVAR: Name of the variable used to identify the terms.

* TERMCHAR: Value of the term variable if it is a character variable.

* TERMNUM: Value of the term variable if it is a numeric variable.

e VERSION: Set to the value of the version argument. If it is not specified, the variable is not
created.

68 create_query_data

Value

A dataset to be used as input dataset to the dataset_queries argument in derive_vars_query()

See Also

derive_vars_query(), query(), basket_select(), vignette("queries_dataset”)

Creating auxiliary datasets: consolidate_metadata(), create_period_dataset(), create_single_dose_dataset()

Examples

library(tibble)

library(dplyr, warn.conflicts = FALSE)
library(pharmaversesdtm)
library(admiral)

creating a query dataset for a customized query
cqterms <- tribble(
~TERMCHAR, ~TERMNUM,
"APPLICATION SITE ERYTHEMA", 10003041L,
"APPLICATION SITE PRURITUS", 10003053L
) %>%
mutate(SRCVAR = "AEDECOD")

cq <- query(
prefix = "CQo1",
name = "Application Site Issues”,
definition = cqterms

)
create_query_data(queries = list(cq))

create a query dataset for SMQs
pregsmq <- query(
prefix = "SMQ@2",
id = auto,
definition = basket_select(
name = "Pregnancy and neonatal topics (SMQ)",
scope = "NARROW",
type = "smq"
)
)

bilismg <- query(
prefix = "SMQ@4",
definition = basket_select(
id = 20000121L,
scope = "BROAD",
type = "smq"
)
)

The get_terms function from pharmaversesdtm is used for this example.

create_single_dose_dataset 69

In a real application a company-specific function must be used.
create_query_data(

queries = list(pregsmqg, bilismq),

get_terms_fun = pharmaversesdtm:::get_terms,

version = "20.1"

create a query dataset for SDGs
sdg <- query(
prefix = "SDG0O1",
id = auto,
definition = basket_select(
name = "5-aminosalicylates for ulcerative colitis”,
scope = NA_character_,
type = "sdg"
)
)

The get_terms function from pharmaversesdtm is used for this example.
In a real application a company-specific function must be used.
create_query_data(

queries = list(sdg),

get_terms_fun = pharmaversesdtm:::get_terms,

version = "2019-09"

creating a query dataset for a customized query including SMQs
The get_terms function from pharmaversesdtm is used for this example.
In a real application a company-specific function must be used.
create_query_data(

queries = list(

query(
prefix = "CQ@3",
name = "Special issues of interest”,

definition = list(
basket_select(

name = "Pregnancy and neonatal topics (SMQ)",
scope = "NARROW",
type = "smq"
),
cqterms
)
)
),
get_terms_fun = pharmaversesdtm:::get_terms,
version = "20.1"

create_single_dose_dataset
Create dataset of single doses

70 create_single_dose_dataset

Description

Derives dataset of single dose from aggregate dose information. This may be necessary when e.g.
calculating last dose before an adverse event in ADAE or deriving a total dose parameter in ADEX
when EXDOSFRQ != ONCE.

Usage

create_single_dose_dataset(
dataset,
dose_freq = EXDOSFRQ,
start_date = ASTDT,
start_datetime = NULL,
end_date = AENDT,
end_datetime = NULL,
lookup_table = dose_freq_lookup,
lookup_column = CDISC_VALUE,
nominal_time = NULL,
keep_source_vars = expr_c(get_admiral_option("subject_keys"), dose_freq, start_date,
start_datetime, end_date, end_datetime)

)
Arguments

dataset Input dataset
The variables specified by the dose_freq, start_date, and end_date argu-
ments are expected to be in the dataset.
Default value none

dose_freq The dose frequency
The aggregate dosing frequency used for multiple doses in a row.
Permitted values defined by lookup table.
Default value EXDOSFRQ

start_date The start date

A date object is expected. This object cannot contain NA values.

Refer to derive_vars_dt() to impute and derive a date from a date character
vector to a date object.

Default value ASTDT

start_datetime The start date-time
A date-time object is expected. This object cannot contain NA values.

Refer to derive_vars_dtm() to impute and derive a date-time from a date char-
acter vector to a date object.

If the input dataset contains frequencies which refer to DOSE_WINDOW equals
"HOUR" or "MINUTE", the parameter must be specified.

Default value NULL

create_single_dose_dataset 71

end_date

end_datetime

lookup_table

lookup_column

nominal_time

The end date

A date or date-time object is expected. This object cannot contain NA values.
Refer to derive_vars_dt() to impute and derive a date from a date character
vector to a date object.

Default value AENDT

The end date-time
A date-time object is expected. This object cannot contain NA values.

Refer to derive_vars_dtm() to impute and derive a date-time from a date char-
acter vector to a date object.

If the input dataset contains frequencies which refer to DOSE_WINDOW equals
"HOUR" or "MINUTE", the parameter must be specified.
Default value NULL

The dose frequency value lookup table

The table used to look up dose_freq values and determine the appropriate mul-
tiplier to be used for row generation. If a lookup table other than the default is
used, it must have columns DOSE_WINDOW, DOSE_COUNT, and CONVERSION_FACTOR.
The default table dose_freq_lookup is described in detail here.

Permitted Values for DOSE_WINDOW: "MINUTE", "HOUR", "DAY", "WEEK", "MONTH",
"YEAR"

Default value dose_freq_lookup

The dose frequency value column in the lookup table
The column of lookup_table.

Default value CDISC_VALUE

The nominal relative time from first dose (NFRLT)

Used for PK analysis, this will be in hours and should be 0 for the first dose.
It can be derived as (VISITDY - 1) * 24 for example. This will be expanded as
the single dose dataset is created. For example an EXDOFRQ of "QD" will result
in the nominal_time being incremented by 24 hours for each expanded record.
The value can be NULL if not needed.

Default value NULL

keep_source_vars

Details

List of variables to be retained from source dataset
This parameter can be specified if additional information is required in the out-
put dataset. For example EXTRT for studies with more than one drug.

Default value expr_c(get_admiral_option("subject_keys"), dose_freq,
start_date,start_datetime, end_date, end_datetime)

Each aggregate dose row is split into multiple rows which each represent a single dose.The number
of completed dose periods between start_date or start_datetime and end_date or end_datetime
is calculated with compute_duration and multiplied by DOSE_COUNT. For DOSE_WINDOW values of
"WEEK", "MONTH", and "YEAR", CONVERSION_FACTOR is used to convert into days the time object to
be added to start_date.

Observations with dose frequency "ONCE" are copied to the output dataset unchanged.

72 create_single_dose_dataset

Value

The input dataset with a single dose per row.

See Also

Creating auxiliary datasets: consolidate_metadata(), create_period_dataset(), create_query_data()

Examples

Example with default lookup

library(lubridate)
library(stringr)
library(tibble)
library(dplyr)

data <- tribble(
~STUDYID, ~USUBJID, ~EXDOSFRQ, ~ASTDT, ~ASTDTM, ~AENDT, ~AENDTM,
"STUDY@1”, "P@1”, "Q2D", ymd("2021-01-01"), ymd_hms(”2021-01-01 10:30:00"),
ymd("2021-01-07"), ymd_hms("2021-01-07 11:30:00"),
"STUDY@Q1", "P@1", "Q3D", ymd("2021-01-08"), ymd_hms("2021-01-08 12:00:00"),
ymd("2021-01-14"), ymd_hms("2021-01-14 14:00:00"),
"STUDY@1”, "P@1”, "EVERY 2 WEEKS", ymd("2021-01-15"), ymd_hms("2021-01-15 09:57:00"),
ymd("”2021-01-29"), ymd_hms("2021-01-29 10:57:00")

)

create_single_dose_dataset(data)
Example with custom lookup

custom_lookup <- tribble(

~Value, ~DOSE_COUNT, ~DOSE_WINDOW, ~CONVERSION_FACTOR,
"Q30MIN", (1 / 30), "MINUTE", 1,
"Q9OMIN", (1 / 90), "MINUTE”, 1

)

data <- tribble(
~STUDYID, ~USUBJID, ~EXDOSFRQ, ~ASTDT, ~ASTDTM, ~AENDT, ~AENDTM,
"STUDYQ1", "P@1", "Q30MIN", ymd("2021-01-01"), ymd_hms("2021-01-01T06:00:00"),
ymd("2021-01-01"), ymd_hms("2021-01-01T07:00:00"),
"STUDY@2", "P@2", "Q9@MIN”, ymd("2021-01-01"), ymd_hms("2021-01-01T06:00:00"),
ymd("2021-01-01"), ymd_hms("2021-01-01T09:00:00")

)

create_single_dose_dataset(data,
lookup_table = custom_lookup,
lookup_column = Value,
start_datetime = ASTDTM,
end_datetime = AENDTM

~—

Example with nominal time

create_single_dose_dataset

data <- tribble(

)

~STUDYID, ~USUBJID, ~EXDOSFRQ, ~NFRLT, ~ASTDT, ~ASTDTM, ~AENDT, ~AENDTM,
"STUDY@1", "P@1”, "BID", @, ymd("2021-01-01"), ymd_hms("2021-01-01 08:00:00"),
ymd(”2021-01-07"), ymd_hms("2021-01-07 20:00:00"),

"STUDY@1"”, "P@1”, "BID", 168, ymd("2021-01-08"), ymd_hms("2021-01-08 08:00:00"),
ymd("2021-01-14"), ymd_hms("2021-01-14 20:00:00"),

"STUDY@1”, "Po1”, "BID", 336, ymd("2021-01-15"), ymd_hms("2021-01-15 08:00:00"),
ymd("2021-01-29"), ymd_hms("2021-01-29 20:00:00")

create_single_dose_dataset(data,

e E E E EEE E LN

dose_freq = EXDOSFRQ,
start_date = ASTDT,
start_datetime = ASTDTM,
end_date = AENDT,
end_datetime = AENDTM,
lookup_table = dose_freqg_lookup,
lookup_column = CDISC_VALUE,
nominal_time = NFRLT,
keep_source_vars = exprs(
USUBJID, EXDOSFRQ, ASTDT, ASTDTM, AENDT, AENDTM, NFRLT
)

Example - derive a single dose dataset with imputations

For either single drug administration records, or multiple drug administration
records covering a range of dates, fill-in of missing treatment end datetime
“EXENDTC™ by substitution with an acceptable alternate, for example date of
death, date of datacut may be required. This example shows the

maximum possible number of single dose records to be derived. The example
requires the date of datacut “DCUTDT" to be specified correctly, or

if not appropriate to use “DCUTDT as missing treatment end data and missing
treatment end datetime could set equal to treatment start date and treatment
start datetime. ADSL variables “DTHDT™ and “DCUTDT are preferred for
imputation use.

All available trial treatments are included, allowing multiple different
last dose variables to be created in for example “use_ad_template("ADAE")"
if required.

adsl <- tribble(

~STUDYID, ~USUBJID, ~DTHDT,
"01", "1211”, ymd("2013-01-14"),
"01", "1083", ymd("2013-08-02"),
"@1", "1445", ymd("2014-11-01"),
"01”, "1015", NA,
"01", "1023", NA

ex <- tribble(

~STUDYID, ~USUBJID, ~EXSEQ, ~EXTRT, ~EXDOSE, ~EXDOSU, ~EXDOSFRQ, ~EXSTDTC, ~EXENDTC,
"01”, "1015", 1, "PLAC", @, "mg”, "QD", "2014-01-02", "2014-01-16",

73

74

create_single_dose_dataset

"@1", "1015", 2, "PLAC", @, "mg”, "QD", "2014-06-17", "2014-06-18",
"@1”, "1015", 3, "PLAC", @, "mg”, "QD", "2014-06-19", NA_character_,
"01”, "1023", 1, "PLAC", @, "mg”, "QD", "2012-08-05", "2012-08-27",
"01", "1023", 2, "PLAC", @, "mg”, "QD", "2012-08-28", "2012-09-01",

"01”, "1211", 2, "XANO", 54, "mg", "QD", "2012-11-29", NA_character_,
"@1", "1445", 1, "PLAC", @, "mg”, "QD", "2014-05-11", "2014-05-25",
"@1", "1445", 2, "PLAC", @, "mg”, "QD", "2014-05-26", "2014-11-01",

)

2

3

1

2)

"o1", "1211", 1, "XANO", 54, "mg”, "QD", "2012-11-15", "2012-11-28",
2

1

2

"01", "1083", 1, "PLAC",

, "mg”, "QD", "2013-07-22", "2013-08-01"

adsl_death <- adsl %>%
mutate(
DTHDTM = convert_date_to_dtm(DTHDT),
Remove “DCUT™ setup line below if ADSL “DCUTDT™ is populated.
DCUTDT = convert_dtc_to_dt("2015-03-06"), # Example only, enter date.
DCUTDTM = convert_date_to_dtm(DCUTDT)
)

Select valid dose records, non-missing “EXSTDTC™ and “EXDOSE".
ex_mod <- ex %>%
filter(!is.na(EXSTDTC) & !is.na(EXDOSE)) %>%
derive_vars_merged(adsl_death, by_vars = get_admiral_option("subject_keys")) %>%
Example, set up missing “EXDOSFRQ™ as QD daily dosing regime.
Replace with study dosing regime per trial treatment.
mutate (EXDOSFRQ = if_else(is.na(EXDOSFRQ), "QD", EXDOSFRQ)) %>%
Create EXxxDTM variables and replace missing “EXENDTM™.
derive_vars_dtm(
dtc = EXSTDTC,

new_vars_prefix = "EXST",

date_imputation = "first”,

time_imputation = "first”,

flag_imputation = "none”,
) 5%

derive_vars_dtm_to_dt(exprs(EXSTDTM)) %>%
derive_vars_dtm(
dtc = EXENDTC,
new_vars_prefix = "EXEN",
Maximum imputed treatment end date must not be not greater than
date of death or after the datacut date.
max_dates = exprs(DTHDTM, DCUTDTM),

date_imputation = "last”,

time_imputation = "last”,

flag_imputation = "none",

highest_imputation = "Y",
) %>%

derive_vars_dtm_to_dt(exprs(EXENDTM)) %>%

Select only unique values.

Removes duplicated records before final step.

distinct(
STUDYID, USUBJID, EXTRT, EXDOSE, EXDOSFRQ, DCUTDT, DTHDT, EXSTDT,
EXSTDTM, EXENDT, EXENDTM, EXSTDTC, EXENDTC

)

date_source 75

create_single_dose_dataset(
ex_mod,
start_date = EXSTDT,
start_datetime = EXSTDTM,
end_date = EXENDT,
end_datetime = EXENDTM,
keep_source_vars = exprs(
STUDYID, USUBJID, EXTRT, EXDOSE, EXDOSFRQ,
DCUTDT, EXSTDT, EXSTDTM, EXENDT, EXENDTM, EXSTDTC, EXENDTC
)
)

date_source Create a date_source object

Description

[Deprecated] The date_source() function has been deprecated in favor of event ().

Create a date_source object as input for derive_var_extreme_dt () and derive_var_extreme_dtm().

Usage

date_source(dataset_name, filter = NULL, date, set_values_to = NULL)

Arguments

dataset_name The name of the dataset, i.e. a string, used to search for the date.
Default value none

filter An unquoted condition for filtering dataset.
Default value NULL

date A variable or an expression providing a date. A date or a datetime can be speci-
fied. An unquoted symbol or expression is expected.

Default value none
set_values_to Variables to be set
Default value NULL

Value

An object of class date_source.

See Also

derive_var_extreme_dtm(), derive_var_extreme_dt ()

Other deprecated: call_user_fun(), derive_param_extreme_record(), derive_var_dthcaus(),
derive_var_extreme_dt(), derive_var_extreme_dtm(), derive_var_merged_summary(), dthcaus_source(),
get_summary_records()

76 death_event

Examples

treatment end date from ADSL
trt_end_date <- date_source(
dataset_name = "adsl”,
date = TRTEDT

)

lab date from LB where assessment was taken, i.e. not "NOT DONE"
1b_date <- date_source(

dataset_name = "1b",

filter = LBSTAT != "NOT DONE” | is.na(LBSTAT),

date = convert_dtc_to_dt(LBDTC)
)

death date from ADSL including traceability variables
death_date <- date_source(

dataset_name = "adsl”,

date = DTHDT,

set_values_to = exprs(

LALVDOM = "ADSL",
LALVVAR = "DTHDT"

death_event Pre-Defined Time-to-Event Source Objects

Description

These pre-defined tte_source objects can be used as input to derive_param_tte().
Usage

death_event

lastalive_censor

ae_event

ae_ser_event

ae_grl_event

ae_gr2_event

ae_gr3_event

ae_gr4_event

default_qtc_paramcd 77

ae_gr5_event
ae_gr35_event
ae_sev_event

ae_wd_event

Details

To see the definition of the various objects simply print the object in the R console, e.g. print(death_event).
For details of how to use these objects please refer to derive_param_tte().

See Also

derive_param_tte(), tte_source(), event_source(), censor_source()

Source Objects: basket_select(), censor_source(), event(), event_joined(), event_source(),
flag_event(), query(), records_source(), tte_source()

Examples

This shows the definition of all pre-defined ~tte_source™ objects that ship
with {admiral}
for (obj in list_tte_source_objects()$object) {
cat(obj, "\n")
print(get(obj))
cat("\n")
3

default_qtc_paramcd Get Default Parameter Code for Corrected QT

Description

Get Default Parameter Code for Corrected QT

Usage

default_qtc_paramcd(method)

Arguments

method Method used to QT correction

Permitted values "Bazett”, "Fridericia”, "Sagie"
Default value none

78 derivation_slice

Value

"QTCBR" if method is "Bazett”, "QTCFR" if it’s "Fridericia” or "QTLCR" if it’s "Sagie”. An
error otherwise.

See Also

derive_param_qtc()

BDS-Findings Functions for adding Parameters/Records: derive_expected_records(), derive_extreme_event(),
derive_extreme_records(), derive_locf_records(), derive_param_bmi(), derive_param_bsa(),
derive_param_computed(), derive_param_doseint(), derive_param_exist_flag(), derive_param_exposure(),
derive_param_framingham(), derive_param_map(), derive_param_qtc(), derive_param_rr(),
derive_param_wbc_abs(), derive_summary_records()

Examples

default_qgtc_paramcd("Sagie")

derivation_slice Create a derivation_slice Object

Description

Create a derivation_slice object as input for slice_derivation().

Usage

derivation_slice(filter, args = NULL)

Arguments
filter An unquoted condition for defining the observations of the slice
Default value none
args Arguments of the derivation to be used for the slice
A params () object is expected.
Default value NULL
Value

An object of class derivation_slice

See Also

slice_derivation(), params()

Higher Order Functions: call_derivation(), restrict_derivation(), slice_derivation()

derive_basetype_records 79

derive_basetype_records
Derive Basetype Variable

Description

Baseline Type BASETYPE is needed when there is more than one definition of baseline for a given
Analysis Parameter PARAM in the same dataset. For a given parameter, if Baseline Value BASE or
BASEC are derived and there is more than one definition of baseline, then BASETYPE must be non-null
on all records of any type for that parameter where either BASE or BASEC are also non-null. Each
value of BASETYPE refers to a definition of baseline that characterizes the value of BASE on that row.
Please see section 4.2.1.6 of the ADaM Implementation Guide, version 1.3 for further background.

Usage

derive_basetype_records(dataset, basetypes)

Arguments
dataset Input dataset
The variables specified by the basetypes argument are expected to be in the
dataset.
Default value none
basetypes A named list of expressions created using the rlang: :exprs() function
The names corresponds to the values of the newly created BASETYPE variables
and the expressions are used to subset the input dataset.
Default value none
Details

Adds the BASETYPE variable to a dataset and duplicates records based upon the provided conditions.

For each element of basetypes the input dataset is subset based upon the provided expression and
the BASETYPE variable is set to the name of the expression. Then, all subsets are stacked. Records
which do not match any condition are kept and BASETYPE is set to NA.

Value

The input dataset with variable BASETYPE added

See Also

BDS-Findings Functions that returns variable appended to dataset: derive_var_analysis_ratio(),
derive_var_anrind(), derive_var_atoxgr(), derive_var_atoxgr_dir (), derive_var_base(),
derive_var_chg(),derive_var_nfrlt(),derive_var_ontrtfl(),derive_var_pchg(), derive_var_shift(),
derive_vars_crit_flag()

80 derive_basetype_records

Examples

library(tibble)
library(dplyr, warn.conflicts = FALSE)

bds <- tribble(

~USUBJID, ~EPOCH, ~PARAMCD, ~ASEQ, ~AVAL,
"Po1", "RUN-IN", "PARAMO1" 1, 10.0,
"Po1", "RUN-IN", "PARAMO1" 2, 9.8,
"PQ1", "DOUBLE-BLIND”, "PARAM@1", 3, 9.2,
"po1", "DOUBLE-BLIND"”, "PARAM@1", 4, 10.1,
"Po1", "OPEN-LABEL”, "PARAM@1", 5, 10.4,
"pp1", "OPEN-LABEL”, "PARAM@1", 6, 9.9,
"P@2" "RUN-IN", "PARAMO1" 1, 12.1,
"P@2", "DOUBLE-BLIND"”, "PARAM@1", 2, 10.2,
"PQ2", "DOUBLE-BLIND”, "PARAM@1", 3, 10.8,
"p@2", "OPEN-LABEL”, "PARAM@1", 4, 11.4,
"P@2", "OPEN-LABEL”, "PARAM@1", 5, 10.8

bds_with_basetype <- derive_basetype_records(
dataset = bds,
basetypes = exprs(
"RUN-IN" = EPOCH %in% c("RUN-IN", "STABILIZATION", "DOUBLE-BLIND", "OPEN-LABEL"),
"DOUBLE-BLIND" = EPOCH %in% c("DOUBLE-BLIND", "OPEN-LABEL"),
"OPEN-LABEL" = EPOCH == "OPEN-LABEL"

Below print statement will print all 23 records in the data frame
bds_with_basetype
print(bds_with_basetype, n = Inf)

count(bds_with_basetype, BASETYPE, name = "Number of Records")
An example where all parameter records need to be included for 2 different

baseline type derivations (such as LAST and WORST)
bds <- tribble(

~USUBJID, ~EPOCH, ~PARAMCD, ~ASEQ, ~AVAL,
"PQ1", "RUN-IN", "PARAMO1", 1, 10.0,
"PQ1", "RUN-IN", "PARAMO1", 2, 9.8,
"PQ1", "DOUBLE-BLIND”, "PARAM@1", 3, 9.2,
"PQ1", "DOUBLE-BLIND"”, "PARAM@1", 4, 10.1

)

bds_with_basetype <- derive_basetype_records(
dataset = bds,
basetypes = exprs(
"LAST" = TRUE,
"WORST" = TRUE

derive_expected_records 81

print(bds_with_basetype, n = Inf)

count(bds_with_basetype, BASETYPE, name = "Number of Records")

derive_expected_records

Derive Expected Records

Description

Add expected records as new observations for each by group’ when the dataset contains missing

observations.

Usage

derive_expected_records(

dataset,

dataset_ref,

by_vars = NULL,

set_values_to

Arguments

dataset

dataset_ref

by_vars

set_values_to

= NULL

Input dataset

The variables specified by the dataset_ref and by_vars arguments are ex-
pected to be in the dataset.

Default value none

Expected observations dataset

Data frame with the expected observations, e.g., all the expected combinations
of PARAMCD, PARAM, AVISIT, AVISITN, ...

Default value none

Grouping variables

For each group defined by by_vars those observations from dataset_ref are
added to the output dataset which do not have a corresponding observation in
the input dataset.

Default value NULL
Variables to be set
The specified variables are set to the specified values for the new observations.
A list of variable name-value pairs is expected.
* LHS refers to a variable.

* RHS refers to the values to set to the variable. This can be a string, a sym-
bol, a numeric value, NA, or expressions, e.g., exprs (PARAMCD = "TDOSE",
PARCATT = "OVERALL").

Default value NULL

82 derive_expected_records

Details
For each group (the variables specified in the by_vars parameter), those records from dataset_ref
that are missing in the input dataset are added to the output dataset.
Value
The input dataset with the missed expected observations added for each by_vars. Note, a variable
will only be populated in the new parameter rows if it is specified in by_vars or set_values_to.
See Also

BDS-Findings Functions for adding Parameters/Records: default_qtc_paramcd(), derive_extreme_event(),
derive_extreme_records(), derive_locf_records(), derive_param_bmi(), derive_param_bsa(),
derive_param_computed(), derive_param_doseint(), derive_param_exist_flag(), derive_param_exposure(),
derive_param_framingham(), derive_param_map(), derive_param_qtc(), derive_param_rr(),
derive_param_wbc_abs(), derive_summary_records()

Examples

library(tibble)

adgs <- tribble(
~USUBJID, ~PARAMCD, ~AVISITN, ~AVISIT, ~AVAL,

", "a", 1, "WEEK 1", 10,
", "b", 1, "WEEK 1", 11,
"2", "a", 2, "WEEK 2", 12,
"2", "b", 2, "WEEK 2", 14

)

Example 1. visit variables are parameter independent
parm_visit_ref <- tribble(

~AVISITN, ~AVISIT,

1, "WEEK 1",

2, "WEEK 2"

derive_expected_records(
dataset = adgs,
dataset_ref = parm_visit_ref,
by_vars = exprs(USUBJID, PARAMCD),
set_values_to = exprs(DTYPE = "DERIVED")
)

Example 2. visit variables are parameter dependent
parm_visit_ref <- tribble(
~PARAMCD, ~AVISITN, ~AVISIT,

"y , 1 , "WEEK 1" ,
"a”, 2, "WEEK 2:1,
nbn , 1 , “WEEK 1"

)

derive_extreme_event 83

derive_expected_records(
dataset = adgs,
dataset_ref = parm_visit_ref,
by_vars = exprs(USUBJID, PARAMCD),
set_values_to = exprs(DTYPE = "DERIVED")
)

derive_extreme_event Add the Worst or Best Observation for Each By Group as New Records

Description

Add the first available record from events for each by group as new records, all variables of the
selected observation are kept. It can be used for selecting the extreme observation from a series of
user-defined events. This distinguishes derive_extreme_event() from derive_extreme_records(),
where extreme records are derived based on certain order of existing variables.

Usage

derive_extreme_event(
dataset = NULL,
by_vars,
events,
tmp_event_nr_var = NULL,
order,
mode,
source_datasets = NULL,
check_type = "warning"”,
set_values_to = NULL,
keep_source_vars = exprs(everything())

)
Arguments

dataset Input dataset
The variables specified by the by_vars and order arguments are expected to be
in the dataset.
Permitted values a dataset, i.e., a data.frame or tibble
Default value none

by_vars Grouping variables

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)

Default value NULL

84

events

derive_extreme_event

Conditions and new values defining events

A list of event() or event_joined() objects is expected. Only observations

listed in the events are considered for deriving extreme event. If multiple
records meet the filter condition, take the first record sorted by order. The

data is grouped by by_vars, i.e., summary functions like all() or any() can

be used in condition.

For event_joined() events the observations are selected by calling filter_joined().
The condition field is passed to the filter_join argument.

Permitted values an event() or event_joined() object
Default value none

tmp_event_nr_var

order

mode

source_datasets

check_type

Temporary event number variable

The specified variable is added to all source datasets and is set to the number of
the event before selecting the records of the event.

It can be used in order to determine which record should be used if records
from more than one event are selected.

The variable is not included in the output dataset.

Permitted values an unquoted symbol, e.g., AVAL
Default value NULL

Sort order

If a particular event from events has more than one observation, within the
event and by group, the records are ordered by the specified order.

For handling of NAs in sorting variables see the "Sort Order" section in vignette("generic”).
Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,

VISIT)
Default value none

Selection mode (first or last)

If a particular event from events has more than one observation, "first"/"last”
is used to select the first/last record of this type of event sorting by order.

Permitted values "first”, "last”
Default value none

Source datasets

A named list of datasets is expected. The dataset_name field of event() and
event_joined() refers to the dataset provided in the list.

Permitted values named list of datasets, e.g., list(adsl = adsl, ae = ae)
Default value NULL

Check uniqueness?

If "warning” or "error” is specified, the specified message is issued if the
observations of the input dataset are not unique with respect to the by variables
and the order.

non non

Permitted values "none”, "message”,

non

warning”, "error”

derive_extreme_event 85

Default value "warning”

set_values_to Variables to be set
The specified variables are set to the specified values for the new observations.
Set a list of variables to some specified value for the new records

e LHS refer to a variable.
* RHS refers to the values to set to the variable. This can be a string, a
symbol, a numeric value, an expression or NA.

For example:

set_values_to = exprs(
PARAMCD = "WOBS",
PARAM = "Worst Observations”

)

Permitted values list of named expressions created by a formula using exprs(),
e.g., exprs(AVALC = VSSTRESC, AVAL = yn_to_numeric(AVALC))

Default value NULL

keep_source_vars
Variables to keep from the source dataset
For each event the specified variables are kept from the selected observations.
The variables specified for by_vars and created by set_values_to are always
kept. The keep_source_vars field of the event will take precedence over the
value of the keep_source_vars argument.

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)

Default value exprs(everything())

Details

1. For each event select the observations to consider:

(a) If the event is of class event, the observations of the source dataset are restricted by
condition and then the first or last (mode) observation per by group (by_vars) is se-
lected.

If the event is of class event_joined, filter_joined() is called to select the observa-
tions.

(b) The variables specified by the set_values_to field of the event are added to the selected
observations.

(c) The variable specified for tmp_event_nr_var is added and set to the number of the event.

(d) Only the variables specified for the keep_source_vars field of the event, and the by vari-
ables (by_vars) and the variables created by set_values_to are kept. If keep_source_vars
= NULL is used for an event in derive_extreme_event () the value of the keep_source_vars
argument of derive_extreme_event() is used.

2. All selected observations are bound together.

3. For each group (with respect to the variables specified for the by_vars parameter) the first
or last observation (with respect to the order specified for the order parameter and the mode
specified for the mode parameter) is selected.

86

derive_extreme_event

4. The variables specified by the set_values_to parameter are added to the selected observa-
tions.

5. The observations are added to input dataset.

Note:

This function creates temporary datasets which may be much bigger than the input datasets.

If this causes memory issues, please try setting the admiral option save_memory to TRUE (see
set_admiral_options()). This reduces the memory consumption but increases the run-time.

Value

The input dataset with the best or worst observation of each by group added as new observations.

Examples

Add a new record for the worst observation using event () objects:

For each subject, the observation containing the worst sleeping problem (if any exist) should be
identified and added as a new record, retaining all variables from the original observation. If
multiple occurrences of the worst sleeping problem occur, or no sleeping problems, then take the
observation occurring at the latest day.

The groups for which new records are added are specified by the by_vars argument. Here
for each subject a record should be added. Thus by_vars = exprs(STUDYID, USUBJID) is
specified.

The sets of possible sleeping problems are passed through the events argument as event()
objects. Each event contains a condition which may or may not be satisfied by each record
(or possibly a group of records) within the input dataset dataset. Summary functions such
as any() and all() are often handy to use within conditions, as is done here for the third
event, which checks that the subject had no sleeping issues. The final event uses a catch-
all condition = TRUE to ensure all subjects have a new record derived. Note that in this
example, as no condition involves analysis of cross-comparison values of within records,
it is sufficient to use event () objects rather than event_joined() - see the next example for
a more complex condition.

If any subject has one or more records satisfying the conditions from events, we can select just
one record using the order argument. In this example, the first argument passed to order is
event_nr, which is a temporary variable created through the tmp_event_nr_var argument,
which numbers the events consecutively. Since mode = "first"”, we only consider the first
event for which a condition is satisfied. Within that event, we consider only the observation
with the latest day, because the second argument for the order is desc (ADY).

Once a record is identified as satisfying an event’s condition, a new observation is created by
the following process:
1. the selected record is copied,
2. the variables specified in the event’s set_values_to (here, AVAL and AVALC) are cre-
ated/updated,

3. the variables specified in keep_source_vars (here, ADY does due to the use of the tidys-
elect expression everything()) (plus by_vars and the variables from set_values_to)
are kept,

4. the variables specified in the global set_values_to (here, PARAM and PARAMCD) are cre-
ated/updated.

derive_extreme_event

library(tibble, warn.conflicts = FALSE)
library(dplyr, warn.conflicts = FALSE)
library(lubridate, warn.conflicts = FALSE)

adgs1 <- tribble(

~USUBJID, ~PARAMCD, ~AVALC, ~ADY,
"1, "NO SLEEP", "N", 1,
" "WAKE UP 3X", "N", 2,
"2", "NO SLEEP", "N", 1,
"2", "WAKE UP 3X", "y 2,
"2, "WAKE UP 3X", "y 3,
"3", "NO SLEEP", NA_character_, 1
) %>%

mutate(STUDYID = "AB42")

derive_extreme_event(
adgsT,
by_vars = exprs(STUDYID, USUBJID),
events = list(

event(
condition = PARAMCD == "NO SLEEP" & AVALC == "Y",
set_values_to = exprs(AVALC = "No sleep”, AVAL = 1)
),
event(
condition = PARAMCD == "WAKE UP 3X" & AVALC == "Y",
set_values_to = exprs(AVALC = "Waking up three times"”, AVAL = 2)
),
event(
condition = all(AVALC == "N"),
set_values_to = exprs(AVALC = "No sleeping problems”, AVAL = 3)
),
event(

condition = TRUE,
set_values_to = exprs(AVALC = "Missing"”, AVAL = 99)
)
),
tmp_event_nr_var = event_nr,
order = exprs(event_nr, desc(ADY)),
mode = "first"”,
set_values_to = exprs(
PARAMCD = "WSP",
PARAM = "Worst Sleeping Problem”
),
keep_source_vars = exprs(everything())
) %%
select(-STUDYID)
#> # A tibble: 9 x 6
#> USUBJID PARAMCD AVALC ADY AVAL PARAM

88

derive_extreme_event

#> <chr> <chr> <chr> <dbl> <dbl> <chr>
11 NO SLEEP N 1 NA <NA>
#> 21 WAKE UP 3X N 2 NA <NA>
#> 3 2 NO SLEEP N 1 NA <NA>
#> 4 2 WAKE UP 3X Y 2 NA <NA>
#> 5 2 WAKE UP 3X Y 3 NA <NA>
#> 6 3 NO SLEEP <NA> 1 NA <NA>
#> 7 1 WSP No sleeping problems 2 3 Worst Sleeping Problem
#> 8 2 WSP Waking up three times 3 2 Worst Sleeping Problem
#> 9 3 WSP Missing 1 99 Worst Sleeping Problem

Events based on comparison across records (event_joined()):

We’ll now extend the above example. Specifically, we consider a new possible worst sleeping
problem, namely if a subject experiences no sleep on consecutive days.

* The "consecutive days" portion of the condition requires records to be compared with each
other. This is done by using an event_joined() object, specifically by passing dataset_name
= adgs2 to it so that the adqgs2 dataset is joined onto itself. The condition now checks for
two no sleep records, and crucially compares the ADY values to see if they differ by one day.
The . join syntax distinguishes between the ADY value of the parent and joined datasets. As
the condition involves AVALC, PARAMCD and ADY, we specify these variables with join_vars,
and finally, because we wish to compare all records with each other, we select join_type =

"all”.
adgs2 <- tribble(
~USUBJID, ~PARAMCD, ~AVALC, ~ADY,
"4" "WAKE UP", "N, 1,
"4, "NO SLEEP", "y, 2,
"4, "NO SLEEP", "y, 3,
"5", "NO SLEEP"”, "N", 1,
"5", "NO SLEEP", "y, 2,
"5", "WAKE UP 3X", "Y", 3,
"5", "NO SLEEP", "y, 4
) %>%

mutate(STUDYID = "AB42")

derive_extreme_event(
adgs2,
by_vars = exprs(STUDYID, USUBJID),
events = list(
event_joined(
join_vars = exprs(AVALC, PARAMCD, ADY),

join_type = "all",
condition = PARAMCD == "NO SLEEP" & AVALC == "Y" &
PARAMCD. join == "NO SLEEP"” & AVALC.join == "Y" &

ADY == ADY.join + 1,
set_values_to = exprs(AVALC = "No sleep two nights in a row”, AVAL = Q)
),
event(
condition = PARAMCD == "NO SLEEP" & AVALC == "Y",

derive_extreme_event

set_values_to = exprs(AVALC = "No sleep”, AVAL = 1)

),
event(
condition = PARAMCD == "WAKE UP 3X" & AVALC == "Y",
set_values_to = exprs(AVALC = "Waking up three times"”, AVAL = 2)
),
event(
condition = all(AVALC == "N"),

set_values_to = exprs(
AVALC = "No sleeping problems”, AVAL = 3
)
),
event(
condition = TRUE,
set_values_to = exprs(AVALC = "Missing"”, AVAL = 99)
)
),
tmp_event_nr_var = event_nr,
order = exprs(event_nr, desc(ADY)),
mode = "first"”,
set_values_to = exprs(
PARAMCD = "WSP",
PARAM = "Worst Sleeping Problem”
),
keep_source_vars = exprs(everything())
) %>%
select(-STUDYID)
#> # A tibble: 9 x 6

89

#> USUBJID PARAMCD AVALC ADY AVAL PARAM

#> <chr> <chr> <chr> <dbl> <dbl> <chr>

1 4 WAKE UP N 1 NA <NA>

#> 2 4 NO SLEEP Y 2 NA <NA>

#> 3 4 NO SLEEP Y 3 NA <NA>

#> 4 5 NO SLEEP N 1 NA <NA>

#> 55 NO SLEEP Y 2 NA <NA>

#> 6 5 WAKE UP 3X Y 3 NA <NA>

#> 7 5 NO SLEEP Y 4 NA <NA>

#> 8 4 WSP No sleep two nights in a row 3 @ Worst Sleeping Pr. . .
#>95 WSP No sleep 4 1 Worst Sleeping Pr. . .

Specifying different arguments across event () objects:

Here we consider a Hy’s Law use case. We are interested in knowing whether a subject’s Alkaline
Phosphatase has ever been above twice the upper limit of normal range. If so, i.e. if CRIT1FL is Y,
we are interested in the record for the first time this occurs, and if not, we wish to retain the last
record. As such, for this case now we need to vary our usage of the mode argument dependent on

the event ().

* Infirstevent(), since we simply seek the first time that CRIT1FL is "Y", it’s enough to specify
the condition, because we inherit order and mode from the main derive_extreme_event()
call here which will automatically select the first occurrence by AVISITN.

derive_extreme_event

* In the second event (), we select the last record among the full set of records where CRIT1FL
are all "N" by additionally specifying mode = "last” within the event().

» Note now the usage of keep_source_vars = exprs(AVISITN) rather than everything() as
in the previous example. This is done to ensure CRIT1 and CRIT1FL are not populated for the
new records.

adhy <- tribble(

~USUBJID, ~AVISITN, ~CRIT1, ~CRIT1FL,
"1, 1, "ALT > 2 times ULN", "N",

" 2, "ALT > 2 times ULN", "N",

"2", 1, "ALT > 2 times ULN", "N",

"2", 2, "ALT > 2 times ULN", "Y",

"2", 3, "ALT > 2 times ULN", "N",

"2", 4, "ALT > 2 times ULN", "Y"

) %>%
mutate(

PARAMCD = "ALT",
PARAM = "ALT (U/L)",
STUDYID = "AB42"

)

derive_extreme_event(
adhy,
by_vars = exprs(STUDYID, USUBJID),
events = list(
event(
condition = CRITI1FL == "Y",
set_values_to = exprs(AVALC
),
event(
condition = CRIT1FL == "N",
mode = "last"”,
set_values_to = exprs(AVALC = "N")
)
),
tmp_event_nr_var = event_nr,
order = exprs(event_nr, AVISITN),
mode = "first",
keep_source_vars = exprs(AVISITN),
set_values_to = exprs(
PARAMCD = "ALT2",
PARAM = "ALT > 2 times ULN"
)
) %>%
select(-STUDYID)
#> # A tibble: 8 x 7
#> USUBJID AVISITN CRIT1 CRIT1FL PARAMCD PARAM AVALC
#> <chr> <dbl> <chr> <chr> <chr> <chr> <chr>
#> 11 1 ALT > 2 times ULN N ALT ALT (U/L) <NA>

nYu)

derive_extreme_event

#> 2 1 2 ALT
#> 3 2 1 ALT
#> 4 2 2 ALT
#> 5 2 3 ALT
#> 6 2 4 ALT
#> 71 2 <NA>
#> 8 2 2 <NA>

V V V V V

2 times
2 times
2 times
2 times
2 times

ULN
ULN
ULN
ULN
ULN

< Z2Z<Z2Z=2

<NA>
<NA>

ALT
ALT
ALT
ALT
ALT
ALT2
ALT2

ALT
ALT
ALT
ALT
ALT
ALT
ALT

91
/L) <NA>
/L) <NA>
(U/L) <NA>
(u/L) <NA>
(u/L) <NA>

> 2 times ULN N
> 2 times ULN Y

A more complex example: Confirmed Best Overall Response (first/last_cond_upper,
join_type, source_datasets):

The final example showcases a use of derive_extreme_event() to calculate the Confirmed Best
Overall Response (CBOR) in an ADRS dataset, as is common in many oncology trials. This
example builds on all the previous ones and thus assumes a baseline level of confidence with

derive_extreme_event().

The following ADSL and ADRS datasets will be used throughout:

adsl <- tribble(
~USUBJID, ~TRTSDTC,

"1, "2020-01-01",
"2", "2019-12-12",
"3, "2019-11-11",
"4 "2019-12-30",
"5, "2020-01-01",
"6", "2020-02-02",
nyn, "2020-02-02",
"8", "2020-02-01"

) %%

mutate(

TRTSDT = ymd(TRTSDTC),
STUDYID = "AB42"
)

adrs <- tribble(
~USUBJID, ~ADTC,

"1, "2020-01-01",
", "2020-02-01",
"1, "2020-02-16",
", "2020-03-01",
"1, "2020-04-01",
"2", "2020-01-01",
"2, "2020-02-01",
"2, "2020-03-01",
"2, "2020-03-13",
"4, "2020-01-01",
"4" "2020-03-01",
"4" "2020-04-01",
"4" "2020-05-01",
"5", "2020-01-01",

"5", "2020-01-10",

~AVALC,
"PR",
"CR",
"NE",
"CR",
"Sb",
"Sh",
"PR",
"SD",
"CR",
"PR",
"NE",
"NE",
"PR",
"PR",
"PR",

92

derive_extreme_event

"5, "2020-01-20", "PR",
"6", "2020-02-06", "PR",
"6", "2020-02-16", "CR",
"6", "2020-03-30", "PR",
"7, "2020-02-06", "PR",
"7", "2020-02-16", "CR",
"7, "2020-04-01", "NE",
"8", "2020-02-16", "PD"
) %%
mutate(

ADT = ymd(ADTC),
STUDYID = "AB42",
PARAMCD = "OVR",
PARAM = "Overall Response by Investigator”
) %>%
derive_vars_merged(
dataset_add = adsl,
by_vars = exprs(STUDYID, USUBJID),
new_vars = exprs(TRTSDT)
)

Since the CBOR derivation contains multiple complex parts, it’s convenient to make use of the
description argument within each event object to describe what condition is being checked.

* For the Confirmed Response (CR), for each "CR" record in the original ADRS dataset that

will be identified by the first part of the condition argument (AVALC == "CR"), we need to
use the first_cond_upper argument to limit the group of observations to consider along-
side it. Namely, we need to look up to and including the second CR (AVALC. join ==
"CR") over 28 days from the first one (ADT.join >= ADT + 28). The observations satisfy-
ing first_cond_upper then form part of our "join group", meaning that the remaining por-
tions of condition which reference joined variables are limited to this group. In particular,
within condition we use all() to check that all observations are either "CR" or "NE", and
count_vals() to ensure at most one is "NE".
Note that the selection of join_type = "after” is critical here, due to the fact that the re-
striction implied by join_type is applied before the one implied by first_cond_upper.
Picking the first subject (who was correctly identified as a confirmed responder) as an ex-
ample, selecting join_type = "all” instead of "after” would mean the first "PR" record
from "2020-01-01" would also be considered when evaluating the al1(AVALC. join %in%
c("CR", "NE")) portion of condition. In turn, the condition would not be satisfied any-
more, and in this case, following the later event logic shows the subject would be considered
a partial responder instead.

* The Partial Response (PR), is very similar; with the difference being that the first portion
of condition now references "PR" and first_cond_upper accepts a confirmatory "PR" or
"CR" 28 days later. Note that now we must add "PR" as an option within the al1() condition
to account for confirmatory "PR"s.

» The Stable Disease (SD), Progressive Disease (PD) and Not Evaluable (NE) events are sim-
pler and just require event() calls.

* Finally, we use a catch-all event () with condition = TRUE and dataset_name = "adsl” to
identify those subjects who do not appear in ADRS and list their CBOR as "MISSING". Note

derive_extreme_event 93

here the fact that dataset_name is set to "adsl”, which is a new source dataset. As such it’s
important in the main derive_extreme_event() call to list adsl as another source dataset
with source_datasets = list(adsl = adsl).

derive_extreme_event(
adrs,
by_vars = exprs(STUDYID, USUBJID),
tmp_event_nr_var = event_nr,
order = exprs(event_nr, ADT),
mode = "first"”,
source_datasets = list(adsl = adsl),
events = list(
event_joined(
description = paste(
"CR needs to be confirmed by a second CR at least 28 days later”,
"at most one NE is acceptable between the two assessments”

),
join_vars = exprs(AVALC, ADT),
join_type = "after”,
first_cond_upper = AVALC.join == "CR"” & ADT.join >= ADT + 28,
condition = AVALC == "CR" &
all(AVALC.join %in% c("CR", "NE™)) &
count_vals(var = AVALC. join, val = "NE") <=1,
set_values_to = exprs(AVALC = "CR")
),
event_joined(
description = paste(
"PR needs to be confirmed by a second CR or PR at least 28 days later,”,
"at most one NE is acceptable between the two assessments”
),
join_vars = exprs(AVALC, ADT),
join_type = "after”,
first_cond_upper = AVALC.join %in% c("CR", "PR") & ADT.join >= ADT + 28,
condition = AVALC == "PR" &
all(AVALC.join %in% c("CR", "PR", "NE")) &
count_vals(var = AVALC. join, val = "NE") <=1,
set_values_to = exprs(AVALC = "PR")
),
event(
description = paste(
"CR, PR, or SD are considered as SD if occurring at least 28",
"after treatment start”
),
condition = AVALC %in% c("CR", "PR", "SD") & ADT >= TRTSDT + 28,
set_values_to = exprs(AVALC = "SD")
),
event(
condition = AVALC == "PD",
set_values_to = exprs(AVALC = "PD")

94 derive_extreme._event

)7

event(
condition = AVALC %in% c("CR", "PR", "SD", "NE"),
set_values_to = exprs(AVALC = "NE")

))

event(

description = "Set response to MISSING for patients without records in ADRS",
dataset_name = "adsl”,

condition = TRUE,
set_values_to = exprs(AVALC = "MISSING"),
keep_source_vars = exprs(TRTSDT)
)
),
set_values_to = exprs(
PARAMCD = "CBOR",
PARAM = "Best Confirmed Overall Response by Investigator”
)
) %%
filter (PARAMCD == "CBOR") %>%
select(-STUDYID, -ADTC)
#> # A tibble: 8 x 6

#> USUBJID AVALC ADT PARAMCD PARAM TRTSDT

#> <chr> <chr> <date> <chr> <chr> <date>

#>1 1 CR 2020-02-01 CBOR Best Confirmed Overall Response. . . 2020-01-01
#>22 SD 2020-02-01 CBOR Best Confirmed Overall Response. . . 2019-12-12
#>33 MISSING NA CBOR Best Confirmed Overall Response. . . 2019-11-11

#>4 4 SD 2020-05-01 CBOR Best Confirmed Overall Response. . . 2019-12-30
#>55 NE 2020-01-01 CBOR Best Confirmed Overall Response. . . 2020-01-01
#>6 6 PR 2020-02-06 CBOR Best Confirmed Overall Response. . . 2020-02-02
#>77 NE 2020-02-06 CBOR Best Confirmed Overall Response. . . 2020-02-02
#>8 8 PD 2020-02-16 CBOR Best Confirmed Overall Response. . . 2020-02-01

Further examples:

Equivalent examples for using thecheck_type argument can be found in derive_extreme_records().

See Also

event(), event_joined(), derive_vars_extreme_event()

BDS-Findings Functions for adding Parameters/Records: default_qgtc_paramcd(), derive_expected_records(),
derive_extreme_records(),derive_locf_records(), derive_param_bmi(), derive_param_bsa(),
derive_param_computed(), derive_param_doseint(), derive_param_exist_flag(), derive_param_exposure(),
derive_param_framingham(), derive_param_map(), derive_param_qtc(), derive_param_rr(),
derive_param_wbc_abs(), derive_summary_records()

derive_extreme_records 95

derive_extreme_records
Add the First or Last Observation for Each By Group as New Records

Description

Add the first or last observation for each by group as new observations. The new observations
can be selected from the additional dataset. This function can be used for adding the maximum
or minimum value as a separate visit. All variables of the selected observation are kept. This
distinguishes derive_extreme_records() from derive_summary_records(), where only the by
variables are populated for the new records.

Usage

derive_extreme_records(
dataset = NULL,
dataset_add,
dataset_ref = NULL,
by_vars = NULL,

order = NULL,

mode = NULL,

filter_add = NULL,
check_type = "warning”,
exist_flag = NULL,
true_value = "Y",

false_value = NA_character_,
keep_source_vars = exprs(everything()),
set_values_to

Arguments

dataset Input dataset
If the argument is not specified (or set to NULL), a new dataset is created. Other-
wise, the new records are appended to the specified dataset.
Permitted values a dataset, i.e., a data.frame or tibble
Default value NULL

dataset_add Additional dataset

The additional dataset, which determines the by groups returned in the input
dataset, based on the groups that exist in this dataset after being subset by
filter_add.

The variables specified in the by_vars and filter_add parameters are expected
in this dataset. If mode and order are specified, the first or last observation
within each by group, defined by by_vars, is selected.

Permitted values a dataset, i.e., a data.frame or tibble

96

dataset_ref

by_vars

order

mode

filter_add

check_type

exist_flag

derive_extreme_records

Default value none

Reference dataset

The variables specified for by_vars are expected. For each observation of the
specified dataset a new observation is added to the input dataset.

For records which are added from dataset_ref because there are no records in
dataset_add for the by group only those variables are kept which are also in
dataset_add (and are included in keep_source_vars).

Permitted values a dataset, i.e., a data.frame or tibble

Default value NULL

Grouping variables

If dataset_ref is specified, this argument must be specified.

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)

Default value NULL

Sort order

Within each by group the observations are ordered by the specified order.

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)

Default value none

Selection mode (first or last)

If "first" is specified, the first observation of each by group is added to the
input dataset. If "last” is specified, the last observation of each by group is
added to the input dataset.

Permitted values "first”, "last”

Default value NULL

Filter for additional dataset (dataset_add)

Only observations in dataset_add fulfilling the specified condition are consid-
ered.

Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value NULL

Check uniqueness?

If "warning” or "error” is specified, the specified message is issued if the
observations of the (restricted) additional dataset are not unique with respect to
the by variables and the order.

non non

Permitted values "none”, "message”,

non

warning”, "error”
Default value "warning”

Existence flag

The specified variable is added to the output dataset.

For by groups with at least one observation in the additional dataset (dataset_add)
exist_flag is set to the value specified by the true_value argument.

For all other by groups exist_f1lag is set to the value specified by the false_value
argument.

derive_extreme_records 97

Permitted values Variable name
Default value NULL

true_value True value
For new observations selected from the additional dataset (dataset_add), exist_flag
is set to the specified value.
Permitted values a character scalar, i.e., a character vector of length one
Default value "Y"

false_value False value
For new observations not selected from the additional dataset (dataset_add),
exist_flag is set to the specified value.
Permitted values a character scalar, i.e., a character vector of length one
Default value NA_character_

keep_source_vars
Variables to be kept in the new records

A named list or tidyselect expressions created by exprs() defining the vari-
ables to be kept for the new records. The variables specified for by_vars and
set_values_to need not be specified here as they are kept automatically.

Permitted values list of variables or tidyselect expressions created by exprs(),
e.g., exprs(DTHDT, starts_with("AST")) or exprs(everything)
Default value exprs(everything())

set_values_to Variables to be set
The specified variables are set to the specified values for the new observations.
Set a list of variables to some specified value for the new records

e LHS refer to a variable.

* RHS refers to the values to set to the variable. This can be a string, a
symbol, a numeric value, an expression or NA. If summary functions are
used, the values are summarized by the variables specified for by_vars.
Any expression on the RHS must result in a single value per by group.

For example:
set_values_to = exprs(

AVAL = sum(AVAL),
DTYPE = "AVERAGE",

)

Permitted values list of named expressions created by exprs(), e.g., exprs(CUMDOSA
=sum(AVAL, na.rm=TRUE), AVALU = "ml1")

Default value none

Details

1. The additional dataset (dataset_add) is restricted as specified by the filter_add argument.

2. For each group (with respect to the variables specified for the by_vars argument) the first
or last observation (with respect to the order specified for the order argument and the mode
specified for the mode argument) is selected.

98 derive_extreme_records

3. If dataset_ref is specified, observations which are in dataset_ref but not in the selected
records are added. Variables that are common across dataset_ref, dataset_add and keep_source_vars()
are also populated for the new observations.

4. The variables specified by the set_values_to argument are added to the selected observa-
tions.

5. The variables specified by the keep_source_vars argument are selected along with the vari-
ables specified in by_vars and set_values_to arguments.

6. The observations are added to input dataset (dataset). If no input dataset is provided, a new
dataset is created.

Value

The input dataset with the first or last observation of each by group added as new observations.

Examples

Add last/first record as new record:
For each subject the last record should be added as a new visit.

* The source dataset for the new records is specified by the dataset_add argument. Here it is
the same as the input dataset.

* The groups for which new records are added are specified by the by_vars argument. Here
for each subject a record should be added. Thus by_vars = exprs(USUBJID) is specified.

* As there are multiple records per subject, the mode and order arguments are specified to
request that the last record is selected when the records are sorted by visit (AVISITN). The
records are sorted by each by group (by_vars) separately, i.e., it is not necessary to add the
variables from by_vars to order.

* To avoid duplicates in the output dataset the set_values_to argument is specified to set the
visit (AVISIT) to a special value for the new records.

library(tibble)
library(dplyr, warn.conflicts = FALSE)
library(lubridate, warn.conflicts = FALSE)

adlb <- tribble(
~USUBJID, ~AVISITN, ~AVAL,
"1, 1, 113,

"1, 2, 11,
"2", 1, 101,
”2”’ 2’ NA,
"3", 1, NA,

)

derive_extreme_records(
adlb,
dataset_add = adlb,
by_vars = exprs(USUBJID),
order = exprs(AVISITN),

derive_extreme_records 99

mode = "last”,

set_values_to = exprs(
AVISITN = 99

)

)
#> # A tibble: 8 x 3

#> USUBJID AVISITN AVAL

#> <chr> <dbl> <dbl>
11 1 113
21 2 111
#> 3 2 1 101
#> 4 2 2 NA
#> 53 1 NA
6 1 99 111
#> 7 2 99 NA
#> 8 3 99 NA

Restricting source records (filter_add):

The source records can be restricted by the filter_add argument, e.g., to exclude visits with
missing analysis value from selecting for the last visit record:

derive_extreme_records(

adlb,

dataset_add = adlb,

filter_add = !is.na(AVAL),

by_vars = exprs(USUBJID),

order = exprs(AVISITN),

mode = "last”,

set_values_to = exprs(
AVISITN = 99

)

)
#> # A tibble: 7 x 3

#> USUBJID AVISITN AVAL

#> <chr> <dbl> <dbl>
11 1 113
21 2 111
#> 3 2 1 101
#> 4 2 2 NA
#> 5 3 1 NA
6 1 99 111
#> 7 2 99 101

Please note that new records are added only for subjects in the restricted source data. Therefore
no new record is added for subject "3".

Adding records for groups not in source (dataset_ref):

Adding records for groups which are not in the source data can be achieved by specifying a
reference dataset by the dataset_ref argument. For example, specifying the input dataset for

100

derive_extreme_records

dataset_ref below ensures that new records are added also for subject without a valid analysis
value:

de

)

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

Selecting variables for new records (keep_source_vars):

rive_extreme_records(
adlb,

dataset_add = adlb,
filter_add = !is.na(AVAL),
dataset_ref = adlb,
by_vars = exprs(USUBJID),
order = exprs(AVISITN),

mode = "last"”,

set_values_to = exprs(
AVISITN = 99

)

A tibble: 8 x 3
USUBJID AVISITN AVAL
<chr> <dbl> <dbl>

11 1 113

21 2 111

32 1 101

4 2 2 NA

53 1 NA

6 1 99 111

72 99 101

83 99 NA

Which variables from the source dataset are kept for the new records can be specified by the
keep_source_vars argument. Variables specified by by_vars or set_values_to don’t need to

be added to keep_source_vars as these are always kept.

ad

)

de

1,

’

2
1
2,
3

1b <- tribble(

~USUBJID, ~AVISIT, ~AVAL, ~LBSEQ,
" "WEEK 1", 123,

", "WEEK 2", 101,

"2", "WEEK 1", 99,

"2", "WEEK 2", 110,

"2", "WEEK 3", 93,
rive_extreme_records(

dataset_add = adlb,

filter_add = !is.na(AVAL),
by_vars = exprs(USUBJID),

order = exprs(AVAL),

mode = "first”,
keep_source_vars = exprs(AVAL),
set_values_to = exprs(

derive_extreme_records 101

AVISIT = "MINIMUM"

#> # A tibble: 2 x 3

#> USUBJID AVISIT AVAL
#> <chr> <chr> <dbl>
11 MINIMUM 101
#H> 2 2 MINIMUM 93

Handling duplicates (check_type):

The source records are checked regarding duplicates with respect to by_vars and order. By
default, a warning is issued if any duplicates are found.

adlb <- tribble(
~USUBJID, ~AVISIT, ~AVAL,

", "WEEK 1", 123,
"1, "WEEK 2", 123,
"2", "WEEK 1", 99,
"2", "WEEK 2", 110,
"2", "WEEK 3", 93,

)

derive_extreme_records(
dataset_add = adlb,
filter_add = !is.na(AVAL),
by_vars = exprs(USUBJID),
order = exprs(AVAL),
mode = "first"”,
set_values_to = exprs(

AVISIT = "MINIMUM"

)

)
#> # A tibble: 2 x 3

#> USUBJID AVISIT AVAL

#> <chr> <chr> <dbl>

11 MINIMUM 123

#H> 2 2 MINIMUM 93

#> Warning: Dataset contains duplicate records with respect to "USUBJID™ and ~AVAL"
#> i Run “admiral::get_duplicates_dataset()™ to access the duplicate records

For investigating the issue, the dataset of the duplicate source records can be obtained by calling
get_duplicates_dataset():

get_duplicates_dataset()

#> Duplicate records with respect to “USUBJID™ and “AVAL".
#> # A tibble: 2 x 3

#> USUBJID AVAL AVISIT

#> % <chr> <dbl> <chr>

11 123 WEEK 1

21 123 WEEK 2

102

derive_extreme_records

Common options to solve the issue are:

* Restricting the source records by specifying/updating the filter_add argument.
 Specifying additional variables for order.
 Setting check_type = "none"” to ignore any duplicates.

In this example it doesn’t matter which of the records with the minimum value is chosen because
it doesn’t affect the output dataset. Thus the third option is used:

derive_extreme_records(
dataset_add = adlb,
filter_add = !is.na(AVAL),
by_vars = exprs(USUBJID),
order = exprs(AVAL),
mode = "first"”,
check_type = "none”,
set_values_to = exprs(

AVISIT = "MINIMUM"

)

)

#> # A tibble: 2 x 3

#> USUBJID AVISIT AVAL

#> <chr> <chr> <dbl>

11 MINIMUM 123

#> 2 2 MINIMUM 93

Flagging existence of source records (exist_flag, true_value, false_value):

If the existence of a source record should be flagged, the exist_flag argument can be specified.
The specified variable is set to true_value if a source record exists. Otherwise, it is set to
false_value.

The dataset_ref argument should be specified as otherwise all new records originate from
dataset_add, i.e., exist_flag would be set to true_value for all records.

adsl <- tribble(
~USUBJID, ~DTHDT,

nyn ymd(”2022-05-13"),
”2“’ ymd(llﬁl),
”3”’ ymd(llll)

)

derive_extreme_records(
dataset_ref = adsl,
dataset_add = adsl,
by_vars = exprs(USUBJID),
filter_add = !is.na(DTHDT),
exist_flag = AVALC,
true_value = "Y",
false_value = "N",
set_values_to = exprs(

PARAMCD = "DEATH",

derive_extreme_records

#>
#>
#>
#>
#>
#>

ADT = DTHDT
)

A tibble: 3 x 5
USUBJID PARAMCD
<chr> <chr>

11 DEATH

22 DEATH

33 DEATH

Derive DTYPE = "LOV":

For each subject and parameter the last valid assessment (with respect to AVISITN and LBSEQ)
should be selected and added as a new record to the input dataset. For the new records set AVISIT
= "PBL LAST", AVISITN = 99, and DTYPE = "LOV".

ad

)

1b <- tribble(
~USUBJID, ~AVISIT,
LS "BASELINE",
" "WEEK 1",
" "WEEK 1",
non "BASELINE",
non "WEEK 1",
non "WEEK 2",
nyw "BASELINE",
nyn "WEEK 1",
" "WEEK 1",
non "BASELINE",
non "WEEK 1",
ngw "WEEK 2",

%>%

103

ADT DTHDT AVALC
<date> <date> <chr>
2022-05-13 2022-05-13 Y
NA NA N
NA NA N

~AVISITN, ~PARAMCD, ~AVAL, ~LBSEQ,

1, "ABC", 120, 1,
2, "ABC", 113, 2,
2, "ABC", 17, 3,
1, "ABC", 101, 1,
2, "ABC", 101, 2,
3, "ABC", 95, 3,
1, "DEF", 17, 1,
2, "DEF", NA, 2,
2, "DEF", 13, 3,
1, "DEF", 9, 1,
2, "DEF", 10, 2,
3, "DEF", 12, 3

mutate(STUDYID = "XYZ", .before = USUBJID)

derive_extreme_records(

)

#>
#>
#>
#>

adlb,

dataset_add = adlb,

filter_add = !is.na(AVAL) & AVISIT != "BASELINE",
by_vars = exprs(!!!get_admiral_option("subject_keys"), PARAMCD),
order = exprs(AVISITN, LBSEQ),

mode = "last”,

set_values_to = exprs(
AVISIT = "PBL LAST",

AVISITN = 99,
DTYPE = "LOV"

)

A tibble: 16 x 8

STUDYID USUBJID AVISIT AVISITN PARAMCD AVAL LBSEQ DTYPE

<chr> <chr>
1 XYZ 1

<chr> <dbl> <chr> <dbl> <dbl> <chr>
BASELINE 1 ABC 120 1 <NA>

104

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

2 XYZ 1 WEEK 1 2 ABC
3 XYZ 1 WEEK 1 2 ABC
4 XYZ 2 BASELINE 1 ABC
5 XYZ 2 WEEK 1 2 ABC
6 XYZ 2 WEEK 2 3 ABC
7 XYZ 1 BASELINE 1 DEF
8 XYZ 1 WEEK 1 2 DEF
9 XYZ 1 WEEK 1 2 DEF
10 XYZ 2 BASELINE 1 DEF
11 XYZ 2 WEEK 1 2 DEF
12 XYZ 2 WEEK 2 3 DEF
13 XYZ 1 PBL LAST 99 ABC
14 XYZ 1 PBL LAST 99 DEF
15 XYZ 2 PBL LAST 99 ABC
16 XYZ 2 PBL LAST 99 DEF

Derive DTYPE = "MINIMUM":
For each subject and parameter the record with the minimum analysis value should be selected and

added as a new record to the input dataset. If there are multiple records meeting the minimum, the
first record with respect to AVISIT and LBSEQ should be selected. For the new records set AVISIT

—

de

)

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

'PBL MIN"”, AVISITN = 97, and DTYPE = "MINIMUM".

rive_extreme_records(
adlb,
dataset_add = adlb,

113
117
101
101
95
17
NA
13

10
12
17
13
95
12

filter_add = !is.na(AVAL) & AVISIT != "BASELINE",
by_vars = exprs(!!!get_admiral_option("subject_keys"), PARAMCD),

order = exprs(AVAL, AVISITN, LBSEQ),
mode = "first”,
set_values_to = exprs(

AVISIT = "PBL MIN",

AVISITN = 97,
DTYPE = "MINIMUM"
)
A tibble: 16 x 8
STUDYID USUBJID AVISIT AVISITN PARAMCD
<chr> <chr> <chr> <dbl> <chr>
1 XYZ 1 BASELINE 1 ABC
2 XYZ 1 WEEK 1 2 ABC
3 XYZ 1 WEEK 1 2 ABC
4 XYZ 2 BASELINE 1 ABC
5 XYZ 2 WEEK 1 2 ABC
6 XYZ 2 WEEK 2 3 ABC
7 XYZ 1 BASELINE 1 DEF
8 XYZ 1 WEEK 1 2 DEF
9 XYZ 1 WEEK 1 2 DEF
10 XYZ 2 BASELINE 1 DEF
11 XYZ 2 WEEK 1 2 DEF

W wwwwNh = WN—=WN—= WwWN

derive_extreme_records

<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
LoV

LoV

LoV

LoV

AVAL LBSEQ DTYPE
<dbl> <dbl> <chr>
120 1 <NA>
113 2 <NA>
117 3 <NA>
101 1 <NA>
101 2 <NA>
95 3 <NA>
17 1 <NA>
NA 2 <NA>
13 3 <NA>
9 1 <NA>
10 2 <NA>

derive_extreme_records 105

#> 12 XYZ 2 WEEK 2 3 DEF 12 3 <NA>

#> 13 XYZ 1 PBL MIN 97 ABC 113 2 MINIMUM
#> 14 XYZ 1 PBL MIN 97 DEF 13 3 MINIMUM
#> 15 XYZ 2 PBL MIN 97 ABC 95 3 MINIMUM
#> 16 XYZ 2 PBL MIN 97 DEF 10 2 MINIMUM

Derive DTYPE = "MAXIMUM":

For each subject and parameter the record with the maximum analysis value should be selected
and added as a new record to the input dataset. If there are multiple records meeting the maximum,
the first record with respect to AVISIT and LBSEQ should be selected. For the new records set
AVISIT = "PBL MAX", AVISITN = 98, and DTYPE = "MAXIMUM".

derive_extreme_records(
adlb,
dataset_add = adlb,
filter_add = !is.na(AVAL) & AVISIT != "BASELINE",
by_vars = exprs(!!!get_admiral_option("subject_keys"), PARAMCD),
order = exprs(desc(AVAL), AVISITN, LBSEQ),
mode = "first"”,
set_values_to = exprs(
AVISIT = "PBL MAX",
AVISITN = 99,
DTYPE = "MAXIMUM"
)

)
#> # A tibble: 16 x 8

#> STUDYID USUBJID AVISIT AVISITN PARAMCD AVAL LBSEQ DTYPE

#> <chr> <chr> <chr> <dbl> <chr> <dbl> <dbl> <chr>
1 XYZ 1 BASELINE 1 ABC 120 1 <NA>
#> 2 XYZ 1 WEEK 1 2 ABC 113 2 <NA>
#> 3 XYZ 1 WEEK 1 2 ABC 117 3 <NA>
#> 4 XYZ 2 BASELINE 1 ABC 101 1 <NA>
#> 5 XYZ 2 WEEK 1 2 ABC 101 2 <NA>
#> 6 XYZ 2 WEEK 2 3 ABC 95 3 <NA>
#> 7 XYZ 1 BASELINE 1 DEF 17 1 <NA>
#> 8 XYZ 1 WEEK 1 2 DEF NA 2 <NA>
#> 9 XYZ 1 WEEK 1 2 DEF 13 3 <NA>
#> 10 XYZ 2 BASELINE 1 DEF 9 1 <NA>
#> 11 XYZ 2 WEEK 1 2 DEF 10 2 <NA>
#> 12 XYZ 2 WEEK 2 3 DEF 12 3 <NA>
#> 13 XYZ 1 PBL MAX 99 ABC 117 3 MAXIMUM
#> 14 XYZ 1 PBL MAX 99 DEF 13 3 MAXIMUM
#> 15 XYZ 2 PBL MAX 99 ABC 101 2 MAXIMUM
#> 16 XYZ 2 PBL MAX 99 DEF 12 3 MAXIMUM

Derive DTYPE = "WOC" or DTYPE = "BOC":

For each subject and parameter the record with the worst analysis value should be selected and
added as a new record to the input dataset. The worst value is either the minimum or maximum
value depending on the parameter. If there are multiple records meeting the worst value, the first

106 derive_extreme_records

record with respect to AVISIT and LBSEQ should be selected. For the new records set AVISIT =
"PBL WORST", AVISITN = 96, and DTYPE = "WOC".

Here the maximum is considered worst for PARAMCD = "ABC” and the minimum for PARAMCD =
"DEF".

derive_extreme_records(
adlb,
dataset_add = adlb,
filter_add = !is.na(AVAL) & AVISIT != "BASELINE",
by_vars = exprs(!!!get_admiral_option("subject_keys"), PARAMCD),
order = exprs(
if_else(PARAMCD == "ABC", desc(AVAL), AVAL),
AVISITN, LBSEQ
),
mode = "first”,
set_values_to = exprs(
AVISIT = "PBL WORST",
AVISITN = 96,
DTYPE = "woC"

)

)
#> # A tibble: 16 x 8

#> STUDYID USUBJID AVISIT AVISITN PARAMCD AVAL LBSEQ DTYPE

#> <chr> <chr> <chr> <dbl> <chr> <dbl> <dbl> <chr>
#> 1 XYZ 1 BASELINE 1 ABC 120 1 <NA>
#> 2 XYZ 1 WEEK 1 2 ABC 113 2 <NA>
#> 3 XYZ 1 WEEK 1 2 ABC 117 3 <NA>
#> 4 XYZ 2 BASELINE 1 ABC 101 1 <NA>
#> 5 XYZ 2 WEEK 1 2 ABC 101 2 <NA>
#> 6 XYZ 2 WEEK 2 3 ABC 95 3 <NA>
#> 7 XYZ 1 BASELINE 1 DEF 17 1 <NA>
#> 8 XYZ 1 WEEK 1 2 DEF NA 2 <NA>
#> 9 XYZ 1 WEEK 1 2 DEF 13 3 <NA>
#> 10 XYZ 2 BASELINE 1 DEF 9 1 <NA>
#> 11 XYZ 2 WEEK 1 2 DEF 10 2 <NA>
#> 12 XYZ 2 WEEK 2 3 DEF 12 3 <NA>
#> 13 XYZ 1 PBL WORST 96 ABC 117 3 WOC

#> 14 XYZ 1 PBL WORST 96 DEF 13 3 WOC

#> 15 XYZ 2 PBL WORST 96 ABC 101 2 WOC

#> 16 XYZ 2 PBL WORST 96 DEF 10 2 WOC

Derive a parameter for the first disease progression (PD):

For each subject in the ADSL dataset a new parameter should be added to the input dataset which in-
dicates whether disease progression (PD) occurred (set AVALC = "Y", AVAL = 1) or not (set AVALC =
"N", AVAL = 0). For the new parameter set PARAMCD = "PD"” and PARAM = "Disease Progression”.

adsl <- tribble(
~USUBJID, ~DTHDT,
" ymd("2022-05-13"),

derive_extreme_records

”2”, ymd(llﬂ),
”3”’ ymd(HH)
) %%

mutate(STUDYID = "XX1234")

adrs <- tribble(

~USUBJID, ~RSDTC, ~AVALC, ~AVAL,
" "2020-01-02", "PR", 2,
" "2020-02-01", "CR", 1,
" "2020-03-01", "CR", 1,
""", "2021-06-15", "SD", 3,
"2", "2021-07-16", "PD", 4,
", "2021-09-14", "PD", 4
) %>%
mutate(
STUDYID = "XX1234", .before = USUBJID

) %>%

mutate(

ADT = ymd(RSDTC),
PARAMCD = "QVR",
PARAM = "Overall Response”,
.after = RSDTC
)

derive_extreme_records(

adrs,

dataset_ref = adsl,

dataset_add = adrs,

by_vars = get_admiral_option("subject_keys"),
filter_add = PARAMCD == "QVR" & AVALC == "PD",
order = exprs(ADT),

exist_flag = AVALC,

true_value = "Y",
false_value = "N",
mode = "first”,
set_values_to = exprs(
PARAMCD = "PD",
PARAM = "Disease Progression”,
AVAL = yn_to_numeric(AVALC),
)
)
#> # A tibble: 9 x 8
#> STUDYID USUBJID RSDTC ADT PARAMCD PARAM
#> <chr> <chr> <chr> <date> <chr> <chr>
#> 1 XX1234 1 2020-01-02 2020-01-02 OVR Overall Response
#> 2 XX1234 1 2020-02-01 2020-02-01 OVR Overall Response
#> 3 XX1234 1 2020-03-01 2020-03-01 OVR Overall Response
#> 4 XX1234 2 2021-06-15 2021-06-15 OVR Overall Response

107

AVALC AVAL
<chr> <dbl>
PR 2
CR 1
CR 1
SD 3

108 derive_extreme_records

#> 5 XX1234 2 2021-07-16 2021-07-16 OVR Overall Response PD 4
#> 6 XX1234 2 2021-09-14 2021-09-14 OVR Overall Response PD 4
#> 7 XX1234 2 2021-07-16 2021-07-16 PD Disease Progression Y 1
#> 8 XX1234 1 <NA> NA PD Disease Progression N 0
#> 9 XX1234 3 <NA> NA PD Disease Progression N 0

Derive parameter indicating death:

For each subject in the ADSL dataset a new parameter should be created which indicates whether
the subject died (set AVALC = "Y", AVAL = 1) or not (set AVALC = "N", AVAL = 0). For the new
parameter set PARAMCD = "DEATH", PARAM = "Death", and ADT to the date of death (DTHDT).

derive_extreme_records(
dataset_ref = adsl,
dataset_add = adsl,
by_vars = exprs(STUDYID, USUBJID),
filter_add = !is.na(DTHDT),

exist_flag = AVALC,

true_value = "Y",
false_value = "N",
mode = "first",

keep_source_vars = exprs(AVALC),
set_values_to = exprs(

PARAMCD = "DEATH",

PARAM = "Death”,

ADT = DTHDT

)
)
#> # A tibble: 3 x 6
#> STUDYID USUBJID PARAMCD PARAM ADT AVALC
#> <chr> <chr> <chr> <chr> <date> <chr>
#> 1 XX1234 1 DEATH Death 2022-05-13 Y
#> 2 XX1234 2 DEATH Death NA N
#> 3 XX1234 3 DEATH Death NA N

The keep_source_vars argument is specified to avoid that all ADSL variables (like DTHDT) are
copied to the parameter.

See Also

derive_summary_records()

BDS-Findings Functions for adding Parameters/Records: default_qtc_paramcd(), derive_expected_records(),
derive_extreme_event(), derive_locf_records(), derive_param_bmi(), derive_param_bsa(),
derive_param_computed(), derive_param_doseint(), derive_param_exist_flag(), derive_param_exposure(),
derive_param_framingham(), derive_param_map(), derive_param_qtc(), derive_param_rr(),
derive_param_wbc_abs(), derive_summary_records()

derive_loct records

109

derive_locf_records Derive LOCF (Last Observation Carried Forward) Records

Description

Adds LOCF records as new observations for each 'by group’ when the dataset does not contain
observations for missed visits/time points and when analysis value is missing.

Usage

derive_locf_records(

dataset,
dataset_ref,
by_vars,

id_vars_ref =

analysis_var
imputation =
order,

NULL,
= AVAL,
Iladdll,

keep_vars = NULL

Arguments

dataset

dataset_ref

by_vars

id_vars_ref

analysis_var

Input dataset

The variables specified by the by_vars, analysis_var, order, and keep_vars
arguments are expected to be in the dataset.

Default value none

Expected observations dataset

Data frame with all the combinations of PARAMCD, PARAM, AVISIT, AVISITN, ...
which are expected in the dataset is expected.

Default value none

Grouping variables

For each group defined by by_vars those observations from dataset_ref are
added to the output dataset which do not have a corresponding observation in the
input dataset or for which analysis_var is NA for the corresponding observation
in the input dataset.

Default value none

Grouping variables in expected observations dataset

The variables to group by in dataset_ref when determining which observa-
tions should be added to the input dataset.

Default value All the variables in dataset_ref
Analysis variable.

Permitted values a variable

110

imputation

order

keep_vars

Details

derive_loctf _records

Default value AVAL

Select the mode of imputation:

add: Keep all original records and add imputed records for missing timepoints
and missing analysis_var values from dataset_ref.

update: Update records with missing analysis_var and add imputed records
for missing timepoints from dataset_ref.

update_add: Keep all original records, update records with missing analysis_var
and add imputed records for missing timepoints from dataset_ref.

Permitted values One of these 3 values: "add”, "update”, "update_add"
Default value "add”

Sort order

The dataset is sorted by order before carrying the last observation forward (e.g.
AVAL) within each by_vars.

For handling of NAs in sorting variables see the "Sort Order" section in vignette("generic”).
Default value none

Variables that need carrying the last observation forward

Keep variables that need carrying the last observation forward other than analysis_var
(e.g., PARAMN, VISITNUM). If by default NULL, only variables specified in by_vars
and analysis_var will be populated in the newly created records.

Default value NULL

For each group (with respect to the variables specified for the by_vars parameter) those observations
from dataset_ref are added to the output dataset

* which do not have a corresponding observation in the input dataset or

* for which analysis_var is NA for the corresponding observation in the input dataset.

Value

For the new observations, analysis_var is set to the non-missing analysis_var of the pre-
vious observation in the input dataset (when sorted by order) and DTYPE is set to "LOCF".

The imputation argument decides whether to update the existing observation when analysis_var

is NA ("update” and "update_add"), or to add a new observation from dataset_ref instead
("add n).

The input dataset with the new "LOCF" observations added for each by_vars, based on the value
passed to the imputation argument.

Examples

Add records for missing analysis variable using reference dataset:

Imputed records should be added for missing timepoints and for missing analysis_var (from
dataset_ref), while retaining all original records.

derive_loct records 111

» The reference dataset for the imputed records is specified by the dataset_add argument. It
should contain all expected combinations of variables. In this case, advs_expected_obsv
is created by crossing() datasets paramcd and avisit, which includes all combinations of
PARAMCD, AVISITN, and AVISIT.

* The groups for which new records are added are specified by the by_vars argument. Here,
one record should be added for each subject and parameter. Therefore, by_vars = exprs(STUDYID,
USUBJID, PARAMCD) is specified.

* The imputation method is specified using the imputation argument. In this case, records
with missing analysis values add records from dataset_ref after the data are sorted by the
variables in by_vars and by visit (AVISITN and AVISIT), as specified in the order argument.

* Variables other than analysis_var and by_vars that require LOCF (Last-Observation- Carried-
Forward handling (in this case, PARAMN) are specified in the keep_vars argument.

library(dplyr)
library(tibble)
library(tidyr)

advs <- tribble(

~STUDYID, ~USUBJID, ~VSSEQ, ~PARAMCD, ~PARAMN, ~AVAL, ~AVISITN, ~AVISIT,
"CDISCe1", "01-701-1015", 1, "PULSE", 1, 65, 0, "BASELINE",
"CDISCe1", "@1-701-1015", 2, "DIABP", 2, 79, 0, "BASELINE",
"CDISC01", "01-701-1015", 3, "DIABP", 2, 80, 2, "WEEK 2",
"CDISCo1", "01-701-1015", 4, "DIABP", 2, NA, 4, "WEEK 4",
"CDISCo1", "01-701-1015", 5, "DIABP", 2, NA, 6, "WEEK 6",
"CDISCo1", "01-701-1015", 6, "SYSBP", 3, 130, @, "BASELINE",
"CDISCo1", "@1-701-1015", 7, "SYSBP", 3, 132, 2, "WEEK 2"

)

paramcd <- tribble(

~PARAMCD,

"PULSE",

"DIABP",

"SYSBP"

)

avisit <- tribble(
~AVISITN, ~AVISIT,
@, "BASELINE",
2, "WEEK 2",
4, "WEEK 4",
6, "WEEK 6"
)

advs_expected_obsv <- paramcd %>%
crossing(avisit)

derive_locf_records(
dataset = advs,
dataset_ref = advs_expected_obsv,

112 derive_locf _records

by_vars = exprs(STUDYID, USUBJID, PARAMCD),
imputation = "add",
order = exprs(AVISITN, AVISIT),
keep_vars = exprs(PARAMN)
) 1>
arrange(USUBJID, PARAMCD, AVISIT)
#> # A tibble: 14 x 9
#> STUDYID USUBJID VSSEQ PARAMCD PARAMN AVAL AVISITN AVISIT DTYPE

#> <chr> <chr> <dbl> <chr> <dbl> <dbl> <dbl> <chr> <chr>
#> 1 CDISCO1 01-701-1015 2 DIABP 2 79 @ BASELINE <NA>
#> 2 CDISCO1 01-701-1015 3 DIABP 2 80 2 WEEK 2 <NA>
#> 3 CDISCO1 01-701-1015 NA DIABP 2 80 4 WEEK 4 LOCF
#> 4 CDISCO1 01-701-1015 4 DIABP 2 NA 4 WEEK 4 <NA>
#> 5 CDISCO1 01-701-1015 NA DIABP 2 80 6 WEEK 6 LOCF
#> 6 CDISCO1 01-701-1015 5 DIABP 2 NA 6 WEEK 6 <NA>
#> 7 CDISCO1 01-701-1015 1 PULSE 1 65 @ BASELINE <NA>
#> 8 CDISCO1 01-701-1015 NA PULSE 1 65 2 WEEK 2 LOCF
#> 9 CDISCO1 01-701-1015 NA PULSE 1 65 4 WEEK 4 LOCF
#> 10 CDISCO1 01-701-1015 NA PULSE 1 65 6 WEEK 6 LOCF
#> 11 CDISCO1 01-701-1015 6 SYSBP 3 130 @ BASELINE <NA>
#> 12 CDISCO1 01-701-1015 7 SYSBP 3 132 2 WEEK 2 <NA>
#> 13 CDISCO1 01-701-1015 NA SYSBP 3 132 4 WEEK 4 LOCF
#> 14 CDISCO1 01-701-1015 NA SYSBP 3 132 6 WEEK 6 LOCF

Update records for missing analysis variable:

When the imputation mode is set to update, missing analysis_var values are updated using
values from the last record after the dataset is sorted by by_vars and order. Imputed records are
added for missing timepoints (from dataset_ref).

derive_locf_records(
dataset = advs,
dataset_ref = advs_expected_obsv,
by_vars = exprs(STUDYID, USUBJID, PARAMCD),

imputation = "update”,
order = exprs(AVISITN, AVISIT),
) 1>

arrange (USUBJID, PARAMCD, AVISIT)
#> # A tibble: 12 x 9
#> STUDYID USUBJID VSSEQ PARAMCD PARAMN AVAL AVISITN AVISIT DTYPE

#> <chr> <chr> <dbl> <chr> <dbl> <dbl> <dbl> <chr> <chr>
#> 1 CDISCO1 01-701-1015 2 DIABP 2 79 @ BASELINE <NA>
#> 2 CDISCO1 01-701-1015 3 DIABP 2 80 2 WEEK 2 <NA>
#> 3 CDISCO1 01-701-1015 4 DIABP 2 80 4 WEEK 4 LOCF
#> 4 CDISCO1 01-701-1015 5 DIABP 2 80 6 WEEK 6 LOCF
#> 5 CDISCO1 91-701-1015 1 PULSE 1 65 @ BASELINE <NA>
#> 6 CDISCO1 01-701-1015 NA PULSE NA 65 2 WEEK 2 LOCF
#> 7 CDISCO1 01-701-1015 NA PULSE NA 65 4 WEEK 4 LOCF
#> 8 CDISCO1 01-701-1015 NA PULSE NA 65 6 WEEK 6 LOCF
#> 9 CDISCO1 01-701-1015 6 SYSBP 3 130 @ BASELINE <NA>

derive_loct records 113

#> 10 CDISCO1 01-701-1015 7 SYSBP 3 132 2 WEEK 2 <NA>
#> 11 CDISCO1 01-701-1015 NA SYSBP NA 132 4 WEEK 4 LOCF
#> 12 CDISCO1 01-701-1015 NA SYSBP NA 132 6 WEEK 6 LOCF

Update records for missing analysis variable while keeping the original records:

When the imputation mode is set to update_add, the missing analysis_var values are updated
using values from the last record after the dataset is sorted by by_vars and order. The updated
values are added as new records, while the original records with missing analysis_var are re-
tained. Imputed records are added for missing timepoints (from dataset_ref).

derive_locf_records(
dataset = advs,
dataset_ref = advs_expected_obsv,
by_vars = exprs(STUDYID, USUBJID, PARAMCD),
imputation = "update_add",
order = exprs(AVISITN, AVISIT),
) 1>
arrange(USUBJID, PARAMCD, AVISIT)
#> # A tibble: 14 x 9

#> STUDYID USUBJID VSSEQ PARAMCD PARAMN AVAL AVISITN AVISIT DTYPE
#> <chr> <chr> <dbl> <chr> <dbl> <dbl> <dbl> <chr> <chr>
#> 1 CDISCO1 01-701-1015 2 DIABP 2 79 0 BASELINE <NA>
#> 2 CDISCO1 01-701-1015 3 DIABP 2 80 2 WEEK 2 <NA>
#> 3 CDISCO1 01-701-1015 4 DIABP 2 80 4 WEEK 4 LOCF
#> 4 CDISCO1 01-701-1015 4 DIABP 2 NA 4 WEEK 4 <NA>
#> 5 CDISCO1 01-701-1015 5 DIABP 2 80 6 WEEK 6 LOCF
#> 6 CDISCO1 01-701-1015 5 DIABP 2 NA 6 WEEK 6 <NA>
#> 7 CDISCO1 01-701-1015 1 PULSE 1 65 @ BASELINE <NA>
#> 8 CDISCO1 01-701-1015 NA PULSE NA 65 2 WEEK 2 LOCF
#> 9 CDISCO1 01-701-1015 NA PULSE NA 65 4 WEEK 4 LOCF
#> 10 CDISCO1 01-701-1015 NA PULSE NA 65 6 WEEK 6 LOCF
#> 11 CDISCO1 01-701-1015 6 SYSBP 3 130 @ BASELINE <NA>
#> 12 CDISCO1 01-701-1015 7 SYSBP 3 132 2 WEEK 2 <NA>
#> 13 CDISCO1 01-701-1015 NA SYSBP NA 132 4 WEEK 4 LOCF
#> 14 CDISCO1 01-701-1015 NA SYSBP NA 132 6 WEEK 6 LOCF

Author(s)

G Gayatri
See Also

BDS-Findings Functions for adding Parameters/Records: default_qgtc_paramcd(), derive_expected_records(),
derive_extreme_event(),derive_extreme_records(), derive_param_bmi(), derive_param_bsa(),
derive_param_computed(), derive_param_doseint(), derive_param_exist_flag(), derive_param_exposure(),
derive_param_framingham(), derive_param_map(), derive_param_qtc(), derive_param_rr(),
derive_param_wbc_abs(), derive_summary_records()

114

derive_param_bmi

derive_param_bmi

Adds a Parameter for BMI

Description

Adds a record for BMI/Body Mass Index using Weight and Height each by group (e.g., subject and
visit) where the source parameters are available.

Note: This is a wrapper function for the more generic derive_param_computed().

Usage

derive_param_bmi (

dataset,
by_vars,

set_values_to

weight_code
height_code

= exprs(PARAMCD = "BMI"),
"WEIGHT",
"HEIGHT",

get_unit_expr,
filter = NULL,
constant_by_vars = NULL

Arguments

dataset

by_vars

set_values_to

Input dataset

The variables specified by the by_vars argument are expected to be in the
dataset. PARAMCD, and AVAL are expected as well.

The variable specified by by_vars and PARAMCD must be a unique key of the
input dataset after restricting it by the filter condition (filter parameter) and to
the parameters specified by weight_code and height_code.

Default value none

Grouping variables

For each group defined by by_vars an observation is added to the output dataset.
Only variables specified in by_vars will be populated in the newly created
records.

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)
Default value none

Variables to be set

The specified variables are set to the specified values for the new observations.
For example exprs (PARAMCD = "MAP") defines the parameter code for the new
parameter.

Permitted values List of variable-value pairs
Default value exprs(PARAMCD = "MAP")

derive_param_bmi

weight_code

height_code

get_unit_expr

filter

115

WEIGHT parameter code

The observations where PARAMCD equals the specified value are considered as
the WEIGHT. It is expected that WEIGHT is measured in kg

Permitted values character value

Default value "WEIGHT"

HEIGHT parameter code

The observations where PARAMCD equals the specified value are considered as
the HEIGHT. It is expected that HEIGHT is measured in cm

Permitted values logical scalar

Default value "HEIGHT"

An expression providing the unit of the parameter

The result is used to check the units of the input parameters.

Permitted values An expression which is evaluable in the input dataset and
results in a character value

Default value none

Filter condition

The specified condition is applied to the input dataset before deriving the new
parameter, i.e., only observations fulfilling the condition are taken into account.
Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value NULL

constant_by_vars

Details

By variables for when HEIGHT is constant
When HEIGHT is constant, the HEIGHT parameters (measured only once) are
merged to the other parameters using the specified variables.

If height is constant (e.g. only measured once at screening or baseline) then
use constant_by_vars to select the subject-level variable to merge on (e.g.
USUBJID). This will produce BMI at all visits where weight is measured. Other-
wise it will only be calculated at visits with both height and weight collected.

Default value NULL

The analysis value of the new parameter is derived as

Value

WEIGHT

BMI = gEianTe

The input dataset with the new parameter added. Note, a variable will only be populated in the new
parameter rows if it is specified in by_vars.

116 derive_param_bmi

See Also

compute_bmi ()

BDS-Findings Functions for adding Parameters/Records: default_qtc_paramcd(), derive_expected_records(),
derive_extreme_event(),derive_extreme_records(), derive_locf_records(), derive_param_bsa(),
derive_param_computed(), derive_param_doseint(), derive_param_exist_flag(), derive_param_exposure(),
derive_param_framingham(), derive_param_map(), derive_param_qtc(), derive_param_rr(),
derive_param_wbc_abs(), derive_summary_records()

Examples

Example 1: Derive BMI where height is measured only once using constant_by_vars

advs <- tibble::tribble(
~USUBJID, ~PARAMCD, ~PARAM, ~AVAL, ~AVISIT,
"01-701-1015", "HEIGHT"”, "Height (cm)", 147, "SCREENING",
"91-701-1015", "WEIGHT", "Weight (kg)”, 54.0, "SCREENING”,
"91-701-1015", "WEIGHT”, "Weight (kg)”, 54.4, "BASELINE",
"91-701-1015", "WEIGHT”, "Weight (kg)", 53.1, "WEEK 2",
"@1-701-1028", "HEIGHT”, "Height (cm)”, 163, "SCREENING”,
"91-701-1028", "WEIGHT", "Weight (kg)", 78.5, "SCREENING”,
"91-701-1028", "WEIGHT”, "Weight (kg)”, 80.3, "BASELINE",
"91-701-1028", "WEIGHT", "Weight (kg)”, 80.7, "WEEK 2"

)

derive_param_bmi (
advs,
by_vars = exprs(USUBJID, AVISIT),
weight_code = "WEIGHT",
height_code = "HEIGHT",
set_values_to = exprs(
PARAMCD = "BMI",
PARAM = "Body Mass Index (kg/m*2)"
),
get_unit_expr = extract_unit(PARAM),
constant_by_vars = exprs(USUBJID)
)

Example 2: Derive BMI where height is measured only once and keep only one record
where both height and weight are measured.
derive_param_bmi (
advs,
by_vars = exprs(USUBJID, AVISIT),
weight_code = "WEIGHT",
height_code = "HEIGHT",
set_values_to = exprs(
PARAMCD = "BMI",
PARAM = "Body Mass Index (kg/m*2)"
),
get_unit_expr = extract_unit(PARAM)
)

Example 3: Pediatric study where height and weight are measured multiple times

derive_param_bsa 117

advs <- tibble::tribble(
~USUBJID, ~PARAMCD, ~PARAM, ~AVAL, ~VISIT,

"01-101-1001", "HEIGHT", "Height (cm)”, 47.1, "BASELINE",

1

"01-101-1001", "HEIGHT"”, "Height (cm)", 59.1, "WEEK 12",
"91-101-1001", "HEIGHT", "Height (cm)", 64.7, "WEEK 24",
"01-101-1001", "HEIGHT", "Height (cm)", 68.2, "WEEK 48",
"91-101-1001", "WEIGHT", "Weight (kg)", 2.6, "BASELINE",
"91-101-1001", "WEIGHT", "Weight (kg)", 5.3, "WEEK 12",
"01-101-1001", "WEIGHT", "Weight (kg)", 6.7, "WEEK 24",
"91-101-1001", "WEIGHT", "Weight (kg)", 7.4, "WEEK 48",

)

derive_param_bmi (
advs,
by_vars = exprs(USUBJID, VISIT),
weight_code = "WEIGHT",
height_code = "HEIGHT",
set_values_to = exprs(

PARAMCD = "BMI",
PARAM = "Body Mass Index (kg/m*2)"

),
get_unit_expr = extract_unit(PARAM)

)

derive_param_bsa Adds a Parameter for BSA (Body Surface Area) Using the Specified
Method
Description

Adds a record for BSA (Body Surface Area) using the specified derivation method for each by
group (e.g., subject and visit) where the source parameters are available.

Note: This is a wrapper function for the more generic derive_param_computed().

Usage

derive_param_bsa(
dataset,
by_vars,
method,
set_values_to = exprs(PARAMCD = "BSA"),
height_code = "HEIGHT",
weight_code = "WEIGHT",
get_unit_expr,
filter = NULL,
constant_by_vars = NULL

118

Arguments

dataset

by_vars

method

set_values_to

height_code

weight_code

derive_param_bsa

Input dataset

The variables specified by the by_vars argument are expected to be in the
dataset. PARAMCD, and AVAL are expected as well.

The variable specified by by_vars and PARAMCD must be a unique key of the
input dataset after restricting it by the filter condition (filter parameter) and to
the parameters specified by HEIGHT and WEIGHT.

Default value none

Grouping variables

For each group defined by by_vars an observation is added to the output dataset.
Only variables specified in by_vars will be populated in the newly created
records.

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)

Default value none

Derivation method to use. Note that HEIGHT is expected in cm and WEIGHT is

expected in kg:

Mosteller: sqrt(height x weight / 3600)

DuBois-DuBois: 0.20247 x (height/100) * 0.725 * weight * 0.425

Haycock: @.024265 * height * 0.3964 x weight * ©.5378

Gehan-George: 0.0235 * height * 0.42246 * weight * 0.51456

Boyd: 0.0003207 * (height * 0.3) * (1000 * weight) * (0.7285 - (0.0188

* 10g10(1000 * weight)))

Fujimoto: 0.008883 * height * 0.663 * weight * 0.444

Takahira: 0.007241 * height * 0.725 * weight * 0.425

Permitted values character value
Default value none

Variables to be set

The specified variables are set to the specified values for the new observations.
For example exprs(PARAMCD = "MAP") defines the parameter code for the new
parameter.

Permitted values List of variable-value pairs

Default value exprs(PARAMCD = "MAP")

HEIGHT parameter code

The observations where PARAMCD equals the specified value are considered as
the HEIGHT assessments. It is expected that HEIGHT is measured in cm.

Permitted values character value
Default value "HEIGHT”

WEIGHT parameter code

The observations where PARAMCD equals the specified value are considered as
the WEIGHT assessments. It is expected that WEIGHT is measured in kg.

derive_param_bsa 119

Permitted values character value
Default value "WEIGHT”

get_unit_expr An expression providing the unit of the parameter
The result is used to check the units of the input parameters.
Permitted values An expression which is evaluable in the input dataset and
results in a character value
Default value none

filter Filter condition

The specified condition is applied to the input dataset before deriving the new
parameter, i.e., only observations fulfilling the condition are taken into account.

Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value NULL

constant_by_vars
By variables for when HEIGHT is constant
When HEIGHT is constant, the HEIGHT parameters (measured only once) are
merged to the other parameters using the specified variables.
If height is constant (e.g. only measured once at screening or baseline) then
use constant_by_vars to select the subject-level variable to merge on (e.g.
USUBJID). This will produce BSA at all visits where weight is measured. Other-
wise it will only be calculated at visits with both height and weight collected.

Default value NULL

Value

The input dataset with the new parameter added. Note, a variable will only be populated in the new
parameter rows if it is specified in by_vars.

See Also

compute_bsa()

BDS-Findings Functions for adding Parameters/Records: default_qtc_paramcd(), derive_expected_records(),
derive_extreme_event(), derive_extreme_records(), derive_locf_records(), derive_param_bmi(),
derive_param_computed(), derive_param_doseint(), derive_param_exist_flag(), derive_param_exposure(),
derive_param_framingham(), derive_param_map(), derive_param_qtc(), derive_param_rr(),
derive_param_wbc_abs(), derive_summary_records()

Examples

library(tibble)

Example 1: Derive BSA where height is measured only once using constant_by_vars
advs <- tibble::tribble(

~USUBJID, ~PARAMCD, ~PARAM, ~AVAL, ~VISIT,

"91-701-1015", "HEIGHT”, "Height (cm)”, 170, "BASELINE",

"91-701-1015", "WEIGHT", "Weight (kg)", 75, "BASELINE”,

"91-701-1015", "WEIGHT", "Weight (kg)”, 78, "MONTH 1",

120

derive_param_bsa

"91-701-1015", "WEIGHT", "Weight (kg)”, 80, "MONTH 2",
"91-701-1028", "HEIGHT”, "Height (cm)”, 185, "BASELINE",
"01-701-1028", "WEIGHT”, "Weight (kg)", 90, "BASELINE",
"91-701-1028", "WEIGHT", "Weight (kg)”, 88, "MONTH 1",
"01-701-1028", "WEIGHT", "Weight (kg)”, 85, "MONTH 2",

)

derive_param_bsa(
advs,
by_vars = exprs(USUBJID, VISIT),
method = "Mosteller”,
set_values_to = exprs(
PARAMCD = "BSA",
PARAM = "Body Surface Area (m*2)"
),
get_unit_expr = extract_unit(PARAM),
constant_by_vars = exprs(USUBJID)

)

derive_param_bsa(
advs,
by_vars = exprs(USUBJID, VISIT),
method = "Fujimoto”,

set_values_to = exprs(
PARAMCD = "BSA",
PARAM = "Body Surface Area (m*2)"
),
get_unit_expr = extract_unit(PARAM),
constant_by_vars = exprs(USUBJID)
)

Example 2: Derive BSA where height is measured only once and keep only one record
where both height and weight are measured.

derive_param_bsa(
advs,
by_vars = exprs(USUBJID, VISIT),
method = "Mosteller”,
set_values_to = exprs(
PARAMCD = "BSA",
PARAM = "Body Surface Area (m*2)"
),
get_unit_expr = extract_unit(PARAM)
)

Example 3: Pediatric study where height and weight are measured multiple times
advs <- tibble::tribble(

~USUBJID, ~PARAMCD, ~PARAM, ~AVAL, ~VISIT,

"91-101-1001", "HEIGHT”, "Height (cm)”, 47.1, "BASELINE",

"91-101-1001", "HEIGHT”, "Height (cm)”, 59.1, "WEEK 12",

"91-101-1001", "HEIGHT”, "Height (cm)”, 64.7, "WEEK 24",

"01-101-1001", "HEIGHT"”, "Height (cm)", 68.2, "WEEK 48",

"91-101-1001", "WEIGHT”, "Weight (kg)”, 2.6, "BASELINE",

derive_param_computed

"01-101-1001", "WEIGHT",
"01-101-1001", "WEIGHT",
"01-101-1001", "WEIGHT",
)
derive_param_bsa(
advs,
by_vars = exprs(USUBJID,
method = "Mosteller”,
set_values_to = exprs(
PARAMCD = "BSA",

"Weight
"Weight
"Weight

VISIT),

(kg)", 5.3, "WEEK 12",
(kg)", 6.7, "WEEK 24",
(kg)", 7.4, "WEEK 48",

PARAM = "Body Surface Area (m*2)"

)?

get_unit_expr = extract_unit(PARAM)

121

derive_param_computed Adds a Parameter Computed from the Analysis Value of Other Param-
eters

Description

Adds a parameter computed from the analysis value of other parameters. It is expected that the
analysis value of the new parameter is defined by an expression using the analysis values of other
parameters, such as addition/sum, subtraction/difference, multiplication/product, division/ratio, ex-

ponentiation/logarithm, or by formula.

For example mean arterial pressure (MAP) can be derived from systolic (SYSBP) and diastolic
blood pressure (DIABP) with the formula

Usage

derive_param_computed(
dataset = NULL,
dataset_add = NULL,
by_vars,
parameters,
set_values_to,
filter = NULL,

MAP =

constant_by_vars = NULL,
constant_parameters = NULL,

keep_nas = FALSE

SYSBP +2DIABP

3

122 derive_param_computed

Arguments

dataset Input dataset
The variables specified by the by_vars argument are expected to be in the
dataset. PARAMCD is expected as well.
The variable specified by by_vars and PARAMCD must be a unique key of the
input dataset after restricting it by the filter condition (filter parameter) and to
the parameters specified by parameters.

Permitted values a dataset, i.e., a data. frame or tibble
Default value NULL

dataset_add Additional dataset
The variables specified by the by_vars parameter are expected.

The variable specified by by_vars and PARAMCD must be a unique key of the
additional dataset after restricting it to the parameters specified by parameters.
If the argument is specified, the observations of the additional dataset are con-

sidered in addition to the observations from the input dataset (dataset restricted
by filter).

Permitted values a dataset, i.e., a data. frame or tibble
Default value NULL

by_vars Grouping variables

For each group defined by by_vars an observation is added to the output dataset.
Only variables specified in by_vars will be populated in the newly created
records.

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)

Default value none

parameters Required parameter codes

It is expected that all parameter codes (PARAMCD) which are required to derive
the new parameter are specified for this parameter or the constant_parameters
parameter.

If observations should be considered which do not have a parameter code, e.g., if
an SDTM dataset is used, temporary parameter codes can be derived by specify-
ing a list of expressions. The name of the element defines the temporary param-
eter code and the expression the condition for selecting the records. For example
parameters = exprs(HGHT = VSTESTCD == "HEIGHT") selects the observations
with VSTESTCD == "HEIGHT" from the input data (dataset and dataset_add),
sets PARAMCD = "HGHT" for these observations, and adds them to the observations
to consider.

Unnamed elements in the list of expressions are considered as parameter codes.
For example, parameters = exprs(WEIGHT, HGHT = VSTESTCD == "HEIGHT") uses
the parameter code "WEIGHT" and creates a temporary parameter code "HGHT".
Permitted values A character vector of PARAMCD values or a list of expressions
Default value none

derive_param_computed 123

set_values_to

filter

Variables to be set

The specified variables are set to the specified values for the new observations.
The values of variables of the parameters specified by parameters can be ac-
cessed using <variable name>.<parameter code>. For example

exprs(
AVAL = (AVAL.SYSBP + 2 * AVAL.DIABP) / 3,
PARAMCD = "MAP"

)

defines the analysis value and parameter code for the new parameter.
Variable names in the expression must not contain more than one dot.

Note that dplyr helper functions such as dplyr::starts_with() should be
avoided unless the list of variable-value pairs is clearly specified in a statement
via the set_values_to argument.

Permitted values list of named expressions created by a formula using exprs(),
e.g., exprs(AVALC = VSSTRESC, AVAL = yn_to_numeric(AVALC))

Default value none

Filter condition

The specified condition is applied to the input dataset before deriving the new
parameter, i.e., only observations fulfilling the condition are taken into account.

Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value NULL

constant_by_vars

By variables for constant parameters

The constant parameters (parameters that are measured only once) are merged

to the other parameters using the specified variables. (Refer to Example 2)

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)

Default value NULL

constant_parameters

Required constant parameter codes

It is expected that all the parameter codes (PARAMCD) which are required to derive
the new parameter and are measured only once are specified here. For example
if BMI should be derived and height is measured only once while weight is
measured at each visit. Height could be specified in the constant_parameters
parameter. (Refer to Example 2)

If observations should be considered which do not have a parameter code, e.g.,
if an SDTM dataset is used, temporary parameter codes can be derived by spec-
ifying a list of expressions. The name of the element defines the temporary
parameter code and the expression the condition for selecting the records. For
example constant_parameters = exprs(HGHT = VSTESTCD == "HEIGHT") se-
lects the observations with VSTESTCD == "HEIGHT" from the input data (dataset
and dataset_add), sets PARAMCD = "HGHT" for these observations, and adds
them to the observations to consider.

124 derive_param_computed

Unnamed elements in the list of expressions are considered as parameter codes.

For example, constant_parameters = exprs(WEIGHT, HGHT = VSTESTCD == "HEIGHT")
uses the parameter code "WEIGHT"” and creates a temporary parameter code

"HGHT".

Permitted values A character vector of PARAMCD values or a list of expressions

Default value NULL

keep_nas Keep observations with NAs

If the argument is set to TRUE, observations are added even if some of the values
contributing to the computed value are NA (see Example 1b).

If the argument is set to a list of variables, observations are added even if some

of specified variables are NA (see Example 1c).

Permitted values TRUE, FALSE, or a list of variables created by exprs() e.g.
exprs(ADTF, ATMF)

Default value FALSE

Details

For each group (with respect to the variables specified for the by_vars parameter) an observa-
tion is added to the output dataset if the filtered input dataset (dataset) or the additional dataset
(dataset_add) contains exactly one observation for each parameter code specified for parameters
and all contributing values like AVAL . SYSBP are not NA. The keep_nas can be used to specify vari-
ables for which NAs are acceptable. See also Example 1b and 1c.

For the new observations the variables specified for set_values_to are set to the provided values.
The values of the other variables of the input dataset are set to NA.

Value
The input dataset with the new parameter added. Note, a variable will only be populated in the new
parameter rows if it is specified in by_vars.

Examples

Example 1 - Data setup:
Examples 1a, 1b, and lc use the following ADVS data.

ADVS <- tribble(

~USUBJID, ~PARAMCD, ~PARAM, ~AVAL, ~VISIT,

"01-701-1015", "DIABP", "Diastolic Blood Pressure (mmHg)", 51, "BASELINE",
"@1-701-1015", "DIABP", "Diastolic Blood Pressure (mmHg)", 50, "WEEK 2",
"01-701-1015", "SYSBP", "Systolic Blood Pressure (mmHg)", 121, "BASELINE",
"@1-701-1015", "SYSBP", "Systolic Blood Pressure (mmHg)", 121, "WEEK 2",
"01-701-1028", "DIABP", "Diastolic Blood Pressure (mmHg)", 79, "BASELINE",
"@1-701-1028", "DIABP", "Diastolic Blood Pressure (mmHg)", 80, "WEEK 2",
"01-701-1028", "SYSBP", "Systolic Blood Pressure (mmHg)", 130, "BASELINE",
"01-701-1028", "SYSBP", "Systolic Blood Pressure (mmHg)", NA, "WEEK 2"

) %>%

mutate(

derive_param_computed 125

)

AVALU = "mmHg",

ADT = case_when(
VISIT == "BASELINE"” ~ as.Date("2024-01-10"),
VISIT == "WEEK 2" ~ as.Date("2024-01-24")

),

ADTF = NA_character_

Example 1a - Adding a parameter computed from a formula (parameters, set_values_to):

Derive mean arterial pressure (MAP) from systolic (SYSBP) and diastolic blood pressure (DI-
ABP).

Here, for each USUBJID and VISIT group (specified in by_vars), an observation is added
to the output dataset when the filtered input dataset (dataset) contains exactly one obser-
vation for each parameter code specified for parameters and all contributing values (e.g.,
AVAL . SYSBP and AVAL . DIABP) are not NA. Indeed, patient @1-7@1-1028 does not get a "WEEK
2"-derived record as AVAL is NA for their "WEEK 2" systolic blood pressure.

derive_param_computed(
ADVS,
by_vars = exprs(USUBJID, VISIT),
parameters = c("SYSBP", "DIABP"),
set_values_to = exprs(

)

AVAL = (AVAL.SYSBP + 2 * AVAL.DIABP) / 3,
PARAMCD = "MAP",
PARAM = "Mean Arterial Pressure (mmHg)",
AVALU = "mmHg",
ADT = ADT.SYSBP

) %%
select (-PARAM)
#> # A tibble: 11 x 7

#> USUBJID PARAMCD AVAL VISIT AVALU ADT ADTF
#> <chr> <chr> <dbl> <chr> <chr> <date> <chr>
#> 1 01-701-1015 DIABP 51 BASELINE mmHg 2024-01-10 <NA>
#> 2 01-701-1015 DIABP 50 WEEK 2 mmHg 2024-01-24 <NA>
#> 3 01-701-1015 SYSBP 121 BASELINE mmHg 2024-01-10 <NA>
#> 4 01-701-1015 SYSBP 121 WEEK 2 mmHg 2024-01-24 <NA>
#> 5 01-701-1028 DIABP 79 BASELINE mmHg 2024-01-10 <NA>
#> 6 01-701-1028 DIABP 80 WEEK 2 mmHg 2024-01-24 <NA>
#> 7 01-701-1028 SYSBP 130 BASELINE mmHg 2024-01-10 <NA>
#> 8 01-701-1028 SYSBP NA WEEK 2 mmHg 2024-01-24 <NA>
#> 9 01-701-1015 MAP 74.3 BASELINE mmHg 2024-01-10 <NA>
#> 10 01-701-1015 MAP 73.7 WEEK 2 mmHg 2024-01-24 <NA>
#> 11 01-701-1028 MAP 96 BASELINE mmHg 2024-01-10 <NA>

Example 1b - Keeping missing values for any source variables (keep_nas = TRUE):

Use option keep_nas = TRUE to derive MAP in the case where some/all values of a variable used
in the computation are missing.

126

de

Y%

se
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

derive_param_computed

* Note that observations will be added here even if some of the values contributing to the
computed values are NA. In particular, patient @1-701-1028 does get a "WEEK 2"-derived
record as compared to Example 1a, but with AVAL = NA.

rive_param_computed(
ADVS,
by_vars = exprs(USUBJID, VISIT),
parameters = c("SYSBP", "DIABP"),
set_values_to = exprs(
AVAL = (AVAL.SYSBP + 2 % AVAL.DIABP) / 3,
PARAMCD = "MAP",
PARAM = "Mean Arterial Pressure (mmHg)",
AVALU = "mmHg",
ADT = ADT.SYSBP,
ADTF = ADTF.SYSBP

),
keep_nas = TRUE

>%
lect (-PARAM)
A tibble: 12 x 7
USUBJID PARAMCD AVAL VISIT AVALU ADT ADTF
<chr> <chr> <dbl> <chr> <chr> <date> <chr>
1 01-701-1015 DIABP 51 BASELINE mmHg 2024-01-10 <NA>
2 01-701-1015 DIABP 50 WEEK 2 mmHg 2024-01-24 <NA>
3 01-701-1015 SYSBP 121 BASELINE mmHg 2024-01-10 <NA>
4 01-701-1015 SYSBP 121 WEEK 2 mmHg 2024-01-24 <NA>
5 01-701-1028 DIABP 79 BASELINE mmHg 2024-01-10 <NA>
6 01-701-1028 DIABP 80 WEEK 2 mmHg 2024-01-24 <NA>
7 01-701-1028 SYSBP 130 BASELINE mmHg 2024-01-10 <NA>
8 01-701-1028 SYSBP NA WEEK 2 mmHg 2024-01-24 <NA>
9 01-701-1015 MAP 74.3 BASELINE mmHg 2024-01-10 <NA>
10 01-701-1015 MAP 73.7 WEEK 2 mmHg 2024-01-24 <NA>
11 01-701-1028 MAP 96 BASELINE mmHg 2024-01-10 <NA>
12 01-701-1028 MAP NA WEEK 2 mmHg 2024-01-24 <NA>

Example 1c - Keeping missing values for some source variables (keep_nas = exprs()):

Use option keep_nas = exprs(ADTF) to derive MAP in the case where some/all values of a vari-
able used in the computation are missing but keeping NA values of ADTF.

¢ This is subtly distinct from Examples 1a and 1b. In 1a, we do not get new derived records if
any of the source records have a value of NA for a variable that is included in set_values_to.
In 1b, we do the opposite and allow the creation of new records regardless of how many NAs
we encounter in the source variables.

* Here, we want to disregard NA values but only from the variables that are specified via
keep_na_values.

* This is important because we have added ADTF in set_values_to, but all values of this
variable are NA. As such, in order to get any derived records at all, but continue not getting
one when AVAL is NA in any of the source records, (see patient "01-701-1028" again), we
specify keep_nas = exprs(ADTF).

derive_param_computed

derive_param_computed(

)
#>

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

ADVS,

by_vars = exprs(USUBJID, VISIT),
parameters = c("SYSBP", "DIABP"),
set_values_to = exprs(

AVAL = (AVAL.SYSBP
PARAMCD = "MAP",

+ 2 * AVAL.DIABP) / 3,

PARAM = "Mean Arterial Pressure (mmHg)",

AVALU = "mmHg",

ADT = ADT.SYSBP,

ADTF = ADTF.SYSBP
),

keep_nas = exprs(ADTF)

A tibble: 11 x 8

USUBJID PARAMCD PARAM

<chr> <chr>
101-701-1015 DIABP
2 01-701-1015 DIABP
3 01-701-1015 SYSBP
4 01-701-1015 SYSBP
501-701-1028 DIABP
6 01-701-1028 DIABP
7 01-701-1028 SYSBP
8 01-701-1028 SYSBP
9 01-701-1015 MAP
10 01-701-1015 MAP
11 01-701-1028 MAP

Mean Arterial Pressur. . .
Mean Arterial Pressur. . .
Mean Arterial Pressur. . .

51
50
121
121
79
80
130
NA

BASE. . .
WEEK. . .
BASE. . .
WEEK. . .
BASE. . .
WEEK. . .
BASE. . .
WEEK. . .
74.3 BASE. . .
73.7 WEEK. . .
96 BASE. . .

AVAL VISIT AVALU ADT

<chr> <dbl> <chr> <chr> <date>
Diastolic Blood Press. . .
Diastolic Blood Press. . .
Systolic Blood Pressu. . .
Systolic Blood Pressu. . .
Diastolic Blood Press. . .
Diastolic Blood Press. . .
Systolic Blood Pressu. . .
Systolic Blood Pressu. . .

mmHg
mmHg
mmHg
mmHg
mmHg
mmHg
mmHg
mmHg
mmHg
mmHg

127

ADTF
<chr>
2024-01-10 <NA>
2024-01-24 <NA>
2024-01-10 <NA>
2024-01-24 <NA>
2024-01-10 <NA>
2024-01-24 <NA>
2024-01-10 <NA>
2024-01-24 <NA>
2024-01-10 <NA>
2024-01-24 <NA>

mmHg 2024-01-10 <NA>

Example 2 - Derivations using parameters measured only once (constant_parameters and
constant_by_vars):

Derive BMI where HEIGHT is measured only once.

* In the above examples, for each parameter specified in the parameters argument, we expect
one record per by group, where the by group is specified in by_vars. However, if a parameter
is only measured once, it can be specified in constant_parameters instead.

via constant_by_vars

A modified by group still needs to be provided for the constant parameters. This can be done

See the example below, where weight is measured for each patient at each visit (by_vars

= exprs(USUBJID, VISIT)), while height is measured for each patient only at the first visit
(constant_parameters = "HEIGHT", constant_by_vars =

ADVS <- tribble(

~USUBJID,

"01-701-1015",
"01-701-1015",
"01-701-1015",
"01-701-1015",
"01-701-1028",

~PARAMCD, ~PARAM, ~AVAL,
"HEIGHT”, "Height (cm)”, 147.0,
"WEIGHT”, "Weight (kg)", 54.0,
"WEIGHT”, "Weight (kg)", 54.4,
"WEIGHT”, "Weight (kg)", 53.1,
"HEIGHT”, "Height (cm)”, 163.0,

exprs(USUBJID)).
~AVALU, ~VISIT,
"cm"”, "SCREENING",
"kg", "SCREENING",
"kg", "BASELINE",
"kg", "WEEK 2",
"cm” "SCREENING",

’

128 derive_param_computed

"01-701-1028", "WEIGHT”, "Weight (kg)", 78.5, "kg", "SCREENING”,
"01-701-1028", "WEIGHT", "Weight (kg)", 80.3, "kg”, "BASELINE”,
"01-701-1028", "WEIGHT”, "Weight (kg)", 80.7, "kg", "WEEK 2"

)

derive_param_computed(

ADVS,

by_vars = exprs(USUBJID, VISIT),

parameters = "WEIGHT",

set_values_to = exprs(
AVAL = AVAL.WEIGHT / (AVAL.HEIGHT / 100)"2,
PARAMCD = "BMI",
PARAM = "Body Mass Index (kg/m*2)",
AVALU = "kg/m*2"

))

constant_parameters = c("HEIGHT"),

constant_by_vars = exprs(USUBJID)

)

#> # A tibble: 14 x 6

#> USUBJID PARAMCD PARAM AVAL AVALU VISIT

#> <chr> <chr> <chr> <dbl> <chr> <chr>

#> 1 01-701-1015 HEIGHT Height (cm) 147 cm SCREENING
#> 2 01-701-1015 WEIGHT Weight (kg) 54 kg SCREENING
#> 3 01-701-1015 WEIGHT Weight (kg) 54.4 kg BASELINE
#> 4 01-701-1015 WEIGHT Weight (kg) 53.1 kg WEEK 2

#> 5 01-701-1028 HEIGHT Height (cm) 163 cm SCREENING
#> 6 01-701-1028 WEIGHT Weight (kg) 78.5 kg SCREENING
#> 7 01-701-1028 WEIGHT Weight (kg) 80.3 kg BASELINE
#> 8 01-701-1028 WEIGHT Weight (kg) 80.7 kg WEEK 2

#> 9 01-701-1015 BMI Body Mass Index (kg/m*2) 25.0 kg/m*2 SCREENING
#> 10 01-701-1015 BMI Body Mass Index (kg/m*2) 25.2 kg/m*2 BASELINE
#> 11 01-701-1015 BMI Body Mass Index (kg/m*2) 24.6 kg/m"2 WEEK 2
#> 12 01-701-1028 BMI Body Mass Index (kg/m*2) 29.5 kg/m*2 SCREENING
#> 13 01-701-1028 BMI Body Mass Index (kg/m*2) 30.2 kg/m*2 BASELINE
#> 14 01-701-1028 BMI Body Mass Index (kg/m*2) 30.4 kg/m*2 WEEK 2

Example 3 - Derivations including data from an additional dataset (dataset_add) and non-
AVAL variables:

Use data from an additional dataset and other variables than AVAL.
* In this example, the dataset specified via dataset_add (e.g., QS) is an SDTM dataset. There
is no parameter code in the dataset.
* The parameters argument is therefore used to specify a list of expressions to derive tempo-
rary parameter codes.
* Then, set_values_to is used to specify the values for the new observations of each variable,
and variable-value pairs from both datasets are referenced via exprs().

QS <- tribble(
~USUBJID, ~AVISIT, ~QSTESTCD, ~QSORRES, ~QSSTRESN,

derive_param_computed 129

aEN "WEEK 2", "CHSF112", NA, 1,
nyn "WEEK 2", "CHSF113", "Yes”, NA,
GEN "WEEK 2", "CHSF114", NA, 1,
GEN "WEEK 4", "CHSF112", NA, 2,
KN "WEEK 4", "CHSF113”, "No", NA,
LR "WEEK 4", "CHSF114", NA, 1

)

ADCHSF <- tribble(
~USUBJID, ~AVISIT, ~PARAMCD, ~QSSTRESN, ~AVAL,

KN "WEEK 2", "CHSF12", 1, 6,

GEN "WEEK 2", "CHSF14", 1, 6,

GEN "WEEK 4", "CHSF12", 2, 12,

GEN "WEEK 4", "CHSF14", 1, 6
Y %%

mutate(QSORRES = NA_character_)

derive_param_computed(
ADCHSF,
dataset_add = QS,
by_vars = exprs(USUBJID, AVISIT),
parameters = exprs(CHSF12, CHSF13 = QSTESTCD %in% c("CHSF113"), CHSF14),
set_values_to = exprs(
AVAL = case_when(

QSORRES.CHSF13 == "Not applicable” ~ 0,
QSORRES.CHSF13 == "Yes" ~ 38,
QSORRES.CHSF13 == "No" ~ if_else(
QSSTRESN.CHSF12 > QSSTRESN.CHSF14,
25,
Q
)
),
PARAMCD = "CHSF13"

#> # A tibble: 6 x 6
#> USUBJID AVISIT PARAMCD QSSTRESN AVAL QSORRES

#> <chr> <chr> <chr> <dbl> <dbl> <chr>
11 WEEK 2 CHSF12 1 6 <NA>
21 WEEK 2 CHSF14 1 6 <NA>
31 WEEK 4 CHSF12 2 12 <NA>
#> 4 1 WEEK 4 CHSF14 1 6 <NA>
#> 51 WEEK 2 CHSF13 NA 38 <NA>
#> 6 1 WEEK 4 CHSF13 NA 25 <NA>

Example 4 - Computing more than one variable:
Specify more than one variable-value pair via set_values_to.
¢ In this example, the values of AVALC, ADTM, ADTF, PARAMCD, and PARAM are determined via
distinctly defined analysis values and parameter codes.

130 derive_param_doseint

* This is different from Example 3 as more than one variable is derived.

ADLB_TBILIALK <- tribble(

~USUBJID, ~PARAMCD, ~AVALC, ~ADTM, ~ADTF,

", "ALK2", "y, "2021-05-13", NA_character_,
"1, "TBILI2", "Y", "2021-06-30", "D",

"2", "ALK2", "y", "2021-12-31", "M",

"2", "TBILI2", "N", "2021-11-11", NA_character_,
"3, "ALK2", "N", "2021-04-03", NA_character_,
n3n "TBILI2", "N", "2021-04-04" , NA_character_

) %%

mutate(ADTM = ymd(ADTM))

derive_param_computed(

dataset_add = ADLB_TBILIALK,

by_vars = exprs(USUBJID),

parameters = c("ALK2", "TBILI2"),

set_values_to = exprs(
AVALC = if_else(AVALC.TBILI2 == "Y” & AVALC.ALK2 == "Y", "Y" "N"),
ADTM = pmax(ADTM.TBILI2, ADTM.ALK2),
ADTF = if_else(ADTM == ADTM.TBILI2, ADTF.TBILI2, ADTF.ALK2),
PARAMCD = "TB2AK2",
PARAM = "TBILI > 2 times ULN and ALKPH <= 2 times ULN"

),
keep_nas = TRUE

)

#> # A tibble: 3 x 6

#> USUBJID AVALC ADTM ADTF PARAMCD PARAM

#> <chr> <chr> <date> <chr> <chr> <chr>

#> 11 Y 2021-06-30 D TB2AK2 TBILI > 2 times ULN and ALKPH <= 2 tim. . .

#>2 2 N 2021-12-31 M TB2AK2 TBILI > 2 times ULN and ALKPH <= 2 tim. . .

#>3 3 N 2021-04-04 <NA> TB2AK2 TBILI > 2 times ULN and ALKPH <= 2 tim. . .
See Also

BDS-Findings Functions for adding Parameters/Records: default_qgtc_paramcd(), derive_expected_records(),
derive_extreme_event(), derive_extreme_records(), derive_locf_records(), derive_param_bmi(),
derive_param_bsa(), derive_param_doseint(), derive_param_exist_flag(), derive_param_exposure(),
derive_param_framingham(), derive_param_map(), derive_param_qtc(), derive_param_rr(),
derive_param_wbc_abs(), derive_summary_records()

derive_param_doseint Adds a Parameter for Dose Intensity

derive_param_doseint

Description

131

Adds a record for the dose intensity for each by group (e.g., subject and visit) where the source
parameters are available.

Note: This is a wrapper function for the more generic derive_param_computed().

The analysis value

Usage

of the new parameter is derived as Total Dose / Planned Dose * 100

derive_param_doseint(

dataset,
by_vars,
set_values_to

= exprs(PARAMCD = "TNDOSINT"),

tadm_code = "TNDOSE",
tpadm_code = "TSNDOSE",
zero_doses = "Inf",

filter = NULL

Arguments

dataset

by_vars

set_values_to

tadm_code

Input dataset

The variables specified by the by_vars argument are expected to be in the
dataset. PARAMCD, and AVAL are expected as well.

The variable specified by by_vars and PARAMCD must be a unique key of the
input dataset after restricting it by the filter condition (filter parameter) and to
the parameters specified by tadm_code and padm_code.

Default value none

Grouping variables
Only variables specified in by_vars will be populated in the newly created
records.

Default value none

Variables to be set

The specified variables are set to the specified values for the new observations.
For example exprs (PARAMCD = "MAP") defines the parameter code for the new
parameter.

Permitted values List of variable-value pairs

Default value exprs(PARAMCD = "MAP")

Total Doses Administered parameter code

The observations where PARAMCD equals the specified value are considered as
the total dose administered. The AVAL associated with this PARAMCD will be the
numerator of the dose intensity calculation.

Permitted values character value
Default value "TNDOSE”

132

tpadm_code

zero_doses

filter

Value

derive_param_doseint

Total Doses Planned parameter code

The observations where PARAMCD equals the specified value are considered as
the total planned dose. The AVAL associated with this PARAMCD will be the de-
nominator of the dose intensity calculation.

Permitted values character value
Default value "TSNDOSE”

Flag indicating logic for handling O planned or administered doses for aby_vars
group
Permitted values Inf, 100
No record is returned if either the planned (tpadm_code) or administered
(tadm_code) AVAL are NA. No record is returned is a record does not exist
for both tadm_code and tpadm_code for the specified by_var.
If zero_doses = Inf:

1. If the planned dose (tpadm_code) is 0 and administered dose (tadm_code)
is 0, NaN is returned.

2. If the planned dose (tpadm_code) is O and the administered dose (tadm_code)
is > 0, Inf is returned.

If zero_doses =100 :

1. If the planned dose (tpadm_code) is 0 and administered dose (tadm_code)
is 0, O is returned.

2. If the planned dose (tpadm_code) is 0 and the administered dose (tadm_code)
is > 0, 100 is returned.

Default value "Inf"

Filter condition

The specified condition is applied to the input dataset before deriving the new
parameter, i.e., only observations fulfilling the condition are taken into account.

Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value NULL

The input dataset with the new parameter rows added. Note, a variable will only be populated in
the new parameter rows if it is specified in by_vars.

See Also

BDS-Findings Functions for adding Parameters/Records: default_qtc_paramcd(), derive_expected_records(),
derive_extreme_event(), derive_extreme_records(), derive_locf_records(), derive_param_bmi(),
derive_param_bsa(), derive_param_computed(), derive_param_exist_flag(), derive_param_exposure(),
derive_param_framingham(), derive_param_map(), derive_param_qtc(), derive_param_rr(),
derive_param_wbc_abs(), derive_summary_records()

Examples

library(tibble)

library(lubridate, warn.conflicts = FALSE)

derive_param_exist_flag

adex <- tribble(

~USUBJID, ~PARAMCD, ~VISIT, ~ANLO1FL, ~ASTDT, ~AENDT, ~AVAL,

"PE@1", "TNDOSE”, "V1", "Y", ymd("2020-01-01"), ymd("2020-01-30"), 59,
"PP@1”, "TSNDOSE”, "V1", "Y", ymd("2020-01-01"), ymd("2020-02-01"), 96,
"PE@1”, "TNDOSE”, "V2”, "Y”, ymd("2020-02-01"), ymd("2020-03-15"), 88,
"PE@1”, "TSNDOSE", "V2", "Y", ymd("2020-02-05"), ymd("2020-03-01"), 88,
"P@2", "TNDOSE”, "V1”, "Y”, ymd("2021-01-01"), ymd("2021-01-30"), 0,
"P@2", "TSNDOSE”, "V1", "Y", ymd("2021-01-01"), ymd("2021-02-01"), 0,
"PE@2", "TNDOSE”, "V2", "Y", ymd("2021-02-01"), ymd("2021-03-15"), 52,
"P@2", "TSNDOSE”, "V2", "Y", ymd("2021-02-05"), ymd("2021-03-01"), @

)

derive_param_doseint(
adex,
by_vars = exprs(USUBJID, VISIT),

set_values_to = exprs(PARAMCD = "TNDOSINT"),

tadm_code = "TNDOSE",
tpadm_code = "TSNDOSE"
)

derive_param_doseint(
adex,
by_vars = exprs(USUBJID, VISIT),

set_values_to = exprs(PARAMCD = "TDOSINT2"),

tadm_code = "TNDOSE",
tpadm_code = "TSNDOSE"”,
zero_doses = "100"

133

derive_param_exist_flag

Add an Existence Flag Parameter

Description

Add a new parameter indicating that a certain event exists in a dataset. AVALC and AVAL indicate
if an event occurred or not. For example, the function can derive a parameter indicating if there is

measurable disease at baseline.

Usage

derive_param_exist_flag(
dataset = NULL,
dataset_ref,
dataset_add,
condition,
true_value = "Y",
false_value = NA_character_,

134 derive_param_exist_flag

missing_value = NA_character_,

filter_add = NULL,

by_vars = get_admiral_option("subject_keys"),
set_values_to

Arguments

dataset Input dataset
The variables specified by the by_vars argument are expected to be in the
dataset. PARAMCD is expected as well.
Default value NULL

dataset_ref Reference dataset, e.g., ADSL

The variables specified in by_vars are expected. For each group (as defined
by by_vars) from the specified dataset (dataset_ref), the existence flag is
calculated and added as a new observation to the input datasets (dataset).

Default value none

dataset_add Additional dataset
The variables specified by the by_vars parameter are expected.
This dataset is used to check if an event occurred or not. Any observation in the
dataset fulfilling the event condition (condition) is considered as an event.
Default value none

condition Event condition
The condition is evaluated at the additional dataset (dataset_add).

For all groups where it evaluates as TRUE at least once AVALC is set to the true
value (true_value) for the new observations.

For all groups where it evaluates as FALSE or NA for all observations AVALC is set
to the false value (false_value).

For all groups not present in the additional dataset AVALC is set to the missing
value (missing_value).
Default value none

true_value True value
For all groups with at least one observations in the additional dataset (dataset_add)
fulfilling the event condition (condition), AVALC is set to the specified value
(true_value).
Permitted values A character scalar
Default value "Y"

false_value False value
For all groups with at least one observations in the additional dataset (dataset_add)
but none of them is fulfilling the event condition (condition), AVALC is set to
the specified value (false_value).
Permitted values A character scalar
Default value NA_character_

derive_param_exist_flag 135

missing_value Values used for missing information
For all groups without an observation in the additional dataset (dataset_add),
AVALC is set to the specified value (nissing_value).
Permitted values A character scalar
Default value NA_character_

filter_add Filter for additional data
Only observations fulfilling the specified condition are taken into account for
flagging. If the parameter is not specified, all observations are considered.
Permitted values a condition
Default value NULL

by_vars Grouping variables
Default value get_admiral_option("subject_keys")

set_values_to Variables to set
A named list returned by exprs() defining the variables to be set for the new
parameter, e.g. exprs(PARAMCD = "MDIS", PARAM = "Measurable Disease at

Baseline") is expected. The values must be symbols, character strings, nu-
meric values, NA, or expressions.

Default value none

Details

1. The additional dataset (dataset_add) is restricted to the observations matching the filter_add
condition.

2. For each group in dataset_ref a new observation is created.
* The AVALC variable is added and set to the true value (true_value) if for the group at least

one observation exists in the (restricted) additional dataset where the condition evaluates
to TRUE.

* It is set to the false value (false_value) if for the group at least one observation exists
and for all observations the condition evaluates to FALSE or NA.

* Otherwise, it is set to the missing value (missing_value), i.e., for those groups not in
dataset_add.

3. The variables specified by the set_values_to parameter are added to the new observations.

4. The new observations are added to input dataset.

Value

The input dataset with a new parameter indicating if an event occurred (AVALC and the variables
specified by by_vars and set_value_to are populated for the new parameter).

See Also

BDS-Findings Functions for adding Parameters/Records: default_qtc_paramcd(), derive_expected_records(),
derive_extreme_event(), derive_extreme_records(), derive_locf_records(), derive_param_bmi(),
derive_param_bsa(), derive_param_computed(), derive_param_doseint(), derive_param_exposure(),
derive_param_framingham(), derive_param_map(), derive_param_qtc(), derive_param_rr(),
derive_param_wbc_abs(), derive_summary_records()

136 derive_param_exposure

Examples

library(tibble)
library(dplyr, warn.conflicts = FALSE)
library(lubridate)

Derive a new parameter for measurable disease at baseline
adsl <- tribble(

~USUBJID,

o

IIZH’

w3
) %>%

mutate(STUDYID = "XX1234")

tu <- tribble(

~USUBJID, ~VISIT, ~TUSTRESC,
" "SCREENING", "TARGET",
", "WEEK 1", "TARGET",
" "WEEK 5", "TARGET",
" "WEEK 9", "NON-TARGET",
"2, "SCREENING", "NON-TARGET",
"2", "SCREENING", "NON-TARGET”
) %>%
mutate(

STUDYID = "XX1234",
TUTESTCD = "TUMIDENT”

)

derive_param_exist_flag(
dataset_ref = adsl,
dataset_add = tu,

filter_add = TUTESTCD == "TUMIDENT" & VISIT == "SCREENING",
condition = TUSTRESC == "TARGET",

false_value = "N",

missing_value = "N",

set_values_to = exprs(
AVAL = yn_to_numeric(AVALC),
PARAMCD = "MDIS”,
PARAM = "Measurable Disease at Baseline”

derive_param_exposure Add an Aggregated Parameter and Derive the Associated Start and
End Dates

Description

Add a record computed from the aggregated analysis value of another parameter and compute the
start (ASTDT (M))and end date (AENDT (M)) as the minimum and maximum date by by_vars.

derive_param_exposure 137

Usage

derive_param_exposure(
dataset = NULL,

dataset_add,

by_vars,
input_code,

filter_add = NULL,

set_values_to

Arguments

dataset

dataset_add

by_vars

input_code

filter_add

set_values_to

= NULL

Input dataset

The variables specified by the by_vars argument are expected to be in the
dataset.

Default value NULL

Additional dataset

The variables specified for by_vars, analysis_var, PARAMCD, alongside either
ASTDTM and AENDTM or ASTDT and AENDT are also expected. Observations from
the specified dataset are going to be used to calculate and added as new records
to the input dataset (dataset).

Default value none

Grouping variables

For each group defined by by_vars an observation is added to the output dataset.
Only variables specified in by_vars will be populated in the newly created
records.

Default value none

Required parameter code
The observations where PARAMCD equals the specified value are considered to
compute the summary record.
Permitted values A character of PARAMCD value
Default value none
Filter condition as logical expression to apply during summary calculation. By
default, filtering expressions are computed within by_vars as this will help
when an aggregating, lagging, or ranking function is involved.
For example,
e filter_add = (AVAL > mean(AVAL, na.rm = TRUE)) will filter all AVAL val-
ues greater than mean of AVAL with in by_vars.
e filter_add = (dplyr::n() > 2) will filter n count of by_vars greater than
2.
Default value NULL

Variable-value pairs
Set a list of variables to some specified value for the new observation(s)

138 derive_param_exposure

e LHS refer to a variable. It is expected that at least PARAMCD is defined.

* RHS refers to the values to set to the variable. This can be a string, a
symbol, a numeric value, NA, or an expression. (e.g. exprs(PARAMCD =
"TDOSE",PARCAT1 = "OVERALL")).

Permitted values List of variable-value pairs
Default value NULL

Details

For each group (with respect to the variables specified for the by_vars parameter), an observation
is added to the output dataset and the defined values are set to the defined variables

Value

The input dataset with a new record added for each group (as defined by by_vars parameter). That
is, a variable will only be populated in this new record if it is specified in by_vars. For each new
record,

* set_values_to lists each specified variable and computes its value,

* the variable(s) specified on the LHS of set_values_to are set to their paired value (RHS). In
addition, the start and end date are computed as the minimum/maximum dates by by_vars.

If the input datasets contains

* both AxxDTM and AxxDT then all ASTDTM,AENDTM, ASTDT, AENDT are computed
* only AxxDTM then ASTDTM,AENDTM are computed
* only AxxDT then ASTDT,AENDT are computed.

See Also

BDS-Findings Functions for adding Parameters/Records: default_qgtc_paramcd(), derive_expected_records(),
derive_extreme_event(), derive_extreme_records(), derive_locf_records(), derive_param_bmi(),
derive_param_bsa(), derive_param_computed(), derive_param_doseint(), derive_param_exist_flag(),
derive_param_framingham(), derive_param_map(), derive_param_qtc(), derive_param_rr(),
derive_param_wbc_abs(), derive_summary_records()

Examples

library(tibble)

library(dplyr, warn.conflicts = FALSE)

library(lubridate, warn.conflicts = FALSE)

library(stringr, warn.conflicts = FALSE)

adex <- tribble(
~USUBJID, ~PARAMCD, ~AVAL, ~AVALC, ~VISIT, ~ASTDT, ~AENDT,
"1015", "DOSE”, 80, NA_character_, "BASELINE”, ymd("2014-01-02"), ymd("2014-01-16"),
"1015", "DOSE”, 85, NA_character_, "WEEK 2", ymd(”2014-01-17"), ymd("2014-06-18"),
"1015", "DOSE", 82, NA_character_, "WEEK 24", ymd("2014-06-19"), ymd("2014-07-02"),
"1015", "ADJ", NA, NA_character_, "BASELINE”, ymd("2014-01-02"), ymd("2014-01-16"),
"1015", "ADJ", NA, NA_character_, "WEEK 2", ymd("2014-01-17"), ymd("2014-06-18"),
"1015", "ADJ", NA, NA_character_, "WEEK 24", ymd("2014-06-19"), ymd("2014-07-02"),

derive_param_exposure 139

"1917", "DOSE”, 80, NA_character_, "BASELINE”, ymd("2014-01-05"), ymd("2014-01-19"),
"1017", "DOSE”, 50, NA_character_, "WEEK 2", ymd("2014-01-20"), ymd("2014-05-10"),

"1017", "DOSE”, 65, NA_character_, "WEEK 24", ymd(”2014-05-10"), ymd("2014-07-02"),

"1017", "ADJ", NA, NA_character_, "BASELINE”, ymd(”2014-01-05"), ymd("2014-01-19"),

"1017", "ADJ", NA, "ADVERSE EVENT”, "WEEK 2", ymd(”2014-01-20"), ymd("2014-05-10"),

"1017", "ADJ", NA, NA_character_, "WEEK 24", ymd("2014-05-10"), ymd("”2014-07-02")

Y %%
mutate (ASTDTM = ymd_hms (paste (ASTDT, "00:00:00")), AENDTM = ymd_hms (paste (AENDT, "00:00:00")))

Cumulative dose
adex %>%
derive_param_exposure(
dataset_add = adex,
by_vars = exprs(USUBJID),
set_values_to = exprs(
PARAMCD = "TDOSE",
PARCAT1 = "OVERALL",
AVAL = sum(AVAL, na.rm = TRUE)
),
input_code = "DOSE"
) %%
select (-ASTDTM, -AENDTM)

average dose in w2-24
adex %>%
derive_param_exposure(
dataset_add = adex,
by_vars = exprs(USUBJID),
filter_add = VISIT %in% c("WEEK 2", "WEEK 24"),
set_values_to = exprs(
PARAMCD = "AVDW224",
PARCAT1 = "WEEK2-24",
AVAL = mean(AVAL, na.rm = TRUE)
),
input_code = "DOSE"
) %%
select (-ASTDTM, -AENDTM)

Any dose adjustment?
adex %>%
derive_param_exposure(
dataset_add = adex,
by_vars = exprs(USUBJID),
set_values_to = exprs(
PARAMCD = "TADJ",
PARCAT1 = "OVERALL",
AVALC = if_else(sum(!is.na(AVALC)) > @, "Y", NA_character_)
),
input_code = "ADJ"
) %%
select(-ASTDTM, -AENDTM)

140 derive_param_extreme_record

derive_param_extreme_record
Adds a Parameter Based on First or Last Record from Multiple
Sources

Description

[Deprecated] The derive_param_extreme_record() function has been deprecated in favor of
derive_extreme_event().

Generates parameter based on the first or last observation from multiple source datasets, based on
user-defined filter, order and by group criteria. All variables of the selected observation are kept.

Usage

derive_param_extreme_record(
dataset = NULL,
sources,
source_datasets,
by_vars = NULL,

order,
mode,
set_values_to
)
Arguments
dataset Input dataset
Default value NULL
sources Sources

A list of records_source() objects is expected.

Default value none
source_datasets
Source datasets

A named list of datasets is expected. The dataset_name field of records_source()
refers to the dataset provided in the list. The variables specified by the order
and the by_vars arguments are expected after applying new_vars.

Default value none

by_vars Grouping variables

If the argument is specified, for each by group the observations are selected
separately.

Default value NULL

derive_param_extreme_record 141

order Sort order

If the argument is set to a non-null value, for each by group the first or last ob-
servation from the source datasets is selected with respect to the specified order.
Variables created via new_vars e.g., imputed date variables, can be specified as
well (see examples below).

Please note that NA is considered as the last value. l.e., if a order variable is
NA and mode = "last", this observation is chosen while for mode = "first” the
observation is chosen only if there are no observations where the variable is not
NA.

Permitted values list of expressions created by exprs(), e.g., exprs(ADT,
desc(AVAL))

Default value none

mode Selection mode (first or last)

If "first" is specified, for each by group the first observation with respect to
order is included in the output dataset. If "last" is specified, the last observa-
tion is included in the output dataset.

Permitted values "first”, "last”
Default value none

set_values_to Variables to be set
The specified variables are set to the specified values for the new observations.
A list of variable name-value pairs is expected.

e LHS refers to a variable.

* RHS refers to the values to set to the variable. This can be a string, a sym-
bol, a numeric value or NA, e.g., exprs(PARAMCD = "PD"”, PARAM = "First
Progressive Disease").

Default value none

Details
The following steps are performed to create the output dataset:
1. For each source dataset the observations as specified by the filter element are selected.

2. Variables specified by new_vars are created for each source dataset.

3. The first or last observation (with respect to the order variable) for each by group (specified
by by_vars) from multiple sources is selected and added to the input dataset.
Value

The input dataset with the first or last observation of each by group added as new observations.

See Also

Other deprecated: call_user_fun(), date_source(),derive_var_dthcaus(), derive_var_extreme_dt(),
derive_var_extreme_dtm(), derive_var_merged_summary(), dthcaus_source(), get_summary_records()

142

Examples

aevent_samp <- tibble::tribble(

~USUBJID, ~PARAMCD, ~PARAM,
", "PD", "First Progressive Disease”,
"M, "PD", "First Progressive Disease",
"3", "PD", "First Progressive Disease",

)

cm <- tibble::tribble(
~STUDYID, ~USUBJID, ~CMDECOD, ~CMSTDTC,
"1001", e, "ACT", "2021-12-25"

)

pr <- tibble::tribble(
~STUDYID, ~USUBJID, ~PRDECOD, ~PRSTDTC,
"1001", ", "ACS", "2021-12-27",
"1001", npn, "ACS", "2020-12-25",
"1001", n3n "ACS", "2022-12-25",

)
derive_param_extreme_record(
dataset = aevent_samp,
sources = list(
records_source(
dataset_name = "cm",
filter = CMDECOD == "ACT",
new_vars = exprs(
ADT = convert_dtc_to_dt(CMSTDTC),
AVALC = CMDECOD
)
),

records_source(
dataset_name = "pr”,
filter = PRDECOD == "ACS",
new_vars = exprs(
ADT = convert_dtc_to_dt(PRSTDTC),
AVALC = PRDECOD
)
)
),
source_datasets = list(cm = cm, pr = pr),
by_vars = exprs(USUBJID),
order = exprs(ADT),
mode = "first”,
set_values_to = exprs(
PARAMCD = "FIRSTACT",
PARAM = "First Anti-Cancer Therapy”
)
)

derive_param_framingham

~RSSTDTC,
"2022-04-01",
"2021-04-01",
"2023-04-01"

derive_param_framingham 143

derive_param_framingham

Adds a Parameter for Framingham Heart Study Cardiovascular Dis-
ease 10-Year Risk Score

Description

Adds a record for framingham score (FCVD101) for each by group (e.g., subject and visit) where
the source parameters are available.

Usage

derive_param_framingham(
dataset,
by_vars,
set_values_to = exprs(PARAMCD = "FCVD101"),
sysbp_code = "SYSBP",
chol_code = "CHOL",
cholhdl_code = "CHOLHDL",

age = AGE,

sex = SEX,

smokefl = SMOKEFL,
diabetfl = DIABETFL,

trthypfl = TRTHYPFL,
get_unit_expr,
filter = NULL

)
Arguments

dataset Input dataset
The variables specified by the by_vars argument are expected to be in the
dataset. PARAMCD, and AVAL are expected as well.
The variable specified by by_vars and PARAMCD must be a unique key of the
input dataset after restricting it by the filter condition (filter parameter) and to
the parameters specified by sysbp_code, chol_code and hd1_code.
Default value none

by_vars Grouping variables

Only variables specified in by_vars will be populated in the newly created
records.

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)
Default value none

set_values_to Variables to be set
The specified variables are set to the specified values for the new observations.
For example exprs (PARAMCD = "MAP") defines the parameter code for the new
parameter.

144

sysbp_code

chol_code

cholhdl_code

age

sex

smokefl

diabetfl

trthypfl

derive_param_framingham

Permitted values List of variable-value pairs
Default value exprs(PARAMCD = "MAP")

Systolic blood pressure parameter code

The observations where PARAMCD equals the specified value are considered as
the systolic blood pressure assessments.

Permitted values a character scalar, i.e., a character vector of length one
Default value "SYSBP”

Total serum cholesterol code

The observations where PARAMCD equals the specified value are considered as
the total cholesterol assessments. This must be measured in mg/dL.

Permitted values a character scalar, i.e., a character vector of length one
Default value "CHOL"

HDL serum cholesterol code

The observations where PARAMCD equals the specified value are considered as
the HDL cholesterol assessments. This must be measured in mg/dL.
Permitted values a character scalar, i.e., a character vector of length one
Default value "CHOLHDL"

Subject age

A variable containing the subject’s age.

Permitted values A numeric variable name that refers to a subject age column
of the input dataset

Default value AGE

Subject sex

A variable containing the subject’s sex.

Permitted values A character variable name that refers to a subject sex column
of the input dataset

Default value SEX

Smoking status flag

A flag indicating smoking status.

Permitted values A character variable name that refers to a smoking status col-
umn of the input dataset.

Default value SMOKEFL

Diabetic flag

A flag indicating diabetic status.

Permitted values A character variable name that refers to a diabetic status col-
umn of the input dataset

Default value DIABETFL

Treated with hypertension medication flag
A flag indicating if a subject was treated with hypertension medication.

derive_param_framingham 145

get_unit_expr

filter

Details

Permitted values A character variable name that refers to a column that indi-
cates whether a subject is treated for high blood pressure

Default value TRTHYPFL

An expression providing the unit of the parameter

The result is used to check the units of the input parameters.

Permitted values An expression which is evaluable in the input dataset and
results in a character value

Default value none

Filter condition

The specified condition is applied to the input dataset before deriving the new

parameter, i.e., only observations fulfilling the condition are taken into account.

Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"

Default value NULL

The values of age, sex, smokefl, diabetfl and trthypfl will be added to the by_vars list.
The predicted probability of having cardiovascular disease (CVD) within 10-years according to
Framingham formula. See AHA Journal article General Cardiovascular Risk Profile for Use in
Primary Care for reference.

For Women:

For Men:

Factor Amount

Age 2.32888

Total Chol ~ 1.20904

HDL Chol -0.70833

Sys BP 2.76157

Sys BP + Hypertension Meds ~ 2.82263
Smoker 0.52873

Non-Smoker 0
Diabetic 0.69154
Not Diabetic 0

Average Risk ~ 26.1931
Risk Period 0.95012

Factor Amount

Age 3.06117

Total Chol 1.12370

HDL Chol -0.93263

Sys BP 1.93303

Sys BP + Hypertension Meds ~ 2.99881
Smoker .65451

Non-Smoker 0

146 derive_param_framingham

Diabetic 0.57367

Not Diabetic 0
Average Risk ~ 23.9802
Risk Period 0.88936

The equation for calculating risk:

RiskFactors = (log(Age)xAgeFactor)+(log(Total Chol)*T otal Chol Factor)+(log(Chol HDL)*Chol H D LF actor

Risk = 100 * (1 — RiskPeriodFactorftiskFactors)

Value

The input dataset with the new parameter added

See Also

compute_framingham()

BDS-Findings Functions for adding Parameters/Records: default_qgtc_paramcd(), derive_expected_records(),
derive_extreme_event(), derive_extreme_records(), derive_locf_records(), derive_param_bmi(),
derive_param_bsa(), derive_param_computed(), derive_param_doseint(), derive_param_exist_flag(),
derive_param_exposure(), derive_param_map(), derive_param_qtc(), derive_param_rr(),
derive_param_wbc_abs(), derive_summary_records()

Examples

library(tibble)

adcvrisk <- tribble(
~USUBJID, ~PARAMCD, ~PARAM, ~AVAL, ~AVALU,
~VISIT, ~AGE, ~SEX, ~SMOKEFL, ~DIABETFL, ~TRTHYPFL,
"@1-701-1015", "SYSBP", "Systolic Blood Pressure (mmHg)", 121,
"mmHg", "BASELINE", 44, "F", "N", "N", "N",
"01-701-1015", "SYSBP", "Systolic Blood Pressure (mmHg)", 115,
"mmHg", "WEEK 2", 44, "F", "N", "N", "Y",
"@1-701-1015", "CHOL", "Total Cholesterol (mg/dL)", 216.16,
"mg/dL", "BASELINE", 44, "F",6 "N", "N", "N",
"01-701-1015", "CHOL", "Total Cholesterol (mg/dL)", 210.78,
"mg/dL", "WEEK 2", 44, "F", "N", "N", "Y",
"01-701-1015", "CHOLHDL", "Cholesterol/HDL-Cholesterol (mg/dL)", 54.91,
"mg/dL", "BASELINE", 44, "F", "N", "N", "N",
"@1-701-1015", "CHOLHDL", "Cholesterol/HDL-Cholesterol (mg/dL)", 26.72,
"mg/dL", "WEEK 2", 44, "F", "N", "N", "Y",
"01-701-1028", "SYSBP", "Systolic Blood Pressure (mmHg)", 119,
"mmHg", "BASELINE", 55, "M", "Yy" B "y" "y"
"01-701-1028", "SYSBP", "Systolic Blood Pressure (mmHg)", 101,
"mmHg", "WEEK 2", 55, "M", "y" "y "y",

derive_param_map 147

"01-701-1028", "CHOL", "Total Cholesterol (mg/dL)", 292.01,

"mg/dL", "BASELINE", 55, "M", "Y", "Y" 6 "Y",

"01-701-1028", "CHOL", "Total Cholesterol (mg/dL)", 246.73,

"mg/dL", "WEEK 2", 55, "M",6 "y",6 "Yy",6 "Y",

"01-701-1028", "CHOLHDL", "Cholesterol/HDL-Cholesterol (mg/dL)", 65.55,
"mg/dL", "BASELINE"”, 55, "M", "y",6 "y",6 "y",

"01-701-1028", "CHOLHDL", "Cholesterol/HDL-Cholesterol (mg/dL)", 44.62,
"mg/dL", "WEEK 2", 55, "M",6 "y",6 "y",6 "y"

adcvrisk %>%
derive_param_framingham(
by_vars = exprs(USUBJID, VISIT),
set_values_to = exprs(
PARAMCD = "FCVD101",
PARAM = "FCVD1-Framingham CVD 10-Year Risk Score (%)"
),
get_unit_expr = AVALU
)

derive_param_framingham(
adcvrisk,
by_vars = exprs(USUBJID, VISIT),
set_values_to = exprs(
PARAMCD = "FCVD101",
PARAM = "FCVD1-Framingham CVD 10-Year Risk Score (%)"

) ’
get_unit_expr = extract_unit(PARAM)
)
derive_param_map Adds a Parameter for Mean Arterial Pressure
Description

Adds a record for mean arterial pressure (MAP) for each by group (e.g., subject and visit) where
the source parameters are available.

Note: This is a wrapper function for the more generic derive_param_computed().

Usage

derive_param_map(
dataset,
by_vars,
set_values_to = exprs(PARAMCD = "MAP"),
sysbp_code = "SYSBP",
diabp_code = "DIABP",
hr_code = NULL,

148

get_unit_expr
filter = NULL

Arguments

dataset

by_vars

set_values_to

sysbp_code

diabp_code

hr_code

get_unit_expr

derive_param_map

’

Input dataset

The variables specified by the by_vars argument are expected to be in the
dataset. PARAMCD, and AVAL are expected as well.

The variable specified by by_vars and PARAMCD must be a unique key of the
input dataset after restricting it by the filter condition (filter parameter) and to
the parameters specified by sysbp_code, diabp_code and hr_code.

Default value none

Grouping variables

For each group defined by by_vars an observation is added to the output dataset.
Only variables specified in by_vars will be populated in the newly created
records.

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)
Default value none

Variables to be set

The specified variables are set to the specified values for the new observations.
For example exprs(PARAMCD = "MAP") defines the parameter code for the new
parameter.

Permitted values List of variable-value pairs

Default value exprs(PARAMCD = "MAP")

Systolic blood pressure parameter code

The observations where PARAMCD equals the specified value are considered as
the systolic blood pressure assessments.

Permitted values character value

Default value "SYSBP"

Diastolic blood pressure parameter code

The observations where PARAMCD equals the specified value are considered as
the diastolic blood pressure assessments.

Permitted values character value

Default value "DIABP”

Heart rate parameter code

The observations where PARAMCD equals the specified value are considered as
the heart rate assessments.

Permitted values character value
Default value NULL

An expression providing the unit of the parameter
The result is used to check the units of the input parameters.

derive_param_map 149

Permitted values An expression which is evaluable in the input dataset and
results in a character value

Default value none

filter Filter condition

The specified condition is applied to the input dataset before deriving the new
parameter, i.e., only observations fulfilling the condition are taken into account.

Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value NULL

Details

The analysis value of the new parameter is derived as

2DIABP + SYSBP
3

if it is based on diastolic and systolic blood pressure and
DIABP + 0.01e*'4~ "% (SY SBP — DIABP)

if it is based on diastolic, systolic blood pressure, and heart rate.

Value

The input dataset with the new parameter added. Note, a variable will only be populated in the new
parameter rows if it is specified in by_vars.

See Also

compute_map()

BDS-Findings Functions for adding Parameters/Records: default_qgtc_paramcd(), derive_expected_records(),
derive_extreme_event(), derive_extreme_records(), derive_locf_records(), derive_param_bmi(),
derive_param_bsa(), derive_param_computed(), derive_param_doseint(), derive_param_exist_flag(),
derive_param_exposure(), derive_param_framingham(), derive_param_qtc(), derive_param_rr(),
derive_param_wbc_abs(), derive_summary_records()

Examples

library(tibble)
library(dplyr, warn.conflicts = FALSE)

advs <- tibble::tribble(
~USUBJID, ~PARAMCD, ~PARAM, ~AVAL, ~VISIT,
"01-701-1015", "PULSE", "Pulse (beats/min)", 59, "BASELINE",
"01-701-1015", "PULSE", "Pulse (beats/min)", 61, "WEEK 2",
"01-701-1015", "DIABP", "Diastolic Blood Pressure (mmHg)", 51, "BASELINE",
"01-701-1015", "DIABP", "Diastolic Blood Pressure (mmHg)", 50, "WEEK 2",
"01-701-1015", "SYSBP", "Systolic Blood Pressure (mmHg)", 121, "BASELINE",
"91-701-1015", "SYSBP", "Systolic Blood Pressure (mmHg)"”, 121, "WEEK 2",
"01-701-1028", "PULSE", "Pulse (beats/min)", 62, "BASELINE",

150 derive_param_qtc

"01-701-1028", "PULSE", "Pulse (beats/min)", 77, "WEEK 2",
"91-701-1028", "DIABP", "Diastolic Blood Pressure (mmHg)", 79, "BASELINE”,
"01-701-1028", "DIABP", "Diastolic Blood Pressure (mmHg)", 8@, "WEEK 2",
"01-701-1028", "SYSBP", "Systolic Blood Pressure (mmHg)", 130, "BASELINE",
"@1-701-1028", "SYSBP", "Systolic Blood Pressure (mmHg)", 132, "WEEK 2"

)

Derive MAP based on diastolic and systolic blood pressure
advs %>%
derive_param_map(
by_vars = exprs(USUBJID, VISIT),
set_values_to = exprs(
PARAMCD = "MAP",
PARAM = "Mean Arterial Pressure (mmHg)"
),
get_unit_expr = extract_unit(PARAM)
) %%
filter (PARAMCD != "PULSE")

Derive MAP based on diastolic and systolic blood pressure and heart rate
derive_param_map(
advs,
by_vars = exprs(USUBJID, VISIT),
hr_code = "PULSE",
set_values_to = exprs(
PARAMCD = "MAP",
PARAM = "Mean Arterial Pressure (mmHg)"

) ’
get_unit_expr = extract_unit(PARAM)
)
derive_param_qtc Adds a Parameter for Corrected QT (an ECG measurement)
Description

Adds a record for corrected QT using either Bazett’s, Fridericia’s or Sagie’s formula for each by
group (e.g., subject and visit) where the source parameters are available.

Note: This is a wrapper function for the more generic derive_param_computed().

Usage
derive_param_qtc(
dataset,
by_vars,
method,
set_values_to = default_qtc_paramcd(method),
qt_code = "QT",

rr_code = "RR",

derive_param_qtc

151

get_unit_expr,

filter = NULL

Arguments

dataset

by_vars

method

set_values_to

gt_code

rr_code

get_unit_expr

Input dataset

The variables specified by the by_vars and get_unit_expr arguments are ex-
pected to be in the dataset. PARAMCD, and AVAL are expected as well.

The variable specified by by_vars and PARAMCD must be a unique key of the
input dataset after restricting it by the filter condition (filter argument) and to
the parameters specified by qt_code and rr_code.

Default value none

Grouping variables

Only variables specified in by_vars will be populated in the newly created

records.

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)

Default value none

Method used to QT correction
See compute_qtc() for details.

Permitted values "Bazett”, "Fridericia”, "Sagie"
Default value none

Variables to be set

The specified variables are set to the specified values for the new observations.
For example exprs (PARAMCD = "MAP") defines the parameter code for the new
parameter.

Permitted values List of variable-value pairs

Default value exprs(PARAMCD = "MAP")

QT parameter code

The observations where PARAMCD equals the specified value are considered as
the QT interval assessments. It is expected that QT is measured in ms or msec.
Permitted values character value

Default value "QT"

RR parameter code

The observations where PARAMCD equals the specified value are considered as
the RR interval assessments. It is expected that RR is measured in ms or msec.
Permitted values character value

Default value "RR”

An expression providing the unit of the parameter
The result is used to check the units of the input parameters.

152 derive_param_qtc

Permitted values An expression which is evaluable in the input dataset and
results in a character value

Default value none

filter Filter condition

The specified condition is applied to the input dataset before deriving the new
parameter, i.e., only observations fulfilling the condition are taken into account.

Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value NULL

Value

The input dataset with the new parameter added. Note, a variable will only be populated in the new
parameter rows if it is specified in by_vars.

See Also

compute_qtc()

BDS-Findings Functions for adding Parameters/Records: default_qtc_paramcd(), derive_expected_records(),
derive_extreme_event(),derive_extreme_records(), derive_locf_records(), derive_param_bmi(),
derive_param_bsa(), derive_param_computed(), derive_param_doseint(), derive_param_exist_flag(),
derive_param_exposure(), derive_param_framingham(), derive_param_map(), derive_param_rr(),
derive_param_wbc_abs(), derive_summary_records()

Examples

library(tibble)

adeg <- tribble(

~USUBJID, ~PARAMCD, ~PARAM, ~AVAL, ~AVALU, ~VISIT,
"91-701-1015", "HR", "Heart Rate (beats/min)", 70.14, "beats/min", "BASELINE",
"@1-701-1015", "QT", "QT Duration (ms)", 370, "ms", "WEEK 2",
"01-701-1015", "HR", "Heart Rate (beats/min)", 62.66, "beats/min", "WEEK 1",
"@1-701-1015", "RR", "RR Duration (ms)", 710, "ms", "WEEK 2",
"01-701-1028", "HR", "Heart Rate (beats/min)", 85.45, "beats/min”, "BASELINE",
"01-701-1028", "QT", "QT Duration (ms)", 480, "ms", "WEEK 2",
"01-701-1028", "QT", "QT Duration (ms)", 350, "ms", "WEEK 3",
"01-701-1028", "HR", "Heart Rate (beats/min)", 56.54, "beats/min", "WEEK 3",
"01-701-1028", "RR", "RR Duration (ms)", 842, "ms", "WEEK 2"

)

derive_param_qgtc(

adeg,

by_vars = exprs(USUBJID, VISIT),

method = "Bazett”,

set_values_to = exprs(
PARAMCD = "QTCBR”,
PARAM = "QTcB - Bazett's Correction Formula Rederived (ms)",
AVALU = "ms"

),

get_unit_expr = AVALU

derive_param_rr 153

)

derive_param_qgtc(
adeg,
by_vars = exprs(USUBJID, VISIT),
method = "Fridericia”,

set_values_to = exprs(
PARAMCD = "QTCFR",

PARAM = "QTcF - Fridericia's Correction Formula Rederived (ms)",
AVALU = "ms"
)Y
get_unit_expr = extract_unit(PARAM)
)

derive_param_qgtc(
adeg,
by_vars = exprs(USUBJID, VISIT),
method = "Sagie”,
set_values_to = exprs(
PARAMCD = "QTLCR",
PARAM = "QTlc - Sagie's Correction Formula Rederived (ms)”,

AVALU = "ms"
) ’
get_unit_expr = extract_unit(PARAM)
)
derive_param_rr Adds a Parameter for Derived RR (an ECG measurement)
Description

Adds a record for derived RR based on heart rate for each by group (e.g., subject and visit) where
the source parameters are available.

Note: This is a wrapper function for the more generic derive_param_computed().

The analysis value of the new parameter is derived as

60000
HR
Usage
derive_param_rr(
dataset,
by_vars,

set_values_to = exprs(PARAMCD = "RRR"),
hr_code = "HR",

get_unit_expr,

filter = NULL

154

Arguments

dataset

by_vars

set_values_to

hr_code

get_unit_expr

filter

Value

derive_param_rr

Input dataset

The variables specified by the by_vars argument are expected to be in the
dataset. PARAMCD, and AVAL are expected as well.

The variable specified by by_vars and PARAMCD must be a unique key of the
input dataset after restricting it by the filter condition (filter argument) and to
the parameters specified by hr_code.

Default value none

Grouping variables

For each group defined by by_vars an observation is added to the output dataset.
Only variables specified in by_vars will be populated in the newly created
records.

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)
Default value none

Variables to be set

The specified variables are set to the specified values for the new observations.
For example exprs (PARAMCD = "MAP") defines the parameter code for the new
parameter.

Permitted values List of variable-value pairs

Default value exprs(PARAMCD = "MAP")

HR parameter code

The observations where PARAMCD equals the specified value are considered as
the heart rate assessments.

Permitted values character value

Default value "HR"

An expression providing the unit of the parameter

The result is used to check the units of the input parameters.

Permitted values An expression which is evaluable in the input dataset and
results in a character value

Default value none

Filter condition

The specified condition is applied to the input dataset before deriving the new
parameter, i.e., only observations fulfilling the condition are taken into account.

Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value NULL

The input dataset with the new parameter added. Note, a variable will only be populated in the new
parameter rows if it is specified in by_vars.

derive_param_tte 155

See Also

compute_rr()

BDS-Findings Functions for adding Parameters/Records: default_qtc_paramcd(), derive_expected_records(),
derive_extreme_event(), derive_extreme_records(), derive_locf_records(), derive_param_bmi(),
derive_param_bsa(), derive_param_computed(), derive_param_doseint(), derive_param_exist_flag(),
derive_param_exposure(), derive_param_framingham(), derive_param_map(), derive_param_qtc(),
derive_param_wbc_abs(), derive_summary_records()

Examples

library(tibble)

adeg <- tribble(
~USUBJID, ~PARAMCD, ~PARAM, ~AVAL, ~AVALU, ~VISIT,
"01-701-1015", "HR", "Heart Rate”, 70.14, "beats/min”, "BASELINE",
"@1-701-1015", "QT"”, "QT Duration”, 370, "ms", "WEEK 2",
"@1-701-1015", "HR", "Heart Rate"”, 62.66, "beats/min", "WEEK 1",
"@1-701-1015", "RR", "RR Duration”, 710, "ms", "WEEK 2",
"01-701-1028", "HR", "Heart Rate”, 85.45, "beats/min”, "BASELINE",
"01-701-1028", "QT", "QT Duration”, 480, "ms", "WEEK 2",
"91-701-1028", "QT", "QT Duration”, 350, "ms", "WEEK 3",
"01-701-1028", "HR", "Heart Rate”, 56.54, "beats/min"”, "WEEK 3",
"01-701-1028", "RR", "RR Duration”, 842, "ms", "WEEK 2"

derive_param_rr(

adeg,

by_vars = exprs(USUBJID, VISIT),

set_values_to = exprs(
PARAMCD = "RRR",
PARAM = "RR Duration Rederived (ms)",
AVALU = "ms"

),

get_unit_expr = AVALU

derive_param_tte Derive a Time-to-Event Parameter

Description

Add a time-to-event parameter to the input dataset.

Usage

derive_param_tte(
dataset = NULL,
dataset_adsl,

156 derive_param_tte

source_datasets,

by_vars = NULL,

start_date = TRTSDT,

event_conditions,

censor_conditions,

create_datetime = FALSE,

set_values_to,

subject_keys = get_admiral_option("subject_keys"),

check_type = "warning"
)
Arguments
dataset Input dataset

PARAMCD is expected.

Permitted values a dataset, i.e., a data. frame or tibble
Default value NULL

dataset_adsl ADSL input dataset
The variables specified for start_date, and subject_keys are expected.

Permitted values a dataset, i.e., a data. frame or tibble
Default value none

source_datasets
Source datasets

A named list of datasets is expected. The dataset_name field of tte_source()
refers to the dataset provided in the list.

Permitted values named list of datasets, e.g., list(adsl = adsl, ae = ae)
Default value none

by_vars By variables

If the parameter is specified, separate time to event parameters are derived for
each by group.

The by variables must be in at least one of the source datasets. Each source
dataset must contain either all by variables or none of the by variables.

The by variables are not included in the output dataset.

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)

Default value NULL

start_date Time to event origin date

The variable STARTDT is set to the specified date. The value is taken from the
ADSL dataset.

If the event or censoring date is before the origin date, ADT is set to the origin
date.

Permitted values a date or datetime variable

Default value TRTSDT

derive_param_tte 157

event_conditions
Sources and conditions defining events
A list of event_source() objects is expected.

Permitted values a list of source objects, e.g., list(pd, death)
Default value none
censor_conditions
Sources and conditions defining censorings
A list of censor_source() objects is expected.

Permitted values a list of source objects, e.g., list(pd, death)
Default value none
create_datetime
Create datetime variables?
If set to TRUE, variables ADTM and STARTDTM are created. Otherwise, variables
ADT and STARTDT are created.
Permitted values TRUE, FALSE
Default value FALSE

set_values_to Variables to set

A named list returned by exprs() defining the variables to be set for the new
parameter, e.g. exprs(PARAMCD = "0S", PARAM = "Overall Survival”) is ex-
pected. The values must be symbols, character strings, numeric values, expres-
sions, or NA.

Permitted values list of named expressions created by a formula using exprs(),
e.g., exprs(AVALC = VSSTRESC, AVAL = yn_to_numeric(AVALC))
Default value none

subject_keys Variables to uniquely identify a subject
A list of symbols created using exprs() is expected.
Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)
Default value get_admiral_option("subject_keys")

check_type Check uniqueness

If "warning"”, "message”, or "error" is specified, the specified message is
issued if the observations of the source datasets are not unique with respect to
the by variables and the date and order specified in the event_source() and
censor_source() objects.

n on n o n n on

Permitted values "none”, "message”, "warning”, "error”
Default value "warning”
Details

The following steps are performed to create the observations of the new parameter:

Deriving the events:

1. For each event source dataset the observations as specified by the filter element are selected.
Then for each subject the first observation (with respect to date and order) is selected.

158

AN AN

derive_param_tte

The ADT variable is set to the variable specified by the date element. If the date variable is a
datetime variable, only the datepart is copied.

The CNSR variable is added and set to the censor element.
The variables specified by the set_values_to element are added.
The selected observations of all event source datasets are combined into a single dataset.

For each subject the first observation (with respect to the ADT/ADTM variable) from the single
dataset is selected. If there is more than one event with the same date, the first event with
respect to the order of events in event_conditions is selected.

Deriving the censoring observations:

1.

AN S

For each censoring source dataset the observations as specified by the filter element are se-
lected. Then for each subject the last observation (with respect to date and order) is selected.

The ADT variable is set to the variable specified by the date element. If the date variable is a
datetime variable, only the datepart is copied.

The CNSR variable is added and set to the censor element.
The variables specified by the set_values_to element are added.
The selected observations of all censoring source datasets are combined into a single dataset.

For each subject the last observation (with respect to the ADT/ADTM variable) from the single
dataset is selected. If there is more than one censoring with the same date, the last censoring
with respect to the order of censorings in censor_conditions is selected.

For each subject (as defined by the subject_keys parameter) an observation is selected. If an event
is available, the event observation is selected. Otherwise the censoring observation is selected.

Finally:

1.

The variable specified for start_date is joined from the ADSL dataset. Only subjects in
both datasets are kept, i.e., subjects with both an event or censoring and an observation in
dataset_adsl.

The variables as defined by the set_values_to parameter are added.

3. The ADT/ADTM variable is set to the maximum of ADT/ADTM and STARTDT/STARTDTM (depending

Value

on the create_datetime parameter).

The new observations are added to the output dataset.

The input dataset with the new parameter added

Examples

Add a basic time to event parameter:

For each subject the time to first adverse event should be created as a parameter.

» The event source object is created using event_source () and the date is set to adverse event
start date.

derive_param_tte 159

» The censor source object is created using censor_source() and the date is set to end of
study date.

* The event and censor source objects are then passed to derive_param_tte() to derive the
time to event parameter with the provided parameter descriptions (PARAMCD and PARAM).

* Note the values of the censor variable (CNSR) that are derived below, where the first subject
has an event and the second does not.

library(tibble)
library(dplyr, warn.conflicts = FALSE)
library(lubridate, warn.conflicts = FALSE)

adsl <- tribble(

~USUBJID, ~TRTSDT, ~EOSDT, ~NEWDRGDT,

"1, ymd(”2020-12-06"), ymd("2021-03-06"), NA,

92", ymd("2021-01-16"), ymd(”2021-02-03"), ymd("”2021-01-03")
Y %%

mutate(STUDYID = "AB42")

adae <- tribble(

~USUBJID, ~ASTDT, ~AESEQ, ~AEDECOD,
"91", ymd("2021-01-03"), 1, "Flu”,
"91", ymd("2021-03-04") 2, "Cough”,
"Q1", ymd(”2021-03-05"), 3, "Cough”

) %%

mutate(STUDYID = "AB42")

ttae <- event_source(

dataset_name = "adae”,

date = ASTDT,

set_values_to = exprs(
EVNTDESC = "AE",
SRCDOM = "ADAE",
SRCVAR "ASTDT",
SRCSEQ = AESEQ

)

)

eos <- censor_source(
dataset_name = "adsl”,
date = EOSDT,
set_values_to = exprs(
EVNTDESC = "END OF STUDY",
SRCDOM = "ADSL",
SRCVAR = "EOSDT"
)
)

derive_param_tte(
dataset_adsl = adsl,

160

derive_param_tte

event_conditions = list(ttae),
censor_conditions = list(eos),
source_datasets = list(adsl = adsl, adae = adae),
set_values_to = exprs(
PARAMCD = "TTAE",
PARAM = "Time to First Adverse Event”
)
) %>%
select(USUBJID, STARTDT, PARAMCD, PARAM, ADT, CNSR, SRCSEQ)
#> # A tibble: 2 x 7
#> USUBJID STARTDT PARAMCD PARAM ADT CNSR SRCSEQ
#> <chr> <date> <chr> <chr> <date> <int> <dbl>
#> 1 01 2020-12-06 TTAE Time to First Adverse Event 2021-01-03 0 1
#> 2 02 2021-01-16 TTAE Time to First Adverse Event 2021-02-03 1 NA

Adding a by variable (by_vars):
By variables can be added using the by_vars argument, e.g., now for each subject the time to first
occurrence of each adverse event preferred term (AEDECOD) should be created as parameters.

derive_param_tte(
dataset_adsl = adsl,
by_vars = exprs(AEDECOD),
event_conditions = list(ttae),
censor_conditions = list(eos),
source_datasets = list(adsl = adsl, adae = adae),
set_values_to = exprs(
PARAMCD = paste@("TTAE", as.numeric(as.factor(AEDECOD))),
PARAM = paste("Time to First"”, AEDECOD, "Adverse Event")
)
) %>%
select(USUBJID, STARTDT, PARAMCD, PARAM, ADT, CNSR, SRCSEQ)
#> # A tibble: 4 x 7

#> USUBJID STARTDT PARAMCD PARAM ADT CNSR SRCSEQ
#> <chr> <date> <chr> <chr> <date> <int> <dbl>
#>1 01 2020-12-06 TTAET Time to First Cough Advers. . . 2021-03-04 0 2
#> 2 01 2020-12-06 TTAE2 Time to First Flu Adverse . . . 2021-01-03 0 1
#> 3 02 2021-01-16 TTAET Time to First Cough Advers. . . 2021-02-03 1 NA
#> 4 02 2021-01-16 TTAE2 Time to First Flu Adverse . . . 2021-02-03 1 NA

Handling duplicates (check_type):

The source records are checked regarding duplicates with respect to the by variables and the date
and order specified in the source objects. By default, a warning is issued if any duplicates are
found. Note here how after creating a new adverse event dataset containing a duplicate date for
"Cough", it was then passed to the function using the source_datasets argument - where you
see below adae = adae_dup.

adae_dup <- tribble(
~USUBJID, ~ASTDT, ~AESEQ, ~AEDECOD, ~AESER,
"o1", ymd("2021-01-03"), 1, "Flu", "y,

derive_param_tte 161

"91", ymd("2021-03-04"), 2, "Cough”, "N",
"91", ymd("2021-03-04"), 3, "Cough”, "Y"
) %%

mutate(STUDYID = "AB42")

derive_param_tte(

dataset_adsl = adsl,

by_vars = exprs(AEDECQOD),

start_date = TRTSDT,

source_datasets = list(adsl = adsl, adae = adae_dup),

event_conditions = list(ttae),

censor_conditions = list(eos),

set_values_to = exprs(
PARAMCD = paste@("TTAE", as.numeric(as.factor(AEDECOD))),
PARAM = paste(”"Time to First"”, AEDECOD, "Adverse Event")

)

)

#> # A tibble: 4 x 11

#> USUBJID STUDYID EVNTDESC SRCDOM SRCVAR SRCSEQ CNSR ADT STARTDT
#> <chr> <chr> <chr> <chr> <chr> <dbl> <int> <date> <date>
#> 1 01 AB42 AE ADAE ASTDT 2 0 2021-03-04 2020-12-06
#> 2 01 AB42 AE ADAE ASTDT 1 0 2021-01-03 2020-12-06
#> 3 02 AB42 END OF STUDY ADSL EOSDT NA 1 2021-02-03 2021-01-16
#> 4 02 AB42 END OF STUDY ADSL EOSDT NA 1 2021-02-03 2021-01-16

#> # i 2 more variables: PARAMCD <chr>, PARAM <chr>

#> Warning: Dataset "adae" contains duplicate records with respect to ~STUDYID™, “USUBJID",
#> “AEDECOD™, and ~ASTDT"

#> i Run “admiral::get_duplicates_dataset()~ to access the duplicate records

For investigating the issue, the dataset of the duplicate source records can be obtained by calling
get_duplicates_dataset():

get_duplicates_dataset()
#> Duplicate records with respect to “STUDYID™, ~USUBJID™, “AEDECOD", and ~ASTDT".
#> # A tibble: 2 x 6

#> STUDYID USUBJID AEDECOD ASTDT AESEQ AESER
#> * <chr> <chr> <chr> <date> <dbl> <chr>
#> 1 AB42 01 Cough 2021-03-04 2 N
#> 2 AB42 01 Cough 2021-03-04 3Y

Common options to solve the issue:
* Restricting the source records by specifying/updating the filter argument in the event_source()/censor_source()
calls.
 Specifying additional variables for order in the event_source()/censor_source() calls.
* Setting check_type = "none" in the derive_param_tte() call to ignore any duplicates.
In this example it does not have significant impact which record is chosen as the dates are the
same so the time to event derivation will be the same, but it does impact SRCSEQ in the output

dataset, so here the second option is used. Note here how you can also define source objects from
within the derive_param_tte() function call itself.

162

derive_param_tte(
dataset_adsl = adsl,

by_vars =
start_date

exprs(AEDECOD) ,

TRTSDT,

derive_param_tte

source_datasets = list(adsl = adsl, adae = adae_dup),
event_conditions = list(event_source(
dataset_name = "adae",
date = ASTDT,

set_values_to = exprs(

EVNTDESC = "AE",

SRCDOM
SRCVAR
SRCSEQ

),

order =

),

"ADAE” ,
"ASTDT",
AESEQ

exprs(AESEQ)

censor_conditions = list(eos),

set_values_to

= exprs(

PARAMCD = paste@("TTAE", as.numeric(as.factor(AEDECOD))),
PARAM = paste(”"Time to First"”, AEDECOD, "Adverse Event")

)
Y %%

select(USUBJID, STARTDT, PARAMCD, PARAM, ADT, CNSR, SRCSEQ)
#> # A tibble: 4 x 7

#> USUBJID STARTDT
<date>

#> <chr>

#>1 01 2020-12-06 TTAE1

#> 2 01 2020-12-06 TTAE2

#> 3 02 2021-01-16 TTAE1

#> 4 02 2021-01-16 TTAE2

Filtering source records (filter):

PARAMCD PARAM ADT CNSR SRCSEQ
<chr> <chr> <date> <int> <dbl>
Time to First Cough Advers. . . 2021-03-04 Q 2
Time to First Flu Adverse . . . 2021-01-03 0 1
Time to First Cough Advers. . . 2021-02-03 1 NA
Time to First Flu Adverse . . . 2021-02-03 1 NA

The first option from above could have been achieved using filter, for example here only using
serious adverse events.

derive_param_tte(
dataset_adsl = adsl,

by_vars =
start_date

exprs (AEDECOD),

TRTSDT,

source_datasets = list(adsl = adsl, adae = adae_dup),
event_conditions = list(event_source(

dataset_name = "adae",
filter = AESER == "Y",
date = ASTDT,

set_values_to = exprs(
EVNTDESC = "Serious AE",

SRCDOM
SRCVAR
SRCSEQ

HADAEII R
"ASTDT",
AESEQ

derive_param_tte 163

)
),

censor_conditions = list(eos),
set_values_to = exprs(
PARAMCD = paste@("TTSAE", as.numeric(as.factor(AEDECOD))),
PARAM = paste(”"Time to First Serious"”, AEDECOD, "Adverse Event")
)
) %>%
select(USUBJID, STARTDT, PARAMCD, PARAM, ADT, CNSR, SRCSEQ)
#> # A tibble: 4 x 7

#> USUBJID STARTDT PARAMCD PARAM ADT CNSR SRCSEQ
#> <chr> <date> <chr> <chr> <date> <int> <dbl>
#>1 01 2020-12-06 TTSAET1 Time to First Serious Coug. . . 2021-03-04 0 3
#> 2 01 2020-12-06 TTSAE2 Time to First Serious Flu . . . 2021-01-03 Q 1
#> 3 02 2021-01-16 TTSAE1 Time to First Serious Coug. . . 2021-02-03 1 NA
#> 4 02 2021-01-16 TTSAE2 Time to First Serious Flu . . . 2021-02-03 1 NA

Using multiple event/censor conditions (event_conditions /censor_conditions):

In the above examples, we only have a single event and single censor condition. Here, we now
consider multiple conditions for each passed using event_conditions and censor_conditions.

For the event we are going to use first AE and additionally check a lab condition, and for the
censor we’ll add in treatment start date in case end of study date was ever missing.

adlb <- tribble(

~USUBJID, ~ADT, ~PARAMCD, ~ANRIND,
"o1", ymd("2020-12-22"), "HGB", "Low"
) %>%

mutate(STUDYID = "AB42")

low_hgb <- event_source(
dataset_name = "adlb”,
filter = PARAMCD == "HGB" & ANRIND == "LOW",
date = ADT,
set_values_to = exprs(
EVNTDESC = "POSSIBLE ANEMIA",
SRCDOM = "ADLB",
SRCVAR = "ADT"
)
)

trt_start <- censor_source(
dataset_name = "adsl",
date = TRTSDT,
set_values_to = exprs(
EVNTDESC = "TREATMENT START",
SRCDOM = "ADSL",
SRCVAR = "TRTSDT"

164

derive_param_tte

derive_param_tte(
dataset_adsl = adsl,
event_conditions = list(ttae, low_hgb),
censor_conditions = list(eos, trt_start),
source_datasets = list(adsl = adsl, adae = adae, adlb = adlb),
set_values_to = exprs(
PARAMCD = "TTAELB",
PARAM = "Time to First Adverse Event or Possible Anemia (Labs)”
)
) %>%
select (USUBJID, STARTDT, PARAMCD, PARAM, ADT, CNSR, SRCSEQ)
#> # A tibble: 2 x 7

#> USUBJID STARTDT PARAMCD PARAM ADT CNSR SRCSEQ
#> <chr> <date> <chr> <chr> <date> <int> <dbl>
#>1 01 2020-12-06 TTAELB Time to First Adverse Even. . . 2020-12-22 0 NA
#>2 02 2021-01-16 TTAELB Time to First Adverse Even. . . 2021-02-03 1 NA

Note above how the earliest event date is always taken and the latest censor date.

Using different censor values (censor) and censoring at earliest occurring censor condition:
Within censor_source() the value used to denote a censor can be changed from the default of 1.
In this example an extra censor is used for new drug date with the value of 2.

newdrug <- censor_source(

dataset_name = "adsl",

date = NEWDRGDT,

censor = 2,

set_values_to = exprs(
EVNTDESC = "NEW DRUG RECEIVED",
SRCDOM = "ADSL",
SRCVAR = "NEWDRGDT"

)
)

derive_param_tte(
dataset_adsl = adsl,
by_vars = exprs(AEDECOD),
event_conditions = list(ttae),
censor_conditions = list(eos, newdrug),
source_datasets = list(adsl = adsl, adae = adae),
set_values_to = exprs(
PARAMCD = paste@("TTAE", as.numeric(as.factor(AEDECOD))),
PARAM = paste(”"Time to First"”, AEDECOD, "Adverse Event")
)
) %>%
select(USUBJID, STARTDT, PARAMCD, PARAM, ADT, CNSR, SRCSEQ)
#> # A tibble: 4 x 7
#> USUBJID STARTDT PARAMCD PARAM ADT CNSR SRCSEQ

derive_param_tte 165

#> <chr> <date> <chr> <chr> <date> <int> <dbl>
#>1 01 2020-12-06 TTAET Time to First Cough Advers. . . 2021-03-04 0 2
#> 2 01 2020-12-06 TTAE2 Time to First Flu Adverse . . . 2021-01-03 (] 1
#> 3 02 2021-01-16 TTAET Time to First Cough Advers. . . 2021-02-03 1 NA
#> 4 02 2021-01-16 TTAE2 Time to First Flu Adverse . . . 2021-02-03 1 NA

In this case the results are still the same, because as explained in the above example the latest
censor condition is always taken for those without an event. For the second subject this is still the
end of study date.

So, if we wanted to instead censor here at the new drug date if subject has one, then we would
need to again use the filter argument, but this time for a new end of study censor source object.

eos_nonewdrug <- censor_source(

dataset_name = "adsl”,
filter = is.na(NEWDRGDT),
date = EOSDT,

set_values_to = exprs(
EVNTDESC = "END OF STUDY",
SRCDOM = "ADSL",
SRCVAR = "EOSDT"

)
)

derive_param_tte(
dataset_adsl = adsl,
by_vars = exprs(AEDECOD),
event_conditions = list(ttae),
censor_conditions = list(eos_nonewdrug, newdrug),
source_datasets = list(adsl = adsl, adae = adae),
set_values_to = exprs(
PARAMCD = paste@("TTAE", as.numeric(as.factor(AEDECOD))),
PARAM = paste("Time to First"”, AEDECOD, "Adverse Event")
)
) %>%
select(USUBJID, STARTDT, PARAMCD, PARAM, ADT, CNSR, SRCSEQ)
#> # A tibble: 4 x 7

#> USUBJID STARTDT PARAMCD PARAM ADT CNSR SRCSEQ
#> <chr> <date> <chr> <chr> <date> <int> <dbl>
101 2020-12-06 TTAET Time to First Cough Advers. . . 2021-03-04 Q 2
#> 2 01 2020-12-06 TTAE2 Time to First Flu Adverse . . . 2021-01-03 (/] 1
#> 3 02 2021-01-16 TTAET Time to First Cough Advers. . . 2021-01-16 2 NA
#> 4 02 2021-01-16 TTAE2 Time to First Flu Adverse . . . 2021-01-16 2 NA

Overall survival time to event parameter:
In oncology trials, this is commonly derived as time from randomization date to death. For those
without event, they are censored at the last date they are known to be alive.

* The start date is set using start_date argument, now that we need to use different to the
default.

166

derive_param_tte

* In this example, datetime was needed, which can be achieved by setting create_datetime
argument to TRUE.

adsl <- tribble(

~USUBJID, ~RANDDTM, ~LSALVDTM, ~DTHDTM, ~DTHFL,

"01", ymd_hms ("”2020-10-03 00:00:00"), ymd_hms("2022-12-15 23:59:59"), NA, NA,

"Q2", ymd_hms ("2021-01-23 00:00:00"), ymd_hms("2021-02-03 19:45:59"), ymd_hms("2021-02-03 19:45:
) %%

mutate (STUDYID = "AB42")

derive overall survival parameter
death <- event_source(
dataset_name = "adsl",
filter = DTHFL == "Y",
date = DTHDTM,
set_values_to = exprs(
EVNTDESC = "DEATH",
SRCDOM = "ADSL",
SRCVAR = "DTHDTM"

)
)

last_alive <- censor_source(
dataset_name = "adsl",
date = LSALVDTM,
set_values_to = exprs(
EVNTDESC = "LAST DATE KNOWN ALIVE",
SRCDOM = "ADSL",
SRCVAR = "LSALVDTM"

)
)

derive_param_tte(
dataset_adsl = adsl,
start_date = RANDDTM,
event_conditions = list(death),
censor_conditions = list(last_alive),
create_datetime = TRUE,
source_datasets = list(adsl = adsl),
set_values_to = exprs(

PARAMCD = "0S",
PARAM = "Overall Survival”
)
) %%

select(USUBJID, STARTDTM, PARAMCD, PARAM, ADTM, CNSR)
#> # A tibble: 2 x 6
#> USUBJID STARTDTM PARAMCD PARAM ADTM CNSR
#> <chr> <dttm> <chr> <chr> <dttm> <int>
#> 1 01 2020-10-03 00:00:00 0S Overall Survival 2022-12-15 23:59:59 1

derive_param_tte

167

#> 2 02 2021-01-23 00:00:00 0S Overall Survival 2021-02-03 19:45:59 0

Duration of response time to event parameter:

In oncology trials, this is commonly derived as time from response until progression or death, or
if neither have occurred then censor at last tumor assessment visit date. It is only relevant for
subjects with a response. Note how only observations for subjects in dataset_adsl have the new
parameter created, so see below how this is filtered only on responders.

adsl_resp <- tribble(
~USUBJID, ~DTHFL, ~DTHDT,

"91", "yr o ymd(”2021-06-12"),
2", "N", NA,
Q3" "YU ymd(”2021-08-21"),
"Q4" "N", NA,

Y %%

mutate(STUDYID = "AB42")

adrs <- tribble(
~USUBJID, ~AVALC, ~ADT,

"1, "SD”, ymd(”2021-01-03"),
"91", "PR", ymd(”2021-03-04"),
"Q1", "PD", ymd(”2021-05-05"),
2", "PD", ymd(”2021-02-03"),
04" "SD", ymd(”2021-02-13"),
04" "PR", ymd(”2021-04-14"),
"Q4" "CR", ymd(”2021-05-15"),
Y %%

~RSPDT,
ymd("2021-03-04") ,
NA,
NA,
ymd("2021-04-14")

mutate(STUDYID = "AB42", PARAMCD = "OVR")

pd <- event_source(

dataset_name = "adrs”,
filter = AVALC == "PD",
date = ADT,

set_values_to = exprs(
EVENTDESC = "PD",
SRCDOM = "ADRS",
SRCVAR = "ADTM",
SRCSEQ ASEQ

)

)

death <- event_source(
dataset_name = "adsl",
filter = DTHFL == "Y",
date = DTHDT,
set_values_to = exprs(
EVENTDESC = "DEATH",
SRCDOM = "ADSL",
SRCVAR = "DTHDT"

168 derive_param_wbc_abs

)

)

last_visit <- censor_source(
dataset_name = "adrs”,
date = ADT,

set_values_to = exprs(
EVENTDESC = "LAST TUMOR ASSESSMENT",
SRCDOM = "ADRS",
SRCVAR = "ADTM",
SRCSEQ = ASEQ
)
)

derive_param_tte(
dataset_adsl = filter(adsl_resp, !is.na(RSPDT)),
start_date = RSPDT,
event_conditions = list(pd, death),
censor_conditions = list(last_visit),
source_datasets = list(adsl = adsl_resp, adrs = adrs),
set_values_to = exprs(
PARAMCD = "DURRSP",
PARAM = "Duration of Response”
)
) %>%
select(USUBJID, STARTDT, PARAMCD, PARAM, ADT, CNSR, SRCSEQ)
#> # A tibble: 2 x 7

#> USUBJID STARTDT PARAMCD PARAM ADT CNSR SRCSEQ
#> <chr> <date> <chr> <chr> <date> <int> <dbl>
#> 1 01 2021-03-04 DURRSP Duration of Response 2021-05-05 0 3
#> 2 04 2021-04-14 DURRSP Duration of Response 2021-05-15 1 3

Further examples:
Further example usages of this function can be found in the vignette("bds_tte").

See Also

event_source(), censor_source()

derive_param_wbc_abs Add a parameter for lab differentials converted to absolute values

Description

Add a parameter by converting lab differentials from fraction or percentage to absolute values

derive_param_wbc_abs 169

Usage

derive_param_wbc_abs(
dataset,
by_vars,
set_values_to,
get_unit_expr,
wbc_unit = "10%9/L",
wbc_code = "WBC",

diff_code,
diff_type = "fraction”
)
Arguments
dataset Input dataset
The variables specified by the by_vars argument are expected to be in the
dataset. PARAMCD, and AVAL are expected as well.
The variable specified by by_vars and PARAMCD must be a unique key of the
input dataset, and to the parameters specified by wbc_code and diff_code.
Default value none
by_vars Grouping variables

Default value none

set_values_to Variables to set

A named list returned by exprs() defining the variables to be set for the new pa-
rameter, e.g. exprs(PARAMCD = "LYMPH", PARAM = "Lymphocytes Abs (10%9/L)")
is expected.

Default value none

get_unit_expr An expression providing the unit of the parameter
The result is used to check the units of the input parameters.
Permitted values a variable containing unit from the input dataset, or a func-
tion call, for example, get_unit_expr = extract_unit(PARAM).
Default value none

wbc_unit A string containing the required unit of the WBC parameter
Default value "10%9/L"
wbc_code White Blood Cell (WBC) parameter

The observations where PARAMCD equals the specified value are considered as
the WBC absolute results to use for converting the differentials.

Permitted values character value

Default value "WBC"

diff_code white blood differential parameter
The observations where PARAMCD equals the specified value are considered as
the white blood differential lab results in fraction or percentage value to be con-
verted into absolute value.

170 derive_param_wbc_abs

Default value none
diff_type A string specifying the type of differential

Permitted values "percent”, "fraction”
Default value "fraction”

Details
If diff_type is "percent”, the analysis value of the new parameter is derived as

W hiteBloodCellCount * PercentageV alue
100

If diff_typeis "fraction”, the analysis value of the new parameter is derived as

W hite BloodCellCount * FractionV alue

New records are created for each group of records (grouped by by_vars) if 1) the white blood
cell component in absolute value is not already available from the input dataset, and 2) the white
blood cell absolute value (identified by wbc_code) and the white blood cell differential (identified
by diff_code) are both present.

Value

The input dataset with the new parameter added

See Also

BDS-Findings Functions for adding Parameters/Records: default_qgtc_paramcd(), derive_expected_records(),
derive_extreme_event(), derive_extreme_records(), derive_locf_records(), derive_param_bmi(),
derive_param_bsa(), derive_param_computed(), derive_param_doseint(), derive_param_exist_flag(),
derive_param_exposure(), derive_param_framingham(), derive_param_map(), derive_param_qtc(),
derive_param_rr(), derive_summary_records()

Examples

library(tibble)

test_lb <- tribble(
~USUBJID, ~PARAMCD, ~AVAL, ~PARAM, ~VISIT,
"P@1", "WBC", 33, "Leukocyte Count (1049/L)", "CYCLE 1 DAY 1",
"PO1", "WBC", 38, "Leukocyte Count (10%9/L)", "CYCLE 2 DAY 1",
"PQ1", "LYMLE", 0.90, "Lymphocytes (fraction of 1)", "CYCLE 1 DAY 1",
"P@1", "LYMLE", ©.70, "Lymphocytes (fraction of 1)", "CYCLE 2 DAY 1",
"Po1", "ALB", 36, "Albumin (g/dL)", "CYCLE 2 DAY 1",
"P@2", "WBC", 33, "Leukocyte Count (107%9/L)", "CYCLE 1 DAY 1",
"P@2", "LYMPH", 29, "Lymphocytes Abs (1049/L)", "CYCLE 1 DAY 1",
"P@2", "LYMLE", 0.87, "Lymphocytes (fraction of 1)", "CYCLE 1 DAY 1",
"P@3", "LYMLE", 0.89, "Lymphocytes (fraction of 1)", "CYCLE 1 DAY 1"

derive_summary_records 171

derive_param_wbc_abs(
dataset = test_lb,
by_vars = exprs(USUBJID, VISIT),
set_values_to = exprs(
PARAMCD = "LYMPH",
PARAM = "Lymphocytes Abs (1079/L)",
DTYPE "CALCULATION"
),
get_unit_expr = extract_unit(PARAM),
wbc_code = "WBC",
diff_code = "LYMLE",
diff_type = "fraction”

derive_summary_records
Add New Records Within By Groups Using Aggregation Functions

Description

It is not uncommon to have an analysis need whereby one needs to derive an analysis value (AVAL)
from multiple records. The ADaM basic dataset structure variable DTYPE is available to indicate
when a new derived records has been added to a dataset, if the derivation deviates from the standard
derivation of the parameter.

Usage

derive_summary_records(
dataset = NULL,
dataset_add,
dataset_ref = NULL,
by_vars,
filter_add = NULL,
constant_values = NULL,
set_values_to,
missing_values = NULL

Arguments

dataset Input dataset
If the argument is not specified (or set to NULL), a new dataset is created. Other-
wise, the new records are appended to the specified dataset.
Permitted values a dataset, i.e., a data. frame or tibble
Default value NULL

172

dataset_add

dataset_ref

by_vars

filter_add

constant_values

set_values_to

derive_summary_records

Additional dataset

The variables specified for by_vars are expected. Observations from the spec-
ified dataset are going to be used to calculate and added as new records to the
input dataset (dataset).

Permitted values a dataset, i.e., a data.frame or tibble

Default value none

Reference dataset

The variables specified for by_vars are expected. For each observation of the
specified dataset a new observation is added to the input dataset.

Permitted values a dataset, i.e., a data.frame or tibble

Default value NULL

Grouping variables

Variables to consider for generation of groupwise summary records. Providing
the names of variables in exprs() will create a groupwise summary and gener-
ate summary records for the specified groups.

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)

Default value none

Filter condition as logical expression to apply during summary calculation. By

default, filtering expressions are computed within by_vars as this will help
when an aggregating, lagging, or ranking function is involved.

For example,
e filter_add = (AVAL > mean(AVAL, na.rm = TRUE)) will filter all AVAL val-
ues greater than mean of AVAL with in by_vars.
e filter_add = (dplyr::n() > 2) will filter n count of by_vars greater than
2.
Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value NULL

Constant variables to set

The specified variables are set to the specified values for all new summary
records, including those with data in dataset_add and those with no data im-
puted using dataset_ref and missing_values.

Set a list of variables to some specified value for the new records
* LHS refer to a variable.
* RHS refers to the values to set to the variable. This can be an expression.

Permitted values list of named expressions created by exprs(), e.g., exprs (CUMDOSA

=sum(AVAL, na.rm=TRUE), AVALU = "m1")
Default value NULL
Variables to be set

The specified variables are set to the specified values for the new observations.
Set a list of variables to some specified value for the new records

derive_summary_records 173

missing_values

Details

e LHS refer to a variable.

* RHS refers to the values to set to the variable. This can be a string, a
symbol, a numeric value, an expression or NA. If summary functions are
used, the values are summarized by the variables specified for by_vars.
Any expression on the RHS must result in a single value per by group.

For example:

set_values_to = exprs(
AVAL = sum(AVAL),
DTYPE = "AVERAGE",

)
Permitted values list of named expressions created by exprs(), e.g., exprs (CUMDOSA
= sum(AVAL, na.rm=TRUE), AVALU = "ml1")
Default value none

Values for missing summary values

For observations of the reference dataset (dataset_ref) which do not have a
complete mapping defined by the summarization defined in set_values_to.
Only variables specified for set_values_to can be specified formissing_values.

Permitted values list of named expressions created by exprs(), e.g., exprs(CUMDOSA
=sum(AVAL, na.rm=TRUE), AVALU = "ml1")

Default value NULL

For the newly derived records, only variables specified within by_vars or set_values_to will be
populated. All other variables will be set to NA.

Value

A data frame with derived records appended to original dataset.

Examples

Data setup:

The following examples use the ECG dataset below as a basis.

library(tibble, warn.conflicts = FALSE)
library(dplyr, warn.conflicts = FALSE)

adeg <- tribble(

~USUBJID,

"XYZ-1001",
"XYZ-1001",
"XYZ-1001",
"XYZ-1001",
"XYZ-1001",
"XYZ-1001",
"XYZ-1001",

~PARAM, ~AVISIT, ~EGDTC, ~AVAL,
"QTcF Int. (msec)"”, "Baseline”, "2016-02-24T@7:50", 385,
"QTcF Int. (msec)", "Baseline”, "2016-02-24T@7:52", 399,
"QTcF Int. (msec)"”, "Baseline”, "2016-02-24TQ7:56", 396,

"QTcF Int. (msec)”, "Visit 2", "2016-03-08T09:48", 393,
"OTcF Int. (msec)”, "Visit 2", "2016-03-08T09:51", 388,
"QTcF Int. (msec)”, "Visit 3", "2016-03-22T10:48", 394,

"QTcF Int. (msec)”, "Visit 3", "2016-03-22T10:51", 402,

174

derive_summary_records

"XYZ-1002", "QTcF Int. (msec)”, "Baseline”, "2016-02-22T07:58", 399,
"XYZ-1002", "QTcF Int. (msec)”, "Baseline”, "2016-02-22T07:58", 200,
"XYZ-1002", "QTcF Int. (msec)”, "Baseline”, "2016-02-22T08:01", 392,

"XYZ-1002", "QTcF Int. (msec)”, "Visit 3", "2016-03-24T10:53", 414,
"XYZ-1002", "QTcF Int. (msec)”, "Visit 3", "2016-03-24T10:56", 402
) %%

mutate(ADTM = convert_dtc_to_dtm(EGDTC))

Summarize one or more variables using summary functions:

A derived record is generated for each subject, containing the mean of the triplicate ECG interval
values (AVAL) and the latest measurement’s time (ADTM) by using summary functions within the

set_values_to argument.

derive_summary_records(
adeg,
dataset_add = adeg,
by_vars = exprs(USUBJID, PARAM, AVISIT),
set_values_to = exprs(
AVAL = mean(AVAL, na.rm = TRUE),
ADTM = max(ADTM),
DTYPE = "AVERAGE"
)
) %%
arrange(USUBJID, AVISIT)
#> # A tibble: 17 x 7

#> USUBJID PARAM AVISIT EGDTC AVAL ADTM DTYPE
#> <chr> <chr> <chr> <chr> <dbl> <dttm> <chr>

#> 1 XYZ-1001 QTcF Int. (msec) Baseline 2016-02-2. . .
#> 2 XYZ-1001 QTcF Int. (msec) Baseline 2016-02-2. . .
#> 3 XYZ-1001 QTcF Int. (msec) Baseline 2016-02-2. . .

385 2016-02-24 07:50:00 <NA>
399 2016-02-24 07:52:00 <NA>
396 2016-02-24 07:56:00 <NA>

#> 4 XYZ-1001 QTcF Int. (msec) Baseline <NA> 393. 2016-02-24 07:56:00 AVER. . .

#> 5 XYZ-1001 QTcF Int. (msec) Visit 2 2016-03-0. . .
#> 6 XYZ-1001 QTcF Int. (msec) Visit 2 2016-03-0. . .

393 2016-03-08 09:48:00 <NA>
388 2016-03-08 09:51:00 <NA>

#> 7 XYZ-1001 QTcF Int. (msec) Visit 2 <NA> 390. 2016-03-08 09:51:00 AVER. . .

#> 8 XYZ-1001 QTcF Int. (msec) Visit 3 2016-03-2. . .
#> 9 XYZ-1001 QTcF Int. (msec) Visit 3 2016-03-2. . .

394 2016-03-22 10:48:00 <NA>
402 2016-03-22 10:51:00 <NA>

#> 10 XYZ-1001 QTcF Int. (msec) Visit 3 <NA> 398 2016-03-22 10:51:00 AVER. . .

#> 11 XYZ-1002 QTcF Int. (msec) Baseline 2016-02-2. . .
#> 12 XYZ-1002 QTcF Int. (msec) Baseline 2016-02-2. . .
#> 13 XYZ-1002 QTcF Int. (msec) Baseline 2016-02-2. . .

399 2016-02-22 07:58:00 <NA>
200 2016-02-22 07:58:00 <NA>
392 2016-02-22 08:01:00 <NA>

#> 14 XYZ-1002 QTcF Int. (msec) Baseline <NA> 330. 2016-02-22 08:01:00 AVER. . .

#> 15 XYZ-1002 QTcF Int. (msec) Visit 3 2016-03-2. . .
#> 16 XYZ-1002 QTcF Int. (msec) Visit 3 2016-03-2. . .

414 2016-03-24 10:53:00 <NA>
402 2016-03-24 10:56:00 <NA>

#> 17 XYZ-1002 QTcF Int. (msec) Visit 3 <NA> 408 2016-03-24 10:56:00 AVER. . .

Functions such as all() and any() are also often useful when creating summary records. For
instance, the above example can be extended to flag which derived records were affected by
outliers. Note that the outlier flag is created before AVAL is set for the summary record. Otherwise,
referencing AVAL later on would pick up the AVAL from the summary record rather than the source

records.

derive_summary_records 175

derive_summary_records(
adeg,
dataset_add = adeg,
by_vars = exprs(USUBJID, PARAM, AVISIT),
set_values_to = exprs(
OUTLIEFL = if_else(any(AVAL >= 500 | AVAL <= 300), "Y", "N"),
AVAL = mean(AVAL, na.rm = TRUE),
ADTM = max(ADTM),
DTYPE = "AVERAGE"
)
) %>%
arrange(USUBJID, AVISIT)
#> # A tibble: 17 x 8

#> USUBJID PARAM AVISIT EGDTC AVAL ADTM OUTLIEFL DTYPE

#> <chr> <chr> <chr> <chr> <dbl> <dttm> <chr> <chr>

#> 1 XYZ-1001 QTcF Int. (ms. .. Basel. .. 2016. .. 385 2016-02-24 07:50:00 <NA> <NA>
#> 2 XYZ-1001 QTcF Int. (ms. . . Basel. .. 2016. .. 399 2016-02-24 07:52:00 <NA> <NA>
#> 3 XYZ-1001 QTcF Int. (ms. . . Basel. .. 2016. .. 396 2016-02-24 07:56:00 <NA> <NA>
#> 4 XYZ-1001 QTcF Int. (ms. . . Basel. .. <NA> 393. 2016-02-24 07:56:00 N AVER. . .

#> 5 XYZ-1001 QTcF Int. (ms. . . Visit. .. 2016. .. 393 2016-03-08 09:48:00 <NA> <NA>
#> 6 XYZ-1001 QTcF Int. (ms. . . Visit. .. 2016. .. 388 2016-03-08 09:51:00 <NA> <NA>
#> 7 XYZ-1001 QTcF Int. (ms. . . Visit. .. <NA> 390. 2016-03-08 09:51:00 N AVER. . .

#> 8 XYZ-1001 QTcF Int. (ms. . . Visit. .. 2016. .. 394 2016-03-22 10:48:00 <NA> <NA>
#> 9 XYZ-1001 QTcF Int. (ms. . . Visit. .. 2016. .. 402 2016-03-22 10:51:00 <NA> <NA>
#> 10 XYZ-1001 QTcF Int. (ms. . . Visit. .. <NA> 398 2016-03-22 10:51:00 N AVER. . .

#> 11 XYZ-1002 QTcF Int. (ms. . . Basel. .. 2016. .. 399 2016-02-22 07:58:00 <NA> <NA>
#> 12 XYZ-1002 QTcF Int. (ms. . . Basel. .. 2016. .. 200 2016-02-22 07:58:00 <NA> <NA>
#> 13 XYZ-1002 QTcF Int. (ms. . . Basel. .. 2016. .. 392 2016-02-22 08:01:00 <NA> <NA>
#> 14 XYZ-1002 QTcF Int. (ms. . . Basel. .. <NA> 330. 2016-02-22 08:01:00 Y AVER. . .

#> 15 XYZ-1002 QTcF Int. (ms. . . Visit. .. 2016. .. 414 2016-03-24 10:53:00 <NA> <NA>
#> 16 XYZ-1002 QTcF Int. (ms. . . Visit. .. 2016. .. 402 2016-03-24 10:56:00 <NA> <NA>
#> 17 XYZ-1002 QTcF Int. (ms. . . Visit. .. <NA> 408 2016-03-24 10:56:00 N AVER. . .

Restricting source records (filter_add):

The filter_add argument can be used to restrict the records that are being summarized. For
instance, the mean of the triplicates above can be computed only for the baseline records by
passing filter_add = AVISIT == "Baseline”.

derive_summary_records(
adeg,
dataset_add = adeg,
by_vars = exprs(USUBJID, PARAM, AVISIT),
filter_add = AVISIT == "Baseline”,
set_values_to = exprs(
AVAL = mean(AVAL, na.rm = TRUE),
DTYPE = "AVERAGE"
)
) %>%
arrange(USUBJID, AVISIT)

176

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

A tibble: 14 x 7
USUBJID PARAM
<chr> <chr>

1 XYZ-1001 QTcF Int.
2 XYZ-1001 QTcF Int.
3 XYZ-1001 QTcF Int.
4 XYZ-1001 QTcF Int.
5 XYZ-1001 QTcF Int.
6 XYZ-1001 QTcF Int.
7 XYZ-1001 QTcF Int.
8 XYZ-1001 QTcF Int.
9 XYZ-1002 QTcF Int.
10 XYZ-1002 QTcF Int.
11 XYZ-1002 QTcF Int.
12 XYZ-1002 QTcF Int.
13 XYZ-1002 QTcF Int.
14 XYZ-1002 QTcF Int.

AVISIT
<chr>

EGDTC
<chr>

(msec) Baseline <NA>

(msec) Visit 2 2016-03-0. . .
(msec) Visit 2 2016-03-0. . .
(msec) Visit 3 2016-03-2. . .
(msec) Visit 3 2016-03-2. . .
(msec) Baseline 2016-02-2. . .
(msec) Baseline 2016-02-2. . .
(msec) Baseline 2016-02-2. . .

(msec) Baseline <NA>

<dbl> <dttm>
(msec) Baseline 2016-02-2. . .
(msec) Baseline 2016-02-2. . .
(msec) Baseline 2016-02-2. . .

(msec) Visit 3 2016-03-2. . .
(msec) Visit 3 2016-03-2. . .

derive_summary_records

AVAL ADTM DTYPE
<chr>
385 2016-02-24 07:50:00 <NA>
399 2016-02-24 07:52:00 <NA>
396 2016-02-24 07:56:00 <NA>
393. NA AVER. . .
393 2016-03-08 09:48:00 <NA>
388 2016-03-08 09:51:00 <NA>
394 2016-03-22 10:48:00 <NA>
402 2016-03-22 10:51:00 <NA>
399 2016-02-22 07:58:00 <NA>
200 2016-02-22 07:58:00 <NA>
392 2016-02-22 08:01:00 <NA>
330. NA AVER. . .
414 2016-03-24 10:53:00 <NA>
402 2016-03-24 10:56:00 <NA>

Summary functions can also be used within filter_add to filter based on conditions applied to
the whole of the by group specified in by_vars. For instance, the mean of the triplicates can be
computed only for by groups which do indeed contain three records by passing filter_add =
n() > 2.

derive_summary_records(
adeg,
dataset_add = adeg,

by_vars = exprs(USUBJID, PARAM, AVISIT),

filter_add = n() > 2,

set_values_to = exprs(

AVAL = mean(AVAL, na.rm = TRUE),
DTYPE = "AVERAGE"

)
) %%

arrange(USUBJID, AVISIT)
#> # A tibble: 14 x 7
#> USUBJID PARAM AVISIT EGDTC AVAL ADTM DTYPE
#> <chr> <chr> <chr> <chr> <dbl> <dttm> <chr>
#> 1 XYZ-1001 QTcF Int. (msec) Baseline 2016-02-2. . . 385 2016-02-24 07:50:00 <NA>
#> 2 XYZ-1001 QTcF Int. (msec) Baseline 2016-02-2. . . 399 2016-02-24 07:52:00 <NA>
#> 3 XYZ-1001 QTcF Int. (msec) Baseline 2016-02-2. . . 396 2016-02-24 07:56:00 <NA>
#> 4 XYZ-1001 QTcF Int. (msec) Baseline <NA> 393. NA AVER. . .
#> 5 XYZ-1001 QTcF Int. (msec) Visit 2 2016-03-0. . . 393 2016-03-08 09:48:00 <NA>
#> 6 XYZ-1001 QTcF Int. (msec) Visit 2 2016-03-0. . . 388 2016-03-08 09:51:00 <NA>
#> 7 XYZ-1001 QTcF Int. (msec) Visit 3 2016-03-2. .. 394 2016-03-22 10:48:00 <NA>
#> 8 XYZ-1001 QTcF Int. (msec) Visit 3 2016-03-2. . . 402 2016-03-22 10:51:00 <NA>
#> 9 XYZ-1002 QTcF Int. (msec) Baseline 2016-02-2. . . 399 2016-02-22 07:58:00 <NA>
#> 10 XYZ-1002 QTcF Int. (msec) Baseline 2016-02-2. . . 200 2016-02-22 07:58:00 <NA>
#> 11 XYZ-1002 QTcF Int. (msec) Baseline 2016-02-2. . . 392 2016-02-22 08:01:00 <NA>
#> 12 XYZ-1002 QTcF Int. (msec) Baseline <NA> 330. NA AVER. . .

derive_summary_records 177

#> 13 XYZ-1002 QTcF Int. (msec) Visit 3 2016-03-2. . . 414 2016-03-24 10:53:00 <NA>
#> 14 XYZ-1002 QTcF Int. (msec) Visit 3 2016-03-2. . . 402 2016-03-24 10:56:00 <NA>

Adding records for groups not in source (dataset_ref and missing_values):

Adding records for groups which are not in the source data can be achieved by specifying a refer-

ence dataset in the dataset_ref argument. For example, specifying the input dataset adeg_allparamvis
(containing an extra "Visit 2" for patient 1002) ensures a summary record is derived for that visit

as well. For these records, the values of the analysis variables to be populated should be specified

within the missing_values argument. Here, DTYPE = "PHANTOM" was chosen as AVAL is set to
missing.

adeg_allparamvis <- tribble(
~USUBJID, ~PARAM, ~AVISIT,
"XYZ-1001", "QTcF Int. (msec)", "Baseline”,
"XYZ-1001", "QTcF Int. (msec)", "Visit 2",
"XYZ-1001", "QTcF Int. (msec)", "Visit 3",
"XYZ-1002", "QTcF Int. (msec)"”, "Baseline”,
"XYZ-1002", "QTcF Int. (msec)", "Visit 2",
"XYZ-1002", "QTcF Int. (msec)”, "Visit 3"

)

derive_summary_records(
adeg,
dataset_add = adeg,
dataset_ref = adeg_allparamvis,
by_vars = exprs(USUBJID, PARAM, AVISIT),
set_values_to = exprs(
AVAL = mean(AVAL, na.rm = TRUE),
ADTM = max(ADTM),
DTYPE = "AVERAGE"

),
missing_values = exprs(
AVAL = NA,
ADTM = NA,
DTYPE = "PHANTOM"
)
) %>%

arrange (USUBJID, AVISIT)
#> # A tibble: 18 x 7

#> USUBJID PARAM AVISIT EGDTC AVAL ADTM DTYPE

#> <chr> <chr> <chr> <chr> <dbl> <dttm> <chr>

#> 1 XYZ-1001 QTcF Int. (msec) Baseline 2016-02-2. . . 385 2016-02-24 07:50:00 <NA>
#> 2 XYZ-1001 QTcF Int. (msec) Baseline 2016-02-2. . . 399 2016-02-24 07:52:00 <NA>
#> 3 XYZ-1001 QTcF Int. (msec) Baseline 2016-02-2. . . 396 2016-02-24 07:56:00 <NA>
#> 4 XYZ-1001 QTcF Int. (msec) Baseline <NA> 393. 2016-02-24 07:56:00 AVER. . .
#> 5 XYZ-1001 QTcF Int. (msec) Visit 2 2016-03-0. . . 393 2016-03-08 09:48:00 <NA>
#> 6 XYZ-1001 QTcF Int. (msec) Visit 2 2016-03-0. . . 388 2016-03-08 09:51:00 <NA>
#> 7 XYZ-1001 QTcF Int. (msec) Visit 2 <NA> 390. 2016-03-08 09:51:00 AVER. . .

#> 8 XYZ-1001 QTcF Int. (msec) Visit 3 2016-03-2. . . 394 2016-03-22 10:48:00 <NA>

178 derive_summary_records

#> 9 XYZ-1001 QTcF Int. (msec) Visit 3 2016-03-2. . . 402 2016-03-22 10:51:00 <NA>
#> 10 XYZ-1001 QTcF Int. (msec) Visit 3 <NA> 398 2016-03-22 10:51:00 AVER. . .
#> 11 XYZ-1002 QTcF Int. (msec) Baseline 2016-02-2. . . 399 2016-02-22 07:58:00 <NA>
#> 12 XYZ-1002 QTcF Int. (msec) Baseline 2016-02-2. . . 200 2016-02-22 07:58:00 <NA>
#> 13 XYZ-1002 QTcF Int. (msec) Baseline 2016-02-2. . . 392 2016-02-22 08:01:00 <NA>
#> 14 XYZ-1002 QTcF Int. (msec) Baseline <NA> 330. 2016-02-22 08:01:00 AVER. . .
#> 15 XYZ-1002 QTcF Int. (msec) Visit 2 <NA> NA NA PHAN. . .

#> 16 XYZ-1002 QTcF Int. (msec) Visit 3 2016-03-2. .. 414 2016-03-24 10:53:00 <NA>
#> 17 XYZ-1002 QTcF Int. (msec) Visit 3 2016-03-2. .. 402 2016-03-24 10:56:00 <NA>
#> 18 XYZ-1002 QTcF Int. (msec) Visit 3 <NA> 408 2016-03-24 10:56:00 AVER. . .

Add constant values to derived and missing summary records.:

The constant_values argument allows you to assign fixed, common values to all summary
records generated by the function. This is particularly useful when you need to populate new
information for observations derived from the dataset_add as well as for new records created
for subjects present in dataset_ref but missing in dataset_add.

For example, if ADSL contains two subjects ("1" and "2"), but ADAE only has adverse event infor-
mation for "Subject 1", derive_summary_records will:

1. Create a summary record for "Subject 1" based on ADAE.

2. Identify "Subject 2" (from ADSL) as having no corresponding records in ADAE and create a
new record for it.

The constant_values argument ensures that all these generated summary records (for both Sub-
ject 1 and the newly created record for Subject 2) receive the same PARAMCD, PARAM, and PARCAT1
values. Additionally, missing_values is used to specifically set AVAL to O for "Subject 2" when
no adverse events are found.

library(tibble)
adsl <- tibble(USUBJID = c("1", "2"))

adae <- tribble(
~USUBJID, ~AEDECOD,
B "Illness”,
B "Pain”

)

derive_summary_records(
dataset_add = adae,
dataset_ref = adsl,
by_vars = exprs(USUBJID),
constant_values = exprs(
PARAMCD = "AECOUNT",
PARAM = "Number of adverse events”,
PARCAT1 = "Adverse events”
),
set_values_to = exprs(
AVAL = n_distinct(AEDECOD),
SRCDOM = "ADAE"

derive_vars_aage 179

),
missing_values = exprs(
AVAL = 0

)
)
#> # A tibble: 2 x 6
#> USUBJID AVAL SRCDOM PARAMCD PARAM PARCAT1
#> <chr> <dbl> <chr> <chr> <chr> <chr>
#> 11 2 ADAE AECOUNT Number of adverse events Adverse events
#> 2 2 @ <NA> AECOUNT Number of adverse events Adverse events

See Also

derive_vars_merged_summary()

BDS-Findings Functions for adding Parameters/Records: default_qgtc_paramcd(), derive_expected_records(),
derive_extreme_event(), derive_extreme_records(), derive_locf_records(), derive_param_bmi(),
derive_param_bsa(), derive_param_computed(), derive_param_doseint(), derive_param_exist_flag(),
derive_param_exposure(), derive_param_framingham(), derive_param_map(), derive_param_qtc(),
derive_param_rr(), derive_param_wbc_abs()

derive_vars_aage Derive Analysis Age

Description

Derives analysis age (AAGE) and analysis age unit (AAGEU).

Note: This is a wrapper function for the more generic derive_vars_duration().

Usage

derive_vars_aage(
dataset,
start_date = BRTHDT,
end_date = RANDDT,
age_unit = "YEARS",

type = "interval”
)
Arguments
dataset Input dataset

The variables specified by the start_date and end_date arguments are ex-
pected to be in the dataset.

Default value none

180 derive_vars_aage

start_date The start date
A date or date-time object is expected.

Refer to derive_vars_dt() to impute and derive a date from a date character
vector to a date object.

Default value BRTHDT

end_date The end date
A date or date-time object is expected.

Refer to derive_vars_dt () to impute and derive a date from a date character
vector to a date object.

Default value RANDDT

age_unit Age unit

The age is derived in the specified unit

Permitted values The values are considered case-insensitive.
For years: Hyear”’ Ilyear.s”’ Ilyrll’ Ilyrsll’ Ilyll
For months: "month”, "months”, "mo"”, "mos”
For weeks: "week”, "weeks”, "wk", "wks", "w"
For days: "day”, "days"”, "d"
For hours: "hour”, "hours”, "hr", "hrs", "h"

non nonosonon

For minutes: "minute”, "minutes”, "min”, "mins”
n n n n n

For seconds: "second”, "seconds”, "sec”, "secs"”,"s
Default value "YEARS”

type lubridate duration type
See below for details.
Default: "interval”

nons:

Permitted Values: "duration”, "interval”

Default value "interval”

Details

The duration is derived as time from start to end date in the specified output unit. If the end date is
before the start date, the duration is negative. The start and end date variable must be present in the
specified input dataset.

The lubridate package calculates two types of spans between two dates: duration and interval. While
these calculations are largely the same, when the unit of the time period is month or year the result
can be slightly different.

The difference arises from the ambiguity in the length of "1 month” or "1 year"”. Months may have
31, 30, 28, or 29 days, and years are 365 days and 366 during leap years. Durations and intervals
help solve the ambiguity in these measures.

The interval between 2000-02-01 and 2000-03-01 is 1 (i.e. one month). The duration between
these two dates is @. 95, which accounts for the fact that the year 2000 is a leap year, February has
29 days, and the average month length is 30.4375,i.e. 29 / 30.4375=10.95.

For additional details, review the lubridate time span reference page.

https://lubridate.tidyverse.org/
https://lubridate.tidyverse.org/reference/timespan.html

derive_vars_atc 181

Value

The input dataset with AAGE and AAGEU added

See Also

derive_vars_duration()

ADSL Functions that returns variable appended to dataset: derive_var_age_years(), derive_vars_extreme_event(),
derive_vars_period()

Examples

library(tibble)
library(lubridate)

data <- tribble(

~BRTHDT, ~RANDDT,

ymd("”1984-09-06"), ymd("2020-02-24")
)

derive_vars_aage(data)

derive_vars_atc Derive ATC Class Variables

Description

Add Anatomical Therapeutic Chemical class variables from FACM to ADCM.

Note: This is a wrapper function for the more generic derive_vars_transposed().

Usage

derive_vars_atc(
dataset,
dataset_facm,
by_vars = exprs(!!!get_admiral_option(”"subject_keys"), CMREFID = FAREFID),
id_vars = NULL,
value_var = FASTRESC

Arguments

dataset Input dataset

The variables specified by the by_vars argument are expected to be in the
dataset.

Default value none

182 derive_vars_atc

dataset_facm FACM dataset

The variables specified by the by_vars, id_vars, and value_var arguments
and FATESTCD are required. The variables by_vars, id_vars, and FATESTCD
must be a unique key.

Default value none

by_vars Grouping variables
Keys used to merge dataset_facm with dataset.

Default value exprs(!!!get_admiral_option("subject_keys"), CMREFID
= FAREFID)

id_vars ID variables
Variables (excluding by_vars) that uniquely identify each observation in dataset_merge.

Default value NULL
value_var The variable of dataset_facm containing the values of the transposed variables

Default value FASTRESC

Value

The input dataset with ATC variables added

See Also

derive_vars_transposed()

OCCDS Functions: derive_var_trtemfl(), derive_vars_query()

Examples

library(tibble)

cm <- tribble(

~STUDYID, ~USUBJID, ~CMGRPID, ~CMREFID, ~CMDECOD,
"STUDYQ1", "BP40257-1001", "14", "1192056", "PARACETAMOL",
"STUDY@1", "BP40257-1001", "18", "2007001", "SOLUMEDROL",
"STUDY@1", "BP40257-1002", "19", "2791596", "SPIRONOLACTONE"

)

facm <- tribble(
~STUDYID, ~USUBJID, ~FAGRPID, ~FAREFID, ~FATESTCD, ~FASTRESC,
"STUDY@1", "BP40257-1001", "1", "1192056", "CMATC1CD", "N",
"STUDY@1", "BP40257-1001", "1", "1192056", "CMATC2CD", "N@2",
"STUDYQ1", "BP40257-1001", "1", "1192056", "CMATC3CD", "No2B",
"STUDYQ1", "BP40257-1001", "1", "1192056", "CMATC4CD", "N@2BE",
"STUDY@1", "BP40257-1001", "1", "2007001", "CMATCI1CD", "D",
"STUDYQ1", "BP40257-1001", "1", "2007001", "CMATC2CD", "D10",
"STUDYQ1", "BP40257-1001", "1", "2007001", "CMATC3CD", "D10A",
"STUDY@1", "BP40257-1001", "1", "2007001", "CMATC4CD", "D10QAA",
"STUDYQ1", "BP40257-1001", "2", "2007001", "CMATC1CD", "D",
"STUDY@1", "BP40257-1001", "2", "2007001", "CMATC2CD", "D@7",

"STUDY@1"”, "BP40257-1001", "2, "2007001", "CMATC3CD”, "DO7A",

derive_vars_cat

"STUDYO1",
"STUDYQ1",
"STUDY®1",
"STUDYO1",
"STUDYQ1",
"STUDY@1",
"STUDYO1",
"STUDYQ1",
"STUDY@1",

183

"BP40257-1001", "2", "2007001", "CMATCACD", "DOTAA",

"BP40257-1001", "3", "2007001", "CMATCICD", "H",

"BP40257-1001", "3", "2007001", "CMATC2CD", "He2",

"BP40257-1001", "3", "2007001", "CMATC3CD", "HO2A”",

"BP40257-1001", "3", "2007001", "CMATCACD", "HO2AB",

"BP40257-1002", "1", "2791596", "CMATCICD", "C",

"BP40257-1002", "1", "2791596", "CMATC2CD", "C@3",

"BP40257-1002", "1", "2791596", "CMATC3CD", "C@3D",

"BP40257-1002", "1", "2791596", "CMATCACD", "C@3DA"

derive_vars_atc(cm, facm, id_vars = exprs(FAGRPID))

derive_vars_cat

Derive Categorization Variables Like AVALCATy and AVALCAYN

Description

Derive Categorization Variables Like AVALCATy and AVALCAyN

Usage

derive_vars_cat(dataset, definition, by_vars = NULL)

Arguments

dataset

definition

Input dataset

The variables specified by the by_vars and definition arguments are expected
to be in the dataset.

Default value none

List of expressions created by exprs(). Must be in rectangular format and
specified using the same syntax as when creating a tibble using the tribble()
function. The definition object will be converted to a tibble using tribble()
inside this function.

Must contain:
* the column condition which will be converted to a logical expression and
will be used on the dataset input.

* at least one additional column with the new column name and the category
value(s) used by the logical expression.

* the column specified in by_vars (if by_vars is specified)

e.g. if by_vars is not specified:

exprs(~condition, ~AVALCAT1, ~AVALCAIN,
AVAL >= 140, ">=140 cm”, 1,
AVAL < 140, "<140 cm”, 2)

e.g. if by_vars is specified as exprs(VSTEST):

184

by_vars

Details

derive_vars_cat

exprs(~VSTEST, ~condition, ~AVALCAT1, ~AVALCAIN,
"Height”, AVAL >= 140, ">=140 cm”, 1,
"Height”, AVAL < 140, "<140 cm”, 2)

Default value none

list of expressions with one element. NULL by default. Allows for specifying by
groups, e.g. exprs(PARAMCD). Variable must be present in both dataset and
definition. The conditions in definition are applied only to those records
that match by_vars. The categorization variables are set to NA for records not
matching any of the by groups in definition.

Default value NULL

If conditions are overlapping, the row order of definitions must be carefully considered. The
first match will determine the category. i.e. if

AVAL =155

and the definition is:

definition <- exprs(

~VSTEST, ~condition, ~AVALCAT1, ~AVALCAIN,
"Height”, AVAL > 170, ">170 cm", 1,
"Height”, AVAL <= 170, "<=170 cm", 2,
"Height”, AVAL <= 160, "<=160 cm”, 3

)

then AVALCAT1 will be "<=17@ cm", as this is the first match for AVAL. If you specify:

definition <- exprs(

~VSTEST, ~condition, ~AVALCAT1, ~AVALCAIN,
"Height"”, AVAL <= 160, "<=160 cm”, 3,
"Height"”, AVAL <= 170, "<=170 cm”, 2,
"Height”, AVAL > 170, ">170 cm”, 1

)

Then AVAL <= 160 will lead to AVALCAT1 == "<=160 cm”, AVAL in-between 160 and 170 will lead to
AVALCAT1 == "<=170 cm", and AVAL <= 170 will lead to AVALCAT1 == ">170 cm".

However, we suggest to be more explicit when defining the condition, to avoid overlap. In this
case, the middle condition should be: AVAL <= 170 & AVAL > 160

Value

The input dataset with the new variables defined in definition added

derive_vars_cat 185

Examples

Data setup:

The following examples use the ADVS dataset below as a basis. It contains vital signs data with
some missing values (NA) that will demonstrate how the function handles different scenarios.

library(dplyr)
library(tibble)

advs <- tibble::tribble(
~USUBJID, ~VSTEST, ~AVAL,
"@1-701-1015", "Height", 147.32,
"91-701-1015", "Weight”, 53.98,
"01-701-1023", "Height"”, 162.56,

"01-701-1023", "Weight", NA,
"01-701-1028", "Height", NA,
"01-701-1028", "Weight", NA,

"01-701-1033", "Height”, 175.26,
"01-701-1033", "Weight”, 88.45

)

Derive categorization variables without by_vars:

In this example, we derive AVALCAT1, AVALCA1TN, and NEWCOL without using by_vars. The condi-
tions must include all necessary filtering logic, such as checking both VSTEST and AVAL. Records
that don’t match any condition will have NA values for the new variables.

definition <- exprs(

~condition, ~AVALCAT1, ~AVALCAIN, ~NEWCOL,
VSTEST == "Height” & AVAL > 160, ">160 cm”, 1, "extral”,
VSTEST == "Height” & AVAL <= 160, "<=160 cm”, 2, "extra2”

)

derive_vars_cat(
dataset = advs,
definition = definition
)
#> # A tibble: 8 x 6
#> USUBJID VSTEST AVAL AVALCAT1 AVALCATN NEWCOL

#> <chr> <chr> <dbl> <chr> <dbl> <chr>
#> 1 01-701-1015 Height 147. <=160 cm 2 extraz
#> 2 01-701-1015 Weight 54.0 <NA> NA <NA>
#> 3 01-701-1023 Height 163. >160@ cm 1 extral
#> 4 01-701-1023 Weight NA <NA> NA <NA>
#> 5 01-701-1028 Height NA <NA> NA <NA>
#> 6 01-701-1028 Weight NA <NA> NA <NA>
#> 7 01-701-1033 Height 175. >160 cm 1 extral
#> 8 01-701-1033 Weight 88.4 <NA> NA <NA>

Derive categorization variables using by_vars:

186

derive_vars_cat

When using by_vars, the conditions are automatically scoped to records matching each by group
value. This simplifies the condition logic as you don’t need to include the by variable in each
condition. Here we derive categories for both Height and Weight measurements using by_vars =
exprs(VSTEST).

definition2 <- exprs(

~VSTEST, ~condition, ~AVALCAT1, ~AVALCAITN,
"Height"”, AVAL > 160, ">160 cm”, 1,
"Height"”, AVAL <= 160, "<=160 cm”, 2,
"Weight”, AVAL > 70, ">70 kg", 1,
"Weight”, AVAL <= 70, "<=70 kg”, 2

)

derive_vars_cat(
dataset = advs,
definition = definition2,
by_vars = exprs(VSTEST)
)
#> # A tibble: 8 x 5
#> USUBJID VSTEST AVAL AVALCAT1 AVALCA1IN

#> <chr> <chr> <dbl> <chr> <dbl>
#> 1 01-701-1015 Height 147. <=160 cm 2
#> 2 01-701-1015 Weight 54.0 <=70 kg 2
#> 3 01-701-1023 Height 163. >160 cm 1
#> 4 01-701-1023 Weight NA <NA> NA
#> 5 01-701-1028 Height NA <NA> NA
#> 6 01-701-1028 Weight NA <NA> NA
#> 7 01-701-1033 Height 175. >160 cm 1
#> 8 01-701-1033 Weight 88.4 >70 kg 1

Using multiple conditions with explicit ranges:

When you need more than two categories, you can define multiple conditions. It’s best practice
to make conditions mutually exclusive using explicit range definitions (e.g., AVAL <= 170 & AVAL
> 160) to avoid ambiguity, even though the function uses first-match logic.

definition3 <- exprs(

~VSTEST, ~condition, ~AVALCAT1, ~AVALCAIN,
"Height", AVAL > 170, ">170 cm", 1,
"Height"”, AVAL <= 170 & AVAL > 160, "<=170 cm", 2,
"Height", AVAL <= 160, "<=160 cm", 3

)

derive_vars_cat(
dataset = advs,
definition = definition3,
by_vars = exprs(VSTEST)
)
#> # A tibble: 8 x 5
#> USUBJID VSTEST AVAL AVALCAT1 AVALCAIN

derive_vars_cat 187

#> <chr> <chr> <dbl> <chr> <dbl>
#> 1 01-701-1015 Height 147. <=160 cm 3
#> 2 01-701-1015 Weight 54.0 <NA> NA
#> 3 01-701-1023 Height 163. <=170 cm 2
#> 4 01-701-1023 Weight NA <NA> NA
#> 5 01-701-1028 Height NA <NA> NA
#> 6 01-701-1028 Weight NA <NA> NA
#> 7 01-701-1033 Height 175. >170 cm 1
#> 8 01-701-1033 Weight 88.4 <NA> NA

Deriving categories based on reference ranges (MCRITy variables):

This example demonstrates deriving laboratory measurement criteria variables (MCRITyML and
MCRITyMN). The conditions use reference range variables (like ANRHI) to create categories relative
to normal ranges, which is common in laboratory data analysis.

adlb <- tibble::tribble(

~USUBJID, ~PARAM, ~AVAL, ~AVALU, ~ANRHI,
"Q1-701-1015", "ALT", 150, "Uu/L", 40,
"01-701-1023", "ALT", 70, "U/L", 40,
"01-701-1036", "ALT", 130, "u/L", 40,
"01-701-1048", "ALT", 30, "U/L", 40,
"@1-701-1015", "AST", 50, "U/L", 35
)
definition_mcrit <- exprs(
~PARAM, ~condition, ~MCRITIML, ~MCRITIMN,
"ALT", AVAL <= ANRHI, "<=ANRHI", 1,
"ALT", ANRHI < AVAL & AVAL <= 3 * ANRHI, ">1-3xANRHI", 2,
"ALT", 3 * ANRHI < AVAL, ">3%xANRHI", 3

)

adlb %>%
derive_vars_cat(
definition = definition_mcrit,
by_vars = exprs(PARAM)

)

#> # A tibble: 5 x 7

#> USUBJID PARAM AVAL AVALU ANRHI MCRIT1ML MCRITTMN
#> <chr> <chr> <dbl> <chr> <dbl> <chr> <dbl>
#> 1 01-701-1015 ALT 150 U/L 40 >3*ANRHI 3
#> 2 01-701-1023 ALT 70 U/L 40 >1-3*ANRHI 2
#> 3 01-701-1036 ALT 130 U/L 40 >3*ANRHI 3
#> 4 01-701-1048 ALT 30 U/L 40 <=ANRHI 1
#> 5 01-701-1015 AST 50 U/L 35 <NA> NA

Handling missing values and partial by groups:

When using by_vars, records that don’t match any by group in the definition will have NA
for all derived variables. In this example, records with VSTEST == "Weight” will have NA values
because only "Height" conditions are defined. Additionally, records with missing AVAL will result
in NA for the categorization variables since conditions cannot be evaluated.

188

derive_vars_cat

definition4 <- exprs(

~VSTEST, ~condition, ~AVALCAT1, ~AVALCAIN,
"Height”, AVAL > 160, ">160 cm”, 1,
"Height”, AVAL <= 160, "<=160 cm", 2

)

derive_vars_cat(
dataset = advs,
definition = definition4,
by_vars = exprs(VSTEST)
)
#> # A tibble: 8 x 5
#> USUBJID VSTEST AVAL AVALCAT1 AVALCAIN

#> <chr> <chr> <dbl> <chr> <dbl>
#> 1 01-701-1015 Height 147. <=160 cm 2
#> 2 01-701-1015 Weight 54.0 <NA> NA
#> 3 01-701-1023 Height 163. >160 cm 1
#> 4 01-701-1023 Weight NA <NA> NA
#> 5 01-701-1028 Height NA <NA> NA
#> 6 01-701-1028 Weight NA <NA> NA
#> 7 01-701-1033 Height 175. >160 cm 1
#> 8 01-701-1033 Weight 88.4 <NA> NA

Deriving multiple categorization variables simultaneously:

You can derive any number of categorization variables in a single call. This example creates three
different categorization schemes (AVALCAT1, AVALCAT2, and AVALCAT3) with their corresponding
numeric flags, all from the same set of conditions.

definition5 <- exprs(

~VSTEST, ~condition, ~AVALCAT1, ~AVALCAIN, ~AVALCAT2, ~AVALCA2N, ~AVALCAT3,
"Height"”, AVAL > 160, ">160 cm”, 1, "Tall", 1, "Group A",
"Height"”, AVAL <= 160, "<=160 cm", 2, "Short", 2, "Group B",
"Weight", AVAL > 70, ">70 kg", 3, "Heavy", 3, "Group C",
"Weight"”, AVAL <= 70, "<=70 kg", 4, "Light", 4, "Group D"

)

derive_vars_cat(
dataset = advs,
definition = definition5,
by_vars = exprs(VSTEST)

)

#> # A tibble: 8 x 8

#> USUBJID VSTEST AVAL AVALCAT1 AVALCATN AVALCAT2 AVALCA2N AVALCAT3
#> <chr> <chr> <dbl> <chr> <dbl> <chr> <dbl> <chr>
#> 1 01-701-1015 Height 147. <=160 cm 2 Short 2 Group B
#> 2 01-701-1015 Weight 54.0 <=70 kg 4 Light 4 Group D
#> 3 01-701-1023 Height 163. >160 cm 1 Tall 1 Group A
#> 4 01-701-1023 Weight NA <NA> NA <NA> NA <NA>

#> 5 01-701-1028 Height NA <NA> NA <NA> NA <NA>

derive_vars_computed 189

#> 6 01-701-1028 Weight NA <NA> NA <NA> NA <NA>

#> 7 01-701-1033 Height 175. >160 cm 1 Tall 1 Group A

#> 8 01-701-1033 Weight 88.4 >70 kg 3 Heavy 3 Group C
See Also

General Derivation Functions for all ADaMs that returns variable appended to dataset: derive_var_extreme_flag(),
derive_var_joined_exist_flag(), derive_var_merged_ef_msrc(), derive_var_merged_exist_flag(),
derive_var_obs_number(), derive_var_relative_flag(), derive_vars_computed(), derive_vars_joined(),
derive_vars_joined_summary(), derive_vars_merged(), derive_vars_merged_lookup(), derive_vars_merged_sur
derive_vars_transposed()

derive_vars_computed Adds Variable(s) Computed from the Analysis Value of one or more
Parameters

Description

Adds Variable(s) computed from the analysis value of one or more parameters. It is expected
that the value of the new variable is defined by an expression using the analysis values of other
parameters, such as addition/sum, subtraction/difference, multiplication/product, division/ratio, ex-
ponentiation/logarithm, or by formula.

For example Body Mass Index at Baseline (BMIBL) in ADSL can be derived from of HEIGHT and
WEIGHT parameters in ADVS.

Usage

derive_vars_computed(
dataset,
dataset_add,
by_vars,
parameters,
new_vars,
filter_add = NULL,
constant_by_vars = NULL,
constant_parameters = NULL

Arguments

dataset The variables specified by the by_vars parameter are expected.
Default value none
dataset_add Additional dataset

The variables specified by the by_vars parameter are expected.

The variable specified by by_vars and PARAMCD must be a unique key of the
additional dataset after restricting it by the filter condition (filter_add param-
eter) and to the parameters specified by parameters.

190 derive_vars_computed

Default value none

by_vars Grouping variables
Grouping variables uniquely identifying a set of records for which new_vars are
to be calculated.
Permitted values list of variables created by exprs()
Default value none

parameters Required parameter codes
It is expected that all parameter codes (PARAMCD) which are required to derive
the new variable are specified for this parameter or the constant_parameters
parameter.
If observations should be considered which do not have a parameter code, e.g.,
if an SDTM dataset is used, temporary parameter codes can be derived by spec-
ifying a list of expressions. The name of the element defines the temporary pa-
rameter code and the expression defines the condition for selecting the records.
For example, parameters = exprs(HGHT = VSTESTCD == "HEIGHT") selects the
observations with VSTESTCD == "HEIGHT" from the input data (dataset and
dataset_add), sets PARAMCD = "HGHT" for these observations, and adds them
to the observations to consider.
Unnamed elements in the list of expressions are considered as parameter codes.
For example, parameters = exprs(WEIGHT, HGHT = VSTESTCD == "HEIGHT") uses
the parameter code "WEIGHT" and creates a temporary parameter code "HGHT".
Permitted values A character vector of PARAMCD values or a list of expressions
Default value none

new_vars Name of the newly created variables

The specified variables are set to the specified values. The values of variables of
the parameters specified by parameters can be accessed using <variable name>.<parameter code>.
For example

exprs(
BMIBL = (AVAL.WEIGHT / (AVAL.HEIGHT/100)"2)
)

defines the value for the new variable.
Variable names in the expression must not contain more than one dot.

Permitted values List of variable-value pairs
Default value none

filter_add Filter condition of additional dataset

The specified condition is applied to the additional dataset before deriving the
new variable, i.e., only observations fulfilling the condition are taken into ac-
count.

Permitted values a condition

Default value NULL
constant_by_vars

By variables for constant parameters
The constant parameters (parameters that are measured only once) are merged
to the other parameters using the specified variables. (Refer to the Example)

derive_vars_computed 191

Permitted values list of variables
Default value NULL

constant_parameters
Required constant parameter codes
It is expected that all the parameter codes (PARAMCD) which are required to derive
the new variable and are measured only once are specified here. For example
if BMI should be derived and height is measured only once while weight is
measured at each visit. Height could be specified in the constant_parameters
parameter. (Refer to the Example)
If observations should be considered which do not have a parameter code, e.g., if
an SDTM dataset is used, temporary parameter codes can be derived by specify-
ing a list of expressions. The name of the element defines the temporary param-
eter code and the expression defines the condition for selecting the records. For
example constant_parameters = exprs(HGHT = VSTESTCD == "HEIGHT") se-
lects the observations with VSTESTCD == "HEIGHT" from the input data (dataset
and dataset_add), sets PARAMCD = "HGHT" for these observations, and adds
them to the observations to consider.
Unnamed elements in the list of expressions are considered as parameter codes.
For example, constant_parameters = exprs(WEIGHT, HGHT = VSTESTCD == "HEIGHT")
uses the parameter code "WEIGHT" and creates a temporary parameter code
"HGHT".

Permitted values A character vector of PARAMCD values or a list of expressions
Default value NULL

Details

For each group (with respect to the variables specified for the by_vars argument), the values
of the new variables (new_vars) are computed based on the parameters in the additional dataset
(dataset_add) and then the new variables are merged to the input dataset (dataset).

Value

The input dataset with the new variables added.

See Also

General Derivation Functions for all ADaMs that returns variable appended to dataset: derive_var_extreme_flag(),
derive_var_joined_exist_flag(), derive_var_merged_ef_msrc(), derive_var_merged_exist_flag(),
derive_var_obs_number(), derive_var_relative_flag(), derive_vars_cat(),derive_vars_joined(),
derive_vars_joined_summary(), derive_vars_merged(), derive_vars_merged_lookup(), derive_vars_merged_sur
derive_vars_transposed()

Examples
library(tibble)
library(dplyr)

Example 1: Derive BMIBL
adsl <- tribble(

192 derive_vars_crit_flag

~STUDYID, ~USUBJID, ~AGE, ~AGEU,
"PILOTO1", "@1-1302", 61, "YEARS",
"PILOTO1", "17-1344", 64, "YEARS"

)

advs <- tribble(
~STUDYID, ~USUBJID, ~PARAMCD, ~PARAM, ~VISIT, ~AVAL, ~AVALU, ~ABLFL,
"PILOT@1", "@1-1302", "HEIGHT", "Height (cm)”, "SCREENING”, 177.8, "cm", "Y",
"PILOT@1", "01-1302", "WEIGHT", "Weight (kg)", "SCREENING", 81.19, "kg", NA,
"PILOTQ1", "@1-1302", "WEIGHT", "Weight (kg)", "BASELINE”, 82.1, "kg", "Y",
"PILOTO1", "@1-1302", "WEIGHT", "Weight (kg)", "WEEK 2", 81.19, "kg", NA,
"PILOT@1", "01-1302", "WEIGHT", "Weight (kg)", "WEEK 4", 82.56, "kg", NA,
"PILOTO1", "@1-1302", "WEIGHT", "Weight (kg)", "WEEK 6", 80.74, "kg", NA,
"PILOT@1", "17-1344", "HEIGHT", "Height (cm)”, "SCREENING”, 163.5, "cm”, "Y",
"PILOT@1", "17-1344", "WEIGHT", "Weight (kg)", "SCREENING", 58.06, "kg", NA,
"PILOTQ1", "17-1344", "WEIGHT", "Weight (kg)", "BASELINE”, 58.06, "kg", "Y",
"PILOT@1", "17-1344", "WEIGHT", "Weight (kg)", "WEEK 2", 58.97, "kg", NA,
"PILOT@1", "17-1344", "WEIGHT", "Weight (kg)", "WEEK 4", 57.97, "kg", NA,
"PILOTO1", "17-1344", "WEIGHT", "Weight (kg)", "WEEK 6", 58.97, "kg", NA

)

derive_vars_computed(
dataset = adsl,
dataset_add = advs,
by_vars = exprs(STUDYID, USUBJID),
parameters = c("WEIGHT", "HEIGHT"),
new_vars = exprs(BMIBL = compute_bmi(height = AVAL.HEIGHT, weight = AVAL.WEIGHT)),
filter_add = ABLFL == "Y"

derive_vars_crit_flag Derive Criterion Flag Variables CRITy, CRITyFL, and CRITyFN

Description

The function derives ADaM compliant criterion flags, e.g., to facilitate subgroup analyses.
If a criterion flag can’t be derived with this function, the derivation is not ADaM compliant. It helps
to ensure that:

* the condition of the criterion depends only on variables of the same row,

* the CRITyFL is populated with valid values, i.e, either "Y" and NA or "Y", "N", and NA,

* the CRITy variable is populated correctly, i.e.,

— set to a constant value within a parameter if CRITyFL is populated with "Y", "N", and NA
and

— set to a constant value within a parameter if the criterion condition is fulfilled and to NA
otherwise if CRITyFL is populated with "Y", and NA

derive_vars_crit_flag 193

Usage

derive_vars_crit_flag(
dataset,
crit_nr = 1,
condition,
description,
values_yn = FALSE,
create_numeric_flag = FALSE

Arguments

dataset Input dataset

Permitted values a dataset, i.e., a data.frame or tibble
Default value none

crit_nr The criterion number, i.e., the y in CRITy

Permitted values a positive integer, e.g. 2 or 5
Default value 1

condition Condition for flagging records
See description of the values_yn argument for details on how the CRITyFL
variable is populated.
Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value none

description The description of the criterion
The CRITy variable is set to the specified value.
An expression can be specified to set the value depending on the parameter.
Please note that the value must be constant within a parameter.
Permitted values an unquoted expression which evaluates to a character (in
dataset)
Default value none

values_yn Should "Y" and "N" be used for CRITyFL?

If set to TRUE, the CRITyFL variable is set to "Y" if the condition (condition)
evaluates to TRUE, it is set to "N” if the condition evaluate to FALSE, and to NA if
it evaluates to NA.

Otherwise, the CRITyFL variable is set to "Y" if the condition (condition) eval-
uates to TRUE, and to NA otherwise.
Permitted values TRUE, FALSE

Default value FALSE
create_numeric_flag

Create a numeric flag?

If set to TRUE, the CRITyFN variable is created. It is set to 1 if CRITyFL == "Y",
it set to @ if CRITyFL == "N"”, and to NA otherwise.

Permitted values TRUE, FALSE

Default value FALSE

194 derive_vars_crit_flag

Value

The input dataset with the variables CRITy, CRITyFL, and optionally CRITyFN added.

Examples

Data setup:
The following examples use the BDS dataset below as a basis.

library(tibble, warn.conflicts = FALSE)

adbds <- tribble(
~PARAMCD, ~AVAL,

"AST", 42,
"AST", 52,
"AST", NA_real_,
"ALT", 33,
"ALT", 51

)

Creating a simple criterion flag with values "Y" and NA (condition, description):

The following call is a simple application of derive_vars_crit_flag() to derive a criterion
flag/variable pair in a BDS dataset.

* The new variables are named CRIT1/CRITTFL because the argument crit_nr has not been
passed.

* Since the argument values_yn has also not been passed and thus is set to its default of
FALSE, CRITTFL is set to Y only if condition evaluates to TRUE. For example, in both the
first and third records, where condition is respectively FALSE and NA, we set CRITTFL =
NA_character_. The fourth record also exhibits this behavior. Also, as per CDISC standards,
in this case CRIT1 is populated only for records where condition evaluates to TRUE.

derive_vars_crit_flag(

adbds,
condition = AVAL > 50,
description = "Absolute value > 50"

)

#> # A tibble: 5 x 4

#> PARAMCD AVAL CRIT1FL CRIT1
#> <chr> <dbl> <chr> <chr>

#> 1 AST 42 <NA> <NA>
#> 2 AST 52 Y Absolute value > 50
#> 3 AST NA <NA> <NA>
#> 4 ALT 33 <NA> <NA>
#> 5 ALT 51°Y Absolute value > 50

The description argument also accepts expressions which depend on other variables in the input
dataset. This can be useful to dynamically populate CRITx, for instance in the case below where
we improve the CRIT1 text because the same flag/variable pair is actually being used for multiple
parameters.

derive_vars_crit_flag 195

derive_vars_crit_flag(
adbds,
condition = AVAL > 50,
description = paste(PARAMCD, "> 50"),
)
#> # A tibble: 5 x 4
#> PARAMCD AVAL CRIT1FL CRIT1
#> <chr> <dbl> <chr> <chr>

#> 1 AST 42 <NA> <NA>
#> 2 AST 52 Y AST > 50
#> 3 AST NA <NA> <NA>
#> 4 ALT 33 <NA> <NA>
#> 5 ALT 51Y ALT > 50

Creating a criterion flag with values "Y", "N" and NA (values_yn):

The next call builds on the previous example by using value_yn = TRUE to distinguish between
the cases where condition is FALSE and those where it is not evaluable at all.

* As compared to the previous example, for the first record condition evaluates to FALSE and
so we set CRIT1FL = "N”, whereas for the third record, condition evaluates to NA because
AVAL is missing and so we set CRITTFL to NA.

* Note also that because we are using the values "Y”, "N" and NA for the flag, as per CDISC
standards CRIT1 is now populated for all records rather than just for the "Y" records.

derive_vars_crit_flag(
adbds,
condition = AVAL > 50,
description = paste(PARAMCD, "> 50"),
values_yn = TRUE
)
#> # A tibble: 5 x 4
#> PARAMCD AVAL CRIT1FL CRIT1
#> <chr> <dbl> <chr> <chr>

#> 1 AST 42 N AST > 50
#> 2 AST 52 Y AST > 50
#> 3 AST NA <NA> AST > 50
#> 4 ALT 33 N ALT > 50
#> 5 ALT 51Y ALT > 50

If the user wishes to set the criterion flag to "N" whenever the condition is not fulfilled, condition
can be updated using an if_else call, where the third argument determines the behavior when
the condition is not evaluable.

derive_vars_crit_flag(
adbds,
condition = if_else(AVAL > 5@, TRUE, FALSE, FALSE),
description = paste(PARAMCD, "> 50"),
values_yn = TRUE

)
#> # A tibble: 5 x 4

196 derive_vars_dt

#> PARAMCD AVAL CRIT1FL CRIT1
#> <chr> <dbl> <chr> <chr>

#> 1 AST 42 N AST > 50
#> 2 AST 52 Y AST > 50
#> 3 AST NA N AST > 50
#> 4 ALT 33 N ALT > 50
#> 5 ALT 51Y ALT > 50

Specifying the criterion variable/flag number and creating a numeric flag (crit_nr, create_numeric_flag).:

The user can manually specify the criterion variable/flag number to use to name CRITy/CRITyFL
by passing the crit_nr argument. This may be necessary if, for instance, other criterion flags
already exist in the input dataset.

The user can also choose to create an additional, equivalent numeric flag CRITyFN by setting
create_numeric_flag to TRUE.

derive_vars_crit_flag(
adbds,
condition = AVAL > 50,
description = paste(PARAMCD, "> 50"),
values_yn = TRUE,
crit_nr = 2,
create_numeric_flag = TRUE
)
#> # A tibble: 5 x 5
#> PARAMCD AVAL CRIT2FL CRIT2 CRIT2FN

#> <chr> <dbl> <chr> <chr> <int>

#> 1 AST 42 N AST > 50 0

#> 2 AST 52 Y AST > 50 1

#> 3 AST NA <NA> AST > 50 NA

#> 4 ALT 33 N ALT > 50 0

#> 5 ALT 51Y ALT > 50 1
See Also

BDS-Findings Functions that returns variable appended to dataset: derive_basetype_records(),
derive_var_analysis_ratio(), derive_var_anrind(), derive_var_atoxgr(), derive_var_atoxgr_dir(),
derive_var_base(), derive_var_chg(), derive_var_nfrlt(), derive_var_ontrtfl(), derive_var_pchg(),
derive_var_shift()

derive_vars_dt Derive/Impute a Date from a Character Date

Description

Derive a date (*DT) from a character date (--DTC). The date can be imputed (see date_imputation
argument) and the date imputation flag (*DTF) can be added.

derive_vars_dt

Usage

derive_vars_dt(
dataset,
new_vars_prefix,
dtc,
highest_imputation = "n",
date_imputation = "first",
flag_imputation = "auto”,
min_dates = NULL,
max_dates = NULL,
preserve = FALSE

197

Arguments

dataset

new_vars_prefix

dtc

Input dataset
The variables specified by the dtc argument are expected to be in the dataset.

Permitted values a dataset, i.e., a data.frame or tibble
Default value none

Prefix used for the output variable(s).

A character scalar is expected. For the date variable (*DT) is appended to the
specified prefix and for the date imputation flag (*DTF), i.e., for new_vars_prefix
= "AST" the variables ASTDT and ASTDTF are created.

Permitted values a character scalar, i.e., a character vector of length one
Default value none

The --DTC date to impute

A character date is expected in a format like yyyy-mm-dd or yyyy-mm-ddThh:mm: ss.
Trailing components can be omitted and - is a valid "missing" value for any
component.

Permitted values a character date variable

Default value none

highest_imputation

Highest imputation level

The highest_imputation argument controls which components of the --DTC
value are imputed if they are missing. All components up to the specified level
are imputed.

If a component at a higher level than the highest imputation level is miss-
ing, NA_character_ is returned. For example, for highest_imputation = "D"
"2020" results in NA_character_ because the month is missing.

If "n" (none, lowest level) is specified no imputation is performed, i.e., if any
component is missing, NA_character_ is returned.

If "Y" (year, highest level) is specified, date_imputation must be "first"” or
"last" and min_dates or max_dates must be specified respectively. Other-
wise, an error is thrown.

198

date_imputation

flag_imputation

min_dates

derive_vars_dt

Permitted values "Y" (year, highest level), "M" (month), "D"” (day), "n" (none,
lowest level)

Default value "n”

The value to impute the day/month when a datepart is missing.
A character value is expected.
e Ifhighest_imputationis "M", month and day can be specified as "mm-dd":
e.g. "06-15" for the 15th of June
* When highest_imputation is "M" or "D", the following keywords are
available: "first"”, "mid"”, "last” to impute to the first/mid/last day/month.
If "mid" is specified, missing components are imputed as the middle of the
possible range:
— If both month and day are missing, they are imputed as "06-30" (mid-
dle of the year).
— If only day is missing, it is imputed as "15" (middle of the month).
The year can not be specified; for imputing the year "first"” or "last"” together
with min_dates or max_dates argument can be used (see examples).

Permitted values "first”, "mid"”, "last”, or user-defined
Default value "first”

Whether the date imputation flag must also be derived.

If "auto” is specified and highest_imputation argument is not "n", then date
imputation flag is derived.

If "date” is specified, then date imputation flag is derived.

If "none” is specified, then no date imputation flag is derived.

Please note that CDISC requirements dictate the need for a date imputation flag
if any imputation is performed, so flag_imputation = "none"” should only be
used if the imputed variable is not part of the final ADaM dataset.

Permitted values "auto”, "date"” or "none”
Default value "auto”

Minimum dates

A list of dates is expected. It is ensured that the imputed date is not before any
of the specified dates, e.g., that the imputed adverse event start date is not before
the first treatment date. Only dates which are in the range of possible dates of the
dtc value are considered. The possible dates are defined by the missing parts of
the dtc date (see example below). This ensures that the non-missing parts of the
dtc date are not changed. A date or date-time object is expected. For example

impute_dtc_dtm(
"2020-11",
min_dates = list(
ymd_hms ("2020-12-06T12:12:12"),
ymd_hms ("2020-11-11T11:11:11")

),
highest_imputation = "M"

derive_vars_dt 199

returns "2020-11-11T11:11:11" because the possible dates for "2020-11" range

from "2020-11-01T00:00:00" to "2020-11-30T23:59:59". Therefore "2020-12-06T12:12:12"
is ignored. Returning "2020-12-06T12:12:12" would have changed the month

although it is not missing (in the dtc date).

Permitted values alistof dates, e.g. list(ymd_hms("2021-07-01T04:03:01"),
ymd_hms ("2022-05-12T13:57:23"))
Default value NULL

max_dates Maximum dates

A list of dates is expected. It is ensured that the imputed date is not after any of
the specified dates, e.g., that the imputed date is not after the data cut off date.
Only dates which are in the range of possible dates are considered. A date or
date-time object is expected.

Permitted values alist of dates, e.g. 1list(ymd_hms("2021-07-01704:03:01"),
ymd_hms ("2022-05-12T13:57:23"))
Default value NULL

preserve Preserve day if month is missing and day is present
For example "2019---07" would return "2019-06-07 if preserve = TRUE (and
date_imputation = "MID").
Permitted values TRUE, FALSE
Default value FALSE

Details

In {admiral} we don’t allow users to pick any single part of the date/time to impute, we only enable
to impute up to a highest level, i.e. you couldn’t choose to say impute months, but not days.

The presence of a *xDTF variable is checked and if it already exists in the input dataset, a warning is
issued and *DTF will be overwritten.

Value

The input dataset with the date *DT (and the date imputation flag *DTF if requested) added.

Examples

Derive a date variable without imputation:
In this example, we derive ASTDT from MHSTDTC with no imputation done for partial dates.

library(tibble)
library(lubridate)

mhdt <- tribble(
~MHSTDTC,
"2019-07-18T15:25:40",
"2019-07-18T15:25",
"2019-07-18",
"2019-02",

200

)

”2@19",
"2019---07",

nn

derive_vars_dt(

)

mhdt,
new_vars_prefix = "AST",
dtc = MHSTDTC

#> # A tibble: 7 x 2

#>
#>
#>
#>
#>
#>
#>
#>
#>

Impute partial dates (highest_imputation):

NOo o w N =

MHSTDTC

<chr>
"2019-07-18T15:25:40"
"2019-07-18T15:25"
"2019-07-18"
"2019-02"

"2019"

"2019---07"

nn

ASTDT
<date>
2019-07-18
2019-07-18
2019-07-18
NA

NA

NA

NA

derive_vars_dt

Imputation is requested by the highest_imputation argument. Here highest_imputation =
"M" for month imputation is used, i.e. the highest imputation done on a partial date is up to
the month. By default, missing date components are imputed to the first day/month/year. A
date imputation flag variable, ASTDTF, is automatically created. The flag variable indicates if

imputation was done on the date.

derive_vars_dt(

)

mhdt,

new_vars_prefix = "AST",
dtc = MHSTDTC,
highest_imputation = "M",
date_imputation = "first”

#> # A tibble: 7 x 3

#>
#>
#>
#>
#>
#>
#>
#>
#>

Impute to the last day/month (date_imputation = "last"”):

~No o b w N =

MHSTDTC

<chr>
"2019-07-18T15:25:40"
"2019-07-18T15:25"
"2019-07-18"
"2019-02"

"2019"

"2019---07"

nn

ASTDT
<date>
2019-07-18
2019-07-18
2019-07-18
2019-02-01
2019-01-01
2019-01-01
NA

ASTDTF
<chr>
<NA>
<NA>
<NA>

D

M

M

<NA>

In this example, we derive ADT impute partial dates to last day/month, i.e. date_imputation =
"last".

derive_vars_dt 201

gsdt <- tribble(
~QSDTC,
"2019-07-18T15:25:40",
"2019-07-18T15:25",

"2019-07-18",
"2019-02",
"2019",
"2019---07",
)
derive_vars_dt(
gsdt,
new_vars_prefix = "A",
dtc = QSDTC,
highest_imputation = "M",
date_imputation = "last”
)
#> # A tibble: 7 x 3
#> QSDTC ADT ADTF
#> <chr> <date> <chr>
#> 1 "2019-07-18T15:25:40" 2019-07-18 <NA>
#> 2 "2019-07-18T15:25" 2019-07-18 <NA>
#> 3 "2019-07-18" 2019-07-18 <NA>
#> 4 "2019-02" 2019-02-28 D
#> 5 "2019" 2019-12-31 M
#> 6 "2019---07" 2019-12-31 M
#> 7 "" NA <NA>

Impute to the middle (date_imputation = "mid") and suppress imputation flag (flag_imputation
= "none"):

In this example, we will derive TRTSDT with date imputation flag (*DTF) suppressed. Since
date_imputation = "mid", partial date imputation will be set to June 30th for missing month
and 15th for missing day only. The flag_imputation = "none” call ensures no date imputation
flag is created. In practice, as per CDISC requirements this option can only be selected if the
imputed variable is not part of the final ADaM dataset.

exdt <- tribble(
~EXSTDTC,
"2019-07-18T15:25:40",
"2019-07-18T15:25",
"2019-07-18",
"2019-02",
"2019",
"2019---07",

nn

)

derive_vars_dt(
exdt,

202

)

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

new_vars_prefix = "TRTS",
dtc = EXSTDTC,

highest_imputation = "M",
date_imputation = "mid",
flag_imputation = "none”

A tibble: 7 x 2
EXSTDTC

<chr>
"2019-07-18T15:25:40"
"2019-07-18T15:25"
"2019-07-18"
"2019-02"

"2019"

"2019---07"

nn

NOoO o w N =

derive_vars_dt

TRTSDT
<date>
2019-07-18
2019-07-18
2019-07-18
2019-02-15
2019-06-30
2019-06-30
NA

Impute to a specific date (date_imputation = "04-06"):

In this example, we derive ASTDT with specific date imputation, i.e. date_imputation = "04-06".
Note that day portion, "-06", is used in the imputation of the record with "2019-02".

de

rive_vars_dt(

mhdt,

new_vars_prefix = "AST",

dtc = MHSTDTC,

highest_imputation = "M",

date_imputation = "04-06"

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

)

A tibble: 7 x 3
MHSTDTC

<chr>
"2019-07-18T15:25:40"
"2019-07-18T15:25"
"2019-07-18"
"2019-02"

"2019"

"2019---07"

nn

NOoO O w N =

ASTDT ASTDTF
<date> <chr>
2019-07-18 <NA>
2019-07-18 <NA>
2019-07-18 <NA>
2019-02-06 D
2019-04-06 M
2019-04-06 M

NA <NA>

Applying a lower boundary to date imputation with (min_dates):

In this example, we derive ASTDT where AESTDTC is all partial dates in need of imputation. Us-
ing min_dates = exprs(TRTSDTM), we are telling the function to apply the treatment start date
(TRTSDTM) as a lower boundary for imputation via the min_dates argument. This means:

* For partial dates that could potentially include TRTSDTM (case 1 & 2), the imputed date is

adjusted to TRTSDTM

* For partial dates that are entirely before TRTSDTM (case 3 & 4), standard imputation rules

apply without adjustment

* For partial dates that are entirely after TRTSDTM (case 5), standard imputation rules apply

derive_vars_dt 203

adae <- tribble(
~case, ~AESTDTC, ~TRTSDTM,

1, "2020-12", ymd_hms("2020-12-06T12:12:12"),

2, "2020", ymd_hms("2020-12-06T12:12:12"),

3, "2020-11", ymd_hms("2020-12-06T12:12:12"),

4, "2020-01", ymd_hms("2020-12-06T12:12:12"),

5, "2021-01", ymd_hms("2020-12-06T12:12:12")
)
derive_vars_dt(

adae,

dtc = AESTDTC,

new_vars_prefix = "AST",

highest_imputation = "M",

date_imputation = "first",

min_dates = exprs(TRTSDTM)

)
#> # A tibble: 5 x 5
#> case AESTDTC TRTSDTM ASTDT ASTDTF
#> <dbl> <chr> <dttm> <date> <chr>
#> 1 1 2020-12 2020-12-06 12:12:12 2020-12-06 D
#> 2 2 2020 2020-12-06 12:12:12 2020-12-06 M
#> 3 3 2020-11 2020-12-06 12:12:12 2020-11-01 D
4 4 2020-01 2020-12-06 12:12:12 2020-01-01 D
#> 5 5 2021-01 2020-12-06 12:12:12 2021-01-01 D

Applying an upper boundary to date imputation with (max_dates):

In this example, we derive ASTDT where AESTDTC is all partial dates in need of imputation. Us-
ing max_dates = exprs(TRTEDTM), we are telling the function to apply the treatment end date
(TRTEDTM) as an upper boundary for imputation via the max_dates argument. This means:

* For partial dates that could potentially include TRTEDTM (case 1 & 2), the imputed date is
adjusted to TRTEDTM

* For partial dates that are entirely before TRTEDTM (case 3 & 4), standard imputation rules
apply without adjustment

* For partial dates that are entirely after TRTEDTM (case 5), standard imputation rules apply

adae <- tribble(
~case, ~AESTDTC, ~TRTSDTM, ~TRTEDTM,
1, "2020-12", ymd_hms("2020-01-01T12:12:12"), ymd_hms("2020-12-20723:59:59"),
2, "2020", ymd_hms("2020-01-01T12:12:12"), ymd_hms("2020-12-20T23:59:59"),
3, "2020-11", ymd_hms("2020-01-01T12:12:12"), ymd_hms("2020-12-20T23:59:59"),
4, "2020-01", ymd_hms("2020-01-01T12:12:12"), ymd_hms("2020-12-20T23:59:59"),
5, "2021-01", ymd_hms("2020-01-01T12:12:12"), ymd_hms("2020-12-20T23:59:59")

)

derive_vars_dt(
adae,
dtc = AESTDTC,

204 derive_vars_dt

new_vars_prefix = "AST",
highest_imputation = "M",
date_imputation = "last”,
max_dates = exprs(TRTEDTM)

#> # A tibble: 5 x 6
#> case AESTDTC TRTSDTM TRTEDTM ASTDT ASTDTF
#> <dbl> <chr> <dttm> <dttm> <date> <chr>
#> 2020-12 2020-01-01 12:12:12 2020-12-20 23:59:59 2020-12-20
#> 2020 2020-01-01 12:12:12 2020-12-20 23:59:59 2020-12-20
#> 2020-11 2020-01-01 12:12:12 2020-12-20 23:59:59 2020-11-30
#> 2020-01 2020-01-01 12:12:12 2020-12-20 23:59:59 2020-01-31
#> 2021-01 2020-01-01 12:12:12 2020-12-20 23:59:59 2021-01-31

gl w N =
gl A~ w N =
O O O X O

Preserve lower components if higher ones were imputed (preserve):

The preserve argument can be used to "preserve" information from the partial dates. For exam-
ple, "2019---07", will be displayed as "2019-06-07" rather than "2019-06-30" with preserve
= TRUE and date_imputation = "mid" .

derive_vars_dt(
mhdt,
new_vars_prefix = "AST",
dtc = MHSTDTC,
highest_imputation = "M",
date_imputation = "mid",
preserve = TRUE

)

#> # A tibble: 7 x 3

#> MHSTDTC ASTDT ASTDTF
#> <chr> <date> <chr>
#> 1 "2019-07-18T15:25:40" 2019-07-18 <NA>
#> 2 "2019-07-18T15:25" 2019-07-18 <NA>
#> 3 "2019-07-18" 2019-07-18 <NA>
#> 4 "2019-02" 2019-02-15 D

#> 5 "2019" 2019-06-30 M

#> 6 "2019---07" 2019-06-07 M

#> 7 "" NA <NA>

Further examples:
Further example usages of this function can be found in the vignette("imputation”).

See Also
vignette("imputation")

Date/Time Derivation Functions that returns variable appended to dataset: derive_var_trtdurd(),
derive_vars_dtm(), derive_vars_dtm_to_dt(), derive_vars_dtm_to_tm(), derive_vars_duration(),
derive_vars_dy()

derive_vars_dtm 205

derive_vars_dtm Derive/Impute a Datetime from a Character Date

Description

Derive a datetime object (*DTM) from a character date (--DTC). The date and time can be imputed
(see date_imputation/time_imputation arguments) and the date/time imputation flag (*DTF,
*TMF) can be added.

Usage
derive_vars_dtm(
dataset,
new_vars_prefix,
dtc,
highest_imputation = "h",
date_imputation = "first”,
time_imputation = "first”,
flag_imputation = "auto",

min_dates = NULL,
max_dates = NULL,
preserve = FALSE,
ignore_seconds_flag = TRUE

Arguments

dataset Input dataset
The variables specified by the dtc argument are expected to be in the dataset.

Permitted values a dataset, i.e., a data. frame or tibble
Default value none

new_vars_prefix
Prefix used for the output variable(s).
A character scalar is expected. For the date variable (*DT) is appended to the
specified prefix, for the date imputation flag (xDTF), and for the time imputation
flag (*TMF), i.e., for new_vars_prefix = "AST" the variables ASTDT, ASTDTF,
and ASTTMF are created.
Permitted values a character scalar, i.e., a character vector of length one
Default value none

dtc The --DTC date to impute

A character date is expected in a format like yyyy-mm-dd or yyyy-mm-ddThh:mm: ss.
Trailing components can be omitted and - is a valid "missing" value for any
component.

Permitted values a character date variable

206

derive_vars_dtm

Default value none

highest_imputation

date_imputation

time_imputation

Highest imputation level

The highest_imputation argument controls which components of the --DTC
value are imputed if they are missing. All components up to the specified level
are imputed.

If a component at a higher level than the highest imputation level is miss-
ing, NA_character_ is returned. For example, for highest_imputation = "D"
"2020" results in NA_character_ because the month is missing.

If "n" is specified, no imputation is performed, i.e., if any component is missing,
NA_character_ is returned.

If "Y" is specified, date_imputation should be "first” or "last” and min_dates
or max_dates should be specified respectively. Otherwise, NA_character_ is
returned if the year component is missing.

Permitted values "Y" (year, highest level), "M" (month), "D" (day), "h" (hour),
"m" (minute), "s" (second), "n" (none, lowest level)
Default value "h"

The value to impute the day/month when a datepart is missing.
A character value is expected.
e Ifhighest_imputationis "M", month and day can be specified as "mm-dd":
e.g. "06-15" for the 15th of June

* When highest_imputation is "M" or "D", the following keywords are
available: "first”, "mid"”, "last” to impute to the first/mid/last day/month.
If "mid" is specified, missing components are imputed as the middle of the
possible range:

— If both month and day are missing, they are imputed as "06-30" (mid-
dle of the year).

— If only day is missing, it is imputed as "15" (middle of the month).

The year can not be specified; for imputing the year "first"” or "last"” together
with min_dates or max_dates argument can be used (see examples).

Permitted values "first”, "mid", "last”, or user-defined
Default value "first”

The value to impute the time when a timepart is missing.

A character value is expected, either as a

 format with hour, min and sec specified as "hh:mm:ss": e.g. "00:00:00"
for the start of the day,

 or as a keyword: "first”,”last” to impute to the start/end of a day.
The argument is ignored if highest_imputation="n".

Permitted values "first”, "last”, or user-defined
Default value "first”

derive_vars_dtm 207

flag_imputation
Whether the date/time imputation flag(s) must also be derived.

If "both" or "date” is specified, then date imputation flag is derived. If "auto”
is specified and highest_imputation argument is greater than "h", then date
imputation flag is derived.

If "both” or "time" is specified, then time imputation flag is derived. If "auto”
is specified and highest_imputation argument is not "n", then time imputa-
tion flag is derived.

If "none" is specified, then no date or time imputation flag is derived.

Please note that CDISC requirements dictate the need for a date/time imputation
flag if any imputation is performed, so flag_imputation = "none" should only
be used if the imputed variable is not part of the final ADaM dataset.

Permitted values "auto”, "date”,”time”, "both" or "none”
Default value "auto”

min_dates Minimum dates

A list of dates is expected. It is ensured that the imputed date is not before any
of the specified dates, e.g., that the imputed adverse event start date is not before
the first treatment date. Only dates which are in the range of possible dates of the
dtc value are considered. The possible dates are defined by the missing parts of
the dtc date (see example below). This ensures that the non-missing parts of the
dtc date are not changed. A date or date-time object is expected. For example

impute_dtc_dtm(
"2020-11",
min_dates = list(
ymd_hm("2020-12-06T12:12"),
ymd_hm("2020-11-11T11:11")
),
highest_imputation = "M"

)

returns "2020-11-11T11:11:11" because the possible dates for "2020-11" range

from "2020-11-01T00:00:00" to "2020-11-30T23:59:59". Therefore "2020-12-06T12:12:12"
is ignored. Returning "2020-12-06T12:12:12" would have changed the month

although it is not missing (in the dtc date).

For date variables (not datetime) in the list the time is imputed to "00:00:00".

Specifying date variables makes sense only if the date is imputed. If only time

is imputed, date variables do not affect the result.

Permitted values alist of dates, e.g. 1ist(ymd_hms("2021-07-01704:03:01"),
ymd_hms ("2022-05-12T13:57:23"))
Default value NULL

max_dates Maximum dates

A list of dates is expected. It is ensured that the imputed date is not after any of
the specified dates, e.g., that the imputed date is not after the data cut off date.
Only dates which are in the range of possible dates are considered. A date or
date-time object is expected.

208

preserve

derive_vars_dtm

For date variables (not datetime) in the list the time is imputed to "23:59:59".
Specifying date variables makes sense only if the date is imputed. If only time
is imputed, date variables do not affect the result.

Permitted values alist of dates, e.g. 1list(ymd_hms("2021-07-01704:03:01"),

ymd_hms ("2022-05-12T713:57:23"))
Default value NULL
Preserve lower level date/time part when higher order part is missing, e.g. pre-
serve day if month is missing or preserve minute when hour is missing.
For example "2019---07" would return "2019-06-07 if preserve = TRUE (and
date_imputation = "mid").
Permitted values TRUE, FALSE
Default value FALSE

ignore_seconds_flag

Details

Value

Examples

ADaM IG states that given SDTM (--DTC) variable, if only hours and minutes
are ever collected, and seconds are imputed in (*DTM) as 00, then it is not neces-
sary to set (*TMF) to "S".

By default it is assumed that no seconds are collected and *TMF shouldn’t be set
to "S". A user can set this to FALSE if seconds are collected.

The default value of ignore_seconds_flag is set to TRUE in admiral 1.4.0 and
later.

Permitted values TRUE, FALSE

Default value TRUE

In {admiral} we don’t allow users to pick any single part of the date/time to impute, we only enable
to impute up to a highest level, i.e. you couldn’t choose to say impute months, but not days.

The presence of a #*DTF variable is checked and the variable is not derived if it already exists in the
input dataset. However, if *TMF already exists in the input dataset, a warning is issued and *TMF will
be overwritten.

The input dataset with the datetime *DTM (and the date/time imputation flag *DTF, *TMF) added.

Derive a datetime variable imputing time:

In this example, we derive ASTDTM from MHSTDTC. Note that by default the function imputes miss-
ing time components to 0@ but doesn’t impute missing date components and automatically pro-
duces the time imputation flag (ASTTMF).

library(tibble)
library(lubridate)

mhdt <- tribble(

derive_vars_dtm 209

~MHSTDTC,

"2019-07-18T15:25",

"2019-07-18",

"2019-02",

"2019",

"2019---07",
)
derive_vars_dtm(

mhdt,

new_vars_prefix = "AST",

dtc = MHSTDTC
)
#> # A tibble: 6 x 3
#> MHSTDTC ASTDTM ASTTMF
#> <chr> <dttm> <chr>
#> 1 "2019-07-18T15:25" 2019-07-18 15:25:00 <NA>
#> 2 "2019-07-18" 2019-07-18 00:00:00 H
#> 3 "2019-02" NA <NA>
#> 4 "2019" NA <NA>
#> 5 "2019---07" NA <NA>
#>6 "" NA <NA>

Impute to the latest (date_imputation = "last"):

In this example, we set date_imputation = "last” to get the last month/day for partial dates.
We also set time_imputation = "last"”. The function will use all or part of 23:59:59 for time
imputation. Note that highest_imputation must be at least "D" to perform date imputation.
Here we use highest_imputation = "M" to request imputation of month and day (and time).
Also note that two flag variables are created. By default ASTTMF is set to NA if only seconds are
imputed. Set ignore_seconds_flag = FALSE to have the "S" flag for ASTTMF

derive_vars_dtm(

mhdt,

new_vars_prefix = "AST",

dtc = MHSTDTC,

date_imputation = "last”,

time_imputation = "last”,

highest_imputation = "M"

)
#> # A tibble: 6 x 4
#> MHSTDTC ASTDTM ASTDTF ASTTMF
#> <chr> <dttm> <chr> <chr>
#> 1 "2019-07-18T15:25" 2019-07-18 15:25:59 <NA> <NA>
#> 2 "2019-07-18" 2019-07-18 23:59:59 <NA> H
#> 3 "2019-02" 2019-02-28 23:59:59 D H
#> 4 "2019" 2019-12-31 23:59:59 M H
#> 5 "2019---07" 2019-12-31 23:59:59 M H
#>6 "" NA <NA> <NA>

210

derive_vars_dtm

Suppress imputation flags (flag_imputation = "none”):

In this example, we derive ASTDTM but suppress the ASTTMF. Note that function appends missing
"hh:mm:ss"” to ASTDTM. The flag_imputation = "none” call ensures no date/time imputation
flag is created. In practice, as per CDISC requirements this option can only be selected if the
imputed variable is not part of the final ADaM dataset.

derive_vars_dtm(

mhdt,
new_vars_prefix = "AST",
dtc = MHSTDTC,
flag_imputation = "none”
)
#> # A tibble: 6 x 2
#> MHSTDTC ASTDTM
#> <chr> <dttm>
#> 1 "2019-07-18T15:25" 2019-07-18 15:25:00
#> 2 "2019-07-18" 2019-07-18 00:00:00
#> 3 "2019-02" NA
#> 4 "2019" NA
#> 5 "2019---07" NA
#> 6 "" NA

Avoid imputation after specified datetimes (max_dates):

In this example, we derive AENDTM where AE end date is imputed to the last date. To ensure that
the imputed date is not after the death or data cut off date we can set max_dates = exprs(DTHDT,
DCUTDT). Note two flag variables: ASTDTF and ASTTMF are created. Setting highest_imputation
="Y" will allow for the missing AEENDTC record to be imputed from max_dates = exprs(DTHDT,
DCUTDT).

adae <- tribble(
~AEENDTC, ~DTHDT, ~DCUTDT,
"2020-12", ymd("2020-12-26"), ymd("2020-12-24"),
"2020-11", ymd("2020-12-06"), ymd("2020-12-24"),
" ymd("2020-12-06"), ymd("2020-12-24"),
"2020-12-20", ymd("2020-12-06"), ymd("2020-12-24")

)

derive_vars_dtm(
adae,
dtc = AEENDTC,
new_vars_prefix = "AEN",
highest_imputation = "Y",
date_imputation = "last”,
time_imputation = "last",
max_dates = exprs(DTHDT, DCUTDT)

)

#> # A tibble: 4 x 6

#> AEENDTC DTHDT DCUTDT AENDTM AENDTF AENTMF

#> <chr> <date> <date> <dttm> <chr> <chr>

derive_vars_dtm 211

#> 1 "2020-12" 2020-12-26 2020-12-24 2020-12-24 23:59:59 D H
#> 2 "2020-11" 2020-12-06 2020-12-24 2020-11-30 23:59:59 D H
#> 3" 2020-12-06 2020-12-24 2020-12-06 23:59:59 Y H
#> 4 "2020-12-20" 2020-12-06 2020-12-24 2020-12-20 23:59:59 <NA> H

Include "S" for time imputation flag (ignore_seconds_flag):

In this example, we set ignore_seconds_flag = FALSE to include S for seconds in the ASTTMF
variable. The default value of ignore_seconds_flag is TRUE so the "S" is not normally dis-
played. The ADaM IG states that given SDTM (--DTC) variable, if only hours and minutes are
ever collected, and seconds are imputed in (*DTM) as @@, then it is not necessary to set (*TMF) to
"s.

mhdt <- tribble(
~MHSTDTC,
"2019-07-18T15:25",
"2019-07-18",
"2019-02",

"2019",
"2019---07",

nn

)

derive_vars_dtm(
mhdt,
new_vars_prefix = "AST",
dtc = MHSTDTC,
highest_imputation = "M",
ignore_seconds_flag = FALSE

)

#> # A tibble: 6 x 4

#> MHSTDTC ASTDTM ASTDTF ASTTMF
#> <chr> <dttm> <chr> <chr>
#> 1 "2019-07-18T15:25" 2019-07-18 15:25:00 <NA> S

#> 2 "2019-07-18" 2019-07-18 00:00:00 <NA> H

#> 3 "2019-02" 2019-02-01 00:00:00 D H

#> 4 "2019" 2019-01-01 00:00:00 M H

#> 5 "2019---07" 2019-01-01 00:00:00 M H

#>6 "" NA <NA> <NA>

Preserve lower components if higher ones were imputed (preserve):

In this example, we impute dates as the middle month/day with date_imputation = "mid"” and
impute time as last (23:59:59) with time_imputation ="last". We use the preserve ar-
gument to "preserve" partial dates. For example, "2019---18T15:-:05", will be displayed as
"2019-06-18 15:59:05" by setting preserve = TRUE.

mhdt <- tribble(
~MHSTDTC,
"2019-07-18T15:25",
"2019---18T15:-:05",

212 derive_vars_dtm_to_dt

"2019-07-18"
"2019-02"
"2019",
"2019---07",

nn

)

derive_vars_dtm(
mhdt,
new_vars_prefix = "AST",
dtc = MHSTDTC,
highest_imputation = "M",
date_imputation = "mid",
time_imputation = "last",
preserve = TRUE,
ignore_seconds_flag = FALSE

)

#> # A tibble: 7 x 4

#> MHSTDTC ASTDTM ASTDTF ASTTMF
#> <chr> <dttm> <chr> <chr>
#> 1 "2019-07-18T15:25" 2019-07-18 15:25:59 <NA> S

#> 2 "2019---18T15:-:05" 2019-06-18 15:59:05 M M

#> 3 "2019-07-18" 2019-07-18 23:59:59 <NA> H

#> 4 "2019-02" 2019-02-15 23:59:59 D H

#> 5 "2019" 2019-06-30 23:59:59 M H

#> 6 "2019---07" 2019-06-07 23:59:59 M H

#> 7 "" NA <NA> <NA>

Further examples:
Further example usages of this function can be found in the vignette(”imputation”).

See Also

vignette("imputation”)

Date/Time Derivation Functions that returns variable appended to dataset: derive_var_trtdurd(),
derive_vars_dt(), derive_vars_dtm_to_dt(), derive_vars_dtm_to_tm(), derive_vars_duration(),
derive_vars_dy()

derive_vars_dtm_to_dt Derive Date Variables from Datetime Variables

Description

This function creates date(s) as output from datetime variable(s)

Usage

derive_vars_dtm_to_dt(dataset, source_vars)

derive_vars_dtm_to_dt 213

Arguments
dataset Input dataset
The variables specified by the source_vars argument are expected to be in the
dataset.
Default value none
source_vars A list of datetime variables created using exprs() from which dates are to be
extracted
Default value none
Value

A data frame containing the input dataset with the corresponding date (--DT) variable(s) of all
datetime variables (--DTM) specified in source_vars.

See Also

Date/Time Derivation Functions that returns variable appended to dataset: derive_var_trtdurd(),
derive_vars_dt(),derive_vars_dtm(), derive_vars_dtm_to_tm(), derive_vars_duration(),
derive_vars_dy()

Examples

library(tibble)
library(dplyr, warn.conflicts = FALSE)
library(lubridate)

adcm <- tribble(

~USUBJID, ~TRTSDTM, ~ASTDTM, ~AENDTM,

"PATO1", "2012-02-25 23:00:00", "2012-02-28 19:00:00", "2012-02-25 23:00:00",

"PATO1", NA, "2012-02-28 19:00:00", NA,

"PATO1", "2017-02-25 23:00:00", "2013-02-25 19:00:00", "2014-02-25 19:00:00",

"PATO1", "2017-02-25 16:00:00", "2017-02-25 14:00:00", "2017-03-25 23:00:00",

"PATO1", "2017-02-25 16:00:00", "2017-02-25 14:00:00", "2017-04-29 14:00:00",
) %>%

mutate(

TRTSDTM = as_datetime(TRTSDTM),
ASTDTM = as_datetime(ASTDTM),
AENDTM = as_datetime (AENDTM)

)

adcm %>%
derive_vars_dtm_to_dt(exprs(TRTSDTM, ASTDTM, AENDTM)) %>%
select(USUBJID, starts_with("TRT"), starts_with("AST"), starts_with("AEN"))

214 derive_vars_dtm_to _tm

derive_vars_dtm_to_tm Derive Time Variables from Datetime Variables

Description

This function creates time variable(s) as output from datetime variable(s)

Usage

derive_vars_dtm_to_tm(dataset, source_vars)

Arguments
dataset Input dataset
The variables specified by the source_vars argument are expected to be in the
dataset.
Default value none
source_vars A list of datetime variables created using exprs() from which time is to be
extracted
Default value none
Details

The names of the newly added variables are automatically set by replacing the --DTM suffix of the
source_vars with --TM. The --TM variables are created using the {hms} package.

Value

A data frame containing the input dataset with the corresponding time (--TM) variable(s) of all
datetime variables (--DTM) specified in source_vars with the correct name.

See Also

Date/Time Derivation Functions that returns variable appended to dataset: derive_var_trtdurd(),
derive_vars_dt(),derive_vars_dtm(), derive_vars_dtm_to_dt (), derive_vars_duration(),
derive_vars_dy()

Examples

library(tibble)
library(dplyr, warn.conflicts = FALSE)
library(lubridate)

adcm <- tribble(
~USUBJID, ~TRTSDTM, ~ASTDTM, ~AENDTM,
"PATO1", "2012-02-25 23:41:10", "2012-02-28 19:03:00", "2013-02-25 23:32:16",
"PATO1", "", "2012-02-28 19:00:00", "",

derive_vars_duration 215

"PATO1", "2017-02-25 23:00:02", "2013-02-25 19:00:15", "2014-02-25 19:00:56",
"PATO1", "2017-02-25 16:00:00", "2017-02-25 14:25:00", "2017-03-25 23:00:00",
"PATO1", "2017-02-25 16:05:17", "2017-02-25 14:20:00", "2018-04-29 14:06:45",
) %>%

mutate(

TRTSDTM = as_datetime(TRTSDTM),

ASTDTM = as_datetime(ASTDTM),

AENDTM = as_datetime (AENDTM)

)

adcm %>%
derive_vars_dtm_to_tm(exprs(TRTSDTM)) %>%
select(USUBJID, starts_with("TRT"), everything())

adcm %>%
derive_vars_dtm_to_tm(exprs(TRTSDTM, ASTDTM, AENDTM)) %>%
select(USUBJID, starts_with("TRT"), starts_with("AS"), starts_with("AE"))

derive_vars_duration Derive Duration

Description

Derives duration between two dates, specified by the variables present in input dataset e.g., duration
of adverse events, relative day, age, ...

Usage

derive_vars_duration(
dataset,
new_var,
new_var_unit = NULL,
start_date,
end_date,
in_unit = "days",
out_unit = "DAYS",
floor_in = TRUE,
add_one = TRUE,
trunc_out = FALSE,
type = "duration”

Arguments

dataset Input dataset
The variables specified by the start_date and end_date arguments are ex-
pected to be in the dataset.

Default value none

216

new_var

new_var_unit

start_date

end_date

in_unit

out_unit

floor_in

derive_vars_duration

Name of variable to create
Default value none

Name of the unit variable If the parameter is not specified, no variable for the
unit is created.

Default value NULL

The start date
A date or date-time object is expected.

Refer to derive_vars_dt() to impute and derive a date from a date character
vector to a date object.

Refer to convert_dtc_to_dt() to obtain a vector of imputed dates.
Default value none

The end date

A date or date-time object is expected.

Refer to derive_vars_dt() to impute and derive a date from a date character
vector to a date object.

Refer to convert_dtc_to_dt() to obtain a vector of imputed dates.

Default value none

Input unit
See floor_in and add_one parameter for details.
Permitted Values (case-insensitive):

non non non non.n

For years: "year”, "years”, "yr", "yrs", "y

For months: "month"”, "months”, "mo"”, "mos"”
For days: "day”, "days”, "d"

For hours: "hour”, "hours”, "hr", "hrs", "h"

n o n non n on

For minutes: "minute”, "minutes”, "min”, "mins”

n o n non_n

For seconds: "second”, "seconds”, "sec”, "secs”,"s
Default value "days”

Output unit
The duration is derived in the specified unit
Permitted Values (case-insensitive):

non n o n n o n non.n
s

For years: "year”, "years”, "yr", "yrs", "y

n o n n

For months: "month”, "months”, "mo"”, "mos
For weeks: "week"”, "weeks”, "wk", "wks", "w"
For days: "day”, "days”, "d"

For hours: "hour”, "hours”, "hr", "hrs”, "h"

n o n non n on

For minutes: "minute”, "minutes”, "min", "mins”

n o n n o n

For seconds: "second”, "seconds”, "sec"”, "secs”, "s
Default value "days”

Round down input dates?

The input dates are round down with respect to the input unit, e.g., if the input
unit is "days’, the time of the input dates is ignored.

derive_vars_duration 217

Permitted values TRUE, FALSE
Default value TRUE

add_one Add one input unit?
If the duration is non-negative, one input unit is added. i.e., the duration can not
be zero.
Permitted values TRUE, FALSE
Default value TRUE

trunc_out Return integer part
The fractional part of the duration (in output unit) is removed, i.e., the integer
part is returned.
Permitted values TRUE, FALSE
Default value FALSE

type lubridate duration type.
See below for details.

non

Permitted values "duration”, "interval”
Default value "duration”

Details

The duration is derived as time from start to end date in the specified output unit. If the end date is
before the start date, the duration is negative. The start and end date variable must be present in the
specified input dataset.

The lubridate package calculates two types of spans between two dates: duration and interval. While
these calculations are largely the same, when the unit of the time period is month or year the result
can be slightly different.

The difference arises from the ambiguity in the length of "1 month” or "1 year"”. Months may have
31, 30, 28, or 29 days, and years are 365 days and 366 during leap years. Durations and intervals
help solve the ambiguity in these measures.

The interval between 2000-02-01 and 2000-03-01 is 1 (i.e. one month). The duration between
these two dates is @. 95, which accounts for the fact that the year 2000 is a leap year, February has
29 days, and the average month length is 30.4375, i.e. 29 / 30.4375=10.95.

For additional details, review the lubridate time span reference page.

Value

The input dataset with the duration and unit variable added

See Also

compute_duration()

Date/Time Derivation Functions that returns variable appended to dataset: derive_var_trtdurd(),
derive_vars_dt(),derive_vars_dtm(), derive_vars_dtm_to_dt(), derive_vars_dtm_to_tm(),
derive_vars_dy()

https://lubridate.tidyverse.org/
https://lubridate.tidyverse.org/reference/timespan.html

218

Examples

library(lubridate)
library(tibble)

Derive age in years
data <- tribble(

~USUBJID, ~BRTHDT, ~RANDDT,
"Pe1", ymd(”1984-09-06"), ymd("2020-02-24"),
"Pe2", ymd(”1985-01-01"), NA,

"P@3", NA, ymd("2021-03-10"),

"PO4" | NA, NA

derive_vars_duration(data,

)

new_var = AAGE,
new_var_unit = AAGEU,
start_date = BRTHDT,
end_date = RANDDT,
out_unit = "years",
add_one = FALSE,
trunc_out = TRUE

Derive adverse event duration in days
data <- tribble(

)

~USUBJID, ~ASTDT, ~AENDT,
"Pp1", ymd(”2021-03-05"), ymd("2021-03-02"),
"P2", ymd(”2019-09-18"), ymd("2019-09-18"),
"P3", ymd(”1985-01-01"), NA,

"P@4" | NA, NA

derive_vars_duration(data,

)

new_var = ADURN,
new_var_unit = ADURU,
start_date = ASTDT,
end_date = AENDT,
out_unit = "days"”

Derive adverse event duration in minutes
data <- tribble(

)

~USUBJID, ~ADTM, ~TRTSDTM,

"Po1", ymd_hms("2019-08-09T04:30:56"), ymd_hms("2019-08-09T05:00:
"P2", ymd_hms("2019-11-11T10:30:00"), ymd_hms("2019-11-11T11:30:
"P3”, ymd_hms("2019-11-11T00:00:00"), ymd_hms("2019-11-11T04:00:

"P@4", NA, ymd_hms(”2019-11-11T12:34:56"),

derive_vars_duration(data,

new_var = ADURN,
new_var_unit = ADURU,

derive_vars_duration

00"),
00"),
20"),

derive_vars_dy 219

start_date = ADTM,
end_date = TRTSDTM,

in_unit = "minutes”,
out_unit = "minutes”,
add_one = FALSE

)

Derive adverse event start time since last dose in hours
data <- tribble(
~USUBJID, ~ASTDTM, ~LDOSEDTM,
"PQ1", ymd_hms("2019-08-09T04:30:56"), ymd_hms("2019-08-08T10:05:00"),
"P@2", ymd_hms("2019-11-11T723:59:59"), ymd_hms("2019-10-11T11:37:00"),
"P@3", ymd_hms("2019-11-11T00:00:00"), ymd_hms("2019-11-10T723:59:59"),
"P04", ymd_hms("2019-11-11T12:34:56"), NA,
"P@5", NA, ymd_hms("2019-09-28T12:34:56")
)
derive_vars_duration(
data,
new_var = LDRELTM,
new_var_unit = LDRELTMU,
start_date = LDOSEDTM,
end_date = ASTDTM,
in_unit = "hours”,
out_unit = "hours”,
add_one = FALSE

derive_vars_dy Derive Relative Day Variables

Description

Adds relative day variables (*DY) to the dataset, e.g., ASTDY and AENDY.

Usage

derive_vars_dy(dataset, reference_date, source_vars)

Arguments

dataset Input dataset
The variables specified by the reference_date and source_vars arguments
are expected to be in the dataset.
Default value none

reference_date A date or date-time column, e.g., date of first treatment or date-time of last
exposure to treatment.

Refer to derive_vars_dt() to impute and derive a date from a date character
vector to a date object.

220 derive_vars_dy

Default value none

source_vars A list of datetime or date variables created using exprs() from which dates are
to be extracted. This can either be a list of date(time) variables or named *DY
variables and corresponding *DT (M) variables e.g. exprs(TRTSDTM, ASTDTM,
AENDT) or exprs(TRTSDT, ASTDTM, AENDT, DEATHDY = DTHDT). If the source
variable does not end in *DT (M), a name for the resulting *DY variable must be
provided.

Default value none

Details

The relative day is derived as number of days from the reference date to the end date. If it is
nonnegative, one is added. IL.e., the relative day of the reference date is 1. Unless a name is explicitly
specified, the name of the resulting relative day variable is generated from the source variable name
by replacing DT (or DTM as appropriate) with DY.

Value

The input dataset with *DY corresponding to the *DTM or *DT source variable(s) added

See Also

Date/Time Derivation Functions that returns variable appended to dataset: derive_var_trtdurd(),
derive_vars_dt(),derive_vars_dtm(), derive_vars_dtm_to_dt(), derive_vars_dtm_to_tm(),
derive_vars_duration()

Examples

library(tibble)
library(lubridate)
library(dplyr, warn.conflicts = FALSE)

datain <- tribble(
~TRTSDTM, ~ASTDTM, ~AENDT,
"2014-01-17T23:59:59", "2014-01-18T13:09:09", "2014-01-20"
) %%
mutate(
TRTSDTM = as_datetime(TRTSDTM),
ASTDTM = as_datetime(ASTDTM),
AENDT = ymd (AENDT)

)

derive_vars_dy(
datain,
reference_date = TRTSDTM,
source_vars = exprs(TRTSDTM, ASTDTM, AENDT)

)

specifying name of new variables
datain <- tribble(
~TRTSDT, ~DTHDT,

derive_vars_extreme_event 221

"2014-01-17", "2014-02-01"
) %>%
mutate(
TRTSDT = ymd(TRTSDT),
DTHDT = ymd(DTHDT)
)

derive_vars_dy(
datain,
reference_date = TRTSDT,
source_vars = exprs(TRTSDT, DEATHDY = DTHDT)

derive_vars_extreme_event

Add the Worst or Best Observation for Each By Group as New Vari-
ables

Description

Add the first available record from events for each by group as new variables, all variables of the
selected observation are kept. It can be used for selecting the extreme observation from a series of
user-defined events.

Usage

derive_vars_extreme_event(
dataset,
by_vars,
events,
tmp_event_nr_var = NULL,
order,
mode,
source_datasets = NULL,
check_type = "warning"”,
new_vars

Arguments

dataset Input dataset

The variables specified by the by_vars and order arguments are expected to be
in the dataset.

Permitted values a dataset, i.e., a data.frame or tibble
Default value none

by_vars Grouping variables

222 derive_vars_extreme_event

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)

Default value NULL

events Conditions and new values defining events

A list of event() or event_joined() objects is expected. Only observations
listed in the events are considered for deriving extreme event. If multiple
records meet the filter condition, take the first record sorted by order. The
data is grouped by by_vars, i.e., summary functions like all() or any() can
be used in condition.

For event_joined() events the observations are selected by calling filter_joined().
The condition field is passed to the filter_join argument.

Default value none
tmp_event_nr_var
Temporary event number variable

The specified variable is added to all source datasets and is set to the number of
the event before selecting the records of the event.

It can be used in order to determine which record should be used if records
from more than one event are selected.

The variable is not included in the output dataset.
Default value NULL

order Sort order

If a particular event from events has more than one observation, within the
event and by group, the records are ordered by the specified order.

For handling of NAs in sorting variables see the "Sort Order" section in vignette("generic").

Permitted values list of expressions created by exprs(), e.g., exprs(ADT,
desc(AVAL))

Default value none

mode Selection mode (first or last)

If a particular event from events has more than one observation, "first"/"last”
is used to select the first/last record of this type of event sorting by order.

Permitted values "first”, "last”
Default value none
source_datasets
Source datasets
A named list of datasets is expected. The dataset_name field of event() and
event_joined() refers to the dataset provided in the list.

Default value NULL

check_type Check uniqueness?

If "warning” or "error" is specified, the specified message is issued if the
observations of the input dataset are not unique with respect to the by variables
and the order.

non non

Permitted values "none”, "message”,

non

warning”, "error”

derive_vars_extreme_event 223

Default value "warning”

new_vars Variables to add
The specified variables from the events are added to the output dataset. Variables
can be renamed by naming the element, i.e., new_vars = exprs(<new name> = <old name>).

Default value none

Details

1. For each event select the observations to consider:

(a) If the event is of class event, the observations of the source dataset are restricted by
condition and then the first or last (mode) observation per by group (by_vars) is se-
lected.

If the event is of class event_joined, filter_joined() is called to select the observa-
tions.

(b) The variables specified by the set_values_to field of the event are added to the selected
observations.

(c) The variable specified for tmp_event_nr_var is added and set to the number of the event.
2. All selected observations are bound together.

3. For each group (with respect to the variables specified for the by_vars parameter) the first
or last observation (with respect to the order specified for the order parameter and the mode
specified for the mode parameter) is selected.

4. The variables specified by the new_vars parameter are added to the selected observations.

5. The variables are added to input dataset.

Value

The input dataset with the best or worst observation of each by group added as new variables.

See Also

event(), event_joined(), derive_extreme_event()

ADSL Functions that returns variable appended to dataset: derive_var_age_years(), derive_vars_aage(),
derive_vars_period()

Examples

library(tibble)
library(dplyr)
library(lubridate)

adsl <- tribble(
~STUDYID, ~USUBJID, ~TRTEDT, ~DTHDT,
"PILOTO1", "01-1130", ymd("2014-08-16"), ymd("2014-09-13"),
"PILOT@1", "01-1133", ymd("2013-04-28"), ymd(""),
"PILOTO1", "@1-1211", ymd("2013-01-12"), ymd(""),
"PILOTO1", "09-1081", ymd("2014-04-27"), ymd(""),
"PILOT@1", "09-1088", ymd("2014-10-09"), ymd("2014-11-01"),

224

)

1b <- tribble(

~STUDYID, ~DOMAIN, ~USUBJID, ~LB
"PILOTO1", "LB", "01-1130",
"PILOTO1", "LB", "@1-1130",
"PILOTO1", "LB", "@1-1133",
"PILOTO1", "LB", "@1-1133",
"PILOTO1", "LB", "@1-1211",
"PILOTO1", "LB", "01-1211",
"PILOTO1", "LB", "09-1081",
"PILOTO1", "LB", "09-1081",
"PILOTO1", "LB", "09-1088",
"pPILOTO1", "LB", "09-1088",
) %>%
mutate(

ADT = convert_dtc_to_dt(LBDTC)
)

derive_vars_extreme_event(
adsl,
by_vars = exprs(STUDYID, USUBJID),
events = list(
event(
dataset_name = "adsl”,
condition = !is.na(DTHDT),
set_values_to = exprs(LSTALVDT
),
event(
dataset_name = "1b",
condition = !is.na(ADT),
order = exprs(ADT),
mode = "last",
set_values_to = exprs(LSTALVDT
),
event(
dataset_name = "adsl”,
condition = !is.na(TRTEDT),
order = exprs(TRTEDT),
mode = "last",
set_values_to = exprs(LSTALVDT
)
),

SEQ,
219,
322,
268,
304,
8,
162,
47,
219,
283,
322,

~LBDTC,
"2014-06-07T13:20"
"2014-08-16T13:10",
"2013-04-18T15:30",
"2013-05-01T10:13",
"2012-10-30T14:26"
"2013-01-08T12:13",
"2014-02-01T10:55"
"2014-05-10T11:15",
"2014-09-27T12:13",
"2014-10-09T13: 25"

= DTHDT, DTHFL = "Y")

= ADT, DTHFL = "N")

TRTEDT, DTHFL = "N")

source_datasets = list(adsl = adsl, 1lb = 1b),

tmp_event_nr_var = event_nr,

order = exprs(LSTALVDT, event_nr),

mode = "last”,

new_vars = exprs(LSTALVDT, DTHFL)
)

Derive DTHCAUS from AE and DS domain data

adsl <- tribble(
~STUDYID, ~USUBJID,

derive_vars_extreme_event

derive_vars_joined 225

"STUDYQ1", "PATQ1",
"STUDYQ1", "PAT@2",
"STUDY@1", "PAT@3"

)

ae <- tribble(
~STUDYID, ~USUBJID, ~AESEQ, ~AEDECOD, ~AEOUT, ~AEDTHDTC,
"STUDYQ1", "PAT@1", 12, "SUDDEN DEATH", "FATAL", "2021-04-04",
"STUDYQ1", "PAT@Q1", 13, "CARDIAC ARREST", "FATAL", "2021-04-03",

)

ds <- tribble(
~STUDYID, ~USUBJID, ~DSSEQ, ~DSDECOD, ~DSTERM, ~DSSTDTC,
"STUDY@1", "PAT@2", 1, "INFORMED CONSENT OBTAINED", "INFORMED CONSENT OBTAINED", "2021-04-03",
"STUDYQ1", "PAT@2", 2, "RANDOMIZATION"”, "RANDOMIZATION", "2021-04-11",
"STUDY@1", "PAT@2", 3, "DEATH", "DEATH DUE TO PROGRESSION OF DISEASE", "2022-02-01",
"STUDYQ1", "PAT@3", 1, "DEATH", "POST STUDY REPORTING OF DEATH", "2022-03-03"

)

derive_vars_extreme_event(
adsl,
by_vars = exprs(STUDYID, USUBJID),
events = list(

event(
dataset_name = "ae",
condition = AEOUT == "FATAL",

set_values_to = exprs(DTHCAUS = AEDECOD, DTHDT = convert_dtc_to_dt(AEDTHDTC)),
order = exprs(DTHDT)
),
event(
dataset_name = "ds",
condition = DSDECOD == "DEATH" & grepl("DEATH DUE TO", DSTERM),
set_values_to = exprs(DTHCAUS = DSTERM, DTHDT = convert_dtc_to_dt(DSSTDTC)),
order = exprs(DTHDT)
)
),
source_datasets = list(ae = ae, ds = ds),
tmp_event_nr_var = event_nr,
order = exprs(DTHDT, event_nr),

mode = "first”,
new_vars = exprs(DTHCAUS, DTHDT)
)
derive_vars_joined Add Variables from an Additional Dataset Based on Conditions from
Both Datasets
Description

The function adds variables from an additional dataset to the input dataset. The selection of the
observations from the additional dataset can depend on variables from both datasets. For example,
add the lowest value (nadir) before the current observation.

226 derive_vars_joined

Usage

derive_vars_joined(
dataset,
dataset_add,
by_vars = NULL,
order = NULL,
new_vars = NULL,
tmp_obs_nr_var = NULL,
join_vars = NULL,
join_type,
filter_add = NULL,
first_cond_lower = NULL,
first_cond_upper = NULL,
filter_join = NULL,

mode = NULL,
exist_flag = NULL,
true_value = "Y",

false_value = NA_character_,
missing_values = NULL,

check_type = "warning"
)
Arguments
dataset Input dataset

The variables specified by the by_vars argument are expected to be in the
dataset.

Permitted values a dataset, i.e., a data.frame or tibble

Default value none

dataset_add Additional dataset
The variables specified by the by_vars, the new_vars, the join_vars, and the
order argument are expected.
Permitted values a dataset, i.e., a data.frame or tibble
Default value none

by_vars Grouping variables
The two datasets are joined by the specified variables.
Variables can be renamed by naming the element, i.e. by_vars = exprs(<name in input dataset> = <r
similar to the dplyr joins.
Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)
Default value NULL

order Sort order
If the argument is set to a non-null value, for each observation of the input
dataset the first or last observation from the joined dataset is selected with re-
spect to the specified order. The specified variables are expected in the addi-

derive_vars_joined

new_vars

tmp_obs_nr_var

join_vars

227

tional dataset (dataset_add). If a variable is available in both dataset and
dataset_add, the one from dataset_add is used for the sorting.

If an expression is named, e.g., exprs (EXSTDT = convert_dtc_to_dt(EXSTDTC),

EXSEQ), a corresponding variable (EXSTDT) is added to the additional dataset

and can be used in the filter conditions (filter_add, filter_join) and for

join_vars and new_vars. The variable is not included in the output dataset.

For handling of NAs in sorting variables see the "Sort Order" section in vignette("generic").

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)

Default value NULL

Variables to add

The specified variables from the additional dataset are added to the output dataset.
Variables can be renamed by naming the element, i.e., new_vars = exprs(<new name> = <old name>).
For example new_vars = exprs(varl, var2) adds variables var1 and var2
from dataset_add to the input dataset.

And new_vars = exprs(varl, new_var2 = old_var?2) takes var1 and old_var2
from dataset_add and adds them to the input dataset renaming old_var2 to
new_var2.

Values of the added variables can be modified by specifying an expression.
For example, new_vars = LASTRSP = exprs(str_to_upper (AVALC)) adds the
variable LASTRSP to the dataset and sets it to the upper case value of AVALC.

If the argument is not specified or set to NULL, all variables from the additional
dataset (dataset_add) are added. In the case when a variable exists in both
datasets, an error is issued to ensure the user either adds to by_vars, removes or
renames.

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)

Default value NULL

Temporary observation number

The specified variable is added to the input dataset (dataset) and the addi-
tional dataset (dataset_add). It is set to the observation number with respect
to order. For each by group (by_vars) the observation number starts with 1.
If there is more than one record for specific values for by_vars and order, all
records get the same observation number. By default, a warning (see check_type)
is issued in this case. The variable can be used in the conditions (filter_join,
first_cond_upper, first_cond_lower). It can also be used to select consec-
utive observations or the last observation.

The variable is not included in the output dataset. To include it specify it for
new_vars.

Permitted values an unquoted symbol, e.g., AVAL
Default value NULL

Variables to use from additional dataset

Any extra variables required from the additional dataset for filter_join should
be specified for this argument. Variables specified for new_vars do not need

228

join_type

filter_add

derive_vars_joined

to be repeated for join_vars. If a specified variable exists in both the input
dataset and the additional dataset, the suffix ".join" is added to the variable from
the additional dataset.

If an expression is named, e.g., exprs (EXTDT = convert_dtc_to_dt (EXSTDTC)),
a corresponding variable is added to the additional dataset and can be used in the
filter conditions (filter_add, filter_join) and for new_vars. The variable
is not included in the output dataset.

The variables are not included in the output dataset.

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)

Default value NULL

Observations to keep after joining

The argument determines which of the joined observations are kept with respect
to the original observation. For example, if join_type = "after"” is specified
all observations after the original observations are kept.

For example for confirmed response or BOR in the oncology setting or con-
firmed deterioration in questionnaires the confirmatory assessment must be after
the assessment. Thus join_type = "after” could be used.

Whereas, sometimes you might allow for confirmatory observations to occur
prior to the observation. For example, to identify AEs occurring on or after
seven days before a COVID AE. Thus join_type = "all” could be used.
Permitted values "before”, "after”, "all”

Default value none

Filter for additional dataset (dataset_add)

Only observations from dataset_add fulfilling the specified condition are joined
to the input dataset. If the argument is not specified, all observations are joined.

Variables created by order or new_vars arguments can be used in the condition.
The condition can include summary functions like all() or any(). The addi-
tional dataset is grouped by the by variables (by_vars).

Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value NULL

first_cond_lower

Condition for selecting range of data (before)

If this argument is specified, the other observations are restricted from the last
observation before the current observation where the specified condition is ful-
filled up to the current observation. If the condition is not fulfilled for any of the
other observations, no observations are considered.

This argument should be specified if filter_join contains summary functions
which should not apply to all observations but only from a certain observation
before the current observation up to the current observation. For an example,
see the "Examples" section below.

Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value NULL

derive_vars_joined

229

first_cond_upper

filter_join

mode

exist_flag

true_value

false_value

Condition for selecting range of data (after)

If this argument is specified, the other observations are restricted up to the first
observation where the specified condition is fulfilled. If the condition is not
fulfilled for any of the other observations, no observations are considered.

This argument should be specified if filter_join contains summary functions
which should not apply to all observations but only up to the confirmation as-
sessment. For an example, see the "Examples” section below.

Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value NULL

Filter for the joined dataset

The specified condition is applied to the joined dataset. Therefore variables from
both datasets dataset and dataset_add can be used.

Variables created by order or new_vars arguments can be used in the condition.
The condition can include summary functions like al1() or any(). The joined
dataset is grouped by the original observations.

Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value NULL

Selection mode

Determines if the first or last observation is selected. If the order argument is
specified, mode must be non-null.

If the order argument is not specified, the mode argument is ignored.

Permitted values "first”, "last”
Default value NULL

Exist flag

If the argument is specified (e.g., exist_flag = FLAG), the specified variable
(e.g., FLAG) is added to the input dataset. This variable will be the value provided
in true_value for all selected records from dataset_add which are merged
into the input dataset, and the value provided in false_value otherwise.
Permitted values an unquoted symbol, e.g., AVAL

Default value NULL

True value

The value for the specified variable exist_flag, applicable to the first or last
observation (depending on the mode) of each by group.

Permitted values a character scalar, i.e., a character vector of length one
Default value "Y"

False value

The value for the specified variable exist_flag, NOT applicable to the first or
last observation (depending on the mode) of each by group.

Permitted values a character scalar, i.e., a character vector of length one
Default value NA_character_

230

derive_vars_joined

missing_values Values for non-matching observations

For observations of the input dataset (dataset) which do not have a matching
observation in the additional dataset (dataset_add) the values of the specified
variables are set to the specified value. Only variables specified for new_vars
can be specified for missing_values.

Permitted values list of named expressions created by a formula using exprs(),
e.g., exprs(AVALC = VSSTRESC, AVAL = yn_to_numeric(AVALC))

Default value NULL

check_type Check uniqueness?

Details

n o on

If "message”, "warning"” or "error" is specified, the specified message is is-
sued if the observations of the (restricted) joined dataset are not unique with
respect to the by variables and the order.

This argument is ignored if order is not specified. In this case an error is issued
independent of check_type if the restricted joined dataset contains more than
one observation for any of the observations of the input dataset.

non n o n n o n

Permitted values "none”, "message”, "warning", "error”
Default value "warning”

. The variables specified by order are added to the additional dataset (dataset_add).

The variables specified by join_vars are added to the additional dataset (dataset_add).

3. The records from the additional dataset (dataset_add) are restricted to those matching the

filter_add condition.

The input dataset and the (restricted) additional dataset are left joined by the grouping vari-
ables (by_vars). If no grouping variables are specified, a full join is performed.

. If first_cond_lower is specified, for each observation of the input dataset the joined dataset

is restricted to observations from the first observation where first_cond_lower is fulfilled
(the observation fulfilling the condition is included) up to the observation of the input dataset.
If for an observation of the input dataset the condition is not fulfilled, the observation is re-
moved.

If first_cond_upper is specified, for each observation of the input dataset the joined dataset
is restricted to observations up to the first observation where first_cond_upper is fulfilled
(the observation fulfilling the condition is included). If for an observation of the input dataset
the condition is not fulfilled, the observation is removed.

For an example, see the "Examples" section below.

The joined dataset is restricted by the filter_join condition.

. If order is specified, for each observation of the input dataset the first or last observation

(depending on mode) is selected.

. The variables specified for new_vars are created (if requested) and merged to the input dataset.

Le., the output dataset contains all observations from the input dataset. For observations with-
out a matching observation in the joined dataset the new variables are set as specified by
missing_values (or to NA for variables not in missing_values). Observations in the addi-
tional dataset which have no matching observation in the input dataset are ignored.

derive_vars_joined 231

Note: This function creates temporary datasets which may be much bigger than the input datasets.
If this causes memory issues, please try setting the admiral option save_memory to TRUE (see
set_admiral_options()). This reduces the memory consumption but increases the run-time.

Value

The output dataset contains all observations and variables of the input dataset and additionally the
variables specified for new_vars from the additional dataset (dataset_add).

Examples

Note on usage versus derive_vars_merged():

The question between using derive_vars_merged() or the more powerful derive_vars_joined()
comes down to how you need to select the observations to be merged.

* If the observations from dataset_add to merge can be selected by a condition (filter_add)
using only variables from dataset_add, then always use derive_vars_merged() as it re-
quires less resources (time and memory). A common example of this would be a random-
ization date in ADSL, where you are simply merging on a date from DS according to a certain
DSDECOD condition such as DSDECOD == "RANDOMIZATION".

* However, if the selection of the observations from dataset_add can depend on variables
from both datasets, then use derive_vars_joined(). Anexample of this would be assigning
period variables from ADSL to an ADAE, where you now need to check each adverse event start
date against the period start and end dates to decide which period value to join.

Basic join based on a generic time window (filter_join):
Derive a visit based on where the study day falls according to a scheduled set of time windows.
e The filter_join argument here can check conditions using variables from both the dataset
and dataset_add, so the study day is compared to the start and end of the time window.

* As no grouping variables are assigned using the by_vars argument, a full join is performed
keeping all variables from dataset_add.

library(tibble)

library(lubridate)

library(dplyr, warn.conflicts = FALSE)
library(tidyr, warn.conflicts = FALSE)

adbds <- tribble(
~USUBJID, ~ADY, ~AVAL,

"1, -33, 11,
", -7, 10,
"1, 1, 12,
"1, 8, 12,
"1, 15, 9,
"1, 20, 14,
"1, 24, 12,
"2", -1, 13,
"2", 13, 8

Y %%

232

derive_vars_joined

mutate(STUDYID = "AB42")

windows <- tribble(

)

~AVISIT, ~AWLO, ~AWHI,
"BASELINE”, -30, 1,
"WEEK 1", 2, 7,
"WEEK 2", 8, 15,
"WEEK 3", 16, 22,
"WEEK 4", 23, 30

derive_vars_joined(

adbds,

dataset_add = windows,

join_type = "all",

filter_join = AWLO <= ADY & ADY <= AWHI
%>%

select(USUBJID, ADY, AWLO, AWHI, AVISIT)
#> # A tibble: 9 x 5

)

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

USUBJID ADY AWLO AWHI AVISIT
<chr> <dbl> <dbl> <dbl> <chr>
11 -33 NA NA <NA>
21 -7 -30 1 BASELINE
31 1 -30 1 BASELINE
41 8 8 15 WEEK 2
51 15 8 15 WEEK 2
6 1 20 16 22 WEEK 3
71 24 23 30 WEEK 4
8 2 -1 -30 1 BASELINE
9 2 13 8 15 WEEK 2

Join only the lowest/highest value occurring within a condition (filter_join, order and
mode):

Derive the nadir value for each observation (i.e. the lowest value occurring before) by subject.

Note how dataset and dataset_add are the same here, so we are joining a dataset with
itself. This enables us to compare records within the dataset to each other.

Now we use by_vars as we only want to perform the join by subject.
To find the lowest value we use the order and mode arguments.

We subsequently need to check ADY to only check assessments occurring before. As this is not
included in by_vars or order, we have to ensure it also gets joined by adding to join_vars.
Then in filter_join note how ADY. join < ADY is used as the same variable exists in both
datasets, so the version from dataset_add has . join added.

According to the AVAL sort order used there could be duplicates (e.g. see subject "1" records
at day 1 and 8), but given we only need to join AVAL itself here it doesn’t actually matter to us
which exact record is taken. So, in this example, we silence the uniqueness check by using
check_type = "none".

derive_vars_joined(

derive_vars_joined

adbds,
dataset_add = adbds,
by_vars = exprs(STUDYID, USUBJID),
order = exprs(AVAL),
new_vars = exprs(NADIR = AVAL),
join_vars = exprs(ADY),
join_type = "all",
filter_join = ADY.join < ADY,
mode = "first"”,
check_type = "none"
) %>%
select(USUBJID, ADY, AVAL, NADIR)
#> # A tibble: 9 x 4
#> USUBJID ADY AVAL NADIR
#> <chr> <dbl> <dbl> <dbl>

#> 11 -33 11 NA
#> 2 1 -7 10 1
#> 31 1 12 10
#> 4 1 8 12 10
#> 51 15 9 10
#> 6 1 20 14 9
#> 71 24 12 9
#> 8 2 -1 13 NA
#> 9 2 13 8 13

Filtering which records are joined from the additional dataset (filter_add):

233

Imagine we wanted to achieve the same as above, but we now want to derive this allowing only

post-baseline values to be possible for the nadir.

e The filter_add argument can be used here as we only need to restrict the source data from

dataset_add.

derive_vars_joined(
adbds,
dataset_add = adbds,
by_vars = exprs(STUDYID, USUBJID),
order = exprs(AVAL),
new_vars = exprs(NADIR = AVAL),
join_vars = exprs(ADY),
join_type = "all",
filter_add = ADY > 0,
filter_join = ADY.join < ADY,
mode = "first"”,
check_type = "none"
) %%
select(USUBJID, ADY, AVAL, NADIR)
#> # A tibble: 9 x 4
#> USUBJID ADY AVAL NADIR
#> <chr> <dbl> <dbl> <dbl>
11 -33 11 NA

234

#>
#>
#>
#>
#>
#>
#>
#>

21 -7 10 NA
31 1 12 NA
41 8 12 12
51 15 9 12
6 1 20 14 9
71 24 12 9
8 2 -1 13 NA
9 2 13 8 NA

Combining all of the above examples:

derive_vars_joined

Using all of the arguments demonstrated above, here is a more complex example to add to ADAE
the highest hemoglobin value occurring within two weeks before each adverse event. Also join
the day it occurred, taking the earliest occurrence if more than one assessment with the same
value.

ad

ad

de

)

* Note how we used mode = "last” to get the highest lab value, but then as we wanted the
earliest occurrence if more than one it means we need to add desc(ADY) to order. i.e. the

last day when in descending order is the first.

ae <- tribble(

~USUBJID, ~ASTDY,
" 3,
", 22,
"2, 2

%>%
mutate(STUDYID = "AB42")

1b <- tribble(
~USUBJID, ~PARAMCD, ~ADY, ~AVAL,
nyw, "HGB" 1, 8.5,
" "HGB", 3, 7.9,
" "HGB", 5, 8.9,
" "HGB", 8, 8.0,
" "HGB", 9, 8.0,
" "HGB", 16, 7.4,
" "ALB", 1, 42,

%%
mutate(STUDYID = "AB42")

rive_vars_joined(

adae,

dataset_add = adlb,

by_vars = exprs(STUDYID, USUBJID),
order = exprs(AVAL, desc(ADY)),

new_vars = exprs(HGB_MAX = AVAL, HGB_DY = ADY),

join_type = "all",
filter_add = PARAMCD == "HGB",

filter_join = ASTDY - 14 <= ADY & ADY <= ASTDY,

mode = "last"
%>%

derive_vars_joined 235

select(USUBJID, ASTDY, HGB_MAX, HGB_DY)
#> # A tibble: 3 x 4
#> USUBJID ASTDY HGB_MAX HGB_DY
#> <chr> <dbl> <dbl> <dbl>

#> 11 3 8.5 1
#> 21 22 8 8
#> 3 2 2 NA NA

Compute values in new_vars and order:

Add to ADAE the number of days since the last dose of treatment, plus 1 day. If the dose occurs on
the same day as the AE then include it as the last dose.

* In the new_vars argument, other functions can be utilized to modify the joined values using
variables from both dataset and dataset_add. For example, in the below case we want to
calculate the number of days between the AE and the last dose using compute_duration().
This function includes the plus 1 day as default.

¢ Also note how in this example EXSDT is created via the order argument and then used for
new_vars, filter_add and filter_join.

¢ The reason to use join_type = "all"” here instead of "before"” is that we want to include
any dose occurring on the same day as the AE, hence the filter_join = EXSDT <= ASTDT.
Whereas using join_type = "before” would have resulted in the condition EXSDT < ASTDT.

i

See the next example instead for join_type = "before”.

adae <- tribble(
~USUBJID, ~ASTDT,

LS "2020-02-02",

"1, "2020-02-04",

"2", "2021-01-08"
) %%

mutate(

ASTDT = ymd(ASTDT),
STUDYID = "AB42"

)

ex <- tribble(
~USUBJID, ~EXSDTC,

LN "2020-01-10",

H-III’ II2®2®_®1 Il,

LN "2020-01-20",

" "2020-02-03",

" "2021-01-05"
) %%

mutate(STUDYID = "AB42")

derive_vars_joined(
adae,
dataset_add = ex,
by_vars = exprs(STUDYID, USUBJID),
order = exprs(EXSDT = convert_dtc_to_dt(EXSDTC)),

236

join_type = "all",

new_vars = exprs(LDRELD = compute_duration(

start_date = EXSDT, end_date = ASTDT
)),
filter_add = !is.na(EXSDT),
filter_join = EXSDT <= ASTDT,
mode = "last”
) %%
select (USUBJID, ASTDT, LDRELD)
#> # A tibble: 3 x 3

#> USUBJID ASTDT LDRELD
#> <chr> <date> <dbl>
11 2020-02-02 14
21 2020-02-04 2
#> 3 2 2021-01-08 4

Join records occurring before a condition (join_type = "before”):

derive_vars_joined

In an arbitrary dataset where subjects have values of "0", "-", "+" or "++", for any value of "0"

derive the last occurring "++" day that occurs before the "0".

e The AVAL.join =="++" in filter_join, along with order and mode taking the last day,
identifies the target records to join from dataset_add for each observation of dataset.

e Then join_type = "before" is now used instead of join_type = "all”. This is because we
only want to join the records occurring before the current observation in dataset. Including
AVAL == "@" in filter_join ensures here that we only populate the new variable for records

with AVAL == "0" in our dataset.

myd <- tribble(
~USUBJID, ~ADY, ~AVAL,

" T, "+
"1, 2, """,
", 3, "o",
", 4, "+,
"1, 5, "++",
", 6, "-",
"2", 1, "-",
"2, 2, "+,
", 3, "+,
"2, 4, "o",
"2, 5, "-",
", 6, "++",
"2, 7, "o"

) %%

mutate(STUDYID = "AB42")

derive_vars_joined(
myd,
dataset_add = myd,
by_vars = exprs(STUDYID, USUBJID),
order = exprs(ADY),

derive_vars_joined 237

mode = "last”,
new_vars = exprs(PREVPLDY = ADY),
join_vars = exprs(AVAL),
join_type = "before”,
filter_join = AVAL == "@" & AVAL.join == "++"
) %>%
select(USUBJID, ADY, AVAL, PREVPLDY)
#> # A tibble: 13 x 4
#> USUBJID ADY AVAL PREVPLDY
#> <chr> <dbl> <chr> <dbl>

#> 11 1 ++ NA
#> 21 2 - NA
#> 31 30 1
#> 41 4 + NA
#> 51 5 ++ NA
#> 61 6 - NA
#> 7 2 1 - NA
#> 8 2 2 ++ NA
#> 9 2 3+ NA
#> 10 2 40 2
#> 11 2 5 - NA
#> 12 2 6 ++ NA
#> 13 2 70 6

Join records occurring before a condition and checking all values in between (first_cond_lower,
join_type and filter_join):

In the same example as above, now additionally check that in between the "++" and the "@" all
results must be either "+" or "++".

* Firstly, first_cond_lower = AVAL.join == "++" is used so that for each observation of
dataset the joined records from dataset_add are restricted to only include from the last
occurring "++" before. This is necessary because of the use of a summary function in
filter_join only on a subset of the joined observations as explained below.

e The filter_join condition used here now includes all(AVAL. join %in% c("+", "++"))
to further restrict the joined records from dataset_add to only where all the values are either
”_+_" Or H++”‘

* The order and mode arguments ensure only the day of the "++" value is joined. For example,
for subject "2" it selects the day 2 record instead of day 3, by using "first".

derive_vars_joined(
myd,
dataset_add = myd,
by_vars = exprs(STUDYID, USUBJID),
order = exprs(ADY),
mode = "first”,
new_vars = exprs(PREVPLDY = ADY),
join_vars = exprs(AVAL),
join_type = "before”,
first_cond_lower = AVAL.join == "++",

238

derive_vars_joined

filter_join = AVAL == "@" & all(AVAL.join %in% c("+", "++"))
) %>%
select (USUBJID, ADY, AVAL, PREVPLDY)
#> # A tibble: 13 x 4
#> USUBJID ADY AVAL PREVPLDY
#> <chr> <dbl> <chr> <dbl>

#> 11 1 ++ NA
#> 21 2 NA
#> 31 30 NA
#> 41 4 + NA
#> 51 5 ++ NA
#> 61 6 - NA
#> 7 2 1 - NA
#> 8 2 2 ++ NA
#> 9 2 3+ NA
#> 10 2 40 2
#> 11 2 5 - NA
#> 12 2 6 ++ NA
#> 13 2 70 6

Join records occurring after a condition checking all values in between (first_cond_upper,
join_type and filter_join):

Similar to the above, now derive the first "++" day after any "@" where all results in between are
either "+" or "++".

¢ Note how the main difference here is the use of join_type = "after”, mode = "last” and
the first_cond_upper argument, instead of first_cond_lower.

derive_vars_joined(
myd,
dataset_add = myd,
by_vars = exprs(STUDYID, USUBJID),
order = exprs(ADY),
mode = "last”,
new_vars = exprs(NEXTPLDY = ADY),
join_vars = exprs(AVAL),
join_type = "after”,

first_cond_upper = AVAL.join == "++",
filter_join = AVAL == "@" & all(AVAL.join %in% c("+", "++"))
) %>%

select(USUBJID, ADY, AVAL, NEXTPLDY)
#> # A tibble: 13 x 4
#> USUBJID ADY AVAL NEXTPLDY
#> <chr> <dbl> <chr> <dbl>

#> 11 1 ++ NA
#> 21 2 - NA
#> 31 30 5
#> 41 4 + NA
#> 51 5 ++ NA
#> 61 6 - NA

derive_vars_joined 239

#> 7 2 1 - NA
#> 8 2 2 ++ NA
#> 9 2 3+ NA
#> 10 2 40 NA
#> 11 2 5 - NA
#> 12 2 6 ++ NA
#> 13 2 70 NA

Join a value from the next occurring record (join_type = "after"”):
Add the value from the next occurring record as a new variable.

* The join_type = "after"” here essentially acts as a lag to join variables from the next oc-
curring record, and mode = "first"” selects the first of these.

derive_vars_joined(
myd,
dataset_add = myd,
by_vars = exprs(STUDYID, USUBJID),
order = exprs(ADY),
mode = "first"”,
new_vars = exprs(NEXTVAL = AVAL),
join_vars = exprs(AVAL),
join_type = "after”
) %%
select(USUBJID, ADY, AVAL, NEXTVAL)
#> # A tibble: 13 x 4
#> USUBJID ADY AVAL NEXTVAL

#> <chr> <dbl> <chr> <chr>
#> 11 1 ++ -
#> 21 2 - 0
#> 31 30 +
#> 41 4 + ++
#> 51 5 ++ -
#> 6 1 6 - <NA>
#> 72 1 - ++
#> 8 2 2 ++ +
#> 9 2 3+ 0
#> 10 2 40 -
#> 11 2 5 - ++
#> 12 2 6 ++ 0
#> 13 2 70 <NA>

Join records after a condition occurring in consecutive visits (tmp_obs_nr_var, join_type
and filter_join):
Find the last occurring value on any of the next 3 unique visit days.

e The tmp_obs_nr_var argument can be useful as shown here to help pick out records hap-
pening before or after with respect to order, as you can see in the filter_join.

derive_vars_joined(
myd,

240

dataset_add = myd,

by_vars = exprs(STUDYID, USUBJID),

order = exprs(ADY),

mode = "last"”,

new_vars = exprs(NEXTVAL = AVAL),

tmp_obs_nr_var = tmp_obs_nr,

join_vars = exprs(AVAL),

join_type = "after”,

filter_join = tmp_obs_nr + 3 >= tmp_obs_nr. join
) %%

select(USUBJID, ADY, AVAL, NEXTVAL)
#> # A tibble: 13 x 4

#> USUBJID ADY AVAL NEXTVAL
#> <chr> <dbl> <chr> <chr>
11 1 ++ +

#> 21 2 - ++

31 30 -

41 4 + -

51 5 ++ -

61 6 - <NA>
7 2 1 - Q

#> 8 2 2 ++ -

9 2 3+ ++

10 2 4 0 0

11 2 5 - 0

#> 12 2 6 ++ 0

#> 13 2 70 <NA>

Derive period variables (APERIOD, APERSDT, APEREDT):

derive_vars_joined

Create a period reference dataset from ADSL and join this with ADAE to identify within which

period each AE occurred.

adsl <- tribble(

~USUBJID, ~APQ1SDT, ~APQ1EDT, ~AP@2SDT,
"1, "2021-01-04", "2021-02-06", "2021-02-07",
"2, "2021-02-02", "2021-03-02", "2021-03-03",

) %>%
mutate(across(ends_with("DT"), ymd)) %>%
mutate(STUDYID = "AB42")

period_ref <- create_period_dataset(

~APQ2EDT,
"2021-03-07",
"2021-04-01"

adsl,
new_vars = exprs(APERSDT = APxxSDT, APEREDT = APxxEDT)
)
period_ref
#> # A tibble: 4 x 5
#> STUDYID USUBJID APERIOD APERSDT APEREDT
#> <chr> <chr> <int> <date> <date>

derive_vars_joined 241

#> 1 AB42 1 1 2021-01-04 2021-02-06
#> 2 AB42 1 2 2021-02-07 2021-03-07
#> 3 AB42 2 1 2021-02-02 2021-03-02
#> 4 AB42 2 2 2021-03-03 2021-04-01

adae <- tribble(
~USUBJID, ~ASTDT,

" "2021-01-01",
" "2021-01-05",
" "2021-02-05",
"1, "2021-03-05",
"1, "2021-04-05",
o "2021-02-15",
) %>%
mutate(

ASTDT = ymd(ASTDT),
STUDYID = "AB42"

)

derive_vars_joined(

adae,

dataset_add = period_ref,

by_vars = exprs(STUDYID, USUBJID),

join_vars = exprs(APERSDT, APEREDT),

join_type = "all",

filter_join = APERSDT <= ASTDT & ASTDT <= APEREDT
) %>%

select(USUBJID, ASTDT, APERSDT, APEREDT, APERIOD)
#> # A tibble: 6 x 5

#> USUBJID ASTDT APERSDT APEREDT APERIOD
#> <chr> <date> <date> <date> <int>
11 2021-01-01 NA NA NA
21 2021-01-05 2021-01-04 2021-02-06 1
31 2021-02-05 2021-01-04 2021-02-06 1
41 2021-03-05 2021-02-07 2021-03-07 2
51 2021-04-05 NA NA NA
#> 6 2 2021-02-15 2021-02-02 2021-03-02 1

Further examples:
Further example usages of this function can be found in the vignette("generic").

Equivalent examples for using the exist_flag, true_value, false_value, missing_values
and check_type arguments can be found in derive_vars_merged().

See Also

derive_var_joined_exist_flag(), filter_joined()

General Derivation Functions for all ADaMs that returns variable appended to dataset: derive_var_extreme_flag(),
derive_var_joined_exist_flag(), derive_var_merged_ef_msrc(), derive_var_merged_exist_flag(),

242 derive_vars_joined_summary

derive_var_obs_number(), derive_var_relative_flag(),derive_vars_cat(), derive_vars_computed(),
derive_vars_joined_summary(), derive_vars_merged(), derive_vars_merged_lookup(), derive_vars_merged_sur
derive_vars_transposed()

derive_vars_joined_summary

Summarize Variables from an Additional Dataset Based on Conditions
from Both Datasets

Description

The function summarizes variables from an additional dataset and adds the summarized values as
new variables to the input dataset. The selection of the observations from the additional dataset can
depend on variables from both datasets. For example, all doses before the current observation can
be selected and the sum be added to the input dataset.

Usage

derive_vars_joined_summary(
dataset,
dataset_add,
by_vars = NULL,
order = NULL,
new_vars,
tmp_obs_nr_var = NULL,
join_vars = NULL,
join_type,
filter_add = NULL,
first_cond_lower = NULL,
first_cond_upper = NULL,
filter_join = NULL,
missing_values = NULL,

check_type = "warning”
)
Arguments
dataset Input dataset

The variables specified by the by_vars argument are expected to be in the
dataset.

Permitted values a dataset, i.e., a data.frame or tibble
Default value none
dataset_add Additional dataset

The variables specified by the by_vars, the new_vars, the join_vars, and the
order argument are expected.

Permitted values a dataset, i.e., a data.frame or tibble

derive_vars_joined_summary 243

Default value none

by_vars Grouping variables
The two datasets are joined by the specified variables.
Variables can be renamed by naming the element, i.e. by_vars = exprs(<name in input dataset> = <r
similar to the dplyr joins.
Permitted values list of (optionally named) variables created by exprs(), e.g.,
exprs(USUBJID, ADY = ASTDY)
Default value NULL

order Sort order

The specified variables are used to determine the order of the records if first_cond_lower
or first_cond_upper is specified or if join_type equals "before” or "after"”.

If an expression is named, e.g., exprs (EXSTDT = convert_dtc_to_dt(EXSTDTC),
EXSEQ), a corresponding variable (EXSTDT) is added to the additional dataset
and can be used in the filter conditions (filter_add, filter_join) and for
join_vars and new_vars. The variable is not included in the output dataset.

For handling of NAs in sorting variables see the "Sort Order" sectionin vignette(”generic”).

Permitted values list of expressions created by exprs(), e.g., exprs(ADT,
desc(AVAL)) or NULL

Default value NULL

new_vars Variables to add

The new variables can be defined by named expressions, i.e., new_vars = exprs(<new variable> = <va
The value must be defined such that it results in a single record per by group,
e.g., by using a summary function like mean(), sum(), ...

Permitted values list of named expressions created by exprs(), e.g., exprs (CUMDOSA
=sum(AVAL, na.rm=TRUE), AVALU = "m1")

Default value none

tmp_obs_nr_var Temporary observation number

The specified variable is added to the input dataset (dataset) and the restricted
additional dataset (dataset_add after applying filter_add). It is set to the
observation number with respect to order. For each by group (by_vars) the
observation number starts with 1. The variable can be used in the conditions
(filter_join, first_cond_upper, first_cond_lower). It can also be used
to select consecutive observations or the last observation.

The variable is not included in the output dataset. To include it specify it for
new_vars.

Permitted values an unquoted symbol, e.g., AVAL
Default value NULL

join_vars Variables to use from additional dataset

Any extra variables required from the additional dataset for filter_join should
be specified for this argument. Variables specified for new_vars do not need
to be repeated for join_vars. If a specified variable exists in both the input
dataset and the additional dataset, the suffix ".join" is added to the variable from
the additional dataset.

244 derive_vars_joined_summary

If an expression is named, e.g., exprs (EXSTDT = convert_dtc_to_dt (EXSTDTC)),
a corresponding variable is added to the additional dataset and can be used in
the filter conditions (filter_add, filter_join) and for new_vars.

The variables are not included in the output dataset.

Permitted values list of variables or named expressions created by exprs(),
e.g., exprs(EXSTDY, EXSTDTM = convert_dtc_to_dtm(EXSTDTC))

Default value NULL

join_type Observations to keep after joining

The argument determines which of the joined observations are kept with respect
to the original observation. For example, if join_type = "after” is specified
all observations after the original observations are kept.

Permitted values "before”, "after”, "all”
Default value none

filter_add Filter for additional dataset (dataset_add)
Only observations from dataset_add fulfilling the specified condition are joined
to the input dataset. If the argument is not specified, all observations are joined.
Variables created by order or new_vars arguments can be used in the condition.

The condition can include summary functions like all() or any(). The addi-
tional dataset is grouped by the by variables (by_vars).

Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value NULL

first_cond_lower
Condition for selecting range of data (before)
If this argument is specified, the other observations are restricted from the first
observation before the current observation where the specified condition is ful-
filled up to the current observation. If the condition is not fulfilled for any of the
other observations, no observations are considered.
This argument should be specified if filter_join contains summary functions
which should not apply to all observations but only from a certain observation
before the current observation up to the current observation. For an example see
the last example below.

Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value NULL

first_cond_upper
Condition for selecting range of data (after)
If this argument is specified, the other observations are restricted up to the first
observation where the specified condition is fulfilled. If the condition is not
fulfilled for any of the other observations, no observations are considered.
This argument should be specified if filter_join contains summary functions
which should not apply to all observations but only up to the confirmation as-
sessment. For an example see the last example below.

Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value NULL

derive_vars_joined_summary 245

filter_join Filter for the joined dataset

The specified condition is applied to the joined dataset. Therefore variables from
both datasets dataset and dataset_add can be used.

Variables created by order or new_vars arguments can be used in the condition.
The condition can include summary functions like all() or any(). The joined
dataset is grouped by the original observations.

Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value NULL

missing_values Values for non-matching observations

For observations of the input dataset (dataset) which do not have a matching
observation in the additional dataset (dataset_add) the values of the specified
variables are set to the specified value. Only variables specified for new_vars
can be specified for missing_values.

Permitted values list of named expressions created by a formula using exprs(),
e.g., exprs(AVALC = VSSTRESC, AVAL = yn_to_numeric(AVALC))

Default value NULL

check_type Check uniqueness?

Details

n o n

If "message”, "warning"” or "error" is specified, the specified message is is-
sued if the observations of the input dataset (dataset) or the restricted addi-
tional dataset (dataset_add after applying filter_add) are not unique with
respect to the by variables and the order.

The uniqueness is checked only if tmp_obs_nr_var, first_cond_lower, or
first_cond_upper is specified or join_type equals "before” or "after”.

n on n o n n on

Permitted values "none”, "message”, "warning”, "error”
Default value "warning”

1. The variables specified by order are added to the additional dataset (dataset_add).

. The variables specified by join_vars are added to the additional dataset (dataset_add).

3. The records from the additional dataset (dataset_add) are restricted to those matching the

filter_add condition.

. The input dataset and the (restricted) additional dataset are left joined by the grouping vari-

ables (by_vars). If no grouping variables are specified, a full join is performed.

. If first_cond_lower is specified, for each observation of the input dataset the joined dataset

is restricted to observations from the first observation where first_cond_lower is fulfilled
(the observation fulfilling the condition is included) up to the observation of the input dataset.
If for an observation of the input dataset the condition is not fulfilled, the observation is re-
moved.

If first_cond_upper is specified, for each observation of the input dataset the joined dataset
is restricted to observations up to the first observation where first_cond_upper is fulfilled
(the observation fulfilling the condition is included). If for an observation of the input dataset
the condition is not fulfilled, the observation is removed.

For an example see the last example in the "Examples"” section.

246 derive_vars_joined_summary

6. The joined dataset is restricted by the filter_join condition.

7. The variables specified for new_vars are created and merged to the input dataset. L.e., the out-
put dataset contains all observations from the input dataset. For observations without a match-
ing observation in the joined dataset the new variables are set as specified by missing_values
(or to NA for variables not in missing_values). Observations in the additional dataset which
have no matching observation in the input dataset are ignored.

Note: This function creates temporary datasets which may be much bigger than the input datasets.
If this causes memory issues, please try setting the admiral option save_memory to TRUE (see
set_admiral_options()). This reduces the memory consumption but increases the run-time.

Value

The output dataset contains all observations and variables of the input dataset and additionally the
variables specified for new_vars derived from the additional dataset (dataset_add).

Examples

The examples focus on the functionality specific to this function. For examples of functionality
common to all "joined" functions like filter_join, filter_add, join_vars, ... please see the
examples of derive_vars_joined().

Derive cumulative dose before event (CUMDOSA):
Deriving the cumulative actual dose up to the day of the adverse event in the ADAE dataset.

* USUBJID is specified for by_vars to join the ADAE and the ADEX dataset by subject.

e filter_join is specified to restrict the ADEX dataset to the days up to the adverse event.
ADY. join refers to the study day in ADEX.

* The new variable CUMDOSA is defined by the new_vars argument. It is set to the sum of AVAL.

¢ As ADY from ADEX is used in filter_join (but not in new_vars), it needs to be specified for
join_vars.

* The join_type is set to "all” to consider all records in the joined dataset. join_type =
"before” can’t by used here because then doses at the same day as the adverse event would
be excluded.

library(tibble)
library(dplyr, warn.conflicts = FALSE)

adex <- tribble(
~USUBJID, ~ADY, ~AVAL,

aEN 1, 10,
nyn 8, 20,
GEN 15, 10,
HZII’ 8, 5

)

adae <- tribble(
~USUBJID, ~ADY, ~AEDECOD,
", 2, "Fatigue”,
"1, 9, "Influenza",

derive_vars_joined_summary 247

"1, 15, "Theft”,

", 15, "Fatigue”,
"2, 4, "Parasomnia”,
H3II’ 2, ”Truancyl'

)

derive_vars_joined_summary(
dataset = adae,
dataset_add = adex,
by_vars = exprs(USUBJID),
filter_join = ADY.join <= ADY,
join_type = "all",
join_vars = exprs(ADY),
new_vars = exprs(CUMDOSA = sum(AVAL, na.rm = TRUE))
)
#> # A tibble: 6 x 4
#> USUBJID ADY AEDECOD CUMDOSA

#> <chr> <dbl> <chr> <dbl>
#> 11 2 Fatigue 10
#> 21 9 Influenza 30
#> 31 15 Theft 40
#> 4 1 15 Fatigue 40
#> 5 2 4 Parasomnia NA
#> 6 3 2 Truancy NA

Define values for records without records in the additional dataset (missing_values):

By default, the new variables are set to NA for records without matching records in the restricted
additional dataset. This can be changed by specifying the missing_values argument.

derive_vars_joined_summary(
dataset = adae,
dataset_add = adex,
by_vars = exprs(USUBJID),
filter_join = ADY.join <= ADY,
join_type = "all",
join_vars = exprs(ADY),
new_vars = exprs(CUMDOSE = sum(AVAL, na.rm = TRUE)),
missing_values = exprs(CUMDOSE = @)
)
#> # A tibble: 6 x 4
#> USUBJID ADY AEDECOD CUMDOSE

#> <chr> <dbl> <chr> <dbl>
#> 11 2 Fatigue 10
#> 21 9 Influenza 30
#> 3 1 15 Theft 40
#> 4 1 15 Fatigue 40
#>5 2 4 Parasomnia Q
#> 6 3 2 Truancy Q

Selecting records (join_type = "before”, join_type = "after"):

248

derive_vars_joined_summary

The join_type argument can be used to select records from the additional dataset. For example,
if join_type = "before” is specified, only records before the current observation are selected. If
join_type = "after" is specified, only records after the current observation are selected.

To illustrate this, a variable (SELECTED_DAYS) is derived which contains the selected days.

mydata <- tribble(
~DAY,

derive_vars_joined_summary (
mydata,
dataset_add = mydata,
order = exprs(DAY),
join_type = "before”,
new_vars = exprs(SELECTED_DAYS = paste(DAY, collapse =", "))
)
#> # A tibble: 5 x 2
#> DAY SELECTED_DAYS
#> <dbl> <chr>

1 1 <NA>
#> 2 2

#> 3 31, 2

4 41, 2,3

5 51, 2,3, 4

’

derive_vars_joined_summary (
mydata,
dataset_add = mydata,
order = exprs(DAY),
join_type = "after”,
new_vars = exprs(SELECTED_DAYS = paste(DAY, collapse =", "))
)
#> # A tibble: 5 x 2
#> DAY SELECTED_DAYS
#> <dbl> <chr>

#> 1 12,3,4,5
#> 2 23, 4,5

#> 3 34,5

4 45

#> 5 5 <NA>

Selecting records (first_cond_lower, first_cond_upper):

The first_cond_lower and first_cond_upper arguments can be used to restrict the joined
dataset to a certain range of records. For example, if first_cond_lower is specified, the joined

derive_vars_joined_summary

249

dataset is restricted to the last observation before the current record where the condition is fulfilled.

Please note:

* If the condition is not fulfilled for any of the records, no records are selected.

* The restriction implied by join_type is applied first.

* If a variable is contained in both dataset and dataset_add like DAY in the example below,
DAY refers to the value from dataset and DAY . join to the value from dataset_add.

To illustrate this, a variable (SELECTED_DAYS) is derived which contains the selected days.

de

)
#>

#>
#>
#>
#>
#>
#>
#>

de

#>
#>
#>
#>
#>
#>
#>
#>

de

rive_vars_joined_summary (

mydata,

dataset_add = mydata,

order = exprs(DAY),

join_type = "before”,
first_cond_lower = DAY.join == 2,

new_vars = exprs(SELECTED_DAYS = paste(sort(DAY), collapse

A tibble: 5 x 2
DAY SELECTED_DAYS
<dbl> <chr>
1 1 <NA>
2 2 <NA>
3 32
4 42,3
5 52, 3, 4

’

rive_vars_joined_summary (

mydata,

dataset_add = mydata,

order = exprs(DAY),

join_type = "after”,
first_cond_upper = DAY.join == 4,

new_vars = exprs(SELECTED_DAYS = paste(DAY, collapse

A tibble: 5 x 2
DAY SELECTED_DAYS
<dbl> <chr>
2, 3, 4
3, 4
4
<NA>
<NA>

g w N =
g~ w N =

rive_vars_joined_summary(

mydata,

dataset_add = mydata,

order = exprs(DAY),

join_type = "all",
first_cond_lower = DAY.join == 2,

= u’ II))

")

250

derive_vars_joined_summary

first_cond_upper = DAY.join == 4,

new_vars = exprs(SELECTED_DAYS = paste(sort(DAY), collapse =", "))
)
#> # A tibble: 5 x 2
#> DAY SELECTED_DAYS
#> <dbl> <chr>
1 12,3, 4
2 22,3, 4
3 32,3, 4
4 42,3, 4
#> 5 52, 3, 4

’ ’

Derive weekly score if enough assessments are available:

For each planned visit the average score within the week before the visit should be derived if at
least three assessments are available.

Please note that the condition for the number of assessments is specified in new_vars and not in
filter_join. This is because the number of assessments within the week before the visit should
be counted but not the number of assessments available for the subject.

planned_visits <- tribble(

~AVISIT, ~ADY,
"WEEK 1", 8,
"WEEK 4", 29,
"WEEK 8", 57
) %%

mutate(USUBJID = "1", .before = AVISIT)

adgs <- tribble(

~ADY, ~AVAL,
1, 10,
2, 12,
4, 9,
5, 9,
7, 10,
25, 11,
27, 10,
29, 10,
41, 8,
42, 9,
44, 5
) %>%

mutate(USUBJID = "1")

derive_vars_joined_summary(
planned_visits,
dataset_add = adgs,
by_vars = exprs(USUBJID),
filter_join = ADY - 7 <= ADY.join & ADY.join < ADY,
join_type = "all",

derive_vars_merged 251

join_vars = exprs(ADY),
new_vars = exprs(AVAL = if_else(n() >= 3, mean(AVAL, na.rm = TRUE), NA))

#> # A tibble: 3 x 4
#> USUBJID AVISIT ADY AVAL
#> <chr> <chr> <dbl> <dbl>

#> 11 WEEK 1 8 10

21 WEEK 4 29 NA

31 WEEK 8 57 NA
See Also

derive_vars_joined(), derive_vars_merged_summary(), derive_var_joined_exist_flag(),
filter_joined()

General Derivation Functions for all ADaMs that returns variable appended to dataset: derive_var_extreme_flag(),
derive_var_joined_exist_flag(),derive_var_merged_ef_msrc(),derive_var_merged_exist_flag(),
derive_var_obs_number(), derive_var_relative_flag(), derive_vars_cat(), derive_vars_computed(),
derive_vars_joined(), derive_vars_merged(), derive_vars_merged_lookup(), derive_vars_merged_summary(),
derive_vars_transposed()

derive_vars_merged Add New Variable(s) to the Input Dataset Based on Variables from
Another Dataset

Description

Add new variable(s) to the input dataset based on variables from another dataset. The observations
to merge can be selected by a condition (filter_add argument) and/or selecting the first or last
observation for each by group (order and mode argument).

Usage

derive_vars_merged(
dataset,
dataset_add,
by_vars,
order = NULL,
new_vars = NULL,
filter_add = NULL,

mode = NULL,
exist_flag = NULL,
true_value = "Y",

false_value = NA_character_,
missing_values = NULL,
check_type = "warning”,
duplicate_msg = NULL,
relationship = NULL

252 derive_vars_merged

Arguments

dataset Input dataset
The variables specified by the by_vars argument are expected to be in the
dataset.
Permitted values a dataset, i.e., a data. frame or tibble
Default value none

dataset_add Additional dataset
The variables specified by the by_vars, the new_vars, and the order argument
are expected.
Permitted values a dataset, i.e., a data. frame or tibble
Default value none

by_vars Grouping variables

The input dataset and the selected observations from the additional dataset are
merged by the specified variables.

Variables can be renamed by naming the element, i.e. by_vars = exprs(<name in input dataset> = <r
similar to the dplyr joins.
Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)
Default value none

order Sort order
If the argument is set to a non-null value, for each by group the first or last
observation from the additional dataset is selected with respect to the specified
order.
Variables defined by the new_vars argument can be used in the sort order.
For handling of NAs in sorting variables see the "Sort Order" section in vignette(”generic”).

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)

Default value NULL

new_vars Variables to add

The specified variables from the additional dataset are added to the output dataset.
Variables can be renamed by naming the element, i.e., new_vars = exprs(<new name> = <old name>).
For example new_vars = exprs(var1, var2) adds variables var1 and var2
from dataset_add to the input dataset.

And new_vars = exprs(var1l, new_var2 = old_var2) takes var1 and old_var2
from dataset_add and adds them to the input dataset renaming old_var2 to
new_var2.

Values of the added variables can be modified by specifying an expression.
For example, new_vars = LASTRSP = exprs(str_to_upper (AVALC)) adds the
variable LASTRSP to the dataset and sets it to the upper case value of AVALC.

If the argument is not specified or set to NULL, all variables from the additional
dataset (dataset_add) are added. In the case when a variable exists in both
datasets, an error is issued to ensure the user either adds to by_vars, removes or
renames.

derive_vars_merged

filter_add
mode
exist_flag

true_value

false_value

missing_values

253

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)

Default value NULL

Filter for additional dataset (dataset_add)

Only observations fulfilling the specified condition are taken into account for
merging. If the argument is not specified, all observations are considered.

Variables defined by the new_vars argument can be used in the filter condition.

Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value NULL

Selection mode

Determines if the first or last observation is selected. If the order argument is
specified, mode must be non-null.

If the order argument is not specified, the mode argument is ignored.

Permitted values "first”, "last”
Default value NULL

Exist flag

If the argument is specified (e.g., exist_flag = FLAG), the specified variable
(e.g., FLAG) is added to the input dataset. This variable will be the value provided
in true_value for all selected records from dataset_add which are merged
into the input dataset, and the value provided in false_value otherwise.
Permitted values an unquoted symbol, e.g., AVAL

Default value NULL

True value

The value for the specified variable exist_flag, applicable to the first or last
observation (depending on the mode) of each by group.

Permitted values a character scalar, i.e., a character vector of length one
Default value "Y"

False value

The value for the specified variable exist_flag, NOT applicable to the first or
last observation (depending on the mode) of each by group.

Permitted values a character scalar, i.e., a character vector of length one
Default value NA_character_

Values for non-matching observations
For observations of the input dataset (dataset) which do not have a matching
observation in the additional dataset (dataset_add) the values of the specified
variables are set to the specified value. Only variables specified for new_vars
can be specified for missing_values.

Permitted values list of named expressions created by a formula using exprs(),
e.g., exprs(AVALC = VSSTRESC, AVAL = yn_to_numeric(AVALC))

Default value NULL

254 derive_vars_merged

check_type Check uniqueness?

If "warning”, "message"”, or "error” is specified, the specified message is
issued if the observations of the (restricted) additional dataset are not unique
with respect to the by variables and the order.

If the order argument is not specified, the check_type argument is ignored: if
the observations of the (restricted) additional dataset are not unique with respect
to the by variables, an error is issued.

n on non

Permitted values "none”, "message”,

n on

warning”, "error”

Default value "warning”

duplicate_msg Message of unique check
If the uniqueness check fails, the specified message is displayed.

Permitted values a console message to be printed, e.g. "Attention” or for
longer messages use paste(”Line 1", "Line 2")

Default value paste(
"Dataset {.arg dataset_add} contains duplicate records with respect to"”,
"{.var {vars2chr(by_vars)}}."

)

relationship Expected merge-relationship between the by_vars variable(s) in dataset (in-
put dataset) and the dataset_add (additional dataset) containing the additional
new_vars.

This argument is passed to the dplyr::left_join() function. See https://
dplyr.tidyverse.org/reference/mutate-joins.html#arguments for more
details.

n o n

Permitted values "one-to-one"”, "many-to-one”
Default value NULL

Details

1. The new variables (new_vars) are added to the additional dataset (dataset_add).

2. The records from the additional dataset (dataset_add) are restricted to those matching the
filter_add condition.

3. If order is specified, for each by group the first or last observation (depending on mode) is
selected.

4. The variables specified for new_vars are merged to the input dataset using left_join(). lLe.,
the output dataset contains all observations from the input dataset. For observations with-
out a matching observation in the additional dataset the new variables are set as specified by
missing_values (or to NA for variables not in missing_values). Observations in the addi-
tional dataset which have no matching observation in the input dataset are ignored.

Value

The output dataset contains all observations and variables of the input dataset and additionally the
variables specified for new_vars from the additional dataset (dataset_add).

https://dplyr.tidyverse.org/reference/mutate-joins.html#arguments
https://dplyr.tidyverse.org/reference/mutate-joins.html#arguments

derive_vars_merged 255

Examples

Note on usage versus derive_vars_joined():

The question between using derive_vars_merged() or the more powerful derive_vars_joined()
comes down to how you need to select the observations to be merged.

* If the observations from dataset_add to merge can be selected by a condition (filter_add)
using only variables from dataset_add, then always use derive_vars_merged() as it re-
quires less resources (time and memory). A common example of this would be a random-
ization date in ADSL, where you are simply merging on a date from DS according to a certain
DSDECOD condition such as DSDECOD == "RANDOMIZATION".

* However, if the selection of the observations from dataset_add can depend on variables
from both datasets, then use derive_vars_joined(). Anexample of this would be assigning
period variables from ADSL to an ADAE, where you now need to check each adverse event start
date against the period start and end dates to decide which period value to join.

Basic merge of a full dataset:
Merge all demographic variables onto a vital signs dataset.

e The variable DOMAIN exists in both datasets so note the use of select(dm, -DOMAIN) in the
dataset_add argument. Without this an error would be issued to notify the user.

library(tibble)
library(dplyr, warn.conflicts = FALSE)
vs <- tribble(

~DOMAIN, ~USUBJID, ~VSTESTCD, ~VISIT, ~VSSTRESN, ~VSDTC,
"y "o1", "HEIGHT”, "SCREENING”, 178.0, "2013-08-20",
"ys”, "o1", "WEIGHT”, "SCREENING”, 81.9, "2013-08-20",
"ys”, "1, "WEIGHT”, "BASELINE”, 82.1, "2013-08-29",
"y, "o1", "WEIGHT”, "WEEK 2", 81.9, "2013-09-15",
"ys", 01", "WEIGHT”, "WEEK 4", 82.6, "2013-09-24",
"ys" 92" "WEIGHT", "BASELINE", 58.6, "2014-01-11"

Y %%

mutate(STUDYID = "AB42")

dm <- tribble(
~DOMAIN, ~USUBJID, ~AGE, ~AGEU,

”DM“, 110111, 61 , ”YEARS“,

HDMU, 110211’ 64, ”YEARS”,

”DM”, ”93”, 85, HYEARSH
) %>%

mutate(STUDYID = "AB42")

derive_vars_merged(
Vs,
dataset_add = select(dm, -DOMAIN),
by_vars = exprs(STUDYID, USUBJID)
) %%
select(USUBJID, VSTESTCD, VISIT, VSSTRESN, AGE, AGEU)
#> # A tibble: 6 x 6
#> USUBJID VSTESTCD VISIT VSSTRESN AGE AGEU

256

derive_vars_merged

#> <chr> <chr> <chr> <dbl> <dbl> <chr>
1 01 HEIGHT SCREENING 178 61 YEARS
2 01 WEIGHT SCREENING 81.9 61 YEARS
3 01 WEIGHT BASELINE 82.1 61 YEARS
#> 4 01 WEIGHT WEEK 2 81.9 61 YEARS
#> 5 01 WEIGHT WEEK 4 82.6 61 YEARS
#> 6 02 WEIGHT BASELINE 58.6 64 YEARS

Merge only the first/last value (order and mode):
Merge the last occurring weight for each subject to the demographics dataset.

* To enable sorting by visit date convert_dtc_to_dtm() is used to convert to a datetime,
within the order argument.

* Then the mode argument is set to "last"” to ensure the last sorted value is taken. Be cautious
if NA values are possible in the order variables - see Sort Order.

* The filter_add argument is used to restrict the vital signs records only to weight assess-
ments.

derive_vars_merged(
dm,
dataset_add = vs,
by_vars = exprs(STUDYID, USUBJID),
order = exprs(convert_dtc_to_dtm(VSDTC)),
mode = "last"”,
new_vars = exprs(LSTWT = VSSTRESN),
filter_add = VSTESTCD == "WEIGHT"
) %%
select(USUBJID, AGE, AGEU, LSTWT)
#> # A tibble: 3 x 4
#> USUBJID AGE AGEU LSTWT
#> <chr> <dbl> <chr> <dbl>

#> 1 01 61 YEARS 82.6
#> 2 02 64 YEARS 58.6
#> 3 03 85 YEARS NA

Handling duplicates (check_type):

The source records are checked regarding duplicates with respect to the by variables and the order
specified. By default, a warning is issued if any duplicates are found. Note the results here with a
new vital signs dataset containing a duplicate last weight assessment date.

vs_dup <- tribble(

~DOMAIN, ~USUBJID, ~VSTESTCD, ~VISIT, ~VSSTRESN, ~VSDTC,
"ys”, "o1", "WEIGHT", "WEEK 2", 81.1, "2013-09-24",
"ys", "o1", "WEIGHT”, "WEEK 4", 82.6, "2013-09-24"
Y %%

mutate(STUDYID = "AB42")

derive_vars_merged(
dm,
dataset_add = vs_dup,

https://pharmaverse.github.io/admiral/articles/generic.html#sort_order

derive_vars_merged 257

by_vars = exprs(STUDYID, USUBJID),
order = exprs(convert_dtc_to_dtm(VSDTC)),
mode = "last"”,
new_vars = exprs(LSTWT = VSSTRESN),
filter_add = VSTESTCD == "WEIGHT"

) %%
select(USUBJID, AGE, AGEU, LSTWT)

#> # A tibble: 3 x 4

#> USUBJID AGE AGEU LSTWT

#> <chr> <dbl> <chr> <dbl>

#> 1 01 61 YEARS 82.6
#> 2 02 64 YEARS NA
#> 3 03 85 YEARS NA

#> Warning: Dataset contains duplicate records with respect to ~STUDYID™, “USUBJID", and
#> “convert_dtc_to_dtm(VSDTC)"
#> i Run “admiral::get_duplicates_dataset()™ to access the duplicate records

For investigating the issue, the dataset of the duplicate source records can be obtained by calling
get_duplicates_dataset():

get_duplicates_dataset()

#> Duplicate records with respect to ~STUDYID™, “USUBJID™, and

#> “convert_dtc_to_dtm(VSDTC) .

#> # A tibble: 2 x 9

#> STUDYID USUBJID convert_dtc_to_dtm(VSDT. . . * DOMAIN VSTESTCD VISIT VSSTRESN VSDTC

#> % <chr> <chr> <dttm> <chr> <chr> <chr> <dbl> <chr>
#>1 AB42 01 2013-09-24 00:00:00 D) WEIGHT WEEK. . . 81.12013. ..
#>2 AB42 01 2013-09-24 00:00:00 VS WEIGHT WEEK. . . 82.6 2013. . .

#> # 1 abbreviated name: * convert_dtc_to_dtm(VSDTC)"™
#> # i 1 more variable: LSTWT <dbl>

Common options to solve the issue:

* Specifying additional variables for order - this is the most common approach, adding some-
thing like a sequence variable.

* Restricting the source records by specifying/updating the filter_add argument.

* Setting check_type = "none" to ignore any duplicates, but then in this case the last occurring
record would be chosen according to the sort order of the input dataset_add. This is not

often advisable, unless the order has no impact on the result, as the temporary sort order can
be prone to variation across an ADaM script.

Modify values dependent on the merge (new_vars and missing_values):

For the last occurring weight for each subject, add a categorization of which visit it occurred at to
the demographics dataset.

¢ In the new_vars argument, other functions can be utilized to modify the merged values. For
example, in the below case we want to categorize the visit as "BASELINE" or "POST-BASELINE"
using if_else().

e The missing_values argument assigns a specific value for subjects with no matching obser-
vations - see subject 03" in the below example.

258

derive_vars_merged(

)

#>
#>
#>
#>
#>
#>

dm,

dataset_add = vs,

exprs(STUDYID, USUBJID),

order = exprs(convert_dtc_to_dtm(VSDTC)),

mode = "last”,

new_vars = exprs(
LSTWTCAT = if_else(VISIT == "BASELINE", "BASELINE"”, "POST-BASELINE")

by_vars =

),

filter_add = VSTESTCD == "WEIGHT",
missing_values = exprs(LSTWTCAT = "MISSING")

%>%

select(USUBJID, AGE, AGEU, LSTWTCAT)

A tibbl
USUBJID
<chr>

e:

3 x4
AGE AGEU LSTWTCAT

<dbl> <chr> <chr>

61 YEARS POST-BASELINE
64 YEARS BASELINE
85 YEARS MISSING

derive_vars_merged

Check existence of records to merge (exist_flag, true_value and false_value):

Similar to the above example, now we prefer to have a separate flag variable to show whether a
selected record was merged.

* The name of the new variable is set with the exist_flag argument.

* The values of this new variable are assigned via the true_value and false_value argu-

ments.

derive_vars_merged(

#>
#>
#>
#>
#>
#>

dm,

dataset_add = vs,

exprs(STUDYID, USUBJID),
order = exprs(convert_dtc_to_dtm(VSDTC)),
mode = "last”,
exprs(
if_else(VISIT == "BASELINE"”, "BASELINE", "POST-BASELINE")

by_vars =

new_vars =
LSTWTCAT
),
filter_add
exist_flag
true_value

VSTESTCD == "WEIGHT",
WTCHECK,
"YH ,

false_value = "MISSING”

%>%

select(USUBJID, AGE, AGEU, LSTWTCAT, WTCHECK)

A tibbl
USUBJID
<chr>

e:

3 x5
AGE AGEU LSTWTCAT

<dbl> <chr> <chr>

61 YEARS POST-BASELINE
64 YEARS BASELINE
85 YEARS <NA>

WTCHECK
<chr>

Y

Y
MISSING

derive_vars_merged 259

Creating more than one variable from the merge (new_vars):
Derive treatment start datetime and associated imputation flags.
* In this example we first impute exposure datetime and associated flag variables as a separate
first step to be used in the order argument.
* In the new_vars arguments, you can see how both datetime and the date and time imputation
flags are all merged in one call.

ex <- tribble(
~DOMAIN, ~USUBJID, ~EXSTDTC,

"EX", "o1", "2013-08-29"

"EX", "o1", "2013-09-16"

"EX", 92" "2014-01-11",

"EX", 92" "2014-01-25"
Y %%

mutate(STUDYID = "AB42")

ex_ext <- derive_vars_dtm(

ex,
dtc = EXSTDTC,
new_vars_prefix = "EXST",

highest_imputation = "M"

)

derive_vars_merged(
dm,
dataset_add = ex_ext,
by_vars = exprs(STUDYID, USUBJID),
new_vars = exprs(TRTSDTM = EXSTDTM, TRTSDTF = EXSTDTF, TRTSTMF = EXSTTMF),
order = exprs(EXSTDTM),
mode = "first”
) %%
select(USUBJID, TRTSDTM, TRTSDTF, TRTSTMF)
#> # A tibble: 3 x 4

#> USUBJID TRTSDTM TRTSDTF TRTSTMF
#> <chr> <dttm> <chr> <chr>
1 01 2013-08-29 00:00:00 <NA> H

#> 2 02 2014-01-11 00:00:00 <NA> H

#> 3 03 NA <NA> <NA>

Further examples:
Further example usages of this function can be found in the vignette("generic").

See Also

General Derivation Functions for all ADaMs that returns variable appended to dataset: derive_var_extreme_flag(),
derive_var_joined_exist_flag(), derive_var_merged_ef_msrc(), derive_var_merged_exist_flag(),
derive_var_obs_number(), derive_var_relative_flag(), derive_vars_cat(), derive_vars_computed(),
derive_vars_joined(), derive_vars_joined_summary(), derive_vars_merged_lookup(), derive_vars_merged_sur
derive_vars_transposed()

260 derive_vars_merged_lookup

derive_vars_merged_lookup
Merge Lookup Table with Source Dataset

Description

Merge user-defined lookup table with the input dataset. Optionally print a list of records from the
input dataset that do not have corresponding mapping from the lookup table.

Usage

derive_vars_merged_lookup(
dataset,
dataset_add,
by_vars,
order = NULL,
new_vars = NULL,
mode = NULL,
filter_add = NULL,
check_type = "warning”,
duplicate_msg = NULL,
print_not_mapped = TRUE

Arguments

dataset Input dataset
The variables specified by the by_vars argument are expected to be in the
dataset.
Permitted values a dataset, i.e., a data.frame or tibble
Default value none

dataset_add Lookup table
The variables specified by the by_vars argument are expected.

Permitted values a dataset, i.e., a data.frame or tibble
Default value none

by_vars Grouping variables

The input dataset and the selected observations from the additional dataset are
merged by the specified variables.

Variables can be renamed by naming the element, i.e. by_vars = exprs(<name in input dataset> = <r
similar to the dplyr joins.
Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)
Default value none

derive_vars_merged_lookup 261

order

new_vars

mode

filter_add

check_type

Sort order

If the argument is set to a non-null value, for each by group the first or last
observation from the additional dataset is selected with respect to the specified
order.

Variables defined by the new_vars argument can be used in the sort order.
For handling of NAs in sorting variables see the "Sort Order" sectionin vignette(”generic”).
Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)
Default value NULL

Variables to add

The specified variables from the additional dataset are added to the output dataset.
Variables can be renamed by naming the element, i.e., new_vars = exprs(<new name> = <old name>).

For example new_vars = exprs(var1, var2) adds variables var1 and var2
from dataset_add to the input dataset.

And new_vars = exprs(varl, new_var2 = old_var?2) takes var1 and old_var2
from dataset_add and adds them to the input dataset renaming old_var2 to
new_var2.

Values of the added variables can be modified by specifying an expression.
For example, new_vars = LASTRSP = exprs(str_to_upper (AVALC)) adds the
variable LASTRSP to the dataset and sets it to the upper case value of AVALC.

If the argument is not specified or set to NULL, all variables from the additional
dataset (dataset_add) are added. In the case when a variable exists in both
datasets, an error is issued to ensure the user either adds to by_vars, removes or
renames.

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)
Default value NULL

Selection mode

Determines if the first or last observation is selected. If the order argument is
specified, mode must be non-null.

If the order argument is not specified, the mode argument is ignored.

Permitted values "first”, "last”
Default value NULL

Filter for additional dataset (dataset_add)

Only observations fulfilling the specified condition are taken into account for
merging. If the argument is not specified, all observations are considered.

Variables defined by the new_vars argument can be used in the filter condition.

Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value NULL

Check uniqueness?

If "warning”, "message”, or "error" is specified, the specified message is
issued if the observations of the (restricted) additional dataset are not unique
with respect to the by variables and the order.

262 derive_vars_merged_lookup

If the order argument is not specified, the check_type argument is ignored: if
the observations of the (restricted) additional dataset are not unique with respect
to the by variables, an error is issued.

non non

Permitted values "none”, "message”,

n on

warning”, "error”

’

Default value "warning”

duplicate_msg Message of unique check
If the uniqueness check fails, the specified message is displayed.

Permitted values a console message to be printed, e.g. "Attention” or for
longer messages use paste(”Line 1", "Line 2")
Default value paste(
"Dataset {.arg dataset_add} contains duplicate records with respect to",
"{.var {vars2chr(by_vars)}}."

print_not_mapped
Print a list of unique by_vars values that do not have corresponding records
from the lookup table?

Permitted values TRUE, FALSE
Default value TRUE

Value

The output dataset contains all observations and variables of the input dataset, and add the variables
specified in new_vars from the lookup table specified in dataset_add. Optionally prints a list of
unique by_vars values that do not have corresponding records from the lookup table (by specifying
print_not_mapped = TRUE).

See Also

General Derivation Functions for all ADaMs that returns variable appended to dataset: derive_var_extreme_flag(),
derive_var_joined_exist_flag(), derive_var_merged_ef_msrc(),derive_var_merged_exist_flag(),
derive_var_obs_number(), derive_var_relative_flag(), derive_vars_cat(), derive_vars_computed(),
derive_vars_joined(), derive_vars_joined_summary(), derive_vars_merged(), derive_vars_merged_summary (),
derive_vars_transposed()

Examples

library(dplyr, warn.conflicts = FALSE)
vs <- tribble(

~STUDYID, ~DOMAIN, ~USUBJID, ~VISIT, ~VSTESTCD, ~VSTEST,
"PILOTO1", "yS" "91-1028", "SCREENING”, "HEIGHT", "Height",
"PILOTO1", "yS" "91-1028", "SCREENING”, "TEMP", "Temperature”,
"PILOTO1", "yS" "91-1028", "BASELINE”, "TEMP", "Temperature”,
"PILOTO1", "yS" . "91-1028", "WEEK 4", "TEMP”, "Temperature”,
"PILOTO1", "yS" | "91-1028", "SCREENING 1", "WEIGHT", "Weight",
"PILOTO1", "yS" | "91-1028", "BASELINE”, "WEIGHT”", "Weight",
"PILOTO1", "yS" | "91-1028", "WEEK 4", "WEIGHT", "Weight",
"PILOTO1", "VS" | "Q4-1325", "SCREENING”, "HEIGHT", "Height",

"PILOTO1", "VS", "04-1325", "SCREENING”, "TEMP”, "Temperature”,

derive_vars_merged_summary

"PILOTO1", "VS", "@4-1325", "BASELINE", "TEMP", "Temperature",
"PILOTO1", "VS" "Q4-1325", "WEEK 4", "TEMP", "Temperature”,
"PILOTO1", "VS", "@4-1325", "SCREENING 1", "WEIGHT", "Weight",
"PILOTO1", "VS", "@4-1325", "BASELINE", "WEIGHT", "Weight",
"PILOTO1", "VS") "Q4-1325", "WEEK 4", "WEIGHT", "Weight",
"PILOTO1", "Vs", "10-1027", "SCREENING"”, "HEIGHT", "Height",
"PILOTO1", "vs", "10-1027", "SCREENING", "TEMP", "Temperature",
"PILOTO1", "WS") "10-1027", "BASELINE", "TEMP", "Temperature”,
"PILOTO1", "Vs", "10-1027", "WEEK 4", "TEMP", "Temperature”,
"PILOTO1", "VS", "10-1027", "SCREENING 1", "WEIGHT", "Weight",
"PILOTO1", "Ws") "10-1027", "BASELINE”, "WEIGHT", "Weight",
"PILOTO1", "Vs", "10-1027", "WEEK 4", "WEIGHT", "Weight"

)

param_lookup <- tribble(
~VSTESTCD, ~VSTEST, ~PARAMCD, ~PARAM,

"SYSBP", "Systolic Blood Pressure”,

"SYSBP", "Syst Blood Pressure (mmHg)",

"Weight (kg)",
"Height (cm)”,
"Temperature (C)",

"WEIGHT", "Weight”, "WEIGHT",
"HEIGHT", "Height", "HEIGHT",
"TEMP", "Temperature”, "TEMP",
"MAP", "Mean Arterial Pressure”, "MAP",
"BMIL", "Body Mass Index", "BMI",
"BSA", "Body Surface Area”, "BSA",

derive_vars_merged_lookup(
dataset = vs,
dataset_add = param_lookup,
by_vars = exprs(VSTESTCD),

new_vars = exprs(PARAMCD, PARAM),

print_not_mapped = TRUE

"Mean Art Pressure (mmHg)",
"Body Mass Index(kg/m*2)",
"Body Surface Area(m*2)"

263

derive_vars_merged_summary

Merge Summary Variables

Description

Merge a summary variable from a dataset to the input dataset.

Usage

derive_vars_merged_summary (
dataset,
dataset_add,
by_vars,
new_vars = NULL,
filter_add = NULL,
missing_values = NULL

264

Arguments

dataset

dataset_add

by_vars

new_vars

filter_add

missing_values

derive_vars_merged_summary

Input dataset

The variables specified by the by_vars argument are expected to be in the
dataset.

Permitted values a dataset, i.e., a data.frame or tibble

Default value none

Additional dataset

The variables specified by the by_vars and the variables used on the left hand
sides of the new_vars arguments are expected.

Permitted values a dataset, i.e., a data.frame or tibble

Default value none

Grouping variables

The expressions on the left hand sides of new_vars are evaluated by the specified
variables. Then the resulting values are merged to the input dataset (dataset)
by the specified variables.

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)
Default value none

New variables to add
The specified variables are added to the input dataset.
A named list of expressions is expected:

* LHS refer to a variable.

* RHS refers to the values to set to the variable. This can be a string, a
symbol, a numeric value, an expression or NA. If summary functions are
used, the values are summarized by the variables specified for by_vars.

For example:

new_vars = exprs(
DOSESUM = sum(AVAL),
DOSEMEAN = mean(AVAL)
)
Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)
Default value NULL

Filter for additional dataset (dataset_add)

Only observations fulfilling the specified condition are taken into account for
summarizing. If the argument is not specified, all observations are considered.
Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value NULL

Values for non-matching observations
For observations of the input dataset (dataset) which do not have a matching
observation in the additional dataset (dataset_add) the values of the specified
variables are set to the specified value. Only variables specified for new_vars
can be specified for missing_values.

derive_vars_merged_summary 265

Permitted values list of named expressions created by a formula using exprs(),
e.g., exprs(AVALC = VSSTRESC, AVAL = yn_to_numeric(AVALC))

Default value NULL

Details

1. The records from the additional dataset (dataset_add) are restricted to those matching the
filter_add condition.

2. The new variables (new_vars) are created for each by group (by_vars) in the additional
dataset (dataset_add) by calling summarize(). Le., all observations of a by group are sum-
marized to a single observation.

3. The new variables are merged to the input dataset. For observations without a matching obser-
vation in the additional dataset the new variables are set to NA. Observations in the additional
dataset which have no matching observation in the input dataset are ignored.

Value

The output dataset contains all observations and variables of the input dataset and additionally the
variables specified for new_vars.

See Also

derive_summary_records(), get_summary_records()

General Derivation Functions for all ADaMs that returns variable appended to dataset: derive_var_extreme_flag(),
derive_var_joined_exist_flag(), derive_var_merged_ef_msrc(), derive_var_merged_exist_flag(),
derive_var_obs_number(), derive_var_relative_flag(), derive_vars_cat(), derive_vars_computed(),
derive_vars_joined(), derive_vars_joined_summary(), derive_vars_merged(), derive_vars_merged_lookup(),
derive_vars_transposed()

Examples

library(tibble)
Add a variable for the mean of AVAL within each visit

adbds <- tribble(
~USUBJID, ~AVISIT, ~ASEQ, ~AVAL,

II-IIV’ VIWEEK -III, —Iy 10,
nyn "WEEK 1", 2, NA,
nyn "WEEK 2", 3, NA,
nyn "WEEK 3", 4, 42,
nyn "WEEK 4", 5, 12,
nyn "WEEK 4" 6, 12,
nyn "WEEK 4", 7, 15,
"ar, "WEEK 1", 1, 21,
non "WEEK 4", 2 22

)

derive_vars_merged_summary (
adbds,
dataset_add = adbds,

266

derive_vars_period

by_vars = exprs(USUBJID, AVISIT),
new_vars = exprs(
MEANVIS = mean(AVAL, na.rm = TRUE),
MAXVIS = max(AVAL, na.rm = TRUE)
)
)

Add a variable listing the lesion ids at baseline
adsl <- tribble(

~USUBJID,
.
non
nym

)

adtr <- tribble(
~USUBJID, ~AVISIT, ~LESIONID,
e "BASELINE”, "INV-T1",
" "BASELINE”, "INV-T2",
OER "BASELINE”, "INV-T3",
e "BASELINE”, "INV-T4",
OER "WEEK 1", "INV-T1",
OER "WEEK 1", "INV-T2",
e "WEEK 1", "INV-T4",
. "BASELINE”, "INV-T1”,
o "BASELINE", "INV-T2",
"2", "BASELINE", "INV-T3",
oy "WEEK 1", "INV-T1",
o "WEEK 1", "INV-N1"

)

derive_vars_merged_summary (
adsl,
dataset_add = adtr,
by_vars = exprs(USUBJID),
filter_add = AVISIT == "BASELINE",
new_vars = exprs(LESIONSBL = paste(LESIONID, collapse =", "))

derive_vars_period Add Subperiod, Period, or Phase Variables to ADSL

Description

The function adds subperiod, period, or phase variables like P@1S1SDT, PQ1S2SDT, APQ1SDTM,
APQ2SDTM, TRTQTA, TRT@2A, PH1SDT, PH2SDT, ... to the input dataset. The values of the variables are
defined by a period reference dataset which has one observations per patient and subperiod, period,
or phase.

derive_vars_period 267

Usage
derive_vars_period(
dataset,
dataset_ref,
new_vars,
subject_keys = get_admiral_option("subject_keys")
)
Arguments
dataset Input dataset
The variables specified by the subject_keys argument are expected to be in the
dataset.
Default value none
dataset_ref Period reference dataset
The variables specified by new_vars and subject_keys are expected.
If subperiod variables are requested, APERIOD and ASPER are expected. If period
variables are requested. APERIOD is expected. If phase variables are requested,
APHASEN is expected.
Default value none
new_vars New variables

A named list of variables like exprs (PHWSDT = PHSDT, PHWEDT = PHEDT, APHASEw
= APHASE) is expected. The left hand side of the elements defines a set of vari-
ables (in CDISC notation) to be added to the output dataset. The right hand side
defines the source variable from the period reference dataset.

If the lower case letter "w" is used it refers to a phase variable, if the lower case
letters "xx" are used it refers to a period variable, and if both "xx" and "w" are
used it refers to a subperiod variable.

Only one type must be used, e.g., all left hand side values must refer to period
variables. It is not allowed to mix for example period and subperiod variables.
If period and subperiod variables are required, separate calls must be used.

Default value none

subject_keys Variables to uniquely identify a subject

A list of expressions where the expressions are symbols as returned by exprs()
is expected.

Default value get_admiral_option(”subject_keys")

Details

For each subperiod/period/phase in the period reference dataset and each element in new_vars a
variable (LHS value of new_vars) is added to the output dataset and set to the value of the source
variable (RHS value of new_vars.

Value

The input dataset with subperiod/period/phase variables added (see "Details" section)

268 derive_vars_period

See Also

create_period_dataset()

ADSL Functions that returns variable appended to dataset: derive_var_age_years(), derive_vars_aage(),
derive_vars_extreme_event()

Examples

library(tibble)
library(dplyr, warn.conflicts = FALSE)
library(lubridate)

adsl <- tibble(STUDYID = "xyz", USUBJID = c("1", "2"))

Add period variables to ADSL
period_ref <- tribble(

~USUBJID, ~APERIOD, ~APERSDT, ~APEREDT,
" 1, "2021-01-04", "2021-02-06",
"y 2, "2021-02-07", "2021-03-07",
"2, 1, "2021-02-02", "2021-03-02",
"2, 2, "2021-03-03", "2021-04-01"
) %>%

mutate(

STUDYID = "xyz",

APERIOD = as.integer(APERIOD),

across(matches("APERLESIDT"), ymd)
)

derive_vars_period(
adsl,
dataset_ref = period_ref,
new_vars = exprs(APxxSDT = APERSDT, APxxEDT = APEREDT)
) %>%
select(STUDYID, USUBJID, AP@1SDT, APQ1EDT, APQ2SDT, APQ2EDT)

Add phase variables to ADSL
phase_ref <- tribble(

~USUBJID, ~APHASEN, ~PHSDT, ~PHEDT, ~APHASE,

" 1, "2021-01-04", "2021-02-06", "TREATMENT",

" 2, "2021-02-07", "2021-03-07", "FUP",

"2, 1, "2021-02-02", "2021-03-02", "TREATMENT"
) %>%

mutate(

STUDYID = "xyz",

APHASEN = as.integer (APHASEN),

across(matches("PHLESIDT"), ymd)
)

derive_vars_period(

adsl,

dataset_ref = phase_ref,

new_vars = exprs(PHwSDT = PHSDT, PHwWEDT = PHEDT, APHASEw = APHASE)
) %>%

derive_vars_query 269

select(STUDYID, USUBJID, PH1SDT, PH1EDT, PH2SDT, PH2EDT, APHASE1, APHASE2)

Add subperiod variables to ADSL
subperiod_ref <- tribble(
~USUBJID, ~APERIOD, ~ASPER, ~ASPRSDT, ~ASPREDT,
", 1, 1, "2021-01-04", "2021-01-19",
" 1, 2, "2021-01-20", "2021-02-06",
" 2, 1, "2021-02-07", "2021-03-07",
1 1
2 1

"2, , , "2021-02-02", "2021-03-02",

"2", , , "2021-03-03", "2021-04-01"
) %>%

mutate(

STUDYID = "xyz",

APERIOD = as.integer (APERIOD),
ASPER = as.integer (ASPER),
across(matches("ASPR[ESIDT"), ymd)

)

derive_vars_period(
adsl,
dataset_ref = subperiod_ref,
new_vars = exprs(PxxSwSDT = ASPRSDT, PxxSwEDT = ASPREDT)
) %%
select(STUDYID, USUBJID, P@1S1SDT, P@1S1EDT, P@1S2SDT, PQ1S2EDT, P@2S1SDT, P@2S1EDT)

derive_vars_query Derive Query Variables

Description

Derive Query Variables

Usage

derive_vars_query(dataset, dataset_queries)

Arguments

dataset Input dataset

Default value none
dataset_queries

A dataset containing required columns PREFIX, GRPNAME, SRCVAR, TERMCHAR
and/or TERMNUM, and optional columns GRPID, SCOPE, SCOPEN.

create_query_data() can be used to create the dataset.

Default value none

270 derive_vars_query

Details

This function can be used to derive CDISC variables such as SMQzzNAM, SMQzzCD, SMQzzSC, SMQzzSCN,
and CQzzNAM in ADAE and ADMH, and variables such as SDGzzNAM, SDGzzCD, and SDGzzSC in
ADCM. An example usage of this function can be found in the vignette("occds”).

A query dataset is expected as an input to this function. See the vignette(”queries_dataset”)
for descriptions, or call data("queries”) for an example of a query dataset.

For each unique element in PREFIX, the corresponding "NAM" variable will be created. For each
unique PREFIX, if GRPID is not "" or NA, then the corresponding "CD" variable is created; similarly,
if SCOPE is not "" or NA, then the corresponding "SC" variable will be created; if SCOPEN is not ""
or NA, then the corresponding "SCN" variable will be created.

For each record in dataset, the "NAM" variable takes the value of GRPNAME if the value of TERMCHAR
or TERMNUM in dataset_queries matches the value of the respective SRCVAR in dataset. Note
that TERMCHAR in dataset_queries dataset may be NA only when TERMNUM is non-NA and vice
versa. The matching is case insensitive. The "CD", "SC", and "SCN" variables are derived accord-
ingly based on GRPID, SCOPE, and SCOPEN respectively, whenever not missing.

Value

The input dataset with query variables derived.

See Also

create_query_data()

OCCDS Functions: derive_var_trtemfl(), derive_vars_atc()

Examples

library(tibble)

data("queries")

adae <- tribble(
~USUBJID, ~ASTDTM, ~AETERM, ~AESEQ, ~AEDECOD, ~AELLT, ~AELLTCD,
"Q1", "2020-06-02 23:59:59", "ALANINE AMINOTRANSFERASE ABNORMAL",
3, "Alanine aminotransferase abnormal”, NA_character_, NA_integer_,
"Q2", "2020-06-05 23:59:59", "BASEDOW'S DISEASE",
5, "Basedow's disease”, NA_character_, 1L,
"@3", "2020-06-07 23:59:59", "SOME TERM",
2, "Some query"”, "Some term”, NA_integer_,
"@5", "2020-06-09 23:59:59", "ALVEOLAR PROTEINOSIS",
7, "Alveolar proteinosis”, NA_character_, NA_integer_

)

derive_vars_query(adae, queries)

derive_vars_transposed

271

derive_vars_transposed

Derive Variables by Transposing and Merging a Second Dataset

Description

Adds variables from a vertical dataset after transposing it into a wide one.

Usage

derive_vars_transposed(

dataset,
dataset_merge
by_vars,

’

id_vars = NULL,

key_var,
value_var,
filter = NULL

’

relationship = NULL

Arguments

dataset

dataset_merge

by_vars

id_vars

key_var

Input dataset

The variables specified by the by_vars argument are expected to be in the
dataset.

Default value none

Dataset to transpose and merge

The variables specified by the by_vars, id_vars, key_var and value_var ar-
guments are expected. The variables by_vars, id_vars, key_var have to be a
unique key.

Default value none

Grouping variables
Keys used to merge dataset_merge with dataset.

Default value none

ID variables

Variables (excluding by_vars and key_var) that uniquely identify each obser-
vation in dataset_merge.

Default value NULL

The variable of dataset_merge containing the names of the transposed vari-
ables

Default value none

272 derive_vars_transposed

value_var The variable of dataset_merge containing the values of the transposed vari-
ables

Default value none

filter Expression used to restrict the records of dataset_merge prior to transposing
Default value NULL

relationship Expected merge-relationship between the by_vars variable(s) in dataset and

dataset_merge (after transposition)

This argument is passed to the dplyr::left_join() function. See https://
dplyr.tidyverse.org/reference/mutate-joins.html#arguments for more
details.

n on n n n on

Permitted values "one-to-one”, "one-to-many”, "many-to-one”,
NULL

Default value NULL

many-to-many"”,

Details
1. The records from the dataset to transpose and merge (dataset_merge) are restricted to those
matching the filter condition, if provided.

2. The records from dataset_merge are checked to ensure they are uniquely identified using
by_vars, id_vars and key_var.

3. dataset_merge is transposed (from "tall" to "wide"), with new variables added whose names
come from key_var and values come from value_var.

4. The transposed dataset is merged with the input dataset using by_vars as keys. Ifarelationship
has been provided, this merge must satisfy the relationship, otherwise an error is thrown.

Note that unlike other derive_vars_x() functions, the final step may cause new records to be
added to the input dataset. The relationship argument can be specified to ensure this does not
happen inadvertently.

Value

The input dataset with transposed variables from dataset_merge added

See Also

derive_vars_atc()

General Derivation Functions for all ADaMs that returns variable appended to dataset: derive_var_extreme_flag(),
derive_var_joined_exist_flag(), derive_var_merged_ef_msrc(), derive_var_merged_exist_flag(),
derive_var_obs_number(), derive_var_relative_flag(), derive_vars_cat(), derive_vars_computed(),
derive_vars_joined(), derive_vars_joined_summary(), derive_vars_merged(), derive_vars_merged_lookup(),
derive_vars_merged_summary()

Examples

library(tibble)
library(dplyr, warn.conflicts = FALSE)

https://dplyr.tidyverse.org/reference/mutate-joins.html#arguments
https://dplyr.tidyverse.org/reference/mutate-joins.html#arguments

derive_vars_transposed 273

Adding ATC classes to CM using FACM
cm <- tribble(

~USUBJID, ~CMGRPID, ~CMREFID, ~CMDECOD,
"BP40257-1001", "14", "1192056", "PARACETAMOL",
"BP40257-1001", "18", "2007001", "SOLUMEDROL",
"BP40257-1002", "19", "2791596", "SPIRONOLACTONE"

)

facm <- tribble(
~USUBJID, ~FAGRPID, ~FAREFID, ~FATESTCD, ~FASTRESC,
"BP40257-1001", "1", "1192056", "CMATC1CD", "N",
"BP40257-1001", "1", "1192056", "CMATC2CD", "Ne@2",
"BP40257-1001", "1", "1192056", "CMATC3CD", "No2B",
"BP40257-1001", "1", "1192056", "CMATC4CD", "NO@2BE",
"BP40257-1001", "1", "2007001", "CMATC1CD", "D",
"BP40257-1001", "1", "2007001", "CMATC2CD", "D10@",
"BP40257-1001", "1", "2007001", "CMATC3CD", "D10A",
"BP40257-1001", "1", "2007001", "CMATC4CD”, "D10AA”",
"BP40257-1001", "2", "2007001", "CMATC1CD", "D",
"BP40257-1001", "2", "2007001", "CMATC2CD", "D@7",
"BP40257-1001", "2", "2007001", "CMATC3CD”, "D@7A",
"BP40257-1001", "2", "2007001", "CMATCACD", "DO7AA",
"BP40257-1001", "3", "2007001", "CMATC1CD", "H",
"BP40257-1001", "3", "2007001", "CMATC2CD", "H@2",
"BP40257-1001", "3", "2007001", "CMATC3CD", "H@O2A",
"BP40257-1001", "3", "2007001", "CMATC4CD", "H@2AB",
"BP40257-1002", "1", "2791596", "CMATC1CD", "C",
"BP40257-1002", "1", "2791596", "CMATC2CD", "C@3",
"BP40257-1002", "1", "2791596", "CMATC3CD", "Ce3D",
"BP40257-1002", "1", "2791596", "CMATC4CD", "CO3DA"

)

cm %>%

derive_vars_transposed(
dataset_merge = facm,
by_vars = exprs(USUBJID, CMREFID = FAREFID),
id_vars = exprs(FAGRPID),
key_var = FATESTCD,
value_var = FASTRESC
) %%
select(USUBJID, CMDECOD, starts_with("CMATC"))

Note: the ~id_vars™ argument here is needed to uniquely identify
rows of dataset_merge and avoid duplicates-related errors.
Compare the above call to when “id_vars = NULL™:

try(
cm %>%

derive_vars_transposed(
dataset_merge = facm,
by_vars = exprs(USUBJID, CMREFID = FAREFID),
id_vars = NULL,
key_var = FATESTCD,
value_var = FASTRESC

274 derive_var_age_years

derive_var_age_years Derive Age in Years

Description

Converts the given age variable (age_var) to the unit "years’ from the current units given in the
age_var+U variable or age_unit argument and stores in a new variable (new_var).

Usage

derive_var_age_years(dataset, age_var, age_unit = NULL, new_var)

Arguments

dataset Input dataset

The variables specified by the age_var argument are expected to be in the
dataset.

Default value none

age_var Age variable.
A numeric object is expected.

Default value none

age_unit Age unit.
The age_unit argument is only expected when there is NOT a variable age_var+U
in dataset. This gives the unit of the age_var variable and is used to convert
AGE to ’years’ so that grouping can occur.

Permitted values ’years’, ’'months’, *weeks’, ’days’, "hours’, minutes’, ’sec-
onds’

Default value NULL

new_var New age variable to be created in years. The returned values are doubles and
NOT integers. ’

Default value none

Details

This function is used to convert an age variable into the unit "years’ which can then be used to
create age groups. The resulting column contains the equivalent years as a double. Note, underlying
computations assume an equal number of days in each year (365.25).

Value

The input dataset (dataset) with new_var variable added in years.

derive_var_analysis_ratio 275

See Also

derive_vars_duration()

ADSL Functions that returns variable appended to dataset: derive_vars_aage(), derive_vars_extreme_event(),
derive_vars_period()

Examples
library(tibble)

Derive age with age units specified
data <- tribble(

~AGE, ~AGEU,
27, "days”,
24, "months”,
3, "years",
4, "weeks",
1, "years”

)
derive_var_age_years(data, AGE, new_var = AAGE)

Derive age without age units variable specified
data <- tribble(

~AGE,

12,

24,

36,

48
)

derive_var_age_years(data, AGE, age_unit = "months"”, new_var = AAGE)

derive_var_analysis_ratio
Derive Ratio Variable

Description

Derives a ratio variable for a BDS dataset based on user specified variables.

Usage

derive_var_analysis_ratio(dataset, numer_var, denom_var, new_var = NULL)

Arguments

dataset Input dataset
The variables specified by the numer_var and denom_var arguments are ex-
pected to be in the dataset.

276 derive_var_analysis_ratio

Default value none

numer_var Variable containing numeric values to be used in the numerator of the ratio cal-
culation.

Default value none

denom_var Variable containing numeric values to be used in the denominator of the ratio
calculation.

Default value none

new_var A user-defined variable that will be appended to the dataset. The default behav-
ior will take the denominator variable and prefix it with R2 and append to the
dataset. Using this argument will override this default behavior.

Default is NULL.
Default value NULL

Details

A user wishing to calculate a Ratio to Baseline, AVAL / BASE will have returned a new variable
R2BASE that will be appended to the input dataset. Ratio to Analysis Range Lower Limit AVAL /
ANRLO will return a new variable R2ANRLO, and Ratio to Analysis Range Upper Limit AVAL / ANRHI
will return a new variable R2ANRLO. Please note how the denominator variable has the prefix R2----.
A user can override the default returned variables by using the new_var argument. Also, values of
0 in the denominator will return NA in the derivation.

Note that R2AyHI and R2AyLO can also be derived using this function.

Reference CDISC ADaM Implementation Guide Version 1.1 Section 3.3.4 Analysis Parameter Vari-
ables for BDS Datasets

Value

The input dataset with a ratio variable appended

See Also

BDS-Findings Functions that returns variable appended to dataset: derive_basetype_records(),
derive_var_anrind(), derive_var_atoxgr(), derive_var_atoxgr_dir(), derive_var_base(),
derive_var_chg(),derive_var_nfrlt(),derive_var_ontrtfl(), derive_var_pchg(), derive_var_shift(),
derive_vars_crit_flag()

Examples

library(tibble)

data <- tribble(
~USUBJID, ~PARAMCD, ~SEQ, ~AVAL, ~BASE, ~ANRLO, ~ANRHI,
"p@1", "ALT", 1, 27, 27, 6, 34,
"PoO1", "ALT", 2, 41, 27, 6, 34,
"PQ1", "ALT", 3, 17, 27, 6, 34,
"p@2", "ALB", 1, 38, 38, 33, 49,
"P@2", "ALB", 2, 39, 38, 33, 49,

derive_var_anrind 277

"P@2", "ALB", 3, 37, 38, 33, 49
)

Returns "R2" prefixed variables

data %>%
derive_var_analysis_ratio(numer_var = AVAL, denom_var = BASE) %>%
derive_var_analysis_ratio(numer_var = AVAL, denom_var = ANRLO) %>%
derive_var_analysis_ratio(numer_var = AVAL, denom_var = ANRHI)

Returns user-defined variables

data %>%
derive_var_analysis_ratio(numer_var = AVAL, denom_var = BASE, new_var = RO1BASE) %>%
derive_var_analysis_ratio(numer_var = AVAL, denom_var = ANRLO, new_var = RO1ANRLO) %>%
derive_var_analysis_ratio(numer_var = AVAL, denom_var = ANRHI, new_var = RQ1ANRHI)

derive_var_anrind Derive Reference Range Indicator

Description

Derive Reference Range Indicator

Usage

derive_var_anrind(
dataset,
signif_dig = get_admiral_option("signif_digits"),
use_alhiallo = FALSE

)
Arguments
dataset Input dataset ANRLO, ANRHI, and AVAL are expected and if use_alhiallo is set
to TRUE, A1LO and A1H1 are expected as well.
Default value none
signif_dig Number of significant digits to use when comparing values.

Significant digits used to avoid floating point discrepancies when comparing
numeric values. See blog: How admiral handles floating points

Default value get_admiral_option("signif_digits")

use_alhiallo A logical value indicating whether to use ATH1 and A1LO in the derivation of
ANRIND.

Default value FALSE

https://pharmaverse.github.io/blog/posts/2023-10-30_floating_point/floating_point.html

278 derive_var_anrind

Details
In the case that ATH1 and A1LO are to be used, ANRIND is set to:

* "NORMAL" if AVAL is greater or equal ANRLO and less than or equal ANRHI; or if AVAL is greater
than or equal ANRLO and ANRHI is missing; or if AVAL is less than or equal ANRHI and ANRLO is
missing

e "LOW" if AVAL is less than ANRLO and either A1LO is missing or AVAL is greater than or equal
A1LO

e "HIGH" if AVAL is greater than ANRHI and either ATHI is missing or AVAL is less than or equal
ATHI

e "LOWLOW" if AVAL is less than ATLO
e "HIGH HIGH" if AVAL is greater than ATHI

In the case that ATH1 and A1LO are not to be used, ANRIND is set to:

* "NORMAL" if AVAL is greater or equal ANRLO and less than or equal ANRHI; or if AVAL is greater
than or equal ANRLO and ANRHI is missing; or if AVAL is less than or equal ANRHI and ANRLO is
missing

e "LOW" if AVAL is less than ANRLO

e "HIGH" if AVAL is greater than ANRHI

Value

The input dataset with additional column ANRIND

See Also

BDS-Findings Functions that returns variable appended to dataset: derive_basetype_records(),
derive_var_analysis_ratio(), derive_var_atoxgr(), derive_var_atoxgr_dir(), derive_var_base(),
derive_var_chg(),derive_var_nfrlt(),derive_var_ontrtfl(), derive_var_pchg(), derive_var_shift(),
derive_vars_crit_flag()

Examples

library(tibble)
library(dplyr, warn.conflicts = FALSE)

vs <- tibble::tribble(
~USUBJID, ~PARAMCD, ~AVAL, ~ANRLO, ~ANRHI, ~A1LO, ~ATHI,

"po1", "PUL", 70, 60, 100, 40, 110,
"PQ1", "PUL", 57, 60, 100, 40, 110,
"po1", "PUL", 60, 60, 100, 40, 110,
"po1", "DIABP", 102, 60, 80, 40, 90,
"PQ2", "PUL", 109, 60, 100, 40, 110,
"p@2" "PUL", 100, 60, 100, 40, 110,
"P@2", "DIABP", 80, 60, 80, 40, 90,
"PQ3", "PUL", 39, 60, 100, 40, 110,
"PQ3", "PUL", 40, 60, 100, 40, 110

derive_var_atoxgr 279

vs %>% derive_var_anrind(use_alhiallo = TRUE)
vs %>% derive_var_anrind(use_alhiallo = FALSE)

derive_var_atoxgr Derive Lab High toxicity Grade 0 - 4 and Low Toxicity Grades 0 - (-4)

Description

Derives character lab grade based on high and low severity/toxicity grade(s).

Usage

derive_var_atoxgr(
dataset,
lotox_description_var = ATOXDSCL,

hitox_description_var = ATOXDSCH
)
Arguments
dataset Input dataset

The variables specified by the lotox_description_var and hitox_description_var
arguments are expected to be in the dataset. ATOXGRL, and ATOXGRH are expected
as well.

Default value none
lotox_description_var
Variable containing the toxicity grade description for low values, eg. "Anemia"

Default value ATOXDSCL

hitox_description_var
Variable containing the toxicity grade description for high values, eg. "Hemoglobin
Increased".

Default value ATOXDSCH

Details

Created variable ATOXGR will contain values "-4", "-3", "-2", "-1" for low values and "1", "2", "3",
"4" for high values, and will contain "0" if value is gradable and does not satisfy any of the criteria
for high or low values. ATOXGR is set to missing if information not available to give a grade.

Function applies the following rules:

* High and low missing - overall missing
* Low grade not missing and > 0 - overall holds low grade

* High grade not missing and > O - overall holds high grade

280 derive_var_atoxgr_dir

* (Only high direction OR low direction is NORMAL) and high grade normal - overall NOR-
MAL

* (Only low direction OR high direction is NORMAL) and low grade normal - overall NOR-
MAL

 otherwise set to missing

Value

The input data set with the character variable added

See Also

BDS-Findings Functions that returns variable appended to dataset: derive_basetype_records(),
derive_var_analysis_ratio(),derive_var_anrind(), derive_var_atoxgr_dir(), derive_var_base(),

derive_var_chg(),derive_var_nfrlt(),derive_var_ontrtfl(), derive_var_pchg(), derive_var_shift(),
derive_vars_crit_flag()

Examples

library(tibble)

adlb <- tribble(

~ATOXDSCL, ~ATOXDSCH, ~ATOXGRL, ~ATOXGRH,
"Hypoglycemia”, "Hyperglycemia”, NA_character_, "0",
"Hypoglycemia”, "Hyperglycemia”, "0", ",
"Hypoglycemia”, "Hyperglycemia”, "0", "o",
NA_character_, "INR Increased”, NA_character_, "0",
"Hypophosphatemia”, NA_character_, "1, NA_character_

)

derive_var_atoxgr(adlb)

derive_var_atoxgr_dir Derive Lab Toxicity Grade O - 4

Description

Derives a character lab grade based on severity/toxicity criteria.

Usage

derive_var_atoxgr_dir(
dataset,
new_var,
tox_description_var,
meta_criteria,
criteria_direction,
abnormal_indicator = NULL,

derive_var_atoxgr._dir 281

high_indicator = NULL,

low_indicator = NULL,

get_unit_expr,

signif_dig = get_admiral_option("signif_digits")

)
Arguments
dataset Input dataset
The variables specified by the tox_description_var argument are expected to
be in the dataset.
Default value none
new_var Name of the character grade variable to create, for example, ATOXGRH or ATOXGRL.

Default value none

tox_description_var
Variable containing the description of the grading criteria. For example: "Ane-
mia" or "INR Increased".

Default value none
meta_criteria Metadata data set holding the criteria (normally a case statement)

Permitted values atoxgr_criteria_ctcv4, atoxgr_criteria_ctcv5, atoxgr_criteria_ctcve,
atoxgr_criteria_daids

* atoxgr_criteria_ctcv4 implements Common Terminology Criteria
for Adverse Events (CTCAE) v4.0

* atoxgr_criteria_ctcv5 implements Common Terminology Criteria
for Adverse Events (CTCAE) v5.0

* atoxgr_criteria_ctcv6 implements Common Terminology Criteria
for Adverse Events (CTCAE) v6.0

e atoxgr_criteria_daids implements Division of AIDS (DAIDS) Ta-
ble for Grading the Severity of Adult and Pediatric Adverse Events

The metadata should have the following variables:

* TERM: variable to hold the term describing the criteria applied to a par-
ticular lab test, eg. "Anemia" or "INR Increased". Note: the variable is
case insensitive.

e DIRECTION: variable to hold the direction of the abnormality of a par-
ticular lab test value. "L" is for LOW values, "H" is for HIGH values.
Note: the variable is case insensitive.

e UNIT_CHECK: variable to hold unit of particular lab test. Used to check
against input data if criteria is based on absolute values.

* VAR_CHECK: variable to hold comma separated list of variables used in
criteria. Used to check against input data that variables exist.

* GRADE_CRITERIA_CODE: variable to hold code that creates grade based
on defined criteria.

e FILTER: Required only for DAIDS grading, specifies admiral code to
filter the lab data based on a subset of subjects (e.g. AGE > 18 YEARS)

https://dctd.cancer.gov/research/ctep-trials/trial-development#ctcae-and-ctep-codes
https://dctd.cancer.gov/research/ctep-trials/trial-development#ctcae-and-ctep-codes
https://dctd.cancer.gov/research/ctep-trials/for-sites/adverse-events#ctep-ctcae
https://dctd.cancer.gov/research/ctep-trials/for-sites/adverse-events#ctep-ctcae
https://dctd.cancer.gov/research/ctep-trials/for-sites/adverse-events#ctep-ctcae
https://dctd.cancer.gov/research/ctep-trials/for-sites/adverse-events#ctep-ctcae
https://rsc.niaid.nih.gov/sites/default/files/daidsgradingcorrectedv21.pdf
https://rsc.niaid.nih.gov/sites/default/files/daidsgradingcorrectedv21.pdf

282

derive_var_atoxgr_dir

Default value none

criteria_direction

Direction (L= Low, H = High) of toxicity grade.
Permitted values "L", "H"

Default value none

abnormal_indicator

high_indicator

low_indicator

get_unit_expr

signif_dig

Details

[Deprecated] Please use low_indicator and high_indicator instead.
Default value NULL

Value in BNRIND derivation to indicate an abnormal high value. Usually "HIGH"
for criteria_direction="H".

This is only required when meta_criteria = atoxgr_criteria_ctcv5ormeta_criteria
= atoxgr_criteria_ctcv6 and BNRIND is a required variable. Currently, for

terms "Alanine aminotransferase increased”, "Aspartate aminotransferase
increased”, "Blood bilirubin increased” and "GGT increased” for both

sets of criteria. Also, term "Alkaline phosphatase increased” formeta_criteria

= atoxgr_criteria_ctcvb.

Default value NULL

Value in BNRIND derivation to indicate an abnormal low value. Usually "LOW"
for criteria_direction="L".

This is only required when meta_criteria = atoxgr_criteria_ctcv6 and
BNRIND is a required variable. Currently, only for term "Creatinine increased”.
Default value NULL

An expression providing the unit of the parameter

The result is used to check the units of the input parameters. Compared with

UNIT_CHECK in metadata (see meta_criteria parameter).

Permitted values A variable containing unit from the input dataset, or a func-
tion call, for example, get_unit_expr = extract_unit(PARAM).

Default value none

Number of significant digits to use when comparing a lab value against another

value.

Significant digits used to avoid floating point discrepancies when comparing

numeric values. See blog: How admiral handles floating points

Default value get_admiral_option("signif_digits")

new_var is derived with values NA, "0", "1", "2", "3", "4", where "4" is the most severe grade

* "4" is where the lab value satisfies the criteria for grade 4.

* "3" is where the lab value satisfies the criteria for grade 3.

* "2" is where the lab value satisfies the criteria for grade 2.

* "1"is where the lab value satisfies the criteria for grade 1.

* "0" is where a grade can be derived and is not grade "1", "2", "3" or "4".

* NA is where a grade cannot be derived.

https://pharmaverse.github.io/blog/posts/2023-10-30_floating_point/floating_point.html

derive_var_atoxgr._dir 283

Value

The input dataset with the character variable added

See Also

BDS-Findings Functions that returns variable appended to dataset: derive_basetype_records(),
derive_var_analysis_ratio(),derive_var_anrind(), derive_var_atoxgr(), derive_var_base(),
derive_var_chg(),derive_var_nfrlt(),derive_var_ontrtfl(), derive_var_pchg(), derive_var_shift(),
derive_vars_crit_flag()

Examples
library(tibble)

data <- tribble(

~ATOXDSCL, ~AVAL, ~ANRLO, ~ANRHI, ~PARAM,

"Hypoglycemia”, 119, 4, 7, "Glucose (mmol/L)",
"Lymphocyte count decreased”, 0.7, 1, 4, "Lymphocytes Abs (10%9/L)",
"Anemia", 129, 120, 180, "Hemoglobin (g/L)",

"White blood cell decreased”, 10, 5, 20, "White blood cell (10%9/L)",
"White blood cell decreased”, 15, 5, 20, "White blood cell (1079/L)",
"Anemia", 140, 120, 180, "Hemoglobin (g/L)"

derive_var_atoxgr_dir(data,
new_var = ATOXGRL,
tox_description_var = ATOXDSCL,
meta_criteria = atoxgr_criteria_ctcv5,

criteria_direction = "L",
get_unit_expr = extract_unit(PARAM)

)

data <- tribble(
~ATOXDSCH, ~AVAL, ~ANRLO, ~ANRHI, ~PARAM,
"CPK increased”, 129, Q, 30, "Creatine Kinase (U/L)",
"Lymphocyte count increased”, 4, 1, 4, "Lymphocytes Abs (10%9/L)",
"Lymphocyte count increased”, 2, 1, 4, "Lymphocytes Abs (10%9/L)",
"CPK increased”, 140, 120, 180, "Creatine Kinase (U/L)"

)

derive_var_atoxgr_dir(data,
new_var = ATOXGRH,
tox_description_var = ATOXDSCH,
meta_criteria = atoxgr_criteria_ctcv5,
criteria_direction = "H",
get_unit_expr = extract_unit(PARAM)

284

derive_var_base

derive_var_base Derive Baseline Variables

Description

Derive baseline variables, e.g. BASE or BNRIND, in a BDS dataset.

Note: This is a wrapper function for the more generic derive_vars_merged().

Usage

derive_var_base(
dataset,
by_vars,
source_var = AVAL,
new_var = BASE,

filter = ABLFL == "Y"
)
Arguments
dataset Input dataset
The variables specified by the by_vars and source_var arguments are expected
to be in the dataset.
Default value none
by_vars Grouping variables
Grouping variables uniquely identifying a set of records for which to calculate
new_var.
Default value none
source_var The column from which to extract the baseline value, e.g. AVAL
Default value AVAL
new_var The name of the newly created baseline column, e.g. BASE
Default value BASE
filter The condition used to filter dataset for baseline records.
By default ABLFL == "Y"
Default value ABLFL =="Y"
Details

For each by_vars group, the baseline record is identified by the condition specified in filter which
defaults to ABLFL == "Y". Subsequently, every value of the new_var variable for the by_vars group
is set to the value of the source_var variable of the baseline record. In case there are multiple

baseline records within by_vars an error is issued.

derive_var_base 285

Value
A new data. frame containing all records and variables of the input dataset plus the new_var vari-
able

See Also

BDS-Findings Functions that returns variable appended to dataset: derive_basetype_records(),
derive_var_analysis_ratio(),derive_var_anrind(), derive_var_atoxgr(), derive_var_atoxgr_dir(),
derive_var_chg(),derive_var_nfrlt(),derive_var_ontrtfl(),derive_var_pchg(), derive_var_shift(),
derive_vars_crit_flag()

Examples

library(tibble)

dataset <- tribble(

~STUDYID, ~USUBJID, ~PARAMCD, ~AVAL, ~AVALC, ~AVISIT, ~ABLFL, ~ANRIND,
"TESTO1", "PATO1”, "PARAM@1", 10.12, NA, "Baseline”, "Y", "NORMAL",
"TESTO1", "PATO1”, "PARAM@1", 9.700, NA, "Day 7", NA, "LOW”,
"TESTO1", "PATO1”, "PARAMO1", 15.01, NA, "Day 14", NA, "HIGH",
"TESTO1", "PATO1", "PARAMO2", 8.350, NA, "Baseline”, "Y", "LOW",
"TESTO1", "PATO1”, "PARAM@2", NA, NA, "Day 7", NA, NA,
"TESTO1", "PATO1”, "PARAM@2", 8.350, NA, "Day 14", NA, "LOW",
"TESTO1", "PATO1”, "PARAM@3”, NA, "LOW”", "Baseline”, "Y", NA,
"TESTO1”, "PATO1”, "PARAM@3", NA, "LOW”", "Day 7", NA, NA,
"TESTO1", "PATO1", "PARAMO3”, NA, "MEDIUM", "Day 14", NA, NA,
"TESTO1", "PATO1”, "PARAM@4”, NA, "HIGH", "Baseline”, "Y", NA,
"TESTO1”, "PATO1", "PARAMO4”, NA, "HIGH", "Day 7", NA, NA,
"TESTO1", "PATO1", "PARAMO4”, NA, "MEDIUM", "Day 14", NA, NA

Derive “BASE" variable from ~AVAL®
derive_var_base(
dataset,
by_vars = exprs(USUBJID, PARAMCD),
source_var = AVAL,
new_var = BASE

)

Derive “BASEC™ variable from “AVALC®
derive_var_base(
dataset,
by_vars = exprs(USUBJID, PARAMCD),
source_var = AVALC,
new_var = BASEC

Derive “BNRIND™ variable from “ANRIND"
derive_var_base(
dataset,
by_vars = exprs(USUBJID, PARAMCD),
source_var = ANRIND,

286 derive_var_chg

new_var = BNRIND

derive_var_chg Derive Change from Baseline

Description

Derive change from baseline (CHG) in a BDS dataset

Usage

derive_var_chg(dataset)

Arguments
dataset Input dataset AVAL and BASE are expected.
Default value none
Details

Change from baseline is calculated by subtracting the baseline value from the analysis value.

Value

The input dataset with an additional column named CHG

See Also

BDS-Findings Functions that returns variable appended to dataset: derive_basetype_records(),
derive_var_analysis_ratio(), derive_var_anrind(), derive_var_atoxgr(), derive_var_atoxgr_dir(),
derive_var_base(),derive_var_nfrlt(), derive_var_ontrtfl(), derive_var_pchg(),derive_var_shift(),
derive_vars_crit_flag()

Examples
library(tibble)

advs <- tribble(
~USUBJID, ~PARAMCD, ~AVAL, ~ABLFL, ~BASE,

"Po1", "WEIGHT”, 80, e 8o,
"po1", "WEIGHT", 80.8, NA, 80,
"po1", "WEIGHT", 81.4, NA, 80,
"p@2" "WEIGHT", 75.3, "Y', 75.3,
"p@2", "WEIGHT", 76, NA, 75.3

)

derive_var_chg(advs)

derive_var_dthcaus 287

derive_var_dthcaus Derive Death Cause

Description

[Deprecated] The derive_var_dthcaus() function has been deprecated in favor of derive_vars_extreme_event().

Derive death cause (DTHCAUS) and add traceability variables if required.

Usage

derive_var_dthcaus(

dataset,

source_datasets,

subject_keys = get_admiral_option("subject_keys")
)

Arguments

dataset Input dataset

The variables specified by the subject_keys argument are expected to be in the
dataset.

Default value none
Objects of class "dthcaus_source" created by dthcaus_source().

Default value none
source_datasets
A named list containing datasets in which to search for the death cause

Default value none

subject_keys Variables to uniquely identify a subject

A list of expressions where the expressions are symbols as returned by exprs()
is expected.

Default value get_admiral_option("subject_keys")

Details

This function derives DTHCAUS along with the user-defined traceability variables, if required. If a
subject has death info from multiple sources, the one from the source with the earliest death date
will be used. If dates are equivalent, the first source will be kept, so the user should provide the
inputs in the preferred order.

Value

The input dataset with DTHCAUS variable added.

288 derive_var_dthcaus

See Also

dthcaus_source()

Other deprecated: call_user_fun(), date_source(), derive_param_extreme_record(), derive_var_extreme_dt(),
derive_var_extreme_dtm(), derive_var_merged_summary(), dthcaus_source(), get_summary_records()

Examples

library(tibble)
library(dplyr, warn.conflicts = FALSE)

adsl <- tribble(
~STUDYID, ~USUBJID,
"STUDY@1", "PATO1",
"STUDY@1", "PAT@2",
"STUDYQ1", "PAT@3"

)
ae <- tribble(
~STUDYID, ~USUBJID, ~AESEQ, ~AEDECOD, ~AEOUT, ~AEDTHDTC,
"STUDY@1", "PATO1", 12, "SUDDEN DEATH", "FATAL", "2021-04-04"
)

ds <- tribble(
~STUDYID, ~USUBJID, ~DSSEQ, ~DSDECOD, ~DSTERM, ~DSSTDTC,
"STUDY@1", "PAT@2", 1, "INFORMED CONSENT OBTAINED"”, "INFORMED CONSENT OBTAINED", "2021-04-03",
"STUDY@1", "PAT@2", 2, "RANDOMIZATION", "RANDOMIZATION", "2021-04-11",
"STUDY@1", "PAT@2", 3, "DEATH", "DEATH DUE TO PROGRESSION OF DISEASE", "2022-02-01",
"STUDYQ1", "PAT@3", 1, "DEATH", "POST STUDY REPORTING OF DEATH", "2022-03-03"

)

Derive “DTHCAUS™ only - for on-study deaths only
src_ae <- dthcaus_source(

dataset_name = "ae",
filter = AEOUT == "FATAL",
date = convert_dtc_to_dt(AEDTHDTC),
mode = "first",
dthcaus = AEDECOD

)

src_ds <- dthcaus_source(
dataset_name = "ds”,
filter = DSDECOD == "DEATH" & grepl("DEATH DUE TO", DSTERM),
date = convert_dtc_to_dt(DSSTDTC),
mode = "first",
dthcaus = DSTERM

)
derive_var_dthcaus(adsl, src_ae, src_ds, source_datasets = list(ae = ae, ds = ds))

Derive “DTHCAUS® and add traceability variables - for on-study deaths only
src_ae <- dthcaus_source(

dataset_name = "ae",
filter = AEOUT == "FATAL",

derive_var_dthcaus 289

date = convert_dtc_to_dt(AEDTHDTC),

mode = "first",

dthcaus = AEDECOD,

set_values_to = exprs(DTHDOM = "AE", DTHSEQ = AESEQ)
)

src_ds <- dthcaus_source(
dataset_name = "ds”,
filter = DSDECOD == "DEATH"” & grepl("DEATH DUE TO", DSTERM),
date = convert_dtc_to_dt(DSSTDTC),
mode = "first",
dthcaus = DSTERM,
set_values_to = exprs(DTHDOM = "DS", DTHSEQ = DSSEQ)
)

derive_var_dthcaus(adsl, src_ae, src_ds, source_datasets = list(ae = ae, ds = ds))

Derive “DTHCAUS™ as above - now including post-study deaths with different “DTHCAUS™ value
src_ae <- dthcaus_source(

dataset_name = "ae",

filter = AEOUT == "FATAL",

date = convert_dtc_to_dt(AEDTHDTC),

mode = "first”,

dthcaus = AEDECOD,

set_values_to = exprs(DTHDOM = "AE", DTHSEQ = AESEQ)

)

ds <- mutate(

ds,

DSSTDT = convert_dtc_to_dt(DSSTDTC)
)

src_ds <- dthcaus_source(
dataset_name = "ds”,
filter = DSDECOD == "DEATH" & grepl("DEATH DUE TO", DSTERM),
date = DSSTDT,
mode = "first",
dthcaus = DSTERM,
set_values_to = exprs(DTHDOM = "DS", DTHSEQ = DSSEQ)

)
src_ds_post <- dthcaus_source(
dataset_name = "ds”,
filter = DSDECOD == "DEATH" & DSTERM == "POST STUDY REPORTING OF DEATH",
date = DSSTDT,
mode = "first",

dthcaus = "POST STUDY: UNKNOWN CAUSE",
set_values_to = exprs(DTHDOM = "DS", DTHSEQ = DSSEQ)

derive_var_dthcaus(
adsl,
src_ae, src_ds, src_ds_post,

290 derive_var_extreme_dt

source_datasets = list(ae = ae, ds = ds)

)

derive_var_extreme_dt Derive First or Last Date from Multiple Sources

Description

[Deprecated] The derive_var_extreme_dt () function has been deprecated in favor of derive_vars_extreme_event().

Add the first or last date from multiple sources to the dataset, e.g., the last known alive date
(LSTALVDT).

Note: This is a wrapper function for the function derive_var_extreme_dtm().

Usage

derive_var_extreme_dt(
dataset,
new_var,
source_datasets,
mode,
subject_keys = get_admiral_option("subject_keys")

)
Arguments
dataset Input dataset
The variables specified by the subject_keys argument are expected to be in the
dataset.
Default value none
new_var Name of variable to create

Default value none

Source(s) of dates. One or more date_source() objects are expected.

Default value none
source_datasets

A named list containing datasets in which to search for the first or last date
Default value none
mode Selection mode (first or last)

If "first" is specified, the first date for each subject is selected. If "last” is
specified, the last date for each subject is selected.

Permitted values "first”, "last”
Default value none
subject_keys Variables to uniquely identify a subject

A list of expressions where the expressions are symbols as returned by exprs()
is expected.

Default value get_admiral_option("subject_keys")

derive_var_extreme_dt 291

Details
The following steps are performed to create the output dataset:

1. For each source dataset the observations as specified by the filter element are selected and
observations where date is NA are removed. Then for each patient the first or last observation
(with respect to date and mode) is selected.

The new variable is set to the variable or expression specified by the date element.
The variables specified by the set_values_to element are added.

The selected observations of all source datasets are combined into a single dataset.

vk »n

For each patient the first or last observation (with respect to the new variable and mode) from
the single dataset is selected and the new variable is merged to the input dataset.

6. The time part is removed from the new variable.

Value

The input dataset with the new variable added.

See Also

date_source(), derive_var_extreme_dtm(), derive_vars_merged()

Other deprecated: call_user_fun(), date_source(), derive_param_extreme_record(), derive_var_dthcaus(),
derive_var_extreme_dtm(), derive_var_merged_summary(), dthcaus_source(), get_summary_records()

Examples

library(dplyr, warn.conflicts = FALSE)
ae <- tribble(

~STUDYID, ~DOMAIN, ~USUBJID, ~AESEQ, ~AESTDTC, ~AEENDTC,
"PILOTO1", "AE", "01-1130", 5, "2014-05-09", "2014-05-09"
"PILOTO1", "AE", "01-1130", 6, "2014-05-22", NA,
"PILOTO1", "AE", "01-1130", 4, "2014-05-09", "2014-05-09",
"PILOTO1", "AE", "01-1130", 8, "2014-05-22", NA,
"PILOTO1", "AE", "01-1130", 7, "2014-05-22", NA,
"PILOTO1", "AE", "01-1130", 2, "2014-03-09", "2014-03-09",
"PILOTO1", "AE", "01-1130", 1, "2014-03-09", "2014-03-16",
"PILOTO1", "AE", "01-1130", 3, "2014-03-09", "2014-03-16",
"PILOTO1", "AE", "01-1133", 1, "2012-12-27", NA,
"PILOTO1", "AE", "01-1133", 3, "2012-12-27", NA,
"PILOTO1", "AE", "01-1133", 2, "2012-12-27", NA,
"PILOTO1", "AE", "01-1133", 4, "2012-12-27", NA,
"PILOTO1", "AE", "@1-1211", 5, "2012-11-29", NA,
"PILOTO1", "AE", "01-1211", 1, "2012-11-16", NA,
"PILOTO1", "AE", "01-1211", 7, "2013-01-11", NA,
"PILOTO1", "AE", "Q1-1211", 8, "2013-01-11", NA,
"PILOTO1", "AE", "01-1211", 4, "2012-11-22", NA,
"PILOTO1", "AE", "01-1211", 2, "2012-11-21", "2012-11-21",
"PILOTO1", "AE", "@1-1211", 3, "2012-11-21", NA,
"PILOTO1", "AE", "01-1211", 6, "2012-12-09", NA,
"PILOTO1", "AE", "01-1211", 9, "2013-01-14", "2013-01-14",

292 derive_var_extreme_dt

"PILOTO1”, "AE", "09-1081", 2, "2014-05-01", NA,
"PILOTO1”, "AE", "09-1081", 1, "2014-04-07", NA,
"PILOTO1", "AE", "09-1088", 1, "2014-05-08", NA,
"PILOTO1”, "AE", "09-1088", 2, "2014-08-02", NA

)

adsl <- tribble(
~STUDYID, ~USUBJID, ~TRTEDTM, ~TRTEDT,
"PILOTO1", "@1-1130", "2014-08-16 23:59:59", "2014-08-16",
"PILOTO1", "@1-1133", "2013-04-28 23:59:59", "2013-04-28",
"PILOTO1", "@1-1211", "2013-01-12 23:59:59", "2013-01-12",
"PILOTO1", "09-1081", "2014-04-27 23:59:59", "2014-04-27",
"PILOTO1", "@9-1088", "2014-10-09 23:59:59", "2014-10-09"
) %%
mutate(
across(TRTEDTM: TRTEDT, as.Date)
)

1b <- tribble(

~STUDYID, ~DOMAIN, ~USUBJID, ~LBSEQ, ~LBDTC,
"PILOTO1", “LB", "01-1130", 219, "2014-06-07T13:20",
"PILOTO1", “LB", "01-1130", 322, "2014-08-16T13:10",
"PILOTO1", "LB", "01-1133", 268, "2013-04-18T15:30",
"PILOTO1", "LB", "@1-1133", 304, "2013-04-29T10:13",
"PILOTO1", "LB", "@1-1211", 8, "2012-10-30T14:26",
"PILOTO1", "LB", "01-1211", 162, "2013-01-08T12:13",
"PILOTO1", "LB", "09-1081", 47, "2014-02-01T10:55",
"PILOTO1", “LB", "09-1081", 219, "2014-05-10T11:15",
"PILOTO1", "LB", "09-1088", 283, "2014-09-27T12:13",
"PILOTO1", "LB", "09-1088", 322, "2014-10-09T13:25"

)

dm <- tribble(
~STUDYID, ~DOMAIN, ~USUBJID, ~AGE, ~AGEU,

"PILOTO1", "DM", "@1-1130", 84, "YEARS",

"PILOTO1", "DM", "@1-1133", 81, "YEARS",

"PILOTO1", "DM", "@1-1211", 76, "YEARS",

"PILOTO1", "DM", "@9-1081", 86, "YEARS",

"PILOTO1", "DM", "@9-1088", 69, "YEARS"
)
ae_start <- date_source(

dataset_name = "ae"”,

date = convert_dtc_to_dt(AESTDTC, highest_imputation = "M")
)
ae_end <- date_source(

dataset_name = "ae",

date = convert_dtc_to_dt(AEENDTC, highest_imputation = "M")
)

ae_ext <- ae %>%
derive_vars_dt(

derive_var_extreme_dt

dtc = AESTDTC,

new_vars_prefix = "AEST",
highest_imputation = "M"
) %%

derive_vars_dt(
dtc = AEENDTC,
new_vars_prefix = "AEEN",
highest_imputation = "M"

)
1lb_date <- date_source(
dataset_name = "1b",
date = convert_dtc_to_dt(LBDTC)
)
lb_ext <- derive_vars_dt(
1b,
dtc = LBDTC,
new_vars_prefix = "LB"
)

adsl_date <- date_source(dataset_name = "adsl”, date = TRTEDT)

dm %>%
derive_var_extreme_dt(
new_var = LSTALVDT,
ae_start, ae_end, lb_date, adsl_date,
source_datasets = list(

adsl = adsl,
ae = ae_ext,
1b = lb_ext
),
mode = "last”
) %>%

select (USUBJID, LSTALVDT)

derive last alive date and traceability variables

ae_start <- date_source(
dataset_name = "ae”,
date = convert_dtc_to_dt(AESTDTC, highest_imputation = "M"),
set_values_to = exprs(

LALVDOM = "AE",
LALVSEQ = AESEQ,
LALVVAR = "AESTDTC”

ae_end <- date_source(
dataset_name = "ae",
date = convert_dtc_to_dt(AEENDTC, highest_imputation = "M"),
set_values_to = exprs(
LALVDOM = "AE",
LALVSEQ = AESEQ,

293

294 derive_var_extreme_dtm

LALVVAR = "AEENDTC"
)
)

1b_date <- date_source(
dataset_name = "1b",
date = convert_dtc_to_dt(LBDTC),
set_values_to = exprs(

LALVDOM = "LB",
LALVSEQ = LBSEQ,
LALVVAR = "LBDTC"
)
)

adsl_date <- date_source(
dataset_name = "adsl”,
date = TRTEDT,
set_values_to = exprs(
LALVDOM = "ADSL",
LALVSEQ = NA_integer_,
LALVVAR = "TRTEDT"
)
)

dm %>%
derive_var_extreme_dt(
new_var = LSTALVDT,
ae_start, ae_end, lb_date, adsl_date,
source_datasets = list(

adsl = adsl,
ae = ae_ext,
1b = 1lb_ext
),
mode = "last"
) %>%

select(USUBJID, LSTALVDT, LALVDOM, LALVSEQ, LALVVAR)

derive_var_extreme_dtm
Derive First or Last Datetime from Multiple Sources

Description

[Deprecated]
The derive_var_extreme_dtm() function has been deprecated in favor of derive_vars_extreme_event().

Add the first or last datetime from multiple sources to the dataset, e.g., the last known alive datetime
(LSTALVDTM).

derive_var_extreme_dtm 295

Usage

derive_var_extreme_dtm(
dataset,
new_var,
source_datasets,
mode,
subject_keys = get_admiral_option("subject_keys")

)
Arguments
dataset Input dataset
The variables specified by the subject_keys argument are expected to be in the
dataset.
Default value none
new_var Name of variable to create

Default value none
Source(s) of dates. One or more date_source() objects are expected.

Default value none
source_datasets

A named list containing datasets in which to search for the first or last date
Default value none
mode Selection mode (first or last)

If "first" is specified, the first date for each subject is selected. If "last” is
specified, the last date for each subject is selected.

Permitted values "first”, "last”
Default value none

subject_keys Variables to uniquely identify a subject

A list of expressions where the expressions are symbols as returned by exprs()
is expected.

Default value get_admiral_option(”subject_keys")

Details
The following steps are performed to create the output dataset:

1. For each source dataset the observations as specified by the filter element are selected and
observations where date is NA are removed. Then for each patient the first or last observation
(with respect to date and mode) is selected.

2. The new variable is set to the variable or expression specified by the date element. If this is a
date variable (rather than datetime), then the time is imputed as "00:00:00".

3. The variables specified by the set_values_to element are added.
4. The selected observations of all source datasets are combined into a single dataset.

5. For each patient the first or last observation (with respect to the new variable and mode) from
the single dataset is selected and the new variable is merged to the input dataset.

296 derive_var_extreme_dtm

Value

The input dataset with the new variable added.

See Also

date_source(), derive_var_extreme_dt(), derive_vars_merged()

Other deprecated: call_user_fun(), date_source(), derive_param_extreme_record(), derive_var_dthcaus(),
derive_var_extreme_dt(), derive_var_merged_summary(), dthcaus_source(), get_summary_records()

Examples

library(dplyr, warn.conflicts = FALSE)
library(lubridate)
dm <- tribble(

~STUDYID, ~DOMAIN, ~USUBJID, ~AGE, ~AGEU,

"PILOTO1", "DM", "@1-1130", 84, "YEARS",
"PILOTO1", "DM", "@1-1133", 81, "YEARS",
"PILOTO1", "DM", "@1-1211", 76, "YEARS",
"PILOTO1", "DM", "@9-1081", 86, "YEARS",
"PILOTO1", "DM", "@9-1088", 69, "YEARS"

)

ae <- tribble(
~STUDYID, ~DOMAIN, ~USUBJID, ~AESEQ, ~AESTDTC, ~AEENDTC,
"PILOTO1", "AE", "01-1130", 5, "2014-05-09", "2014-05-09",
"PILOTO1", "AE", "01-1130", 6, "2014-05-22", NA,
"PILOTO1", "AE", "01-1130", 4, "2014-05-09", "2014-05-09",
"PILOTO1", "AE", "01-1130", 8, "2014-05-22", NA,
"PILOTO1", "AE", "01-1130", 7, "2014-05-22", NA,
"PILOTO1", "AE", "0@1-1130", 2, "2014-03-09", "2014-03-09",
"PILOTO1", "AE", "01-1130", 1, "2014-03-09", "2014-03-16",
"PILOTO1", "AE", "01-1130", 3, "2014-03-09", "2014-03-16",
"PILOTO1", "AE", "@1-1133", 1, "2012-12-27", NA,
"PILOTO1", "AE", "@1-1133", 3, "2012-12-27", NA,
"PILOTO1", "AE", "01-1133", 2, "2012-12-27", NA,
"PILOTO1", "AE", "01-1133", 4, "2012-12-27", NA,
"PILOTO1", "AE", "@1-1211", 5, "2012-11-29", NA,
"PILOTO1", "AE", "01-1211", 1, "2012-11-16", NA,
"PILOTO1", "AE", "01-1211", 7, "2013-01-11", NA,
"PILOTO1", "AE", "@1-1211", 8, "2013-01-11", NA,
"PILOTO1", "AE", "01-1211", 4, "2012-11-22", NA,
"PILOTO1", "AE", "@1-1211", 2, "2012-11-21", "2012-11-21",
"PILOTO1", "AE", "@1-1211", 3, "2012-11-21", NA,
"PILOTO1", "AE", "@1-1211", 6, "2012-12-09", NA,
"PILOTO1", "AE", "01-1211", 9, "2013-01-14", "2013-01-14",
"PILOTO1", "AE", "09-1081", 2, "2014-05-01", NA,
"PILOTO1", "AE", "09-1081", 1, "2014-04-07", NA,
"PILOTO1", "AE", "09-1088", 1, "2014-05-08", NA,
"PILOTO1", "AE", "09-1088", 2, "2014-08-02", NA

)

1b <- tribble(
~STUDYID, ~DOMAIN, ~USUBJID, ~LBSEQ, ~LBDTC,

derive_var_extreme_dtm 297

"PILOTO1", "LB", "@1-1130", 219, "2014-06-07T13:20",
"PILOTO1", "LB", "01-1130", 322, "2014-08-16T13:10",
"PILOTO1", "LB", "@1-1133", 268, "2013-04-18T15:30",
"PILOTO1", "LB", "@1-1133", 304, "2013-04-29T10:13",
"PILOTO1", "LB", "@1-1211", 8, "2012-10-30T14:26",
"PILOTO1", "LB", "@1-1211", 162, "2013-01-08T12:13",
"PILOTO1", "LB", "09-1081", 47, "2014-02-01T10:55",
"PILOTO1", "LB", "09-1081", 219, "2014-05-10T11:15",
"PILOTO1", "LB", "09-1088", 283, "2014-09-27T12:13",
"PILOTO1", "LB", "09-1088", 322, "2014-10-09T13:25"
)
adsl <- tribble(
~STUDYID, ~USUBJID, ~TRTEDTM,
"PILOTO1", "@1-1130", "2014-08-16 23:59:59",
"PILOT@1", "01-1133", "2013-04-28 23:59:59",
"PILOTO1", "@1-1211", "2013-01-12 23:59:59",
"PILOTO1", "@9-1081", "2014-04-27 23:59:59",
"PILOT@1", "09-1088", "2014-10-09 23:59:59"
) %%
mutate(
TRTEDTM = as_datetime(TRTEDTM)
)

derive last known alive datetime (LSTALVDTM)
ae_start <- date_source(

dataset_name = "ae",

date = convert_dtc_to_dtm(AESTDTC, highest_imputation = "M"),
)
ae_end <- date_source(

dataset_name = "ae”,

date = convert_dtc_to_dtm(AEENDTC, highest_imputation = "M"),
)

ae_ext <- ae %>%
derive_vars_dtm(
dtc = AESTDTC,

new_vars_prefix = "AEST",
highest_imputation = "M"
) %%

derive_vars_dtm(
dtc = AEENDTC,
new_vars_prefix = "AEEN",
highest_imputation = "M"
)

1lb_date <- date_source(
dataset_name = "1b",
date = convert_dtc_to_dtm(LBDTC),
)

lb_ext <- derive_vars_dtm(
1b,
dtc = LBDTC,

298

new_vars_prefix = "LB"

)

adsl_date <- date_source(
dataset_name = "adsl”,
date = TRTEDTM

)

dm %>%
derive_var_extreme_dtm(
new_var = LSTALVDTM,
ae_start, ae_end, lb_date, adsl_date,
source_datasets = list(

adsl = adsl,
ae = ae_ext,
1b = lb_ext
),
mode = "last”
) %%

select(USUBJID, LSTALVDTM)

derive last alive datetime and traceability variables
ae_start <- date_source(
dataset_name = "ae”,
date = convert_dtc_to_dtm(AESTDTC, highest_imputation = "M"),
set_values_to = exprs(

LALVDOM = "AE",
LALVSEQ = AESEOQ,
LALVVAR = "AESTDTC”
)
)

ae_end <- date_source(
dataset_name = "ae",
date = convert_dtc_to_dtm(AEENDTC, highest_imputation = "M"),
set_values_to = exprs(
LALVDOM = "AE",
LALVSEQ = AESEQ,
LALVVAR = "AEENDTC"

)

)

1lb_date <- date_source(
dataset_name = "l1b",
date = convert_dtc_to_dtm(LBDTC),
set_values_to = exprs(

LALVDOM = "LB",
LALVSEQ = LBSEQ,
LALVVAR = "LBDTC"

)
)

adsl_date <- date_source(
dataset_name = "adsl”,

derive_var_extreme_dtm

derive_var_extreme_flag 299

date = TRTEDTM,
set_values_to = exprs(
LALVDOM = "ADSL",
LALVSEQ = NA_integer_,
LALVVAR = "TRTEDTM"
)
)

dm %>%
derive_var_extreme_dtm(
new_var = LSTALVDTM,
ae_start, ae_end, lb_date, adsl_date,
source_datasets = list(

adsl = adsl,
ae = ae_ext,
1b = lb_ext
),
mode = "last”
) %%

select(USUBJID, LSTALVDTM, LALVDOM, LALVSEQ, LALVVAR)

derive_var_extreme_flag

Add a Variable Flagging the First or Last Observation Within Each By
Group

Description

Add a variable flagging the first or last observation within each by group

Usage

derive_var_extreme_flag(
dataset,
by_vars,
order,
new_var,
mode,
true_value = "Y",
false_value = NA_character_,
flag_all = FALSE,

check_type = "warning”
)
Arguments
dataset Input dataset

The variables specified by the by_vars argument are expected to be in the
dataset.

300 derive_var_extreme_flag

Permitted values a dataset, i.e., a data. frame or tibble
Default value none
by_vars Grouping variables
Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)
Default value none
order Sort order
The first or last observation is determined with respect to the specified order.
For handling of NAs in sorting variables see the "Sort Order" section in vignette("generic”).
Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)
Default value none
new_var Variable to add

The specified variable is added to the output dataset. It is set to the value set in
true_value for the first or last observation (depending on the mode) of each by

group.
Permitted values an unquoted symbol, e.g., AVAL
Default value none

mode Flag mode
Determines of the first or last observation is flagged.
Permitted values "first”, "last”
Default value none

true_value True value
The value for the specified variable new_var, applicable to the first or last ob-
servation (depending on the mode) of each by group.
Permitted values a character scalar, i.e., a character vector of length one
Default value "Y"

false_value False value
The value for the specified variable new_var, NOT applicable to the first or last
observation (depending on the mode) of each by group.
Permitted values a character scalar, i.e., a character vector of length one
Default value NA_character_

flag_all Flag setting
A logical value where if set to TRUE, all records are flagged and no error or
warning is issued if the first or last record is not unique.
Permitted values TRUE, FALSE
Default value FALSE
check_type Check uniqueness?
If "warning” or "error” is specified, the specified message is issued if the

observations of the input dataset are not unique with respect to the by variables
and the order.

n on n o n n on

Permitted values "none”, "message”, "warning", "error”
Default value "warning”

derive_var_extreme_flag 301

Details

For each group (with respect to the variables specified for the by_vars parameter), new_var is set to
"Y" for the first or last observation (with respect to the order specified for the order parameter and
the flag mode specified for the mode parameter). In the case where the user wants to flag multiple
records of a grouping, for example records that all happen on the same visit and time, the argument
flag_all can be set to TRUE. Otherwise, new_var is set to NA. Thus, the direction of "worst" is
considered fixed for all parameters in the dataset depending on the order and the mode, i.e. for
every parameter the first or last record will be flagged across the whole dataset.

Value

The input dataset with the new flag variable added

Examples

Data setup:
The following examples use the ADVS and ADAE datasets below as a basis.

library(tibble, warn.conflicts = FALSE)
library(lubridate, warn.conflicts = FALSE)
library(dplyr, warn.conflicts = FALSE)

advs <- tribble(

~USUBJID, ~PARAMCD, ~AVISIT, ~ADT, ~AVAL,
"1915", "TEMP", "BASELINE"”, "2021-04-27", 38.0,
"1015", "TEMP", "BASELINE”, "2021-04-25", 39.0,
"1015", "TEMP", "WEEK 2", "2021-05-10", 37.5,
"1015", "WEIGHT", "SCREENING"”, "2021-04-19", 81.2,
"1015", "WEIGHT", "BASELINE", "2021-04-25", 82.7,
"1015", "WEIGHT", "BASELINE”, "2021-04-27", 84.0,
"1015", "WEIGHT", "WEEK 2", "2021-05-09", 82.5,
"1023", "TEMP", "SCREENING", "2021-04-27", 38.0,
"1023", "TEMP", "BASELINE", "2021-04-28", 37.5,
"1023", "TEMP", "BASELINE", "2021-04-29", 37.5,
"1023", "TEMP", "WEEK 1", "2021-05-03", 37.0,
"1023", "WEIGHT", "SCREENING”, "2021-04-27", 69.6,
"1023", "WEIGHT", "BASELINE”, "2021-04-29", 67.2,
"1023", "WEIGHT", "WEEK 1", "2021-05-02", 65.9

) %>%

mutate(

STUDYID = "AB123",
ADT = ymd(ADT)

)

adae <- tribble(
~USUBJID, ~AEBODSYS, ~AEDECOD, ~AESEV, ~AESTDY, ~AESEQ,
"1015", "GENERAL DISORDERS”, "ERYTHEMA”, "MILD", 2, 1,
"1015", "GENERAL DISORDERS"”, "PRURITUS", "MILD", 2, 2,

"1015", "GI DISORDERS", "DIARRHOEA", "MILD", 8, 3,

302

derive_var_extreme_flag

"1023", "CARDIAC DISORDERS”, "AV BLOCK”, "MILD", 22, 4,

"1023", "SKIN DISORDERS”, "ERYTHEMA”, "MILD", 3, 1,

"1023", "SKIN DISORDERS”, "ERYTHEMA”, "SEVERE", 5, 2,

"1023", "SKIN DISORDERS”, "ERYTHEMA”, "MILD", 8, 3
Y %%

mutate(STUDYID = "AB123")

Flagging the first/last observation within a by group (order, mode):

A new variable is added for each subject to flag the last observation within a by group. Within
each by group (specified by by_vars), the order = exprs(ADT) argument specifies we wish to
sort the records by analysis date and then select the last one (mode = "last"”). The name of the
new variable is passed through the new_var = LASTFL call.

advs %>%
derive_var_extreme_flag(
by_vars = exprs(STUDYID, USUBJID, PARAMCD),
order = exprs(ADT),
new_var = LASTFL,
mode = "last”,
) %>%
arrange (STUDYID, USUBJID, PARAMCD, ADT) %>%
select(STUDYID, everything())
#> # A tibble: 14 x 7

#> STUDYID USUBJID PARAMCD AVISIT ADT AVAL LASTFL
#> <chr> <chr> <chr> <chr> <date> <dbl> <chr>
#> 1 AB123 1015 TEMP BASELINE 2021-04-25 39 <NA>
#> 2 AB123 1015 TEMP BASELINE 2021-04-27 38 <NA>
#> 3 AB123 1015 TEMP WEEK 2 2021-05-10 37.5° Y

#> 4 AB123 1015 WEIGHT SCREENING 2021-04-19 81.2 <NA>
#> 5 AB123 1015 WEIGHT BASELINE 2021-04-25 82.7 <NA>
#> 6 AB123 1015 WEIGHT BASELINE 2021-04-27 84 <NA>
#> 7 AB123 1015 WEIGHT WEEK 2 2021-05-09 82.5'Y

#> 8 AB123 1023 TEMP SCREENING 2021-04-27 38 <NA>
#> 9 AB123 1023 TEMP BASELINE 2021-04-28 37.5 <NA>

#> 10 AB123 1023 TEMP BASELINE 2021-04-29 37.5 <NA>
#> 11 AB123 1023 TEMP WEEK 1 2021-05-03 37 Y
#> 12 AB123 1023 WEIGHT SCREENING 2021-04-27 69.6 <NA>
#> 13 AB123 1023 WEIGHT BASELINE 2021-04-29 67.2 <NA>
#> 14 AB123 1023 WEIGHT WEEK 1 2021-05-02 65.9°Y

Note here that a similar FIRSTFL variable could instead be derived simply by switching to mode =
"first”. Alternatively, we could make use of desc() within the sorting specified by order:

advs %>%
derive_var_extreme_flag(
by_vars = exprs(STUDYID, USUBJID, PARAMCD),
order = exprs(desc(ADT)),
new_var = FIRSTFL,
mode = "last”,
) %>%

derive_var_extreme_flag

arrange(STUDYID, USUBJID, PARAMCD, ADT) %>%
select(STUDYID, everything())

303

#> # A tibble: 14 x 7

#> STUDYID USUBJID PARAMCD AVISIT ADT AVAL FIRSTFL
#> <chr> <chr> <chr> <chr> <date> <dbl> <chr>
#> 1 AB123 1015 TEMP BASELINE 2021-04-25 39 Y

#> 2 AB123 1015 TEMP BASELINE 2021-04-27 38 <NA>
#> 3 AB123 1015 TEMP WEEK 2 2021-05-10 37.5 <NA>
#> 4 AB123 1015 WEIGHT SCREENING 2021-04-19 81.2 Y

#> 5 AB123 1015 WEIGHT BASELINE 2021-04-25 82.7 <NA>
#> 6 AB123 1015 WEIGHT BASELINE 2021-04-27 84 <NA>
#> 7 AB123 1015 WEIGHT WEEK 2 2021-05-09 82.5 <NA>
#> 8 AB123 1023 TEMP SCREENING 2021-04-27 38 Y

#> 9 AB123 1023 TEMP BASELINE 2021-04-28 37.5 <NA>
#> 10 AB123 1023 TEMP BASELINE 2021-04-29 37.5 <NA>
#> 11 AB123 1023 TEMP WEEK 1 2021-05-03 37 <NA>
#> 12 AB123 1023 WEIGHT SCREENING 2021-04-27 69.6 Y

#> 13 AB123 1023 WEIGHT BASELINE 2021-04-29 67.2 <NA>
#> 14 AB123 1023 WEIGHT WEEK 1 2021-05-02 65.9 <NA>

Modifying the flag values (true_value, false_value):

The previous example is now enhanced with custom values for the flag entries. Records which
are flagged are filled with the contents of true_value and those which are not are filled with the
contents of false_value. Note that these are normally preset to "Y"” and NA, which is why they
were not specified in the example above.

advs %>%

derive_var_extreme_flag(
by_vars = exprs(STUDYID, USUBJID, PARAMCD),
order = exprs(ADT),
new_var = LASTFL,
mode = "last”,
true_value = "Yes”,
false_value = "No",

) %>%

arrange(STUDYID, USUBJID, PARAMCD, ADT) %>%

select(STUDYID, everything())

#> # A tibble: 14 x 7

#> STUDYID USUBJID PARAMCD AVISIT ADT AVAL LASTFL
#> <chr> <chr> <chr> <chr> <date> <dbl> <chr>
#> 1 AB123 1015 TEMP BASELINE 2021-04-25 39 No

#> 2 AB123 1015 TEMP BASELINE 2021-04-27 38 No

#> 3 AB123 1015 TEMP WEEK 2 2021-05-10 37.5 Yes
#> 4 AB123 1015 WEIGHT SCREENING 2021-04-19 81.2 No

#> 5 AB123 1015 WEIGHT BASELINE 2021-04-25 82.7 No

#> 6 AB123 1015 WEIGHT BASELINE 2021-04-27 84 No

#> 7 AB123 1015 WEIGHT WEEK 2 2021-05-09 82.5 Yes
#> 8 AB123 1023 TEMP SCREENING 2021-04-27 38 No

#> 9 AB123 1023 TEMP BASELINE 2021-04-28 37.5 No

304 derive_var_extreme_flag

#> 10 AB123 1023 TEMP BASELINE 2021-04-29 37.5 No
#> 11 AB123 1023 TEMP WEEK 1 2021-05-03 37 Yes
#> 12 AB123 1023 WEIGHT SCREENING 2021-04-27 69.6 No
#> 13 AB123 1023 WEIGHT BASELINE 2021-04-29 67.2 No
#> 14 AB123 1023 WEIGHT WEEK 1 2021-05-02 65.9 Yes

Creating temporary variables for sorting (check_type):

In this example we wish to flag the first occurrence of the most severe AE within each subject. To
ensure correct sorting of the severity values, AESEV must be pre-processed into a numeric variable
TEMP_AESEVN which can then be passed inside order. Once again, to ensure we only flag the first
occurrence, we specify AESTDY and AESEQ inside order as well.

adae %>%
mutate(
TEMP_AESEVN =
as.integer(factor(AESEV, levels = c("”SEVERE", "MODERATE"”, "MILD")))
) %>%
derive_var_extreme_flag(
new_var = AOCCIFL,
by_vars = exprs(STUDYID, USUBJID),
order = exprs(TEMP_AESEVN, AESTDY, AESEQ),

mode = "first”,
check_type = "warning”
) %>%

arrange(STUDYID, USUBJID, AESTDY, AESEQ) %>%

select(STUDYID, USUBJID, AEDECOD, AESEV, AESTDY, AESEQ, AOCCIFL)
#> # A tibble: 7 x 7
#> STUDYID USUBJID AEDECOD AESEV AESTDY AESEQ AOCCIFL

#> <chr> <chr> <chr> <chr> <dbl> <dbl> <chr>
#> 1 AB123 1015 ERYTHEMA MILD 2 1Y

#> 2 AB123 1015 PRURITUS MILD 2 2 <NA>
#> 3 AB123 1015 DIARRHOEA MILD 8 3 <NA>
#> 4 AB123 1023 ERYTHEMA MILD 3 1 <NA>
#> 5 AB123 1023 ERYTHEMA SEVERE 5 2y

#> 6 AB123 1023 ERYTHEMA MILD 8 3 <NA>
#> 7 AB123 1023 AV BLOCK MILD 22 4 <NA>

Note here that the presence of AESEQ as a sorting variable inside the order argument ensures

that the combination of by_vars and order indexes unique records in the dataset. If this had been
omitted, the choice of check_type = "warning"” would have ensured that derive_var_extreme_flag()
would throw a warning due to perceived duplicate records (in this case, the first two AEs for sub-

ject "1015"). If no sorting variables exist, or if these duplicates are acceptable, then the user can
silence the warning with check_type = "none"”. Alternatively, the warning can be upgraded to an

error with check_type = "error".

Flagging all records if multiple are identified (flag_all):

Revisiting the above example, if we instead wish to flag all AEs of the highest severity occurring
on the earliest date, then we can use flag_all = TRUE. Note that we now also omit AESEQ from
the order argument because we do not need to differentiate between two AEs occurring on the
same day (e.g. for subject "1015") as they are both flagged.

derive_var_extreme_flag 305

adae %>%
mutate(
TEMP_AESEVN =
as.integer(factor(AESEV, levels = c("”SEVERE", "MODERATE"”, "MILD")))

) %>%
derive_var_extreme_flag(
new_var = AOCCIFL,

by_vars = exprs(STUDYID, USUBJID),
order = exprs(TEMP_AESEVN, AESTDY),

mode = "first”,
flag_all = TRUE
) %>%

arrange(STUDYID, USUBJID, AESTDY, AESEQ) %>%

select(STUDYID, USUBJID, AEDECOD, AESEV, AESTDY, AESEQ, AOCCIFL)
#> # A tibble: 7 x 7
#> STUDYID USUBJID AEDECOD AESEV AESTDY AESEQ AOCCIFL

#> <chr> <chr> <chr> <chr> <dbl> <dbl> <chr>
#> 1 AB123 1015 ERYTHEMA MILD 2 1Y
#> 2 AB123 1015 PRURITUS MILD 2 2Y
#> 3 AB123 1015 DIARRHOEA MILD 8 3 <NA>
#> 4 AB123 1023 ERYTHEMA MILD 3 1 <NA>
#> 5 AB123 1023 ERYTHEMA SEVERE 5 2Y
#> 6 AB123 1023 ERYTHEMA MILD 8 3 <NA>
#> 7 AB123 1023 AV BLOCK MILD 22 4 <NA>

Deriving a baseline flag:

derive_var_extreme_flag() is very often used to derive the baseline flag ABLFL, so the follow-
ing section contains various examples of this in action for the ADVS dataset. Note that for these
derivations it is often convenient to leverage higher order functions such as restrict_derivation()
and slice_derivation(). Please read the Higher Order Functions vignette, as well as their spe-
cific reference pages, to learn more.

To set the baseline flag for the last observation among those where AVISIT = "BASELINE", we can
use a similar call to the examples above but wrapping inside of restrict_derivation() and
making use of the filter argument.

restrict_derivation(
advs,
derivation = derive_var_extreme_flag,
args = params(
by_vars = exprs(USUBJID, PARAMCD),
order = exprs(ADT),
new_var = ABLFL,

mode = "last”
),
filter = AVISIT == "BASELINE"
) %%

arrange(STUDYID, USUBJID, PARAMCD, ADT) %>%
select(STUDYID, everything())
#> # A tibble: 14 x 7

https://pharmaverse.github.io/admiral/articles/higher_order.html

306

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

STUDYID USUBJID PARAMCD AVISIT

<chr>
AB123
AB123
AB123
AB123
AB123
AB123
AB123
AB123
AB123
10 AB123
11 AB123
12 AB123
13 AB123
14 AB123

0O NO Ol WN =

(o)

<chr>
1015
1015
1015
1015
1015
1015
1015
1023
1023
1023
1023
1023
1023
1023

<chr>
TEMP
TEMP
TEMP
WEIGHT
WEIGHT
WEIGHT
WEIGHT
TEMP
TEMP
TEMP
TEMP
WEIGHT
WEIGHT
WEIGHT

<chr>
BASELINE
BASELINE
WEEK 2
SCREENING
BASELINE
BASELINE
WEEK 2
SCREENING
BASELINE
BASELINE
WEEK 1
SCREENING
BASELINE
WEEK 1

ADT

<date>
2021-04-25
2021-04-27
2021-05-10
2021-04-19
2021-04-25
2021-04-27
2021-05-09
2021-04-27
2021-04-28
2021-04-29
2021-05-03
2021-04-27
2021-04-29
2021-05-02

AVAL
<dbl>
39
38
37.5
81.2
82.7
84
82.5
38
37.5
37.5
37
69.6
67.2
65.9

derive_var_extreme_flag

ABLFL
<chr>
<NA>
Y
<NA>
<NA>
<NA>
Y
<NA>
<NA>
<NA>
Y
<NA>
<NA>
Y
<NA>

Alternatively, to set baseline as the lowest observation among those where AVISIT = "BASELINE"
(selecting the latest if there are multiple) we can modify the order argument, ensuring to sort by
descending AVAL before ADT. Note here the synergy between desc() and mode, because mode =
"last" applies to both the ordering variables AVAL and ADT and so we need to reverse only the
ordering of the former to ensure that the lowest value is selected but also that the latest one among
multiple is preferred. This is relevant for subject "1023"’s temperature records.

restrict_derivation(

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

#> # A tibble: 14 x 7
<chr> <chr>
1 AB123 1015
2 AB123 1015
3 AB123 1015
4 AB123 1015
5 AB123 1015
6 AB123 1015
7 AB123 1015
8 AB123 1023
9 AB123 1023

advs,

derivation = derive_var_extreme_flag,
args = params(
exprs(USUBJID, PARAMCD),

by_vars

order =
new_var = ABLFL,
mode = "last"”

),

filter =

%>%

exprs(desc(AVAL), ADT),

AVISIT == "BASELINE"

arrange(STUDYID, USUBJID, PARAMCD, ADT) %>%
select(STUDYID, everything())

STUDYID USUBJID PARAMCD AVISIT

<chr>
TEMP
TEMP
TEMP
WEIGHT
WEIGHT
WEIGHT
WEIGHT
TEMP
TEMP

<chr>
BASELINE
BASELINE
WEEK 2
SCREENING
BASELINE
BASELINE
WEEK 2
SCREENING
BASELINE

ADT

<date>
2021-04-25
2021-04-27
2021-05-10
2021-04-19
2021-04-25
2021-04-27
2021-05-09
2021-04-27
2021-04-28

AVAL
<dbl>
39
38
37.5
81.2
82.7
84
82.5
38
37.5

ABLFL
<chr>
<NA>
Y
<NA>
<NA>
Y
<NA>
<NA>
<NA>
<NA>

derive_var_extreme_flag 307

#> 10 AB123 1023 TEMP BASELINE 2021-04-29 37.5Y
#> 11 AB123 1023 TEMP WEEK 1 2021-05-03 37 <NA>
#> 12 AB123 1023 WEIGHT SCREENING 2021-04-27 69.6 <NA>
#> 13 AB123 1023 WEIGHT BASELINE 2021-04-29 67.2 Y
#> 14 AB123 1023 WEIGHT WEEK 1 2021-05-02 65.9 <NA>

In practice, baseline-setting may vary on a parameter by parameter basis, in which case slice_derivation()
could be used in place of restrict_derivation(). In the example below, we set the baseline

flag as follows: for temperature records, as the lowest value recorded at a baseline visit; for weight

records, as the highest value recorded at a baseline visit. In both cases, we again select the latest
observation if there are multiple.

slice_derivation(

advs,

derivation = derive_var_extreme_flag,

args = params(
by_vars = exprs(USUBJID, PARAMCD),
mode = "last”,
new_var = ABLFL,

),

derivation_slice(
filter = AVISIT == "BASELINE" & PARAMCD == "TEMP",
args = params(order = exprs(desc(AVAL), ADT))

),
derivation_slice(
filter = AVISIT == "BASELINE" & PARAMCD == "WEIGHT",
args = params(order = exprs(AVAL, ADT))
)
) %>%

arrange(STUDYID, USUBJID, PARAMCD, ADT) %>%
select(STUDYID, everything())
#> # A tibble: 14 x 7

#> STUDYID USUBJID PARAMCD AVISIT ADT AVAL ABLFL
#> <chr> <chr> <chr> <chr> <date> <dbl> <chr>
#> 1 AB123 1015 TEMP BASELINE 2021-04-25 39 <NA>
#> 2 AB123 1015 TEMP BASELINE 2021-04-27 38 Y

#> 3 AB123 1015 TEMP WEEK 2 2021-05-10 37.5 <NA>
#> 4 AB123 1015 WEIGHT SCREENING 2021-04-19 81.2 <NA>
#> 5 AB123 1015 WEIGHT BASELINE 2021-04-25 82.7 <NA>
#> 6 AB123 1015 WEIGHT BASELINE 2021-04-27 84 Y

#> 7 AB123 1015 WEIGHT WEEK 2 2021-05-09 82.5 <NA>
#> 8 AB123 1023 TEMP SCREENING 2021-04-27 38 <NA>
#> 9 AB123 1023 TEMP BASELINE 2021-04-28 37.5 <NA>
#> 10 AB123 1023 TEMP BASELINE 2021-04-29 37.5 Y

#> 11 AB123 1023 TEMP WEEK 1 2021-05-03 37 <NA>
#> 12 AB123 1023 WEIGHT SCREENING 2021-04-27 69.6 <NA>
#> 13 AB123 1023 WEIGHT BASELINE 2021-04-29 67.2Y

#> 14 AB123 1023 WEIGHT WEEK 1 2021-05-02 65.9 <NA>

308 derive_var_joined_exist_flag

See Also

General Derivation Functions for all ADaMs that returns variable appended to dataset: derive_var_joined_exist_flag(),
derive_var_merged_ef_msrc(), derive_var_merged_exist_flag(), derive_var_obs_number(),
derive_var_relative_flag(),derive_vars_cat(), derive_vars_computed(), derive_vars_joined(),
derive_vars_joined_summary(), derive_vars_merged(), derive_vars_merged_lookup(), derive_vars_merged_sur
derive_vars_transposed()

derive_var_joined_exist_flag
Derives a Flag Based on an Existing Flag

Description

Derive a flag which depends on other observations of the dataset. For example, flagging events
which need to be confirmed by a second event.

Usage

derive_var_joined_exist_flag(
dataset,
dataset_add,
by_vars,
order = NULL,
new_var,
tmp_obs_nr_var = NULL,
join_vars,
join_type,
first_cond_lower = NULL,
first_cond_upper = NULL,
filter_add = NULL,
filter_join,

true_value = "Y",
false_value = NA_character_,
check_type = "warning"
)
Arguments
dataset Input dataset

The variables specified by the by_vars and join_vars arguments are expected
to be in the dataset.

Permitted values a dataset, i.e., a data.frame or tibble
Default value none

dataset_add Additional dataset

The variables specified for by_vars, join_vars, and order are expected.

derive_var_joined_exist_flag 309

by_vars

order

new_var

tmp_obs_nr_var

join_vars

Permitted values a dataset, i.e., a data. frame or tibble
Default value none

Grouping variables

The specified variables are used for joining the input dataset (dataset) with the

additional dataset (dataset_add).

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)

Default value none

Order

The observations are ordered by the specified order if join_type = "after”,

join_type = "before”, first_cond_lower, first_cond_upper, or tmp_obs_nr_var

are specified.

For handling of NAs in sorting variables see the "Sort Order" section in vignette("generic”).

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)

Default value NULL

New variable
The specified variable is added to the input dataset.

Permitted values an unquoted symbol, e.g., AVAL
Default value none

Temporary observation number

The specified variable is added to the input dataset (dataset) and the addi-
tional dataset (dataset_add). It is set to the observation number with respect
to order. For each by group (by_vars) the observation number starts with 1.
If there is more than one record for specific values for by_vars and order, all
records get the same observation number. By default, a warning (see check_type)
is issued in this case. The variable can be used in the conditions (filter_join,
first_cond_upper, first_cond_lower). Itis not included in the output dataset.
It can also be used to flag consecutive observations or the last observation (see
last example below).

Permitted values an unquoted symbol, e.g., AVAL
Default value NULL

Variables to keep from joined dataset

The variables needed from the other observations should be specified for this
parameter. The specified variables are added to the joined dataset with suffix
"join". For example to flag all observations with AVALC == "Y" and AVALC ==
"Y" for at least one subsequent visit join_vars = exprs(AVALC, AVISITN) and
filter_join = AVALC == "Y" & AVALC. join == "Y" & AVISITN < AVISITN. join
could be specified.

The *. join variables are not included in the output dataset.

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)

Default value none

310

join_type

derive_var_joined_exist_flag

Observations to keep after joining

The argument determines which of the joined observations are kept with respect
to the original observation. For example, if join_type = "after” is specified
all observations after the original observations are kept.

For example for confirmed response or BOR in the oncology setting or con-
firmed deterioration in questionnaires the confirmatory assessment must be after
the assessment. Thus join_type = "after” could be used.

Whereas, sometimes you might allow for confirmatory observations to occur
prior to the observation. For example, to identify AEs occurring on or after
seven days before a COVID AE. Thus join_type = "all” could be used.

Permitted values "before”, "after”, "all”
Default value none

first_cond_lower

Condition for selecting range of data (before)

If this argument is specified, the other observations are restricted from the first
observation before the current observation where the specified condition is ful-
filled up to the current observation. If the condition is not fulfilled for any of the
other observations, no observations are considered, i.e., the observation is not
flagged.

This parameter should be specified if filter_join contains summary functions
which should not apply to all observations but only from a certain observation
before the current observation up to the current observation. For an example see
the last example below.

Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value NULL

first_cond_upper

filter_add

Condition for selecting range of data (after)

If this argument is specified, the other observations are restricted up to the first
observation where the specified condition is fulfilled. If the condition is not
fulfilled for any of the other observations, no observations are considered, i.e.,
the observation is not flagged.

This parameter should be specified if filter_join contains summary functions
which should not apply to all observations but only up to the confirmation as-
sessment. For an example see the third example below.

Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value NULL

Filter for additional dataset (dataset_add)

Only observations from dataset_add fulfilling the specified condition are joined
to the input dataset. If the argument is not specified, all observations are joined.

Variables created by order or new_vars arguments can be used in the condition.
The condition can include summary functions like all() or any(). The addi-
tional dataset is grouped by the by variables (by_vars).

Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value NULL

derive_var_joined_exist_flag 311

filter_join Condition for selecting observations
The filter is applied to the joined dataset for flagging the confirmed observations.
The condition can include summary functions like al1() or any(). The joined
dataset is grouped by the original observations. Le., the summary function are
applied to all observations up to the confirmation observation. For example,
filter_join = AVALC == "CR" & al1(AVALC. join %in% c("CR", "NE")) & count_vals(var
= AVALC. join, val = "NE") <=1 selects observations with response "CR" and
for all observations up to the confirmation observation the response is "CR" or
"NE" and there is at most one "NE".
Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"

Default value none
true_value Value of new_var for flagged observations

Permitted values a character scalar, i.e., a character vector of length one
Default value "Y"

false_value Value of new_var for observations not flagged

Permitted values a character scalar, i.e., a character vector of length one
Default value NA_character_

check_type Check uniqueness?

If "message”, "warning"”, or "error" is specified, the specified message is
issued if the observations of the input dataset are not unique with respect to the
by variables and the order.

non non

Permitted values "none”, "message”,

non

warning”, "error”
Default value "warning”

Details

An example usage might be flagging if a patient received two required medications within a certain
timeframe of each other.

In the oncology setting, for example, the function could be used to flag if a response value can
be confirmed by an other assessment. This is commonly used in endpoints such as best overall
response.

The following steps are performed to produce the output dataset.

Step 1:
* The variables specified by order are added to the additional dataset (dataset_add).
 The variables specified by join_vars are added to the additional dataset (dataset_add).
* The records from the additional dataset (dataset_add) are restricted to those matching the
filter_add condition.

The input dataset (dataset) is joined with the restricted additional dataset by the variables speci-
fied for by_vars. From the additional dataset only the variables specified for join_vars are kept.
The suffix ".join" is added to those variables which also exist in the input dataset.

For example, for by_vars = USUBJID, join_vars = exprs(AVISITN, AVALC) and input dataset
and additional dataset

312 derive_var_joined_exist_flag

A tibble: 2 x 4

USUBJID AVISITN AVALC AVAL
<chr> <dbl> <chr> <dbl>
1 1Y 1
1 2N 0

the joined dataset is

A tibble: 4 x 6
USUBJID AVISITN AVALC AVAL AVISITN.join AVALC.join

<chr> <dbl> <chr> <dbl> <dbl> <chr>
1Y 1 1Y

1 1Y 1 2N

1 2N 0 1Y

1 2N 0 2N

Step 2:

The joined dataset is restricted to observations with respect to join_type and order.

The dataset from the example in the previous step with join_type = "after” and order = exprs(AVISITN)
is restricted to

A tibble: 4 x 6
USUBJID AVISITN AVALC AVAL AVISITN.join AVALC.join

<chr> <dbl> <chr> <dbl> <dbl> <chr>
1 1Y 1 2N
Step 3:

If first_cond_lower is specified, for each observation of the input dataset the joined dataset
is restricted to observations from the first observation where first_cond_lower is fulfilled (the
observation fulfilling the condition is included) up to the observation of the input dataset. If for
an observation of the input dataset the condition is not fulfilled, the observation is removed.

If first_cond_upper is specified, for each observation of the input dataset the joined dataset is
restricted to observations up to the first observation where first_cond_upper is fulfilled (the
observation fulfilling the condition is included). If for an observation of the input dataset the
condition is not fulfilled, the observation is removed.

For examples see the "Examples” section.

Step 4:
The joined dataset is grouped by the observations from the input dataset and restricted to the
observations fulfilling the condition specified by filter_join.

Step 5:
The first observation of each group is selected.

Step 6:

The variable specified by new_var is added to the input dataset. It is set to true_value for all
observations which were selected in the previous step. For the other observations it is set to
false_value.

Note: This function creates temporary datasets which may be much bigger than the input datasets.
If this causes memory issues, please try setting the admiral option save_memory to TRUE (see
set_admiral_options()). This reduces the memory consumption but increases the run-time.

derive_var_joined_exist_flag

Value

The input dataset with the variable specified by new_var added.

Examples

Flag records considering other records (filter_join, join_vars):

In this example, records with a duration longer than 30 and where a COVID AE (ACOVFL ==
"Y") occurred before or up to seven days after the record should be flagged. The condition for
flagging the records is specified by the filter_join argument. Variables from the other records
are referenced by variable names with the suffix . join. These variables have to be specified for
the join_vars argument. As records before and after the current record should be considered,

join_type = "all" is specified.

library(tibble)

adae <- tribble(
~USUBJID, ~ADY,

)

derive_var_joined_exist_flag(

)

#> # A tibble:

#>
#>
#>
#>
#>
#>
#>
#>
#>

n-] n
’

n-I n
’

H-I n
’

H-I n
’

nan
1,

nzn
’

11211
’

11311
’

H4II
’

nan
4",

adae,

10,
21,
23,
32,
42,
11,
23,
13,
14,
21,

~ACOVFL, ~ADURN,

uNn
’
UNM
’
HYN
’
nNu
’
nyn
N",
nYn
’
uNn
’
HYN
’
HNN
’
nyn
N",

dataset_add = adae,

new_var =
by_vars =
join_vars
join_type

ALCOVFL,
exprs(USUBJID),

filter_join

USUBJID

<chr>

~N o o w N =
NN = —m 2 o

1,
50,
14,
31,
20,
13,

2,
12,
32,
41

exprs(ACOVFL, ADY),

"311" ,
= ADURN > 30 & ACOVFL.join ==

10 x 5
ADY
<dbl>

10
21
23
32
42
11
23

ACOVFL ADURN ALCOVFL
<chr> <dbl> <chr>

Z2 <K Z22<Z22

1 <NA>
50 Y
14 <NA>
31Y
20 <NA>
13 <NA>
2 <NA>

"Y" & ADY.join <= ADY + 7

313

314

derive_var_joined_exist_flag

#> 8 3 13Y 12 <NA>
#> 9 4 14 N 32 <NA>
#> 10 4 21 N 41 <NA>

Considering only records after the current one (join_type = "after”, true_value, false_value):

In this example, records with AVALC == "Y" and AVALC == "Y" at a subsequent visit should be
flagged. join_type = "after” is specified to consider only records after the current one. Please
note that the order argument must be specified, as otherwise it is not possible to determine which
records are after the current record.

Please note that a numeric flag is created here by specifying the true_value and the false_value
argument.

data <- tribble(
~USUBJID, ~AVISITN, ~AVALC,

"1, 1, "y,
"1, 2, "N",
"1, 3, "y,
", 4, "N,
"2, 1, "y,
"2, 2, "N,
"3", 1, "Y',
"4, 1, "N",
"4, 2 "N",

)

derive_var_joined_exist_flag(

data,

dataset_add = data,

by_vars = exprs(USUBJID),

new_var = CONFFLN,

join_vars = exprs(AVALC, AVISITN),

join_type = "after”,

order = exprs(AVISITN),

filter_join = AVALC == "Y" & AVALC.join == "Y",

true_value = 1,

false_value = @
)
#> # A tibble: 9 x 4
#> USUBJID AVISITN AVALC CONFFLN
#> <chr> <dbl> <chr> <dbl>
#>
#>
#>
#>
#>
#>
#>

1
2
3
4
1
2
1
#> 1

Z2 <K Z2<KZ2<<Z2<<
S OO0 —

0N UhA WN =
BWNN = 2 2 o

derive_var_joined_exist_flag

#> 9 4 2N

Considering a range of records only (first_cond_lower, first_cond_upper):

Consider the following data.

myd <- tribble(
~subj, ~day, ~val,

" 1, "+
", 2, "=",
"1, 3, "e",
", 4, "+,
"1, 5, "++",
"1, 6, "-",
"2, 1, "-",
"2, 2, "+,
", 3, "+,
"2", 4, "0",
"2, 5, "-",
2", 6, "+t

)

0

315

To flag "@" where all results from the first "++" before the "@" up to the "@" (excluding the "@")

are "+" or "++" the first_cond_lower argument and join_type = "before” are specified.

derive_var_joined_exist_flag(
myd,
dataset_add = myd,
by_vars = exprs(subj),
order = exprs(day),
new_var = flag,
join_vars = exprs(val),
join_type = "before”,
first_cond_lower = val.join == "++",
filter_join = val == "@" & all(val.join %in% c("+", "++"))
)
#> # A tibble: 12 x 4
#> subj day val flag
#> <chr> <dbl> <chr> <chr>
11 1 ++ <NA>
#> 21 2 - <NA>
#> 31 30 <NA>
#> 41 4 + <NA>
#> 51 5 ++ <NA>
61 6 - <NA>
#> 7 2 1 - <NA>
#> 8 2 2 ++ <NA>
#> 9 2 3+ <NA>
#> 10 2 40 Y
11 2 5 - <NA>
#> 12 2 6 ++ <NA>

316

derive_var_joined_exist_flag

To flag "@" where all results from the "0" (excluding the "0") up to the first "++" after the "0"
are "+" or "++" the first_cond_upper argument and join_type = "after"” are specified.

derive_var_joined_exist_flag(
myd,
dataset_add = myd,
by_vars = exprs(subj),
order = exprs(day),
new_var = flag,
join_vars = exprs(val),
join_type = "after”,
first_cond_upper = val.join == "++",

filter_join = val == "@" & all(val.join %in% c("+", "++"))

)
#> # A tibble: 12 x 4

#> subj day val flag
#> <chr> <dbl> <chr> <chr>

11 1 ++ <NA>
#> 21 2 - <NA>
#> 31 30 Y

#> 41 4 + <NA>
#> 51 5 ++ <NA>
#> 61 6 - <NA>
#> 7 2 1 - <NA>
#> 8 2 2 ++ <NA>
#> 9 2 3+ <NA>
#> 10 2 40 <NA>
#> 11 2 5 - <NA>
12 2 6 ++ <NA>

Considering only records up to a condition (first_cond_upper):

In this example from deriving confirmed response in oncology, the records with

* AVALC == "CR",

e AVALC == "CR" at a subsequent visit,
* only "CR"” or "NE" in between, and
e at most one "NE” in between

should be flagged. The other records to be considered are restricted to those up to the first oc-
currence of "CR" by specifying the first_cond_upper argument. The count_vals() function

is used to count the "NE"s for the last condition.

data <- tribble(
~USUBJID, ~AVISITN, ~AVALC,
" 1, "PR",
"1, 2, "CR",
" 3, "NE",
" 4, "CR",
" 5, "NE",
"2", 1, "CR",

derive_var_joined_exist_flag

)

"2", 2, "PR",
"2, 3, "CR",
"3, 1, "CR",
"4", 1, "CR",
"4, 2, "NE",
"4" 3, "NE",
"4" 4, "CR",
"4, 5 "PR"

derive_var_joined_exist_flag(

)

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

Considering order of values (min_cond(), max_cond()):

In this example from deriving confirmed response in oncology, records with

data,

dataset_add = data,
by_vars = exprs(USUBJID),
join_vars = exprs(AVALC),
join_type = "after”,
order = exprs(AVISITN),
new_var = CONFFL,

first_cond_upper = AVALC.join == "CR",
filter_join = AVALC == "CR" & all(AVALC.join %in% c("CR", "NE")) &
count_vals(var = AVALC. join, val = "NE") <=1

A tibble: 14 x 4
USUBJID AVISITN AVALC CONFFL
<chr> <dbl> <chr> <chr>
11 1 PR <NA>
21 2 CR Y
31 3 NE <NA>
4 1 4 CR <NA>
51 5 NE <NA>
6 2 1 CR <NA>
7 2 2 PR <NA>
8 2 3 CR <NA>
9 3 1 CR <NA>
10 4 1 CR <NA>
11 4 2 NE <NA>
12 4 3 NE <NA>
13 4 4 CR <NA>
14 4 5 PR <NA>

* AVALC == "PR",

e AVALC == "CR" or AVALC == "PR" at a subsequent visit at least 20 days later,
e only "CR", "PR", or "NE" in between,

e at most one "NE” in between, and

e "CR" is not followed by "PR"

317

318

derive_var_joined_exist_flag

should be flagged. The last condition is realized by using min_cond() and max_cond(), en-
suring that the first occurrence of "CR" is after the last occurrence of "PR". The second call to
count_vals() in the condition is required to cover the case of no "CR"s (the min_cond() call
returns NA then).

data <- tribble(
~USUBJID, ~ADY, ~AVALC,

"1, 6, "PR",
", 12, "CR"
"1, 24, "NE",
"1, 32, "CR",
", 48, "PR",
"2", 3, "PR",
"2", 21, "CR",
"2, 33, "PR",
"3, 11, "PR",
"4, 7, "PR",
"4, 12, "NE",
"4" 24, "NE",
"4, 32, "PR",
"4", 55, "PR"

)

derive_var_joined_exist_flag(

data,

dataset_add = data,

by_vars = exprs(USUBJID),

join_vars = exprs(AVALC, ADY),

join_type = "after”,

order = exprs(ADY),

new_var = CONFFL,

first_cond_upper = AVALC.join %in% c("CR"”, "PR") & ADY.join - ADY >= 20,

filter_join = AVALC == "PR" &
all(AVALC.join %in% c("CR", "PR", "NE")) &
count_vals(var = AVALC. join, val = "NE") <=1 &

(
min_cond(var = ADY.join, cond = AVALC.join == "CR") >
max_cond(var = ADY.join, cond = AVALC.join == "PR") |
count_vals(var = AVALC. join, val = "CR") == 0
)

)
#> # A tibble: 14 x 4

#> USUBJID ADY AVALC CONFFL
#> <chr> <dbl> <chr> <chr>

#> 11 6 PR <NA>
#> 21 12 CR <NA>
#> 31 24 NE <NA>
#> 41 32 CR <NA>
#> 51 48 PR <NA>

derive_var_joined_exist_flag 319

#> 6 2 3 PR <NA>
#> 72 21 CR <NA>
#> 8 2 33 PR <NA>
9 3 11 PR <NA>
#> 10 4 7 PR <NA>
#> 11 4 12 NE <NA>
#> 12 4 24 NE <NA>
#> 13 4 32 PR Y

#> 14 4 55 PR <NA>

Considering the order of records (tmp_obs_nr_var):

In this example, the records with CRIT1FL == "Y" at two consecutive visits or at the last visit
should be flagged. A temporary order variable is created by specifying the tmp_obs_nr_var
argument. Then it is used in filter_join. The temporary variable doesn’t need to be specified
for join_vars

data <- tribble(
~USUBJID, ~AVISITN, ~CRIT1FL,

", 1, "y,
", 2, "N,
"1, 3, "y,
"1, 5, "N",
"2, 1, "Y",
"2", 3, "y,
"2, 5, "N",
"3, 1, "y,
"4", 1, "Y',
"4", 2 "N",

)

derive_var_joined_exist_flag(
data,
dataset_add = data,
by_vars = exprs(USUBJID),
new_var = CONFFL,
tmp_obs_nr_var = tmp_obs_nr,
join_vars = exprs(CRIT1FL),
join_type = "all",
order = exprs(AVISITN),
filter_join = CRITIFL == "Y" & CRITIFL.join == "Y" &
(tmp_obs_nr + 1 == tmp_obs_nr.join | tmp_obs_nr == max(tmp_obs_nr.join))
)
#> # A tibble: 10 x 4
#> USUBJID AVISITN CRIT1FL CONFFL

#> <chr> <dbl> <chr> <chr>
11 1Y <NA>
21 2N <NA>
31 3Y <NA>
41 5N <NA>

320

derive_var_joined_exist_flag

#> 5 2 1Y Y
#> 6 2 3Y <NA>
#> 7 2 5N <NA>
#> 8 3 1Y Y
#> 9 4 1Y <NA>
#> 10 4 2N <NA>

Flag each dose which is lower than the previous dose (tmp_obs_nr_var):

ex <- tribble(

~USUBJID, ~EXSTDTM, ~EXDOSE,
" "2024-01-01T08:00", 2,
" "2024-01-02T08:00", 4,
"2", "2024-01-01T708:30", 1,
"2, "2024-01-02T08:30", 4,
"2", "2024-01-03T08:30", 3,
"2", "2024-01-04T08:30", 2,
"2", "2024-01-05T08:30", 2
)
derive_var_joined_exist_flag(
ex,
dataset_add = ex,
by_vars = exprs(USUBJID),
order = exprs(EXSTDTM),
new_var = DOSREDFL,
tmp_obs_nr_var = tmp_dose_nr,
join_vars = exprs(EXDOSE),
join_type = "before”,

filter_join = (
tmp_dose_nr
& EXDOSE > @ & EXDOSE.join > @ # Both doses are valid
& EXDOSE < EXDOSE. join # Dose is lower than previous

)

)

#> # A tibble: 7 x 4

#> USUBJID EXSTDTM EXDOSE DOSREDFL
#> <chr> <chr> <dbl> <chr>

11 2024-01-01T708:00 2 <NA>

#> 2 1 2024-01-02T08:00 4 <NA>

#> 3 2 2024-01-01T08:30 1 <NA>

#> 4 2 2024-01-02T08:30 4 <NA>

#> 52 2024-01-03T08:30 3Y

#> 6 2 2024-01-04T08:30 2'Y

#> 7 2 2024-01-05T08:30 2 <NA>

Derive definitive deterioration flag:

tmp_dose_nr.join + 1 # Look only at adjacent doses

In this example a definitive deterioration flag should be derived as any deterioration (CHGCAT1 =
"Worsened") by parameter that is not followed by a non-deterioration. Please note that join_type
= "after"” can’t by used here, as otherwise the last record wouldn’t be flagged.

derive_var_joined_exist_flag 321

adgs <- tribble(
~USUBJID, ~PARAMCD, ~ADY, ~CHGCATT1,

" "Qs1", 10, "Improved”,
" "Qs1", 21, "Improved”,
" "QS1", 23, "Improved”,
"1, "Qs2", 32, "Worsened”,
"1, "QS2", 42, "Improved”,
"2, "Qs1", 11, "Worsened”,
"2", "Qs1", 24, "Worsened”

)

derive_var_joined_exist_flag(
adgs,
dataset_add = adgs,
new_var = DDETERFL,
by_vars = exprs(USUBJID, PARAMCD),
join_vars = exprs(CHGCAT1, ADY),
join_type = "all",
filter_join = all(CHGCAT1.join == "Worsened” | ADY > ADY.join)
)
#> # A tibble: 7 x 5
#> USUBJID PARAMCD ADY CHGCAT1 DDETERFL
#> <chr> <chr> <dbl> <chr> <chr>

#> 11 Qs1 10 Improved <NA>
#> 21 Qs1 21 Improved <NA>
#> 31 Qs1 23 Improved <NA>
#> 4 1 Qs2 32 Worsened <NA>
#> 5 1 Qs2 42 Improved <NA>
#> 6 2 Qs1 11 Worsened Y

#> 7 2 Qs1 24 Worsened Y

Handling duplicates (check_type):

If the order argument is used, it is checked if the records are unique with respect to by_vars and
order. Consider for example the derivation of CONFFL which flags records with AVALC == "Y"
which are confirmed at a subsequent visit.

data <- tribble(
~USUBJID, ~AVISITN, ~ADY, ~AVALC,

"1, 1, 1, "Y",
"1, 2, 8, "N",
"1, 3, 15, "Y",
", 4, 22, "N",
"2, 1, 1, "Y",
"2, 2, 8, "Y",
"2", 2, 10, "Y”

)

derive_var_joined_exist_flag(
data,

322 derive_var_joined_exist_flag

dataset_add = data,

by_vars = exprs(USUBJID),

new_var = CONFFL,

join_vars = exprs(AVALC, AVISITN),

join_type = "after”,

order = exprs(AVISITN),

filter_join = AVALC == "Y" & AVALC.join == "Y"
)
#> # A tibble: 7 x 5
#> USUBJID AVISITN ADY AVALC CONFFL

#> <chr> <dbl> <dbl> <chr> <chr>

11 1 1Y Y

21 2 8 N <NA>

31 3 15Y <NA>

#> 41 4 22 N <NA>

#> 5 2 1 1Y Y

#> 6 2 2 8Y <NA>

#> 7 2 2 10Y <NA>

#> Warning: Dataset ~dataset™ contains duplicate records with respect to “USUBJID" and

#> TAVISITN®

#> i Run “admiral::get_duplicates_dataset()™ to access the duplicate records

#> Warning: Dataset “dataset_add™ contains duplicate records with respect to “USUBJID™ and
#> TAVISITN®

#> i Run ~admiral::get_duplicates_dataset()™ to access the duplicate records

The records for USUBJID == "2" are not unique with respect to USUBJID and AVISITN. Thus a
warning is issued. The duplicates can be accessed by calling get_duplicates_dataset():

get_duplicates_dataset()

#> Duplicate records with respect to “USUBJID™ and “AVISITN™.
#> # A tibble: 2 x 4

#> USUBJID AVISITN ADY AVALC

#> * <chr> <dbl> <dbl> <chr>
#> 1 2 2 8Y
#> 2 2 2 10Y

In this example, confirmation is required at a subsequent visiz. Please note that the first record
for subject "2" at visit 2 is not flagged. Thus the warning can be suppressed by specifying
check_type = "none”.

derive_var_joined_exist_flag(
data,
dataset_add = data,
by_vars = exprs(USUBJID),
new_var = CONFFL,
join_vars = exprs(AVALC, AVISITN),
join_type = "after”,
order = exprs(AVISITN),
filter_join = AVALC == "Y" & AVALC.join == "Y",
check_type = "none"

derive_var_merged_ef_msrc 323

)
#> # A tibble: 7 x 5
#> USUBJID AVISITN ADY AVALC CONFFL

#> <chr> <dbl> <dbl> <chr> <chr>
#> 11 1 1Y Y
#> 2 1 2 8 N <NA>
31 3 15Y <NA>
41 4 22 N <NA>
#> 5 2 1 1Y Y
#> 6 2 2 8Y <NA>
#> 7 2 2 10 Y <NA>
See Also

filter_joined(), derive_vars_joined()

General Derivation Functions for all ADaMs that returns variable appended to dataset: derive_var_extreme_flag(),
derive_var_merged_ef_msrc(), derive_var_merged_exist_flag(), derive_var_obs_number(),
derive_var_relative_flag(), derive_vars_cat(), derive_vars_computed(), derive_vars_joined(),
derive_vars_joined_summary(), derive_vars_merged(), derive_vars_merged_lookup(), derive_vars_merged_sur
derive_vars_transposed()

derive_var_merged_ef_msrc
Merge an Existence Flag From Multiple Sources

Description

Adds a flag variable to the input dataset which indicates if there exists at least one observation in one
of the source datasets fulfilling a certain condition. For example, if a dose adjustment flag should
be added to ADEX but the dose adjustment information is collected in different datasets, e.g., EX, EC,
and FA.

Usage

derive_var_merged_ef_msrc(
dataset,
by_vars,
flag_events,
source_datasets,
new_var,
true_value = "Y",
false_value = NA_character_,
missing_value = NA_character

324 derive_var_merged_ef_msrc

Arguments

dataset Input dataset
The variables specified by the by_vars argument are expected to be in the
dataset.
Permitted values a dataset, i.e., a data. frame or tibble
Default value none
by_vars Grouping variables
Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)
Default value none

flag_events Flag events
Alistof flag_event () objects is expected. For each event the condition (condition
field) is evaluated in the source dataset referenced by the dataset_name field.
If it evaluates to TRUE at least once, the new variable is set to true_value.
Permitted values a list of flag_event() objects
Default value none

source_datasets
Source datasets
A named list of datasets is expected. The dataset_name field of flag_event()
refers to the dataset provided in the list.
Permitted values named list of datasets, e.g., list(adsl = adsl, ae = ae)
Default value none

new_var New variable
The specified variable is added to the input dataset.

Permitted values an unquoted symbol, e.g., AVAL
Default value none

true_value True value

The new variable (new_var) is set to the specified value for all by groups for
which at least one of the source object (sources) has the condition evaluate to
TRUE.

The values of true_value, false_value, and missing_value must be of the
same type.

Permitted values a character scalar, i.e., a character vector of length one
Default value "Y"

false_value False value

The new variable (new_var) is set to the specified value for all by groups which
occur in at least one source (sources) but the condition never evaluates to TRUE.

The values of true_value, false_value, and missing_value must be of the
same type.

Permitted values a character scalar, i.e., a character vector of length one
Default value NA_character_

derive_var_merged_ef_msrc 325

missing_value Values used for missing information
The new variable is set to the specified value for all by groups without observa-
tions in any of the sources (sources).
The values of true_value, false_value, and missing_value must be of the
same type.

Permitted values a character scalar, i.e., a character vector of length one
Default value NA_character_

Details

1. For each flag_event() object specified for flag_events: The condition (condition) is
evaluated in the dataset referenced by dataset_name. If the by_vars field is specified the
dataset is grouped by the specified variables for evaluating the condition. If named elements
are used in by_vars like by_vars = exprs(USUBJID, EXLNKID = ECLNKID), the variables are
renamed after the evaluation. If the by_vars element is not specified, the observations are
grouped by the variables specified for the by_vars argument.

2. The new variable (new_var) is added to the input dataset and set to the true value (true_value)
if for the by group at least one condition evaluates to TRUE in one of the sources. It is set to
the false value (false_value) if for the by group at least one observation exists and for all
observations the condition evaluates to FALSE or NA. Otherwise, it is set to the missing value
(missing_value).

Value

The output dataset contains all observations and variables of the input dataset and additionally the
variable specified for new_var.

See Also
flag_event()

General Derivation Functions for all ADaMs that returns variable appended to dataset: derive_var_extreme_flag(),
derive_var_joined_exist_flag(), derive_var_merged_exist_flag(), derive_var_obs_number(),
derive_var_relative_flag(),derive_vars_cat(), derive_vars_computed(), derive_vars_joined(),
derive_vars_joined_summary(), derive_vars_merged(), derive_vars_merged_lookup(), derive_vars_merged_sur
derive_vars_transposed()

Examples

library(dplyr)

Derive a flag indicating anti-cancer treatment based on CM and PR
adsl <- tribble(

~USUBJID,

o

"2”’

nyn

II4H

326

cm <- tribble(

~USUBJID, ~CMCAT, ~CMSEQ,
LR " ANTI-CANCER”, 1,
my "GENERAL", 2,
nn, "GENERAL", 1,
3", " ANTI-CANCER”", 1

)

Assuming all records in PR indicate cancer treatment
pr <- tibble::tribble(

~USUBJID, ~PRSEQ,

”2”7 1!

II3H’ 1
)

derive_var_merged_ef_msrc(
adsl,
by_vars = exprs(USUBJID),
flag_events = list(
flag_event(

dataset_name = "cm",

condition = CMCAT == "ANTI-CANCER"
),
flag_event(

dataset_name = "pr"”
)

)?
source_datasets = list(cm = cm, pr = pr),
new_var = CANCTRFL

)

Using different by variables depending on the source
Add a dose adjustment flag to ADEX based on ADEX, EC, and
adex <- tribble(

~USUBJID, ~EXLNKID, ~EXADJ,

", ", "AE",

nym npn NA_character_,
nyw "3, NA_character_,
non " NA_character_,
n3m e NA_character_

)

ec <- tribble(
~USUBJID, ~ECLNKID, ~ECADJ,
- n3n "AE"
"3, "y NA_character_

)

fa <- tribble(
~USUBJID, ~FALNKID, ~FATESTCD, ~FAOBJ,
nyn nn "OCCUR"

)

"DOSE ADJUSTMENT", "Y"

~FASTRESC,

derive_var_merged_ef_msrc

derive_var_merged_exist_flag 327

derive_var_merged_ef_msrc(
adex,
by_vars = exprs(USUBJID, EXLNKID),
flag_events = list(
flag_event(

dataset_name = "ex",
condition = !is.na(EXADJ)
),
flag_event(
dataset_name = "ec”

’

condition = !is.na(ECADJ),
by_vars = exprs(USUBJID, EXLNKID = ECLNKID)

),

flag_event(
dataset_name = "fa",
condition = FATESTCD == "OCCUR" & FAOBJ == "DOSE ADJUSTMENT" & FASTRESC == "Y",
by_vars = exprs(USUBJID, EXLNKID = FALNKID)

)

))
source_datasets = list(ex = adex, ec = ec, fa = fa),
new_var = DOSADJFL

derive_var_merged_exist_flag
Merge an Existence Flag

Description

Adds a flag variable to the input dataset which indicates if there exists at least one observation in
another dataset fulfilling a certain condition.

Note: This is a wrapper function for the more generic derive_vars_merged().

Usage

derive_var_merged_exist_flag(
dataset,
dataset_add,
by_vars,
new_var,
condition,
true_value = "Y",
false_value = NA_character_,
missing_value = NA_character_,
filter_add = NULL

328

Arguments

dataset

dataset_add

by_vars

new_var

condition

true_value

false_value

missing_value

filter_add

derive_var_merged_exist_flag

Input dataset

The variables specified by the by_vars argument are expected to be in the

dataset.

Permitted values a dataset, i.e., a data.frame or tibble

Default value none

Additional dataset

The variables specified by the by_vars argument are expected.

Permitted values a dataset, i.e., a data. frame or tibble

Default value none

Grouping variables

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)

Default value none

New variable

The specified variable is added to the input dataset.

Permitted values an unquoted symbol, e.g., AVAL

Default value none

Condition

The condition is evaluated at the additional dataset (dataset_add). For all by

groups where it evaluates as TRUE at least once the new variable is set to the true

value (true_value). For all by groups where it evaluates as FALSE or NA for all

observations the new variable is set to the false value (false_value). The new

variable is set to the missing value (missing_value) for by groups not present

in the additional dataset.

Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"

Default value none

True value

Permitted values a character scalar, i.e., a character vector of length one

Default value "Y"

False value

Permitted values a character scalar, i.e., a character vector of length one

Default value NA_character_

Value used for missing information

The new variable is set to the specified value for all by groups without observa-

tions in the additional dataset.

Permitted values a character scalar, i.e., a character vector of length one

Default value NA_character_

Filter for additional data

Only observations fulfilling the specified condition are taken into account for

flagging. If the argument is not specified, all observations are considered.

Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"

Default value NULL

derive_var_merged_exist_flag 329

Details

1. The additional dataset is restricted to the observations matching the filter_add condition.

2. The new variable is added to the input dataset and set to the true value (true_value) if for
the by group at least one observation exists in the (restricted) additional dataset where the
condition evaluates to TRUE. It is set to the false value (false_value) if for the by group at
least one observation exists and for all observations the condition evaluates to FALSE or NA.
Otherwise, it is set to the missing value (missing_value).

Value
The output dataset contains all observations and variables of the input dataset and additionally the
variable specified for new_var derived from the additional dataset (dataset_add).

See Also

General Derivation Functions for all ADaMs that returns variable appended to dataset: derive_var_extreme_flag(),
derive_var_joined_exist_flag(), derive_var_merged_ef_msrc(), derive_var_obs_number(),
derive_var_relative_flag(),derive_vars_cat(), derive_vars_computed(), derive_vars_joined(),
derive_vars_joined_summary(), derive_vars_merged(), derive_vars_merged_lookup(), derive_vars_merged_sur
derive_vars_transposed()

Examples

library(dplyr, warn.conflicts = FALSE)

dm <- tribble(
~STUDYID, ~DOMAIN, ~USUBJID, ~AGE, ~AGEU,

"PILOTO1", "DM", "@1-1028", 71, "YEARS",
"PILOTO1", "DM", "Q4-1127", 84, "YEARS",
"PILOTO1", "DM", "06-1049", 60, "YEARS"

)

ae <- tribble(
~STUDYID, ~DOMAIN, ~USUBJID, ~AETERM, ~AEREL,
"PILOTO1", "AE", "@1-1028", "ERYTHEMA", "POSSIBLE",
"PILOTO1", "AE", "@1-1028", "PRURITUS", "PROBABLE",
"PILOTO1", "AE", "06-1049", "SYNCOPE", "POSSIBLE",
"PILOTO1", "AE", "06-1049", "SYNCOPE", "PROBABLE"

derive_var_merged_exist_flag(
dm,
dataset_add = ae,
by_vars = exprs(STUDYID, USUBJID),
new_var = AERELFL,
condition = AEREL == "PROBABLE"
) %>%
select(STUDYID, USUBJID, AGE, AGEU, AERELFL)

vs <- tribble(

330 derive_var_merged_summary

~STUDYID, ~DOMAIN, ~USUBJID, ~VISIT, ~VSTESTCD, ~VSSTRESN, ~VSBLFL,
"PILOTO1", "VS", "@1-1028", "SCREENING”, "HEIGHT", 177.8, NA,
"PILOTO1", "VS", "@1-1028", "SCREENING", "WEIGHT", 98.88, NA,
"PILOTO1", "VS", "@1-1028", "BASELINE”, "WEIGHT", 99.34, nyn,
"PILOTO1", "VS" "91-1028", "WEEK 4", "WEIGHT", 98.88, NA,
"PILOTO1", "VS", "@4-1127", "SCREENING", "HEIGHT", 165.1, NA,
"PILOTO1", "VS", "Q4-1127", "SCREENING”, "WEIGHT", 42.87, NA,
"PILOTO1", "VS", "@4-1127", "BASELINE"”, "WEIGHT", 41.05, nyn
"PILOTO1", "VS", "@4-1127", "WEEK 4", "WEIGHT", 41.73, NA,
"PILOTO1", "VS", "06-1049", "SCREENING", "HEIGHT", 167.64, NA,
"PILOTO1", "VS", "@6-1049", "SCREENING”, "WEIGHT", 57.61, NA,
"PILOTO1", "VS", "06-1049", "BASELINE", "WEIGHT", 57.83, "y,
"PILOTO1", "VS" "Q6-1049", "WEEK 4", "WEIGHT", 58.97, NA

)

derive_var_merged_exist_flag(
dm,

dataset_add = vs,
by_vars = exprs(STUDYID, USUBJID),
filter_add = VSTESTCD == "WEIGHT" & VSBLFL == "Y",
new_var = WTBLHIFL,
condition = VSSTRESN > 90,
false_value = "N",
missing_value = "M"
) %>%
select(STUDYID, USUBJID, AGE, AGEU, WTBLHIFL)

derive_var_merged_summary
Merge Summary Variables

Description

[Deprecated] The derive_var_merged_summary () function has been deprecated in favor of derive_vars_merged_summar

Usage

derive_var_merged_summary (
dataset,
dataset_add,
by_vars,
new_vars = NULL,
filter_add = NULL,
missing_values = NULL

Arguments

dataset Input dataset

The variables specified by the by_vars argument are expected to be in the
dataset.

derive_var_merged_summary 331

dataset_add

by_vars

new_vars

filter_add

missing_values

Permitted values a dataset, i.e., a data. frame or tibble
Default value none

Additional dataset

The variables specified by the by_vars and the variables used on the left hand
sides of the new_vars arguments are expected.

Permitted values a dataset, i.e., a data.frame or tibble

Default value none

Grouping variables

The expressions on the left hand sides of new_vars are evaluated by the specified
variables. Then the resulting values are merged to the input dataset (dataset)
by the specified variables.

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)
Default value none

New variables to add
The specified variables are added to the input dataset.
A named list of expressions is expected:

e LHS refer to a variable.

* RHS refers to the values to set to the variable. This can be a string, a
symbol, a numeric value, an expression or NA. If summary functions are
used, the values are summarized by the variables specified for by_vars.
Any expression on the RHS must result in a single value per by group.

For example:

new_vars = exprs(
DOSESUM = sum(AVAL),
DOSEMEAN = mean(AVAL)
)
Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)
Default value NULL

Filter for additional dataset (dataset_add)

Only observations fulfilling the specified condition are taken into account for
summarizing. If the argument is not specified, all observations are considered.
Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value NULL

Values for non-matching observations
For observations of the input dataset (dataset) which do not have a matching
observation in the additional dataset (dataset_add) the values of the specified
variables are set to the specified value. Only variables specified for new_vars
can be specified for missing_values.

Permitted values list of named expressions created by a formula using exprs(),
e.g., exprs(AVALC = VSSTRESC, AVAL = yn_to_numeric(AVALC))
Default value NULL

332 derive_var_nfrlt

Details

1. The records from the additional dataset (dataset_add) are restricted to those matching the
filter_add condition.

2. The new variables (new_vars) are created for each by group (by_vars) in the additional
dataset (dataset_add) by calling summarize(). Le., all observations of a by group are sum-
marized to a single observation.

3. The new variables are merged to the input dataset. For observations without a matching obser-
vation in the additional dataset the new variables are set to NA. Observations in the additional
dataset which have no matching observation in the input dataset are ignored.

Value
The output dataset contains all observations and variables of the input dataset and additionally the
variables specified for new_vars.

See Also

derive_summary_records(), get_summary_records()

Other deprecated: call_user_fun(), date_source(), derive_param_extreme_record(), derive_var_dthcaus(),
derive_var_extreme_dt(), derive_var_extreme_dtm(), dthcaus_source(), get_summary_records()

derive_var_nfrlt Derive Nominal Relative Time from First Dose (NFRLT)

Description

[Experimental]

Derives nominal/planned time from first dose in hours by combining visit day information with
timepoint descriptions. The function converts timepoint strings to hours using convert_xxtpt_to_hours()
and adds them to the day-based offset. Optionally creates a corresponding unit variable.

Usage

derive_var_nfrlt(
dataset,
new_var = NFRLT,
new_var_unit = NULL,
out_unit = "HOURS",
tpt_var = NULL,
visit_day,
first_dose_day = 1,
treatment_duration = 0,
range_method = "midpoint”,
set_values_to_na = NULL

derive_var_nfrlt

Arguments

dataset

new_var

new_var_unit

out_unit

tpt_var

visit_day

first_dose_day

333

Input dataset containing visit day variable and optionally timepoint variable.

Permitted values A data frame or tibble
Default value none

Name of the new variable to create (unquoted). Default is NFRLT.

Permitted values Unquoted variable name
Default value NFRLT
Name of the unit variable to create (unquoted). If specified, a character variable
will be created containing the unit of time exactly as provided in out_unit.
Common CDISC variables are FRLTU (First Dose Relative Time Unit) or RRLTU
(Reference Relative Time Unit). If not specified, no unit variable is created.
Permitted values Unquoted variable name (optional)
Default value NULL
Unit of time for the output variable. Options are:

° Days: llday"’ "days"’ Hdll

¢ Hours: "hour", "hours", "hr", "hrs", "h" (default: "hours")

non non non

¢ Minutes: "minute", "minutes”, "min", "mins"

non

e Weeks: "week", "weeks", "wk", "wks", "w"
Case-insensitive. The internal calculation is performed in hours, then converted
to the specified unit. If new_var_unit is specified, it will contain the value
exactly as provided by the user.
Permitted values Character scalar (see options above)
Default value "HOURS"
Timepoint variable containing descriptions like "Pre-dose", "1H Post-dose", etc.
(unquoted). If not provided or if the variable doesn’t exist in the dataset, only
the visit day offset is calculated (timepoint contribution is 0).
Permitted values Unquoted variable name (optional)
Default value NULL
Visit day variable (unquoted). This should be the planned/ nominal visit day
(e.g., VISITDY). Records with NA in this variable will have NFRLT set to NA.
Permitted values Unquoted variable name
Default value none
The day number considered as the first dose day. Default is 1. For multiple-dose
studies, this is typically Day 1.
Permitted values Numeric scalar (positive integer)
Default value 1

treatment_duration

Duration of treatment in hours. Can be either:

¢ A numeric scalar (used for all records), or

* Anunquoted variable name from the dataset (e.g., EXDUR) where each record
can have a different treatment duration

334

range_method

derive_var_nfrlt

Passed to convert_xxtpt_to_hours(). Must be non-negative. Default is 0
hours (for instantaneous treatments like oral medications).

Permitted values Numeric scalar or unquoted variable name (non-negative)
Default value 0

Method for converting time ranges to single values. Options are "midpoint” (de-

fault), "start", or "end". Passed to convert_xxtpt_to_hours(). For example,
"0-6h" with midpoint returns 3, with start returns 0, with end returns 6.

non

Permitted values Character scalar ("midpoint", "start", or "end")
Default value "midpoint”

set_values_to_na

Details

An optional condition that marks derived NFRLT values as NA. For example,
set_values_to_na = VISIT == "UNSCHEDULED" will set NFRLT to NA for all
unscheduled visits. Can use any variables in the dataset. When new_var_unit
is specified, the unit variable will also be set to NA for these records.

Permitted values Condition (optional)
Default value NULL

The nominal relative time is calculated as:

NFRLT = (day_offset * 24 + timepoint_hours) x conversion_factor

Where:

» day_offset is calculated from visit_day and first_dose_day, accounting for the absence
of Day 0 in clinical trial convention

* timepoint_hours is derived from the timepoint description using convert_xxtpt_to_hours(),

or 0 if tpt_var is not provided

e conversion_factor is:

1 for "hours" (default)
1/24 for "days"
1/168 for "weeks" (1/24/7)

— 60 for "minutes"

If new_var_unit is specified, a character variable is created containing the value of out_unit
exactly as provided by the user. For example:

e out_unit = "hours"” creates unit variable with value "hours"

e out_unit = "HOURS" creates unit variable with value "HOURS"

e out_unit = "Days" creates unit variable with value "Days"

* NA when the corresponding time value is NA

This matches the behavior of derive_vars_duration() and allows consistency when deriving
multiple time variables.

Handling '"No Day 0'":

derive_var_nfrlt 335

In clinical trials, day numbering typically follows the convention: ..., Day -2, Day -1, Day 1, Day

2, ..

(no Day 0). This function accounts for this by adjusting the day offset when visit_day is

negative and first_dose_day is positive.

For example, with first_dose_day = 1 and different output units:

Day -1, out_unit = "hours" -> -24 hours

Day -1, out_unit = "days"” -> -1 day

Day -1, out_unit = "weeks" ->-0.1429 weeks

Day -1, out_unit = "minutes” -> -1440 minutes

Day -7 -> -168 hours, -7 days, -1 week, or -10080 minutes
Day 1 -> 0 (in any unit, first dose day)

Day 8 -> 168 hours, 7 days, 1 week, or 10080 minutes

With first_dose_day =7:

Day -1 -> -168 hours, -7 days, -1 week, or -10080 minutes
Day 1 ->-144 hours, -6 days, -0.857 weeks, or -8640 minutes
Day 6 -> -24 hours, -1 day, -0.143 weeks, or -1440 minutes
Day 7 -> 0 (in any unit, first dose day)

Common Use Cases:

Single dose study: Day 1 only, with samples at various timepoints (e.g., Pre-dose, 1H, 2H,
4H, 8H, 24H)

Multiple dose study: Dosing on multiple days (e.g., Day 1, Day 8, Day 15) with samples
around each dose

Screening visits: Negative visit days (e.g., Day -14, Day -7) before first dose
Steady state study: Multiple daily doses with sampling on specific days
Oral medications: Use default treatment_duration = @ for instantaneous absorption

IV infusions: Specify treatment_duration as infusion duration in hours (scalar) or as a
variable name containing duration per record

Exposure records (EX): Can be called without tpt_var to derive NFRLT based only on visit
day

Unscheduled visits: Use set_values_to_na to set NFRLT to NA for unscheduled or early
discontinuation visits

Variable treatment durations: Use a variable name (e.g., EXDUR) when different subjects or
visits have different treatment durations

Hours output: Use out_unit = "hours" (default) for variables like NFRLT with FRLTU
Days output: Use out_unit = "days"” for variables like NFRLTDY with FRLTU
Weeks output: Use out_unit = "weeks” for long-term studies with weekly dosing

Minutes output: Use out_unit = "minutes” for very short-term PK studies or when minute
precision is needed

336 derive_var_nfrlt

¢ CDISC compliance: Use new_var_unit = FRLTU for first dose relative time or new_var_unit
= RRLTU for reference relative time

* Consistency with duration: Use the same case for out_unit across derive_vars_duration()
and derive_var_nfrlt() to ensure unit variables match
Important Notes:
» The function assumes visit_day represents the nominal/planned day, not the actual study
day
* Day numbering follows clinical trial convention with no Day 0

» For timepoints that span multiple days (e.g., "24H Post-dose"), ensure visit_day is set to the
day when the sample was taken. For example, if dosing occurs on Day 3, a "24H Post-dose"
sample taken on Day 4 should have visit_day = 4.

* For crossover studies, consider deriving NFRLT separately per period

* NA values in visit_day will automatically result in NA for NFRLT (no need to use set_values_to_na
for this case)

e NA values in tpt_var will result in NA for NFRLT

* NA values in the treatment_duration variable (if using a variable) will result in NA for
NFRLT for those records

* Use set_values_to_na when you need to set NFRLT to NA based on other variables (e.g.,
VISIT == "UNSCHEDULED"), especially when visit_day is populated but should not be used
for the NFRLT calculation

 If tpt_var is not provided or doesn’t exist in the dataset, timepoint contribution is assumed
to be 0 hours

* When using non-hour units, timepoint contributions are still calculated in hours first (e.g., "2H
Post-dose" = 2 hours), then the entire result is converted to the specified unit

* The unit variable (if created) will contain the exact value provided in out_unit, preserving
case and format

Setting Special Values:

If you need to set NFRLT to a specific value (e.g., 99999) for certain visits instead of NA, use
set_values_to_na first to set them to NA, then use a subsequent mutate () call to replace those NA
values:

dataset %>%
derive_var_nfrlt(

’

set_values_to_na = VISIT == "UNSCHEDULED"

Y %%
mutate(NFRLT = if_else(is.na(NFRLT) & VISIT == "UNSCHEDULED”, 99999, NFRLT))

Value

The input dataset with the new nominal relative time variable added, and optionally the unit variable
if new_var_unit is specified.

derive_var_nfrlt

Examples

Single dose study:
Day 1 only with oral medication

library(dplyr)
library(tibble)

adpc <- tribble(
~USUBJID, ~VISITDY, ~PCTPT,

"Q01", 1, "Pre-dose”,

"Q01", 1, "1H Post-dose”,
"001", 1, "2H Post-dose",
"001", 1, "4H Post-dose",
"Q01", 1, "24H Post-dose”

)

derive_var_nfrlt(
adpc,
new_var = NFRLT,
tpt_var = PCTPT,
visit_day = VISITDY

)

#> # A tibble: 5 x 4

#> USUBJID VISITDY PCTPT NFRLT
#> <chr> <dbl> <chr> <dbl>
#> 1 001 1 Pre-dose

#> 2 001 1 1H Post-dose

#> 3 001 1 2H Post-dose

#> 4 001 1 4H Post-dose

#> 5 001 1 24H Post-dose

Single dose study with unit variable:
Creating NFRLT with FRLTU unit variable

derive_var_nfrlt(
adpc,
new_var = NFRLT,
new_var_unit = FRLTU,
tpt_var = PCTPT,
visit_day = VISITDY

)
#> # A tibble: 5 x 5

#> USUBJID VISITDY PCTPT NFRLT FRLTU
#> <chr> <dbl> <chr> <dbl> <chr>
#> 1 001 1 Pre-dose

#> 2 001 1 1H Post-dose

#> 3 001 1 2H Post-dose

#> 4 001 1 4H Post-dose

#> 5 001 1 24H Post-dose

337

338

Single dose study with different output units:

Deriving NFRLT in different time units with unit variables

adpc %>%
derive_var_nfrlt(
new_var = NFRLT,
new_var_unit = FRLTU,
out_unit = "HOURS",
tpt_var = PCTPT,
visit_day = VISITDY
) %>%
derive_var_nfrlt(
new_var = NFRLTDY,
new_var_unit = FRLTDYU,
out_unit = "days”,
tpt_var = PCTPT,
visit_day = VISITDY
)
#> # A tibble: 5 x 7
#> USUBJID VISITDY PCTPT

#> <chr> <dbl> <chr>

#> 1 001 1 Pre-dose

#> 2 001 1 1H Post-dose
#> 3 001 1 2H Post-dose
#> 4 001 1 4H Post-dose
#> 5 001 1 24H Post-dose

Study with screening visits:

NFRLT FRLTU NFRLTDY
<dbl> <chr> <dbl>

@ HOURS @
1 HOURS 0.0417
2 HOURS 0.0833
4 HOURS 0.167
24 HOURS 1

Handling negative visit days (no Day 0 in clinical trials)

adpc_screen <- tribble(

~USUBJID, ~VISITDY, ~PCTPT,
"Screening”,
"Pre-dose”,
"Pre-dose”,
"Pre-dose”,
"2H Post-dose”

"001", -14,
"001", -7,
"001", -1,
"001", 1,
"001", 1,

)

derive_var_nfrlt(
adpc_screen,
new_var = NFRLT,
new_var_unit = FRLTU,
tpt_var = PCTPT,
visit_day = VISITDY

)

#> # A tibble: 5 x 5

#> USUBJID VISITDY PCTPT

#> <chr> <dbl> <chr>

NFRLT FRLTU
<dbl> <chr>

FRLTDYU
<chr>
days
days
days
days
days

derive_var_nfrlt

derive_var_nfrlt

#> 1 001 -14 Screening -336 HOURS
#> 2 001 -7 Pre-dose -168 HOURS
#> 3 001 -1 Pre-dose -24 HOURS
#> 4 001 1 Pre-dose @ HOURS
#> 5 001 1 2H Post-dose 2 HOURS
Multiple dose study:
Dosing on Days 1, 8, and 15
adpc_md <- tribble(

~USuBJID, ~VISITDY, ~PCTPT,

"Q01", 1, "Pre-dose”,

"Q01", 1, "2H Post-dose”,

"001", 8, "Pre-dose”,

"001", 8, "2H Post-dose",

"001", 15, "Pre-dose”,

"Q01", 15, "2H Post-dose”
)
derive_var_nfrlt(

adpc_md,

new_var = NFRLT,

new_var_unit = FRLTU,

tpt_var = PCTPT,

visit_day = VISITDY
)
#> # A tibble: 6 x 5
#> USUBJID VISITDY PCTPT NFRLT FRLTU
#> <chr> <dbl> <chr> <dbl> <chr>
#> 1 001 1 Pre-dose @ HOURS
#> 2 001 1 2H Post-dose 2 HOURS
#> 3 001 8 Pre-dose 168 HOURS
#> 4 001 8 2H Post-dose 170 HOURS
#> 5 001 15 Pre-dose 336 HOURS
#> 6 001 15 2H Post-dose 338 HOURS

Multiple dose study with days output:

Deriving both NFRLT (hours) and NFRLTDY (days) with unit variables

ad

pc_md %>%

derive_var_nfrlt(
new_var = NFRLT,
new_var_unit = FRLTU,
tpt_var = PCTPT,
visit_day = VISITDY

) %>%

derive_var_nfrlt(
new_var = NFRLTDY,
new_var_unit = FRLTDYU,

339

340

out_unit = "days”,
tpt_var = PCTPT,
visit_day = VISITDY

)
#> # A tibble: 6 x 7
#> USUBJID VISITDY PCTPT NFRLT FRLTU NFRLTDY FRLTDYU
#> <chr> <dbl> <chr> <dbl> <chr> <dbl> <chr>
#> 1 001 1 Pre-dose @ HOURS @ days
#> 2 001 1 2H Post-dose 2 HOURS 0.0833 days
#> 3 001 8 Pre-dose 168 HOURS 7 days
#> 4 001 8 2H Post-dose 170 HOURS 7.08 days
#> 5 001 15 Pre-dose 336 HOURS 14 days
#> 6 001 15 2H Post-dose 338 HOURS 14.1 days
Weekly dosing study:

Long-term study with weekly dosing, using weeks output

adpc_weekly <- tribble(
~USUBJID, ~VISITDY, ~PCTPT,

"001", 1, "Pre-dose”,
"001", 8, "Pre-dose”,
"Q01", 15, "Pre-dose"”,
"Q01", 22, "Pre-dose”,
"Q01", 29, "Pre-dose”

)

derive_var_nfrlt(
adpc_weekly,
new_var = NFRLTWK,
new_var_unit = FRLTU,
out_unit = "weeks"”,
tpt_var = PCTPT,
visit_day = VISITDY
)
#> # A tibble: 5 x 5
#> USUBJID VISITDY PCTPT NFRLTWK FRLTU

#> <chr> <dbl> <chr> <dbl> <chr>
#> 1 001 1 Pre-dose @ weeks
#> 2 001 8 Pre-dose 1 weeks
#> 3 001 15 Pre-dose 2 weeks
#> 4 001 22 Pre-dose 3 weeks
#> 5 001 29 Pre-dose 4 weeks

Short-term PK study with minutes:
Very short timepoints requiring minute precision

adpc_short <- tribble(
~USUBJID, ~VISITDY, ~PCTPT,
"Q01", 1, "Pre-dose"”,

derive_var_nfrlt

derive_var_nfrlt

"001", 1, "5 MIN POST",
"001", 1, "15 MIN POST",
"001", 1, "30 MIN POST",
"001", 1, "1H POST"
)
derive_var_nfrlt(
adpc_short,
new_var = NFRLTMIN,
new_var_unit = FRLTU,
out_unit = "minutes”,
tpt_var = PCTPT,
visit_day = VISITDY
)
#> # A tibble: 5 x 5
#> USUBJID VISITDY PCTPT NFRLTMIN
#> <chr> <dbl> <chr> <dbl>
#> 1 001 1 Pre-dose 0
#> 2 001 1 5 MIN POST 5
#> 3 001 1 15 MIN POST 15
#> 4 001 1 30 MIN POST 30
#> 5 001 1 TH POST 60
Custom first dose day:

First dose on Day 7 instead of Day 1

ad

)

de

#>
#>
#>
#>
#>
#>

pc_day7 <- tribble(

~USUBJID, ~VISITDY, ~PCTPT,
"Q01", -1, "Pre-dose”,
"Q01", 1, "Pre-dose”,
"001", 6, "Pre-dose”,
"001", 7, "Pre-dose”,
"Q01", 8, "Pre-dose”
rive_var_nfrlt(

adpc_day7,

new_var = NFRLT,
new_var_unit = FRLTU,
tpt_var = PCTPT,
visit_day = VISITDY,
first_dose_day = 7

A tibble: 5 x 5
USUBJID VISITDY PCTPT NFRLT FRLTU
<chr> <dbl> <chr> <dbl> <chr>
1 001 -1 Pre-dose -168 HOURS
2 001 1 Pre-dose -144 HOURS
3 001 6 Pre-dose -24 HOURS

FRLTU

<chr>

minutes
minutes
minutes
minutes
minutes

341

342

derive_var_nfrlt

#> 4 001 7 Pre-dose @ HOURS
#> 5 001 8 Pre-dose 24 HOURS

IV infusion with scalar treatment duration:
2-hour infusion duration for all records

adpc_inf <- tribble(
~USUBJID, ~VISITDY, ~PCTPT,

"001", 1, "Pre-dose”,
HO@‘I H’ -I , ”EOIH’

"001", 1, "1H Post EOI",
"001", 1, "10MIN PRE EOI"

)

derive_var_nfrlt(
adpc_inf,
new_var = NFRLT,
new_var_unit = FRLTU,
tpt_var = PCTPT,
visit_day = VISITDY,
treatment_duration = 2

)

#> # A tibble: 4 x 5

#> USUBJID VISITDY PCTPT NFRLT FRLTU
#> <chr> <dbl> <chr> <dbl> <chr>
#> 1 001 1 Pre-dose Q HOURS
#> 2 001 1 EOI 2 HOURS
#> 3 001 1 1H Post EOI 3 HOURS
#> 4 001 1 1oMIN PRE EOI 1.83 HOURS

Variable treatment duration:
Different treatment durations per subject using a variable

adpc_var_dur <- tribble(

~USUBJID, ~VISITDY, ~PCTPT, ~EXDUR,
"001", 1, "Pre-dose”, 1,
"001", 1, "EOI", 1,
"001", 1, "1H POST EOI", 1,
"002", 1, "Pre-dose"”, 2,
"002", 1, "EOI”, 2,
"002", 1, "1H POST EOI", 2

)

derive_var_nfrlt(
adpc_var_dur,
new_var = NFRLT,
new_var_unit = FRLTU,
tpt_var = PCTPT,
visit_day = VISITDY,

derive_var_nfrlt

treatment_duration = EXDUR

)
#> # A tibble: 6 x 6

#> USUBJID VISITDY PCTPT EXDUR NFRLT
#> <chr> <dbl> <chr> <dbl> <dbl>
#> 1 001 1 Pre-dose 1 0
#> 2 001 1 EOI 1 1
#> 3 001 1 1H POST EOI 1 2
#> 4 002 1 Pre-dose 2 0
#> 5 002 1 EOI 2 2
#> 6 002 1 TH POST EOI 2 3

Exposure records without timepoint variable:

Deriving NFRLT based only on visit day

ex <- tribble(
~USUBJID, ~VISITDY,

001", 1,
11001 n, 8,
001", 15

)

derive_var_nfrlt(
ex,
new_var = NFRLT,
new_var_unit = FRLTU,
visit_day = VISITDY

#> # A tibble: 3 x 4
#> USUBJID VISITDY NFRLT FRLTU

#> <chr> <dbl> <dbl> <chr>
#> 1 001 1 @ HOURS
#> 2 001 8 168 HOURS
#> 3 001 15 336 HOURS

Exposure records with different output units:

Deriving NFRLT in hours, days, and weeks for exposure records

ex %>%

derive_var_nfrlt(
new_var = NFRLT,
new_var_unit = FRLTU,
visit_day = VISITDY

) %>%

derive_var_nfrlt(
new_var = NFRLTDY,
new_var_unit = FRLTDYU,
out_unit = "days”,
visit_day = VISITDY

FRLTU
<chr>
HOURS
HOURS
HOURS
HOURS
HOURS
HOURS

343

344

)

%>%

derive_var_nfrlt(
new_var = NFRLTWK,
new_var_unit = FRLTWKU,
out_unit = "weeks",
visit_day = VISITDY

)
#> # A tibble: 3 x 8
#> USUBJID VISITDY NFRLT FRLTU NFRLTDY FRLTDYU NFRLTWK
#> <chr> <dbl> <dbl> <chr> <dbl> <chr> <dbl>
#> 1 001 1 @ HOURS 0 days 0
#> 2 001 8 168 HOURS 7 days 1
#> 3 001 15 336 HOURS 14 days 2
Unscheduled visits:
Setting NFRLT to NA for unscheduled visits
adpc_unsched <- tribble(

~USUBJID, ~VISITDY, ~VISIT, ~PCTPT,

"001", 1, "VISIT 1", "Pre-dose”,

"001", 1, "VISIT 1", "2H Post-dose”,

"Q01", NA_real_, "UNSCHEDULED", "Pre-dose”,

"Q01", NA_real_, "UNSCHEDULED", "2H Post-dose”
)
derive_var_nfrlt(

adpc_unsched,

new_var = NFRLT,

new_var_unit = FRLTU,

tpt_var = PCTPT,

visit_day = VISITDY,

set_values_to_na = VISIT == "UNSCHEDULED"
)
#> # A tibble: 4 x 6
#> USUBJID VISITDY VISIT PCTPT NFRLT FRLTU
#> <chr> <dbl> <chr> <chr> <dbl> <chr>
#> 1 001 1 VISIT 1 Pre-dose @ HOURS
#> 2 001 1 VISIT 1 2H Post-dose 2 HOURS
#> 3 001 NA UNSCHEDULED Pre-dose NA <NA>
#> 4 001 NA UNSCHEDULED 2H Post-dose NA <NA>

Early discontinuation visits:

Handling study drug early discontinuation

adpc_disc <- tribble(

~USUBJID, ~VISITDY,
"001",
"001",
"001",

1,
1,
NA_real_,

~VISIT,
"VISIT 1",
"VISIT 1",

"STUDY DRUG EARLY DISCONTINUATION",

derive_var_nfrlt

FRLTWKU
<chr>
weeks
weeks
weeks

~PCTPT,
"Pre-dose”,
"2H Post-dose”,
"Pre-dose”

derive_var_nfrlt 345

)
derive_var_nfrlt(

adpc_disc,

new_var = NFRLT,

new_var_unit = FRLTU,

tpt_var = PCTPT,

visit_day = VISITDY,

set_values_to_na = VISIT == "STUDY DRUG EARLY DISCONTINUATION"
)
#> # A tibble: 3 x 6
#> USUBJID VISITDY VISIT PCTPT NFRLT FRLTU
#> <chr> <dbl> <chr> <chr> <dbl> <chr>
#> 1 001 1 VISIT 1 Pre-dose © HOURS
#> 2 001 1 VISIT 1 2H Post-dose 2 HOURS
#> 3 001 NA STUDY DRUG EARLY DISCONTINUATION Pre-dose NA <NA>

Multiple exclusion criteria:
Excluding multiple visit types

adpc_multi <- tribble(

~USsuBJID, ~VISITDY, ~VISIT, ~PCTPT,

"Q01", 1, "VISIT 1", "Pre-dose”,
"Q01", NA_real_, "UNSCHEDULED", "Pre-dose”,
"001", NA_real_, "STUDY DRUG EARLY DISCONTINUATION", "Pre-dose"

)

derive_var_nfrlt(

adpc_multi,

new_var = NFRLT,

new_var_unit = FRLTU,

tpt_var = PCTPT,

visit_day = VISITDY,

set_values_to_na = VISIT %in% c(
"UNSCHEDULED",
"STUDY DRUG EARLY DISCONTINUATION"

)

)
#> # A tibble: 3 x 6

#> USUBJID VISITDY VISIT

PCTPT NFRLT FRLTU

#> <chr> <dbl> <chr> <chr> <dbl> <chr>
#> 1 001 1 VISIT 1 Pre-dose @ HOURS
#> 2 001 NA UNSCHEDULED Pre-dose NA <NA>
#> 3 001 NA STUDY DRUG EARLY DISCONTINUATION Pre-dose NA <NA>

Setting special values instead of NA:
Using mutate to set NFRLT to 99999 for unscheduled visits

adpc_unsched_value <- tribble(

346

)

ad

#>
#>
#>
#>
#>
#>
#>

derive_var_nfrlt

~USUBJID, ~VISITDY, ~VISIT, ~PCTPT,

"001", 1, "VISIT 1", "Pre-dose”,
"001", 1, "VISIT 1", "2H Post-dose”,
"001", NA_real_, "UNSCHEDULED"”, "Pre-dose",
"Q01", NA_real_, "UNSCHEDULED", "2H Post-dose"
pc_unsched_value %>%

derive_var_nfrlt(
new_var = NFRLT,
new_var_unit = FRLTU,
tpt_var = PCTPT,
visit_day = VISITDY,

set_values_to_na = VISIT == "UNSCHEDULED"
) %>%
mutate(
NFRLT = if_else(is.na(NFRLT) & VISIT == "UNSCHEDULED", 99999, NFRLT),
FRLTU = if_else(is.na(FRLTU) & VISIT == "UNSCHEDULED", "", FRLTU)
)
A tibble: 4 x 6
USUBJID VISITDY VISIT PCTPT NFRLT FRLTU
<chr> <dbl> <chr> <chr> <dbl> <chr>
1 001 1 VISIT 1 Pre-dose @ "HOURS"
2 001 1 VISIT 1 2H Post-dose 2 "HOURS"
3 001 NA UNSCHEDULED Pre-dose 99999 ""
4 001 NA UNSCHEDULED 2H Post-dose 99999 ""

Custom range method:

Using end of range instead of midpoint

ad

)

de

#>
#>
#>
#>
#>

pc_range <- tribble(

~USUBJID, ~VISITDY, ~PCTPT,

"Q01", 1, "Pre-dose"”,
"001", 1, "@-6h Post-dose”
rive_var_nfrlt(

adpc_range,

new_var = NFRLT,
new_var_unit = FRLTU,
tpt_var = PCTPT,
visit_day = VISITDY,

range_method = "end”
A tibble: 2 x 5
USUBJID VISITDY PCTPT NFRLT FRLTU
<chr> <dbl> <chr> <dbl> <chr>
1 001 1 Pre-dose @ HOURS

2 001 1 0-6h Post-dose 6 HOURS

derive_var_nfrlt

Alternative terminology:

Using "Before" and "After" terminology

adpc_alt <- tribble(
~USUBJID, ~VISITDY, ~PCTPT,

"Q01", 1, "Before”,
"001", 1, "1H After”,
"001", 1, "2H After”

)

derive_var_nfrlt(
adpc_alt,
new_var = NFRLT,
new_var_unit = FRLTU,
tpt_var = PCTPT,
visit_day = VISITDY

#> # A tibble: 3 x 5
#> USUBJID VISITDY PCTPT

#> <chr> <dbl> <chr>
#> 1 001 1 Before
#> 2 001 1 1H After
#> 3 001 1 2H After

NFRLT FRLTU
<dbl> <chr>
@ HOURS
1 HOURS
2 HOURS

Reference relative time with RRLTU:

Using RRLTU for reference relative time instead of first dose

derive_var_nfrlt(
adpc,
new_var = NRRLT,
new_var_unit = RRLTU,
tpt_var = PCTPT,
visit_day = VISITDY,
first_dose_day = 8

)
#> # A tibble: 5 x 5

#> USUBJID VISITDY PCTPT NRRLT
#> <chr> <dbl> <chr> <dbl>
#> 1 001 1 Pre-dose -168
#> 2 001 1 1H Post-dose -167
#> 3 001 1 2H Post-dose -166
#> 4 001 1 4H Post-dose -164
#> 5 001 1 24H Post-dose -144

Case sensitivity in out_unit:

RRLTU
<chr>
HOURS
HOURS
HOURS
HOURS
HOURS

Unit variable preserves the case provided in out_unit

derive_var_nfrlt(
adpc,
new_var = NFRLT,

347

348 derive_var _obs_number

new_var_unit = FRLTU,
out_unit = "HOURS",
tpt_var = PCTPT,
visit_day = VISITDY

)

#> # A tibble: 5 x 5

#> USUBJID VISITDY PCTPT NFRLT FRLTU
#> <chr> <dbl> <chr> <dbl> <chr>
#> 1 001 1 Pre-dose @ HOURS
#> 2 001 1 1H Post-dose 1 HOURS
#> 3 001 1 2H Post-dose 2 HOURS
#> 4 001 1 4H Post-dose 4 HOURS
#> 5 001 1 24H Post-dose 24 HOURS

See Also

convert_xxtpt_to_hours(), derive_vars_duration()

BDS-Findings Functions that returns variable appended to dataset: derive_basetype_records(),
derive_var_analysis_ratio(),derive_var_anrind(), derive_var_atoxgr(), derive_var_atoxgr_dir(),
derive_var_base(), derive_var_chg(),derive_var_ontrtfl(), derive_var_pchg(), derive_var_shift(),
derive_vars_crit_flag()

derive_var_obs_number Adds a Variable Numbering the Observations Within Each By Group

Description

Adds a variable numbering the observations within each by group

Usage
derive_var_obs_number(
dataset,
by_vars = NULL,
order = NULL,
new_var = ASEQ,
check_type = "none"
)
Arguments
dataset Input dataset

The variables specified by the by_vars and order arguments are expected to be
in the dataset.

Default value none

by_vars Grouping variables

derive_var_obs_number 349

Default value NULL

order Sort order
Within each by group the observations are ordered by the specified order.
For handling of NAs in sorting variables see the "Sort Order" section in vignette("generic").

Permitted values list of variables or functions of variables
Default value NULL

new_var Name of variable to create
The new variable is set to the observation number for each by group. The num-
bering starts with 1.
Permitted values an unquoted symbol, e.g., AVAL
Default value ASEQ

check_type Check uniqueness?
If "message”, "warning” or "error"” is specified, the specified message is is-
sued if the observations of the input dataset are not unique with respect to the by
variables and the order.

n on n o n n on

Permitted values "none”, "message”, "warning”, "error”
Default value "none”

Details

For each group (with respect to the variables specified for the by_vars parameter) the first or last
observation (with respect to the order specified for the order parameter and the mode specified for
the mode parameter) is included in the output dataset.

Value

A dataset containing all observations and variables of the input dataset and additionally the variable
specified by the new_var parameter.

See Also

General Derivation Functions for all ADaMs that returns variable appended to dataset: derive_var_extreme_flag(),
derive_var_joined_exist_flag(), derive_var_merged_ef_msrc(), derive_var_merged_exist_flag(),
derive_var_relative_flag(),derive_vars_cat(), derive_vars_computed(), derive_vars_joined(),
derive_vars_joined_summary(), derive_vars_merged(), derive_vars_merged_lookup(), derive_vars_merged_sur
derive_vars_transposed()

Examples

library(dplyr, warn.conflicts = FALSE)
vs <- tribble(

~STUDYID, ~DOMAIN, ~USUBJID, ~VSTESTCD, ~VISITNUM, ~VSTPTNUM,
"PILOTO1", "VS" | "@1-703-1182", "DIABP”, 3, 815,
"PILOTO1", "VS”, "01-703-1182", "DIABP”, 3, 816,
"PILOTO1", "yS" "91-703-1182", "DIABP”, 4, 815,
"PILOTO1", "VS" "@1-703-1182", "DIABP”, 4, 816,
"PILOTO1", "VS”, "01-703-1182", "PULSE”", 3, 815,

350 derive_var_ontrtfl

"PILOTO1", "ys", "@1-703-1182", "PULSE", 3, 816,
"PILOTO1", "VvSs", "01-703-1182", "PULSE", 4, 815,
"PILOTO1", "Vs", "01-703-1182", "PULSE", 4, 816,
"PILOTO1", "ys", "@1-703-1182", "SYSBP", 3, 815,
"PILOTO1", "Vvs", "01-703-1182", "SYSBP", 3, 816,
"PILOTO1", "Vys", "01-703-1182", "SYSBP", 4, 815,
"PILOTO1", "Vys", "@1-703-1182", "SYSBP", 4, 816,
"PILOTO1", "Vs", "01-716-1229", "DIABP", 3, 815,
"PILOTO1", "Vs", "01-716-1229", "DIABP", 3, 816,
"PILOTO1", "ys", "@1-716-1229", "DIABP", 4, 815,
"PILOTO1", "Vs", "01-716-1229", "DIABP", 4, 816,
"PILOTO1", "Vs", "01-716-1229", "PULSE", 3, 815,
"PILOTO1", "ys", "@1-716-1229", "PULSE", 3, 816,
"PILOTO1", "Vs", "01-716-1229", "PULSE", 4, 815,
"PILOTO1", "Vs", "01-716-1229", "PULSE", 4, 816,
"PILOTO1", "ys", "01-716-1229", "SYSBP", 3, 815,
"PILOTO1", "Vs", "01-716-1229", "SYSBP", 3, 816,
"PILOTO1", "Vs", "01-716-1229", "SYSBP", 4, 815,
"PILOTO1", "ys", "@1-716-1229", "SYSBP", 4, 816
)
VS %>%

derive_var_obs_number(
by_vars = exprs(USUBJID, VSTESTCD),
order = exprs(VISITNUM, desc(VSTPTNUM))

derive_var_ontrtfl Derive On-Treatment Flag Variable

Description

Derive on-treatment flag (ONTRTFL) in an ADaM dataset with a single assessment date (e.g ADT) or
event start and end dates (e.g. ASTDT/AENDT).

Usage

derive_var_ontrtfl(
dataset,
new_var = ONTRTFL,
start_date,
end_date = NULL,
ref_start_date,
ref_end_date = NULL,
ref_end_window = 0,
ignore_time_for_ref_end_date = TRUE,
filter_pre_timepoint = NULL,
span_period = FALSE

derive_var_ontrtfl 351

Arguments

dataset Input dataset
Required columns are start_date, end_date, ref_start_date and ref_end_date.
Default value none

new_var On-treatment flag variable name to be created.
Default value ONTRTFL

start_date The start date (e.g. AESDT) or assessment date (e.g. ADT) Required; A date or
date-time object column is expected.
Refer to derive_vars_dt() to impute and derive a date from a date character
vector to a date object.
Default value none

end_date The end date of assessment/event (e.g. AENDT) A date or date-time object column

is expected.
Refer to derive_vars_dt() to impute and derive a date from a date character
vector to a date object.
Optional; Default is null. If the used and date value is missing on an observation,
it is assumed the medication is ongoing and ONTRTFL is set to "Y".
Default value NULL

ref_start_date The lower bound of the on-treatment period Required; A date or date-time object
column is expected.
Refer to derive_vars_dt() to impute and derive a date from a date character
vector to a date object.
Default value none

ref_end_date The upper bound of the on-treatment period A date or date-time object column
is expected.
Refer to derive_vars_dt () to impute and derive a date from a date character
vector to a date object.
If set to NULL, everything after ref_start_date will be considered on-treatment.

Default value NULL

ref_end_window A window to add to the upper bound ref_end_date measured in days (e.g. 7 if
7 days should be added to the upper bound)

Default value ©

ignore_time_for_ref_end_date
If the argument is set to TRUE, the time part is ignored for checking if the event
occurred more than ref_end_window days after reference end date.

Permitted values TRUE, FALSE
Default value TRUE
filter_pre_timepoint
An expression to filter observations as not on-treatment when date = ref_start_date.
For example, if observations where VSTPT = PRE should not be considered on-
treatment when date = ref_start_date, filter_pre_timepoint should be
used to denote when the on-treatment flag should be set to null. Optional; de-
fault is NULL.

352 derive_var_ontrtfl

Default value NULL

span_period A logical scalar. If TRUE, events that started prior to the ref_start_dateand are
ongoing or end after the ref_start_date are flagged as "Y". Optional; default
is FALSE.

Default value FALSE

Details

On-Treatment is calculated by determining whether the assessment date or start/stop dates fall be-
tween 2 dates. The following logic is used to assign on-treatment = "Y":

1. start_date is missing and ref_start_dateis non-missing

2. No timepoint filter is provided (filter_pre_timepoint) and both start_date and ref_start_date
are non-missing and start_date = ref_start_date

3. Atimepointis provided (filter_pre_timepoint) and both start_date and ref_start_date
are non-missing and start_date = ref_start_date and the filter provided in filter_pre_timepoint
is not true.

4. ref_end_date is not provided and ref_start_date < start_date
5. ref_end_dateis provided and ref_start_date < start_date <=ref_end_date + ref_end_window.
If the end_date is provided and the end_date < ref_start_date then the ONTRTFL is set to NULL.This

would be applicable to cases where the start_date is missing and ONTRTFL has been assigned as
"Y" above.

If the span_period is TRUE, this allows the user to assign ONTRTFL as "Y" to cases where the record
started prior to the ref_start_date and was ongoing or ended after the ref_start_date.

Any date imputations needed should be done prior to calling this function.

Value

The input dataset with an additional column named ONTRTFL with a value of "Y" or NA

See Also

BDS-Findings Functions that returns variable appended to dataset: derive_basetype_records(),
derive_var_analysis_ratio(), derive_var_anrind(), derive_var_atoxgr(), derive_var_atoxgr_dir(),
derive_var_base(), derive_var_chg(),derive_var_nfrlt(), derive_var_pchg(),derive_var_shift(),
derive_vars_crit_flag()

Examples

library(tibble)
library(dplyr, warn.conflicts = FALSE)
library(lubridate, warn.conflicts = FALSE)

advs <- tribble(
~USUBJID, ~ADT, ~TRTSDT, ~TRTEDT,
"pR1", ymd("2020-02-24"), ymd("2020-01-01"), ymd("2020-03-01"),
"Po2", ymd("2020-01-01"), ymd("2020-01-01"), ymd("2020-03-01"),

derive_var_ontrtfl 353

"PQ3", ymd("2019-12-31"), ymd("2020-01-01"), ymd("2020-03-01")
)
derive_var_ontrtfl(

advs,

start_date = ADT,

ref_start_date = TRTSDT,

ref_end_date = TRTEDT

)

advs <- tribble(
~USUBJID, ~ADT, ~TRTSDT, ~TRTEDT,
"PQ1", ymd("2020-07-01"), ymd("2020-01-01"), ymd("2020-03-01"),
"P@2", ymd(”2020-04-30"), ymd("2020-01-01"), ymd("2020-03-01"),
"pQ3”, ymd("2020-03-15"), ymd("2020-01-01"), ymd("2020-03-01")
)
derive_var_ontrtfl(
advs,
start_date = ADT,
ref_start_date = TRTSDT,
ref_end_date = TRTEDT,
ref_end_window = 60

)

advs <- tribble(
~USUBJID, ~ADTM, ~TRTSDTM, ~TRTEDTM,
"PO1", ymd_hm("2020-01-02T12:00"), ymd_hm("2020-01-01712:00"), ymd_hm("2020-03-01T12:00"),
"P@2", ymd("2020-01-01"), ymd_hm("2020-01-01T12:00"), ymd_hm("2020-03-01T12:00"),
"P@3", ymd("2019-12-31"), ymd_hm("2020-01-01T12:00"), ymd_hm("2020-03-01712:00"),

) %>%

mutate(TPT = c(NA, "PRE", NA))
derive_var_ontrtfl(

advs,

start_date = ADTM,

ref_start_date = TRTSDTM,

ref_end_date = TRTEDTM,

filter_pre_timepoint = TPT == "PRE"

)

advs <- tribble(
~USUBJID, ~ASTDT, ~TRTSDT, ~TRTEDT, ~AENDT,
"PQ1", ymd("2020-03-15"), ymd("2020-01-01"), ymd("2020-03-01"), ymd("2020-12-01"),
"PQ2", ymd("2019-04-30"), ymd("2020-01-01"), ymd("2020-03-01"), ymd(”2020-03-15"),
"PQ3", ymd("2019-04-30"), ymd("2020-01-01"), ymd("2020-03-01"), NA,

)

derive_var_ontrtfl(
advs,

start_date = ASTDT,
end_date = AENDT,
ref_start_date = TRTSDT,
ref_end_date = TRTEDT,
ref_end_window = 60,
span_period = TRUE

354 derive_var_pchg

advs <- tribble(

~USUBJID, ~ASTDT, ~APQ1SDT, ~APQ1EDT, ~AENDT,
"Po1", ymd("2020-03-15"), ymd("2020-01-01"), ymd("2020-03-01"), ymd("2020-12-01"),
"pE2", ymd("2019-04-30"), ymd("2020-01-01"), ymd("2020-03-01"), ymd("2020-03-15"),
"P@3", ymd("2019-04-30"), ymd("2020-01-01"), ymd("2020-03-01"), NA,

)

derive_var_ontrtfl(
advs,

new_var = ONTRO1FL,
start_date = ASTDT,
end_date = AENDT,
ref_start_date = APQ1SDT,
ref_end_date = APQ1EDT,
span_period = TRUE

derive_var_pchg Derive Percent Change from Baseline

Description

Derive percent change from baseline (PCHG) in a BDS dataset

Usage

derive_var_pchg(dataset)

Arguments
dataset Input dataset AVAL and BASE are expected.
Default value none
Details

Percent change from baseline is calculated by dividing change from baseline by the absolute value
of the baseline value and multiplying the result by 100.

Value

The input dataset with an additional column named PCHG

See Also

derive_var_chg()

BDS-Findings Functions that returns variable appended to dataset: derive_basetype_records(),
derive_var_analysis_ratio(),derive_var_anrind(), derive_var_atoxgr(), derive_var_atoxgr_dir(),
derive_var_base(), derive_var_chg(),derive_var_nfrlt(), derive_var_ontrtfl(), derive_var_shift(),
derive_vars_crit_flag()

derive_var_relative_flag 355

Examples

library(tibble)

advs <- tribble(
~USUBJID, ~PARAMCD, ~AVAL, ~ABLFL, ~BASE,

"po1", "WEIGHT”, 80, "yro 80,
"Po1", "WEIGHT", 80.8, NA, 80,
"po1", "WEIGHT", 81.4, NA, 80,
"P@2" "WEIGHT", 75.3, "Y', 75.3,
"P@2", "WEIGHT", 76, NA, 75.3

)

derive_var_pchg(advs)

derive_var_relative_flag
Flag Observations Before or After a Condition is Fulfilled

Description

Flag all observations before or after the observation where a specified condition is fulfilled for each
by group. For example, the function could be called to flag for each subject all observations before
the first disease progression or to flag all AEs after a specific AE.

Usage
derive_var_relative_flag(
dataset,
by_vars,
order,
new_var,
condition,
mode,
selection,
inclusive,
flag_no_ref_groups = TRUE,
check_type = "warning”
)
Arguments
dataset Input dataset
The variables specified by the by_vars and order arguments are expected to be
in the dataset.
Default value none
by_vars Grouping variables

Default value none

356 derive_var_relative_flag

order Sort order
Within each by group the observations are ordered by the specified order.
For handling of NAs in sorting variables see the "Sort Order" section in vignette("generic").
Permitted values list of expressions created by exprs(), e.g., exprs(ADT,
desc(AVAL))
Default value none

new_var New variable
The variable is added to the input dataset and set to "Y" for all observations
before or after the condition is fulfilled. For all other observations it is set to NA.

Default value none

condition Condition for Reference Observation

The specified condition determines the reference observation. In the output
dataset all observations before or after (selection argument) the reference ob-
servation are flagged.

Default value none

mode Selection mode (first or last)
If "first" is specified, for each by group the observations before or after (selection
argument) the observation where the condition (condition argument) is ful-
filled the first time is flagged in the output dataset. If "last” is specified, for
each by group the observations before or after (selection argument) the ob-
servation where the condition (condition argument) is fulfilled the last time is
flagged in the output dataset.
Permitted values "first”, "last”
Default value none

selection Flag observations before or after the reference observation?

non

Permitted values "before”, "after”
Default value none

inclusive Flag the reference observation?

Permitted values TRUE, FALSE
Default value none
flag_no_ref_groups
Should by groups without reference observation be flagged?

Permitted values TRUE, FALSE
Default value TRUE

check_type Check uniqueness?

If "warning"” or "error” is specified, the specified message is issued if the
observations of the input dataset are not unique with respect to the by variables
and the order.

non n o n

Permitted values "none”, "warning”, "error”
Default value "warning”

derive_var_relative_flag 357

Details

For each by group (by_vars argument) the observations before or after (selection argument) the
observations where the condition (condition argument) is fulfilled the first or last time (order
argument and mode argument) is flagged in the output dataset.

Value

The input dataset with the new variable (new_var) added

See Also

General Derivation Functions for all ADaMs that returns variable appended to dataset: derive_var_extreme_flag(),
derive_var_joined_exist_flag(), derive_var_merged_ef_msrc(), derive_var_merged_exist_flag(),
derive_var_obs_number(), derive_vars_cat(), derive_vars_computed(), derive_vars_joined(),
derive_vars_joined_summary(), derive_vars_merged(), derive_vars_merged_lookup(), derive_vars_merged_sur
derive_vars_transposed()

Examples

library(tibble)
library(dplyr, warn.conflicts = FALSE)

Flag all AEs after the first COVID AE
adae <- tribble(
~USUBJID, ~ASTDY, ~ACOVFL, ~AESEQ,

nyn 2, NA, 1,
nyn 5, "y", 2,
" 5, NA, 3,
nyn 17, NA, 4,
nyn 27, "Y", 5,
nyn 32, NA, 6,
non 8, NA, 1,
"ar 11, NA, 2

)

derive_var_relative_flag(
adae,
by_vars = exprs(USUBJID),
order = exprs(ASTDY, AESEQ),
new_var = PSTCOVFL,

condition = ACOVFL == "Y",
mode = "first",
selection = "after”,

inclusive = FALSE,
flag_no_ref_groups = FALSE
)

response <- tribble(
~USUBJID, ~AVISITN, ~AVALC,
II-III’ 0, HPRH,
", 1, "CR",

358 derive_var_shift

", 2, "CR",
", 3, "SD",
", 4, "NE",
"2, 0, "sb",
"2, 1, "PD",
"2", 2, "PD",
"3", 0, "SD",
"4", 0, "SD",
"4", 1, "PR",
"4", 2, "PD",
"4", 3, "SD",
"4", 4 "PR"

Flag observations up to first PD for each patient
response %>%
derive_var_relative_flag(
by_vars = exprs(USUBJID),
order = exprs(AVISITN),
new_var = ANLO2FL,

condition = AVALC == "PD",
mode = "first”,
selection = "before”,

inclusive = TRUE

)

Flag observations up to first PD excluding baseline (AVISITN = @) for each patient
response %>%
restrict_derivation(
derivation = derive_var_relative_flag,
args = params(
by_vars = exprs(USUBJID),
order = exprs(AVISITN),
new_var = ANLO2FL,

condition = AVALC == "PD",
mode = "first”,
selection = "before”,
inclusive = TRUE
),
filter = AVISITN > @
) %%

arrange(USUBJID, AVISITN)

derive_var_shift Derive Shift

Description

Derives a character shift variable containing concatenated shift in values based on user-defined
pairing, e.g., shift from baseline to analysis value, shift from baseline grade to analysis grade, ...

derive_var_shift 359

Usage
derive_var_shift(
dataset,
new_var,
from_var,
to_var,
missing_value = "NULL",
sep_val =" to "
)
Arguments
dataset Input dataset
The variables specified by the from_var and to_var arguments are expected to
be in the dataset.
Default value none
new_var Name of the character shift variable to create.
Default value none
from_var Variable containing value to shift from.
Default value none
to_var Variable containing value to shift to.

Default value none

missing_value Character string to replace missing values in from_var or to_var.
Default value "NULL"

sep_val Character string to concatenate values of from_var and to_var.

Default value " to "

Details

new_var is derived by concatenating the values of from_var to values of to_var (e.g. "NOR-
MAL to HIGH"). When from_var or to_var has missing value, the missing value is replaced by
missing_value (e.g. "NORMAL to NULL").

Value

The input dataset with the character shift variable added

See Also

BDS-Findings Functions that returns variable appended to dataset: derive_basetype_records(),
derive_var_analysis_ratio(),derive_var_anrind(), derive_var_atoxgr(), derive_var_atoxgr_dir(),
derive_var_base(), derive_var_chg(),derive_var_nfrlt(), derive_var_ontrtfl(), derive_var_pchg(),
derive_vars_crit_flag()

360

Examples

library(tibble)

data <- tribble(

~USUBJID, ~PARAMCD, ~AVAL, ~ABLFL, ~BNRIND,
"po1", "ALB", 33, "y, "LOW",
"po1", "ALB", 38, NA, "LOw"
"po1", "ALB" NA, NA, "LOW",
"p@2" "ALB", 37, "Y", "NORMAL",
"p@2", "ALB", 49, NA, "NORMAL”",
"PQ2", "SODIUM", 147, "Y", "HIGH",

)

data %>%
convert_blanks_to_na() %>%
derive_var_shift(
new_var = SHIFTT1,
from_var = BNRIND,
to_var = ANRIND
)

or only populate post-baseline records
data %>%
convert_blanks_to_na() %>%
restrict_derivation(
derivation = derive_var_shift,
args = params(
new_var = SHIFT1,
from_var = BNRIND,
to_var = ANRIND
),

filter = is.na(ABLFL)

derive_var_trtdurd

~ANRIND,
"LOW",
“NORMAL ",
NA,
"NORMAL ",
"HIGH",
"HIGH"

derive_var_trtdurd

Derive Total Treatment Duration (Days)

Description

Derives total treatment duration (days) (TRTDURD).

Note: This is a wrapper function for the more generic derive_vars_duration().

Usage

derive_var_trtdurd(dataset, start_date =

TRTSDT, end_date =

TRTEDT)

derive_var_trtdurd 361

Arguments

dataset Input dataset

The variables specified by the start_date and end_date arguments are ex-
pected to be in the dataset.

Default value none

start_date The start date
A date or date-time object is expected.

Refer to derive_vars_dt () to impute and derive a date from a date character
vector to a date object.

Default value TRTSDT
end_date The end date

A date or date-time object is expected.

Refer to derive_vars_dt() to impute and derive a date from a date character
vector to a date object.

Default value TRTEDT

Details

The total treatment duration is derived as the number of days from start to end date plus one.

Value

The input dataset with TRTDURD added

See Also

derive_vars_duration()

Date/Time Derivation Functions that returns variable appended to dataset: derive_vars_dt(),
derive_vars_dtm(), derive_vars_dtm_to_dt(), derive_vars_dtm_to_tm(), derive_vars_duration(),
derive_vars_dy()

Examples

library(tibble)
library(lubridate)

data <- tribble(

~TRTSDT, ~TRTEDT,

ymd("2020-01-01"), ymd("2020-02-24")
)

derive_var_trtdurd(data)

362 derive_var_trtemfl

derive_var_trtemfl Derive Treatment-emergent Flag

Description

Derive treatment emergent analysis flag (e.g., TRTEMFL).

Usage

derive_var_trtemfl(
dataset,
new_var = TRTEMFL,
start_date = ASTDTM,
end_date = AENDTM,
trt_start_date = TRTSDTM,
trt_end_date = NULL,
end_window = NULL,
ignore_time_for_trt_end = TRUE,
initial_intensity = NULL,
intensity = NULL,
group_var = NULL,
subject_keys = get_admiral_option("subject_keys")

)
Arguments

dataset Input dataset
The variables specified by start_date, end_date, trt_start_date, trt_end_date,
initial_intensity, and intensity are expected.
Permitted values a dataset, i.e., a data.frame or tibble
Default value none

new_var New variable
Permitted values an unquoted symbol, e.g., AVAL
Default value TRTEMFL

start_date Event start date
Permitted values a date or datetime variable
Default value ASTDTM

end_date Event end date

Permitted values a date or datetime variable
Default value AENDTM

trt_start_date Treatment start date

Permitted values a date or datetime variable

derive_var_trtemfl 363

Default value TRTSDTM
trt_end_date Treatment end date

Permitted values a date or datetime variable
Default value NULL
end_window If the argument is specified (in ’days’), events starting more than the specified
number of days after end of treatment, are not flagged.
Permitted values a positive integer, e.g. 2 or 5
Default value NULL
ignore_time_for_trt_end
If the argument is set to TRUE, the time part is ignored for checking if the event
occurred more than end_window days after end of treatment.
Permitted values TRUE, FALSE
Default value TRUE
initial_intensity
Initial severity/intensity or toxicity
initial_intensity isignored when group_var is specified.
If this argument is specified and group_var is NULL, events which start before
treatment start and end after treatment start (or are ongoing) and worsened (i.e.,
the intensity is greater than the initial intensity), are flagged.

The values of the specified variable must be comparable with the usual compari-

son operators. L.e., if the intensity is greater than the initial intensity initial_intensity
< intensity must evaluate to TRUE.

Permitted values an unquoted symbol, e.g., AVAL

Default value NULL

intensity Severity/intensity or toxicity

If the argument is specified, events which start before treatment start and end
after treatment start (or are ongoing) and worsened (i.e., the intensity is greater
than the initial intensity), are flagged.

The values of the specified variable must be comparable with the usual compari-

son operators. L.e., if the intensity is greater than the initial intensity initial_intensity
< intensity must evaluate to TRUE.

Permitted values an unquoted symbol, e.g., AVAL

Default value NULL

group_var Grouping variable
If the argument is specified, it assumes that AEs are recorded as one episode of
AE with multiple lines using a grouping variable.
Events starting during treatment or before treatment and worsening afterward
are flagged. Once an AE record in a group is flagged, all subsequent records in
the treatment window are flagged regardless of severity.
Permitted values an unquoted symbol, e.g., AVAL
Default value NULL

subject_keys Variables to uniquely identify a subject.
This argument is only used when group_var is specified.

364 derive_var_trtemfl

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)

Default value get_admiral_option(”subject_keys")

Details

For the derivation of the new variable the following cases are considered in this order. The first case
which applies, defines the value of the variable.

e not treated: If trt_start_date is NA, it is set to NA_character_.

* event before treatment: If end_date is before trt_start_date (and end_date is not NA), it
is set to NA_character_.

* no event date: If start_date is NA, it is set to "Y" as in such cases it is usually considered
more conservative to assume the event was treatment-emergent.

* event started during treatment:

— if end_window is not specified: if start_date is on or after trt_start_date, it is set to
”Y”’
— ifend_windowis specified: if start_dateis onor after trt_start_date and start_date
is on or before trt_end_date + end_window days, it is set to "Y",
* event started before treatment and (possibly) worsened on treatment:

— ifinitial_intensity, intensity is specified and group_var is not specified: if initial_intensity
<intensity and start_date is before trt_start_date and end_date is on or after
trt_start_date or end_date is NA, itis setto "Y";

— if group_var is specified: if intensity at treatment start < intensity and start_date
is after trt_start_date and end_date is on or after trt_start_date or end_date is
NA, it is set to "Y";

e Otherwise it is set to NA_character_.

The behavior of derive_var_trtemfl() is aligned with the proposed treatment-emergent AE as-
signment in the following PHUSE White Paper. See the final example in the examples section
below.

Value

The input dataset with the variable specified by new_var added

Examples

Basic treatment-emergent flag:
Derive TRTEMFL without considering treatment end and worsening
* For this basic example, all we are using are AE start/end dates and comparing those against
treatment start date.
* If the AE started on or after treatment then we flag as treatment-emergent (e.g. records 5-7).

* If missing AE start date then we flag as treatment-emergent as worst case (e.g. records 8, 11
and 13), unless we know that the AE end date was before treatment so we can rule out this
being treatment-emergent (e.g. record 12).

https://phuse.s3.eu-central-1.amazonaws.com/Deliverables/Safety+Analytics/WP-087+Recommended+Definition+of++Treatment-Emergent+Adverse+Events+in+Clinical+Trials+.pdf

derive_var_trtemfl

365

* Any not treated subject would not get their AEs flagged as treatment-emergent (e.g. records

14-16).

library(tibble)

library(dplyr, warn.conflicts =

library(lubridate)

adae <- tribble(

~USUBJID,

~ASTDT,

before treatment

H-I n
’

n-l u,

starting before treatment and ending during treatment

n-l n
’

H-I n
’

ymd("2021-12-13"),
ymd("2021-12-14"),

ymd("2021-12-30"),
ymd("2021-12-31"),

starting during treatment

n-l n,

ymd("2022-01-01"),

after treatment

"
"
missing
"
"
"

n-l n’

e NA, ymd("2021-12-24"), "3",
LS NA, ymd("2022-06-04"), "3",
without treatment
"2", NA, ymd("2021-12-03"), "1",
"2", ymd("2021-12-01"), ymd("2021-12-03"), "1",
"2, ymd("2021-12-06"), NA, R
) %>%
mutate(
STUDYID = "AB42",
TRTSDT = if_else(USUBJID == "1", ymd("2022-01-01"), NA),
TRTEDT = if_else(USUBJID == "1", ymd("2022-04-30"), NA)
)
derive_var_trtemf1(
adae,
start_date = ASTDT,
end_date = AENDT,
trt_start_date = TRTSDT

ymd("2022-05-10"),
ymd("2022-05-11"),
dates

NA,
ymd("2021-12-30"),
ymd("2021-12-31"),
NA,

FALSE)

~AENDT,

ymd("2021-12-15"), "1",
ymd("2021-12-14"), "1",

ymd("2022-01-14"), "1",
ymd("2022-01-01"), "1",

ymd("2022-01-02"), "3",

ymd("2022-05-10"), "2",
ymd("2022-05-11"), "2",

NA, 11311,
NA, 11311’
NA, 11311,

ymd("2022-01-04"), "3",

) %>% select(USUBJID, TRTSDT, ASTDT, AENDT, TRTEMFL)
#> # A tibble: 16 x 5

#> USUBJID TRTSDT

#> <chr>
11
#> 21

ASTDT
<date> <date>
2022-01-01 2021-1
2022-01-01 2021-1

AENDT TRTEMFL

<date> <chr>
2-13 2021-12-15 <NA>
2-14 2021-12-14 <NA>

~AEITOXGR,

~AETOXGR,

ll-l n
’

n3n’

n3u
’

nan
T,
n4n’

nan
27,

naon
27,

u4n
’

nagn
4",

n3n
’

n4u
’

II4II
’

II4H
’

nan
27,

nan
27,

11211

366

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

0 N O U1 bW

N NN /2 2 a9 g aaa aa o

9
10
1
12
13
14
15
16

2022-01-01
2022-01-01
2022-01-01
2022-01-01
2022-01-01
2022-01-01
2022-01-01
2022-01-01
2022-01-01
2022-01-01
2022-01-01
NA

NA

NA

2021-12-30
2021-12-31
2022-01-01
2022-05-10
2022-05-11
NA
2021-12-30
2021-12-31
NA
NA
NA
NA
2021-12-01
2021-12-06

2022-01-14
2022-01-01
2022-01-02
2022-05-10
2022-05-11
NA

NA

NA

2022-01-04
2021-12-24
2022-06-04
2021-12-03
2021-12-03
NA

<NA>
<NA>
Y

<NA>
Y

<NA>
<NA>
<NA>

Considering treatment end date (trt_end_date and end_window):

Derive TRTEMFL taking a treatment end window into account

derive_var_trtemfl

* In addition to the treatment-emergent checks explained in the above example, we now supply
a treatment end date, trt_end_date = TRTEDT and an end window, end_window = 10. With
these, any AE which started on or before treatment end date + 10 days is considered as
treatment-emergent. Otherwise, those starting after the treatment end window are no longer
flagged as treatment-emergent (e.g. record 7).

derive_var_trtemfl(
adae,
start_date = ASTDT,
end_date = AENDT,

trt_start_date =

trt_end_date = TRTEDT,

end_window

10

TRTSDT,

) %>% select(USUBJID, TRTSDT, TRTEDT, ASTDT, AENDT, TRTEMFL)

#> # A tibble:

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

0 NO O~ WN =

—_
g b w NN = 0

16 x 6

USUBJID TRTSDT

<chr>

NN = m a0 g a g a aa a .

<date>
2022-01-01
2022-01-01
2022-01-01
2022-01-01
2022-01-01
2022-01-01
2022-01-01
2022-01-01
2022-01-01
2022-01-01
2022-01-01
2022-01-01
2022-01-01
NA

NA

TRTEDT
<date>
2022-04-30
2022-04-30
2022-04-30
2022-04-30
2022-04-30
2022-04-30
2022-04-30
2022-04-30
2022-04-30
2022-04-30
2022-04-30
2022-04-30
2022-04-30
NA

NA

ASTDT
<date>
2021-12-13
2021-12-14
2021-12-30
2021-12-31
2022-01-01
2022-05-10
2022-05-11
NA
2021-12-30
2021-12-31
NA

NA

NA

NA
2021-12-01

AENDT
<date>
2021-12-15
2021-12-14
2022-01-14
2022-01-01
2022-01-02
2022-05-10
2022-05-11
NA

NA

NA
2022-01-04
2021-12-24
2022-06-04
2021-12-03
2021-12-03

TRTEMFL
<chr>
<NA>
<NA>
<NA>
<NA>

Y

Y

<NA>

<NA>
<NA>

<NA>

<NA>
<NA>

derive_var_trtemfl

367

#> 16 2 NA NA 2021-12-06 NA <NA>

Considering treatment worsening (initial_intensity and intensity):
Derive a new variable named TRTEM2FL taking worsening after treatment start into account

* We also now start look at changes in intensity following treatment start using the initial_intensity
and intensity arguments. This only impacts AEs starting before treatment, and ending on
or after treatment (or with missing AE end date). We can additionally consider treatment-
emergence for an AE that was ongoing at the start of treatment which may have worsened as
a result of treatment, i.e. the most extreme intensity is greater than the initial intensity (e.g.
records 3 and 9).

derive_var_trtemfl(
adae,
new_var = TRTEM2FL,
start_date = ASTDT,
end_date = AENDT,
trt_start_date = TRTSDT,
trt_end_date = TRTEDT,
end_window = 10,
initial_intensity = AEITOXGR,
intensity = AETOXGR

) %>% select(USUBJID, TRTSDT, ASTDT, AENDT, AEITOXGR, AETOXGR, TRTEM2FL)

#> # A tibble: 16 x 7

#> USUBJID TRTSDT ASTDT AENDT AEITOXGR AETOXGR TRTEM2FL
#> <chr> <date> <date> <date> <chr> <chr> <chr>
11 2022-01-01 2021-12-13 2021-12-15 1 1 <NA>
21 2022-01-01 2021-12-14 2021-12-14 1 3 <NA>
#> 31 2022-01-01 2021-12-30 2022-01-14 1 3 Y

#> 41 2022-01-01 2021-12-31 2022-01-01 1 1 <NA>
51 2022-01-01 2022-01-01 2022-01-02 3 4 Y

61 2022-01-01 2022-05-10 2022-05-10 2 2 Y

71 2022-01-01 2022-05-11 2022-05-11 2 2 <NA>
#> 81 2022-01-01 NA NA 3 4 Y

#> 91 2022-01-01 2021-12-30 NA 3 4 Y

10 1 2022-01-01 2021-12-31 NA 3 3 <NA>
11 1 2022-01-01 NA 2022-01-04 3 4 Y

12 1 2022-01-01 NA 2021-12-24 3 4 <NA>
13 1 2022-01-01 NA 2022-06-04 3 4 Y

#> 14 2 NA NA 2021-12-03 1 2 <NA>
#> 15 2 NA 2021-12-01 2021-12-03 1 2 <NA>
#> 16 2 NA 2021-12-06 NA 1 2 <NA>

Worsening when the same AE is collected over multiple records (intensity and group_var):

Derive TRTEMFL taking worsening after treatment into account within a grouping variable

* Firstly, to understand which records correspond to the same AE, we need to supply a grouping
variable (group_var). Then this example works in a similar way to the above one, but here
we don’t have an initial intensity so we have to use the intensity of the AE at the time of

368 derive_var_trtemfl

treatment start. If an ongoing AE increases intensity after treatment start (i.e. worsens), then
from that point on the records are considered treatment-emergent, unless after the treatment
end window (e.g. records 4, 6 and 7).

adae? <- tribble(
~USUBJID, ~ASTDT,
ongoing AE where intensity
LS ymd("2021-12-31"),
L ymd("2022-01-02"),

~AENDT, ~AETOXGR, ~AEGRPID,
drops after treatment start
ymd("2022-01-01"), "3",
ymd("2022-01-11"), "2",

n-l H’

n-l H,

ongoing AE where intensity increases after treatment start
", ymd("2021-12-31"), ymd("2022-01-01"), "1", "2",
"1, ymd("2022-01-02"), ymd("2022-01-11"), "2", "2",

ongoing AE where intensity increases after treatment start and then drops
" ymd("2021-12-31"), ymd("2022-01-01"), "1", "3,
"1, ymd("2022-01-02"), ymd("2022-01-11"), "2", "3,
"1, ymd("2022-01-12"), ymd("2022-01-15"), "1", "3"
) %>%
mutate(
STUDYID = "AB42",
TRTSDT = if_else(USUBJID == "1", ymd("2022-01-01"), NA),
TRTEDT = if_else(USUBJID == "1", ymd("2022-04-30"), NA)
)
derive_var_trtemfl(
adae2,
start_date = ASTDT,

end_date = AENDT,
trt_start_date = TRTSDT,
trt_end_date = TRTEDT,

end_window = 10,
intensity = AETOXGR,
group_var = AEGRPID

) %>% select(USUBJID, TRTSDT, ASTDT, AENDT, AETOXGR, AEGRPID, TRTEMFL)
#> # A tibble: 7 x 7

#> USUBJID TRTSDT ASTDT AENDT AETOXGR AEGRPID TRTEMFL
#> <chr> <date> <date> <date> <chr> <chr> <chr>
11 2022-01-01 2021-12-31 2022-01-01 3 1 <NA>
21 2022-01-01 2022-01-02 2022-01-11 2 1 <NA>
31 2022-01-01 2021-12-31 2022-01-01 1 2 <NA>
#> 4 1 2022-01-01 2022-01-02 2022-01-11 2 2 Y

#> 51 2022-01-01 2021-12-31 2022-01-01 1 3 <NA>
#> 6 1 2022-01-01 2022-01-02 2022-01-11 2 3 Y

71 2022-01-01 2022-01-12 2022-01-15 1 3 Y

Further Examples from PHUSE White Paper:

Here we present more cases (some new, some similar to the examples above) which are aligned
one-to-one with the scenarios in the PHUSE White Paper

adae3 <- tribble(

https://phuse.s3.eu-central-1.amazonaws.com/Deliverables/Safety+Analytics/WP-087+Recommended+Definition+of++Treatment-Emergent+Adverse+Events+in+Clinical+Trials+.pdf

derive_var_trtemfl 369

~USUBJID, ~TRTSDTM, ~TRTEDTM, ~ASTDTM, ~AENDTM, ~AEITOXGR, ~AETOXGR,

Patient 1: Pre-treatment AE

"1", "2021-01-01", "2021-12-31", "2020-12-20", "2020-12-21", "2", "2",

Patient 2: On-treatment AE

"2", "2021-01-01", "2021-12-31", "2021-12-20", "2021-12-21", "2", "2",

Patient 3: Pre-treatment AE, then on-treatment AE at same intensity

"3", "2021-01-01", "2021-12-31", "2020-12-20", "2020-12-21", "2", "2",

"3", "2021-01-01", "2021-12-31", "2021-12-20", "2021-12-21", "2", "2",

Patient 4: Pre-treatment AE, then on-treatment AE at wors. intensity

"4" 0 "2021-01-01", "2021-12-31", "2020-12-20", "2020-12-21", "2", "2",

"4" 0 "2021-01-01", "2021-12-31", "2021-12-20", "2021-12-21", "2", "3",

Patient 5: Pre-treatment AE, then on-treatment AE at impr. intensity

"5", "2021-01-01", "2021-12-31", "2020-12-20", "2020-12-21", "2", "2",

"5", "2021-01-01", "2021-12-31", "2021-12-20", "2021-12-21", "2", "1",

Patient 6: AE starting pre-treatment, continuing on-treatment, then 2nd AE at same intensity
"6", "2021-01-01", "2021-12-31", "2020-12-23", "2021-01-21", "2", "2",

"6", "2021-01-01", "2021-12-31", "2021-12-20", "2021-12-21", "2", "2",

Patient 7: AE starting pre-treatment, continuing on-treatment, then 2nd AE at wors. intensity
"7", "2021-01-01", "2021-12-31", "2020-12-23", "2021-01-21", "2", "2",

"7", "2021-01-01", "2021-12-31", "2021-12-20", "2021-12-21", "2", "3",

Patient 8: AE starting pre-treatment, continuing on-treatment, then 2nd AE at impr. intensity
"8", "2021-01-01", "2021-12-31", "2020-12-23", "2021-01-21", "2", "2",

"8", "2021-01-01", "2021-12-31", "2021-12-20", "2021-12-21", "2", "1",

Patient 9: AE starting pre-treatment, continuing on-treatment, and no change in intensity
"9" "2021-01-01", "2021-12-31", "2020-12-23", "2021-01-21", "2", "2",

Patient 10: AE starting pre-treatment, continuing on-treatment, and wors. intensity
"10", "2021-01-01", "2021-12-31", "2020-12-23", "2021-01-21", "2",6 "4",

Patient 11: AE starting pre-treatment, continuing on-treatment, and impr. intensity
"11", "2021-01-01", "2021-12-31", "2020-12-23", "2021-01-21", "2", "1",

Patient 12: AE starting pre-treatment, worsening, then improving

"12", "2021-01-01", "2021-12-31", "2020-12-23", "2021-01-21", "3",6 "2",

Patient 13: AE starting pre-treatment, improving, then worsening

"13", "2021-01-01", "2021-12-31", "2020-12-23", "2021-01-21", "1", "2",

) %>%
mutate(
ASTDTM = ymd(ASTDTM),
AENDTM = ymd(AENDTM),
TRTSDTM = ymd(TRTSDTM),
TRTEDTM = ymd(TRTEDTM),
)

derive_var_trtemfl(
adae3s,
new_var = TRTEMFL,
trt_end_date = TRTEDTM,
end_window = 0,
initial_intensity = AEITOXGR,
intensity = AETOXGR,

370 dose_freq_lookup
subject_keys = exprs(USUBJID)
) %%
select (USUBJID, TRTSDTM, TRTEDTM, ASTDTM, AENDTM, AEITOXGR, AETOXGR, TRTEMFL)

#> # A tibble: 19 x 8
#> USUBJID TRTSDTM TRTEDTM ASTDTM AENDTM AEITOXGR AETOXGR TRTEMFL
#> <chr> <date> <date> <date> <date> <chr> <chr> <chr>
11 2021-01-01 2021-12-31 2020-12-20 2020-12-21 2 2 <NA>
#H 22 2021-01-01 2021-12-31 2021-12-20 2021-12-21 2 2 Y
33 2021-01-01 2021-12-31 2020-12-20 2020-12-21 2 2 <NA>
#> 4 3 2021-01-01 2021-12-31 2021-12-20 2021-12-21 2 2 Y
#> 54 2021-01-01 2021-12-31 2020-12-20 2020-12-21 2 2 <NA>
#> 6 4 2021-01-01 2021-12-31 2021-12-20 2021-12-21 2 3 Y
75 2021-01-01 2021-12-31 2020-12-20 2020-12-21 2 2 <NA>
#> 85 2021-01-01 2021-12-31 2021-12-20 2021-12-21 2 1 Y
9 6 2021-01-01 2021-12-31 2020-12-23 2021-01-21 2 2 <NA>
#> 10 6 2021-01-01 2021-12-31 2021-12-20 2021-12-21 2 2 Y
#> 11 7 2021-01-01 2021-12-31 2020-12-23 2021-01-21 2 2 <NA>
12 7 2021-01-01 2021-12-31 2021-12-20 2021-12-21 2 3 Y
#> 13 8 2021-01-01 2021-12-31 2020-12-23 2021-01-21 2 2 <NA>
#> 14 8 2021-01-01 2021-12-31 2021-12-20 2021-12-21 2 1 Y
#> 159 2021-01-01 2021-12-31 2020-12-23 2021-01-21 2 2 <NA>
#> 16 10 2021-01-01 2021-12-31 2020-12-23 2021-01-21 2 4 Y
17 11 2021-01-01 2021-12-31 2020-12-23 2021-01-21 2 1 <NA>
18 12 2021-01-01 2021-12-31 2020-12-23 2021-01-21 3 2 <NA>
#> 19 13 2021-01-01 2021-12-31 2020-12-23 2021-01-21 1 2 Y

See Also

OCCDS Functions: derive_vars_atc(), derive_vars_query()
desc dplyr desc
Description

See dplyr: :desc for details.

dose_freq_lookup

Pre-Defined Dose Frequencies

Description

These pre-defined dose frequencies are sourced from CDISC. The number of rows to generate
using create_single_dose_dataset() arguments start_date and end_date is derived from
DOSE_COUNT, DOSE_WINDOW, and CONVERSION_FACTOR with appropriate functions from lubridate.

https://evs.nci.nih.gov/ftp1/CDISC/SDTM/SDTM%20Terminology.pdf

dthcaus_source 371

Usage

dose_freq_lookup

Format

An object of class tbl_df (inherits from tbl, data. frame) with 86 rows and 5 columns.

Details

NCI_CODE and CDISC_VALUE are included from the CDISC source for traceability.

DOSE_COUNT represents the number of doses received in one single unit of DOSE_WINDOW. For ex-
ample, for CDISC_VALUE=="10 DAYS PER MONTH", DOSE_WINDOW=="MONTH" and DOSE_COUNT==10.
Similarly, for CDISC_VALUE=="EVERY 2 WEEKS", DOSE_WINDOW=="WEEK" and DOSE_COUNT==0.5
(to yield one dose every two weeks).

CONVERSION_FACTOR is used to convert DOSE_WINDOW units "WEEK", "MONTH", and "YEAR" to the
unit "DAY".

For example, for CDISC_VALUE=="10 DAYS PER MONTH", CONVERSION_FACTOR is @.@329. One day
of a month is assumed to be 1/ 30.4375 of a month (one day is assumed to be 1/365.25 of a
year). Given only start_date and end_date in the aggregate dataset, CONVERSION_FACTOR is
used to calculate specific dates forstart_date and end_date in the resulting single dose dataset
for the doses that occur. In such cases, doses are assumed to occur at evenly spaced increments over
the interval.

To see the entire table in the console, run print(dose_freq_lookup).

See Also

create_single_dose_dataset()

Other metadata: atoxgr_criteria_ctcv4, atoxgr_criteria_ctcv4_uscyv, atoxgr_criteria_ctcv5,
atoxgr_criteria_ctcv5_uscv, atoxgr_criteria_ctcv6, atoxgr_criteria_ctcv6_uscyv, atoxgr_criteria_daids,
atoxgr_criteria_daids_uscv, country_code_lookup

dthcaus_source Create a dthcaus_source Object

Description

[Deprecated] The dthcaus_source() function and dthcaus_source() have been deprecated in
favor of event ().

372 dthcaus_source

Usage

dthcaus_source(
dataset_name,
filter,
date,
order = NULL,
mode = "first"”,
dthcaus,
set_values_to = NULL

Arguments

dataset_name The name of the dataset, i.e. a string, used to search for the death cause.
Default value none

filter An expression used for filtering dataset.
Default value none

date A date or datetime variable or an expression to be used for sorting dataset.
Default value none

order Sort order

Additional variables/expressions to be used for sorting the dataset. The dataset
is ordered by date and order. Can be used to avoid duplicate record warning.

Permitted values list of expressions created by exprs(), e.g., exprs(ADT,
desc(AVAL)) or NULL

Default value NULL

mode One of "first” or "last”. Either the "first” or "last” observation is pre-
served from the dataset which is ordered by date.

Default value "first”

dthcaus A variable name, an expression, or a string literal

If a variable name is specified, e.g., AEDECOD, it is the variable in the source

dataset to be used to assign values to DTHCAUS; if an expression, e.g., str_to_upper (AEDECOD),
it is evaluated in the source dataset and the results is assigned to DTHCAUS; if

a string literal, e.g. "Adverse Event”, it is the fixed value to be assigned to

DTHCAUS.

Default value none
set_values_to Variables to be set to trace the source dataset

Default value NULL

Value

An object of class "dthcaus_source".

event 373

See Also

derive_var_dthcaus()

Other deprecated: call_user_fun(), date_source(), derive_param_extreme_record(), derive_var_dthcaus(),
derive_var_extreme_dt(), derive_var_extreme_dtm(), derive_var_merged_summary(), get_summary_records()

Examples

Deaths sourced from AE
src_ae <- dthcaus_source(
dataset_name = "ae”,
filter = AEOUT == "FATAL",
date = AEDTHDT,
mode = "first",
dthcaus = AEDECOD
)

Deaths sourced from DS
src_ds <- dthcaus_source(

dataset_name = "ds",
filter = DSDECOD == "DEATH",
date = convert_dtc_to_dt(DSSTDTC),
mode = "first”,
dthcaus = DSTERM
)
event Create a event Object
Description

The event object is used to define events as input for the derive_extreme_event() and derive_vars_extreme_event()
functions.

Usage

event(
dataset_name = NULL,
condition = NULL,
mode = NULL,
order = NULL,
set_values_to = NULL,
keep_source_vars = NULL,
description = NULL

374 event

Arguments

dataset_name Dataset name of the dataset to be used as input for the event. The name refers to
the dataset specified for source_datasetsinderive_extreme_event(). If the
argument is not specified, the input dataset (dataset) of derive_extreme_event()
is used.
Permitted values a character scalar
Default value NULL

condition An unquoted condition for selecting the observations, which will contribute to
the extreme event. If the condition contains summary functions like all(), they
are evaluated for each by group separately.
Permitted values an unquoted condition
Default value NULL

mode If specified, the first or last observation with respect to order is selected for each
by group.
Permitted values "first”, "last”, NULL
Default value NULL

order The specified variables or expressions are used to select the first or last observa-
tion if mode is specified.
For handling of NAs in sorting variables see the "Sort Order" section in vignette("generic").
Permitted values list of expressions created by exprs(), e.g., exprs(ADT,

desc(AVAL)) or NULL

Default value NULL

set_values_to A named list returned by exprs() defining the variables to be set for the event,
e.g. exprs(PARAMCD = "WSP", PARAM = "Worst Sleeping Problems"”). The val-
ues can be a symbol, a character string, a numeric value, NA or an expression.
Permitted values a named list of expressions, e.g., created by exprs()
Default value NULL

keep_source_vars
Variables to keep from the source dataset

The specified variables are kept for the selected observations. The variables
specified for by_vars (of derive_extreme_event()) and created by set_values_to
are always kept.

Permitted values A list of expressions where each element is a symbol or a
tidyselect expression, e.g., exprs (VISIT, VISITNUM, starts_with("RS")).
Default value NULL

description Description of the event
The description does not affect the derivations where the event is used. It is
intended for documentation only.
Permitted values a character scalar
Default value NULL

event_joined 375

Value

An object of class event

See Also

derive_extreme_event(), derive_vars_extreme_event(), event_joined()

Source Objects: basket_select(), censor_source(), death_event, event_joined(), event_source(),
flag_event(), query(), records_source(), tte_source()

event_joined Create a event_joined Object

Description

The event_joined object is used to define events as input for the derive_extreme_event() and
derive_vars_extreme_event () functions. This object should be used if the event does not depend
on a single observation of the source dataset but on multiple observations. For example, if the event
needs to be confirmed by a second observation of the source dataset.

The events are selected by calling filter_joined(). See its documentation for more details.

Usage

event_joined(
dataset_name = NULL,
condition,
order = NULL,
join_vars,
join_type,
first_cond_lower = NULL,
first_cond_upper = NULL,
set_values_to = NULL,
keep_source_vars = NULL,
description = NULL

Arguments

dataset_name Dataset name of the dataset to be used as input for the event. The name refers to
the dataset specified for source_datasetsinderive_extreme_event(). If the
argument is not specified, the input dataset (dataset) of derive_extreme_event ()
is used.

Permitted values a character scalar
Default value NULL

376 event_joined

condition An unquoted condition for selecting the observations, which will contribute to
the extreme event.
The condition is applied to the joined dataset for selecting the confirmed obser-
vations. The condition can include summary functions like al1() or any(). The
joined dataset is grouped by the original observations. Le., the summary func-
tion are applied to all observations up to the confirmation observation. For exam-
ple in the oncology setting when using this function for confirmed best overall
response, condition = AVALC == "CR" & al1(AVALC. join %in% c("CR", "NE"))
& count_vals(var = AVALC. join, val = "NE") <=1 selects observations with
response "CR" and for all observations up to the confirmation observation the
response is "CR" or "NE" and there is at most one "NE".

Permitted values an unquoted condition
Default value none
order If specified, the specified variables or expressions are used to select the first
observation.
For handling of NAs in sorting variables see the "Sort Order" sectionin vignette(”generic”).
Permitted values list of expressions created by exprs(), e.g., exprs(ADT,
desc(AVAL)) or NULL
Default value NULL

join_vars Variables to keep from joined dataset
The variables needed from the other observations should be specified for this
parameter. The specified variables are added to the joined dataset with suffix
"join". For example to select all observations with AVALC == "Y" and AVALC ==
"Y" for at least one subsequent visit join_vars = exprs(AVALC, AVISITN) and
condition = AVALC == "Y" & AVALC. join =="Y" & AVISITN < AVISITN. join could
be specified.

The . join variables are not included in the output dataset.

Permitted values a named list of expressions, e.g., created by exprs()
Default value none

join_type Observations to keep after joining
The argument determines which of the joined observations are kept with respect
to the original observation. For example, if join_type = "after” is specified
all observations after the original observations are kept.

Permitted values "before”, "after”, "all”
Default value none

first_cond_lower
Condition for selecting range of data (before)
If this argument is specified, the other observations are restricted from the first
observation before the current observation where the specified condition is ful-
filled up to the current observation. If the condition is not fulfilled for any of the
other observations, no observations are considered, i.e., the observation is not
flagged.
This parameter should be specified if condition contains summary functions
which should not apply to all observations but only from a certain observation
before the current observation up to the current observation.

event_joined 377

Permitted values an unquoted condition
Default value NULL

first_cond_upper
Condition for selecting range of data (after)

If this argument is specified, the other observations are restricted up to the first
observation where the specified condition is fulfilled. If the condition is not
fulfilled for any of the other observations, no observations are considered, i.e.,
the observation is not flagged.

This parameter should be specified if condition contains summary functions
which should not apply to all observations but only up to the confirmation as-
sessment.
Permitted values an unquoted condition
Default value NULL

set_values_to A named list returned by exprs() defining the variables to be set for the event,
e.g. exprs(PARAMCD = "WSP", PARAM = "Worst Sleeping Problems"”). The val-
ues can be a symbol, a character string, a numeric value, NA or an expression.
Permitted values a named list of expressions, e.g., created by exprs()
Default value NULL

keep_source_vars
Variables to keep from the source dataset

The specified variables are kept for the selected observations. The variables
specified for by_vars (of derive_extreme_event()) and created by set_values_to
are always kept.

Permitted values A list of expressions where each element is a symbol or a
tidyselect expression, e.g., exprs(VISIT, VISITNUM, starts_with("RS")).

Default value NULL

description Description of the event

The description does not affect the derivations where the event is used. It is
intended for documentation only.

Permitted values a character scalar
Default value NULL

Value

An object of class event_joined

See Also

derive_extreme_event(), derive_vars_extreme_event(), event()

Source Objects: basket_select(), censor_source(), death_event, event(), event_source(),
flag_event(), query(), records_source(), tte_source()

378 event_joined

Examples

library(tibble)
library(dplyr)
library(lubridate)
Derive confirmed best overall response (using event_joined())
CR - complete response, PR - partial response, SD - stable disease
NE - not evaluable, PD - progressive disease
adsl <- tribble(
~USUBJID, ~TRTSDTC,

nyn "2020-01-01",
", "2019-12-12",
"3n "2019-11-11",
n4n "2019-12-30",
"gn "2020-01-01",
6", "2020-02-02"
"y "2020-02-02"
"gr "2020-02-01"
Y %%

mutate (TRTSDT = ymd(TRTSDTC))

adrs <- tribble(

~USUBJID, ~ADTC, ~AVALC,
", "2020-01-01", "PR",
" "2020-02-01", "CR",
", "2020-02-16", "NE",
", "2020-03-01", "CR",
"y "2020-04-01", "SD",
""", "2020-01-01", "SD",
"2", "2020-02-01", "PR",
""", "2020-03-01", "SD",
"2", "2020-03-13", "CR",
"4 "2020-01-01", "PR",
"4 "2020-03-01", "NE",
"4, "2020-04-01", "NE",
"4 "2020-05-01", "PR",
"5" "2020-01-01", "PR",
"5", "2020-01-10", "PR",
"5" "2020-01-20", "PR",
"6", "2020-02-06", "PR",
"6", "2020-02-16", "CR",
"6", "2020-03-30", "PR",
"7, "2020-02-06", "PR",
"7, "2020-02-16", "CR",
"7, "2020-04-01", "NE",
"8", "2020-02-16", "PD"
) %%
mutate(

ADT = ymd(ADTC),

PARAMCD = "OVR",

PARAM = "Overall Response by Investigator”
) %%
derive_vars_merged(

event_joined 379

dataset_add = adsl,
by_vars = exprs(USUBJID),
new_vars = exprs(TRTSDT)

)

derive_extreme_event(
adrs,
by_vars = exprs(USUBJID),
order = exprs(ADT),
mode = "first",
source_datasets = list(adsl = adsl),
events = list(
event_joined(
description = paste(
"CR needs to be confirmed by a second CR at least 28 days later”,
"at most one NE is acceptable between the two assessments”
),
join_vars = exprs(AVALC, ADT),
join_type = "after”,

first_cond_upper = AVALC.join == "CR" &
ADT.join >= ADT + 28,
condition = AVALC == "CR" &

all(AVALC. join %in% c("CR", "NE")) &
count_vals(var = AVALC.join, val = "NE") <=1,
set_values_to = exprs(
AVALC = "CR"
)
),

event_joined(
description = paste(
"PR needs to be confirmed by a second CR or PR at least 28 days later,”,
"at most one NE is acceptable between the two assessments”
),
join_vars = exprs(AVALC, ADT),
join_type = "after”,
first_cond_upper = AVALC.join %in% c("CR", "PR") &
ADT.join >= ADT + 28,
condition = AVALC == "PR" &
all(AVALC. join %in% c("CR", "PR", "NE")) &
count_vals(var = AVALC.join, val = "NE") <=1,
set_values_to = exprs(
AVALC = "PR"
)
),
event(
description = paste(
"CR, PR, or SD are considered as SD if occurring at least 28",
"after treatment start”
),
condition = AVALC %in% c("CR", "PR", "SD") & ADT >= TRTSDT + 28,
set_values_to = exprs(
AVALC = "SD"
)

380

),

event(
condition = AVALC == "PD",
set_values_to = exprs(

AVALC = "PD"

)

),

event(

condition = AVALC %in% c("CR", "PR", "SD", "NE"),
set_values_to = exprs(

event_source

AVALC = "NE"
)
),
event(
description = "set response to MISSING for patients without records in ADRS",
dataset_name = "adsl”,

condition = TRUE,
set_values_to = exprs(
AVALC = "MISSING"
),
keep_source_vars = exprs(TRTSDT)
)
),
set_values_to = exprs(
PARAMCD = "CBOR",
PARAM = "Best Confirmed Overall Response by Investigator”
)
) %>%
filter (PARAMCD == "CBOR")

event_source Create an event_source Object

Description

event_source objects are used to define events as input for the derive_param_tte() function.

Note: This is a wrapper function for the more generic tte_source().

Usage

event_source(
dataset_name,
filter = NULL,

date,
set_values_to = NULL,
order = NULL

event_source

Arguments

dataset_name

filter

date

set_values_to

order

Value

381

The name of the source dataset

The name refers to the dataset provided by the source_datasets parameter of
derive_param_tte().

Default value none

An unquoted condition for selecting the observations from dataset which are
events or possible censoring time points.

Default value NULL

A variable or expression providing the date of the event or censoring. A date, or
a datetime can be specified. An unquoted symbol or expression is expected.
Refer to derive_vars_dt() or convert_dtc_to_dt() to impute and derive a
date from a date character vector to a date object.

Default value none

A named list returned by exprs() defining the variables to be set for the event
or censoring, e.g. exprs(EVENTDESC = "DEATH", SRCDOM = "ADSL", SRCVAR =
"DTHDT"). The values must be a symbol, a character string, a numeric value, an
expression, or NA.

Default value NULL

Sort order

An optional named list returned by exprs() defining additional variables that
the source dataset is sorted on after date.

Permitted values list of variables created by exprs() e.g. exprs(ASEQ).
Default value order

An object of class event_source, inheriting from class tte_source

See Also

derive_param_tte(), censor_source()

Source Objects: basket_select(), censor_source(), death_event, event(), event_joined(),
flag_event(), query(), records_source(), tte_source()

Examples

Death event

event_source(

dataset_name = "adsl”,
filter = DTHFL == "Y",
date = DTHDT,

set_values_to = exprs(
EVNTDESC = "DEATH",
SRCDOM = "ADSL",

382 exprs

SRCVAR = "DTHDT"
)
)

example_gs Example QS Dataset

Description

An example QS dataset based on the examples from the CDISC ADaM Supplements Generalized
Anxiety Disorder 7-Item Version 2 (GAD-7) and Geriatric Depression Scale Short Form (GDS-SF).
Usage

example_gs

Format

An object of class tbl_df (inherits from tbl, data.frame) with 161 rows and 11 columns.

Source
Created by (https://github.com/pharmaverse/admiral/blob/main/data-raw/create_example_
gs.R)

See Also

Other datasets: admiral_adlb, admiral_adsl, ex_single, queries, queries_mh

exprs rlang exprs

Description

See rlang: :exprs for details.

https://www.cdisc.org/standards/foundational/qrs/generalized-anxiety-disorder-7-item-version-2-0
https://www.cdisc.org/standards/foundational/qrs/generalized-anxiety-disorder-7-item-version-2-0
https://www.cdisc.org/standards/foundational/qrs/geriatric-depression-scale-short-form-0
https://github.com/pharmaverse/admiral/blob/main/data-raw/create_example_qs.R
https://github.com/pharmaverse/admiral/blob/main/data-raw/create_example_qs.R

extract_unit 383

extract_unit Extract Unit From Parameter Description

Description

Extract the unit of a parameter from a description like "Param (unit)".

Usage

extract_unit(x)

Arguments
X A parameter description
Default value none
Value
A string
See Also

Utilities used within Derivation functions: get_flagged_records(), get_not_mapped(), get_vars_query()

Examples

extract_unit("Height (cm)")

extract_unit(”"Diastolic Blood Pressure (mmHg)")

ex_single Single Dose Exposure Dataset

Description

A derived dataset with single dose per date.

Usage

ex_single

Format

An object of class tb1_df (inherits from tbl, data. frame) with 22439 rows and 16 columns.

384 filter_exist

Source
Derived from the ex dataset using {admiral} and {dplyr} (https://github.com/pharmaverse/
admiral/blob/main/data-raw/create_ex_single.R)

See Also

Other datasets: admiral_adlb, admiral_adsl, example_gs, queries, queries_mh

filter_exist Returns records that fit into existing by groups in a filtered source
dataset

Description

Returns all records in the input dataset that belong to by groups that are present in a source dataset,
after the source dataset is optionally filtered. For example, this could be used to return ADSL
records for subjects that experienced a certain adverse event during the course of the study (as per
records in ADAE).

Usage

filter_exist(dataset, dataset_add, by_vars, filter_add = NULL)

Arguments

dataset Input dataset
The variables specified by the by_vars argument are expected to be in the
dataset.
Default value none

dataset_add Source dataset

The source dataset, which determines the by groups returned in the input dataset,
based on the groups that exist in this dataset after being subset by filter_add.

The variables specified in the by_vars and filter_add parameters are expected
in this dataset.

Default value none
by_vars Grouping variables
Default value none

filter_add Filter for the source dataset

The filter condition which will be used to subset the source dataset. Alterna-
tively, if no filter condition is supplied, no subsetting of the source dataset will
be performed.

Default value NULL

https://github.com/pharmaverse/admiral/blob/main/data-raw/create_ex_single.R
https://github.com/pharmaverse/admiral/blob/main/data-raw/create_ex_single.R

filter_exist 385

Details
Returns the records in dataset which match an existing by group in dataset_add, after being
filtered according to filter_add. If there are no by groups that exist in both datasets, an empty
dataset will be returned.

Value
The records in the input dataset which are contained within an existing by group in the filtered
source dataset.

See Also
Utilities for Filtering Observations: count_vals(), filter_extreme(), filter_joined(), filter_not_exist(),
filter_relative(), max_cond(), min_cond()

Examples

Get demographic information about subjects who have suffered from moderate or
severe fatigue

library(tibble)

adsl <- tribble(

~USUBJID, ~AGE, ~SEX,
"91-701-1015", 63, "F",
"91-701-1034", 77, "F",
"01-701-1115", 84, "M",
"01-701-1146", 75, "F",
"01-701-1444" | 63, "M"

)

adae <- tribble(
~USUBJID, ~AEDECOD, ~AESEV, ~AESTDTC,
"01-701-1015", "DIARRHOEA", "MODERATE", "2014-01-09",
"01-701-1034", "FATIGUE", "SEVERE", "2014-11-02",
"01-701-1034", "APPLICATION SITE PRURITUS"”, "MODERATE"”, "2014-08-27",
"01-701-1115", "FATIGUE", "MILD", "2013-01-14",
"01-701-1146", "FATIGUE", "MODERATE", "2013-06-03"

)

filter_exist(
dataset = adsl,
dataset_add = adae,
by_vars = exprs(USUBJID),
filter_add = AEDECOD == "FATIGUE" & AESEV %in% c("MODERATE"”, "SEVERE")

386

filter_extreme

filter_extreme

Filter the First or Last Observation for Each By Group

Description

Filters the first or last observation for each by group.

Usage
filter_extreme(dataset, by_vars = NULL, order, mode, check_type = "warning”)
Arguments

dataset Input dataset
The variables specified by the by_vars and order arguments are expected to be
in the dataset.
Permitted values a dataset, i.e., a data. frame or tibble
Default value none

by_vars Grouping variables
Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,

VISIT)

Default value NULL

order Sort order
Within each by group the observations are ordered by the specified order.
Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,

VISIT)

Default value none

mode Selection mode (first or last)
If "first” is specified, the first observation of each by group is included in the
output dataset. If "last” is specified, the last observation of each by group is
included in the output dataset.
Permitted values "first”, "last”
Default value none

check_type Check uniqueness?

If "warning” or "error” is specified, the specified message is issued if the
observations of the input dataset are not unique with respect to the by variables
and the order.

n on n o n

Permitted values "none”, "message”,

n on

warning”, "error”

Default value "warning”

filter_extreme 387

Details

For each group (with respect to the variables specified for the by_vars parameter) the first or last
observation (with respect to the order specified for the order parameter and the mode specified for
the mode parameter) is included in the output dataset.

Value

A dataset containing the first or last observation of each by group

See Also

Utilities for Filtering Observations: count_vals(), filter_exist(), filter_joined(), filter_not_exist(),
filter_relative(), max_cond(), min_cond()

Examples

library(dplyr, warn.conflicts = FALSE)

ex <- tribble(

~STUDYID, ~DOMAIN, ~USUBJID, ~EXSEQ, ~EXDOSE, ~EXTRT,
"PILOTO1", TEX", "@1-1442", 1, 54, "XANO"
"PILOTO1", "EX”, "01-1442", 2, 54, "XANO"
"PILOTO1", "EX", "01-1442", 3, 54, "XANO" ,
"PILOTO1", "EX", "@1-1444" 1, 54, "XANO"
"PILOTO1", "EX”, "01-1444" 2, 81, "XANO"
"PILOTO1", "EX", "05-1382", 1, 54, "XANO" ,
"PILOTO1", "EX", "08-1213", 1, 54, "XANO"
"PILOTO1", "EX”, "10-1053", 1, 54, "XANO"
"PILOTO1", "EX", "10-1053", 2, 54, "XANO" ,
"PILOTO1", "EX", "10-1183", 1, 9, "PLACEBO",
"PILOTO1", "EX”, "10-1183", 2, 0, "PLACEBO",
"PILOTO1", "EX", "10-1183", 3, @, "PLACEBO",
"PILOTO1", "EX", "11-1036", 1, 9, "PLACEBO",
"PILOTO1", "EX”, "11-1036", 2, 0, "PLACEBO",
"PILOTO1", "EX", "11-1036", 3, @, "PLACEBO",
"PILOTO1", "EX", "14-1425", 1, 54, "XANO"
"PILOTO1", "EX”, "15-1319", 1, 54, "XANO"
"PILOTO1", "EX", "15-1319", 2, 81, "XANO"
"PILOTO1", "EX", "16-1151", 1, 54, "XANO"
"PILOTO1", "EX”, "16-1151", 2, 54, "XANO"

Select first dose for each patient
ex %>%
filter_extreme(
by_vars = exprs(USUBJID),
order = exprs(EXSEQ),
mode = "first”
) 5%
select (USUBJID, EXSEQ)

388 filter_joined

Select highest dose for each patient on the active drug
ex %>%
filter (EXTRT != "PLACEBO") %>%
filter_extreme(
by_vars = exprs(USUBJID),
order = exprs(EXDOSE),

mode = "last”,
check_type = "none"
) %%

select(USUBJID, EXTRT, EXDOSE)

filter_joined Filter Observations Taking Other Observations into Account

Description

The function filters observation using a condition taking other observations into account. For exam-
ple, it could select all observations with AVALC == "Y" and AVALC == "Y" for at least one subsequent
observation. The input dataset is joined with itself to enable conditions taking variables from both
the current observation and the other observations into account. The suffix ".join" is added to the
variables from the subsequent observations.

An example usage might be checking if a patient received two required medications within a certain
timeframe of each other.

In the oncology setting, for example, we use such processing to check if a response value can be
confirmed by a subsequent assessment. This is commonly used in endpoints such as best overall
response.

Usage

filter_joined(
dataset,
dataset_add,
by_vars,
join_vars,
join_type,
first_cond_lower
first_cond_upper
order = NULL,
tmp_obs_nr_var = NULL,
filter_add = NULL,
filter_join,
check_type = "warning"

NULL,
NULL,

filter_joined 389

Arguments

dataset Input dataset
The variables specified by the by_vars and order arguments are expected to be
in the dataset.
Permitted values a dataset, i.e., a data. frame or tibble
Default value none

dataset_add Additional dataset

The variables specified for by_vars, join_vars, and order are expected.

Permitted values a dataset, i.e., a data.frame or tibble
Default value none

by_vars By variables

The specified variables are used as by variables for joining the input dataset with
itself.

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)

Default value none

join_vars Variables to keep from joined dataset

The variables needed from the other observations should be specified for this
parameter. The specified variables are added to the joined dataset with suffix
" join". For example to select all observations with AVALC == "Y" and AVALC ==
"Y" for at least one subsequent visit join_vars = exprs(AVALC, AVISITN) and
filter_join = AVALC == "Y" & AVALC. join == "Y" & AVISITN < AVISITN. join
could be specified.

The *. join variables are not included in the output dataset.

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)

Default value none

join_type Observations to keep after joining

The argument determines which of the joined observations are kept with respect
to the original observation. For example, if join_type = "after” is specified
all observations after the original observations are kept.

For example for confirmed response or BOR in the oncology setting or con-
firmed deterioration in questionnaires the confirmatory assessment must be after
the assessment. Thus join_type = "after” could be used.

Whereas, sometimes you might allow for confirmatory observations to occur

prior to the observation. For example, to identify AEs occurring on or after
seven days before a COVID AE. Thus join_type = "all" could be used.

Permitted values "before”, "after”, "all”
Default value none

first_cond_lower
Condition for selecting range of data (before)

390 filter_joined

If this argument is specified, the other observations are restricted from the first
observation before the current observation where the specified condition is ful-
filled up to the current observation. If the condition is not fulfilled for any of the
other observations, no observations are considered, i.e., the observation is not
flagged.

This parameter should be specified if filter_join contains summary functions
which should not apply to all observations but only from a certain observation
before the current observation up to the current observation. For examples see
the "Examples" section below.

Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"

Default value NULL
first_cond_upper

Condition for selecting range of data (after)

If this argument is specified, the other observations are restricted up to the first
observation where the specified condition is fulfilled. If the condition is not
fulfilled for any of the other observations, no observations are considered, i.e.,
the observation is not flagged.

This parameter should be specified if filter_join contains summary functions
which should not apply to all observations but only up to the confirmation as-
sessment. For examples see the "Examples" section below.

Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value NULL

order Order
The observations are ordered by the specified order.
For handling of NAs in sorting variables see the "Sort Order" section in vignette("generic”).
Permitted values list of expressions created by exprs(), e.g., exprs(ADT,

desc(AVAL)) or NULL

Default value NULL

tmp_obs_nr_var Temporary observation number
The specified variable is added to the input dataset (dataset) and the addi-
tional dataset (dataset_add). It is set to the observation number with respect
to order. For each by group (by_vars) the observation number starts with 1.
If there is more than one record for specific values for by_vars and order, all
records get the same observation number. By default, a warning (see check_type)
is issued in this case. The variable can be used in the conditions (filter_join,
first_cond_upper, first_cond_lower). Itis not included in the output dataset.
It can also be used to select consecutive observations or the last observation (see
example below).

Permitted values an unquoted symbol, e.g., AVAL
Default value NULL

filter_add Filter for additional dataset (dataset_add)
Only observations from dataset_add fulfilling the specified condition are joined
to the input dataset. If the argument is not specified, all observations are joined.
Variables created by the order argument can be used in the condition.

The condition can include summary functions. The additional dataset is grouped
by the by variables (by_vars).

filter_joined 391

Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value NULL

filter_join Condition for selecting observations

The filter is applied to the joined dataset for selecting the confirmed observa-
tions. The condition can include summary functions like all() or any(). The
joined dataset is grouped by the original observations. l.e., the summary func-
tion are applied to all observations up to the confirmation observation. For ex-
ample in the oncology setting when using this function for confirmed best over-
all response, filter_join = AVALC == "CR"” & al1(AVALC. join %in% c("CR",
"NE")) & count_vals(var = AVALC. join, val = "NE") <= 1 selects observations
with response "CR" and for all observations up to the confirmation observation
the response is "CR" or "NE" and there is at most one "NE".

Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value none

check_type Check uniqueness?

If "message”, "warning"”, or "error” is specified, the specified message is
issued if the observations of the input dataset are not unique with respect to the
by variables and the order.

n on n o n n o n

Permitted values "none”, "message”, "warning”, "error”
Default value "warning”

Details
The following steps are performed to produce the output dataset.

Step 1:
* The variables specified by order are added to the additional dataset (dataset_add).
* The variables specified by join_vars are added to the additional dataset (dataset_add).

* The records from the additional dataset (dataset_add) are restricted to those matching the
filter_add condition.

Then the input dataset (dataset) is joined with the restricted additional dataset by the variables
specified for by_vars. From the additional dataset only the variables specified for join_vars are
kept. The suffix ".join" is added to those variables which are also present in the input dataset.
For example, for by_vars = USUBJID, join_vars = exprs(AVISITN, AVALC) and input dataset
and additional dataset

A tibble: 2 x 4

USUBJID AVISITN AVALC AVAL
<chr> <dbl> <chr> <dbl>
1 1Y 1
1 2N 0

the joined dataset is

A tibble: 4 x 6
USUBJID AVISITN AVALC AVAL AVISITN.join AVALC.join
<chr> <dbl> <chr> <dbl> <dbl> <chr>

392 filter_joined

—_
NN — =,
=2 =2 < <<
o =) =
N =N =
Z2 < Z2 <<

Step 2:
The joined dataset is restricted to observations with respect to join_type and order.

The dataset from the example in the previous step with join_type = "after” and order = exprs(AVISITN)
is restricted to

A tibble: 4 x 6
USUBJID AVISITN AVALC AVAL AVISITN.join AVALC.join

<chr> <dbl> <chr> <dbl> <dbl> <chr>
1 1Y 1 2N
Step 3:

If first_cond_lower is specified, for each observation of the input dataset the joined dataset
is restricted to observations from the first observation where first_cond_lower is fulfilled (the
observation fulfilling the condition is included) up to the observation of the input dataset. If for
an observation of the input dataset the condition is not fulfilled, the observation is removed.

If first_cond_upper is specified, for each observation of the input dataset the joined dataset is
restricted to observations up to the first observation where first_cond_upper is fulfilled (the
observation fulfilling the condition is included). If for an observation of the input dataset the
condition is not fulfilled, the observation is removed.

For an example see the last example in the "Examples"” section.

Step 4:
The joined dataset is grouped by the observations from the input dataset and restricted to the
observations fulfilling the condition specified by filter_join.

Step 5:

The first observation of each group is selected and the *. join variables are dropped.

Note: This function creates temporary datasets which may be much bigger than the input datasets.
If this causes memory issues, please try setting the admiral option save_memory to TRUE (see
set_admiral_options()). This reduces the memory consumption but increases the run-time.

Value

A subset of the observations of the input dataset. All variables of the input dataset are included in
the output dataset.

Examples

Filter records considering other records (filter_join, join_vars):

In this example, the input dataset should be restricted to records with a duration longer than 30
and where a COVID AE (ACOVFL == "Y") occurred before or up to seven days after the record.
The condition for restricting the records is specified by the filter_join argument. Variables
from the other records are referenced by variable names with the suffix . join. These variables
have to be specified for the join_vars argument. As records before and after the current record
should be considered, join_type = "all" is specified.

filter_joined 393

library(tibble)

adae <- tribble(
~USUBJID, ~ADY, ~ACOVFL, ~ADURN,

"1, 10, "N", 1,
"1, 21, "N", 50,
"1, 23, "Y", 14,
", 32, "N", 31,
", 42, "N", 20,
"2, 11, "Y', 13,
"2, 23, "N", 2,
"3, 13, "Y", 12,
"4, 14, "N", 32,
"4, 21, "N", 41

)

filter_joined(
adae,
dataset_add = adae,
by_vars = exprs(USUBJID),
join_vars = exprs(ACOVFL, ADY),
join_type = "all",
filter_join = ADURN > 30 & ACOVFL.join == "Y" & ADY.join <= ADY + 7

#> # A tibble: 2 x 4

#> USUBJID ADY ACOVFL ADURN
#> <chr> <dbl> <chr> <dbl>
11 21 N 50
21 32 N 31

Considering only records after the current one (join_type = "after”):

In this example, the input dataset is restricted to records with AVALC == "Y" and AVALC == "Y" ata
subsequent visit. join_type = "after"” is specified to consider only records after the current one.
Please note that the order argument must be specified, as otherwise it is not possible to determine
which records are after the current record.

data <- tribble(
~USUBJID, ~AVISITN, ~AVALC,

"1, 1, "Y",
"1, 2, "N",
"1, 3, "y,
"1, 4, "N,
"2, 1, "y,
"2, 2, "N",
"3, 1, "Y",
"4" 1, "N",
"4, 2 "N,

394

filter_joined

filter_joined(
data,
dataset_add = data,
by_vars = exprs(USUBJID),
join_vars = exprs(AVALC, AVISITN),
join_type = "after”,
order = exprs(AVISITN),
filter_join = AVALC == "Y" & AVALC.join == "Y"
)
#> # A tibble: 1 x 3
#> USUBJID AVISITN AVALC
#> <chr> <dbl> <chr>
11 1Y

Considering a range of records only (first_cond_lower, first_cond_upper):
Consider the following data.

myd <- tribble(
~subj, ~day, ~val,

" 1, "+",
", 2, "-",
", 3, "o",
", 4, "+,
LN 5, "+
", 6, "-",
", 1, "=,
"2", 2, "++"
2", 3, "+,
", 4, "0",
", 5, "-",
", 6, "+

)

To select "@" where all results from the first "++" before the "@" up to the "0" (excluding the "0")
are "+" or "++" the first_cond_lower argument and join_type = "before" are specified.

filter_joined(
myd,
dataset_add = myd,
by_vars = exprs(subj),
order = exprs(day),
join_vars = exprs(val),
join_type = "before”,
first_cond_lower = val.join == "++",
filter_join = val == "@" & all(val.join %in% c("+", "++"))
)
#> # A tibble: 1 x 3
#> subj day val
#> <chr> <dbl> <chr>
1 2 4 0

filter_joined 395

To select "@" where all results from the "0" (excluding the "@") up to the first "++" after the "0"
are "+" or "++" the first_cond_upper argument and join_type = "after"” are specified.

filter_joined(
myd,
dataset_add = myd,
by_vars = exprs(subj),
order = exprs(day),
join_vars = exprs(val),
join_type = "after”,
first_cond_upper = val.join == "++",
filter_join = val == "@" & all(val.join %in% c("+", "++"))
)
#> # A tibble: 1 x 3
#> subj day val
#> <chr> <dbl> <chr>
#> 11 30

Considering only records up to a condition (first_cond_upper):
In this example from deriving confirmed response in oncology, the records with
¢ AVALC == "CR",
e AVALC == "CR" at a subsequent visit,
e only "CR" or "NE" in between, and
* at most one "NE" in between
should be selected. The other records to be considered are restricted to those up to the first

occurrence of "CR" by specifying the first_cond_upper argument. The count_vals() function
is used to count the "NE"s for the last condition.

data <- tribble(
~USUBJID, ~AVISITN, ~AVALC,

"1, 1, "PR",
"1, 2, "CR",
"1, 3, "NE",
"1, 4, "CR",
", 5, "NE",
"2, 1, "CR",
"2, 2, "PR",
"2, 3, "CR",
"3, 1, "CR",
"4", 1, "CR",
"4, 2, "NE",
"4", 3, "NE",
"4, 4, "CR",
"4", 5 "PR"

)

filter_joined(
data,

396

filter_joined

dataset_add = data,
by_vars = exprs(USUBJID),
join_vars = exprs(AVALC),
join_type = "after”,
order = exprs(AVISITN),
first_cond_upper = AVALC.join == "CR",
filter_join = AVALC == "CR” & all(AVALC.join %in% c("CR", "NE")) &
count_vals(var = AVALC. join, val = "NE") <=1
)
#> # A tibble: 1 x 3
#> USUBJID AVISITN AVALC
#> <chr> <dbl> <chr>
11 2 CR

Considering order of values (min_cond(), max_cond()):
In this example from deriving confirmed response in oncology, records with
e AVALC == "PR",
e AVALC == "CR" or AVALC == "PR" at a subsequent visit at least 20 days later,
e only "CR", "PR", or "NE" in between,
¢ at most one "NE” in between, and
e "CR" is not followed by "PR"
should be selected. The last condition is realized by using min_cond() and max_cond(), en-
suring that the first occurrence of "CR" is after the last occurrence of "PR"”. The second call to

count_vals() in the condition is required to cover the case of no "CR"s (the min_cond() call
returns NA then).

data <- tribble(
~USUBJID, ~ADY, ~AVALC,

"1, 6, "PR",
", 12, "CR"
"1, 24, "NE",
"1, 32, "CR",
"1, 48, "PR",
"2", 3, "PR",
"2, 21, "CR",
"2, 33, "PR",
"3, 11, "PR",
"4, 7, "PR",
"4" 12, "NE",
"4", 24, "NE",
"4, 32, "PR",
"4", 55, "PR"

)

filter_joined(
data,
dataset_add = data,
by_vars = exprs(USUBJID),

filter_joined 397

join_vars = exprs(AVALC, ADY),
join_type = "after”,
order = exprs(ADY),
first_cond_upper = AVALC.join %in% c("CR"”, "PR") & ADY.join - ADY >= 20,
filter_join = AVALC == "PR" &
all(AVALC.join %in% c("CR", "PR", "NE")) &
count_vals(var = AVALC. join, val = "NE") <=1 &

(
min_cond(var = ADY.join, cond = AVALC.join == "CR") >
max_cond(var = ADY.join, cond = AVALC.join == "PR") |
count_vals(var = AVALC. join, val = "CR") == 0
)

)

#> # A tibble: 1 x 3

#> USUBJID ADY AVALC
#> <chr> <dbl> <chr>
#> 1 4 32 PR

Considering the order of records (tmp_obs_nr_var):

In this example, the records with CRIT1FL == "Y" at two consecutive visits or at the last visit
should be selected. A temporary order variable is created by specifying the tmp_obs_nr_var
argument. Then it is used in filter_join. The temporary variable doesn’t need to be specified
for join_vars.

data <- tribble(
~USUBJID, ~AVISITN, ~CRITITFL,

"1, 1, "Y',
", 2, "N",
"1, 3, "Y",
"1, 5, "N",
"2, 1, "y,
"2, 3, "y,
"2, 5, "N",
"3, 1, "Y",
"4" 1, "y,
"4, 2 "N,

)

filter_joined(
data,
dataset_add = data,
by_vars = exprs(USUBJID),
tmp_obs_nr_var = tmp_obs_nr,
join_vars = exprs(CRIT1FL),
join_type = "all",
order = exprs(AVISITN),
filter_join = CRIT1FL == "Y" & CRITIFL.join == "Y" &
(tmp_obs_nr + 1 == tmp_obs_nr.join | tmp_obs_nr == max(tmp_obs_nr.join))

398 filter_not_exist

#> # A tibble: 2 x 3
#> USUBJID AVISITN CRIT1FL

#> <chr> <dbl> <chr>

#> 1 2 1Y

#> 2 3 1Y
See Also

count_vals(), min_cond(), max_cond()

Utilities for Filtering Observations: count_vals(), filter_exist(), filter_extreme(), filter_not_exist(),
filter_relative(), max_cond(), min_cond()

filter_not_exist Returns records that don’t fit into existing by groups in a filtered source
dataset

Description

Returns all records in the input dataset that belong to by groups that are not present in a source
dataset, after the source dataset is optionally filtered. For example, this could be used to return
ADSL records for subjects that didn’t take certain concomitant medications during the course of
the study (as per records in ADCM).

Usage

filter_not_exist(dataset, dataset_add, by_vars, filter_add = NULL)

Arguments

dataset Input dataset
The variables specified by the by_vars argument are expected to be in the
dataset.
Default value none

dataset_add Source dataset
The source dataset, which determines the by groups returned in the input dataset,
based on the groups that don’t exist in this dataset after being subset by filter_add.

The variables specified in the by_vars and filter_add parameters are expected
in this dataset.

Default value none
by_vars Grouping variables
Default value none

filter_add Filter for the source dataset

The filter condition which will be used to subset the source dataset. Alterna-
tively, if no filter condition is supplied, no subsetting of the source dataset will
be performed.

Default value NULL

filter_not_exist 399

Details

Returns the records in dataset which don’t match any existing by groups in dataset_add, af-
ter being filtered according to filter_add. If all by groups that exist in dataset don’t exist in
dataset_add, an empty dataset will be returned.

Value
The records in the input dataset which are not contained within any existing by group in the filtered
source dataset.
See Also
Utilities for Filtering Observations: count_vals(), filter_exist(), filter_extreme(), filter_joined(),

filter_relative(), max_cond(), min_cond()

Examples

Get demographic information about subjects who didn't take vitamin supplements
during the study

library(tibble)

adsl <- tribble(

~USUBJID, ~AGE, ~SEX,
"01-701-1015", 63, "F",
"01-701-1023", 64, "M",
"01-701-1034", 77, "F",
"01-701-1118", 52, "M"

)

adcm <- tribble(
~USUBJID, ~CMTRT, ~CMSTDTC,
"01-701-1015", "ASPIRIN", "2013-05-14",
"01-701-1023", "MYLANTA", "2014-01-04",
"01-701-1023", "CALCIUM", "2014-02-25",
"01-701-1034", "VITAMIN C", "2013-12-12",
"01-701-1034", "CALCIUM", "2013-03-27",

"@1-701-1118", "MULTIVITAMIN", "2013-02-21"
)

filter_not_exist(
dataset = adsl,
dataset_add = adcm,
by_vars = exprs(USUBJID),
filter_add = str_detect(CMTRT, "VITAMIN")

400 filter_relative

filter_relative Filter the Observations Before or After a Condition is Fulfilled

Description

Filters the observations before or after the observation where a specified condition is fulfilled for
each by group. For example, the function could be called to select for each subject all observations
before the first disease progression.

Usage
filter_relative(
dataset,
by_vars,
order,
condition,
mode,
selection,
inclusive,
keep_no_ref_groups = TRUE,
check_type = "warning"
)
Arguments
dataset Input dataset
The variables specified by the by_vars and order arguments are expected to be
in the dataset.
Default value none
by_vars Grouping variables
Default value none
order Sort order
Within each by group the observations are ordered by the specified order.
For handling of NAs in sorting variables see the "Sort Order" section in vignette("generic").
Permitted values list of expressions created by exprs(), e.g., exprs(ADT,
desc(AVAL))
Default value none
condition Condition for Reference Observation

The specified condition determines the reference observation. The output dataset
contains all observations before or after (selection parameter) the reference
observation.

Default value none

filter_relative 401

mode Selection mode (first or last)

If "first” is specified, for each by group the observations before or after (selection
parameter) the observation where the condition (condition parameter) is ful-
filled the first time is included in the output dataset. If "last” is specified, for
each by group the observations before or after (selection parameter) the ob-
servation where the condition (condition parameter) is fulfilled the last time is
included in the output dataset.

Permitted values "first”, "last”

Default value none
selection Select observations before or after the reference observation?

Permitted values "before”, "after”

Default value none
inclusive Include the reference observation?

Permitted values TRUE, FALSE
Default value none
keep_no_ref_groups
Should by groups without reference observation be kept?
Permitted values TRUE, FALSE
Default value TRUE

check_type Check uniqueness?

If "warning"” or "error” is specified, the specified message is issued if the
observations of the input dataset are not unique with respect to the by variables
and the order.

n on n o n

Permitted values "none”, "warning”, "error"

Default value "warning”

Details

For each by group (by_vars parameter) the observations before or after (selection parameter)
the observations where the condition (condition parameter) is fulfilled the first or last time (order
parameter and mode parameter) is included in the output dataset.

Value

A dataset containing for each by group the observations before or after the observation where the
condition was fulfilled the first or last time

See Also

Utilities for Filtering Observations: count_vals(), filter_exist(), filter_extreme(), filter_joined(),
filter_not_exist(), max_cond(), min_cond()

402 filter_relative

Examples

library(tibble)

response <- tribble(
~USUBJID, ~AVISITN, ~AVALC,

B 1, "PR",
", 2, "CR",
", 3, "CR",
", 4, "SD",
", 5, "NE",
"2", 1, "SD",
"2", 2, "PD",
"2, 3, "PD",
"3, 1, "SD",
"4", 1, "SD",
"4", 2, "PR",
"4", 3, "PD",
"4", 4, "SD",
"4", 5 "PR"

Select observations up to first PD for each patient
response %>%
filter_relative(
by_vars = exprs(USUBJID),
order = exprs(AVISITN),

condition = AVALC == "PD",
mode = "first”,

selection = "before”,
inclusive = TRUE

Select observations after last CR, PR, or SD for each patient
response %>%
filter_relative(
by_vars = exprs(USUBJID),
order = exprs(AVISITN),
condition = AVALC %in% c("CR", "PR", "SD"),

mode = "last"”,
selection = "after”,
inclusive = FALSE

Select observations from first response to first PD
response %>%
filter_relative(

by_vars = exprs(USUBJID),

order = exprs(AVISITN),

condition = AVALC %in% c("CR", "PR"),

mode = "first”,

selection = "after”,

inclusive = TRUE,

flag_event 403

keep_no_ref_groups = FALSE
) %>%
filter_relative(
by_vars = exprs(USUBJID),
order = exprs(AVISITN),

condition = AVALC == "PD",
mode = "first”,
selection = "before”,
inclusive = TRUE
)
flag_event Create a flag_event Object
Description

The flag_event object is used to define events as input for the derive_var_merged_ef_msrc()
function.

Usage

flag_event(dataset_name, condition = NULL, by_vars = NULL)

Arguments

dataset_name Dataset name of the dataset to be used as input for the event. The name refers to
the dataset specified for source_datasetsinderive_var_merged_ef_msrc().
Permitted values a dataset, i.e., a data.frame or tibble
Default value none

condition Condition

The condition is evaluated at the dataset referenced by dataset_name. For all
by groups where it evaluates as TRUE at least once the new variable is set to the
true value (true_value).

Permitted values an unquoted condition, e.g., AVISIT == "BASELINE"
Default value NULL

by_vars Grouping variables
If specified, the dataset is grouped by the specified variables before the con-
dition is evaluated. If named elements are used in by_vars like by_vars =
exprs(USUBJID, EXLNKID = ECLNKID), the variables are renamed after the eval-
uation. If the by_vars element is not specified, the observations are grouped by
the variables specified for the by_vars argument of derive_var_merged_ef_msrc().

Permitted values list of variables created by exprs(), e.g., exprs(USUBJID,
VISIT)

Default value NULL

404 get_admiral_option

See Also

derive_var_merged_ef_msrc()

Source Objects: basket_select(), censor_source(), death_event, event(), event_joined(),
event_source(), query(), records_source(), tte_source()

get_admiral_option Get the Value of an Admiral Option

Description

Get the Value of an Admiral Option Which Can Be Modified for Advanced Users.

Usage

get_admiral_option(option)

Arguments
option A character scalar of commonly used admiral function inputs.
As of now, support only available for "subject_keys", "signif_digits", and "save_memory".
See set_admiral_options() for a description of the options.
Default value none
Details

This function allows flexibility for function inputs that may need to be repeated multiple times in a
script, such as subject_keys.
Value

The value of the specified option.

See Also

set_admiral_options(), derive_param_exist_flag(),derive_param_tte() derive_var_dthcaus(),
derive_var_extreme_dtm(), derive_vars_period(), create_period_dataset()

Other admiral_options: set_admiral_options()

Examples

library(dplyr, warn.conflicts = FALSE)
dm <- tribble(

~STUDYID, ~DOMAIN, ~USUBJID, ~AGE, ~AGEU,
"PILOTO1"”, "DM", "@1-1302", 61, "YEARS”,
"PILOTO1”, "DM", "17-1344", 64, "YEARS”

)

get_duplicates_dataset 405

vs <- tribble(

~STUDYID, ~DOMAIN, ~USUBJID, ~VSTESTCD, ~VISIT, ~VSTPT, ~VSSTRESN,
"PILOTO1", "Vs", "01-1302", "DIABP", "BASELINE", "LYING", 76,
"PILOTO1", "Vs", "@1-1302", "DIABP", "BASELINE", "STANDING", 87,
"PILOTO1", "Vs", "@1-1302", "DIABP", "WEEK 2", "LYING", n,
"PILOTO1", "VS", "01-1302", "DIABP", "WEEK 2", "STANDING”, 79,
"PILOTO1", "VS", "17-1344", "DIABP", "BASELINE", "LYING", 88,
"PILOTO1", "VS", "17-1344", "DIABP", "BASELINE", "STANDING", 86,
"PILOTO1", "VS", "17-1344", "DIABP", "WEEK 2", "LYING", 84,
"PILOTO1", "VS", "17-1344", "DIABP", "WEEK 2", "STANDING”, 82

)

Merging all dm variables to vs
derive_vars_merged(

Vs,

dataset_add = select(dm, -DOMAIN),

by_vars = get_admiral_option("subject_keys")

)

get_duplicates_dataset
Get Duplicate Records that Led to a Prior Error

Description

Get Duplicate Records that Led to a Prior Error

Usage

get_duplicates_dataset()

Details

Many {admiral?} function check that the input dataset contains only one record per by_vars group
and throw an error otherwise. The get_duplicates_dataset () function allows one to retrieve the
duplicate records that lead to an error.

Note that the function always returns the dataset of duplicates from the last error that has been
thrown in the current R session. Thus, after restarting the R sessions get_duplicates_dataset()
will return NULL and after a second error has been thrown, the dataset of the first error can no longer
be accessed (unless it has been saved in a variable).

Value

A data.frame or NULL

See Also

Utilities for Dataset Checking: get_many_to_one_dataset(), get_one_to_many_dataset()

406 get_flagged_records

Examples

data(admiral_adsl)

Duplicate the first record
adsl <- rbind(admiral_adsl[1L,], admiral_adsl)

signal_duplicate_records(adsl, exprs(USUBJID), cnd_type = "warning")

get_duplicates_dataset()

get_flagged_records Create an Existence Flag

Description

Create a flag variable for the input dataset which indicates if there exists at least one observation in
the input dataset fulfilling a certain condition.

Note: This is a helper function for derive_vars_merged_exist_flag() which inputs this result
into derive_vars_merged().

Usage

get_flagged_records(dataset, new_var, condition, filter = NULL)

Arguments

dataset Input dataset
Default value none

new_var New variable
The specified variable is added to the input dataset.
Default value none

condition Condition
The condition is evaluated at the dataset (dataset). For all rows where it eval-
uates as TRUE the new variable is set to 1 in the new column. Otherwise, it is set
to @.
Default value none

filter Filter for additional data

Only observations fulfilling the specified condition are taken into account for
flagging. If the argument is not specified, all observations are considered.

Permitted values a condition
Default value NULL

get_flagged_records 407

Value

The output dataset is the input dataset filtered by the filter condition and with the variable speci-
fied for new_var representing a flag for the condition.

See Also

Utilities used within Derivation functions: extract_unit(), get_not_mapped(), get_vars_query()

Examples

library(dplyr, warn.conflicts = FALSE)

ae <- tribble(

~STUDYID, ~DOMAIN, ~USUBJID, ~AETERM, ~AEREL ,
"PILOTO1", "AE", "01-1028", "ERYTHEMA", "POSSIBLE",
"PILOTO1", "AE", "01-1028", "PRURITUS", "PROBABLE”,
"PILOTO1", "AE", "06-1049", "SYNCOPE", "POSSIBLE",
"PILOTO1", "AE", "06-1049"”, "SYNCOPE", "PROBABLE"

get_flagged_records(
dataset = ae,
new_var = AERELFL,
condition = AEREL == "PROBABLE"
) %%
select(STUDYID, USUBJID, AERELFL)

vs <- tribble(

~STUDYID, ~DOMAIN, ~USUBJID, ~VISIT, ~VSTESTCD, ~VSSTRESN, ~VSBLFL,
"PILOTO1", "yS" "91-1028", "SCREENING”, "HEIGHT”, 177.8, NA,
"PILOTO1", "yS" "91-1028", "SCREENING”, "WEIGHT”, 98.88, NA,
"PILOTO1", "VS”, "01-1028", "BASELINE”, "WEIGHT", 99.34, e
"PILOTO1", "VS", "91-1028", "WEEK 4", "WEIGHT", 98.88, NA,
"PILOTO1", "VS" | "@4-1127", "SCREENING”, "HEIGHT", 165.1, NA,
"PILOTO1", "VS", "@4-1127", "SCREENING”, "WEIGHT", 42.87, NA,
"PILOTO1", "yS" "Q4-1127", "BASELINE”, "WEIGHT”, 41.05, e
"PILOTO1", ST "94-1127", "WEEK 4", "WEIGHT", 41.73, NA,
"PILOTO1", "VS", "06-1049", "SCREENING”, "HEIGHT”, 167.64, NA,
"PILOTO1", "VS" "Q6-1049", "SCREENING”, "WEIGHT”, 57.61, NA,
"PILOTO1", "VS" | "06-1049", "BASELINE", "WEIGHT", 57.83, e
"PILOTO1", "VS" "06-1049" "WEEK 4", "WEIGHT", 58.97, NA

)
get_flagged_records(

dataset = vs,

new_var = WTBLHIFL,

condition = VSSTRESN > 90,

filter = VSTESTCD == "WEIGHT" & VSBLFL == "Y"
) %>%

select(STUDYID, USUBJID, WTBLHIFL)

408 get_many_to_one_dataset

get_many_to_one_dataset
Get Many to One Values that Led to a Prior Error

Description

Get Many to One Values that Led to a Prior Error

Usage

get_many_to_one_dataset()

Details

If assert_one_to_one() detects an issue, the many to one values are stored in a dataset. This
dataset can be retrieved by get_many_to_one_dataset().

Note that the function always returns the many to one values from the last error that has been thrown
in the current R session. Thus, after restarting the R sessions get_many_to_one_dataset () will
return NULL and after a second error has been thrown, the dataset of the first error can no longer be
accessed (unless it has been saved in a variable).

Value

A data.frame or NULL

See Also

Utilities for Dataset Checking: get_duplicates_dataset(), get_one_to_many_dataset()

Examples

library(admiraldev, warn.conflicts = FALSE)
data(admiral_adsl)

try(

assert_one_to_one(admiral_adsl, exprs(SITEID), exprs(STUDYID))
)

get_many_to_one_dataset()

get_not_mapped 409

get_not_mapped Get list of records not mapped from the lookup table.

Description

Get list of records not mapped from the lookup table.

Usage

get_not_mapped()

Value

A data.frame or NULL

See Also

Utilities used within Derivation functions: extract_unit(), get_flagged_records(), get_vars_query()

get_one_to_many_dataset
Get One to Many Values that Led to a Prior Error

Description

Get One to Many Values that Led to a Prior Error

Usage

get_one_to_many_dataset()

Details

If assert_one_to_one() detects an issue, the one to many values are stored in a dataset. This
dataset can be retrieved by get_one_to_many_dataset().

Note that the function always returns the one to many values from the last error that has been thrown
in the current R session. Thus, after restarting the R sessions get_one_to_many_dataset () will
return NULL and after a second error has been thrown, the dataset of the first error can no longer be
accessed (unless it has been saved in a variable).

Value

A data.frame or NULL

410 get_summary_records

See Also

Utilities for Dataset Checking: get_duplicates_dataset(), get_many_to_one_dataset()

Examples

library(admiraldev, warn.conflicts = FALSE)
data(admiral_adsl)

try(
assert_one_to_one(admiral_adsl, exprs(STUDYID), exprs(SITEID))

)

get_one_to_many_dataset()

get_summary_records Create Summary Records

Description

[Deprecated] The get_summary_records() has been deprecated in favor of derive_summary_records()
(call it with the dataset_add argument and without the dataset argument).

It is not uncommon to have an analysis need whereby one needs to derive an analysis value (AVAL)
from multiple records. The ADaM basic dataset structure variable DTYPE is available to indicate
when a new derived records has been added to a dataset.

Usage

get_summary_records(dataset, by_vars, filter = NULL, set_values_to = NULL)

Arguments

dataset Input dataset
The variables specified by the by_vars argument are expected to be in the
dataset.
Default value none

by_vars Grouping variables
Variables to consider for generation of groupwise summary records.
Default value none

filter Filter condition as logical expression to apply during summary calculation. By

default, filtering expressions are computed within by_vars as this will help
when an aggregating, lagging, or ranking function is involved.

For example,

e filter_rows = (AVAL > mean(AVAL, na.rm=TRUE)) will filter all AVAL
values greater than mean of AVAL with in by_vars.

get_summary_records 411

e filter_rows = (dplyr::n() >2) will filter n count of by_vars greater
than 2.

Default value NULL

set_values_to Variables to be set
The specified variables are set to the specified values for the new observations.
Set a list of variables to some specified value for the new records

e LHS refer to a variable.

* RHS refers to the values to set to the variable. This can be a string, a
symbol, a numeric value, an expression or NA. If summary functions are
used, the values are summarized by the variables specified for by_vars.

For example:

set_values_to = exprs(
AVAL = sum(AVAL),
PARAMCD = "TDOSE",
PARCAT1 = "OVERALL"

)
Default value NULL

Details

This function only creates derived observations and does not append them to the original dataset
observations. If you would like to this instead, see the derive_summary_records() function.

Value

A data frame of derived records.

See Also

derive_summary_records(), derive_vars_merged_summary()

Other deprecated: call_user_fun(), date_source(), derive_param_extreme_record(), derive_var_dthcaus(),
derive_var_extreme_dt(), derive_var_extreme_dtm(), derive_var_merged_summary(), dthcaus_source()

Examples

library(tibble)

adeg <- tribble(

~USUBJID, ~EGSEQ, ~PARAM, ~AVISIT, ~EGDTC, ~AVAL, ~TRTA,
"XYZ-1001", 1, "QTcF Int. (msec)"”, "Baseline”, "2016-02-24T0Q7:50", 385, NA_character_,
"XYZ-1001", 2, "QTcF Int. (msec)"”, "Baseline”, "2016-02-24T0@7:52", 399, NA_character_,
"XYZ-1001", 3, "QTcF Int. (msec)”, "Baseline”, "2016-02-24T07:56", 396, NA_character_,
"XYZ-1001", 4, "QTcF Int. (msec)"”, "Visit 2", "2016-03-08T09:45", 384, "Placebo",
"XYZ-1001", 5, "QTcF Int. (msec)"”, "Visit 2", "2016-03-08T09:48", 393, "Placebo”,
"XYZ-1001", 6, "QTcF Int. (msec)”, "Visit 2", "2016-03-08T09:51", 388, "Placebo”,
"XYZ-1001", 7, "QTcF Int. (msec)”, "Visit 3", "2016-03-22T10:45", 385, "Placebo”,

"XYZ-1001", 8, "QTcF Int. (msec)”, "Visit 3", "2016-03-22T10:48", 394, "Placebo”,

412 get_summary_records

"XYZ-1001", 9, "QTcF Int. (msec)", "Visit 3", "2016-03-22T10:51", 402, "Placebo”,
"XYZ-1002", 1, "QTcF Int. (msec)"”, "Baseline”, "2016-02-22T07:58", 399, NA_character_,
"XYZ-1002", 2, "QTcF Int. (msec)"”, "Baseline”, "2016-02-22T07:58", 410, NA_character_,
"XYZ-1002", 3, "QTcF Int. (msec)"”, "Baseline”, "2016-02-22T08:01", 392, NA_character_,
"XYZ-1002", 4, "QTcF Int. (msec)”, "Visit 2", "2016-03-06T@9:50", 401, "Active 20mg”,
"XYZ-1002", 5, "QTcF Int. (msec)"”, "Visit 2", "2016-03-06T09:53", 407, "Active 20mg",
"XYZ-1002", 6, "QTcF Int. (msec)”, "Visit 2", "2016-03-06T09:56", 400, "Active 20mg",
"XYZ-1002", 7, "QTcF Int. (msec)”, "Visit 3", "2016-03-24T10:50", 412, "Active 20mg”,
"XYZ-1002", 8, "QTcF Int. (msec)”, "Visit 3", "2016-03-24T10:53", 414, "Active 20mg",
"XYZ-1002", 9, "QTcF Int. (msec)”, "Visit 3", "2016-03-24T10:56", 402, "Active 20mg"

)

Summarize the average of the triplicate ECG interval values (AVAL)
get_summary_records(
adeg,
by_vars = exprs(USUBJID, PARAM, AVISIT),
set_values_to = exprs(
AVAL = mean(AVAL, na.rm = TRUE),
DTYPE = "AVERAGE"
)
)

Derive more than one summary variable
get_summary_records(
adeg,
by_vars = exprs(USUBJID, PARAM, AVISIT),
set_values_to = exprs(
AVAL = mean(AVAL),
ASTDTM = min(convert_dtc_to_dtm(EGDTC)),
AENDTM = max(convert_dtc_to_dtm(EGDTC)),
DTYPE = "AVERAGE"
)
)

Sample ADEG dataset with triplicate record for only AVISIT = 'Baseline’
adeg <- tribble(

~USUBJID, ~EGSEQ, ~PARAM, ~AVISIT, ~EGDTC, ~AVAL, ~TRTA,
"XYZ-1001", 1, "QTcF Int. (msec)"”, "Baseline”, "2016-02-24TQ7:50", 385, NA_character_,
"XYZ-1001", 2, "QTcF Int. (msec)"”, "Baseline”, "2016-02-24T0@7:52", 399, NA_character_,
"XYZ-1001", 3, "QTcF Int. (msec)"”, "Baseline"”, "2016-02-24TQ7:56", 396, NA_character_,
"XYZ-1001", 4, "QTcF Int. (msec)”, "Visit 2", "2016-03-08T09:48", 393, "Placebo”,
"XYZ-1001", 5, "QTcF Int. (msec)”, "Visit 2", "2016-03-08T09:51", 388, "Placebo”,
"XYZ-1001", 6, "QTcF Int. (msec)”, "Visit 3", "2016-03-22T10:48", 394, "Placebo”,
"XYz-1001", 7, "QTcF Int. (msec)”, "Visit 3", "2016-03-22T10:51", 402, "Placebo”,
"XYZ-1002", 1, "QTcF Int. (msec)"”, "Baseline”, "2016-02-22T07:58", 399, NA_character_,
"XYZ-1002", 2, "QTcF Int. (msec)”, "Baseline”, "2016-02-22T07:58", 410, NA_character_,
"XYZ-1002", 3, "QTcF Int. (msec)"”, "Baseline”, "2016-02-22T08:01", 392, NA_character_,
"XYZ-1002", 4, "QTcF Int. (msec)”, "Visit 2", "2016-03-06T09:53", 407, "Active 20mg",
"XYZ-1002", 5, "QTcF Int. (msec)”, "Visit 2", "2016-03-06T09:56", 400, "Active 20mg",
"XYZ-1002", 6, "QTcF Int. (msec)”, "Visit 3", "2016-03-24T10:53", 414, "Active 20mg",
7

"XYZ-1002", 7, "QTcF Int. (msec)”, "Visit 3", "2016-03-24T10:56", 402, "Active 20mg”

get_vars_query 413

Compute the average of AVAL only if there are more than 2 records within the
by group
get_summary_records(
adeg,
by_vars = exprs(USUBJID, PARAM, AVISIT),
filter = n() > 2,
set_values_to = exprs(
AVAL = mean(AVAL, na.rm = TRUE),
DTYPE = "AVERAGE"

get_vars_query Get Query Variables

Description

Create a table for the input dataset which binds the necessary rows for a derive_vars_query()
call with the relevant SRCVAR, TERM_NAME_ID and a temporary index if it is necessary

Note: This function is the first step performed in derive_vars_query() requested by some users
to be present independently from it.

Usage

get_vars_query(dataset, dataset_queries)

Arguments

dataset Input dataset

Default value none

dataset_queries
A dataset containing required columns PREFIX, GRPNAME, SRCVAR, TERMCHAR
and/or TERMNUM, and optional columns GRPID, SCOPE, SCOPEN.

create_query_data() can be used to create the dataset.

Default value none

Details

This function can be used to derive CDISC variables such as SMQzzNAM, SMQzzCD, SMQzzSC, SMQzzSCN,
and CQzzNAM in ADAE and ADMH, and variables such as SDGzzNAM, SDGzzCD, and SDGzzSC in
ADCM. An example usage of this function can be found in the vignette(”occds").

A query dataset is expected as an input to this function. See the vignette("queries_dataset"”)
for descriptions, or call data("queries™) for an example of a query dataset.

For each unique element in PREFIX, the corresponding "NAM" variable will be created. For each
unique PREFIX, if GRPID is not "" or NA, then the corresponding "CD" variable is created; similarly,

414 impute_dtc_dt

if SCOPE is not "" or NA, then the corresponding "SC" variable will be created; if SCOPEN is not ""
or NA, then the corresponding "SCN" variable will be created.

For eachrecord in dataset, the "NAM" variable takes the value of GRPNAME if the value of TERMCHAR
or TERMNUM in dataset_queries matches the value of the respective SRCVAR in dataset. Note
that TERMCHAR in dataset_queries dataset may be NA only when TERMNUM is non-NA and vice
versa. The matching is case insensitive. The "CD", "SC", and "SCN" variables are derived accord-
ingly based on GRPID, SCOPE, and SCOPEN respectively, whenever not missing.

Value

The processed query dataset with SRCVAR and TERM_NAME_ID so that that can be merged to the input
dataset to execute the derivations outlined by dataset_queries.

See Also

create_query_data()

Utilities used within Derivation functions: extract_unit(), get_flagged_records(), get_not_mapped()

Examples

library(tibble)

data("queries™)

adae <- tribble(
~USUBJID, ~ASTDTM, ~AETERM, ~AESEQ, ~AEDECOD, ~AELLT, ~AELLTCD,
"01", "2020-06-02 23:59:59", "ALANINE AMINOTRANSFERASE ABNORMAL",
3, "Alanine aminotransferase abnormal”, NA_character_, NA_integer_,
"@2", "2020-06-05 23:59:59", "BASEDOW'S DISEASE",
5, "Basedow's disease”, NA_character_, 1L,
"@3", "2020-06-07 23:59:59", "SOME TERM",
2, "Some query"”, "Some term”, NA_integer_,
"@5", "2020-06-09 23:59:59", "ALVEOLAR PROTEINOSIS",
7, "Alveolar proteinosis”, NA_character_, NA_integer_

)

get_vars_query(adae, queries)

impute_dtc_dt Impute Partial Date Portion of a -DTC Variable

Description

Imputation partial date portion of a --DTC variable based on user input.

Usage
impute_dtc_dt(
dtc,
highest_imputation = "n",

date_imputation = "first",

impute_dtc_dt 415

min_dates = NULL,
max_dates = NULL,
preserve = FALSE
)
Arguments
dtc The --DTC date to impute

A character date is expected in a format like yyyy-mm-dd or yyyy-mm-ddThh:mm: ss.
Trailing components can be omitted and - is a valid "missing" value for any
component.

Permitted values a character date variable
Default value none

highest_imputation
Highest imputation level
The highest_imputation argument controls which components of the --DTC
value are imputed if they are missing. All components up to the specified level
are imputed.
If a component at a higher level than the highest imputation level is miss-
ing, NA_character_ is returned. For example, for highest_imputation = "D"
"2020" results in NA_character_ because the month is missing.
If "n" (none, lowest level) is specified no imputation is performed, i.e., if any
component is missing, NA_character_ is returned.
If "Y" (year, highest level) is specified, date_imputation must be "first"” or
"last"” and min_dates or max_dates must be specified respectively. Other-
wise, an error is thrown.

Permitted values "Y" (year, highest level), "M" (month), "D" (day), "n" (none,
lowest level)
Default value "n”
date_imputation
The value to impute the day/month when a datepart is missing.

A character value is expected.
e Ifhighest_imputationis "M", month and day can be specified as "mm-dd":
e.g. "06-15" for the 15th of June

* When highest_imputation is "M" or "D", the following keywords are
available: "first"”, "mid"”, "last"” to impute to the first/mid/last day/month.
If "mid" is specified, missing components are imputed as the middle of the
possible range:

— If both month and day are missing, they are imputed as "06-30" (mid-
dle of the year).

— If only day is missing, it is imputed as "15" (middle of the month).

The year can not be specified; for imputing the year "first"” or "last"” together
with min_dates or max_dates argument can be used (see examples).

Permitted values "first”, "mid"”, "last”, or user-defined
Default value "first”

416 impute_dtc_dt

min_dates Minimum dates

A list of dates is expected. It is ensured that the imputed date is not before any
of the specified dates, e.g., that the imputed adverse event start date is not before
the first treatment date. Only dates which are in the range of possible dates of the
dtc value are considered. The possible dates are defined by the missing parts of
the dtc date (see example below). This ensures that the non-missing parts of the
dtc date are not changed. A date or date-time object is expected. For example

impute_dtc_dtm(
"2020-11",
min_dates = list(
ymd_hms ("2020-12-06T12:12:12"),
ymd_hms ("2020-11-11T11:11:11")

),
highest_imputation = "M"

)

returns "2020-11-11T11:11:11" because the possible dates for "2020-11" range

from "2020-11-01T00:00:00" to "2020-11-30T23:59:59". Therefore "2020-12-06T12:12:12"
isignored. Returning "2020-12-06T12:12:12" would have changed the month

although it is not missing (in the dtc date).

Permitted values alist of dates, e.g. 1list(ymd_hms("2021-07-01704:03:01"),
ymd_hms ("2022-05-12T713:57:23"))
Default value NULL

max_dates Maximum dates

A list of dates is expected. It is ensured that the imputed date is not after any of
the specified dates, e.g., that the imputed date is not after the data cut off date.
Only dates which are in the range of possible dates are considered. A date or
date-time object is expected.

Permitted values alist of dates, e.g. 1list(ymd_hms("2021-07-01704:03:01"),
ymd_hms ("2022-05-12T13:57:23"))

Default value NULL

preserve Preserve day if month is missing and day is present

For example "2019---07" would return "2019-06-07 if preserve = TRUE (and
date_imputation = "MID").

Permitted values TRUE, FALSE
Default value FALSE

Details

Usually this computation function can not be used with %>%.

Value

A character vector

impute_dtc_dt 417

See Also

Date/Time Computation Functions that returns a vector: compute_age_years(), compute_dtf (),
compute_duration(), compute_tmf (), convert_date_to_dtm(), convert_dtc_to_dt(), convert_dtc_to_dtm(),
convert_xxtpt_to_hours(), impute_dtc_dtm()

Examples

library(lubridate)

dates <- c(
"2019-07-18T15:25:40",
"2019-07-18T15:25",
"2019-07-18T15",
"2019-07-18",
"2019-02",

"2019",
"2019",
"2019---07",

nn

)

No date imputation (highest_imputation defaulted to "n")
impute_dtc_dt(dtc = dates)

Impute to first day/month if date is partial
impute_dtc_dt(
dtc = dates,
highest_imputation = "M"
)
Same as above
impute_dtc_dt(
dtc = dates,
highest_imputation = "M",
date_imputation = "01-01"
)

Impute to last day/month if date is partial
impute_dtc_dt(

dtc = dates,

highest_imputation = "M",

date_imputation = "last”,
)

Impute to mid day/month if date is partial
impute_dtc_dt(

dtc = dates,

highest_imputation = "M",

date_imputation = "mid"

)

Impute a date and ensure that the imputed date is not before a list of
minimum dates

418 impute_dtc_dtm

impute_dtc_dt(
"2020-12",
min_dates = list(
ymd("2020-12-06"),
ymd("2020-11-11")
),
highest_imputation = "M"
)

Impute completely missing dates (only possible if min_dates or max_dates is specified)
impute_dtc_dt(
c("2020-12", NA_character_),
min_dates = list(
ymd("2020-12-06", "2020-01-01"),
ymd(”2020-11-11", NA)

) ’
highest_imputation = "Y"
)
impute_dtc_dtm Impute Partial Date(-time) Portion of a -DTC Variable
Description

Imputation partial date/time portion of a --DTC variable. based on user input.

Usage
impute_dtc_dtm(
dtc,
highest_imputation = "h",
date_imputation = "first",
time_imputation = "first",

min_dates = NULL,
max_dates = NULL,
preserve = FALSE

Arguments

dtc The --DTC date to impute
A character date is expected in a format like yyyy-mm-dd or yyyy-mm-ddThh:mm: ss.
Trailing components can be omitted and - is a valid "missing" value for any
component.
Permitted values a character date variable
Default value none

impute_dtc_dtm 419

highest_imputation
Highest imputation level
The highest_imputation argument controls which components of the --DTC
value are imputed if they are missing. All components up to the specified level
are imputed.

If a component at a higher level than the highest imputation level is miss-
ing, NA_character_ is returned. For example, for highest_imputation = "D"
"2020" results in NA_character_ because the month is missing.

If "n" is specified, no imputation is performed, i.e., if any component is missing,
NA_character_ is returned.

If "Y" is specified, date_imputation should be "first"” or "last” and min_dates
or max_dates should be specified respectively. Otherwise, NA_character_ is
returned if the year component is missing.

Permitted values "Y" (year, highest level), "M" (month), "D" (day), "h" (hour),
"m" (minute), "s" (second), "n" (none, lowest level)

Default value "h"

date_imputation
The value to impute the day/month when a datepart is missing.
A character value is expected.
» Ifhighest_imputationis "M", month and day can be specified as "mm-dd":

e.g. "06-15" for the 15th of June

* When highest_imputation is "M" or "D", the following keywords are
available: "first”, "mid”, "last” to impute to the first/mid/last day/month.
If "mid"” is specified, missing components are imputed as the middle of the
possible range:

— If both month and day are missing, they are imputed as "06-30" (mid-
dle of the year).

— If only day is missing, it is imputed as "15" (middle of the month).
The year can not be specified; for imputing the year "first"” or "last” together
with min_dates or max_dates argument can be used (see examples).
Permitted values "first”, "mid”, "last”, or user-defined
Default value "first”
time_imputation

The value to impute the time when a timepart is missing.
A character value is expected, either as a

 format with hour, min and sec specified as "hh:mm:ss": e.g. "00:00:00"

for the start of the day,
* oras akeyword: "first"”,"last” to impute to the start/end of a day.

The argument is ignored if highest_imputation = "n".
Permitted values "first”, "last”, or user-defined
Default value "first”

min_dates Minimum dates

A list of dates is expected. It is ensured that the imputed date is not before any
of the specified dates, e.g., that the imputed adverse event start date is not before

420 impute_dtc_dtm

the first treatment date. Only dates which are in the range of possible dates of the
dtc value are considered. The possible dates are defined by the missing parts of
the dtc date (see example below). This ensures that the non-missing parts of the
dtc date are not changed. A date or date-time object is expected. For example

impute_dtc_dtm(
"2020-11",
min_dates = list(
ymd_hm("2020-12-06T12:12"),
ymd_hm("2020-11-11T11:11")

),
highest_imputation = "M"

)

returns "2020-11-11T11:11:11" because the possible dates for "2020-11" range

from "2020-11-01T00:00:00" to "2020-11-30T23:59:59". Therefore "2020-12-06T12:12:12"
is ignored. Returning "2020-12-06T12:12:12" would have changed the month

although it is not missing (in the dtc date).

For date variables (not datetime) in the list the time is imputed to "00:00:00".
Specifying date variables makes sense only if the date is imputed. If only time
is imputed, date variables do not affect the result.

Permitted values alistof dates, e.g. list(ymd_hms("2021-07-01T04:03:01"),
ymd_hms ("2022-05-12T13:57:23"))
Default value NULL

max_dates Maximum dates

A list of dates is expected. It is ensured that the imputed date is not after any of
the specified dates, e.g., that the imputed date is not after the data cut off date.
Only dates which are in the range of possible dates are considered. A date or
date-time object is expected.

For date variables (not datetime) in the list the time is imputed to "23:59:59".
Specifying date variables makes sense only if the date is imputed. If only time
is imputed, date variables do not affect the result.

Permitted values alist of dates, e.g. 1list(ymd_hms("2021-07-01704:03:01"),
ymd_hms ("2022-05-12T13:57:23"))
Default value NULL
preserve Preserve lower level date/time part when higher order part is missing, e.g. pre-
serve day if month is missing or preserve minute when hour is missing.
For example "2019---07" would return "2019-06-07 if preserve = TRUE (and
date_imputation = "mid").
Permitted values TRUE, FALSE
Default value FALSE

Details

Usually this computation function can not be used with %>%.

impute_dtc_dtm 421

Value

A character vector

See Also

Date/Time Computation Functions that returns a vector: compute_age_years(), compute_dtf(),
compute_duration(), compute_tmf (), convert_date_to_dtm(), convert_dtc_to_dt(), convert_dtc_to_dtm(),
convert_xxtpt_to_hours(), impute_dtc_dt()

Examples

library(lubridate)

dates <- c(
"2019-07-18T15:25:40",
"2019-07-18T15:25",
"2019-07-18T15",
"2019-07-18",
"2019-02",

"2019",
"2019",
"2019---07",

nn

)

No date imputation (highest_imputation defaulted to "h")
Missing time part imputed with ©0:00:00 portion by default
impute_dtc_dtm(dtc = dates)

No date imputation (highest_imputation defaulted to "h")
Missing time part imputed with 23:59:59 portion
impute_dtc_dtm(

dtc = dates,

time_imputation = "23:59:59"
)

Same as above
impute_dtc_dtm(
dtc = dates,
time_imputation = "last”

)

Impute to first day/month if date is partial
Missing time part imputed with ©0:00:00 portion by default
impute_dtc_dtm(
dtc = dates,
highest_imputation = "M"
)
same as above
impute_dtc_dtm(
dtc = dates,
highest_imputation = "M",

422 list_all_templates

date_imputation = "01-01"
)

Impute to last day/month if date is partial
Missing time part imputed with 23:59:59 portion
impute_dtc_dtm(

dtc = dates,

date_imputation = "last”,

time_imputation = "last”
)

Impute to mid day/month if date is partial
Missing time part imputed with ©0:00:00 portion by default
impute_dtc_dtm(

dtc = dates,

highest_imputation = "M",

date_imputation = "mid”

)

Impute a date and ensure that the imputed date is not before a list of
minimum dates
impute_dtc_dtm(
"2020-12",
min_dates = list(
ymd_hm("2020-12-06T12:12"),
ymd_hm("2020-11-11T11:11")
),
highest_imputation = "M"
)

Impute completely missing dates (only possible if min_dates or max_dates is specified)
impute_dtc_dtm(
c("2020-12", NA_character_),
min_dates = list(
ymd_hm(”2020-12-06T12: 12", "2020-01-01T01:01"),
ymd_hm(”2020-11-11T11:11", NA)
),
highest_imputation = "Y"
)

list_all_templates List All Available ADaM Templates

Description

List All Available ADaM Templates

Usage

list_all_templates(package = "admiral")

list_tte_source_objects 423

Arguments
package The R package in which to look for templates. By default "admiral”.
Default value "admiral”
Value

A character vector of all available templates

See Also

Utilities used for examples and template scripts: use_ad_template()

Examples

list_all_templates()

list_tte_source_objects
List all tte_source Objects Available in a Package

Description

List all tte_source Objects Available in a Package

Usage
list_tte_source_objects(package = "admiral”)
Arguments
package The name of the package in which to search for tte_source objects
Default value "admiral”
Value

A data.frame where each row corresponds to one tte_source object or NULL if package does not
contain any tte_source objects

See Also

Other Advanced Functions: params()

Examples

list_tte_source_objects()

424 max_cond

max_cond Maximum Value on a Subset

Description

The function derives the maximum value of a vector/column on a subset of entries/observations.

Usage

max_cond(var, cond)

Arguments
var A vector
Default value none
cond A condition
Default value none
See Also

Utilities for Filtering Observations: count_vals(), filter_exist(), filter_extreme(), filter_joined(),
filter_not_exist(), filter_relative(), min_cond()

Examples

library(tibble)

library(dplyr, warn.conflicts = FALSE)

library(admiral)

data <- tribble(
~USUBJID, ~AVISITN, ~AVALC,
" "PR",
" "CR",
", "NE",
" "CR",
" "NE",
"2, "CR",
", "PR",
"2, "CR",

w N = 01w =

In oncology setting, when needing to check the first time a patient had
a Complete Response (CR) to compare to see if any Partial Response (PR)
occurred after this add variable indicating if PR occurred after CR
group_by(data, USUBJID) %>% mutate(
first_cr_vis = min_cond(var = AVISITN, cond = AVALC == "CR"),
last_pr_vis = max_cond(var = AVISITN, cond = AVALC == "PR"),
pr_after_cr = last_pr_vis > first_cr_vis

)

min_cond 425

min_cond Minimum Value on a Subset

Description

The function derives the minimum value of a vector/column on a subset of entries/observations.

Usage

min_cond(var, cond)

Arguments
var A vector
Default value none
cond A condition
Default value none
See Also

Utilities for Filtering Observations: count_vals(), filter_exist(), filter_extreme(), filter_joined(),
filter_not_exist(), filter_relative(), max_cond()

Examples

library(tibble)

library(dplyr, warn.conflicts = FALSE)

library(admiral)

data <- tribble(
~USUBJID, ~AVISITN, ~AVALC,
" "PR",
" "CR",
", "NE",
" "CR",
" "NE",
"2, "CR",
", "PR",
"2, "CR",

w N = 01w =

In oncology setting, when needing to check the first time a patient had
a Complete Response (CR) to compare to see if any Partial Response (PR)
occurred after this add variable indicating if PR occurred after CR
group_by(data, USUBJID) %>% mutate(
first_cr_vis = min_cond(var = AVISITN, cond = AVALC == "CR"),
last_pr_vis = max_cond(var = AVISITN, cond = AVALC == "PR"),
pr_after_cr = last_pr_vis > first_cr_vis

)

426 params

negate_vars Negate List of Variables

Description

The function adds a minus sign as prefix to each variable.

Usage

negate_vars(vars = NULL)

Arguments
vars List of variables created by exprs()
Default value NULL
Details

This is useful if a list of variables should be removed from a dataset, e.g., select (! ! Inegate_vars(by_vars))
removes all by variables.

Value

A list of expressions

See Also

Utilities for working with quosures/list of expressions: chr2vars()

Examples

negate_vars(exprs(USUBJID, STUDYID))

params Create a Set of Parameters

Description

Create a set of variable parameters/function arguments to be used in call_derivation().

Usage

params(...)

params 427

Arguments

One or more named arguments

Default value none

Value

An object of class params

See Also

call_derivation()

Other Advanced Functions: 1ist_tte_source_objects()

Examples

library(dplyr, warn.conflicts = FALSE)

adsl <- tribble(
~STUDYID, ~USUBJID, ~TRTSDT, ~TRTEDT,
"PILOTO1", "01-1307", NA, NA,
"PILOT@1", "05-1377", "2014-01-04", "2014-01-25",
"PILOT@1", "06-1384", "2012-09-15", "2012-09-24",
"PILOT@1", "15-1085", "2013-02-16", "2013-08-18",
"PILOTO1", "16-1298", "2013-04-08", "2013-06-28"

) %>%
mutate(
across(TRTSDT: TRTEDT, as.Date)
)
ae <- tribble(

~STUDYID, ~DOMAIN, ~USUBJID, ~AESTDTC, ~AEENDTC,
"PILOTO1", "AE", "06-1384", "2012-09-15", "2012-09-29",
"PILOTO1", "AE", "06-1384", "2012-09-15", "2012-09-29",
"PILOTO1", "AE", "06-1384", "2012-09-23", "2012-09-29",
"PILOTO1", "AE", "06-1384", "2012-09-23", "2012-09-29",
"PILOTO1", "AE", "06-1384", "2012-09-15", "2012-09-29",
"PILOTO1", "AE", "06-1384", "2012-09-15", "2012-09-29",
"PILOTO1", "AE", "06-1384", "2012-09-15", "2012-09-29",
"PILOTO1", "AE", "06-1384", "2012-09-15", "2012-09-29",
"PILOTO1", "AE", "06-1384", "2012-09-23", "2012-09-29",
"PILOTO1", "AE", "06-1384", "2012-09-23", "2012-09-29",
"PILOTO1", "AE", "16-1298", "2013-06-08", "2013-07-06",
"PILOTO1", "AE", "16-1298", "2013-06-08", "2013-07-06",
"PILOTO1", "AE", "16-1298", "2013-04-22", "2013-07-06",
"PILOTO1", "AE", "16-1298", "2013-04-22", "2013-07-06",
"PILOTO1", "AE", "16-1298", "2013-04-22", "2013-07-06",
"PILOTO1", "AE", "16-1298", "2013-04-22", "2013-07-06"

)

adae <- ae %>%
select(USUBJID, AESTDTC, AEENDTC) %>%

428 queries

derive_vars_merged(
dataset_add = adsl,
new_vars = exprs(TRTSDT, TRTEDT),
by_vars = exprs(USUBJID)

)

In order to derive both “ASTDT™ and “AENDT™ in “ADAE", one can use “derive_vars_dt()"
adae %>%
derive_vars_dt(

new_vars_prefix = "AST",
dtc = AESTDTC,
date_imputation = "first"”,

min_dates = exprs(TRTSDT),
max_dates = exprs(TRTEDT)

) %%

derive_vars_dt(
new_vars_prefix = "AEN",
dtc = AEENDTC,
date_imputation = "last”,

min_dates = exprs(TRTSDT),
max_dates = exprs(TRTEDT)

While ~“derive_vars_dt()" can only add one variable at a time, using ~call_derivation()"~
one can add multiple variables in one go.
The function arguments which are different from a variable to another (e.g. “new_vars_prefix™,
~dtc™, and “date_imputation™) are specified as a list of “params()” in the “variable_params”
argument of ~call_derivation()~. All other arguments which are common to all variables
(e.g. "min_dates™ and “max_dates™) are specified outside of “variable_params™ (i.e. in ~...7).
call_derivation(
dataset = adae,
derivation = derive_vars_dt,
variable_params = list(
params(dtc = AESTDTC, date_imputation = "first”, new_vars_prefix = "AST"),
params(dtc = AEENDTC, date_imputation = "last"”, new_vars_prefix = "AEN")

)?

min_dates = exprs(TRTSDT),

max_dates = exprs(TRTEDT)
)

The above call using “call_derivation()~ is equivalent to the call using “derive_vars_dt()"
to derive variables “ASTDT™ and “AENDT™ separately at the beginning.

queries Queries Dataset

Description

Queries Dataset

queries_mh 429

Usage

queries

Format

An object of class tb1_df (inherits from tbl, data. frame) with 15 rows and 8 columns.

Source
An example of standard query dataset to be used in deriving Standardized MedDRA Query variables
in ADAE

See Also

Other datasets: admiral_adlb, admiral_adsl, ex_single, example_gs, queries_mh

queries_mh Queries MH Dataset

Description

Queries MH Dataset

Usage

queries_mh

Format

An object of class tb1_df (inherits from tbl, data. frame) with 14 rows and 8 columns.

Source
An example of standard query MH dataset to be used in deriving Standardized MedDRA Query
variables in ADMH

See Also

Other datasets: admiral_adlb, admiral_adsl, ex_single, example_gs, queries

430 query

query Create an query object

Description

A query object defines a query, e.g., a Standard MedDRA Query (SMQ), a Standardized Drug
Grouping (SDG), or a customized query (CQ). It is used as input to create_query_data().

Usage

query(prefix, name = auto, id = NULL, add_scope_num = FALSE, definition = NULL)

Arguments

prefix The value is used to populate PREFIX in the output dataset of create_query_data(),
e.g., "SMQ@3”

Default value none

name The value is used to populate GRPNAME in the output dataset of create_query_data().
If the auto keyword is specified, the variable is set to the name of the query in
the SMQ/SDG database.

Permitted values A character scalar or the auto keyword. The auto keyword
is permitted only for queries which are defined by an basket_select()
object.

Default value auto
id The value is used to populate GRPID in the output dataset of create_query_data().

If the auto keyword is specified, the variable is set to the id of the query in the
SMQ/SDG database.

Permitted values A integer scalar or the auto keyword. The auto keyword
is permitted only for queries which are defined by an basket_select()
object.

Default value NULL
add_scope_num Determines if SCOPEN in the output dataset of create_query_data() is popu-
lated

If the parameter is set to TRUE, the definition must be an basket_select()
object.

Default: FALSE
Permitted values TRUE, FALSE
Default value FALSE
definition Definition of terms belonging to the query
There are three different ways to define the terms:

* An basket_select() object is specified to select a query from the SMQ
database.

query 431

* A data frame with columns SRCVAR and TERMCHAR or TERMNUM can be spec-

ified to define the terms of a customized query. The SRCVAR should be set
to the name of the variable which should be used to select the terms, e.g.,
"AEDECOD" or "AELLTCD". SRCVAR does not need to be constant within a
query. For example a query can be based on AEDECOD and AELLT.
If SRCVAR refers to a character variable, TERMCHAR should be set to the value
the variable. If it refers to a numeric variable, TERMNUM should be set to the
value of the variable. If only character variables or only numeric variables
are used, TERMNUM or TERMCHAR respectively can be omitted.

e A list of data frames and basket_select() objects can be specified to
define a customized query based on custom terms and SMQs. The data
frames must have the same structure as described for the previous item.

Permitted values an basket_select() object, a data frame, or a list of data
frames and basket_select () objects.

Default value NULL

Value

An object of class query.

See Also

create_query_data(), basket_select(), vignette("queries_dataset")

Source Objects: basket_select(), censor_source(), death_event, event(), event_joined(),
event_source(), flag_event(), records_source(), tte_source()

Examples

create a query for an SMQ
library(tibble)
library(dplyr, warn.conflicts = FALSE)

create a query for a SMQ

query(
prefix = "SMQ@2",
id = auto,
definition = basket_select(
name = "Pregnancy and neonatal topics (SMQ)",
scope = "NARROW",
type = "smq"
)
)
create a query for an SDG
query(
prefix = "SDG0O1",
id = auto,
definition = basket_select(
name = "5-aminosalicylates for ulcerative colitis”,

scope = NA_character_,

432

n

type = "sdg
)
)

creating a query for a customized query
cqterms <- tribble(

~TERMCHAR, ~TERMNUM,

"APPLICATION SITE ERYTHEMA", 10003041L,

"APPLICATION SITE PRURITUS", 10003053L
) %%

mutate (SRCVAR = "AEDECOD")

query(
prefix = "CQ@1”,
name = "Application Site Issues”,
definition = cqterms

)

creating a customized query based on SMQs and additional terms
query (
prefix = "CQe3",
name = "Special issues of interest”,
definition = list(
cqterms,
basket_select(
name = "Pregnancy and neonatal topics (SMQ)",
scope = "NARROW",
type = "smq"
),
basket_select(
id = 8e5eL,
scope = "BROAD",
type = "smq”
)
)
)

records_source

records_source Create a records_source Object

Description

The records_source object is used to find extreme records of interest.

Usage

records_source(dataset_name, filter = NULL, new_vars)

restrict_derivation 433

Arguments

dataset_name The name of the source dataset
The name refers to the dataset provided by the source_datasets argument of
derive_param_extreme_record().
Default value none

filter An unquoted condition for selecting the observations from dataset.

Default value NULL

new_vars Variables to add

The specified variables from the source datasets are added to the output dataset.
Variables can be renamed by naming the element, i.e., new_vars = exprs(<new name> = <old name>).

For example new_vars = exprs(var1, var2) adds variables var1 and var2
from to the input dataset.

And new_vars = exprs(varl, new_var2 = old_var2) takes var1 and old_var2
from the source dataset and adds them to the input dataset renaming old_var2
to new_var2. Expressions can be used to create new variables (see for example
new_vars argument in derive_vars_merged()).

Permitted values list of expressions created by exprs(), e.g., exprs(ADT,
desc(AVAL))

Default value none

Value

An object of class records_source

See Also

derive_param_extreme_record()

Source Objects: basket_select(), censor_source(), death_event, event(), event_joined(),
event_source(), flag_event(), query(), tte_source()

restrict_derivation Execute a Derivation on a Subset of the Input Dataset

Description

Execute a derivation on a subset of the input dataset.

Usage

restrict_derivation(dataset, derivation, args = NULL, filter)

434 restrict_derivation

Arguments
dataset Input dataset
Default value none
derivation Derivation
A function that performs a specific derivation is expected. A derivation adds
variables or observations to a dataset. The first argument of a derivation must
expect a dataset and the derivation must return a dataset. All expected argu-
ments for the derivation function must be provided through the params() ob-
jects passed to the args argument.
Default value none
args Arguments of the derivation
A params () object is expected.
Default value NULL
filter Filter condition
Default value none
Details

Itis also possible to pass functions from outside the {admiral} package to restrict_derivation(),
e.g. an extension package function, or dplyr: :mutate(). The only requirement for a function be-
ing passed to derivation is that it must take a dataset as its first argument and return a dataset.

See Also

params() slice_derivation() call_derivation()

Higher Order Functions: call_derivation(), derivation_slice(), slice_derivation()
Examples
library(tibble)

adlb <- tribble(
~USUBJID, ~AVISITN, ~AVAL, ~ABLFL,

nm -1, 113, NA_character_,
OER e, 113, "Y',
ars 3, 117, NA_character_,
non 0, 95, "Y",
n3n e, 111, "Yy",
n3m 1, 101, NA_character_,
"3 2, 123, NA_character_

)

Derive BASE for post-baseline records only (derive_var_base() can not be used in this case
as it requires the baseline observation to be in the input dataset)
restrict_derivation(

adlb,

derivation = derive_vars_merged,

set_admiral_options

args = params(

435

by_vars = exprs(USUBJID),
dataset_add = adlb,
filter_add = ABLFL == "Y",

new_vars =

)?

exprs(BASE = AVAL)

filter = AVISITN > @

)

Derive BASE for baseline and post-baseline records only
restrict_derivation(

adlb,

derivation = derive_var_base,

args = params(

by_vars = exprs(USUBJID)

))

filter = AVISITN >= @

) %%

Derive CHG for post-baseline records only
restrict_derivation(

derivation =

derive_var_chg,

filter = AVISITN > @

set_admiral_options Set the Value of admiral Options

Description

Set the values of admiral options that can be modified for advanced users.

Usage

set_admiral_options(subject_keys, signif_digits, save_memory)

Arguments

subject_keys

signif_digits

save_memory

Variables to uniquely identify a subject, defaults to exprs(STUDYID, USUBJID).
This option is used as default value for the subject_keys argument in all admi-
ral functions.

Default value none

Holds number of significant digits when comparing to numeric variables, de-
faults to 15. This option is used as default value for the signif_dig argument
in admiral functions derive_var_atoxgr_dir() and derive_var_anrind().

Default value none

If set to TRUE, an alternative algorithm is used in the functions derive_vars_joined(),
derive_var_joined_exist_flag(), derive_extreme_event(),and filter_joined()
which requires less memory but more run-time.

Default value none

436 set_admiral_options

Details

Modify an admiral option, e.g subject_keys, such that it automatically affects downstream func-
tion inputs where get_admiral_option() is called such as derive_param_exist_flag().

Value

No return value, called for side effects.

See Also

get_admiral_option(), derive_param_exist_flag(),derive_param_tte(), derive_var_dthcaus(),
derive_var_extreme_dtm(), derive_vars_period(), create_period_dataset(),derive_var_atoxgr_dir(),
derive_var_anrind()

Other admiral_options: get_admiral_option()

Examples

library(lubridate)

library(dplyr, warn.conflicts = FALSE)

library(tibble)

set_admiral_options(subject_keys = exprs(STUDYID, USUBJID2))

Derive a new parameter for measurable disease at baseline
adsl <- tribble(

~USUBJID2,

lI-IIV’

non

nyn
) %%

mutate(STUDYID = "XX1234")

tu <- tribble(

~USUBJID2, ~VISIT, ~TUSTRESC,
" "SCREENING”, "TARGET",
" "WEEK 1", "TARGET",
", "WEEK 5", "TARGET",
" "WEEK 9”, "NON-TARGET",
. "SCREENING”, "NON-TARGET”,
"2, "SCREENING"”, "NON-TARGET"
) %>%
mutate(

STUDYID = "XX1234",
TUTESTCD = "TUMIDENT”

)

derive_param_exist_flag(
dataset_ref = adsl,
dataset_add = tu,
filter_add = TUTESTCD == "TUMIDENT"” & VISIT == "SCREENING",
condition = TUSTRESC == "TARGET",
false_value = "N",

slice_derivation 437

missing_value = "N",
set_values_to = exprs(
PARAMCD = "MDIS",
PARAM = "Measurable Disease at Baseline”
)
)

set_admiral_options(signif_digits = 14)

Derive ANRIND for ADVS
advs <- tribble(
~PARAMCD, ~AVAL, ~ANRLO, ~ANRHI,

"DIABP", 59, 60, 80,
"SYSBP", 120, 90, 130,
"RESP”, 21, 8, 20,

)

derive_var_anrind(advs)

slice_derivation Execute a Derivation with Different Arguments for Subsets of the Input
Dataset

Description

The input dataset is split into slices (subsets) and for each slice the derivation is called separately.
Some or all arguments of the derivation may vary depending on the slice.

Usage
slice_derivation(dataset, derivation, ..., args = NULL)
Arguments
dataset Input dataset
Default value none
derivation Derivation

A function that performs a specific derivation is expected. A derivation adds
variables or observations to a dataset. The first argument of a derivation must
expect a dataset and the derivation must return a dataset. All expected arguments
for the derivation function must be provided through the params () object passed
to the args argument or be provided in every derivation_slice().

Default value none

A derivation_slice() object is expected

Each slice defines a subset of the input dataset and some of the parameters for the
derivation. The derivation is called on the subset with the parameters specified

438 slice_derivation

by the args parameter and the args field of the derivation_slice() object. If
a parameter is specified for both, the value in derivation_slice() overwrites
the one in args.

Default value none

args Arguments of the derivation
A params() object is expected.

Default value NULL

Details

For each slice the derivation is called on the subset defined by the filter field of the derivation_slice()
object and with the parameters specified by the args parameter and the args field of the derivation_slice()
object. If a parameter is specified for both, the value in derivation_slice() overwrites the one

in args.

* Observations that match with more than one slice are only considered for the first matching
slice.

* The derivation is called for slices with no observations.

» Observations with no match to any of the slices are included in the output dataset but the
derivation is not called for them.

It is also possible to pass functions from outside the {admiral} package to slice_derivation(),
e.g. an extension package function, or dplyr::mutate(). The only requirement for a function
being passed to derivation is that it must take a dataset as its first argument and return a dataset.

Value

The input dataset with the variables derived by the derivation added

See Also

params() restrict_derivation() call_derivation()

Higher Order Functions: call_derivation(), derivation_slice(), restrict_derivation()

Examples

library(tibble)

library(stringr)

advs <- tribble(
~USUBJID, ~VSDTC, ~VSTPT,
" "2020-04-16", NA_character_,
" "2020-04-16", "BEFORE TREATMENT"

)

For the second slice filter is set to TRUE. Thus derive_vars_dtm is called
with time_imputation = "last” for all observations which do not match for the
first slice.
slice_derivation(
advs,

transform_range 439

derivation = derive_vars_dtm,
args = params(
dtc = VSDTC,
new_vars_prefix = "A"
),
derivation_slice(
filter = str_detect(VSTPT, "PRE|BEFORE"),
args = params(time_imputation = "first")
),
derivation_slice(
filter = TRUE,

args = params(time_imputation = "last")
)
)
transform_range Transform Range
Description

Transforms results from the source range to the target range. For example, for transforming source
values 1, 2, 3, 4, 5 to 0, 25, 50, 75, 100.

Usage

transform_range(
source,
source_range,
target_range,
flip_direction = FALSE,

outside_range = "NA"
)
Arguments
source A vector of values to be transformed

A numeric vector is expected.
Default value none

source_range The permitted source range
A numeric vector containing two elements is expected, representing the lower
and upper bounds of the permitted source range.
Default value none

target_range The target range

A numeric vector containing two elements is expected, representing the lower
and upper bounds of the target range.

440 transform_range

Default value none

flip_direction Flip direction of the range?
The transformed values will be reversed within the target range, e.g. within the
range 0 to 100, 25 would be reversed to 75.
Permitted values TRUE, FALSE
Default value FALSE

outside_range Handling of values outside the source range
Values outside the source range (source_range) are transformed to NA.

If "warning” or "error” is specified, a warning or error is issued if source
includes any values outside the source range.

n on

Permitted values "NA”, "warning”, "error"”
Default value "NA"

Details

Returns the values of source linearly transformed from the source range (source_range) to the
target range (target_range). Values outside the source range are set to NA.

Value

The source linearly transformed to the target range

See Also

BDS-Findings Functions that returns a vector: compute_bmi (), compute_bsa(), compute_egfr(),
compute_framingham(), compute_map(), compute_qgtc(), compute_qual_imputation(), compute_qual_imputation_c
compute_rr(), compute_scale()

Examples

transform_range(
source = c(1, 4, 3, 6, 5),
source_range = c(1, 5),
target_range = c(0, 100)
)

transform_range(
source = c(1, 4, 3, 6, 5),
source_range = c(1, 5),
target_range = c(@, 100),
flip_direction = TRUE

)

tte_source

441

tte_source

Create a tte_source Object

Description

The tte_source object is used to define events and possible censorings.

Usage

tte_source(
dataset_name,
filter = NULL
date,
censor = 0,
set_values_to
order = order

Arguments

dataset_name

filter

date

censor

set_values_to

’

= NULL,

The name of the source dataset

The name refers to the dataset provided by the source_datasets parameter of
derive_param_tte().

Default value none

An unquoted condition for selecting the observations from dataset which are
events or possible censoring time points.

Default value NULL
A variable or expression providing the date of the event or censoring. A date, or

a datetime can be specified. An unquoted symbol or expression is expected.

Refer to derive_vars_dt() or convert_dtc_to_dt() to impute and derive a
date from a date character vector to a date object.

Default value none

Censoring value

CDISC strongly recommends using @ for events and positive integers for cen-
soring.

Default value 0

A named list returned by exprs() defining the variables to be set for the event
or censoring, e.g. exprs(EVENTDESC = "DEATH", SRCDOM = "ADSL", SRCVAR =

"DTHDT"). The values must be a symbol, a character string, a numeric value, an
expression, or NA.

Default value NULL

442 use_ad_template

order Sort order

An optional named list returned by exprs() defining additional variables that
the source dataset is sorted on after date.

Permitted values list of variables created by exprs() e.g. exprs(ASEQ).
Default value order

Value

An object of class tte_source

See Also

derive_param_tte(), censor_source(), event_source()

Source Objects: basket_select(), censor_source(), death_event, event(), event_joined(),
event_source(), flag_event(), query(), records_source()

use_ad_template Open an ADaM Template Script

Description

Open an ADaM Template Script

Usage
use_ad_template(
adam_name = "adsl"”,
save_path = paste@("./", adam_name, ".R"),
package = "admiral”,

overwrite = FALSE,
open = interactive()

)
Arguments

adam_name An ADaM dataset name. You can use any of the available dataset names "ADAB",
"ADAE", "ADCM", "ADEG", "ADEX", "ADLB", "ADLBHY", "ADMH", "ADPC", "ADPP",
"ADPPK", "ADSL", "ADVS". The dataset name is case-insensitive. The default
dataset name is "ADSL".
Default value "adsl”

save_path Path to save the script.
Default value paste@(”./", adam_name, ".R")

package The R package in which to look for templates. By default "admiral”.

Default value "admiral”

yn_to_numeric 443

overwrite Whether to overwrite an existing file named save_path.
Default value FALSE
open Whether to open the script right away.

Default value interactive()

Details
Running without any arguments such as use_ad_template() auto-generates adsl.R in the current
path. Use list_all_templates() to discover which templates are available.

Value

No return values, called for side effects

See Also

Utilities used for examples and template scripts: 1ist_all_templates()

Examples

if (interactive()) {
use_ad_template("adsl")
3

yn_to_numeric Map "Y" and "N" to Numeric Values

Description

Map "Y" and "N" to numeric values.

Usage

yn_to_numeric(arg)

Arguments
arg Character vector
Default value none
Value

1if argequals "Y", @ if arg equals "N", NA_real_ otherwise

See Also

Utilities for Formatting Observations: convert_blanks_to_na(), convert_na_to_blanks()

444

Examples

yn_to_numeric(c("Y", "N", NA_character_.))

%>%

%>%

Pipe operator

Description

See magrittr

Usage
lhs %>% rhs

Arguments

lhs

rhs

: :%>% for more details.

A value or the magrittr placeholder.

Default value NULL

A function call using the magrittr semantics.

Default value NULL

Index

* admiral_options
get_admiral_option, 404
set_admiral_options, 435

* com_bds_findings
compute_bmi, 24
compute_bsa, 25
compute_egfr, 30
compute_framingham, 33
compute_map, 35
compute_qtc, 37
compute_qual_imputation, 38

compute_qual_imputation_dec, 39

compute_rr, 40
compute_scale, 41
transform_range, 439

x com_date_time
compute_age_years, 23
compute_dtf, 26
compute_duration, 27
compute_tmf, 42
convert_date_to_dtm, 47
convert_dtc_to_dt, 50
convert_dtc_to_dtm, 52
convert_xxtpt_to_hours, 56
impute_dtc_dt, 414
impute_dtc_dtm, 418

* create_aux
consolidate_metadata, 44
create_period_dataset, 63
create_query_data, 66
create_single_dose_dataset, 69

x datasets
admiral_adlb, 5
admiral_adsl, 6
ex_single, 383
example_gs, 382
queries, 428
queries_mh, 429

+ deprecated

445

call_user_fun, 19
date_source, 75

derive_param_extreme_record, 140

derive_var_dthcaus, 287
derive_var_extreme_dt, 290
derive_var_extreme_dtm, 294
derive_var_merged_summary, 330
dthcaus_source, 371
get_summary_records, 410

x der_adsl

derive_var_age_years, 274
derive_vars_aage, 179
derive_vars_extreme_event, 221
derive_vars_period, 266

+ der_bds_findings

derive_basetype_records, 79
derive_var_analysis_ratio, 275
derive_var_anrind, 277
derive_var_atoxgr, 279
derive_var_atoxgr_dir, 280
derive_var_base, 284
derive_var_chg, 286
derive_var_nfrlt, 332
derive_var_ontrtfl, 350
derive_var_pchg, 354
derive_var_shift, 358
derive_vars_crit_flag, 192

* der_date_time

derive_var_trtdurd, 360
derive_vars_dt, 196
derive_vars_dtm, 205
derive_vars_dtm_to_dt, 212
derive_vars_dtm_to_tm, 214
derive_vars_duration, 215
derive_vars_dy, 219

+ der_gen

derive_var_extreme_flag, 299

derive_var_joined_exist_flag, 308

derive_var_merged_ef_msrc, 323

446

derive_var_merged_exist_flag, 327
derive_var_obs_number, 348
derive_var_relative_flag, 355
derive_var_trtdurd, 360
derive_vars_cat, 183
derive_vars_computed, 189
derive_vars_dt, 196
derive_vars_dtm, 205
derive_vars_dtm_to_dt, 212
derive_vars_dtm_to_tm, 214
derive_vars_duration, 215
derive_vars_dy, 219
derive_vars_joined, 225
derive_vars_joined_summary, 242
derive_vars_merged, 251
derive_vars_merged_lookup, 260
derive_vars_merged_summary, 263
derive_vars_transposed, 271

x der_occds

derive_var_trtemfl, 362
derive_vars_atc, 181
derive_vars_query, 269

* der_prm_bds_findings

default_qtc_paramcd, 77
derive_expected_records, 81
derive_extreme_event, 83
derive_extreme_records, 95
derive_locf_records, 109
derive_param_bmi, 114
derive_param_bsa, 117
derive_param_computed, 121
derive_param_doseint, 130
derive_param_exist_flag, 133
derive_param_exposure, 136
derive_param_framingham, 143
derive_param_map, 147
derive_param_qgtc, 150
derive_param_rr, 153
derive_param_wbc_abs, 168
derive_summary_records, 171

+ der_prm_tte

derive_param_tte, 155

* experimental

convert_xxtpt_to_hours, 56
derive_var_nfrlt, 332

* high_order_function

call_derivation, 17
derivation_slice, 78

INDEX

restrict_derivation, 433
slice_derivation, 437

* metadata

atoxgr_criteria_ctcv4, 6
atoxgr_criteria_ctcv4_uscy, 8
atoxgr_criteria_ctcv5, 9
atoxgr_criteria_ctcv5_uscy, 10
atoxgr_criteria_ctcvé, 11
atoxgr_criteria_ctcv6_uscy, 12
atoxgr_criteria_daids, 13
atoxgr_criteria_daids_uscv, 15
country_code_lookup, 61
dose_freq_lookup, 370

* other_advanced

list_tte_source_objects, 423
params, 426

* reexport

%>%, 444
desc, 370
exprs, 382

* source_specifications

basket_select, 16
censor_source, 20
death_event, 76
event, 373
event_joined, 375
event_source, 380
flag_event, 403
query, 430
records_source, 432
tte_source, 441

* utils_ds_chk

get_duplicates_dataset, 405
get_many_to_one_dataset, 408
get_one_to_many_dataset, 409

x utils_examples

list_all_templates, 422
use_ad_template, 442

+ utils_fil

count_vals, 62
filter_exist, 384
filter_extreme, 386
filter_joined, 388
filter_not_exist, 398
filter_relative, 400
max_cond, 424
min_cond, 425

* utils_fmt

INDEX

convert_blanks_to_na, 45
convert_na_to_blanks, 55
yn_to_numeric, 443

+ utils_help
extract_unit, 383
get_flagged_records, 406
get_not_mapped, 409
get_vars_query, 413

+ utils_quo
chr2vars, 22
negate_vars, 426

%>%, 444, 444

admiral_adlb, 5, 6, 382, 384, 429
admiral_adsl, 6, 6, 382, 384, 429
ae_event (death_event), 76
ae_gri1_event (death_event), 76
ae_gr2_event (death_event), 76
ae_gr35_event (death_event), 76
ae_gr3_event (death_event), 76
ae_gr4_event (death_event), 76
ae_gr5_event (death_event), 76
ae_ser_event (death_event), 76
ae_sev_event (death_event), 76
ae_wd_event (death_event), 76
atoxgr_criteria_ctcv4, 6, 9-14, 16, 62,

371
atoxgr_criteria_ctcv4_uscy, 7, 8, 10-14,
16,62, 371
atoxgr_criteria_ctcv5, 7,9,9, 11-14, 16,
62,371

atoxgr_criteria_ctcv5_uscv, 7, 9, 10, 10,
12-14, 16, 62, 371

atoxgr_criteria_ctcve6, 7,9-11,11, 13, 14,
16,62, 371

atoxgr_criteria_ctcv6_uscy, 7, 9-12, 12,
14, 16, 62, 371

atoxgr_criteria_daids, 7, 9-13, 13, 16, 62,
371

atoxgr_criteria_daids_uscv, 7, 9-14, 15,
62,371

basket_select, 16, 21, 77,375,377, 381,
404, 431,433, 442
basket_select(), 68, 431

call_derivation, 17,78, 434, 438
call_derivation(), I8, 426, 427,434, 438

447

call_user_fun, 19, 75, 141, 288, 291, 296,
332,373,411
censor_source, 17,20, 77,375, 377, 381,
404,431, 433,442
censor_source(), 77, 168, 381, 442
chr2vars, 22, 426
compute_age_years, 23, 27, 29, 43, 49, 52,
55,61,417,421
compute_bmi, 24, 26, 32, 35, 36, 3840, 42,
440
compute_bmi(), 116
compute_bsa, 24, 25, 32, 35, 36, 38-40, 42,
440
compute_bsa(), 119
compute_dtf, 23, 26, 29, 43, 49, 52, 55, 61,
417,421
compute_duration, 23, 27, 27, 43, 49, 52, 55,
61,417,421
compute_duration(), 217
compute_egfr, 24, 26, 30, 35, 36, 38—40, 42,
440
compute_framingham, 24, 26, 32, 33, 36,
3840, 42, 440
compute_framingham(), 146
compute_map, 24, 26, 32, 35, 35, 38-40, 42,
440
compute_map(), 149
compute_qgtc, 24, 26, 32, 35, 36, 37, 39, 40,
42, 440
compute_qtc(), 151, 152
compute_qual_imputation, 24, 26, 32, 35,
36, 38, 38, 39, 40, 42, 440
compute_qual_imputation_dec, 24, 26, 32,
35, 36, 38, 39, 39, 40, 42, 440
compute_rr, 24, 26, 32, 35, 36, 38, 39, 40, 42,
440
compute_rr(), 155
compute_scale, 24, 26, 32, 35, 36, 38—40, 41,
440
compute_tmf, 23, 27, 29,42, 49, 52, 55, 61,
417,421
consolidate_metadata, 44, 64, 68, 72
convert_blanks_to_na, 45, 56, 443
convert_date_to_dtm, 23, 27, 29, 43, 47, 52,
55,61,417,421
convert_dtc_to_dt, 23, 27, 29, 43, 49, 50,
55,61,417,421
convert_dtc_to_dtm, 23, 27, 29, 43, 49, 52,

448

52,61,417,421
convert_na_to_blanks, 46, 55, 443
convert_xxtpt_to_hours, 23, 27, 29, 43, 49,
52,55,56,417,421
convert_xxtpt_to_hours(), 348
count_vals, 62, 385, 387, 398, 399, 401, 424,
425
count_vals(), 398
country_code_lookup, 7, 9-14, 16, 61, 371
create_period_dataset, 45, 63, 68, 72
create_period_dataset(), 268, 404, 436
create_query_data, 45, 64, 66, 72
create_query_data(), 17,270, 414,431
create_single_dose_dataset, 45, 64, 68,
69
create_single_dose_dataset(), 371

date_source, 20, 75, 141, 288, 291, 296, 332,
373,411
date_source(), 291, 296
death_event, 17, 21,76, 375, 377, 381, 404,
431,433, 442
default_qtc_paramcd, 77, 82, 94, 108, 113,
116,119, 130, 132, 135, 138, 146,
149, 152, 155,170, 179
derivation_slice, I8, 78, 434, 438
derive_basetype_records, 79, 196, 276,
278, 280, 283, 285, 286, 348, 352,
354, 359
derive_expected_records, 78, 81, 94, 108,
113,116,119, 130, 132,135, 138,
146, 149, 152, 155, 170, 179
derive_extreme_event, 78, 82, 83, 108, 113,
116,119, 130, 132, 135, 138, 146,
149, 152,155, 170, 179
derive_extreme_event(), 223, 375, 377
derive_extreme_records, 78, 82, 94, 95,
113,116,119, 130, 132,135, 138,
146, 149, 152, 155, 170, 179
derive_locf_records, 78, 82, 94, 108, 109,
116,119,130, 132, 135, 138, 146,
149, 152, 155,170, 179
derive_param_bmi, 78, 82, 94, 108, 113, 114,
119, 130, 132, 135, 138, 146, 149,
152,155,170, 179
derive_param_bmi(), 24
derive_param_bsa, 78, 82, 94, 108, 113, 116,
117, 130, 132, 135, 138, 146, 149,
152,155,170, 179

INDEX

derive_param_bsa(), 26
derive_param_computed, 78, 82, 94, 108,
113,116,119,121, 132,135, 138,
146, 149, 152, 155, 170, 179
derive_param_doseint, 78, 82, 94, 108, 113,
116,119, 130, 130, 135, 138, 146,
149, 152, 155,170, 179
derive_param_exist_flag, 78, 82, 94, 108,
113,116,119, 130, 132, 133, 138,
146, 149, 152, 155, 170, 179
derive_param_exist_flag(), 404, 436
derive_param_exposure, 78, 82, 94, 108,
113,116,119, 130, 132, 135, 136,
146, 149, 152, 155, 170, 179
derive_param_extreme_record, 20, 75, 140,
288, 291, 296, 332, 373,411
derive_param_extreme_record(), 433
derive_param_framingham, 78, 82, 94, 108,
113,116,119, 130, 132, 135, 138,
142, 149, 152, 155, 170, 179
derive_param_framingham(), 35
derive_param_map, 78, 82, 94, 108, 113, 116,
119, 130, 132, 135, 138, 146, 147,
152,155, 170, 179
derive_param_map(), 36
derive_param_qtc, 78, 82, 94, 108, 113, 116,
119, 130, 132, 135, 138, 146, 149,
150, 155, 170, 179
derive_param_qtc(), 38, 78
derive_param_rr, 78, 82, 94, 108, 113, 116,
119, 130, 132, 135, 138, 146, 149,
152,153,170, 179
derive_param_rr(), 40
derive_param_tte, 155
derive_param_tte(), 21, 76, 77, 381, 404,
436, 442
derive_param_wbc_abs, 78, 82, 94, 108, 113,
116,119, 130, 132, 135, 138, 146,
149, 152, 155, 168, 179
derive_summary_records, 78, 82, 94, 108,
113,116,119, 130, 132, 135, 138,
146, 149, 152, 155, 170, 171
derive_summary_records(), 108, 265, 332,
411
derive_var_age_years, 181, 223, 268, 274
derive_var_analysis_ratio, 79, 196, 275,
278, 280, 283, 285, 286, 348, 352,
354, 359

INDEX

derive_var_anrind, 79, 196, 276, 277, 280,
283, 285, 286, 348, 352, 354, 359
derive_var_anrind(), 436
derive_var_atoxgr, 79, 196, 276, 278, 279,
283, 285, 286, 348, 352, 354, 359
derive_var_atoxgr_dir, 79, 196, 276, 278,
280, 280, 285, 286, 348, 352, 354,
359
derive_var_atoxgr_dir(), 436
derive_var_base, 79, 196, 276, 278, 280,
283,284, 286, 348, 352, 354, 359
derive_var_chg, 79, 196, 276, 278, 280, 283,
285, 286, 348, 352, 354, 359
derive_var_chg(), 354
derive_var_dthcaus, 20, 75, 141, 287, 291,
296, 332,373,411
derive_var_dthcaus(), 373, 404, 436
derive_var_extreme_dt, 20, 75, 141, 288,
290, 296, 332, 373,411
derive_var_extreme_dt(), 75, 296
derive_var_extreme_dtm, 20, 75, 141, 288,
291,294, 332,373,411
derive_var_extreme_dtm(), 75, 291, 404,
436
derive_var_extreme_flag, 189, 191, 241,
251,259, 262, 265, 272, 299, 323,
325, 329, 349, 357
derive_var_joined_exist_flag, 189, 191
241,251, 259, 262, 265, 272, 308,
308, 325, 329, 349, 357
derive_var_joined_exist_flag(), 241,
251
derive_var_merged_ef_msrc, 189, 191, 241,
251, 259, 262, 265, 272, 308, 323,
323, 329, 349, 357
derive_var_merged_ef_msrc(), 404
derive_var_merged_exist_flag, 189, 191,
241,251, 259, 262, 265, 272, 308,
323,325,327, 349, 357
derive_var_merged_summary, 20, 75, 141,
288, 291, 296, 330, 373,411
derive_var_nfrlt, 79, 196, 276, 278, 280,
283, 285, 286, 332, 352, 354, 359
derive_var_obs_number, 189, 191, 242, 251,
259, 262, 265, 272, 308, 323, 325,
329, 348, 357
derive_var_ontrtfl, 79, 196, 276, 278, 280,
283, 285, 286, 348, 350, 354, 359

449

derive_var_pchg, 79, 196, 276, 278, 280,
283, 285, 286, 348, 352, 354, 359
derive_var_relative_flag, 189, 191, 242,
251, 259, 262, 265, 272, 308, 323,
325, 329, 349, 355
derive_var_shift, 79, 196, 276, 278, 280,
283, 285, 286, 348, 352, 354, 358
derive_var_trtdurd, 204, 212-214, 217
220, 360
derive_var_trtemfl, 182, 270, 362
derive_vars_aage, 179, 223, 268, 275
derive_vars_atc, 181, 270, 370
derive_vars_atc(), 272
derive_vars_cat, 183, 191, 242,251, 259,
262, 265, 272, 308, 323, 325, 329,
349, 357
derive_vars_computed, 189, 189, 242, 251,
259,262, 265, 272, 308, 323, 325,
329, 349, 357
derive_vars_crit_flag, 79,192, 276, 278,
280, 283, 285, 286, 348, 352, 354,
359
derive_vars_dt, 196, 212-214, 217, 220,
361
derive_vars_dtm, 204, 205, 213, 214, 217,
220, 361
derive_vars_dtm_to_dt, 204, 212,212, 214,
217,220, 361
derive_vars_dtm_to_tm, 204, 212, 213, 214,
217,220, 361
derive_vars_duration, 204, 212-214, 215,
220, 361
derive_vars_duration(), 29, 181, 275, 348,
361
derive_vars_dy, 204,212-214, 217,219,
361
derive_vars_extreme_event, 181, 221, 268,
275
derive_vars_extreme_event(), 94, 375
377
derive_vars_joined, 189, 191, 225, 251,
259, 262, 265, 272, 308, 323, 325,
329, 349, 357
derive_vars_joined(), 246, 251, 323
derive_vars_joined_summary, 189, 191,
242,242, 259, 262, 265, 272, 308,
323,325,329, 349, 357
derive_vars_merged, 189, 191, 242, 251,

450

251, 262, 265, 272, 308, 323, 325,
329, 349, 357
derive_vars_merged(), 291, 296
derive_vars_merged_lookup, /189, 191, 242,
251, 259, 260, 265, 272, 308, 323,
325, 329, 349, 357
derive_vars_merged_summary, 189, 191,
242,251, 259, 262, 263, 272, 308,
323, 325, 329, 349, 357
derive_vars_merged_summary(), 179, 251,
411
derive_vars_period, 181, 223, 266, 275
derive_vars_period(), 64, 404, 436
derive_vars_query, 182,269, 370
derive_vars_query(), 68
derive_vars_transposed, 189, 191, 242,
251, 259, 262, 265, 271, 308, 323,
325, 329, 349, 357
derive_vars_transposed(), 182
desc, 370, 370
dose_freq_lookup, 7, 9-14, 16, 62, 370
dthcaus_source, 20, 75, 141, 288, 291, 296,
332,371,411
dthcaus_source(), 287, 288

event, 17,21,77,373, 377,381, 404, 431,
433,442

event(), 94, 223, 377

event_joined, 17,21, 77, 375, 375, 381, 404,
431,433, 442

event_joined(), 94, 223, 375

event_source, 17,21,77,375, 377, 380, 404,
431,433,442

event_source(), 21,77, 168, 442

ex_single, 6, 382, 383, 429

example_gs, 6, 382, 384, 429

exprs, 382, 382

exprs(), 22,172

extract_unit, 383, 407, 409, 414

filter_exist, 63, 384, 387, 398, 399, 401,
424, 425

filter_extreme, 63, 385, 386, 398, 399, 401,
424, 425

filter_joined, 63, 385, 387, 388, 399, 401
424, 425

filter_joined(), 241, 251, 323

filter_not_exist, 63, 385, 387, 398, 398,
401, 424, 425

INDEX

filter_relative, 63, 385, 387, 398, 399,
400, 424, 425

flag_event, 17,21,77,375,377, 381, 403,
431,433, 442

flag_event(), 325

get_admiral_option, 404, 436
get_admiral_option(), 436
get_duplicates_dataset, 405, 408, 410
get_flagged_records, 383, 406, 409, 414
get_many_to_one_dataset, 405, 408, 410
get_not_mapped, 383, 407, 409, 414
get_one_to_many_dataset, 405, 408, 409
get_summary_records, 20, 75, 141, 288, 291,
296, 332, 373,410
get_summary_records(), 265, 332
get_vars_query, 383, 407, 409, 413

here, 71

impute_dtc_dt, 23, 27, 29, 43, 49, 52, 55, 61,
414,421

impute_dtc_dtm, 23, 27, 29, 43,49, 52, 55,
61,417,418

lastalive_censor (death_event), 76
list_all_templates, 422,443
list_tte_source_objects, 423, 427

max_cond, 63, 385, 387, 398, 399, 401, 424,
425

max_cond(), 398

min_cond, 63, 385, 387, 398, 399, 401, 424,
425

min_cond(), 398

negate_vars, 22, 426

params, 423, 426
params(), 17, 18,78, 434, 438

queries, 6, 382, 384, 428, 429

queries_mh, 6, 382, 384, 429, 429

query, 17,21,77,375,377, 381, 404, 430,
433,442

query(), 17, 68

records_source, 17,21,77,375,377, 381,
404, 431, 432, 442
restrict_derivation, 18, 78, 433, 438

INDEX

restrict_derivation(), 18, 438

set_admiral_options, 404, 435
set_admiral_options(), 404
slice_derivation, I8, 78, 434, 437
slice_derivation(), 78, 434

transform_range, 24, 26, 32, 35, 36, 38—40,
42,439

tte_source, 17,21,77,375,377, 381, 404,
431,433,441

tte_source(), 77

use_ad_template, 423, 442

yn_to_numeric, 46, 56, 443

451

	admiral_adlb
	admiral_adsl
	atoxgr_criteria_ctcv4
	atoxgr_criteria_ctcv4_uscv
	atoxgr_criteria_ctcv5
	atoxgr_criteria_ctcv5_uscv
	atoxgr_criteria_ctcv6
	atoxgr_criteria_ctcv6_uscv
	atoxgr_criteria_daids
	atoxgr_criteria_daids_uscv
	basket_select
	call_derivation
	call_user_fun
	censor_source
	chr2vars
	compute_age_years
	compute_bmi
	compute_bsa
	compute_dtf
	compute_duration
	compute_egfr
	compute_framingham
	compute_map
	compute_qtc
	compute_qual_imputation
	compute_qual_imputation_dec
	compute_rr
	compute_scale
	compute_tmf
	consolidate_metadata
	convert_blanks_to_na
	convert_date_to_dtm
	convert_dtc_to_dt
	convert_dtc_to_dtm
	convert_na_to_blanks
	convert_xxtpt_to_hours
	country_code_lookup
	count_vals
	create_period_dataset
	create_query_data
	create_single_dose_dataset
	date_source
	death_event
	default_qtc_paramcd
	derivation_slice
	derive_basetype_records
	derive_expected_records
	derive_extreme_event
	derive_extreme_records
	derive_locf_records
	derive_param_bmi
	derive_param_bsa
	derive_param_computed
	derive_param_doseint
	derive_param_exist_flag
	derive_param_exposure
	derive_param_extreme_record
	derive_param_framingham
	derive_param_map
	derive_param_qtc
	derive_param_rr
	derive_param_tte
	derive_param_wbc_abs
	derive_summary_records
	derive_vars_aage
	derive_vars_atc
	derive_vars_cat
	derive_vars_computed
	derive_vars_crit_flag
	derive_vars_dt
	derive_vars_dtm
	derive_vars_dtm_to_dt
	derive_vars_dtm_to_tm
	derive_vars_duration
	derive_vars_dy
	derive_vars_extreme_event
	derive_vars_joined
	derive_vars_joined_summary
	derive_vars_merged
	derive_vars_merged_lookup
	derive_vars_merged_summary
	derive_vars_period
	derive_vars_query
	derive_vars_transposed
	derive_var_age_years
	derive_var_analysis_ratio
	derive_var_anrind
	derive_var_atoxgr
	derive_var_atoxgr_dir
	derive_var_base
	derive_var_chg
	derive_var_dthcaus
	derive_var_extreme_dt
	derive_var_extreme_dtm
	derive_var_extreme_flag
	derive_var_joined_exist_flag
	derive_var_merged_ef_msrc
	derive_var_merged_exist_flag
	derive_var_merged_summary
	derive_var_nfrlt
	derive_var_obs_number
	derive_var_ontrtfl
	derive_var_pchg
	derive_var_relative_flag
	derive_var_shift
	derive_var_trtdurd
	derive_var_trtemfl
	desc
	dose_freq_lookup
	dthcaus_source
	event
	event_joined
	event_source
	example_qs
	exprs
	extract_unit
	ex_single
	filter_exist
	filter_extreme
	filter_joined
	filter_not_exist
	filter_relative
	flag_event
	get_admiral_option
	get_duplicates_dataset
	get_flagged_records
	get_many_to_one_dataset
	get_not_mapped
	get_one_to_many_dataset
	get_summary_records
	get_vars_query
	impute_dtc_dt
	impute_dtc_dtm
	list_all_templates
	list_tte_source_objects
	max_cond
	min_cond
	negate_vars
	params
	queries
	queries_mh
	query
	records_source
	restrict_derivation
	set_admiral_options
	slice_derivation
	transform_range
	tte_source
	use_ad_template
	yn_to_numeric
	>
	Index

