Package ‘base64enc’

February 2, 2026
Version 0.1-6
Title Tools for 'base64' Encoding

Author Simon Urbanek [aut, cre, cph] (https://urbanek.nz, ORCID:
<https://orcid.org/0000-0003-2297-1732>)

Maintainer Simon Urbanek <Simon.Urbanek@r-project.org>
Depends R (>=2.9.0)
Enhances png

Description
Tools for handling 'base64' encoding. It is more flexible than the orphaned 'base64' package.

License GPL-2 | GPL-3
URL https://www.rforge.net/base64enc

BugReports https://github.com/s-u/base64enc/issues
NeedsCompilation yes

Repository CRAN

Date/Publication 2026-02-02 06:31:10 UTC

Contents
baseb4d e e e e
checkUTFES e
dataURI e e
Index

https://orcid.org/0000-0003-2297-1732
https://www.rforge.net/base64enc
https://github.com/s-u/base64enc/issues

base64

base64

Encode/decode data into/from base64 encoding

Description

base64encode encodes a data into base64 encoding. The source can be a file, binary connection or

araw vector.

base64decode decodes a base64-encoded string into binary data. The source can be a string or a
connection, the output is either a raw vector (output=NULL) or a binary connection.

Usage

base64encode(what, linewidth, newline)
base64decode(what, output = NULL, file, strict = FALSE)

Arguments

what

linewidth

newline

output

file

strict

Value

data to be encoded/decoded. For base64encode it can be a raw vector, text
connection or file name. For base64decode it can be a string, raw vector or a
binary connection.

if set, the output is split into lines with at most linewidth characters per line.
Zero or NA denotes no limit and values 1 .. 3 are silently treated as 4 since that
is the shortest valid line.

only applicable if linewidth is set; if set (string), the result will be a single
string with all lines joined using the newline string

if NULL then the output will be a raw vector with the decoded data, otherwise it
must be either a filename (string) or a binary connection.

file name (string) for data to use as input instead of what. It is essentially just a
shorthand for base64decode(file(name)). Only one of what and file can be
specified.

logical scalar. If TRUE then the decoder validates the input contents making
sure it strictly adheres to the standard, does not include any other characters
(including white spaces, newlines etc.), is correctly padded and does not have
any trailing content. Any validation failure will result in an error. Otherwise
the decoding skips over invalid characters, permits lack of padding and ignores
trailing content.

base64encode: A character vector. If 1inewith > @ and newline is not set then it will consist of
as many elements as there are lines. Otherwise it is a single string.

base64decode: If output = NULL then a raw vector with the decoded content, otherwise the number
of bytes written into the connection.

checkUTF8 3

Author(s)

Simon Urbanek

Examples

base64encode (1:100)

base64encode(1:100, 70)

base64encode(1:100, 70, "\n")

x <- charToRaw("the decoded content, otherwise the number of bytes")
y <- base64decode(base64encode(x))

stopifnot(identical(x, y))

checkUTF8 Check the validity of a byte stream ot be interpreted as UTFS.

Description

checkUTF8 check whether a given raw vector can be used as a valid string encoded in UTFS.

Usage

checkUTF8(what, quiet = FALSE,charlen = FALSE, min.char = 1L)

Arguments
what raw vector with the payload
quiet logical, if TRUE then the function will not fail but report success/failure via its
result, otherwise failures are considered errors.
charlen logical, if TRUE then the function returns the length of the longest byte sequence
representing a character in the file.
min.char integer, any bytes below this value are considered control chacters and reported
as errors. The default value of 1L guards against strings including NULSs.
Value

If charlen=FALSE: TRUE on success, FALSE if the payload is invalid and quite=TRUE.

If charlen=TRUE: positive integer corresponding to the longest encoded sequence on success, neg-
ative integer on failure.

Author(s)

Simon Urbanek

4 dataURI

dataURI Create a data URI string

Description

dataURI creates URI with the data: scheme by encoding the payload either using base64 ot URI

encoding.
Usage
dataURI(data, mime = "", encoding = "base64”, file)
Arguments
data raw vector, connection or character vector to use as payload. Character vectors
of more than one element are collapsed using "\n" before encoding.
mime MIME-type of the data (per standard "" is interpreted as "text/plain;charset=US-
ASCII" without including it in the URI)
encoding data encoding to use. Must be either "base64” or NULL
file filename (string) to open as payload. file and data are mutually exclusive
Value

string of the form data: [mime][;base64],<encoded-payload>

Author(s)

Simon Urbanek

References

RFC 2397 The "data" URL scheme

Examples

dataURI(as.raw(1:10)) # default is base64
dataURI(as.raw(1:10), encoding=NULL) # URI
if (require("png”, quietly=TRUE)) {
let's say you have an image - e.g. from dev.capture(TRUE)
img <- matrix(1:16/16, 4)
dataURI(writePNG(img), "image/png")
or straight from a file
dataURI(file=system.file("img", "Rlogo.png”, package="png"), mime="image/png")

https://datatracker.ietf.org/doc/html/rfc2397

Index

* manip
baseb64, 2
checkUTF8, 3
dataURI, 4

base64, 2
base64decode (base64), 2
base64encode (base64), 2

checkUTF8, 3

dataURI, 4

	base64
	checkUTF8
	dataURI
	Index

