Package ‘antaresRead’

January 28, 2026

Type Package

Title Import, Manipulate and Explore the Results of an 'Antares’
Simulation

Version 3.0.0

Description Import, manipulate and explore results generated by 'Antares’, a
powerful open source software developed by RTE (Réseau de Transport d’Electricité) to simu-
late and study electric power systems
(more information about 'Antares' here : <https://antares-simulator.org/>).

URL https://github.com/rte-antares-rpackage/antaresRead,
https://rte-antares-rpackage.github.io/antaresRead/

BugReports https://github.com/rte-antares-rpackage/antaresRead/issues
License GPL (>=2) | file LICENSE
Imports data.table (>= 1.15.0), bit64, lubridate (>= 1.7.1), plyr,

methods, stats, stringr, stringi, shiny, pbapply, doParallel,

jsonlite, httr, utils, memuse, purrr, lifecycle, assertthat,

arrow

Suggests testthat, covr, knitr, rmarkdown, foreach, parallel,
htmltools

RoxygenNote 7.2.2
VignetteBuilder knitr

Encoding UTF-8

biocViews Infrastructure, Datalmport
NeedsCompilation no

Author Tatiana Vargas [aut, cre],
Jalal-Edine ZAWAM [aut],
Frederic Breant [ctb],
Francois Guillem [aut],
Benoit Thieurmel [aut],
Titouan Robert [aut],
Victor Perrier [ctb],
Etienne Sanchez [ctb],

https://antares-simulator.org/
https://github.com/rte-antares-rpackage/antaresRead
https://rte-antares-rpackage.github.io/antaresRead/
https://github.com/rte-antares-rpackage/antaresRead/issues

2 Contents

Assil Mansouri [ctb],
Clement Berthet [ctb],
Kamel Kemiha [ctb],
Abdallah Mahoudi [ctb],
Nicolas Boitard [ctb],
RTE [cph]

Maintainer Tatiana Vargas <tatiana.vargas@rte-france.com>
Repository CRAN
Date/Publication 2026-01-28 17:40:02 UTC

Contents
.download_api_aggregate_result 3
filter_bindingConstraints_by_names 3
API-methods e 4
as.antaresDatallist 5
as.antaresDataTable 6
changeTimeStep e 7
copyToClipboard e 8
extractDatalList 9
GELATEAS L e e e e e 10
getGeographicTrimming 11
getldCols e 11
getLinkso 12
getThematicTrimming e 13
hvdcModification 14
list_thematic_variables e 15
mergeDigests 16
parAggregateMCall 16
ponderateMCAZEIegation e 17
read-ini L e e 18
readANtares L. e e 19
read AntareSAICas e e e e e 23
readAntaresClusters e 24
readAntaresSTClusters e 25
readBindingConstraints L 26
readClusterDesc L 27
readDigestFile 29
readlnputRES L 30
readlnputThermal L 31
readlnputTS oL 32
readlayout 34
readOptimCriteria e 35
read_storages_constraintso 36
removeVirtualAreas 37
setHvdcAreas e 39

setRam e 40

.download_api_aggregate_result 3

setSimulationPath 41
setTimeoutAPI 45
showAliases e e e 46
SIMOPLIONS o o e e e 47
subset.antaresDatalist 48
summary.bindingConstraints e 49
VIEWANLATES o i e e e e e e e e e e e e 49
writeDigest 50
Index 51

.download_api_aggregate_result

Retrieve information on a file’s state of preparation and retrieve down-
load file.

Description

Retrieve information on a file’s state of preparation and retrieve download file.

Usage

.download_api_aggregate_result(download_id, opts)

Arguments

download_id the id of the download.

opts List of simulation parameters returned by the function setSimulationPath()

Value

An updated list containing various information about the simulation.

a data.table

.filter_bindingConstraints_by_names
Filter a list of binding constraints by names by a exact match

Description

Filter a list of binding constraints by names by a exact match

Usage

.filter_bindingConstraints_by_names(bindingConstraints, constraint_names)

API-methods

Arguments

bindingConstraints

list alist of binding constraints
constraint_names

str constraint names to filter on

Value

A list of binding constraints containing the constraints which have their name in constraint_names.

API-methods API methods

Description

API methods

Usage

api_get(
opts,
endpoint,

default_endpoint = "v1/studies”,
parse_result = NULL,
encoding = NULL

)
api_post(opts, endpoint, ..., default_endpoint = "v1/studies”)
api_put(opts, endpoint, ..., default_endpoint = "vi1/studies")
api_delete(opts, endpoint, ..., default_endpoint = "v1/studies"”)
Arguments
opts Antares simulation options or a 1ist with an host = slot.
endpoint API endpoint to interrogate, it will be added after default_endpoint. Can be

a full URL (by wrapping in I()), in that case default_endpoint is ignored.

. Additional arguments passed to API method.
default_endpoint
Default endpoint to use.

parse_result character options for parameter as of function httr: :content()

encoding argument to pass as argument to the function httr: :content()

as.antaresDatal ist 5

Value

Response from the API.

Examples

Not run:

List studies with local API
default result content in R object (auto parsed)
api_get(opts = list(host = "http://0.0.0.0:8080"),
endpoint = NULL,
parse_result = NULL)

You can force parse options as text and encoding to UTF-8
api_get(opts = list(host = "http://0.0.0.0:8080"),

endpoint = NULL,

parse_result = "text",

encoding = "UTF-8")

You can change or delete ~“default_endpoint=

no use ~default_endpoint”
api_get(opts = list(host = "http://0.0.0.0:8080"),
endpoint = NULL,
default_endpoint = NULL,
parse_result = "text",
encoding = "UTF-8")

replace ~default_endpoint”

api_get(opts = list(host = "http://0.0.0.0:8080"),
endpoint = NULL,
default_endpoint = "myfolder/myfolder”,
parse_result = "text”,
encoding = "UTF-8")

End(Not run)

as.antaresDatalist Convert objects to antaresDataTable

Description

This function converts a list of tables or table into an antaresDatalList object.

An antaresDatalist is a list of tables of classantaresDataTable. It also has attributes that store
the time step, the type of data and the simulation options.

6 as.antaresDataTable

Usage

as.antaresDatalList(x, ...)

S3 method for class 'antaresDataTable'
as.antaresDatalList(x, name = NULL, ...)

S3 method for class 'data.frame'
as.antaresDatalList(

X)

synthesis,

timeStep,

type,

opts = simOptions(),

name = type,

)
Arguments
X Data.frame or data.table to convert to a an antaresDataTable.
e Arguments to be passed to methods.
name name of the table in the final object. If NULL, the type of the data is used.
synthesis Does the table contain synthetic results ?
timeStep Time step of the data. One of "hourly", "daily", "weekly", "monthly" or "an-
nual".
type type of data: for instance "areas", "links", "clusters", etc.
opts Simulation options.
Value

antaresDatalist object.

as.antaresDataTable Convert objects to antaresDataTable

Description

This function converts a data.frame or a data. table into an antaresDataTable object.

An antaresDataTable is simply a data.table with additional attributes recording the time step,
the type of data and the simulation options.

Usage
as.antaresDataTable(x, ...)

S3 method for class 'data.frame'
as.antaresDataTable(x, synthesis, timeStep, type, opts = simOptions(), ...)

changeTimeStep 7

Arguments
X object to convert to a an antaresDatalist.
Arguments to be passed to methods.
synthesis Does the table contain synthetic results ?
timeStep Time step of the data. One of "hourly", "daily", "weekly", "monthly" or "an-
nual".
type type of data: for instance "areas", "links", "clusters", etc.
opts Simulation options.
Value

antaresDataTable object.

changeTimeStep Change the timestep of an output

Description

This function changes the timestep of a table or an antaresData object and performs the required
aggregation or desaggregation. We can specify (des)aggregate functions by columns, see the param
fun.

Usage

changeTimeStep(x, newTimeStep, oldTimeStep, fun = "sum”, opts = simOptions())

Arguments
X data.table with a column "timeld" or an object of class "antaresDataList"
newTimeStep Desired time step.The possible values are hourly, daily, weekly, monthly and
annual.
oldTimeStep Current time step of the data. This argument is optional for an object of class
antaresData because the time step of the data is stored inside the object
fun Character vector with one element per column to (des)aggregate indicating the
function to use ("sum", "mean", "min" or "max") for this column. It can be a
single element, in that case the same function is applied to every columns.
opts list of simulation parameters returned by the function setSimulationPath
Value

Either a data.table or an object of class "antaresDataList" depending on the class of x

8 copyToClipboard

Examples

Not run:
setSimulationPath()

areasH <- readAntares(select = "LOAD", synthesis = FALSE, mcYears = 1)
areasD <- readAntares(select = "LOAD"”, synthesis = FALSE, mcYears = 1, timeStep ="daily")

areasDAgg <- changeTimeStep(areasH, "daily", "hourly")
all.equal(areasDAgg$LOAD, areasD$LOAD)

Use different aggregation functions

mydata <- readAntares(select = c("LOAD", "MRG. PRICE"), timeStep = "monthly")

changeTimeStep(mydata, "annual”, fun = c("sum”, "mean"))

End(Not run)

copyToClipboard Copy data to the clipboard

Description

copyToClipboard is a utility function that copies data to the clipboard. The data can then be copied
in another program like excel.

Usage
copyToClipboard(x, ...)

S3 method for class 'antaresDatalist'

copyToClipboard(x, what, ...)
Arguments
X an object used to select a method.

arguments passed to write. table

what character or numeric indicating which element to copy to clipboard (areas, links,
clusters or districts)

Value

The function does not return anything. It is only used to interact with the clipboard

Note

The function is useful only for small data objects: for a table, only the 50000 rows are copied to
clipboard. If the table to copy is longer, either use filters to reduce the number of rows or write the
table in text file with write. table

extractDataL ist 9

Examples
This only works on Windows systems
Not run:
x <- data.frame(a = sample(10), b = sample(10))
copyToClipboard(x)

Try to open excel and use CTRL + V to copy the data in a spreadsheet.

End(Not run)

extractDatalList Format data PPSE-style

Description

This function converts an "read Antares" object in the data structure used by PPSE : instead of having
one table for areas, one for links and one for clusters, the function creates a list with one element
per area. Each element is a data.table containing the data about the area and one column per cluster
of the area containing the production of this cluster.

Usage

extractDatalList(x, areas = NULL)

Arguments
X object of class "antaresData" or "antaresTable" created by the function readAntares
areas character vector containing the name of areas to keep in the final object. If NULL,
all areas are kept in the final object.
Value

a list of data.tables with one element per area. The list also contains an element named "areal.ist"
containing the name of areas in the object and a table called "infos" that contains for each area the
number of variables of different type (values, details, link).

10 getAreas

getAreas Select and exclude areas

Description

getAreas and getDistricts are utility functions that builds list of areas or districts by using
regular expressions to select and/or exclude areas/districts

Usage

getAreas(
select = NULL,
exclude = NULL,
withClustersOnly = FALSE,
regexpSelect = TRUE,
regexpExclude = TRUE,
opts = simOptions(),
ignore.case = TRUE,
districts = NULL

getDistricts(
select = NULL,
exclude = NULL,
regexpSelect = TRUE,
regexpExclude = TRUE,
opts = simOptions(),
ignore.case = TRUE

)
Arguments
select Character vector. If regexpSelect is TRUE, this vector is interpreted as a list
of regular expressions. Else it is interpreted as a list of area names. If NULL, all
areas are selected
exclude Character vector. If regexpExclude is TRUE, this vector is interpreted as a list

of regular expressions and each area validating one of them is excluded. Else it
is interpreted as list of area names to exclude. If NULL, not any area is excluded.
withClustersOnly
Should the function return only nodes containing clusters ?
regexpSelect Is select alist of regular expressions ?

regexpExclude Is exclude a list of regular expressions ?

opts list of simulation parameters returned by the function setSimulationPath
ignore.case Should the case be ignored when evaluating the regular expressions ?
districts Names of districts. If this argument is not null, only areas belonging to the

specified districts are returned.

getGeographicTrimming 11

Value

A character vector containing the name of the areas/districts satisfying the rules defined by the
parameters.

See Also

getLinks

getGeographicTrimming Read geographic trimming (filtering) options

Description

Read geographic trimming (filtering) options

Usage

getGeographicTrimming(areas = NULL, links = TRUE, opts = simOptions())

Arguments
areas Character. vector of areas
links Logical. if TRUE, return filtering options for all links starting from selected
areas
opts List. simulation options
Value

list of filtering options for areas and links

getIdCols get Id columns

Description

getIdCols return the id columns of an AntaresDataTable

Usage
getIdCols(x = NULL)

Arguments

X an AntaresDataTable.

Value

A character vector containing the name of the id columns of an antaresDataTable

12

getLinks

getLinks

Retrieve links connected to a set of areas

Description

This function finds the names of the links connected to a set of areas.

Usage

getLinks(

areas = NULL,

exclude = NULL,

opts = simOptions(),
internalOnly = FALSE,
namesOnly = TRUE,

withDirection = FALSE,
withTransmission = FALSE
)
Arguments

areas Vector containing area names. It represents the set of areas we are interested in.
If NULL, all areas of the study are used.

exclude Vector containing area names. If not NULL, all links connected to one of these
areas are omitted.

opts list of simulation parameters returned by the function setSimulationPath

internalOnly If TRUE, only links that connect two areas from parameter areas are returned. If
not, the function also returns all the links that connect an area from the list with
an area outside the list.

namesOnly If TRUE, the function returns a vector with link names, else it returns a table
containing the name, the origin and the destination of each selected link.

withDirection Used only if namesOnly = FALSE. If FALSE, then the function returns a table
with one line per link, containing the link name, the origin and the destination
of the link. If TRUE, then it returns a table with columns area, link, to and
direction which is equal is equal to 1 if the link connects area to to and -1 if
it connects to to area. The column area contains only areas that are compatible
with parameters areas and exclude. Note that the same link can appear twice
in the table with different directions.

withTransmission

Used only if namesOnly = FALSE. If TRUE, a column is added to indicate type of
transmission capacities for links.

getThematicTrimming 13

Value

If namesOnly = TRUE the function returns a vector containing link names

If namesOnly = FALSE and withDirection = FALSE, it returns a data. table with exactly one line
per link and with three columns:

link Link name
from First area connected to the link
to Second area connected to the link

If namesOnly = FALSE and withDirection = TRUE, it returns a data. table with one or two lines
per link and with four columns:

area Area name

link Link name

to Area connected to area by link

direction 1 if the link connects area to to else -1
Examples

Not run:

Get all links of a study
getLinks()

Get all links with their origins and destinations
getLinks(namesOnly = FALSE)

Get all links connected to French areas (assuming their names contain "fr")
getlLinks(getAreas("fr"))

Same but with only links connecting two French areas
getlinks(getAreas(”"fr"), internalOnly = TRUE)

Exclude links connecting real areas with pumped storage virtual areas

(assuming their names contain "psp”)
getlinks(getAreas("fr"), exclude = getAreas("psp"))

End(Not run)

getThematicTrimming Get the Thematic trimming of an Antares study

Description

Antares API: OK
This function reads the "selection variables" section of the study’s "generaldata.ini" file.

Minimal version required is v8. 8.

14 hvdcModification

Usage

getThematicTrimming(opts = simOptions())

Arguments

opts list of simulation parameters returned by the function setSimulationPath

Value
data.frame with 2 columns :

* variables : names are displayed according to the study version

* status_selection : have 2 possible values ("active"; "skip")

Examples

Not run:
Get Thematic trimming of Antares study version >= v8.8

getThematicTrimming ()

End(Not run)

hvdcModification hvdc straitement

Description

usage for hvdc

Usage

hvdcModification(data, removeHvdcAreas = TRUE, reafectLinks = FALSE)

Arguments

data antaresDatalist data to apply straitement

removeHvdcAreas
boolean remove HVDC areas.

reafectlLinks boolean.

Value

Object of class "antaresDatalist" is returned. It is a list of data.tables, each element representing
one type of element (areas, links, clusters)

list_thematic_variables 15

Examples
Not run:
data <- readAntares(areas = 'all', links = 'all')

data <- setHvdcAreas(data, "psp in")
data <- hvdcModification(data)

End(Not run)

list_thematic_variables

List of thematic trimming variables available according to study ver-
sion

Description

Minimal version required is v8.8

Usage

list_thematic_variables(opts = simOptions())

Arguments

opts list of simulation parameters returned by the function setSimulationPath

Value

data. frame of available columns

Examples

Not run:
Display list (use first “setSimulationPath()" to have an active study loaded)
list_thematic_variables()

End(Not run)

16

parAggregateMCall

mergeDigests Merge two digests

Description

Merge two digests

Usage

mergeDigests(digest_new, digest_ori)

Arguments
digest_new new digest with missing lines
digest_ori original digest with all lines
Value

updated digest list of 5 tables (begin, areas, middle, links lin., links quad.)

See Also

readDigestFile

parAggregateMCall Creation of Mc_all new (only antares > V6)

Description

Creation of Mc_all new (only antares > V6)

Usage
parAggregateMCall(
opts,
nbcl = 8,

verbose = 2,

timestep = c("annual”, "daily"”, "hourly”, "monthly"”, "weekly"),

writeQutput = TRUE,
mcWeights = NULL,
mcYears = NULL,
filtering = FALSE,
selected = NULL,
legacy = FALSE

ponderateMcAggregation 17

aggregateResult(

opts,

verbose =

timestep = c("annual”, "daily"”, "hourly”, "monthly", "weekly"),

writeOutput

TRUE,

mcWeights = NULL,

mcYears =

NULL,

filtering = FALSE,
selected = NULL,
legacy = FALSE

Arguments
opts
nbcl

verbose

timestep
writeQutput
mcWeights
mcYears
filtering
selected

legacy

Value

list of simulation parameters returned by the function setSimulationPath
numeric Number of parralel process
numeric show log in console. Defaut to 1
* 0: Nolog
* 1: Short log
e 2: Long log
character antares timestep
boolean write result or not.
numeric vector of weigth for mcYears.
numeric mcYears to load.
boolean filtering control
list named list (pass to antaresRead) : list(areas = ’a’, links =’a-¢’)

boolean run old version of the function

Object list of data.tables, each element representing one type of element (areas, links, clusters)

ponderateMcAggregation

Mcyear aggregation weigthed by wd

Description

Mcyear aggregation weigthed by wd

Usage

ponderateMcAggregation(x, fun = weighted.mean, ...)

18 read-ini

Arguments
X antaresData data import with antaresRead
fun function function to use
args others args pass to fun
Value

"

Object of class "antaresDataTable".

Examples

Not run:
data <- readAntares(areas = 'all', mcYears = 'all')
ponderateMcAggregation(data, fun = weighted.mean, w = c(.1, .9))

End(Not run)

read-ini Read configuration options from file or API

Description

Read configuration options from file or API

Usage

readIni(pathIni, opts = antaresRead::simOptions(), default_ext = ".ini"
readIniFile(file, stringsAsFactors = FALSE)

readIniAPI(study_id, path, host, token = NULL)

Arguments
pathIni Path to config/ini file to read.
opts List of simulation parameters returned by the function setSimulationPath()
default_ext Default extension used for config files.
file File path.
stringsAsFactors
logical: should character vectors be converted to factors?
study_id Study’s identifier.
path Path of configuration object to read.
host Host of AntaREST server APIL.

token API personnal access token.

readAntares 19

Value

A list with an element for each section of the .ini file.

Examples

Not run:
library(antaresRead)
library(antaresEditObject)

With physical study:
setSimulationPath(”../tests-studies/Study_V8.2/", simulation = "input")
readIni("settings/generaldata”)

With API
setSimulationPathAPI(
host = "http://localhost:8080",
study_id = "73427ae1-be83-44e0-b04f-d5127e53424c",
token = NULL,
simulation = "input”
)

readIni("settings/generaldata”)

End(Not run)

readAntares Read the data of an Antares simulation

Description

Antares API: OK

readAntares is a swiss-army-knife function used to read almost every possible time series of an
antares Project at any desired time resolution (hourly, daily, weekly, monthly or annual).

It was first designed to read output time series, but it can also read input time series. The input
time series are processed by the function to fit the query of the user (timeStep, synthetic results
or Monte-Carlo simulation, etc.). The few data that are not read by readAntares can generally
by read with other functions of the package starting with "read" (readClusterDesc, readLayout,
readBindingConstraints)

Usage
readAntares(
areas = NULL,
links = NULL,

clusters = NULL,
districts = NULL,
clustersRes = NULL,

20

readAntares

clustersST = NULL,
bindingConstraints = FALSE,

misc = FALSE,

thermalAvailabilities = FALSE,
hydroStorage = FALSE,
hydroStorageMaxPower = FALSE,
reserve = FALSE,

linkCapacity = FALSE,

mustRun = FALSE,
thermalModulation = FALSE,
select = NULL,

mcYears =

NULL,

timeStep = c("hourly”, "daily"”, "weekly”, "monthly”, "annual”),

mcWeights

NULL,

number_of_batches = 10,
opts = simOptions(),
parallel = FALSE,
simplify = TRUE,

showProgress = TRUE
)
Arguments

areas Vector containing the names of the areas to import. If NULL no area is imported.
The special value "all” tells the function to import all areas. By default, the
value is "all" when no other argument is enter and "NULL" when other argu-
ments are enter.

links Vector containing the name of links to import. If NULL no area is imported. The
special value "all" tells the function to import all areas. Use function getLinks
to import all links connected to some areas.

clusters Vector containing the name of the areas for which you want to import results at
thermal cluster level. If NULL no cluster is imported. The special value "all”
tells the function to import thermal clusters from all areas.

districts Vector containing the names of the districts to import. If NULL, no district is
imported. The special value "all” tells the function to import all districts.

clustersRes Vector containing the name of the areas for which you want to import results at
renewable cluster level. If NULL no cluster is imported. The special value "all"
tells the function to import renewable clusters from all areas.

clustersST Vector containing the name of the areas for which you want to import results at
short-term cluster level. If NULL no cluster is imported. The special value "all”
tells the function to import short-term clusters from all areas.

bindingConstraints
Should binding constraints be imported (v8.4+)?

misc Vector containing the name of the areas for which you want to import misc.

thermalAvailabilities

Should thermal availabilities of clusters be imported ? If TRUE, the column
"thermalAvailability" is added to the result and a new column "availableUnits"

readAntares 21

containing the number of available units in a cluster is created.If synthesis is
set to TRUE then "availableUnits" contain the mean of avaible units on all MC
Years.

hydroStorage Should hydro storage be imported ?
hydroStorageMaxPower
Should hydro storage maximum power be imported ?

reserve Should reserve be imported ?
linkCapacity Should link capacities be imported ?

mustRun Should must run productions be added to the result? If TRUE, then four columns
are added: mustRun contains the production of clusters that are in complete must
run mode; mustRunPartial contains the partial must run production of clusters;
mustRunTotal is the sum of the two previous columns. Finally thermalPmin is
similar to mustRunTotal except it also takes into account the production induced
by the minimum stable power of the units of a cluster. More precisely, for a given
cluster and a given time step, it is equal to min(NODU x min.stable.power,
mustRunTotal).

thermalModulation
Should thermal modulation time series be imported ? If TRUE, the columns
"marginalCostModulation", "marketBidModulation", "capacityModulation" and
"minGenModulation" are added to the cluster data.

select Character vector containing the name of the columns to import. If this argument
is NULL, all variables are imported. Special names "allAreas” and "alllLinks"
indicate to the function to import all variables for areas or for links. Since
version 1.0, values "misc", "thermalAvailabilities", "hydroStorage", "hydroS-
torageMaxPower", "reserve", "linkCapacity", "mustRun", "thermalModulation"
are also accepted and can replace the corresponding arguments. The list of
available variables can be seen with the command simOptions()$variables.
Id variables like area, link or timeld are automatically imported. Note that

select is not taken into account when importing cluster data.

mcYears Index of the Monte-Carlo years to import. If NULL, synthetic results are read,
else the specified Monte-Carlo simulations are imported. The special value all
tells the function to import all Monte-Carlo simulations.

timeStep Resolution of the data to import: hourly (default), daily, weekly, monthly or
annual.
mcWeights Vector of weights to apply to the specified mcYears. If not NULL, the vector

must be the same length as the vector provided in the mcYear parameter. The
function readAntares will then return the weighted synthetic results for the
specified years, with the specified weights.

number_of_batches
In API mode, to read the results for individual mcYears, you can choose the
number of batches you want.

opts list of simulation parameters returned by the function setSimulationPath
parallel Should the importation be parallelized ? (See details)
simplify If TRUE and only one type of output is imported then a data.table is returned. If

FALSE, the result will always be a list of class "antaresData".
showProgress If TRUE the function displays information about the progress of the importation.

22 readAntares

Details
If parameters areas, links, clusters and districts are all NULL, readAntares will read output
for all areas. By default the function reads synthetic results if they are available.

readAntares is able to read input time series, but when they are not stored in output, these time
series may have changed since a simulation has been run. In such a case the function will remind
you this danger with a warning.

When individual Monte-Carlo simulations are read, the function may crash because of insufficient
memory. In such a case, it is necessary to reduce size of the output. Different strategies are available
depending on your objective:

* Use a larger time step (parameter timeStep)

* Filter the elements to import (parameters areas,links, clusters and districts)

* Select only a few columns (parameter select)

* read only a subset of Monte-Carlo simulations (parameter mcYears). For instance one can im-
port a random sample of 100 simulations with mcYears = sample(simOptions()$mcYears,
100)

Value

If simplify = TRUE and only one type of output is imported then the result is a data.table.

Else an object of class "antaresDataList" is returned. It is a list of data.tables, each element repre-
senting one type of element (areas, links, clusters)

Parallelization

If you import several elements of the same type (areas, links, clusters), you can use parallelized
importation to improve performance. Setting the parameter parallel = TRUE is not enough to
parallelize the importation, you also have to install the package foreach and a package that provides
a parallel backend (for instance the package doParallel).

Before running the function with argument parallel=TRUE, you need to register your parallel back-
end. For instance, if you use package "doParallel” you need to use the function registerDoParallel
once per session.

See Also

setSimulationPath, getAreas, getlLinks, getDistricts

Examples

Not run:
Import areas and links separately

areas <- readAntares() # equivalent to readAntares(areas="all")
links <- readAntares(links="all")

Import areas and links at same time

https://CRAN.R-project.org/package=foreach
https://CRAN.R-project.org/package=doParallel

readAntaresAreas 23

output <- readAntares(areas = "all”, links = "all")

Add input time series to the object returned by the function
areas <- readAntares(areas = "all"”, misc = TRUE, reserve = TRUE)

Get all output for one area

myArea <- sample(simOptions()$arealist, 1)
myArea

myAreaOutput <- readAntares(area = myArea,
links = getlLinks(myArea, regexpSelect=FALSE),

clusters = myArea)

Or equivalently:
myAreaOutput <- readAntaresAreas(myArea)

Use parameter "select” to read only some columns.
areas <- readAntares(select = c("LOAD", "OV. COST"))

Aliases can be used to select frequent groups of columns. use showAliases()
to view a list of available aliases

areas <- readAntares(select="economy")

End(Not run)

readAntaresAreas Read output for a list of areas

Description

This a function is a wrapper for "antaresData" that reads all data for a list of areas.

Usage
readAntaresAreas(
areas,
links = TRUE,

clusters = TRUE,
clustersRes = TRUE,
internalOnly = FALSE,
opts = simOptions(),

24 readAntaresClusters

Arguments
areas Vector containing area names. It represents the set of areas we are interested in.
If NULL, all areas of the study are used.
links should links connected to the areas be imported ?
clusters should the thermal clusters of the areas be imported ?
clustersRes should the renewable clusters of the areas be imported ?

internalOnly If TRUE, only links that connect two areas from parameter areas are returned. If
not, the function also returns all the links that connect an area from the list with
an area outside the list.

opts list of simulation parameters returned by the function setSimulationPath

Other arguments passed to the function readAntares

Value

If simplify = TRUE and only one type of output is imported then the result is a data.table.

Else an object of class "antaresData" is returned. It is a list of data.tables, each element representing
one type of element (areas, links, clusters)
Examples

Not run:
myarea <- simOptions()$arealist[1]
data <- readAntaresAreas(myarea)

Equivalent but more concise than:
data2 <- readAntares(myarea, links = getlLinks(myarea), clusters = myarea)

all.equal(data, data2)

End(Not run)

readAntaresClusters Read output for a list of clusters

Description

Read output for a list of clusters

Usage

readAntaresClusters(
clusters,
selected = c("production”, "NP Cost”, "NODU", "profit"),
timeStep = c("hourly”, "daily"”, "weekly”, "monthly"”, "annual”),
opts = simOptions(),

readAntaresSTClusters 25

parallel = FALSE,
showProgress = TRUE

)
Arguments
clusters vector of thermal clusters to be imported
selected vector of thematic trimming
timeStep Resolution of the data to import: hourly (default), daily, weekly, monthly or
annual.
opts list of simulation parameters returned by the function setSimulationPath
parallel Should the importation be parallelized ? (See details)

showProgress If TRUE the function displays information about the progress of the importation.

Value

data.table of results for thermal clusters

readAntaresSTClusters Read output for a list of short-term storage clusters

Description

Read output for a list of short-term storage clusters

Usage

readAntaresSTClusters(
clustersST,
selected = c("P.injection”, "levels"”, "P.withdrawal”),
timeStep = c("hourly”, "daily"”, "weekly”, "monthly"”, "annual”),
opts = simOptions(),
parallel = FALSE,
showProgress = TRUE

)
Arguments
clustersST vector of short-term storage clusters to be imported
selected vector of thematic trimming
timeStep Resolution of the data to import: hourly (default), daily, weekly, monthly or
annual.
opts list of simulation parameters returned by the function setSimulationPath
parallel Should the importation be parallelized ? (See details)

showProgress If TRUE the function displays information about the progress of the importation.

26 readBindingConstraints

Value

data.table of results for short-term storage clusters

readBindingConstraints
Read binding constraints

Description

Antares API: OK [Experimental]
This function reads the binding constraints of an Antares project.

Be aware that binding constraints are read in the input files of a study. So they may have changed
since a simulation has been run.

Usage

readBindingConstraints(
opts = simOptions(),
with_time_series = TRUE,
constraint_names = NULL

Arguments

opts list of simulation parameters returned by the function setSimulationPath
with_time_series

boolean if TRUE, the second member time series are read
constraint_names

str constraint names to filter on

Value

An object of class bindingConstraints. This object is also a named list with 3 sections per read
constraint.

Warning

Since release 2.7.0 the structure of the returned object has evolved for all versions of study
Antares:

* .ini parameters are in section properties

 Coefficients links or thermal are in section coef's

* Values are already in section values

readClusterDesc 27

Note

For an study Antares version >=8.7.0. Now contains data. frame with one line per time step and p
colums according to "scenarized RHS".

For "both" case, you will find in section values two data. frame :

¢ One data. frame for less
¢ One data. frame for greater

For an study Antares version <8.7.0.

non

Section values contains one line per time step and three columns "less", "greater" and "equal"

Examples

Not run:
setSimulationPath()

constraints <- readBindingConstraints()

read properties
constraints$properties

read coefs
constraints$coefs

read values
constraints$values

both case (study Antares >=8.7.0)
constraints$values$less
constraints$values$greater

display equation (only for study Antares <8.7.0)
summary (constraints)

read binding constraints without the time series
readBindingConstraints(opts = simOptions(), with_time_series = FALSE)

End(Not run)

readClusterDesc Import clusters description

Description

This function reads in the input files of an antares study the properties of each cluster.

Be aware that clusters descriptions are read in the input files so they may have changed since a
simulation has been run.

28 readClusterDesc

Usage

readClusterDesc(opts = simOptions(), dot_format = TRUE)
readClusterResDesc(opts = simOptions(), dot_format = TRUE)

readClusterSTDesc(opts = simOptions(), dot_format = TRUE)

Arguments
opts list of simulation parameters returned by the function setSimulationPath
dot_format logical default TRUE to return character with "valid" format (see make . names())
Value

A data. table with one line per cluster.

Columns are displayed using the 3 key columns (area, cluster, group). The rest of the properties
are displayed according to cluster type ("thermal”, "renewable" or "st-storages").

key columns:

area Name of the area containing the cluster
cluster Name of the cluster
group Type of cluster (gaz, nuclear, etc.)

By default, the function reads the cluster description of the default antares study. You can use the
argument opts to specify another study.

readClusterDesc : read thermal clusters
readClusterResDesc : read renewable clusters (Antares >= V8.1)
readClusterSTDesc : read st-storage clusters (Antares >= V8.6)

If you have no clusters properties, Null data.table (@ rows and @ cols) is returned.

Warning

You have now two format output to display input properties. Default is format uses by operating
team, eg min.down. time. Other format is according to antares simulator, eg min-down-time.

All properties are returned with default values according to Antares Study version.
Examples

Not run:

Default format with "dot separator”

thermal
readClusterDesc()

renewable
readClusterResDesc()

readDigestFile 29

st-storage
readClusterSTDesc()

Antares Simulator format

#' # thermal
readClusterDesc(dot_format = FALSE)

renewable
readClusterResDesc(dot_format = FALSE)

st-storage

readClusterSTDesc(dot_format = FALSE)

By default, the function reads cluster descriptions for the default study,
but it is possible to specify another study with parameter "opts”
siml <- setSimulationPath()

#[... code that modifies the default antares study]

readClusterDesc(sim1)

End(Not run)

readDigestFile Read digest file

Description

Read digest file

Usage

readDigestFile(opts, endpoint = "mc-all/grid/digest.txt")

Arguments

opts simulation options

endpoint Suffix of path for digest file Default is : "mc-all/grid/digest.txt" added to opts$simDataPath
Value

list of 5 tables (begin, areas, middle, links lin., links quad.)

30 readIlnputRES

readInputRES Read Input RES time series

Description

readInputRes is a function that reads renewable time series from an antares project. But contrary
to readAntares, it only reads time series stored in the input folder, so it can work in "input" mode.

Usage

readInputRES(
areas = "all”,
clusters,
opts = simOptions(),
timeStep = c("hourly”, "daily"”, "weekly”, "monthly"”, "annual”),
simplify = TRUE,
parallel = FALSE,
showProgress = TRUE

)
Arguments

areas vector of RES areas names for which renewable time series must be read.

clusters vector of RES clusters names for which renewable time series must be read.

opts list of simulation parameters returned by the function setSimulationPath

timeStep Resolution of the data to import: hourly (default), daily, weekly, monthly or
annual.

simplify If TRUE and only one type of output is imported then a data.table is returned. If
FALSE, the result will always be a list of class "antaresData".

parallel Should the importation be parallelized ? (See details)

showProgress If TRUE the function displays information about the progress of the importation.

Value

data.table with class "antaresDataTable".

See Also

setSimulationPath, readAntares, getAreas, getLinks

readInputThermal 31

readInputThermal Read Input thermal time series

Description

readInputThermal is a function that reads thermal time series from an antares project. But contrary
to readAntares, it only reads time series stored in the input folder, so it can work in "input" mode.

Usage

readInputThermal(
areas = "all",
clusters,
thermalAvailabilities = TRUE,
thermalModulation = FALSE,
thermalData = FALSE,
opts = simOptions(),
timeStep = c("hourly”, "daily"”, "weekly”, "monthly"”, "annual”),

simplify = TRUE,
parallel = FALSE,
showProgress = TRUE
)
Arguments
areas vector of areas names for which thermal time series must be read.
clusters vector of clusters names for which thermal time series must be read.

thermalAvailabilities

if TRUE, return thermalAvailabilities data
thermalModulation

if TRUE, return thermalModulation data

thermalData if TRUE, return thermalData from prepro

opts list of simulation parameters returned by the function setSimulationPath

timeStep Resolution of the data to import: hourly (default), daily, weekly, monthly or
annual.

simplify If TRUE and only one type of output is imported then a data.table is returned. If

FALSE, the result will always be a list of class "antaresData".
parallel Should the importation be parallelized ? (See details)

showProgress If TRUE the function displays information about the progress of the importation.

Value

If thermalModulation or thermalData is TRUE, an object of class "antaresDatalist" is returned. It
is a list of data.tables for selected input

Else the result is a data.table with class "antaresDataTable".

32 readInputTS

Note

the clusters parameter can also accept the special value "all". It indicates the function to read the
desired time series for all clusters.

See Also

setSimulationPath, readAntares, getAreas, getLinks

readInputTS Read Input time series

Description

Antares API: OK

readInputTSis a function that reads time series from an antares project. But contrary to readAntares,
it only reads time series stored in the input folder, so it can work in "input" mode.

Usage

readInputTS(
load = NULL,
thermalAvailabilities = NULL,
ror = NULL,
mingen = NULL,
hydroStorage = NULL,
hydroStorageMaxPower = NULL,

wind = NULL,
solar = NULL,
misc = NULL,

reserve = NULL,

linkCapacity = NULL,

resProduction = NULL,

st_storage = NULL,

opts = simOptions(),

timeStep = c("hourly”, "daily"”, "weekly”, "monthly"”, "annual”),

simplify = TRUE,
parallel = FALSE,
showProgress = TRUE
)
Arguments
load vector of areas names for which load time series must be read.

thermalAvailabilities
vector of areas names for which thermal availabilities of clusters must be read.

ror vector of areas names for which run of river time series must be read.

readlnputTS

33

mingen vector of areas names for which Hydro Pmin time series must be read. (only for
Antares version >= 860)

hydroStorage vector of areas names for which hydrolic storage time series must be read.

hydroStorageMaxPower
vector of areas names for which hydrolic storage maximum power time series
must be read.

wind vector of areas names for which wind time series must be read

solar vector of areas names for which solar time series must be read

misc vector of areas names for which misc time series must be read

reserve vector of areas names for which reserve time series must be read

linkCapacity vector of links names for which links characteristics time series must be read

resProduction vector of areas names for which renewables clusters production time series must
be read.

st_storage vector of areas names for which st-storage clusters production time series must
be read.

opts list of simulation parameters returned by the function setSimulationPath

timeStep Resolution of the data to import: hourly (default), daily, weekly, monthly or
annual.

simplify If TRUE and only one type of output is imported then a data.table is returned. If
FALSE, the result will always be a list of class "antaresData".

parallel Should the importation be parallelized ? (See details)

showProgress If TRUE the function displays information about the progress of the importation.

Value

If simplify = TRUE and only one type of input is imported then the result is a data.table with class
"antaresDataTable".

Else an object of class "antaresDataList" is returned. It is a list of data.tables, each element repre-
senting one type of element (load, wind, solar, etc.).

Note

All parameters expecting a vector of areas or links names also accept the special value "all". It
indicates the function to read the desired time series for all areas or links.

See Also

setSimulationPath, readAntares, getAreas, getLinks

Examples

Not run:

Set an antares study in "input” mode. This is useful when one want to
inspect input time series before running a simulation.
Note that readAntares do not function in input mode, but readInputTS

34 readLayout

works with any mode.
setSimulationPath("”path_to_the_study”, "input")

Read load time series
readInputTS(load = "all")

Read hydrolic storage and maximum power in the same call:
readInputTS(hydroStorage = "all"”, hydroStorageMaxPower = "all")

Use a different time step
myArea <- readInputTS(load= "myArea”, timeStep = "monthly")

Quick plot to visualize the variability of the series
matplot(myAreal, - (1:2), with = FALSE], type = "1")

End(Not run)

readLayout Read areas layout

Description

This function reads in the input files of an antares study the current areas layout, ie. the position of
the areas It may be useful for plotting the network.

Be aware that the layout is read in the input files so they may have changed since a simulation has
been run.
Usage

readLayout (opts = simOptions(), xyCompare = c("union”, "intersect”))

Arguments

opts list of simulation parameters returned by the function setSimulationPath

xyCompare Use when passing multiple opts, can be "union" or "intersect".

Value

A list with three elements:

areas: A data.frame containing the name, the color and the coordinate of each area
district: A data.frame containing the name, the color and the coordinate of each district
links: A data.frame containing the name, the coordinates of the origin and the destina-

tion of each link

By default, readLayout reads the layout for the current default antares study. It is possible to
specify another study with the parameter opts. And we can pass multiple studies using a 1ist of
opts.

readOptimCriteria 35

Examples

Not run:
readLayout ()

By default, the function reads layout for the default study,
but it is possible to specify another study with parameter "opts”
siml <- setSimulationPath()

#[... code that modifies the default antares study]

readLayout(sim1)

End(Not run)

readOptimCriteria Read Optimization Criteria

Description
This function can be used to read the value of the criteria optimized by ANTARES. Notice that
these values are only available in "Xpansion" mode or when option "Export mps" is turned on.
Usage

readOptimCriteria(opts = simOptions())

Arguments

opts list of simulation parameters returned by the function setSimulationPath

Value

A table of class antaresDataTable. It contains the usual columns timeID, mcYear, time and two
columns "criterionl" and "criterion2" containing the values of the criteria. Time step can be daily
or weekly depending on the optimization options.

Examples

Not run:
setSimulationPath()

optimCriteria <- readOptimCriteria()

End(Not run)

36 read_storages_constraints

read_storages_constraints
Read Short-term storages / additional constraints

Description
Antares API: OK [Experimental]

This function reads constraints of an Antares project (by area/cluster) :

* Properties

¢ Time series

Be aware that constraints are read in the input files of a study. So they may have changed since a
simulation has been run.
Usage

read_storages_constraints(opts = simOptions())

Arguments

opts list of simulation parameters returned by the function setSimulationPath

Value

list with 2 sections per cluster/constraint (properties + values).

Examples
Not run:
read/load an existing study (version >= 9.2)
setSimulationPath(path = "mypath/study”)

read_storages_constraints()

End(Not run)

remove Virtual Areas

37

removeVirtualAreas Remove virtual areas

Description

This function removes virtual areas from an antaresDatalList object and corrects the data for the
real areas. The antaresDatalList object should contain area and link data to function correctly.

Usage

removeVirtualAreas(

X,

storageFlexibility = NULL,
production = NULL,

reassignCosts

= FALSE,

newCols = TRUE,
rowBal = TRUE,

prodVars =

getAlias("rmVA_production”),

costsVars = c("0OV. COST", "OP. COST"”, "CO2 EMIS.”, "NP COST"),
costsOn = c("both”, "storageFlexibility"”, "production”)

)
Arguments

X An object of class antaresDatal ist with at least components areas and links.

storageFlexibility
A vector containing the names of the virtual storage/flexibility areas. Can also
be a named list. Names are columns to add and elements the virtual areas to
group.

production A vector containing the names of the virtual production areas.

reassignCosts If TRUE, the production costs of the virtual areas are reallocated to the real areas
they are connected to. If the virtual areas are connected to a virtual hub, their
costs are first reallocated to the hub and then the costs of the hub are reallocated
to the real areas.

newCols If TRUE, new columns containing the production of the virtual areas are added.
If FALSE their production is added to the production of the real areas they are
connected to.

rowBal If TRUE, then BALANCE will be corrected by ROW. BAL: BALANCE := BAL-
ANCE - "ROW. BAL"

prodVars Virtual productions columns to add to real area. Default to getAlias("rmVA_production™)

costsVars If parameter reassignCosts is TRUE, affected columns. Default to OV. COST,
OP. COST, CO2 EMIS. and NP COST

costsOn If parameter reassignCosts is TRUE, then the costs of the virtual areas are

reassigned to the real areas they are connected to. You can choose to reassigned
production & storageFlexibility virtuals areas ("both", default), or only "produc-
tion" or "storageFlexibility" virtuals areas

38

Details

remove Virtual Areas

Two types of virtual areas have been defined corresponding to different types of modeling in Antares
and different types of post-treatment to do:

Flexibility/storage areas are areas created to model pumping unit or any other flexibility that
behave as a storage. For those virtual areas, the important results are flows on the links.

Production areas are areas created to isolate some generation from the "real" areas. They can
be isolate for several reasons: to distinguish time-series (for example wind onshore/offshore),
to select some specific unit to participate to day-ahead reserve, etc.

removeVirtualAreas performs different corrections:

Correct the balance of the real areas (and districts) by removing the flows to or from virtual
areas.

If parameter reassignCosts is TRUE, then the costs of the virtual areas are reassigned to
the real areas they are connected to. The default affected columns are OV. COST, OP. COST,
CO2 EMIS. and NP COST. If a virtual area is connected to a single real area, all its costs are
attributed to the real area. If it is connected to several real areas, then costs at a given time
step are divided between them proportionally to the flows between them and the virtual area.
An aggregation is done at the end to correct districts costs.

For each storage/flexibility area, a column named like the area is created. It contains the
values of the flow between the virtual area and the real areas. This column is interpreted as
a production of electricity: it is positive if the flow from the virtual area to the real area is
positive and negative otherwise. If parameter newCols is FALSE, the values are added to the
variable PSP and the columns is removed. An aggregation is done at the end to add virtual
storage/flexibility to districts.

If the parameter production is specified, then the non null productions of the virtual areas are
either added to the ones of the real areas they are connected to if newCols = FALSE or put in
new columns if newCols = TRUE. In the second case the columns are named *_virtual where
"%" is a type of production (wind, solar, nuclear, ...). Productions that are zero for all virtual
areas are omited. If virtual production areas contains clusters then they will be move to the

real area. An aggregation is done at the end to add virtual production to districts.

Finally, virtual areas and the links connected to them are removed from the data.

The functions makes a few assumptions about the network. If they are violated it will not act
correctly:

Value

storage/flexibility areas can be connected to other storage/flexibility areas (hubs), but at least
one of them is connected to a real area. That means that there is no group of virtual areas
disconnected from the real network. If such a group exists, you can either remove them
manually or simply not import them.

production areas are connected to one and only one real area. They cannot be connected to
virtual areas. But a real area may by connected to several production areas.

An antaresDatalist object in which virtual areas have been removed and data of the real has been
corrected. See details for an explanation of the corrections.

setHvdcAreas
Examples
Not run:

Assume we have a network with two virtual areas acting as pump storage and
an area representing offshore production

#

offshore

|

real area - psp in
\

psp out
#

data <- readAntares(areas="all", links="all")
Remove pump storage virtual areas

correctedData <- removeVirtualAreas(

X = data,
storageFlexibility = c("psp in", "psp out"),
production = "offshore”
)
correctedData_list <- removeVirtualAreas(
X = data,
storageFlexibility = list(PSP = c("psp in"”, "psp out")),
production = "offshore”

correctedData_details <- removeVirtualAreas(

x = data,
storageFlexibility = list(PSP_IN = "psp in", PSP_OUT = "psp out”),
production = "offshore”

End(Not run)

setHvdcAreas Set hvdc areas

Description

This function add hvdc attribute

Usage

setHvdcAreas(data, areas)

40 setRam

Arguments
data antaresData or antaresDatalist data.
areas character hvdc areas list.

Value

Object of class "antaresDataList" is returned. It is a list of data.tables, each element representing
one type of element (areas, links, clusters)

Examples

Not run:
library(antaresRead)
opts <- setSimulationPath('mypath', 1)

myAreaOutput <- readAntares(areas = "all"”, links = "all")
myAreaOutput <- setHvdcAreas(myAreaOutput, "y_dsr")

End(Not run)

setRam Specify RAM limit

Description

This function specify RAM limit (in Go) of the value returned by read Antares.

Usage

setRam(x)

Arguments

X numeric RAM limit in Go

Value

list (returned by options())

Examples

Not run:
#Set maximum ram to used to 50 Go
setRam(50)

End(Not run)

setSimulationPath

41

setSimulationPath

Set Path to an Antares simulation

Description

This function has to be used before the read functions. It sets the path to the Antares simulation to
work on and other useful options (list of areas, links, areas with clusters, variables, etc.). On local
disk with setSimulationPath or on an AntaREST API with setSimulationPathAPI

Usage

setSimulationPath(path, simulation = NULL)

setSimulationPathAPI(

host,
study_id,
token,

simulation = NULL,

timeout =

600,

httr_config = list()

Arguments

path

simulation

host
study_id
token
timeout

httr_config

(optional) Path to the simulation. It can either be the path to a directory con-
taining an antares project or directly to the directory containing the output of a
simulation. If missing, a window opens and lets the user choose the directory of
the simulation interactively. Can also choose .h5 file, if rhdf5 is installed.

(optional) Only used if "path" represents the path of a study and not of the out-
put of a simulation. It can be either the name of the simulation or a number
indicating which simulation to use. It is possible to use negative values to se-
lect a simulation from the last one: for instance -1 will select the most recent
simulation, -2 will the penultimate one, etc. There are two special values 0 and
"input" that tells the function that the user is not interested by the results of any
simulation, but only by the inputs. In such a case, the function readAntares is
unavailable.

character host of AntaREST server API
character id of the target study on the API
character API personnal access token
numeric API timeout (Default to 600 seconds).

API httr configuration. See config

42 setSimulationPath

Details

The simulation chosen with setSimulationPath or setSimulationPathAPI becomes the default
simulation for all functions of the package. This behavior is fine when working on only one simu-
lation, but it may become problematic when working on multiple simulations at same time.

In such case, you can store the object returned by the function in a variable and pass this variable to
the functions of the package (see examples).

Value

A list containing various information about the simulation, in particular:

studyPath path of the Antares study

simPath path of the simulation

inputPath path of the input folder of the study

studyName Name of the study

simDataPath path of the folder containing the data of the simulation

name name of the simulation

mode type of simulation: economy, adequacy, draft or input

synthesis Are synthetic results available ?

yearByYear Are the results for each Monte Carlo simulation available ?

scenarios Are the Monte-Carlo scenarii stored in output ? This is important to reconstruct

some input time series that have been used in each Monte-Carlo simulation.
mcYears Vector containing the number of the exported Monte-Carlo scenarios
antaresVersion Version of Antares used to run the simulation.
arealist Vector of the available areas.

districtList Vector of the available districts.

linkList Vector of the available links.
areasWithClusters
Vector of areas containing clusters.
areasWithResClusters
Vector of areas containing clusters renewable.
areasWithSTClusters
Vector of areas containing clusters storage (>=v8.6.0).
variables Available variables for areas, districts and links.
parameters Other parameters of the simulation.
binding Table of time series dimensions for each group (>=v8.7.0).
timeIdMin Minimum time id of the simulation. It is generally equal to one but can be higher
if working on a subperiod.
timeIdMax maximum time id of the simulation.
start Date of the first day of the year in the simulation. This date corresponds to

timeld = 1.

setSimulationPath 43

firstWeekday First day of the week.

districtsDef data.table containing the specification of the districts.

energyCosts list containing the cost of spilled and unsupplied energy.
verbose logical default to FALSE, put to TRUE to manage diagnostic messages
sleep timer for api commande execute

See Also

simOptions, readAntares, readLayout, readClusterDesc, readBindingConstraints
setTimeoutAPI

Examples

Not run:
Select interactively a study. It only works on windows.

setSimulationPath()
Specify path of the study. Note: if there are more than one simulation
output in the study, the function will asks the user to interactively choose
one simulation.
setSimulationPath("path_of_the_folder_of_the_study"”)
Select the first simulation of a study
setSimulationPath("”path_of_the_folder_of_the_study”, 1)
Select the last simulation of a study
setSimulationPath("path_of_the_folder_of_the_study”, -1)
Select a simulation by name
setSimulationPath("path_of_the_folder_of_the_study”, "name of the simulation”)
Just need to read input data
setSimulationPath(”path_of_the_folder_of_the_study”, "input")
or
setSimulationPath("path_of_the_folder_of_the_study"”, @)
Working with API
setSimulationPathAPI(

host = "http://antares_api_adress”,

study_id = "study_id_on_api”,

token = "token"

)

Custom httr options ?

44

setSimulationPath

global using httr package
require(httr)
set_config(verbose())
setSimulationPathAPI(

host = "http://antares_api_adress”,
study_id = "study_id_on_api”,
token = "token"

reset_config()

or in setSimulationPathAPI
setSimulationPathAPI(

host = "http://antares_api_adress”,
study_id = "study_id_on_api”,
token = "token",

httr_config = config(verbose = TRUE)

disable ssl certificate checking ?
setSimulationPathAPI(

host = "http://antares_api_adress”,
study_id = "study_id_on_api”,
token = "token",

httr_config = config(ssl_verifypeer = FALSE)

WORKING WITH MULTIPLE SIMULATIONS

Let us assume ten simulations have been run and we want to collect the
variable "LOAD" for each area. We can create a list containing options
for each simulation and iterate through this list.

opts <- lapply(1:10, function(i) {
setSimulationPath("path_of_the_folder_of_the_study”, i)
»

output <- lapply(opts, function(o) {
res <- readAntares(areas = "all"”, select = "LOAD", timeStep = "monthly"”, opts = o)
Add a column "simulation” containing the name of the simulation
res$simulation <- o$name
res

b

Concatenate all the tables in one super table
output <- rbindlist(output)

Reshape output for easier comparisons: one line per timeId and one column
per simulation

output <- dcast(output, timeld + areald ~ simulation, value.var = "LOAD")

output

setTimeoutAPI 45

Quick visualization
matplot(output[area == area[1], !c("area”, "timeld"), with = FALSE],
type = 111")

End(Not run)

setTimeoutAPI Change API Timeout

Description

Change API Timeout

Usage

setTimeoutAPI(opts, timeout)

Arguments
opts list of simulation parameters returned by the function setSimulationPathAPI
timeout numeric API timeout (seconds). Default to 600.

Value

Object of class simOptions, list of options used to read the data contained in the last simulation
read by setSimulationPathAPI.

Examples

Not run:
opts <- setTimeoutAPI(opts, timeout = 45)

End(Not run)

46 showAliases

showAliases show aliases for variables

Description

Aliases are short names that can be used in the select parameter in function readAntares to tell
the function which columns and/or type of data to import.

setAlias can be used to create a new alias. It can be especially useful for package developers to
help their users select the data required by their packages.

getAlias return character vector containing columns and/or types of data

showAliases lists available aliases

Usage

showAliases(names = NULL)

setAlias(name, desc, select)

getAlias(name)
Arguments
names optional vector of alias names. If provided, the full list of columns selected
by these aliases is displayed. Else only the name and a short description of all
aliases is displayed.
name Alias name
desc Short description indicating why the new alias is interesting
select character vector containing columns and/or types of data to import.
Value

setAlias is only used for its side effects. A data.frame with columns 'name’, desc’ and ’select’.
showAliases invisibly returns a data.frame with columns "name", "desc" and "select".

Examples

Display the short description of an alias
showAliases()

Display the full description of an alias
showAliases("renewable"”)

getAlias("renewable”)

Not run:
Create a new alias that imports flows

simOptions 47

setAlias("test”, "short description”, c("links"”, "FLOW LIN."))
showAliases()

End(Not run)

simOptions Extract simulation options

Description

The function readAntares stores in its output the options used to read some data (path of the study,
area list, link list, start date, etc.).

Usage
simOptions(x = NULL)

Arguments

X object of class antaresTable or antaresData

Details

simOptions extracts these options from an object of class antaresTable or antaresOutput. It
can be useful when working on multiple simulations, either to check how some object has been
created or to use it in some functions like getAreas or getLinks

If the parameter of the function is NULL, it returns the default simulation options, that is the options
set by setSimulationPath the last time it was run.

Value

list of options used to read the data contained in an object or the last simulation options read by
setSimulationPath if x is NULL

Examples

Not run:
setSimulationPath(study1)

simOptions() # returns the options for study 1
data <- readAntares()

Choose a different study
setSimulationPath(study?2)

simOptions() # returns the options for study 2

48

getAreas() # re
getAreas(opts =

End(Not run)

subset.antaresDatal ist

turns the areas of the secund study
simOptions(data)) # returns the areas of the first study

subset.antaresDatalist

Subset an antaresDataList

Description

Subset method for antaresDatalist.

Usage

S3 method for class 'antaresDatalist'

subset(x, y = NULL, areas = NULL, timeIds = NULL, mcYears = NULL, ...)
Arguments

X Object of class antaresDatalist created with readAntares.

y A table containing at least one of the columns "area", "timeld" or "mcYear". If
it is not NULL, then only tuples (area, timeld, mcYear) present in this table
are kept.

areas Vector of area names to keep in the result. If NULL, all areas are kept.

timeIds Vector of time ids to keep. If NULL, all time ids are kept.

mcYears Vector of monte-carlo years to keep. If NULL, all time ids are kept.

Currently unused.
Value

A filtered antaresDatalist.

Examples

Not run:
#tkeep only the fi

rst year

mydata <- readAntares(areas = "all"”, links = "all"”, mcYears = "all")
mySubset<-subset(mydata, mcYears = 1)

#keep only the fi

rst year for areas a and b

mydata <- readAntares(areas = "all"”, links = "all"”, mcYears = "all")
mySubset<-subset(mydata, mcYears = 1, areas=c("a"”, "b"))

#' #keep only the

first year for areas a and b and timelds include in 5:16

summary.bindingConstraints 49

mydata <- readAntares(areas = "all"”, links = "all"”, mcYears = "all")
mySubset<-subset(mydata, mcYears = 1, areas=c("a", "b"), timeIds=5:16)

End(Not run)

summary.bindingConstraints
Display equation of binding constraint

Description

[Deprecated] This function cannot be used for a study >= 8.7.0

Usage
S3 method for class 'bindingConstraints'
summary (object, ...)
Arguments
object Object returned by readBindingConstraints
Unused
Value

A data.frame with one line per constraint.

viewAntares View the content of an antares output

Description

This function displays each element of an antaresData object in a spreadsheet-like viewer.

Usage
viewAntares(x, ...)
Arguments
X An object of class antaresData, generated by the function readAntares.

Currently unused

50

Value

Invisible NULL.

Examples

Not run:
setSimulationPath()

areas <-readAntares()
viewAntares(areas)

output <- studyAntares(areas="all"”, links = "all"”, clusters = "all")
viewAntares(output) # Opens three data viewers for each element of output

End(Not run)

writeDigest

writeDigest Write digest file

Description

Write digest file

Usage

writeDigest(digest, opts = simOptions())

Arguments
digest list of 5 elements similar to what is returned by readDigestFile
opts simulation options

Value

updated digest list of 5 tables (begin, areas, middle, links lin., links quad.)

See Also

readDigestFile

Index

.download_api_aggregate_result, 3
.filter_bindingConstraints_by_names, 3

aggregateResult (parAggregateMCall), 16
API-methods, 4

api_delete (API-methods), 4

api_get (API-methods), 4

api_post (API-methods), 4

api_put (API-methods), 4
as.antaresDatalist, 5
as.antaresDataTable, 6

changeTimeStep, 7
config, 41
copyToClipboard, 8

extractDatalist, 9

getAlias (showAliases), 46
getAreas, 10, 22, 30, 32, 33,47
getDistricts, 22

getDistricts (getAreas), 10
getGeographicTrimming, 11
getIdCols, 11
getlLinks, 11, 12, 20, 22, 30, 32, 33,47
getThematicTrimming, 13

httr::content(), 4
hvdcModification, 14

10,4
list_thematic_variables, 15

make.names (), 28
mergeDigests, 16

options(), 40

parAggregateMCall, 16
ponderateMcAggregation, 17

51

read-ini, 18

read_storages_constraints, 36

readAntares, 9, 19, 24, 30-33, 40, 41, 43,
4649

readAntaresAreas, 23

readAntaresClusters, 24

readAntaresSTClusters, 25

readBindingConstraints, 19, 26, 43

readClusterDesc, 19, 27,43

readClusterResDesc (readClusterDesc), 27

readClusterSTDesc (readClusterDesc), 27

readDigestFile, /16, 29, 50

readIni (read-ini), 18

readIniAPI (read-ini), 18

readIniFile (read-ini), 18

readInputRES, 30

readInputThermal, 31

readInputTs, 32

readLayout, 19, 34, 43

readOptimCriteria, 35

removeVirtualAreas, 37

setAlias (showAliases), 46
setHvdcAreas, 39
setRam, 40
setSimulationPath, 7, 10, 12, 14, 15, 17, 21,
22, 24-26, 28, 30-36, 41, 47
setSimulationPath(), 3, I8
setSimulationPathAPI, 45
setSimulationPathAPI
(setSimulationPath), 41
setTimeoutAPI, 43, 45
showAliases, 46
simOptions, 43, 47
subset.antaresDatalist, 48
summary.bindingConstraints, 49

viewAntares, 49

write.table, 8
writeDigest, 50

	.download_api_aggregate_result
	.filter_bindingConstraints_by_names
	API-methods
	as.antaresDataList
	as.antaresDataTable
	changeTimeStep
	copyToClipboard
	extractDataList
	getAreas
	getGeographicTrimming
	getIdCols
	getLinks
	getThematicTrimming
	hvdcModification
	list_thematic_variables
	mergeDigests
	parAggregateMCall
	ponderateMcAggregation
	read-ini
	readAntares
	readAntaresAreas
	readAntaresClusters
	readAntaresSTClusters
	readBindingConstraints
	readClusterDesc
	readDigestFile
	readInputRES
	readInputThermal
	readInputTS
	readLayout
	readOptimCriteria
	read_storages_constraints
	removeVirtualAreas
	setHvdcAreas
	setRam
	setSimulationPath
	setTimeoutAPI
	showAliases
	simOptions
	subset.antaresDataList
	summary.bindingConstraints
	viewAntares
	writeDigest
	Index

