Package ‘aphid’

January 23, 2026

Type Package

Title Analysis with Profile Hidden Markov Models

Version 1.3.6

Author Shaun Wilkinson [aut, cre]

Maintainer Shaun Wilkinson <shaunpwilkinson@gmail.com>

Description Designed for the development and application of
hidden Markov models and profile HMM:s for biological sequence analysis.
Contains functions for multiple and pairwise sequence alignment,
model construction and parameter optimization, file import/export,
implementation of the forward, backward and Viterbi algorithms for
conditional sequence probabilities, tree-based sequence weighting,
and sequence simulation.
Features a wide variety of potential applications including
database searching, gene-finding and annotation, phylogenetic
analysis and sequence classification.
Based on the models and algorithms described in Durbin et
al (1998, ISBN: 9780521629713).

License GPL-3
URL https://github.com/shaunpwilkinson/aphid

BugReports https://github.com/shaunpwilkinson/aphid/issues
LazyData TRUE

Encoding UTF-8

SystemRequirements GNU make

Depends R(>=3.0.0)

Imports graphics, openssl, kmer (>= 1.0.0), qpdf, Rcpp (>=0.12.5),
stats

Suggests ape (>= 4.0), knitr, rmarkdown, testthat
LinkingTo Rcpp

VignetteBuilder knitr

RoxygenNote 7.3.1

https://github.com/shaunpwilkinson/aphid
https://github.com/shaunpwilkinson/aphid/issues

NeedsCompilation yes

Repository CRAN

Date/Publication 2026-01-23 06:41:06 UTC

align

Contents
align e 2
aphid e 8
backward 11
CASINO .« . vttt e 13
deriveHMM e e e e e 14
derivePHMM e 16
forward L e e e 23
GENETALE it e e e e e e e e e e e e 25
globins L e 27
logsumo 28
MAD © v v o e 28
plot HMM e 31
plotPHMM o e e e 32
POSEELION o i i e e 34
Print . . o e e e 35
readPHMM o 36
SUbSHItUtION e e e e e 37
train e e e e 38
unalign e 42
Viterbi o e 43
Weight e 47
writetPHMMo 49

Index 51

align Multiple sequence alignment in R.
Description

align performs a multiple alignment on a list of sequences using profile hidden Markov models.

Usage
align(x, ...)

S3 method for class 'DNAbin'

align(
X)
model = NULL,

align

)

progressive = FALSE,

seeds = NULL,

seqweights = "Henikoff",
refine = "Viterbi”,

k =5,

maxiter = 100,

maxsize = NULL,

inserts = "map”,

lambda = 0,

threshold = 0.5,
deltallL = 1e-07,
DI = FALSE,

ID = FALSE,
residues = NULL,
gap = "-",
pseudocounts = "background”,
ga = NULL,

ge = NULL,

cores = 1,

quiet = FALSE,

S3 method for class 'AAbin'
align(

X,
model = NULL,
progressive = FALSE,
seeds = NULL,

seqweights = "Henikoff",
refine = "Viterbi”,

k =5,

maxiter 100,

maxsize = NULL,

inserts = "map”,

lambda = 0,

threshold = 0.5,

deltallL = 1e-07,

DI = FALSE,

ID = FALSE,

residues = NULL,

gap = "-",

pseudocounts = "background”,
ga = NULL,

ge = NULL,

cores = 1,

quiet = FALSE,

)
S3 method for class 'list'
align(

X,

model = NULL,

progressive = FALSE,

seeds = NULL,

)

seqweights = "Henikoff",
k =5,

refine = "Viterbi”,
maxiter = 100,
maxsize = NULL,
inserts = "map”,
lambda = 0,

threshold = 0.5,
deltallL = 1e-07,

DI = FALSE,

ID = FALSE,

residues = NULL,

gap = "-",

pseudocounts = "background”,
ga = NULL,

ge = NULL,

cores =1,

quiet = FALSE,

Default S3 method:
align(

X,

model,

pseudocounts = "background”,
residues = NULL,

n_n

gap =)
maxsize = NULL,
quiet = FALSE,

Arguments

X

align

a list of DNA, amino acid, or other character sequences consisting of symbols
emitted from the chosen residue alphabet. The vectors can either be of mode
"raw" (consistent with the "DNAbin" or "AAbin" coding scheme set out in the
ape package), or "character”, in which case the alphabet should be specified in
the residues argument. This argument can alternatively be a vector represent-
ing a single sequence. In this case, and if the second argument is also a single

align 5

sequence, a standard pairwise alignment is returned.

aditional arguments to be passed to "Viterbi” (if refine = "Viterbi") or
"forward" (if refine = "BaumWelch").

model an optional profile hidden Markov model (a "PHMM" object) to align the se-
quences to. If NULL a PHMM will be derived from the list of sequences, and
each sequence will be aligned back to the model to produce the multiple se-
quence alignment.

progressive logical indicating whether the alignment used to derive the initial model pa-
rameters should be built progressively (assuming input is a list of unaligned
sequences, ignored otherwise). Defaults to FALSE, in which case the longest
sequence or sequences are used (faster, but possibly less accurate).

seeds optional integer vector indicating which sequences should be used as seeds for
building the guide tree for the progressive alignment (assuming input is a list of
unaligned sequences, and progressive = TRUE, ignored otherwise). Defaults to
NULL, in which a set of log(n, 2)*2 non-identical sequences are chosen from
the list of sequences by k-means clustering.

segweights either NULL (all sequences are given weights of 1), a numeric vector the same
length as x representing the sequence weights used to derive the model, or a
character string giving the method to derive the weights from the sequences (see
weight).

refine the method used to iteratively refine the model parameters following the initial
progressive alignment and model derivation step. Current supported options are
"Viterbi"” (Viterbi training; the default option), "BaumWelch” (a modified ver-
sion of the Expectation-Maximization algorithm), and "none" (skips the model
refinement step).

k integer representing the k-mer size to be used in tree-based sequence weighting
(if applicable). Defaults to 5. Note that higher values of k may be slow to
compute and use excessive memory due to the large numbers of calculations
required.

maxiter the maximum number of EM iterations or Viterbi training iterations to carry
out before the cycling process is terminated and the partially trained model is
returned. Defaults to 100.

maxsize integer giving the upper bound on the number of modules in the PHMM. If
NULL no maximum size is enforced.

inserts character string giving the model construction method in which alignment columns

are marked as either match or insert states. Accepted methods include "threshold”
(only columns with fewer than a specified proportion of gaps form match states

in the model), "map” (default; match and insert columns are found using the
maximum a posteriori method outlined in Durbin et al (1998) chapter 5.7),
"inherited” (match and insert columns are inherited from the input align-
ment), and "none"” (all columns are assigned match states in the model). Alter-
natively, insert columns can be specified manually by providing a logical vector
the same length as the number of columns in the alignment, with TRUE for insert
columns and FALSE for match states.

lambda

threshold

deltallL

DI

ID

residues

gap

pseudocounts

ga

ge

cores

align

penalty parameter used to favour models with fewer match states. Equivalent
to the log of the prior probability of marking each column (Durbin et al 1998,
chapter 5.7). Only applicable when inserts = "map”.

the maximum proportion of gaps for an alignment column to be considered for
a match state in the PHMM (defaults to 0.5). Only applicable when inserts
= "threshold"”. Note that the maximum a posteriori method works poorly for
alignments with few sequences, so the ’threshold’ method is automatically used
when the number of sequences is less than 5.

numeric, the maximum change in log likelihood between EM iterations before
the cycling procedure is terminated (signifying model convergence). Defaults to
1E-07. Only applicable if method = "BaumWelch".

logical indicating whether delete-insert transitions should be allowed in the pro-
file hidden Markov model (if applicable). Defaults to FALSE.

logical indicating whether insert-delete transitions should be allowed in the pro-
file hidden Markov model (if applicable). Defaults to FALSE.

either NULL (default; emitted residues are automatically detected from the se-
quences), a case sensitive character vector specifying the residue alphabet, or
one of the character strings "RNA", "DNA", "AA", "AMINQO". Note that the
default option can be slow for large lists of character vectors. Furthermore, the
default setting residues = NULL will not detect rare residues that are not present
in the sequences, and thus will not assign them emission probabilities in the
model. Specifying the residue alphabet is therefore recommended unless x is a
"DNAbin" or "AAbin" object.

the character used to represent gaps in the alignment matrix. Ignored for "DNAbin
or "AAbin" objects. Defaults to "-" otherwise.

n

character string, either "background", Laplace" or "none". Used to account for
the possible absence of certain transition and/or emission types in the input se-
quences. If pseudocounts = "background” (default), pseudocounts are calcu-
lated from the background transition and emission frequencies in the sequences.
If pseudocounts = "Laplace” one of each possible transition and emission type
is added to the transition and emission counts. If pseudocounts = "none" no
pseudocounts are added (not generally recommended, since low frequency tran-
sition/emission types may be excluded from the model). Alternatively this argu-
ment can be a two-element list containing a matrix of transition pseudocounts
as its first element and a matrix of emission pseudocounts as its second.

an optional named 9-element vector of background transition probabilities with
dimnames(qa) = C(HDDI' R IIDMII , IIDIH s HMDH , HMMH , IIMIH s ”ID!I , ”IMII , HIIII),
where M, I and D represent match, insert and delete states, respectively. If NULL,
background transition probabilities are estimated from the sequences.

an optional named vector of background emission probabilities the same length
as the residue alphabet (i.e. 4 for nucleotides and 20 for amino acids) and
with corresponding names (i.e. c("A", "T","G", "C") for DNA). If ge = NULL,
background emission probabilities are automatically derived from the sequences.
integer giving the number of CPUs to parallelize the operation over. Defaults to

1, and reverts to 1 if x is not a list. This argument may alternatively be a ’cluster’
object, in which case it is the user’s responsibility to close the socket connection

align 7

at the conclusion of the operation, for example by running parallel::stopCluster(cores).
The string ’autodetect’ is also accepted, in which case the maximum number of
cores to use is one less than the total number of cores available. Note that in this
case there may be a tradeoff in terms of speed depending on the number and size
of sequences to be aligned, due to the extra time required to initialize the cluster.

quiet logical indicating whether feedback should be printed to the console.

Details

This function builds a multiple sequence alignment using profile hidden Markov models. The de-
fault behaviour is to select the longest sequence in the set that had the lowest sequence weight, derive
a profile HMM from the single sequence, and iteratively train the model using the entire sequence
set. Training can be achieved using either the Baum Welch or Viterbi training algorithm, with the
latter being significantly faster, particularly when multi-threading is used. Once the model param-
eters have converged (Baum Welch) or no variation is seen in the sequential alignments (Viterbi
training), the sequences are aligned to the profile HMM to produce the alignment matrix. The pre-
ceeding steps can be omitted if a pre-trained profile HMM is passed to the function via the "model"
argument.

If progressive = TRUE the function alternatively uses a progressive alignment procedure similar
to the Clustal Omega algorithm (Sievers et al 2011). The involves an initial progressive multiple
sequence alignment via a guide tree, followed by the derivation of a profile hidden Markov model
from the alignment, an iterative model refinement step, and finally the alignment of the sequences
back to the model as above.

If only two sequences are provided, a standard pairwise alignment is carried out using the Needleman-
Wunch or Smith-Waterman algorithm.

Value

a matrix of aligned sequences, with the same mode and class as the input sequence list.

Author(s)

Shaun Wilkinson

References

Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological sequence analysis: probabilistic
models of proteins and nucleic acids. Cambridge University Press, Cambridge, United Kingdom.

Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert
M, Soding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein
multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7, 539.

See Also

unalign

8 aphid

Examples

Protein pairwise alignment example from Durbin et al (1998) chapter 2.
X <_ C("H"’ IIEII’ IIAH’ ”G"’ HAII, NWII’ "G“’ IIHH’ HEII’ HEII)

y <= c("P", A", "W, "H, "E", A", "E")

sequences <- list(x = x, y =y)

glo <- align(sequences, type = "global")

sem <- align(sequences, type = "semiglobal”)
loc <- align(sequences, type = "local”)

glo

sem

loc

Deconstruct the woodmouse alignment and re-align

library(ape)
data(woodmouse)
tmp <- unalign(woodmouse)
x <- align(tmp, windowspace = "WilburLipman")
aphid The aphid package for analysis with profile hidden Markov models.
Description

aphid is an R package for the development and application of hidden Markov models and profile
HMMs for biological sequence analysis. Functions are included for multiple and pairwise sequence
alignment, model construction and parameter optimization, calculation of conditional probabilities
(using the forward, backward and Viterbi algorithms), tree-based sequence weighting, sequence
simulation, and file import/export compatible with the HMMER software package. The package
has a wide variety of uses including database searching, gene-finding and annotation, phylogenetic
analysis and sequence classification.

Details

The aphid package is based on the algorithms outlined in the book ’Biological sequence analysis:
probabilistic models of proteins and nucleic acids’ by Richard Durbin, Sean Eddy, Anders Krogh
and Graeme Mitchison. This book is highly recommended for those wishing to develop a better
understanding of HMMs and PHMMs, regardless of prior experience. Many of the examples in the
function help pages are taken directly from the book, so that readers can learn to use the package as
they work through the chapters.

There are also excellent rescources available for those wishing to use profile hidden Markov models
outside of the R environment. The aphid package maintains compatibility with the HMMER soft-
ware suite through the file input and output functions readPHMM and writePHMM. Those interested
are further encouraged to check out the SAM software package, which also features a comprehen-
sive suite of functions and tutorials.

The aphid package is designed to work in conjunction with the "DNAbin" and "AAbin" object types
produced by the ape package (Paradis et al 2004, 2012). This is an essential piece of software for

http://www.hmmer.org
http://www.hmmer.org
https://engineering.ucsc.edu/departments/biomolecular-engineering/

aphid 9

those using R for biological sequence analysis, and provides a binary coding format for nucleotides
and amino acids that maximizes memory and speed efficiency. While aphid also works with stan-
dard character vectors and matrices, it may not recognize the DNA and amino acid amibguity codes
and therefore is not guaranteed to treat them appropriately.

To maximize speed, the low-level dynamic programming functions such as Viterbi, forward and
backward are written in C++ with the help of the Rcpp package (Eddelbuettel & Francois 2011).
Note that R versions of these functions are also maintained for the purposes of debugging, experi-
mentation and code interpretation.

Classes

The aphid package creates two primary object classes, "HMM" (hidden Markov models) and "PHMM"
(profile hidden Markov models) with the functions deriveHMM and derivePHMM, respectively. These
objects are lists consisting of emission and transition probability matrices (denoted E and A), vectors
of non-position-specific background emission and transition probabilies (denoted qe and qa) and
other model metadata. Objects of class "DPA" (dynammic programming array) are also generated
by the Viterbi and forward/backward functions. These are primarily created for succinct console
printing.

Functions

A breif description of the primary aphid functions are provided with links to their help pages below.

File import and export

* readPHMM parses a HMMER text file into R and creates an object of class "PHMM"
* writePHMM writes a "PHMM" object to a text file in HMMER v3 format

Visualization

* plot.HMM plots a "PHMM" object as a cyclic directed graph

* plot.PHMM plots a "PHMM" object as a directed graph with sequential modules consisting of
match, insert and delete states

Model building and training

* deriveHMM builds a "HMM" object from a list of training sequences

* derivePHMM builds a "PHMM" object from a multiple sequence alignment or a list of non-
aligned sequences

* map optimizes profile hidden Markov model construction using the maximum a posteriori
algorithm

* train optimizes the parameters of a "HMM" or "PHMM" object using a list of training sequences

Sequence alignment and weighting

* align performs a multiple sequence alignment

* weight assigns weights to sequences

http://www.hmmer.org
http://www.hmmer.org

10 aphid

Conditional probabilities

* Viterbi finds the optimal path of a sequence through a HMM or PHMM, and returns its log
odds or probability given the model

» forward finds the full probability of a sequence given a HMM or PHMM using the forward
algorithm

* backward finds the full probability of a sequence given a HMM or PHMM using the backward
algorithm

* posterior finds the position-specific posterior probability of a sequence given a HMM or
PHMM

Sequence simulation

* generate.HMM simulates a random sequence from an HMM

* generate.PHMM simulates a random sequence from a PHMM

Datasets

e substitution a collection of DNA and amino acid substitution matrices from NCBI includ-
ing the PAM, BLOSUM, GONNET, DAYHOFF and NUC matrices

* casino data from the dishonest casino example of Durbin et al (1998) chapter 3.2

* globins Small globin alignment data from Durbin et al (1998) Figure 5.3

Author(s)

Shaun Wilkinson

References

Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological sequence analysis: probabilistic
models of proteins and nucleic acids. Cambridge University Press, Cambridge, United Kingdom.

Eddelbuettel D, Francois R (2011) Rcpp: seamless R and C++ integration. Journal of Statistical
Software 40, 1-18.

Finn RD, Clements J & Eddy SR (2011) HMMER web server: interactive sequence similarity
searching. Nucleic Acids Research. 39, W29-W37. http://hmmer.org/.

HMMER: biosequence analysis using profile hidden Markov models. http://www.hmmer.org.
NCBI index of substitution matrices. ftp://ftp.ncbi.nih.gov/blast/matrices/.

Paradis E, Claude J, Strimmer K, (2004) APE: analyses of phylogenetics and evolution in R lan-
guage. Bioinformatics 20, 289-290.

Paradis E (2012) Analysis of Phylogenetics and Evolution with R (Second Edition). Springer, New
York.

ftp://ftp.ncbi.nih.gov/blast/matrices/
http://hmmer.org/
http://www.hmmer.org
ftp://ftp.ncbi.nih.gov/blast/matrices/

backward

See Also
Useful links:

11

e https://github.com/shaunpwilkinson/aphid

* Report bugs at https://github.com/shaunpwilkinson/aphid/issues

backward

The backward algorithm.

Description

This function calculates the full (log) probability or odds of a sequence given a hidden Markov
model or profile HMM using the backward dynamic programming algorithm.

Usage
backward(x, v,

.2

S3 method for class 'PHMM'

backward(
X,
Y,
ge = NULL,
logspace = "autodetect”,
odds = TRUE,
windowspace = "all”,
DI = FALSE,
ID = FALSE,
cpp = TRUE,
)
S3 method for class 'HMM'
backward(x, y, logspace = "autodetect”, cpp = TRUE, ...)
Arguments
X an object of class PHMM or HMM.
y a vector of mode "character" or "raw" (a "DNAbin" or "AAbin" object) repre-
senting a single sequence hypothetically emitted by the model in x.
additional arguments to be passed between methods.
ge an optional named vector of background residue frequencies (only applicable if

x is a PHMM). If ge = NULL the function looks for a ge vector as an attribute of
the PHMM. If these are not available equal background residue frequencies are
assumed.

https://github.com/shaunpwilkinson/aphid
https://github.com/shaunpwilkinson/aphid/issues

12

logspace

odds

windowspace

DI

ID

cpp

Details

backward

logical indicating whether the emission and transition probabilities of x are
logged. If logspace = "autodetect” (default setting), the function will auto-
matically detect if the probabilities are logged, returning an error if inconsisten-
cies are found. Note that choosing the latter option increases the computational
overhead; therefore specifying TRUE or FALSE can reduce the running time.

logical, indicates whether the returned scores should be odds ratios (TRUE) or
full logged probabilities (FALSE).

a two-element integer vector providing the search space for dynamic program-
ming (see Wilbur & Lipman 1983 for details). The first element should be nega-
tive, and represent the lowermost diagonal of the dynammic programming array,
and the second element should be positive, representing the leftmost diagonal.
Alternatively, if the the character string "all" is passed (the default setting) the
entire dynamic programming array will be computed.

logical indicating whether delete-insert transitions should be allowed in the pro-
file hidden Markov model (if applicable). Defaults to FALSE.

logical indicating whether insert-delete transitions should be allowed in the pro-
file hidden Markov model (if applicable). Defaults to FALSE.

logical, indicates whether the dynamic programming matrix should be filled us-
ing compiled C++ functions (default; many times faster). The FALSE option is
primarily retained for bug fixing and experimentation.

This function is a wrapper for a compiled C++ function that recursively fills a dynamic program-

ming matrix with 1
given a HMM or P

ogged probabilities, and calculates the full (logged) probability of a sequence
HMM. For a thorough explanation of the backward, forward and Viterbi algo-

rithms, see Durbin et al (1998) chapters 3.2 (HMMs) and 5.4 (PHMMs).

Value

an object of class "

Author(s)
Shaun Wilkinson

References

DPA", which is a list containing the score and dynamic programming array.

Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological sequence analysis: probabilistic

models of proteins

and nucleic acids. Cambridge University Press, Cambridge, United Kingdom.

Wilbur WJ, Lipman DJ (1983) Rapid similarity searches of nucleic acid and protein data banks.

Proc Natl Acad Sci

See Also

forward, Viterbi.

USA, 80, 726-730.

casino 13

Examples

Backward algorithm for standard HMMs:

The dishonest casino example from Durbin et al (1998) chapter 3.2
states <- c("Begin”, "Fair"”, "Loaded")

residues <- paste(1:6)

Define the transition probability matrix

A <- matrix(c(o, o, 0, 0.99, 0.95, 0.1, 0.01, 0.05, 0.9), nrow
dimnames(A) <- list(from = states, to = states)

Define the emission probability matrix

E <- matrix(c(rep(1/6, 6), rep(1/10, 5), 1/2), nrow = 2, byrow = TRUE)
dimnames(E) <- list(states = states[-1], residues = residues)

Build and plot the HMM object

x <- structure(list(A = A, E = E), class = "HMM")

3

plot(x, main = "Dishonest casino HMM")
data(casino)

backward(x, casino)

##

Backward algorithm for profile HMMs:

Small globin alignment data from Durbin et al (1998) Figure 5.3
data(globins)

Derive a profile hidden Markov model from the alignment

globins.PHMM <- derivePHMM(globins, residues = "AMINO"”, seqweights = NULL)
plot(globins.PHMM, main = "Profile hidden Markov model for globins")

Simulate a random sequence from the model
suppressWarnings(RNGversion(”3.5.0"))

set.seed(999)

simulation <- generate(globins.PHMM, size = 20)

simulation ## "F" "S" "A"™ "N" "N" "D" "W" "E"

Calculate the full (log) probability of the sequence given the model
x <- backward(globins.PHMM, simulation, odds = FALSE)

x # -23.0586
Show dynammic programming array
x$array
casino Dishonest casino.
Description

The ’dishonest casino’ example from Durbin et al (1998) chapter 3.2.

Usage

casino

Format

A named character vector showing the result of 300 rolls of a dice that switches from "Fair" to
"Loaded" with a probability of 0.05 and back to "Fair" with a probability of 0.1. In the Fair state

14

deriveHMM

each outcome from 1 to 6 has an equal probability of occurring, while in the Loaded state the
probability of rolling a 6 increases to 0.5 (with the remaining five probabilities reduced to 0.1). The
elements of the vector are the outcomes of the 300 rolls ("1", "2", "3", "4", "5", or "6") and the
"names" attribute represents the underlying Markov states ("Fair" or "Loaded").

Source

Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological sequence analysis: probabilistic
models of proteins and nucleic acids. Cambridge University Press, Cambridge, United Kingdom.

deriveHMM

Derive a standard hidden Markov model from a set of sequences.

Description

deriveHMM calculates the maximum likelihood hidden Markov model from a list of training se-
quences, each a vector of residues named according the state from which they were emitted.

Usage

deriveHMM(
X,

seqweights = NULL,

residues =

NULL,

states = NULL,
modelend = FALSE,

pseudocounts = "background”,
logspace = TRUE
)
Arguments
X a list of named character vectors representing emissions from the model. The

seqweights

residues

‘names’ attribute should represent the hidden state from which each residue was
emitted. "DNAbin" and "AAbin" list objects are also supported for modeling
DNA or amino acid sequences.

either NULL (all sequences are given weights of 1) or a numeric vector the same
length as x representing the sequence weights used to derive the model.

either NULL (default; emitted residues are automatically detected from the se-
quences), a case sensitive character vector specifying the residue alphabet, or
one of the character strings "RNA", "DNA", "AA", "AMINQO". Note that the
default option can be slow for large lists of character vectors. Furthermore, the
default setting residues = NULL will not detect rare residues that are not present
in the sequences, and thus will not assign them emission probabilities in the
model. Specifying the residue alphabet is therefore recommended unless x is a
"DNADbin" or "AAbin" object.

deriveHMM

states

modelend

pseudocounts

logspace

Details

15

either NULL (default; the unique Markov states are automatically detected from
the *names’ attributes of the input sequences), or a case sensitive character vector
specifying the unique Markov states (or a superset of the unique states) to appear
in the model. The latter option is recommended since it saves computation time
and ensures that all valid Markov states appear in the model, regardless of their
possible absence from the training dataset.

logical indicating whether transition probabilites to the end state of the standard
hidden Markov model should be modeled (if applicable). Defaults to FALSE.

character string, either "background”, Laplace" or "none". Used to account
for the possible absence of certain transition and/or emission types in the in-
put sequences. If pseudocounts = "background” (default), pseudocounts are
calculated from the background transition and emission frequencies in the train-
ing dataset. If pseudocounts = "Laplace” one of each possible transition and
emission type is added to the training dataset (default). If pseudocounts =
"none” no pseudocounts are added (not usually recommended, since low fre-
quency transition/emission types may be excluded from the model). Alterna-
tively this argument can be a two-element list containing a matrix of transition
pseudocounts as its first element and a matrix of emission pseudocounts as its
second. If this option is selected, both matrices must have row and column
names corresponding with the residues (column names of emission matrix) and
states (row and column names of the transition matrix and row names of the
emission matrix). For downstream applications the first row and column of the
transition matrix should be named "Begin".

logical indicating whether the emission and transition probabilities in the re-
turned model should be logged. Defaults to TRUE.

This function creates a standard hidden Markov model (object class: "HMM") using the method
described in Durbin et al (1998) chapter 3.3. It assumes the state sequence is known (as opposed
to the train.HMM function, which is used when the state sequence is unknown) and provided as
the names attribute(s) of the input sequences. The output object is a simple list with elements
"A" (transition probability matrix) and "E" (emission probability matrix), and the "class" attribute
"HMM". The emission matrix has the same number of rows as the number of states, and the same
number of columns as the number of unique symbols that can be emitted (i.e. the residue alphabet).
The number of rows and columns in the transition probability matrix should be one more the number
of states, to include the silent "Begin" state in the first row and column. Despite its name, this state
is also used when modeling transitions to the (silent) end state, which are entered in the first column.

Value

an object of class "HMM".

Author(s)

Shaun Wilkinson

16 derivePHMM

References
Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological sequence analysis: probabilistic
models of proteins and nucleic acids. Cambridge University Press, Cambridge, United Kingdom.
See Also

derivePHMM

Examples

data(casino)
deriveHMM(list(casino))

derivePHMM Derive a profile hidden Markov model from sequences.

Description

derivePHMM generates a profile HMM from a given multiple sequence alignment or a list of un-
aligned sequences.

Usage
derivePHMM(x, ...)

S3 method for class 'DNAbin'
derivePHMM(
X,
seqweights = "Henikoff",
wfactor = 1,
k =5,
residues = NULL,
gap = "-",
endchar = "?",
pseudocounts = "background”,
logspace = TRUE,
ga = NULL,
ge = NULL,
maxsize = NULL,
inserts = "map”,
threshold = 0.5,
lambda = 0,
DI = FALSE,
ID = FALSE,
omit.endgaps = FALSE,
name = NULL,
description = NULL,

derivePHMM

)

compo = FALSE,
consensus = FALSE,
alignment = FALSE,
progressive = FALSE,
seeds = NULL,
refine = "Viterbi”,
maxiter = 100,
deltallL = 1e-07,
cpp = TRUE,

cores = 1,

quiet = FALSE,

S3 method for class 'AAbin'
derivePHMM(

X)

seqweights = "Henikoff",
wfactor = 1,

k =5,

residues = NULL,

gap = "-",

endchar = "?",
pseudocounts = "background”,
logspace = TRUE,

ga = NULL,

ge = NULL,

maxsize = NULL,
inserts = "map”,
threshold = 0.5,
lambda = 0,

DI = FALSE,

ID = FALSE,
omit.endgaps = FALSE,
name = NULL,
description = NULL,
compo = FALSE,
consensus = FALSE,
alignment = FALSE,
progressive = FALSE,
seeds = NULL,

refine = "Viterbi”,
maxiter = 100,
deltallL = 1e-07,

cpp = TRUE,

cores = 1,

quiet = FALSE,

17

18

)

S3 method for class 'list'
derivePHMM(

)

X,
progressive = FALSE,
seeds = NULL,

refine = "Viterbi”,
maxiter = 100,

deltallL = 1e-07,
seqweights = "Henikoff",
wfactor = 1,

k =5,

residues = NULL,

gap = "-",

pseudocounts = "background”,
logspace = TRUE,

ga = NULL,

ge = NULL,

maxsize = NULL,

inserts = "map”,

lambda = 0,

DI = FALSE,

ID = FALSE,

threshold = 0.5,
omit.endgaps = FALSE,
name = NULL,

description = NULL,
compo = FALSE,

consensus = FALSE,
alignment = FALSE,

cpp = TRUE,

cores =1,

quiet = FALSE,

Default S3 method:
derivePHMM(

X’
seqweights = "Henikoff",
wfactor = 1,

k =5,

residues = NULL,

gap = n_n,

endchar = "?",

pseudocounts = "background”,

logspace = TRUE,

derivePHMM

derivePHMM

qa NULL,

ge = NULL,

maxsize = NULL,
inserts = "map”,
lambda = 0,
threshold = 0.5,

DI = FALSE,

ID = FALSE,
omit.endgaps = FALSE,
name = NULL,
description = NULL,
compo = FALSE,
consensus = FALSE,
alignment = FALSE,
cpp = TRUE,

19

quiet = FALSE,

Arguments

X

seqweights

wfactor
k

residues

gap

endchar

a matrix of aligned sequences or a list of unaligned sequences. Accepted modes
are "character" and "raw" (for "DNAbin" and "AAbin" objects).

aditional arguments to be passed to "Viterbi” (if refine ="Viterbi”) or
"forward" (if refine = "BaumWelch").

either NULL (all sequences are given weights of 1), a numeric vector the same
length as x representing the sequence weights used to derive the model, or a
character string giving the method to derive the weights from the sequences (see
weight).

numeric. The factor to multiply the sequence weights by. Defaults to 1.

integer representing the k-mer size to be used in tree-based sequence weighting
(if applicable). Defaults to 5. Note that higher values of k may be slow to
compute and use excessive memory due to the large numbers of calculations
required.

either NULL (default; emitted residues are automatically detected from the se-
quences), a case sensitive character vector specifying the residue alphabet, or
one of the character strings "RNA", "DNA", "AA", "AMINQO". Note that the
default option can be slow for large lists of character vectors. Furthermore, the
default setting residues = NULL will not detect rare residues that are not present
in the sequences, and thus will not assign them emission probabilities in the
model. Specifying the residue alphabet is therefore recommended unless x is a
"DNAbin" or "AAbin" object.

the character used to represent gaps in the alignment matrix. Ignored for "DNAbin”
or "AAbin" objects. Defaults to "-" otherwise.

the character used to represent unknown residues in the alignment matrix (if ap-
plicable). Ignored for "DNAbin" or "AAbin" objects. Defaults to "?" otherwise.

derivePHMM

pseudocounts character string, either "background", Laplace" or "none". Used to account for
the possible absence of certain transition and/or emission types in the input se-
quences. If pseudocounts = "background” (default), pseudocounts are calcu-
lated from the background transition and emission frequencies in the sequences.
If pseudocounts = "Laplace” one of each possible transition and emission type
is added to the transition and emission counts. If pseudocounts = "none"” no
pseudocounts are added (not generally recommended, since low frequency tran-
sition/emission types may be excluded from the model). Alternatively this argu-
ment can be a two-element list containing a matrix of transition pseudocounts
as its first element and a matrix of emission pseudocounts as its second.

logspace logical indicating whether the emission and transition probabilities in the re-
turned model should be logged. Defaults to TRUE.
ga an optional named 9-element vector of background transition probabilities with

dimnames(qa) = C(”DD", ”DM", "DI", "MD”, ”MM”,"MI”, "ID”, ”IMH, ”II”)7
where M, I and D represent match, insert and delete states, respectively. If NULL,
background transition probabilities are estimated from the sequences.

ge an optional named vector of background emission probabilities the same length
as the residue alphabet (i.e. 4 for nucleotides and 20 for amino acids) and
with corresponding names (i.e. c("A", "T","G", "C") for DNA). If ge = NULL,
background emission probabilities are automatically derived from the sequences.

maxsize integer giving the upper bound on the number of modules in the PHMM. If
NULL (default) no maximum size is enforced.

inserts character string giving the model construction method by which alignment columns
are marked as either match or insert states. Accepted methods include "threshold”
(only columns with fewer than a specified proportion of gaps form match states
in the model), "map” (default; match and insert columns are found using the
maximum a posteriori method outlined in Durbin et al (1998) chapter 5.7),
"inherited” (match and insert columns are inherited from the input align-
ment), and "none” (all columns are assigned match states in the model). Alter-
natively, insert columns can be specified manually by providing a logical vector
the same length as the number of columns in the alignment, with TRUE for insert
columns and FALSE for match states.

threshold the maximum proportion of gaps for an alignment column to be considered for
a match state in the PHMM (defaults to 0.5). Only applicable when inserts
= "threshold"”. Note that the maximum a posteriori method works poorly for
alignments with few sequences, so the ’threshold’ method is automatically used
when the number of sequences is less than 5.

lambda penalty parameter used to favour models with fewer match states. Equivalent
to the log of the prior probability of marking each column (Durbin et al 1998,
chapter 5.7). Only applicable when inserts = "map”.

DI logical indicating whether delete-insert transitions should be allowed in the pro-
file hidden Markov model (if applicable). Defaults to FALSE.
ID logical indicating whether insert-delete transitions should be allowed in the pro-

file hidden Markov model (if applicable). Defaults to FALSE.

omit.endgaps logical. Should gap characters at each end of the sequences be ignored when
deriving the transition probabilities of the model? Defaults to FALSE. Set to

derivePHMM 21

TRUE if x is not a strict global alignment (i.e. if the alignment contains partial
sequences with missing sections represented with gap characters).

name an optional character string. The name of the new profile hidden Markov model.

description an optional character string. The description of the new profile hidden Markov
model.

compo logical indicating whether the average emission probabilities of the model mod-
ules should be returned with the PHMM object.

consensus placeholder. Consensus sequences will be available in a future version.

alignment logical indicating whether the alignment used to derive the final model (if appli-
cable) should be included as an element of the returned PHMM object. Defaults
to FALSE.

progressive logical indicating whether the alignment used to derive the initial model pa-

rameters should be built progressively (assuming input is a list of unaligned
sequences, ignored otherwise). Defaults to FALSE, in which case the longest
sequence or sequences are used (faster, but possibly less accurate).

seeds optional integer vector indicating which sequences should be used as seeds for
building the guide tree for the progressive alignment (assuming input is a list of
unaligned sequences, and progressive = TRUE, ignored otherwise). Defaults to
NULL, in which a set of log(n, 2)*2 non-identical sequences are chosen from
the list of sequences by k-means clustering.

refine the method used to iteratively refine the model parameters following the initial
progressive alignment and model derivation step. Current supported options are
"Viterbi"” (Viterbi training; the default option), "BaumWelch” (a modified ver-
sion of the Expectation-Maximization algorithm), and "none" (skips the model
refinement step).

maxiter the maximum number of EM iterations or Viterbi training iterations to carry
out before the cycling process is terminated and the partially trained model is
returned. Defaults to 100.

deltalL numeric, the maximum change in log likelihood between EM iterations before
the cycling procedure is terminated (signifying model convergence). Defaults to
1E-07. Only applicable if method = "BaumWelch”.

cpp logical, indicates whether the dynamic programming matrix should be filled us-
ing compiled C++ functions (default; many times faster). The FALSE option is
primarily retained for bug fixing and experimentation.

cores integer giving the number of CPUs to parallelize the operation over. Defaults to
1, and reverts to 1 if x is not a list. This argument may alternatively be a ’cluster’
object, in which case it is the user’s responsibility to close the socket connection
at the conclusion of the operation, for example by running parallel::stopCluster(cores).
The string ’autodetect’ is also accepted, in which case the maximum number of
cores to use is one less than the total number of cores available. Note that in this
case there may be a tradeoff in terms of speed depending on the number and size
of sequences to be aligned, due to the extra time required to initialize the cluster.

quiet logical indicating whether feedback should be printed to the console.

22 derivePHMM

Details

This function performs a similar operation to the hmmbuild function in the HMMER package, and
the modelfromalign and buildmodel functions in the SAM package. If the primary input argument
is an alignment, the function creates a profile hidden Markov model (object class:"PHMM") using the
method described in Durbin et al (1998) chapter 5.3. Alternatively, if a list of non-aligned sequences
is passed, the sequences are first aligned using the align function before being used to derive the
model.

The function outputs an object of class "PHMM", which is a list consisting of emission and transition
probability matrices (elements named "E" and "A"), vectors of non-position-specific background
emission and transition probabilities ("qe" and "qa", respectively) and other model metadata in-

cluding "name", "description", "size" (the number of modules in the model), and "alphabet" (the set
of symbols/residues emitted by the model).

Value

an object of class "PHMM"

Author(s)

Shaun Wilkinson

References

Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological sequence analysis: probabilistic
models of proteins and nucleic acids. Cambridge University Press, Cambridge, United Kingdom.

See Also

deriveHMM, map

Examples

Small globin alignment data from Durbin et al (1998) Figure 5.3
data(globins)

derive a profile hidden Markov model from the alignment

globins.PHMM <- derivePHMM(globins, residues = "AMINO", seqweights = NULL)
plot(globins.PHMM, main = "Profile HMM for small globin alignment”)

#H#

derive a profle HMM from the woodmouse dataset in the

ape package and plot the first 5 modules

library(ape)

data(woodmouse)

woodmouse . PHMM <- derivePHMM(woodmouse)

plot(woodmouse.PHMM, from = @, to = 5, main = "Partial woodmouse profile HMM")

http://www.hmmer.org
https://engineering.ucsc.edu/departments/biomolecular-engineering/

forward

23

forward

The forward algorithm.

Description

This function calculates the full (log) probability or odds of a sequence given a hidden Markov
model or profile HMM using the forward dynamic programming algorithm.

Usage

forward(x, vy,

.2

S3 method for class 'PHMM'

forward(
X,
Yy,
ge = NULL,
logspace = "autodetect”,
odds = TRUE,
windowspace = "all"”,
DI = FALSE,
ID = FALSE,
cpp = TRUE,
)
S3 method for class 'HMM'
forward(x, y, logspace = "autodetect”, cpp = TRUE, ...)
Arguments
X an object of class PHMM or HMM.
y a vector of mode "character" or "raw" (a "DNAbin" or "AAbin" object) repre-
senting a single sequence hypothetically emitted by the model in x.
additional arguments to be passed between methods.
ge an optional named vector of background residue frequencies (only applicable if
x is a PHMM). If ge = NULL the function looks for a ge vector as an attribute of
the PHMM. If these are not available equal background residue frequencies are
assumed.
logspace logical indicating whether the emission and transition probabilities of x are
logged. If logspace = "autodetect"” (default setting), the function will auto-
matically detect if the probabilities are logged, returning an error if inconsisten-
cies are found. Note that choosing the latter option increases the computational
overhead; therefore specifying TRUE or FALSE can reduce the running time.
odds logical, indicates whether the returned scores should be odds ratios (TRUE) or

full logged probabilities (FALSE).

24

windowspace

DI

ID

cpp

Details

forward

a two-element integer vector providing the search space for dynamic program-
ming (see Wilbur & Lipman 1983 for details). The first element should be nega-
tive, and represent the lowermost diagonal of the dynammic programming array,
and the second element should be positive, representing the leftmost diagonal.
Alternatively, if the the character string "all" is passed (the default setting) the
entire dynamic programming array will be computed.

logical indicating whether delete-insert transitions should be allowed in the pro-
file hidden Markov model (if applicable). Defaults to FALSE.

logical indicating whether insert-delete transitions should be allowed in the pro-
file hidden Markov model (if applicable). Defaults to FALSE.

logical, indicates whether the dynamic programming matrix should be filled us-
ing compiled C++ functions (default; many times faster). The FALSE option is
primarily retained for bug fixing and experimentation.

This function is a wrapper for a compiled C++ function that recursively fills a dynamic program-
ming matrix with logged probabilities, and calculates the full (logged) probability of a sequence
given a HMM or PHMM.

For a thorough explanation of the backward, forward and Viterbi algorithms, see Durbin et al (1998)
chapters 3.2 (HMMs) and 5.4 (PHMMs).

Value

an object of class "DPA", which is a list containing the score and dynamic programming array.

Author(s)
Shaun Wilkinson

References

Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological sequence analysis: probabilistic
models of proteins and nucleic acids. Cambridge University Press, Cambridge, United Kingdom.

Wilbur WJ, Lipman DJ (1983) Rapid similarity searches of nucleic acid and protein data banks.
Proc Natl Acad Sci USA, 80, 726-730.

See Also

backward, Viterbi.

Examples

Forward algorithm for standard HMMs:

The dishonest casino example from Durbin et al (1998) chapter 3.2
states <- c("Begin”, "Fair"”, "Loaded")

residues <- paste(1:6)

Define the transition probability matrix

A <- matrix(c(o, @, 0, 0.99, 0.95, 0.1, 0.01, 0.05, 0.9), nrow = 3)

generate

dimnames(A) <- list(from = states, to = states)

Define the emission probability matrix

E <- matrix(c(rep(1/6, 6), rep(1/10, 5), 1/2), nrow = 2, byrow = TRUE)
dimnames(E) <- list(states = states[-1], residues = residues)

Build and plot the HMM object

x <- structure(list(A = A, E = E), class = "HMM")

plot(x, main = "Dishonest casino HMM")

Find full probability of the sequence given the model

data(casino)

forward(x, casino)

H#HHHH#

Forward algorithm for profile HMMs:

Small globin alignment data from Durbin et al (1998) Figure 5.3
data(globins)

Derive a profile HMM from the alignment

globins.PHMM <- derivePHMM(globins, residues = "AMINO", segweights = NULL)
plot(globins.PHMM, main = "Profile hidden Markov model for globins")
Simulate a random sequence from the model
suppressWarnings(RNGversion(”3.5.0"))

set.seed(999)

simulation <- generate(globins.PHMM, size = 20)

simulation ## "F" "S" "A" "N" "N" "D" "W" "E"

Calculate the full (log) probability of the sequence given the model
x <- forward(globins.PHMM, simulation, odds = FALSE)

25

X # -23.0586
Show the dynammic programming array
x$array
generate Generate random sequences from a model.
Description

The generate function outputs a random sequence from a HMM or PHMM.

Usage

generate(x, size, ...)

S3 method for class 'HMM'
generate(x, size, logspace = "autodetect”, random = TRUE, ...)

S3 method for class 'PHMM'
generate(
X!
size,
logspace = "autodetect”,
gap = "-",
random = TRUE,

26

DNA = FALSE,
AA = FALSE,

Arguments

X

size

logspace

random

gap

DNA

AA

Details

generate

an object of class 'HMM' or 'PHMM'.

a non-negative integer representing the length of the output sequence if x is a
"HMM" object with zero probability of transitioning to the begin/end state, or
the maximum length of the output sequence otherwise (this acts as a safeguard
against overflow).

additional arguments to be passed between methods.

logical indicating whether the emission and transition probabilities of x are
logged. If logspace = "autodetect” (the default setting), the function will
automatically detect if the probabilities are logged, returning an error if incon-
sistencies are found. Note that choosing the latter option increases the compu-
tational overhead; therefore specifying TRUE or FALSE can reduce the running
time.

logical indicating whether residues should be emitted randomly with probabili-
ties defined by the emission probabilities in the model (TRUE; default), or de-
terministically, whereby each residue is emitted and each transition taken based
on the maximum emission/transition probability in the current state.

the character used to represent gaps (delete states) in the output sequence (only
applicable for PHMM objects).

logical indicating whether the returned sequence should be a "DNAbin" object.
Only applicable if the matrix of emission probabilities in the model has four
residues corresponding to the nucleotide alphabet (A, T, G, and C).

logical indicating whether the returned sequence should be a "AAbin" object.
Only applicable if the matrix of emission probabilities in the model has 20
residues corresponding to the amino acid alphabet.

This simple function generates a single sequence from a HMM or profile HMM by recursively
simulating a path through the model. The function is fairly slow in its current state, but a faster C++
function may be made available in a future version depending on demand.

Value

a named vector giving the sequence of residues emitted by the model, with the "names" attribute
representing the hidden states.

Author(s)
Shaun Wilkinson

globins 27

References

Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological sequence analysis: probabilistic
models of proteins and nucleic acids. Cambridge University Press, Cambridge, United Kingdom.

Examples

Generate a random sequence from a standard HMM

The dishonest casino example from Durbin et al (1998) chapter 3.2
states <- c("Begin”, "Fair"”, "Loaded")

residues <- paste(1:6)

#i## Define the transition probability matrix

A <- matrix(c(e, 0, 0, .99, .95, 9.1, 0.01, ©.05, 0.9), nrow
dimnames(A) <- list(from = states, to = states)

#i## Define the emission probability matrix

E <- matrix(c(rep(1/6, 6), rep(1/10, 5), 1/2), nrow = 2, byrow = TRUE)
dimnames(E) <- list(states = states[-1], residues = residues)

Build and plot the HMM object

x <- structure(list(A = A, E = E), class = "HMM")

plot(x, main = "Dishonest casino HMM")

Generate a random sequence from the model

generate(x, size = 300)

H#H#

Generate a random sequence from a profile HMM:

Small globin alignment data from Durbin et al (1998) Figure 5.3
data(globins)

#i## Derive a profile hidden Markov model from the alignment

globins.PHMM <- derivePHMM(globins, residues = "AMINO", seqweights = NULL)
plot(globins.PHMM, main = "Profile hidden Markov model for globins")

Simulate a random sequence from the model
suppressWarnings(RNGversion(”3.5.0"))

set.seed(999)

simulation <- generate(globins.PHMM, size = 20)

simulation ## "F" "S" "A" "N" "N" "D" "W" "E"

Names attribute indicates that all residues came from "match” states

3

globins Globin protein alignment.

Description

The small globin protein alignment from figure 5.3 of Durbin et al (1998).

Usage
globins

Format

a 7 x 10 character matrix with ten columns of a multiple alignment of globin amino acid sequences
from Durbin et al (1998) chapter 5.3.

28 map

Source

Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological sequence analysis: probabilistic
models of proteins and nucleic acids. Cambridge University Press, Cambridge, United Kingdom.

logsum Sum of logged probabilities.

Description

"logsum” takes a vector of logged probabilities (neagtive values) and returns its sum.

Usage

logsum(x)

Arguments

X a numeric vector of logged probabilities.

Details
This is a simple compiled function that exponentiates the values in the input vector, finds their sum,
and returns the log of that value.

Value

returns a single numeric value representing the logged sum of the values in the input vector.

Author(s)
Shaun Wilkinson

map Optimized profile HMM construction.

Description

Assigns match and insert states to alignment columns using the maximum a posteriori algorithm
outlined in Durbin et al (1998) chapter 5.7.

map

Usage

map (
X,

29

seqweights = NULL,
residues = NULL,

n_n

gap =)
endchar = "?",
pseudocounts = "background”,
lambda = 0,
ga = NULL,
ge = NULL,
cpp = TRUE
)
Arguments
X a matrix of aligned sequences. Accepted modes are "character" and "raw" (the
latter being used for "DNAbin" and "AAbin" objects).
seqweights either NULL (default; all sequences are given weights of 1) or a numeric vector
the same length as x representing the sequence weights used to derive the model.
residues either NULL (default; emitted residues are automatically detected from the se-
quences), a case sensitive character vector specifying the residue alphabet, or
one of the character strings "RNA", "DNA", "AA", "AMINO". Note that the
default option can be slow for large lists of character vectors. Furthermore, the
default setting residues = NULL will not detect rare residues that are not present
in the sequences, and thus will not assign them emission probabilities in the
model. Specifying the residue alphabet is therefore recommended unless x is a
"DNAbin" or "AAbin" object.
gap the character used to represent gaps in the alignment matrix (if applicable). Ig-
nored for "DNAbin” or "AAbin" objects. Defaults to "-" otherwise.
endchar the character used to represent unknown residues in the alignment matrix (if ap-
plicable). Ignored for "DNAbin" or "AAbin" objects. Defaults to "?" otherwise.
pseudocounts character string, either "background", Laplace" or "none". Used to account for
the possible absence of certain transition and/or emission types in the input se-
quences. If pseudocounts = "background” (default), pseudocounts are calcu-
lated from the background transition and emission frequencies in the sequences.
If pseudocounts = "Laplace” one of each possible transition and emission type
is added to the transition and emission counts. If pseudocounts = "none"” no
pseudocounts are added (not generally recommended, since low frequency tran-
sition/emission types may be excluded from the model). Alternatively this argu-
ment can be a two-element list containing a matrix of transition pseudocounts
as its first element and a matrix of emission pseudocounts as its second.
lambda penalty parameter used to favour models with fewer match states. Equivalent

to the log of the prior probability of marking each column (Durbin et al 1998,
chapter 5.7).

30 map

ga an optional named 9-element vector of background transition probabilities with
dimnames(qa) :C(”DD"7 ”DM", "DI”’ "MD”, ”MM”,"MI”, ”ID”, ”IMH’ ”II”)7
where M, I and D represent match, insert and delete states, respectively. If NULL,
background transition probabilities are estimated from the sequences.

ge an optional named vector of background emission probabilities the same length
as the residue alphabet (i.e. 4 for nucleotides and 20 for amino acids) and
with corresponding names (i.e. c("A", "T","G", "C") for DNA). If ge = NULL,
background emission probabilities are automatically derived from the sequences.

cpp logical, indicates whether the dynamic programming matrix should be filled us-
ing compiled C++ functions (default; many times faster). The FALSE option is
primarily retained for bug fixing and experimentation.

Details

see Durbin et al (1998) chapter 5.7 for details of the maximum a posteriori algorithm for optial
match and insert state assignment.

Value

a logical vector with length = ncol(x) indicating the columns to be assigned as match states (TRUE)
and those assigned as inserts (FALSE).

Author(s)

Shaun Wilkinson

References

Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological sequence analysis: probabilistic
models of proteins and nucleic acids. Cambridge University Press, Cambridge, United Kingdom.

See Also

derivePHMM

Examples

Maximum a posteriori assignment of match states to the small
alignment example in Figure 5.3, Durbin et al (1998)
data(globins)

map(globins)

plot. HMM 31

plot.HMM Plot standard hidden Markov models.

Description

plot.HMM provides a visual representation of a standard hidden Markov model.

Usage
S3 method for class 'HMM'
plot(x, just = "center”, arrexp = 1, textexp = 1, begin = FALSE, ...)
Arguments
X an object of class "HMM".
just a character string giving the justfication of the plot relative to the device. Ac-
cepted values are "left", "center" and "right".
arrexp the expansion factor to be applied to the arrows in the plot.
textexp the expansion factor to be applied to the text in the plot.
begin logical indicating whether the begin/end state should be plotted. Defaults to
FALSE.

additional arguments to be passed to plot.

Details
"plot.HMM"” Plots a "HMM" object as a directed graph. States (rectangles) are interconnected by
directed lines with line-weights proportional to the transition probabilities between the states.
Value

NULL (invisibly).

Author(s)
Shaun Wilkinson

References

Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological sequence analysis: probabilistic
models of proteins and nucleic acids. Cambridge University Press, Cambridge, United Kingdom.

Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological sequence analysis: probabilistic
models of proteins and nucleic acids. Cambridge University Press, Cambridge, United Kingdom.

See Also
plot.PHMM

32 plot. PHMM

Examples

the dishonest casino example from Durbin et al (1998)

states <- c("Begin”, "Fair"”, "Loaded")

residues = paste(1:6)

A <- matrix(c(o, @, 0, .99, 0.95, 0.1, 0.01, 0.05, 0.9), nrow = 3)
dimnames(A) <- list(from = states, to = states)

E <- matrix(c(rep(1/6, 6), rep(1/10, 5), 1/2), nrow = 2, byrow = TRUE)
dimnames(E) <- list(states = states[-1], residues = residues)

x <- structure(list(A = A, E = E), class = "HMM")

plot(x, main = "Dishonest casino hidden Markov model™)
plot.PHMM Plot profile hidden Markov models.
Description

plot.PHMM provides a visual representation of a profile hidden Markov model.

Usage
S3 method for class 'PHMM'
plot(
X)
from = "start",
to = "end"”,
just = "center”,
arrexp = 1,
textexp = 1,
)
Arguments
X an object of class "PHMM".
from an integer giving the module number to start the plot sequence from. Also ac-
cepts the chracter string "start" (module 0; default).
to an integer giving the module number to terminate the plot sequence. Also ac-
cepts the chracter string "end" (default).
just a character string giving the justfication of the plot relative to the device. Ac-
cepted values are "left", "center" and "right".
arrexp the expansion factor to be applied to the arrows in the plot.
textexp the expansion factor to be applied to the text in the plot.

additional arguments to be passed to plot.

plot. PHMM

Details

33

"plot.PHMM" Plots a "PHMM" object as a directed graph with sequential modules consisting of
squares, diamonds and circles representing match, insert and delete states, respectively. Modules
are interconnected by directed lines with line-weights proportional to the transition probabilities
between the states. Since the plotted models are generally much longer than they are high, it is
usually better to output the plot to a PDF file as demonstrated in the example below.

Value

NULL (invisibly).

Author(s)

Shaun Wilkinson

References

Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological sequence analysis: probabilistic
models of proteins and nucleic acids. Cambridge University Press, Cambridge, United Kingdom.

See Also

plot.HMM

Examples

Small globin alignment example from Durbin et al (1998) Figure 5.3
data(globins)

derive a profile hidden Markov model from the alignment

globins.PHMM <- derivePHMM(globins, residues = "AMINO"”, seqweights = NULL)
plot the PHMM

plot(globins.PHMM, main = "Profile hidden Markov model for globins")

#H#

derive a profile hidden Markov model from the woodmouse dataset in the
ape package

library(ape)

data(woodmouse)

woodmouse .PHMM <- derivePHMM(woodmouse)

plot partial model to viewer device

plot(woodmouse.PHMM, from = @, to = 5)

plot the entire model to a PDF in the current working directory

tmpf <- tempfile(fileext = ".pdf")

nr <- ceiling((woodmouse.PHMM$size + 2)/10)

pdf(file = tmpf, width = 8.27, height = nr % 2)

par(mfrow = c(nr, 1), mar = c(@, @, @, @) + 0.1)

from <- @

to <- 10

for(i in 1:nr){
plot(woodmouse.PHMM, from = from, to = to, just = "left")
from <- from + 10

34

posterior

to <- min(to + 10, woodmouse.PHMM$size + 1)

}
dev.off()

posterior

Posterior decoding.

Description

Calculate the posterior probability of a sequence given a model.

Usage

posterior(x, vy,

S3 method for class 'HMM'

posterior(x, vy,

S3 method for class 'PHMM'

posterior(x, vy,

Arguments

X

y

logspace

cpp

Details

L)
logspace = "autodetect”, cpp = TRUE, ...)
logspace = "autodetect”, cpp = TRUE, ...)

an object of class 'HMM' or 'PHMM'.

a vector of mode "character" or "raw" (a "DNAbin" or "AAbin" object) repre-
senting a single sequence hypothetically emitted by the model in x.

additional arguments to be passed between methods.

logical indicating whether the emission and transition probabilities of x are
logged. If logspace = "autodetect” (default setting), the function will auto-
matically detect if the probabilities are logged, returning an error if inconsisten-
cies are found. Note that choosing the latter option increases the computational
overhead; therefore specifying TRUE or FALSE can reduce the running time.

logical, indicates whether the dynamic programming matrix should be filled us-
ing compiled C++ functions (default; many times faster). The R version is pri-
marily retained for bug-fixing and experimentation.

See Durbin et al (1998) chapter 3.2 for details on the calculation and interpretation of posterior
state probabilities. Currently no method is available for profile HMMs, but this may be included in
a future version if required.

Value

a vector, matrix or array of posterior probabilities.

print 35

Author(s)
Shaun Wilkinson

References

Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological sequence analysis: probabilistic
models of proteins and nucleic acids. Cambridge University Press, Cambridge, United Kingdom.

See Also

forward, backward, Viterbi

Examples

Posterior decoding for standard hidden Markov models

The dishonest casino example from Durbin et al (1998) chapter 3.2
states <- c("Begin”, "Fair"”, "Loaded")

residues <- paste(1:6)

Define the transition probability matrix

A <- matrix(c(o, 0, 0, .99, 0.95, 0.1, 0.01, 0.05, 0.9), nrow
dimnames(A) <- list(from = states, to = states)

Define the emission probability matrix

E <- matrix(c(rep(1/6, 6), rep(1/10, 5), 1/2), nrow = 2, byrow = TRUE)
dimnames(E) <- list(states = states[-1], residues = residues)

Build and plot the HMM object

x <- structure(list(A = A, E = E), class = "HMM")

3

plot(x, main = "Dishonest casino HMM")
Calculate posterior probabilities
data(casino)

casino.post <- posterior(x, casino)

plot(1:300, casino.post[1,], type = "1", xlab = "Roll number”,
ylab = "Posterior probability of dice being fair”,
main = "The dishonest casino”)

print Print summary methods.

Description

Print summary methods.

Usage
S3 method for class 'PHMM'
print(x, ...)

S3 method for class 'HMM'
print(x, ...)

36 readPHMM

S3 method for class 'DPA'
print(x, ...)
Arguments

X object of various classes.

additional arguments to be passed between methods.

Value

NULL (invisibly)

Author(s)
Shaun Wilkinson

readPHMM Import profile hidden Markov models into R.

Description

The readPHMM function parses a HMMER3 text file into R and creates an object of class "PHMM".

Usage
readPHMM(file = "", ...)
Arguments
file the name of the file from which to read the model.
further arguments to be passed to "scan”.
Details

This function scans a HMMERJ3/f text file and creates an object of class "PHMM” in R. Note that
unlike HMMER, the aphid package does not currently support position-specific background emis-
sion probabilities, and so only a single vector the same length as the reside alphabet is included as
an element of the returned object. Also the function currently only parses the first profile HMM
encountered in the text file, with subsequent models ignored.

Value

an object of class "PHMM".

Author(s)
Shaun Wilkinson

substitution 37

References

Finn RD, Clements J & Eddy SR (2011) HMMER web server: interactive sequence similarity
searching. Nucleic Acids Research. 39, W29-W37. http://hmmer.org/.

HMMER: biosequence analysis using profile hidden Markov models. http://www.hmmer.org.

See Also

writePHMM for writing PHMM objects in HMMER3 text format.

Examples

Derive a profile hidden Markov model from the small globin alignment
data(globins)

x <- derivePHMM(globins, residues = "AMINO", seqweights = NULL)

fl <- tempfile()

writePHMM(x, file = f1)

readPHMM(f1)

substitution Substitution matrices.

Description

A dataset containing several popular substitution scoring matrices for DNA and amino acids.

Usage

substitution

Format

A list of 71 matrices, most of which have 24 rows and 24 columns corresponding to the 20-letter
amino acid alphabet plus the ambiguity codes B, Z, X and *:

PAM the PAM matrices from PAM10 to PAMS500.
BLOSUM the BLOSUM matrices from BLOSUM?30 to BLOSUM100.

others also included are the DAYHOFF, GONNET, IDENTITY and MATCH substitution matrices
for amino acids, and the NUC.4.2 and NUC.4.4 substitution matrices for DNA.

Source

ftp://ftp.ncbi.nih.gov/blast/matrices/

http://hmmer.org/
http://www.hmmer.org
ftp://ftp.ncbi.nih.gov/blast/matrices/

38 train

train Iterative model refinement.

Description

Update model parameters using a list of training sequences, with either the Viterbi training or Baum-
Welch algorithm.

Usage

train(x, y, ...)

S3 method for class 'PHMM'
train(
X,
Y,
method = "Viterbi”,
seqweights = "Henikoff",
wfactor = 1,
k =5,
logspace = "autodetect”,
maxiter = 100,
limit = 1,
deltallL = 1e-07,
pseudocounts = "background”,
gap = "-",
fixga = FALSE,
fixge = FALSE,
maxsize = NULL,

inserts = "map”,
threshold = 0.5,
lambda = 0,
alignment = FALSE,
cores = 1,

quiet = FALSE,

)

S3 method for class 'HMM'
train(
X7
Y,
method = "Viterbi”,
seqweights = NULL,
wfactor = 1,
maxiter = 100,
deltallL 1e-07,

train

logspace =

39

"autodetect”,

quiet = FALSE,
modelend = FALSE,
pseudocounts = "Laplace”,

Arguments

method

seqweights

wfactor

k

logspace

maxiter

limit

deltallL

pseudocounts

an object of class "HMM" or "PHMM" specifying the initial parameter values.

a list of training sequences whose hidden states are unknown. Accepted modes
are "character" and "raw" (for "DNAbin" and "AAbin" objects).

aditional arguments to be passed to "Viterbi” (if method = "Viterbi") or
"forward" (if method = "BaumWelch").

a character string specifying the iterative model training method to use. Ac-
cepted methods are "Viterbi” (the default) and "BaumWelch”.

either NULL (all sequences are given weights of 1), a numeric vector the same
length as y representing the sequence weights used to derive the model, or a
character string giving the method to derive the weights from the sequences (see
weight).

numeric. The factor to multiply the sequence weights by. Defaults to 1.

integer representing the k-mer size to be used in tree-based sequence weighting
(if applicable). Defaults to 5. Note that higher values of k may be slow to
compute and use excessive memory due to the large numbers of calculations
required.

logical indicating whether the emission and transition probabilities of x are
logged. If logspace = "autodetect” (default setting), the function will auto-
matically detect if the probabilities are logged, returning an error if inconsisten-
cies are found. Note that choosing the latter option increases the computational
overhead; therefore specifying TRUE or FALSE can reduce the running time.

the maximum number of EM iterations or Viterbi training iterations to carry
out before the cycling process is terminated and the partially trained model is
returned. Defaults to 100.

the proportion of alignment rows that must be identical between subsequent
iterations for the Viterbi training algorithm to terminate. Defaults to 1.

numeric, the maximum change in log likelihood between EM iterations before
the cycling procedure is terminated (signifying model convergence). Defaults to
1E-07. Only applicable if method = "BaumWelch”.

character string, either "background”, Laplace" or "none". Used to account
for the possible absence of certain transition and/or emission types in the in-
put sequences. If pseudocounts = "background” (default), pseudocounts are
calculated from the background transition and emission frequencies in the train-
ing dataset. If pseudocounts = "Laplace” one of each possible transition and
emission type is added to the training dataset (default). If pseudocounts =

train

"none” no pseudocounts are added (not usually recommended, since low fre-
quency transition/emission types may be excluded from the model). Alterna-
tively this argument can be a two-element list containing a matrix of transition
pseudocounts as its first element and a matrix of emission pseudocounts as its
second. If this option is selected, both matrices must have row and column
names corresponding with the residues (column names of emission matrix) and
states (row and column names of the transition matrix and row names of the
emission matrix). For standard HMMs the first row and column of the transition
matrix should be named "Begin".

gap the character used to represent gaps in the alignment matrix (if applicable). Ig-
nored for "DNAbin” or "AAbin" objects. Defaults to "-" otherwise.

fixqa logical. Should the background transition probabilities be fixed (TRUE), or al-
lowed to vary between iterations (FALSE)? Defaults to FALSE. Only applicable
if method = "Viterbi”.

fixqge logical. Should the background emission probabilities be fixed (TRUE), or al-
lowed to vary between iterations (FALSE)? Defaults to FALSE. Only applicable
if method = "Viterbi”.

maxsize integer giving the upper bound on the number of modules in the PHMM. If
NULL (default) no maximum size is enforced.

inserts character string giving the model construction method by which alignment columns
are marked as either match or insert states. Accepted methods include "threshold”
(only columns with fewer than a specified proportion of gaps form match states
in the model), "map” (default; match and insert columns are found using the
maximum a posteriori method outlined in Durbin et al (1998) chapter 5.7),
"inherited” (match and insert columns are inherited from the input align-
ment), and "none” (all columns are assigned match states in the model). Alter-
natively, insert columns can be specified manually by providing a logical vector
the same length as the number of columns in the alignment, with TRUE for insert
columns and FALSE for match states.

threshold the maximum proportion of gaps for an alignment column to be considered for
a match state in the PHMM (defaults to 0.5). Only applicable when inserts
= "threshold"”. Note that the maximum a posteriori method works poorly for
alignments with few sequences, so the ’threshold’ method is automatically used
when the number of sequences is less than 5.

lambda penalty parameter used to favour models with fewer match states. Equivalent
to the log of the prior probability of marking each column (Durbin et al 1998,
chapter 5.7). Only applicable when inserts = "map”.

alignment logical indicating whether the alignment used to derive the final model (if appli-
cable) should be included as an element of the returned PHMM object. Defaults
to FALSE.

cores integer giving the number of CPUs to parallelize the operation over. Defaults to

1, and reverts to 1 if x is not a list. This argument may alternatively be a ’cluster’
object, in which case it is the user’s responsibility to close the socket connection
at the conclusion of the operation, for example by running parallel: :stopCluster(cores).
The string "autodetect"” is also accepted, in which case the maximum number of
cores to use is one less than the total number of cores available. Note that in

train 41

this case there may be a tradeoff in terms of speed depending on the number and
size of sequences to be aligned, due to the extra time required to initialize the
cluster. Only applicable if x is an object of class "PHMM".

quiet logical indicating whether feedback should be printed to the console.

modelend logical indicating whether transition probabilites to the end state of the standard
hidden Markov model should be modeled (if applicable). Defaults to FALSE.

Details

This function optimizes the parameters of a hidden Markov model (object class: "HMM") or profile
hidden Markov model (object class: "PHMM") using the methods described in Durbin et al (1998)
chapters 3.3 and 6.5, respectively. For standard HMMs, the function assumes the state sequence is
unknown (as opposed to the deriveHMM function, which is used when the state sequence is known).
For profile HMMs, the input object is generally a list of non-aligned sequences rather than an
alignment (for which the derivePHMM function may be more suitable).

This function offers a choice of two model training methods, Viterbi training (also known as the
segmental K-means algorithm (Juang & Rabiner 1990)), and the Baum Welch algorithm, a spe-
cial case of the expectation-maximization (EM) algorithm that iteratively finds the locally (but not
necessarily globally) optimal parameters of a HMM or PHMM.

The Viterbi training method is generally much faster, particularly for profile HMMs and when the
multi-threading option is used (see the "cores” argument). The comparison in accuracy will depend
on the nature of the problem, but personal experience suggests that the methods are comparable for
training profile HMMs for DNA and amino acid sequences.

Value

an object of class "HMM" or "PHMM", depending on the input model x.

Author(s)

Shaun Wilkinson

References

Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological sequence analysis: probabilistic
models of proteins and nucleic acids. Cambridge University Press, Cambridge, United Kingdom.

Juang B-H, Rabiner LR (1990) The segmental K-means algorithm for estimating parameters of
hidden Markov models. IEEE Transactions on Acoustics, Speech, and Signal Processing, 38, 1639-
1641.

See Also

deriveHMM and derivePHMM for maximum-likelihood parameter estimation when the training se-
quence states are known.

42

unalign

Examples

Baum Welch training for standard HMMs:

The dishonest casino example from Durbin et al (1998) chapter 3.2
states <- c("Begin”, "Fair"”, "Loaded")

residues <- paste(1:6)

Define the transition probability matrix

A <- matrix(c(o, @, 0, .99, 0.95, 0.1, 0.01, 0.05, 0.9), nrow = 3)
dimnames(A) <- list(from = states, to = states)

#i## Define the emission probability matrix

E <- matrix(c(rep(1/6, 6), rep(1/10, 5), 1/2), nrow = 2, byrow = TRUE)
dimnames(E) <- list(states = states[-1], residues = residues)

Build and plot the HMM object

x <= structure(list(A = A, E = E), class = "HMM")

op <- par(no.readonly = TRUE)

par(mfrow = c(2, 1))

plot(x, main = "Dishonest casino HMM before training")
data(casino)
x <= train(x, list(casino), method = "BaumWelch"”, deltallL = 0.001)
plot(x, main = "Dishonest casino HMM after training”)
par(op)
unalign Deconstruct an alignment.
Description

unalign deconstructs an alignment to a list of sequences.

Usage
unalign(x, gap = "-")
Arguments
X a matrix of aligned sequences. Accepted modes are "character" and "raw" (for
"DNAbin" and "AAbin" objects).
gap the character used to represent gaps in the alignment matrix. Ignored for "DNAbin”
or "AAbin" objects. Defaults to "-" otherwise.
Details

unalign works in the opposite way to align, reducing a matrix of aligned sequences to a list of
sequences without gaps. "DNAbin" and "AAbin" matrix objects are supported (and recommended
for biological sequence data)

Value

a list of sequences of the same mode and class as the input alignment (ie "DNAbin", "AAbin", or
plain ASCII characters).

Viterbi

Author(s)
Shaun Wilkinson

See Also

align.

Examples

Convert the woodmouse alignment in the ape package to a list of

unaligned sequences
library(ape)
data(woodmouse)

x <- unalign(woodmouse)

43

Viterbi The Viterbi algorithm.

Description

The Viterbi function finds the optimal path of a sequence through a HMM or PHMM and returns

its full (log) probability or log-odds score.

Usage

Viterbi(x, y, ...)

S3 method for class 'PHMM'
Viterbi(

X)

Y,

ge = NULL,

logspace = "autodetect”,

type = "global”,

odds = TRUE,

offset = 0,

windowspace = "all”,

DI = FALSE,

ID = FALSE,

cpp = TRUE,

)

S3 method for class 'HMM'

Viterbi(x, y, logspace = "autodetect”, cpp = TRUE,

Default S3 method:

.)

44 Viterbi

Viterbi(
X ’
Y,
type = "global”,
d =8,
e =2,
residues = NULL,
S = NULL,
windowspace = "all”,
offset = 0,
cpp = TRUE,

)

Arguments

X an object of class HMM or PHMM. Optionally, both x and y can be sequences
(character vectors or DNAbin/AAbin objects), in which case the operation be-
comes either the Needleman-Wunch (global algnment) or Smith-Waterman (lo-
cal alignment) algorithm.

y a vector of mode "character" or "raw" (a "DNAbin" or "AAbin" object) repre-
senting a single sequence hypothetically emitted by the model in x. Optionally,
both x and y can be profile hidden Markov models (object class "PHMM"), in
which case the sum of log-odds algorithm of Soding (2005) is used.
additional arguments to be passed between methods.

ge an optional named vector of background residue frequencies (only applicable if
x is a PHMM). If ge = NULL the function looks for a ge vector as an attribute of
the PHMM. If these are not available equal background residue frequencies are
assumed.

logspace logical indicating whether the emission and transition probabilities of x are
logged. If logspace = "autodetect” (default setting), the function will auto-
matically detect if the probabilities are logged, returning an error if inconsisten-
cies are found. Note that choosing the latter option increases the computational
overhead; therefore specifying TRUE or FALSE can reduce the running time.

type character string indicating whether insert and delete states at the beginning and
end of the path should count towards the final score (’global’; default), or not
(’semiglobal’), or whether the highest scoring sub-path should be returned (’lo-
cal’).

odds logical, indicates whether the returned scores should be odds ratios (TRUE) or
full logged probabilities (FALSE).

offset column score offset to specify level of greediness. Defaults to -0.1 bits for
PHMM x PHMM alignments (as recommended by Soding (2005)), and O other-
wise.

windowspace a two-element integer vector providing the search space for dynamic program-

ming (see Wilbur & Lipman 1983 for details). The first element should be nega-
tive, and represent the lowermost diagonal of the dynammic programming array,

Viterbi 45

and the second element should be positive, representing the leftmost diagonal.
Alternatively, if the the character string "all" is passed (the default setting) the
entire dynamic programming array will be computed.

DI logical indicating whether delete-insert transitions should be allowed in the pro-
file hidden Markov model (if applicable). Defaults to FALSE.

1D logical indicating whether insert-delete transitions should be allowed in the pro-
file hidden Markov model (if applicable). Defaults to FALSE.

cpp logical, indicates whether the dynamic programming matrix should be filled us-
ing compiled C++ functions (default; many times faster). The FALSE option is
primarily retained for bug fixing and experimentation.

d gap opening penalty (in bits) for sequence vs. sequence alignment. Defaults to
8.

e gap extension penalty (in bits) for sequence vs. sequence alignment. Defaults to
2.

residues either NULL (default; emitted residues are automatically detected from the se-

quences), a case sensitive character vector specifying the residue alphabet, or
one of the character strings "RNA", "DNA", "AA", "AMINO". Note that the
default option can be slow for large lists of character vectors.

S an optional scoring matrix with rows and columns named according to the residue
alphabet. Only applicable when both x and y are sequences (Needleman-Wunch
or Smith-Waterman alignments). Note that for Smith-Waterman local align-
ments, scores for mismatches should generally take negative values to avoid
spurious alignments. If NULL default settings are used. Default scoring matri-
ces are '"NUC.4.4’ for For DNAbin objects, and "MATCH’ (matches are scored
1 and mismatches are scored -1) for AAbin objects and character sequences.

Details

This function is a wrapper for a compiled C++ function that recursively fills a dynamic program-
ming matrix with probabilities, and calculates the (logged) probability and optimal path of a se-
quence through a HMM or PHMM.

If x is a PHMM and y is a sequence, the path is represented as an integer vector containing zeros,
ones and twos, where a zero represents a downward transition, a one represents a diagonal transition
downwards and left, and a two represents a left transition in the dynamic programming matrix (see
Durbin et al (1998) chapter 2.3). This translates to 0 = delete state, 1 = match state and 2 = insert
state.

If x and y are both sequences, the function implements the Needleman-Wunch or Smith Waterman
algorithm depending on the type of alignment specified. In this case, a zero in the path refers to x
aligning to a gap in y, a one refers to a match, and a two refers to y aligning to a gap in x.

If x is a standard hidden Markov model (HMM) and y is a sequence, each integer in the path
represents a state in the model. Note that the path elements can take values between 0 and one less
than number of states, as in the C/C++ indexing style rather than R’s.

For a thorough explanation of the backward, forward and Viterbi algorithms, see Durbin et al (1998)
chapters 3.2 (HMMs) and 5.4 (PHMMs).

46 Viterbi

Value

an object of class "DPA", which is a list including the score, the dynammic programming array, and
the optimal path (an integer vector, see details section).

Author(s)
Shaun Wilkinson

References

Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological sequence analysis: probabilistic
models of proteins and nucleic acids. Cambridge University Press, Cambridge, United Kingdom.

Soding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics, 21, 951-
960.

Wilbur WJ, Lipman DJ (1983) Rapid similarity searches of nucleic acid and protein data banks.
Proc Natl Acad Sci USA, 80, 726-730.

See Also

backward, forward, align

Examples

Viterbi algorithm for standard HMMs:

The dishonest casino example from Durbin et al (1998) chapter 3.2
states <- c("Begin”, "Fair"”, "Loaded")

residues <- paste(1:6)

#i## Define the transition probability matrix

A <- matrix(c(e, o, @, .99, 0.95, 0.1, 0.01, 0.05, 0.9), nrow = 3)
dimnames(A) <- list(from = states, to = states)

#i## Define the emission probability matrix

E <- matrix(c(rep(1/6, 6), rep(1/10, 5), 1/2), nrow = 2, byrow = TRUE)
dimnames(E) <- list(states = states[-1], residues = residues)

Build and plot the HMM object

x <- structure(list(A = A, E = E), class = "HMM")

plot(x, main = "Dishonest casino HMM")
Find optimal path of sequence
data(casino)

casino.DPA <- Viterbi(x, casino)

casino.DPA$score # full (log) prob of sequence given model = -538.8109
Show optinal path path as indices

casino.DPA$path

Show optimal path as character strings
rownames (x$E) [casino.DPA$path + 1]

H#H

Needleman-Wunch pairwise sequence alignment:

Pairwise protein alignment example from Durbin et al (1998) chapter 2.3
x <= c("H", "E", "A", "G", "A", "w", "G", "H", "E", "E")

y <= c("P", "A", "W", "H", "E", "A", "E")

Viterbi(x, y, d =8, e = 2, type = "global"”)

weight 47

H#HH

Viterbi algorithm for profile HMMs:

Small globin alignment data from Durbin et al (1998) Figure 5.3
data(globins)

Derive a profile hidden Markov model from the alignment

globins.PHMM <- derivePHMM(globins, residues = "AMINO"”, seqweights = NULL)
plot(globins.PHMM, main = "Profile hidden Markov model for globins")

Simulate a random sequence from the model
suppressWarnings(RNGversion(”3.5.0"))

set.seed(999)

simulation <- generate(globins.PHMM, size = 20)

simulation ## "F" "S" "A"™ "N" "N" "D" "W" "E"

Calculate the odds of the optimal path of the sequence given the model
x <- Viterbi(globins.PHMM, simulation, odds = FALSE)

X # -23.07173

Show dynammic programming array

x$array

Show the optimal path as an integer vector

x$path

Show the optimal path as either delete states, matches or insert states
c("D", "M", "I")[x$path + 1]

Correctly predicted the actual path:

names(simulation)

weight Sequence weighting.

Description

Weighting schemes for DNA and amino acid sequences.

Usage
weight(x, ...)

S3 method for class 'DNAbin'

weight(x, method = "Henikoff"”, k =5,)

S3 method for class 'AAbin'

weight(x, method = "Henikoff"”, k = 5,)

S3 method for class 'list'

weight(x, method = "Henikoff", k = 5, residues = NULL, gap = "-", ...)
S3 method for class 'dendrogram'

weight(x, method = "Gerstein”, ...)

Default S3 method:
weight(x, method = "Henikoff", k = 5, residues = NULL, gap = "-", ...)

48
Arguments

X

method

residues

gap

Details

weight

a list or matrix of sequences (usually a "DNAbin" or "AAbin" object). Alterna-
tively x can be an object of class "dendrogram” for tree-base weighting.

additional arguments to be passed between methods.

a character string indicating the weighting method to be used. Currently the only
methods available are a modified version of the maximum entropy weighting
scheme proposed by Henikoff and Henikoff (1994) (method = "Henikoff") and
the tree-based weighting scheme of Gerstein et al (1994) (method = "Gerstein”).

integer representing the k-mer size to be used. Defaults to 5. Note that higher
values of k may be slow to compute and use excessive memory due to the large
numbers of calculations required.

either NULL (default; emitted residues are automatically detected from the se-
quences), a case sensitive character vector specifying the residue alphabet, or
one of the character strings "RNA", "DNA", "AA", "AMINOQO". Note that the
default option can be slow for large lists of character vectors. Furthermore, the
default setting residues = NULL will not detect rare residues that are not present
in the sequences, and thus will not assign them emission probabilities in the
model. Specifying the residue alphabet is therefore recommended unless x is a
"DNAbin" or "AAbin" object.

the character used to represent gaps in the alignment matrix (if applicable). Ig-
nored for "DNAbin” or "AAbin" objects. Defaults to "-" otherwise.

This is a generic function. If method = "Henikoff" the sequences are weighted using a modified
version of the maximum entropy method proposed by Henikoff and Henikoff (1994). In this case
the maximum entropy weights are calculated from a k-mer presence absence matrix instead of an
alignment as originally described by Henikoff and Henikoff (1994). If method = "Gerstein” the
agglomerative method of Gerstein et al (1994) is used to weight sequences based on their relatedness
as derived from a phylogenetic tree. In this case a dendrogram is first derived using the cluster
function in the kmer package. Methods are available for "dendrogram” objects, "DNAbin" and
"AAbin" sequence objects (as lists or matrices) and sequences in standard character format provided
either as lists or matrices.

For further details on sequence weighting schemes see Durbin et al (1998) chapter 5.8.

Value

a named vector of weights, the sum of which is equal to the total number of sequences (average

weight = 1).

Author(s)

Shaun Wilkinson

writePHMM 49

References

Durbin R, Eddy SR, Krogh A, Mitchison G (1998) Biological sequence analysis: probabilistic
models of proteins and nucleic acids. Cambridge University Press, Cambridge, United Kingdom.

Gerstein M, Sonnhammer ELL, Chothia C (1994) Volume changes in protein evolution. Journal of
Molecular Biology, 236, 1067-1078.

Henikoff S, Henikoff JG (1994) Position-based sequence weights. Journal of Molecular Biology,
243, 574-578.

Examples

weight the sequences in the woodmouse dataset from the ape package
library(ape)

data(woodmouse)

woodmouse.weights <- weight(woodmouse)

woodmouse.weights

writePHMM Export profile hidden Markov models as text.

Description

writePHMM takes an object of class "PHMM" and writes it to a text file in HMMER3 format.

Usage
writePHMM(x, file = "", append = FALSE, form = "HMMER3", vers = "f")
Arguments
X an object of class "PHMM".
file the name of the file to write the model to.
append logical indicating whether the model text should be appended below any exist-
ing text in the output file, or whether any existing text should be overwritten.
Defaults to FALSE.
form character string indicating the format in which to write the model. Currently
only HMMER3f is supported.
vers character string indicating the version of version of the format in which to write
the model. Currently only "f" is supported.
Details

This function writes an object of class "PHMM" to a HMMER3/f text file. Note that unlike HMMER,
the aphid package does not currently support position-specific background emission probabilities.

Value

NULL (invisibly)

50 writePHMM

Author(s)
Shaun Wilkinson

References

Finn, RD, Clements J & Eddy SR (2011) HMMER web server: interactive sequence similarity
searching. Nucleic Acids Research. 39 W29-W37. http://hmmer.org/.

HMMER: biosequence analysis using profile hidden Markov models. http://www.hmmer.org.

See Also
readPHMM to parse a PHMM object from a HMMER3 text file.

Examples

Derive a profile hidden Markov model from the small globin alignment
data(globins)

x <- derivePHMM(globins, residues = "AMINO", seqweights = NULL)

X

fl <- tempfile()

writePHMM(x, file = f1)

readPHMM(f1)

##

Derive a PHMM for the woodmouse data and write to file

library(ape)

data(woodmouse)

woodmouse.PHMM <- derivePHMM(woodmouse)
tmpf <- tempfile(fileext = ".hmm")

writePHMM(woodmouse.PHMM, file = tmpf)

http://hmmer.org/
http://www.hmmer.org

Index

+ datasets
casino, 13
globins, 27
substitution, 37

align, 2,9, 22,42, 43, 46
ape, 4,8
aphid, 8
aphid-package (aphid), 8

backward, 9, 10, 11, 24, 35, 46

casino, 10, 13
cluster, 48

deriveHMM, 9, 14, 22, 41
derivePHMM, 9, 16, 16, 30, 41

forward, 9, 10, 12, 23, 35, 46

generate, 25
generate.HMM, 10
generate.PHMM, 10
globins, 10, 27

kmer, 48

logsum, 28
map, 9, 22, 28

plot, 31, 32
plot.HMM, 9, 31, 33
plot.PHMM, 9, 31, 32
posterior, 10, 34
print, 35

Repp, 9
readPHMM, 8, 9, 36, 50

substitution, 10, 37

51

train, 9, 38
train.HMM, 15

unalign, 7, 42
Viterbi, 9, 10, 12, 24, 35, 43

weight, 5, 9, 19, 39, 47
writePHMM, 8, 9, 37, 49

	align
	aphid
	backward
	casino
	deriveHMM
	derivePHMM
	forward
	generate
	globins
	logsum
	map
	plot.HMM
	plot.PHMM
	posterior
	print
	readPHMM
	substitution
	train
	unalign
	Viterbi
	weight
	writePHMM
	Index

