Package ‘bittermelon’

January 29, 2026

Type Package
Title Bitmap Tools
Version 2.2.1

Description Provides functions for creating, modifying, and displaying bitmaps including print-
ing them in the terminal. There is a special empha-
sis on monochrome bitmap fonts and their glyphs as well as colored pixel art/sprites. Pro-
vides native read/write support for the 'hex' and 'yaff' bitmap font formats and if 'mono-
bit' <https://github.com/robhagemans/monobit> is installed can also read/write several ad-
ditional bitmap font formats.

URL https://trevorldavis.com/R/bittermelon/

BugReports https://github.com/trevorld/bittermelon/issues
License MIT + file LICENSE
Imports cli, grDevices, grid, png, Unicode, utils

Suggests colorfast (>= 1.0.1), farver, gridpattern, hexfont (>=
0.5.1), knitr, magick, mazing, ragg, rmarkdown, testthat,
vdiffr, withr

VignetteBuilder knitr, rmarkdown

SystemRequirements 'monobit’ for reading/writing additional bitmap
font formats.

Encoding UTF-8
RoxygenNote 7.3.3
NeedsCompilation no

Author Trevor L. Davis [aut, cre] (ORCID:
<https://orcid.org/0000-0001-6341-4639>),
Frederic Cambus [tyg] (Developer of included 'Spleen' font),
Markus Kuhn [tyg] (Maintainer of included 'Fixed' font),
josehzz [art] (Artist of included 'Farming Crops 16x16' sprites)

Maintainer Trevor L. Davis <trevor.l.davis@gmail.com>
Repository CRAN
Date/Publication 2026-01-29 06:10:40 UTC

https://github.com/robhagemans/monobit
https://trevorldavis.com/R/bittermelon/
https://github.com/trevorld/bittermelon/issues
https://orcid.org/0000-0001-6341-4639

2 Contents

Contents
as.array.bm_bitmap Lo 3
as.data.frame.bm_bitmap 4
as.matrix.bm_matriX e e e e e 5
as_bm_bitmap 6
as_bm_font e 10
as_ bm_liSt e 11
aS_bM_PIXMAP o o e e e e e e e e 12
bm_bitmap e e 15
bm_call e 16
bm_clamp 17
bmM_COmMPOSe e e 18
DM_COMPIesS o v o ot e e e e e e e e e e e e 19
bm_distort e e 21
bm_edit e 22
bm_expand L e 23
bm_extend L e 25
bm_extract e e 28
bm_flip 29
bm_font e e 31
DM_ZIray ot e e e e e e e e e e e e e e e e e 32
bm_heights e 33
bm_invert e 34
bm_lapply 35
bm_liSt . . . 36
bm_mask e 37
bm_options 40
bm_outline e e 40
bm_overlay e 42
bm_pad 44
bm_padding_lengths L 47
bm_pixel_picker 48
bm_pixmap e e 49
bm_print. e 50
bm_replace e e e e 52
bm_resize e 53
bm_rotate e 56
bm_shadow e 57
bm_shift 62
bm_trim s 64
cbhm_bitmap e 67
chind.bm_bitmap e 68
colZhex e e e e 69
COI2INt e e e e e e e e e e 70
farming_crops_16x16 L 71
hex2ucp L e 72

is_bm_bitmap 73

as.array.bm_bitmap 3

is_bm_font e 74
is_bm_list e 75
IS_DM_PIXMAP .« . v v v o v e e e e e e e e e e e e e e e e 75
is_supported_bitmap e 76
Ops.bm_bitmap 77
plot.bm_matriX e e e e e e 78
printbm_bitmap e e e e 80
printbm_pixmap 82
read_hex oL e 84
read_monobit L L L 85
read_yaff 86
Summary.bm_list e 87
ucp2label . ..o e 88
[[bm_matriX e 89

Index 90

as.array.bm_bitmap Cast bitmap/pixmap objects to an array
Description

as.array.bm_bitmap() / as.array.bm_pixmap() casts bm_bitmap() / bm_pixmap() objects to
an array of numeric values representing the RGBA channels. These arrays can be used in functions

such as png: :writePNG().
Usage
S3 method for class 'bm_bitmap'
as.array(
X)

L

first_row_is_top = TRUE,
col = getOption("bittermelon.col”, col_bitmap)

)
S3 method for class 'bm_pixmap'
as.array(x, ..., first_row_is_top = TRUE)
Arguments
X Either a bm_bitmap() or bm_pixmap() object.

Currently ignored.

first_row_is_top

If TRUE the first row of the matrix will represent the top of the bitmap (like
grDevices: :as.raster() objects). If FALSE the first row of the matrix will
represent the bottom of the bitmap (like bm_bitmap() and bm_pixmap() ob-
jects).

4 as.data.frame.bm_bitmap

col Character vector of R color specifications. First color is used for values equal to
0, second color for values equal to 1, etc.

Examples

corn <- farming_crops_16x16()$corn$portrait
a <- as.array(corn)

f <- tempfile(fileext = ".png")

png: :writePNG(a, f)

as.data.frame.bm_bitmap
Convert to data frame with pixel (x,y) coordinates

Description

as.matrix.bm_matrix() casts bm_bitmap() objects to a (normal) integer matrix and bm_pixmap ()
objects to a (normal) character matrix (of color strings).

Usage

S3 method for class 'bm_bitmap'
as.data.frame(x, ..., filtrate = FALSE)

S3 method for class 'bm_pixmap'

as.data.frame(x, ..., filtrate = FALSE)
Arguments
X Either a bm_bitmap() or bm_pixmap() object.

Currently ignored.

filtrate If FALSE (default) get coordinates for all values. If a single value only return the
coordinates for pixels that equal that value.

Value

nynmonon

A data frame with "x", "y", and "value" columns.

Examples

font_file <- system.file("fonts/fixed/4x6.yaff.gz", package = "bittermelon”)
font <- read_yaff(font_file)
bm <- as_bm_bitmap("RSTATS"”, font = font)
df <- as.data.frame(bm, filtrate = 1L)
if (require("grid")) {

grid.newpage()

grid.rect(df$x * 0.6, df$y * 0.6, width = 0.5, height = 0.5,

gp = gpar(fill = 'black'), default.units = 'cm')

as.matrix.bm_matrix 5

}

corn <- farming_crops_16x16()$corn$portrait
df <- as.data.frame(corn)
if (require("grid")) {
grid.newpage()
grid.circle(df$x x 0.6, df$y *x 0.6, r = 0.25,
gp = gpar(fill = df$value), default.units = 'cm')

as.matrix.bm_matrix Cast bitmap/pixmap objects to a (normal) matrix

Description

as.matrix.bm_matrix() casts bm_bitmap() objects to a (normal) integer matrix and bm_pixmap()
objects to a (normal) character matrix (of color strings). Note unless first_row_is_top = TRUE
the bottom left pixel will still be represented by the pixel in the first row and first column (i.e. these
methods simply remove the class names).

Usage

S3 method for class 'bm_matrix'

as.matrix(x, first_row_is_top = FALSE, ...)
Arguments

X Either a bm_bitmap() or bm_pixmap() object.

first_row_is_top
If TRUE the first row of the matrix will represent the top of the bitmap (like
grDevices: :as.raster() objects). If FALSE the first row of the matrix will
represent the bottom of the bitmap (like bm_bitmap() and bm_pixmap() ob-
jects).

Currently ignored.

Value

Either an integer matrix if x is a bm_bitmap() object or a character matrix if x is a bm_pixmap()
object.

Examples

space_matrix <- matrix(@L, ncol = 8L, nrow = 8L)
space_glyph <- bm_bitmap(space_matrix)
print(space_glyph, px = ".")
print(as.matrix(space_glyph))

6 as_bm_bitmap

as_bm_bitmap Cast to a bitmap matrix object

Description

as_bm_bitmap() turns an existing object into a bm_bitmap() object.

Usage

as_bm_bitmap(x, ...)

S3 method for class 'array'
as_bm_bitmap(

X)
mode = c("alpha”, "darkness"”, "brightness"),
threshold = 0.5

)

Default S3 method:
as_bm_bitmap(x, ...)

S3 method for class 'bm_bitmap'
as_bm_bitmap(x, ...)

S3 method for class 'bm_pixmap'
as_bm_bitmap(

X’
mode = c("alpha", "darkness”, "brightness"),
threshold = 0.5

)

S3 method for class 'character'
as_bm_bitmap(
X,

direction = "left-to-right, top-to-bottom”,
font = bm_font(),

hjust = "left",

vjust = "top",

compose = TRUE,

pua_combining = character ()

)

S3 method for class 'glyph_bitmap'
as_bm_bitmap(x, ..., threshold = 0.5)

as_bm_bitmap

S3 method for class 'grob'
as_bm_bitmap(

X7
width = 8L,
height = 16L,

png_device = NULL,
threshold = 0.25
)

S3 method for class '~“lofi-matrix™'
as_bm_bitmap(x, ...)

S3 method for class '“magick-image™'
as_bm_bitmap(

X’
mode = c("alpha”, "darkness"”, "brightness"),
threshold = 0.5

)

S3 method for class 'matrix'
as_bm_bitmap(x, ...)

S3 method for class 'maze'
as_bm_bitmap(

X)

walls = FALSE,

start = NULL,

end = NULL,

solve = lis.null(start) && !is.null(end)
)

S3 method for class 'nativeRaster'
as_bm_bitmap(

X)
mode = c("alpha”, "darkness”, "brightness"),
threshold = 9.5

)

S3 method for class 'pattern_square'
as_bm_bitmap(x, ...)

S3 method for class 'pattern_weave'
as_bm_bitmap(x, ...)

S3 method for
as_bm_bitmap(x,

S3 method for
as_bm_bitmap(x,

S3 method for
as_bm_bitmap(x,

S3 method for
as_bm_bitmap(x,

S3 method for
as_bm_bitmap(x,

S3 method for
as_bm_bitmap(

class 'pattern_square'

as_bm_bitmap

)
class 'pixeltrix'
)
class 'pixmapGrey'
., mode = c("darkness”, "brightness”), threshold = 0.5)
class 'pixmapIndexed'
)
class 'pixmapRGB'
., mode = c("darkness”, "brightness"), threshold = 0.5)

class 'raster’

X,
L

mode =

c("alpha", "darkness"”, "brightness"),

threshold = 0.5

Arguments

X

mode

threshold

direction

An object that can reasonably be coerced to a bm_bitmap() object.

Further arguments passed to or from other methods.

Method to determine the integer values of the bm_bitmap() object:

alpha Higher alpha values get a 1L.

darkness Higher darkness values get a 1L. darkness = (1 - 1luma) * alpha.
brightness Higher brightness values get a 1L. brightness = luma * alpha.

If the alpha/darkness/brightness value weakly exceeds this threshold (on an in-
terval from zero to one) then the pixel is determined to be “black”.

For purely horizontal binding either "left-to-right" (default) or its aliases "ltr"
and "Ir" OR "right-to-left" or its aliases "rtl" and "11". For purley vertical binding
either "top-to-bottom" (default) or its aliases "ttb" and "tb" OR "bottom-to-top"
or its aliases "btt" and "bt". For character vectors of length greater than one:
for first horizontal binding within values in the vector and then vertical binding
across values in the vector "left-to-right, top-to-bottom" (default) or its aliases
"Irtb" and "Ir-tb"; "left-to-right, bottom-to-top" or its aliases "lrbt" and "Ir-bt";
"right-to-left, top-to-bottom" or its aliases "rltb" and "rl-tb"; or "right-to-left,
bottom-to-top" or its aliases "rlbt" and "rl-bt". For first vertical binding within
values in the vector and then horizontal binding across values "top-to-bottom,
left-to-right" or its aliases "tblr" and "tb-1r"; "top-to-bottom, right-to-left" or its
aliases "tbrl" and "tb-rl"; "bottom-to-top, left-to-right" or its aliases "btlr" and
"bt-Ir"; or "bottom-to-top, right-to-left" or its aliases "btrl" and "bt-rl". The
direction argument is not case-sensitive.

as_bm_bitmap 9

font A bm_font () object that contains all the characters within x.
hjust Used by bm_extend() if bitmap widths are different.

vjust Used by bm_extend() if bitmap heights are different.
compose Compose graphemes using bm_compose().

pua_combining Passed to bm_compose().

width Desired width of bitmap
height Desired height of bitmap
png_device A function taking arguments filename, width, and height that starts a graphics

device that saves a png image with a transparent background. By default will use
ragg: :agg_png() if available else the “cairo” version of grDevices: :png() if
available else just grDevices: :png().

walls If TRUE the values of 1L denote the walls and the values of OL denote the paths.

start, end If not NULL mark the start and end as value 2L. See mazing: : find_maze_refpoint().

solve If TRUE then mark the solution path from start to end as value 3L. See mazing: : solve_maze().
Value

A bm_bitmap() object.

See Also
bm_bitmap()

Examples

space_matrix <- matrix(OL, nrow = 16L, ncol = 16L)
space_glyph <- as_bm_bitmap(space_matrix)
is_bm_bitmap(space_glyph)

font_file <- system.file("fonts/fixed/4x6.yaff.gz", package = "bittermelon”)
font <- read_yaff(font_file)

bm <- as_bm_bitmap("RSTATS", font = font)

print(bm)

bm <- as_bm_bitmap("RSTATS", direction = "top-to-bottom”, font = font)
print(bm)

if (require(”grid") && capabilities("png"”)) {
circle <- as_bm_bitmap(circleGrob(r = 0.25), width = 16L, height = 16L)
print(circle)

}

if (require("grid") && capabilities("png"”)) {
inverted_exclamation <- as_bm_bitmap(textGrob("!", rot = 180),
width = 8L, height = 16L)
print(inverted_exclamation)

}

10

if (requireNamespace("mazing”, quietly = TRUE)) {
m <- mazing::maze(16, 32)
bm <- as_bm_bitmap(m, walls = TRUE)
print(bm, compress = "vertical”)

}

if (requireNamespace("gridpattern”, quietly = TRUE)) {
w <- gridpattern::pattern_weave("twill_herringbone”, nrow=14L, ncol = 40L)
bm <- as_bm_bitmap(w)

as_bm_font

print(bm, compress = "vertical”)
3
as_bm_font Coerce to bitmap font objects
Description

as_bm_font () turns an existing object into a bm_font() object.

Usage

as_bm_font(x, ..., comments = NULL, properties = NULL)

Default S3 method:
as_bm_font(x, ..., comments = NULL, properties = NULL)

S3 method for class 'list'

as_bm_font(x, ..., comments = NULL, properties = NULL)
Arguments
X An object that can reasonably be coerced to a bm_font () object.

Further arguments passed to or from other methods.

comments An optional character vector of (global) font comments.
properties An optional named list of font metadata.
Value

A bm_font() object.

See Also

bm_font ()

as_bm_list 11

Examples

plus_sign <- matrix(@L, nrow = 9L, ncol = 9L)
plus_sign[5L, 3:7] <- 1L

plus_sign[3:7, 5L] <- 1L

plus_sign_glyph <- bm_bitmap(plus_sign)

space_glyph <- bm_bitmap(matrix(@L, nrow = 9L, ncol = 9L))

1 <- list()

1[[str2ucp("+")1] <- plus_sign_glyph
1[[str2ucp(” ")1] <- space_glyph
font <- as_bm_font(1l)
is_bm_font(font)

as_bm_list Coerce to bitmap list objects

Description

as_bm_list() turns an existing object into abm_1ist () object. In particular as_bm_list.character()
turns a string into a bitmap list.

Usage
as_bm_list(x, ...)

Default S3 method:
as_bm_list(x, ...)

S3 method for class 'bm_list'
as_bm_list(x, ...)

S3 method for class 'list'
as_bm_list(x, ..., FUN = identity)

S3 method for class 'character'

as_bm_list(x, ..., font = bm_font())
Arguments
X An object that can reasonably be coerced to a bm_list () object.

Further arguments passed to or from other methods.
FUN Function to apply to every element of a list such as as_bm_bitmap () or as_bm_pixmap().

font A bm_font() object that contains all the characters within x.

12 as_bm_pixmap

Value

A bm_list() object.

See Also
bm_list()

Examples

as_bm_list.character()

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_hex(font_file)

bml <- as_bm_list("RSTATS"”, font = font)

bml <- bm_extend(bml, sides = 1L, value = QL)

bml <- bm_extend(bml, sides = c(2L, 1L), value = 2L)

bm <- do.call(cbind, bml)

print(bm, pX = C(II “, “#Il’ HXII))
as_bm_pixmap Cast to a pixmap matrix object
Description

as_bm_pixmap() casts an object to a [bm_pixmap ()] object.
Usage
as_bm_pixmap(x, ...)

Default S3 method:
as_bm_pixmap(x, ...)

S3 method for class 'array'
as_bm_pixmap(x, ...)

S3 method for class 'bm_bitmap'
as_bm_pixmap(x, ..., col = getOption("bittermelon.col”, col_bitmap))

S3 method for class 'bm_pixmap'
as_bm_pixmap(x, ...)

S3 method for class 'glyph_bitmap'
as_bm_pixmap(x, ..., col = getOption("bittermelon.col”, col_bitmap))

S3 method for class 'grob'
as_bm_pixmap(x, ..., width = 16L, height = 16L, png_device = NULL)

as_bm_pixmap 13

S3 method for class '“lofi-matrix™'
as_bm_pixmap(x, ..., col = getOption("bittermelon.col”, col_bitmap))

S3 method for class '“magick-image™'
as_bm_pixmap(x, ...)

S3 method for class 'matrix'
as_bm_pixmap(x, ...)

S3 method for class 'maze'’
as_bm_pixmap(
X’

walls = FALSE,

start = NULL,

end = NULL,

solve = lis.null(start) && !is.null(end),

col = getOption("bittermelon.col”, col_bitmap)
)

S3 method for class 'pattern_square'
as_bm_pixmap(x, ..., col = getOption("bittermelon.col”, col_bitmap))

S3 method for class 'pattern_weave'
as_bm_pixmap(x, ..., col = getOption("bittermelon.col”, col_bitmap))

S3 method for class 'pixmapGrey'
as_bm_pixmap(x, ...)

S3 method for class 'pixmapIndexed'
as_bm_pixmap(x, ...)

S3 method for class 'pixmapRGB'
as_bm_pixmap(x, ...)

S3 method for class 'nativeRaster'
as_bm_pixmap(x, ...)

S3 method for class 'pixeltrix'
as_bm_pixmap(x, ...)

S3 method for class 'raster'

as_bm_pixmap(x, ...)
Arguments
X an Object

Potentially passed to other methods e.g. as_bm_pixmap.default() passes ...

14 as_bm_pixmap

to as.raster().

col Character vector of R color specifications.

width Desired width of bitmap

height Desired height of bitmap

png_device A function taking arguments filename, width, and height that starts a graphics

device that saves a png image with a transparent background. By default will use
ragg: :agg_png() if available else the “cairo” version of grDevices: :png() if
available else just grDevices: :png().

walls If TRUE the values of 1L denote the walls and the values of OL denote the paths.

start, end If not NULL mark the start and end as value 2L.. See mazing: : find_maze_refpoint().

solve If TRUE then mark the solution path from start to end as value 3L. See mazing: : solve_maze().
Value

A bm_pixmap() object.

See Also

bm_pixmap(), is_bm_pixmap()

Examples

crops <- farming_crops_16x16()

corn <- crops$corn$portrait

is_bm_pixmap(corn)

all.equal(corn, as_bm_pixmap(as.array(corn)))

all.equal(corn, as_bm_pixmap(as.raster(corn)))

if (requireNamespace("farver”, quietly = TRUE)) {
all.equal(corn, as_bm_pixmap(as.raster(corn, native = TRUE)))

3

if (requireNamespace("magick”, quietly = TRUE)) {
all.equal(corn, as_bm_pixmap(magick::image_read(corn)))

}

if (requireNamespace("mazing”, quietly = TRUE) &&
cli::is_utf8_output() &&
cli::num_ansi_colors() >= 8L) {
pal <- grDevices::palette.colors()
pm <- as_bm_pixmap(mazing: :maze(24L, 32L),
start = "top”, end = "bottom”,
col = c(pall6], "white", pall[7], pall51))
pm <- bm_pad(pm, sides = 1L)
print(pm, compress = "v", bg = "white")
3
if (requireNamespace("gridpattern”, quietly = TRUE) &&
cli::is_utf8_output() &&
cli::num_ansi_colors() >= 256L) {
s <- gridpattern::pattern_square(subtype = 8L, nrow = 8L, ncol = 50L)
pm <- as_bm_pixmap(s, col = grDevices::rainbow(8L))

bm_bitmap 15

print(pm, compress = "vertical”)
3
bm_bitmap Bittermelon bitmap matrix object
Description

bm_bitmap() creates an S3 matrix subclass representing a bitmap.

Usage
bm_bitmap(x)

Arguments
X Object to be converted to bm_bitmap(). If not already an integer matrix it will
be cast to one by as_bm_bitmap().
Details

* Intended to represent binary bitmaps especially (but not limited to) bitmap font glyphs.
* Bitmaps are represented as integer matrices with special class methods.

* The bottom left pixel is represented by the first row and first column.

* The bottom right pixel is represented by the first row and last column.

* The top left pixel is represented by the last row and first column.

* The top right pixel is represented by the last row and last column.

* Non-binary bitmaps are supported (the integer can be any non-negative integer) but we are
unlikely to ever support exporting color bitmap fonts.

* Non-binary bitmaps can be cast to binary bitmaps via bm_clamp().

* See bm_pixmap() for an alternative S3 object backed by a color string matrix.

Value

An integer matrix with “bm_bitmap” and “bm_matrix” subclasses.

Supported S3 methods

e [.bm_bitmap and [<-.bm_bitmap

e as.matrix.bm_bitmap()

e as.raster.bm_bitmap() and plot.bm_bitmap()

e cbind.bm_bitmap() and rbind.bm_bitmap()

e format.bm_bitmap() and print.bm_bitmap()

* Ops.bm_bitmap() for all the S3 “Ops” Group generic functions

16 bm_call

See Also

as_bm_bitmap(), is_bm_bitmap()

Examples

space <- bm_bitmap(matrix(@, nrow = 16, ncol = 16))
print(space)

bm_call Execute a function call on bitmap objects

Description

bm_call() excutes a function call on bitmap objects. Since its first argument is the bitmap object
it is more convenient to use with pipes then directly using base: :do.call() plus it is easier to
specify additional arguments.

Usage

bm_call(x, .f, ...)

Arguments
X Either abm_bitmap(), bm_font (), bm_list(), "magick-image", "nativeRaster",
bm_pixmap(), or "raster" object.
.f A function to execute.
Additional arguments to . f.
Value

The return value of . f.

Examples

font_file <- system.file(”fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon")
font <- read_hex(font_file)

bml <- as_bm_list("RSTATS"”, font = font)

bml <- bm_flip(bml, "both")

bm <- bm_call(bml, cbind, direction = "RTL")

print(bm)

bm_clamp 17

bm_clamp Clamp bitmap values

Description

bm_clamp() “clamps” bm_bitmap() integers that lie outside an interval. The default coerces a
multiple-integer-valued bitmap into a binary bitmap (as expected by most bitmap font formats). For
pixmap objects non-background pixels are all coerced to a single value.

Usage
bm_clamp(x, ...)

S3 method for class 'bm_bitmap'
bm_clamp(x, lower = @L, upper = 1L, value = upper, ...)

S3 method for class 'bm_list'
bm_clamp(x, ...)

S3 method for class 'bm_pixmap'
bm_clamp(x, value = col2hex("black"), bg = col2hex("transparent”), ...)

S3 method for class '“magick-image™'
bm_clamp(x, value = "black”, bg = "transparent”, ...)

S3 method for class 'nativeRaster'
bm_clamp(x, value = col2int("black"”), bg = col2int("transparent”), ...)

S3 method for class 'raster’

bm_clamp(x, value = "black”, bg = "transparent”, ...)
Arguments
X Either abm_bitmap(), bm_font (), bm_list(), "magick-image", "nativeRaster",

bm_pixmap(), or "raster" object.

Additional arguments to be passed to or from methods.

lower Integer value. Any value below lower will be clamped.
upper Integer value. Any value above upper will be clamped.
value Integer vector of length one or two of replacement value(s). If value is length

one any values above upper are replaced by value while those below lower
are replaced by lower. If value is length two any values above upper are re-
placed by value[2] and any values below lower are replaced by value[1]. For
pixmap objects indicate requested non-background color.

bg Bitmap background value.

18 bm_compose

Value

Depending on x either a bm_bitmap(), bm_font(), bm_list(), magick-image, "nativeRaster",
bm_pixmap(), or raster object.

Examples

plus_sign <- matrix(@L, nrow = 9L, ncol = 9L)
plus_sign[5L, 3:7] <- 2L

plus_sign[3:7, 5L] <- 2L

plus_sign_glyph <- bm_bitmap(plus_sign)
print(plus_sign_glyph)

plus_sign_clamped <- bm_clamp(plus_sign_glyph)
print(plus_sign_clamped)

tulip <- farming_crops_16x16()$tulip$portrait
if (cli::is_utf8_output() && cli::num_ansi_colors() >= 8L) {

print(bm_clamp(tulip, "magenta"”), compress = "v")
3
bm_compose Compose graphemes in a bitmap list by applying combining marks
Description

bm_compose() simplifies bm_list() object by applying combining marks to preceding glpyhs
(composing new graphemes).

Usage
bm_compose(bml, pua_combining = character(@), ...)
Arguments
bml A bm_list() object. All combining marks need appropriate Unicode code point

names to be recognized by is_combining_character().

pua_combining Additional Unicode code points to be considered as a “combining” character
such as characters defined in the Private Use Area (PUA) of a font.

Passed to bm_overlay().

Details
bm_compose () identifies combining marks by their name using is_combining_character(). It
then combines such marks with their immediately preceding glyph using bm_overlay().

Value

A bm_list() object.

bm_compress

Examples

19

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon")

font <- read_hex(font_file)
grave <- font[[str2ucp("~")1]
a <- font[[str2ucp(”a")]]

bml <- bm_list(TU+0061" = a, ~U+0300° = grave)

print(bml)
print(bm_compose(bml))

bm_compress Compress bitmaps by a factor of two

Description

Compresses bm_bitmap() objects by a factor of two by re-mapping to a “block elements” scheme.
For pixmap objects like bm_pixmap() we simply shrink the pixmap by a factor of two using

bm_distort().

Usage
bm_compress(x, direction = "vertical”, D)
S3 method for class 'bm_bitmap'
bm_compress(x, direction = "vertical”,)
S3 method for class 'bm_pixmap'
bm_compress(x, direction = "vertical”, ., filter "Point")
S3 method for class '“magick-image™'
bm_compress(x, direction = "vertical”, ., filter = "Point”)
S3 method for class 'nativeRaster'
bm_compress(x, direction = "vertical”, ., filter = "Point")
S3 method for class 'raster'
bm_compress(x, direction = "vertical”, ., filter = "Point")
S3 method for class 'bm_list'
bm_compress(x, ...)
Arguments
X Either a bm_bitmap(), bm_font(),bm_list(), "magick-image
bm_pixmap(), or "raster" object.
direction Either "vertical" or "v", "horizontal" or "h", OR "both" or "b".

Additional arguments to be passed to or from methods.

"non
b}

nativeRaster",

20 bm_compress

filter Passed to magick: :image_resize(). Use magick::filter_types() for list
of supported filters. The default "Point" filter will maintain your sprite’s color
palette. NULL will give you the magick’s default filter which may work better if
you are not trying to maintain a sprite color palette.

Details

Depending on direction we shrink the bitmaps height and/or width by a factor of two and re-
encode pairs/quartets of pixels to a “block elements” scheme. If necessary we pad the right/bottom
of the bitmap(s) by a pixel. For each pair/quartet we determine the most-common non-zero element
and map them to a length twenty set of integers representing the “block elements” scheme. For
integers greater than zero we map it to higher twenty character sets i.e. 1’s get mapped to 0:19, 2’s
get mapped to 20:39, 3’s get mapped to 40:59, etc. Using the default px_unicode will give you the
exact matching “Block Elements” glyphs while px_ascii gives the closest ASCII approximation.
Hence print.bm_bitmap() should produce reasonable results for compressed bitmaps if either of
them are used as the px argument.

Value

Depending on x either a bm_bitmap(), bm_font(), bm_list(), magick-image, "nativeRaster",
bm_pixmap(), or raster object.

See Also

See https://en.wikipedia.org/wiki/Block_Elements for more info on the Unicode Block El-
ements block.

Examples

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_hex(font_file)

r <- font[[str2ucp("R")1]

print(r)

print(bm_compress(r, "vertical"))

print(bm_compress(r, "horizontal”))

print(bm_compress(r, "both"))

img <- png::readPNG(system.file("img", "Rlogo.png", package="png"))
logo <- as_bm_pixmap(img)
if (cli::is_utf8_output() &&
cli::num_ansi_colors() > 256L &&
requireNamespace("magick”, quietly = TRUE)) {
logo_c <- bm_compress(pm, "both”, filter = NULL)
print(logo_c, compress = "v")

}

https://en.wikipedia.org/wiki/Block_Elements

bm_distort

21

bm_distort Resize bitmaps via distortion.

Description

bm_distort() resize bitmaps to arbitrary width and height value via magick: : image_resize().
bm_downscale() is a wrapper to bm_distort() that downscales an image if (and only if) it is wider

than a target width.

Usage

bm_distort(x, width = NULL, height = NULL,
bm_downscale(x, width = getOption("width"),

S3 method for class 'bm_bitmap'
bm_distort(

X,

width = NULL,

height = NULL,

filter = "Point”,
threshold = 0.5
)

S3 method for class 'bm_list'
bm_distort(x, ...)

S3 method for class 'bm_pixmap'

bm_distort(x, width = NULL, height = NULL, ., filter = "Point")

S3 method for class '“magick-image™'

bm_distort(x, width = NULL, height = NULL, ., filter "Point")

S3 method for class 'nativeRaster'

bm_distort(x, width = NULL, height = NULL, ., filter = "Point")

S3 method for class 'raster'

bm_distort(x, width = NULL, height = NULL, ., filter "Point")
Arguments

X Either abm_bitmap(), bm_font(), bm_list(), "magick-image

bm_pixmap(), or "raster" object.
width Desired width of bitmap

height Desired height of bitmap

.2

"non
k]

nativeRaster",

22 bm_edit

Additional arguments to be passed to or from methods.

filter Passed to magick: :image_resize(). Use magick::filter_types() for list
of supported filters. The default "Point" filter will maintain your sprite’s color
palette. NULL will give you the magick’s default filter which may work better if
you are not trying to maintain a sprite color palette.

threshold When the alpha channel weakly exceeds this threshold (on an interval from zero
to one) then the pixel is determined to be “black”.

Value

Depending on x either a bm_bitmap(), bm_font(), bm_list(), magick-image, "nativeRaster",
bm_pixmap(), or raster object.

See Also

bm_expand () for expanding width/height by integer multiples. bm_resize() for resizing an image
via trimming/extending an image.

Examples

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_hex(font_file)
capital_r <- font[[str2ucp("R")1]
dim(capital_r) # 8 x 16
if (requireNamespace("magick”, quietly = TRUE)) {
capital_r_9x21 <- bm_distort(capital_r, width = 9L, height = 21L)
print(capital_r_9x21)
3
crops <- farming_crops_16x16()
corn <- crops$corn$portrait
dim(corn) # 16 x 16
if (cli::is_utf8_output() &&
cli::num_ansi_colors() >= 256L &&
requireNamespace("magick”, quietly = TRUE)) {
corn_24x24 <- bm_distort(corn, width = 24L)

print(corn_24x24, compress = "v")
3
bm_edit Edit a bitmap via text editor
Description

Edit a binary bitmap in a text editor.

Usage

bm_edit(bitmap, editor = getOption("editor"))

bm_expand 23

Arguments
bitmap bm_bitmap() object. It will be coerced into a binary bitmap via bm_clamp().
editor Text editor. See utils::file.edit() for more information.

Details

Represent zeroes with a . and ones with a @ (as in the yaff font format). You may also add/delete
rows/columns but the bitmap must be rectangular.

Value

A bm_bitmap() object.

Examples

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_hex(font_file)
r <- font[[str2ucp(”"R")1]

requires users to manually close file in text editor
Not run:

edited_r <- bm_edit(r)

print(edited_r)

End(Not run)

bm_expand Expand bitmaps by repeating each row and/or column

Description

bm_expand() expands bitmap(s) by repeating each row and/or column an indicated number of
times.

Usage
bm_expand(x, width = 1L, height = width)

S3 method for class 'bm_bitmap'
bm_expand(x, width = 1L, height = width)

S3 method for class 'bm_list'
bm_expand(x, ...)

S3 method for class 'bm_pixmap'
bm_expand(x, width = 1L, height = width)

S3 method for class '“magick-image™'

24 bm_expand

bm_expand(x, width = 1L, height = width)

S3 method for class 'nativeRaster'
bm_expand(x, width = 1L, height = width)

S3 method for class 'raster’
bm_expand(x, width = 1L, height = width)

Arguments
X Either a bm_bitmap(), bm_font(),bm_list(), "magick-image", "nativeRaster",
bm_pixmap(), or "raster" object.
width An integer of how many times to repeat each column.
height An integer of how many times to repeat each row.
Additional arguments to be passed to or from methods.
Value

Depending on x either a bm_bitmap(), bm_font(), bm_list(), magick-image, "nativeRaster",
bm_pixmap(), or raster object.

See Also

bm_extend() (and bm_resize() which makes larger bitmaps by adding pixels to their sides.

Examples

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_hex(font_file)
capital_r <- font[[str2ucp("R")1]
print(capital_r)
print(bm_expand(capital_r, 2L),
px = px_ascii)
print(bm_expand(capital_r, width = 1L, height = 2L),
px = px_ascii)
print(bm_expand(capital_r, width = 2L, height = 1L),
px = px_ascii)
crops <- farming_crops_16x16()
corn <- crops$corn$portrait
corn_2x <- bm_expand(corn, 2L)
if (cli::is_utf8_output() && cli::num_ansi_colors() >= 256L) {
print(corn_2x, compress = "v")

}

bm_extend 25

bm_extend Extend bitmaps on the sides with extra pixels

Description

bm_extend() extends bm_bitmap() objects with extra pixels. The directions and the integer value
of the extra pixels are settable (defaulting to QL).

Usage
bm_extend(

X,
value,
sides = NULL,
top = NULL,
right = NULL,
bottom = NULL,
left = NULL,
width = NULL,

height = NULL,
hjust = "center-left”,

vjust = "center-top”
)
S3 method for class 'bm_bitmap'
bm_extend(

X,

value = oL,

sides = NULL,

top = NULL,

right = NULL,

bottom = NULL,

left = NULL,

width = NULL,

height = NULL,
hjust = "center-left”,

vjust = "center-top”
)
S3 method for class 'bm_pixmap'
bm_extend(
X,
value = col2hex("transparent”),
sides = NULL,
top = NULL,
right = NULL,

bottom = NULL,

26

)

left = NULL,
width = NULL,
height = NULL,

hjust = "center-left”,

vjust = "center-top”

S3 method for class
bm_extend(x, ...)

S3 method for class

"bm_list'

'“magick-image™"'

bm_extend(
X,
value = "transparent”,
sides = NULL,
top = NULL,
right = NULL,
bottom = NULL,
left = NULL,
width = NULL,

height = NULL,

hjust = "center-left”

’

'nativeRaster’

vjust = "center-top”
)
S3 method for class
bm_extend(

X,

value = col2int("transparent”),

sides = NULL,

top = NULL,

right = NULL,

bottom = NULL,

left = NULL,

width = NULL,

vjust = "center-top”
)
S3 method for class
bm_extend(

X,

value = "transparent’

sides = NULL,

top = NULL,

right = NULL,

height = NULL,

hjust = "center-left’

bottom = NULL,

1]
’

'raster’

]
’

bm_extend

bm_extend

left = NULL,
width = NULL,
height = NULL

27

’

hjust = "center-left”,

vjust = "center-top”
)
Arguments

X Either abm_bitmap(), bm_font (), bm_list(), "magick-image", "nativeRaster",
bm_pixmap(), or "raster" object.

value Value for the new pixels.

sides If not NULL then an integer vector indicating how many pixels to pad on all four
sides. If the integer vector is of length one it indicates the number of pixels for
all four sides. If of length two gives first the number for the vertical sides and
then the horizontal sides. If of length three gives the number of pixels for top,
the horizontal sides, and then bottom sides. If of length four gives the number
of pixels for top, right, bottom, and then left sides. This is the same scheme as
used by the CSS padding and margin properties.

top How many pixels to pad the top.

right How many pixels to pad the right.

bottom How many pixels to pad the bottom.

left How many pixels to pad the left.

width How many pixels wide should the new bitmap be. Use with the hjust argument
or just one of either the left or right arguments.

height How many pixels tall should the new bitmap be. Use with the vjust argument
or just one of either the top or bottom arguments.

hjust One of "left", "center-left", "center-right", "right". "center-left" and "center-
right" will attempt to place in "center" if possible but if not possible will bias
it one pixel left or right respectively. "centre", "center", and "centre-left" are
aliases for "center-left". "centre-right" is an alias for "center-right".

vjust One of "bottom", "center-bottom", "center-top", "top". "center-bottom" and
"center-top" will attempt to place in "center” if possible but if not possible will
bias it one pixel down or up respectively. "centre", "center", and "centre-top"
are aliases for "center-top". "centre-bottom" is an alias for "center-bottom".
Additional arguments to be passed to or from methods.

Value

Depending on x either a bm_bitmap(), bm_font(), bm_list(), magick-image, "nativeRaster",
bm_pixmap(), or raster object.

See Also

bm_expand(), bm_pad(), bm_resize(), and bm_trim().

28 bm_extract

Examples

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_hex(font_file)

add a border to an "R"

capital_r <- font[[str2ucp("R")1]

capital_r <- bm_extend(capital_r, value = 2L, sides = 1L)

capital_r <- bm_extend(capital_r, value = 3L, sides = 1L)
print(capital_r)
crops <- farming_crops_16x16()
corn <- crops$corn$portrait
corn_framed <- bm_extend(corn, value = "brown"”, sides = 1L)
if (cli::is_utf8_output() &% cli::num_ansi_colors() >= 256L) {
print(corn_framed, compress = "v")
3
bm_extract Extract part of a bitmap
Description

bm_extract() can be used to extract part of a bitmap. For bm_bitmap() and bm_pixmap() objects
it is a wrapper around [[()] with drop = FALSE for convenience in pipes.
Usage

bm_extract(x, ...)

S3 method for class 'bm_matrix'
bm_extract(x, rows = seq_len(nrow(x)), cols = seq_len(ncol(x)), ...)

S3 method for class 'bm_list'
bm_extract(x, ...)

S3 method for class '“magick-image”
bm_extract(x, rows = seq_len(bm_heights(x)), cols = seq_len(bm_widths(x)), ...)

S3 method for class 'nativeRaster'
bm_extract(x, rows = seqg_len(nrow(x)), cols = seqg_len(ncol(x)), ...)

S3 method for class 'raster'

bm_extract(x, rows = seqg_len(nrow(x)), cols = seqg_len(ncol(x)), ...)
Arguments
X Either a bm_bitmap(), bm_font(),bm_list(), "magick-image", "nativeRaster",

bm_pixmap(), or "raster" object.

Additional arguments to be passed to or from methods.

bm_flip 29

rows, cols Integer vectors of rows and columns to extract. Rows are indexed from the
bottom of the image.

See Also

[L.bm_matrix()], bm_trim()

Examples

corn <- farming_crops_16x16()$corn$portrait

corn_top <- bm_extract(corn, rows = 9:16)

all.equal(corn_top, corn[9:16, 1)

if (cli::is_utf8_output() && cli::num_ansi_colors() >= 256L) {

print(corn_top, bg = "cyan", compress = "v")
3
bm_flip Flip (reflect) bitmaps
Description

bm_flip() flips (reflects) bitmaps horizontally, vertically, or both. It can flip the entire bitmap or
just the glyph in place.

Usage
bm_flip(x, direction = "vertical”, in_place = FALSE, value)

S3 method for class 'bm_bitmap'

bm_flip(x, direction = "vertical”, in_place = FALSE, value = QL)

S3 method for class 'bm_list'
bm_flip(x, ...)

S3 method for class 'bm_pixmap'
bm_flip(

X,

direction = "vertical”,

in_place = FALSE,

value = col2hex("transparent”)

)

S3 method for class '“magick-image™'
bm_flip(x, direction = "vertical”, in_place = FALSE, value = "transparent”)

S3 method for class 'nativeRaster'
bm_f1lip(
X,

30 bm_A{lip

direction = "vertical”,
in_place = FALSE,
value = col2int("transparent”)

)

S3 method for class 'raster'

bm_flip(x, direction = "vertical”, in_place = FALSE, value = "transparent”)
Arguments

X Either abm_bitmap(), bm_font(),bm_list(), "magick-image", "nativeRaster",

bm_pixmap(), or "raster" object.

direction Either "vertical" or "v", "horizontal" or "h", OR "both" or "b".

in_place If TRUE flip the glyphs in place (without changing any background padding).

value Background padding value (to use if in_place is TRUE)

Additional arguments to be passed to or from methods.

Value

Depending on x either a bm_bitmap(), bm_font(), bm_list(), magick-image, "nativeRaster",
bm_pixmap(), or raster object.

Examples

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_hex(font_file)

Print upside down

bml <- as_bm_list("RSTATS", font = font)

bml <- bm_flip(bml, "both")

bm <- bm_call(bml, cbind, direction = "RTL")
print(bm)

Can also modify glyphs "in place”

exclamation <- font[[str2ucp(”!")1]

exclamation_flipped <- bm_flip(exclamation, in_place = TRUE)
print(exclamation_flipped)

crops <- farming_crops_16x16()

corn <- crops$corn$portrait

corn_fh <- bm_flip(corn, "h")

if (cli::is_utf8_output() && cli::num_ansi_colors() >= 256L) {
print(corn_fh, compress = "v")

}

bm_font 31

bm_font Bitmap font object

Description

bm_font () creates a bitmap font object.

Usage

bm_font(x = bm_list(), comments = NULL, properties = NULL)

Arguments
X Named list of bm_bitmap () objects. Names must be coercible by Unicode: :as.u_char().
comments An optional character vector of (global) font comments.
properties An optional named list of font metadata.

Details

bm_font() is a named list. The names are of the form “U+HHHH” or “U+HHHHH”. where the H
are appropriate hexadecimal Unicode code points. It is a subclass of bm_list ().

Value

A named list with a “bm_font” subclass.

See Also

is_bm_font(), as_bm_font(), hex2ucp()

Examples

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_hex(font_file)
is_bm_font(font)

number of characters in font
length(font)

print out "R"
R_glyph <- font[[str2ucp("R")1]
print(R_glyph)

32 bm_gray

bm_gray Gray a bitmap

Description

bm_gray () grays a bitmap. bm_grey () is offered as an alias.
Usage

bm_gray(x)

bm_grey(x)

S3 method for class 'bm_bitmap'
bm_gray(x)

S3 method for class 'bm_list'
bm_gray (x)

S3 method for class 'bm_pixmap'
bm_gray(x)

S3 method for class '“magick-image”
bm_gray (x)

S3 method for class 'nativeRaster'
bm_gray(x)

S3 method for class 'raster’

bm_gray (x)
Arguments
X Either abm_bitmap(), bm_font(), bm_list(), "magick-image", "nativeRaster",
bm_pixmap(), or "raster" object.
Value

Depending on x either a bm_bitmap(), bm_font(), bm_list(), magick-image, "nativeRaster",
bm_pixmap(), or raster object.

Examples

corn <- farming_crops_16x16()$corn$portrait

corn_gray <- bm_gray(corn)

if (cli::is_utf8_output() && cli::num_ansi_colors() >= 256L) {
print(corn_gray, compress = "v")

}

bm_heights 33

bm_heights Widths or heights of bitmaps

Description

bm_widths() returns the widths of the bitmaps while bm_heights() returns the heights of the
bitmaps. bm_widths() and bm_heights() are S3 generic functions.

Usage
bm_heights(x, ...)

S3 method for class 'bm_matrix'
bm_heights(x, ...)

S3 method for class 'bm_list'
bm_heights(x, unique = TRUE, ...)

S3 method for class '“magick-image™'
bm_heights(x, ...)

S3 method for class 'nativeRaster'
bm_heights(x, ...)

S3 method for class 'raster’
bm_heights(x, ...)

bm_widths(x, ...)

S3 method for class 'bm_matrix'
bm_widths(x, ...)

S3 method for class 'bm_list'
bm_widths(x, unique = TRUE, ...)

S3 method for class '“magick-image™'
bm_widths(x, ...)

S3 method for class 'nativeRaster'
bm_widths(x, ...)

S3 method for class 'raster’

bm_widths(x, ...)
Arguments
X Either abm_bitmap(), bm_font(),bm_list(), "magick-image", "nativeRaster",

bm_pixmap(), or "raster" object.

34 bm_invert

Ignored.

unique Apply base: :unique() to the returned integer vector.

Value

A integer vector of the relevant length of each of the bitmap objects in x. If unique is TRUE then
any duplicates will have been removed.

Examples

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_hex(font_file)

bm_widths(font) # every glyph in the font is 8 pixels wide

bm_heights(font) # every glyph in the font is 16 pixels high

corn <- farming_crops_16x16()$corn$portrait

bm_widths(corn)

bm_heights(corn)

bm_invert Invert (negate) a bitmap

Description

bm_invert() inverts (negates) a bitmap.

Usage

bm_invert(x)

S3 method for class 'bm_bitmap'
bm_invert(x)

S3 method for class 'bm_list'
bm_invert(x)

S3 method for class 'bm_pixmap'
bm_invert(x)

S3 method for class '“magick-image™'
bm_invert(x)

S3 method for class 'nativeRaster'
bm_invert(x)

S3 method for class 'raster'
bm_invert(x)

bm_lapply 35

Arguments
X Either abm_bitmap(), bm_font (), bm_list(), "magick-image", "nativeRaster",
bm_pixmap(), or "raster" object.
Value

Depending on x either a bm_bitmap(), bm_font(), bm_list(), magick-image, "nativeRaster",
bm_pixmap(), or raster object.

Examples

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_hex(font_file)

capital_r <- as_bm_bitmap("R", font = font)

capital_r_inverted <- bm_invert(capital_r)

print(capital_r_inverted)

corn <- farming_crops_16x16()$corn$portrait
corn_inverted <- bm_invert(corn)
if (cli::is_utf8_output() && cli::num_ansi_colors() >= 256L) {

print(corn_inverted, compress = "v", bg = "black")
3
bm_lapply Modify bitmap lists
Description

bm_lapply() applies a function over a bitmap glyph list and returns a modified bitmap glyph list.

Usage
bm_lapply(X, FUN, ...)
Arguments
X A bitmap glyph list object such as bm_list () or bm_font().
FUN A function that takes a bm_bitmap() object as its first argument and returns a
bm_bitmap() object.
Additional arguments to pass to FUN.
Details

bm_lapply() is a wrapper around base: : lapply() that preserves the classes and metadata of the
original bitmap glyph list.

36 bm_list

Value

A modified bitmap glyph list.

See Also
base: :lapply(), bm_list (), bm_font (), bm_bitmap()

bm_list Bitmap list object

Description

bm_list() creates a bitmap list object.

Usage
bm_list(...)

Arguments

bm_bitmap() objects, possibly named.

Details

bm_list() is alist of bm_bitmap() objects with class “bm_list”. It is superclass of bm_font().

Value

A named list with a “bm_list” subclass.

Supported S3 methods

e as.list.bm_list()
* Slicing with [] returns bm_list() objects.

* The min(), max(), and range() functions from the “Summary” group of generic methods.

See Also

is_bm_list(), as_bm_list()

Examples

font_file <- system.file(”fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_hex(font_file)

gl <- font[c("U+0023", "U+0052", "U+0053", "U+0054", "U+0041", "U+0054", "U+0053")] # #RSTATS
gl <- as_bm_list(gl)
is_bm_list(gl)

bm_mask 37

bm_mask Modify bitmaps via masking with a "'mask’ bitmap

Description

bm_mask () modifies bitmaps by using a binary bitmap “mask” to set certain elements to a back-
ground value.

Usage
bm_mask (
X!
mask = NULL,
base = NULL,
mode = c("luminance”, "alpha"),
hjust = "center-left”,
vjust = "center-top”
)
S3 method for class 'bm_bitmap'
bm_mask (
X!
mask = NULL,
base = NULL,
mode = c("luminance”, "alpha"),
hjust = "center-left”,
vjust = "center-top”
)
S3 method for class 'bm_pixmap'
bm_mask (
X,
mask = NULL,
base = NULL,
mode = c("luminance”, "alpha"),
hjust = "center-left”,
vjust = "center-top”
)
S3 method for class '“magick-image™'
bm_mask (
X,
mask = NULL,
base = NULL,
mode = c("luminance”, "alpha"),

hjust = "center-left”,
vjust = "center-top”

38

bm_mask

)
S3 method for class 'nativeRaster'
bm_mask (
X,
mask = NULL,
base = NULL,
mode = c("luminance”, "alpha"),
hjust = "center-left”,
vjust = "center-top”
)
S3 method for class 'raster'
bm_mask (
X,
mask = NULL,
base = NULL,
mode = c("luminance”, "alpha"),
hjust = "center-left”,
vjust = "center-top”
)
S3 method for class 'bm_list'
bm_mask (
X)
mask = NULL,
base = NULL,
mode = c("luminance”, "alpha"),
hjust = "center-left”,
vjust = "center-top”
)
Arguments
X Either abm_bitmap(), bm_font (), bm_list(), "magick-image", "nativeRaster",
bm_pixmap(), or "raster" object.
mask An object to use as a binary bitmap “mask”. Only one of mask or base may be
set. Will be coerced to a bm_bitmap() object by as_bm_bitmap().
base A bitmap/pixmap object which will be “masked” by mask. Only one of mask or
base may be set.
mode Either "luminance" (default) or "alpha".
hjust One of "left", "center-left", "center-right", "right". "center-left" and "center-
right" will attempt to place in "center" if possible but if not possible will bias
it one pixel left or right respectively. "centre", "center", and "centre-left" are
aliases for "center-left". "centre-right" is an alias for "center-right".
vjust One of "bottom", "center-bottom", "center-top”, "top". "center-bottom" and

"center-top" will attempt to place in "center" if possible but if not possible will

bm_mask 39

non

bias it one pixel down or up respectively. "centre", "center", and "centre-top"

non

are aliases for "center-top". "centre-bottom" is an alias for "center-bottom".

Details

If necessary bitmaps will be extended by bm_extend() such that they are the same size. If necessary
the mask will be coerced into a “binary” mask by bm_clamp(as_bm_bitmap(mask)). If mode is
"luminance" then where the mask is 1L the corresponding pixel in base will be coerced to the
background value. If mode is "alpha" then where the mask is QL the corresponding pixel in base
will be coerced to the background value.

Value

A bitmap/pixmap object that is the same type as x (if base is NULL) or base.

Examples

if (require(”grid”, quietly = TRUE) && capabilities(”png")) {
font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_hex(font_file)
one <~ font[[str2ucp(”1")]1]
circle_large <- as_bm_bitmap(circleGrob(r = 0.50), width = 16L, height = 16L)
circle_small <- as_bm_bitmap(circleGrob(r = 0.40), width = 16L, height = 16L)
circle_outline <- bm_mask(circle_large, circle_small)
print(circle_outline)
3
if (capabilities("png")) {
U+2776 "Dingbat Negative Circled Digit One”
circle_minus_one <- bm_mask(circle_large, one)
print(circle_minus_one)
3
Can also do "alpha" mask
square_full <- bm_bitmap(matrix(1L, nrow = 16L, ncol = 16L))
square_minus_lower_left <- square_full
square_minus_lower_left[1:8, 1:8] <- oL
print(square_minus_lower_left)
if (capabilities(”"png")) {
circle_minus_lower_left <- bm_mask(circle_large, square_minus_lower_left, mode = "alpha”)
print(circle_minus_lower_left)

}

if (capabilities("png")) {
m <- matrix(grDevices::rainbow(8L), byrow = TRUE, ncol = 8L, nrow = 8L)
rainbow <- bm_expand(as_bm_pixmap(m), 2L)
circle_rainbow <- bm_mask(rainbow, circle_large, mode = "alpha")
3
if (cli::is_utf8_output() &&
cli::num_ansi_colors() >= 256L &&
capabilities("png")) {
print(circle_rainbow, compress = "v")

3

40 bm_outline

bm_options Get bittermelon options

Description

bm_options() returns the bittermelon package’s global options.

Usage
bm_options(..., default = FALSE)
Arguments
bittermelon package options using name = value. The return list will use any
of these instead of the current/default values.
default If TRUE return the default values instead of current values.
Value

A list of option values. Note this function does not set option values itself but this list can be passed
to options(),withr::local_options(), orwithr::with_options().

See Also

bittermelon for a high-level description of relevant global options.

Examples

bm_options()

bm_options(default = TRUE)

bm_options(bittermelon.compress = "vertical”)
bm_outline Compute "outline" bitmap of a bitmap
Description

bm_outline() returns a bitmap that is just the “outline” of another bitmap.

bm_outline 41

Usage

bm_outline(x, value, bg)

S3 method for class 'bm_bitmap'
bm_outline(x, value = 1L, bg = 0L)

S3 method for class 'bm_list'
bm_outline(x, ...)

S3 method for class 'bm_pixmap'
bm_outline(x, value = col2hex("black"), bg = col2hex("transparent”))

S3 method for class '“magick-image”
bm_outline(x, value = "black”, bg = "transparent"”)

S3 method for class 'nativeRaster'
bm_outline(x, value = col2int("black”), bg = col2int("transparent”))

S3 method for class 'raster'’

bm_outline(x, value = "black”, bg = "transparent”)
Arguments
X Either abm_bitmap(), bm_font (), bm_list(), "magick-image", "nativeRaster",
bm_pixmap(), or "raster" object.
value Bitmap “color” value for the outline.
bg Bitmap “background” value.

Additional arguments to be passed to or from methods.

Value

Depending on x either a bm_bitmap(), bm_font(), bm_list(), magick-image, "nativeRaster",
bm_pixmap(), or raster object.

Examples

square <- bm_bitmap(matrix(1L, nrow = 16L, ncol = 16L))
square_outline <- bm_outline(square)
print(square_outline)

if (require(grid) && capabilities("png")) {
circle <- as_bm_bitmap(circleGrob(), width=16, height=16)
circle_outline <- bm_outline(circle)
print(circle_outline)

}

corn <- farming_crops_16x16()$corn$portrait
corn_outline <- bm_outline(corn, "magenta")
if (cli::is_utf8_output() && cli::num_ansi_colors() >= 256L) {

42 bm_overlay

print(corn_outline, bg = "white")
3
bm_overlay Merge bitmaps by overlaying one over another
Description

bm_overlay () merges bitmaps by overlaying a bitmap over another.

Usage
bm_overlay/(
X)
over = NULL,
under = NULL,
hjust = "center-left”,
vjust = "center-top”,

)

S3 method for class 'bm_bitmap'
bm_overlay/(

X,

over = NULL,

under = NULL,

hjust = "center-left”,
vjust = "center-top”,
bg = oL,

)

S3 method for class 'bm_list'
bm_overlay(x, ...)

S3 method for class 'bm_pixmap'
bm_overlay(

X)

over = NULL,

under = NULL,

hjust = "center-left”,
vjust = "center-top",

bg = col2hex("transparent”),

)

S3 method for class '“magick-image™'

bm_overlay

bm_overlay(

43

X,

over = NULL,

under = NULL,

hjust = "center-left”,
vjust = "center-top”,
bg = "transparent”,

S3 method for class 'nativeRaster'
bm_overlay(

X,

over =
under
hjust
vjust

NULL,

NULL,

"center-left”,
"center-top”,
bg = col2int("transparent”),

S3 method for class 'raster’
bm_overlay(

X ’
over = NULL,
under = NULL,
hjust = "center-left”,
vjust = "center-top”,
bg = "transparent”,
)
Arguments
X Either abm_bitmap(), bm_font (), bm_list(), "magick-image", "nativeRaster",
bm_pixmap(), or "raster" object.
over A bitmap/pixmap object to overlay over the x bitmap(s). Only one of over or
under may be set.
under A bitmap/pixmap object which will be overlaid by the x bitmap(s). Only one of
over or under may be set.
hjust One of "left", "center-left", "center-right", "right". "center-left" and "center-
right" will attempt to place in "center" if possible but if not possible will bias
it one pixel left or right respectively. "centre", "center", and "centre-left" are
aliases for "center-left". "centre-right" is an alias for "center-right".
vjust One of "bottom", "center-bottom", "center-top"”, "top". "center-bottom" and

"center-top" will attempt to place in "center" if possible but if not possible will

non

bias it one pixel down or up respectively. "centre", "center", and "centre-top"

non

are aliases for "center-top". "centre-bottom" is an alias for "center-bottom".

44 bm_pad

Additional arguments to be passed to or from methods.

bg Bitmap background value.

Details

If necessary bitmaps will be extended by bm_extend() such that they are the same size. Then the
non-zero pixels of the “over” bitmap will be inserted into the “under” bitmap.

Value

Depending on x either a bm_bitmap(), bm_font(), bm_list(), magick-image, "nativeRaster",
bm_pixmap(), or raster object.

Examples

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_hex(font_file)

grave <- font[[str2ucp(” ")1]

a <- font[[str2ucp("a")1]

a_grave <- bm_overlay(a, over = grave)

print(a_grave)

Can also instead specify the under glyph as a named argument
a_grave2 <- bm_overlay(grave, under = a)
print(a_grave2)

crops <- farming_crops_16x16()

corn <- bm_shift(crops$corn$portrait, right = 2L, top = 2L)
grapes <- bm_shift(crops$grapes$portrait, bottom = 1L)
grapes_and_corn <- bm_overlay(corn, grapes)

if (cli::is_utf8_output() &% cli::num_ansi_colors() >= 256L) {

print(grapes_and_corn, compress = "v")
3
bm_pad Adjust bitmap padding lengths
Description

bm_pad() adjusts bitmap padding lengths.

Usage
bm_pad(
X’
value,
type = c("exact”, "extend”, "trim"),
sides = NULL,

top = NULL,

bm_pad

right = NULL,
bottom = NULL,
left = NULL
)
S3 method for class 'bm_bitmap'
bm_pad(
X,
value = 0oL,
type = c("exact”, "extend”, "trim"),
sides = NULL,
top = NULL,
right = NULL,
bottom = NULL,
left = NULL
)

S3 method for class 'bm_list'
bm_pad(x, ...)

S3 method for class 'bm_pixmap'

bm_pad(
X,
value = col2hex("transparent”),
type = c("exact”, "extend”, "trim"),
sides = NULL,
top = NULL,
right = NULL,
bottom = NULL,
left = NULL
)
S3 method for class '“magick-image™'
bm_pad(
X,
value = "transparent”,
type = c("exact”, "extend”, "trim"),
sides = NULL,
top = NULL,
right = NULL,
bottom = NULL,
left = NULL
)
S3 method for class 'nativeRaster'
bm_pad(
X,

value = col2int("transparent”),

45

46 bm_pad
type = c("exact”, "extend”, "trim"),
sides = NULL,
top = NULL,
right = NULL,
bottom = NULL,
left = NULL
)
S3 method for class 'raster'’
bm_pad(
X,
value = "transparent”,
type = c("exact”, "extend”, "trim"),
sides = NULL,
top = NULL,
right = NULL,
bottom = NULL,
left = NULL
)
Arguments
X Either abm_bitmap(), bm_font (), bm_list(), "magick-image", "nativeRaster",
bm_pixmap(), or "raster" object.
value Value for the new pixels.
type Either "exact", ‘"extend", or "trim". "exact" makes sure the padding is exactly
the indicated amount, "extend" does not trim any padding if existing padding
is more than the indicated amount, and "trim" does not extend any padding if
existing padding is less than the indicated amount.
sides If not NULL then an integer vector indicating the desired number of pixels of
padding on all four sides. If the integer vector is of length one it indicates the
number of pixels for all four sides. If of length two gives first the number for the
vertical sides and then the horizontal sides. If of length three gives the number
of pixels for top, the horizontal sides, and then bottom sides. If of length four
gives the number of pixels for top, right, bottom, and then left sides. This is the
same scheme as used by the CSS padding and margin properties.
top Desired number of pixels of padding on the top.
right Desired number of pixels of padding on the right.
bottom Desired number of pixels of padding on the bottom.
left Desired number of pixels of padding on the left.
Additional arguments to be passed to or from methods.
Value

Depending on x either a bm_bitmap(), bm_font(), bm_list(), magick-image, "nativeRaster",
bm_pixmap(), or raster object.

bm_padding_lengths 47

See Also

bm_extend(), bm_resize(), and bm_trim()

Examples

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)

font <- read_hex(font_file)

capital_r <- font[[str2ucp("R")]1]

print(capital_r)

capital_r_padded <- bm_pad(capital_r, sides = 2L)

print(capital_r_padded)

crops <- farming_crops_16x16()

corn <- crops$corn$portrait

corn_pad4 <- bm_pad(corn, sides = 4L)

if (cli::is_utf8_output() && cli::num_ansi_colors() >= 256L) {
print(corn_pad4, compress = "v", bg = "cyan")

}

bm_padding_lengths Compute bitmap padding lengths

Description

bm_padding_lengths() computes the padding lengths of a target value for the top, right, bot-
tom, and left sides of the bitmap. If the entire bitmap is of the target value then the left/right and
top/bottom will simply split the width/height in half.

Usage
bm_padding_lengths(x, value)

S3 method for class 'bm_bitmap'
bm_padding_lengths(x, value = 0L)

S3 method for class 'bm_list'
bm_padding_lengths(x, ...)

S3 method for class 'bm_pixmap'
bm_padding_lengths(x, value = col2hex("transparent”))
S3 method for class '“magick-image™'
bm_padding_lengths(x, value = "transparent”)

S3 method for class 'nativeRaster'
bm_padding_lengths(x, value = col2int(”transparent”))

S3 method for class 'raster'
bm_padding_lengths(x, value = "transparent”)

bm_pixel_picker

Arguments
X Either abm_bitmap(), bm_font(), bm_list(), "magick-image", "nativeRaster",
bm_pixmap(), or "raster" object.
value The value of the “padding” element to compute lengths for.
Additional arguments to be passed to or from methods.
Value

If x is a bm_bitmap() object then a integer vector of length four representing the padding lengths
for the top, right, bottom, and left sides respectively. If x is a bm_1ist() or bm_font() then a list
of integer vectors of length four.

Examples

font_file <- system.file(”fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)

font <- read_hex(font_file)

add a border to an "R"

capital_r <- font[[str2ucp("R")]1]

print(capital_r)

print(bm_padding_lengths(capital_r))

corn <- farming_crops_16x16()$corn$portrait

if (cli::is_utf8_output() &% cli::num_ansi_colors() >= 256L) {
print(corn, bg = "cyan", compress = "v")

3

print(bm_padding_lengths(corn))

bm_pixel_picker Bitmap pixel picker

Description

bm_pixel_picker() lets you use an interactive graphics device to click on a bitmap’s pixels and
learn the column/row coordinates for the clicked pixel and its integer/color value. To end the pro-
gram click a non-left mouse button within the graphics device.

Usage

bm_pixel_picker(x, ...)

S3 method for class 'bm_bitmap'
bm_pixel_picker(
X,
col = getOption("bittermelon.col”, col_bitmap),
silent = FALSE

bm_pixmap 49

S3 method for class 'bm_pixmap'
bm_pixel_picker(x, ..., silent = FALSE)

S3 method for class 'raster'

bm_pixel_picker(x, ..., silent = FALSE)
Arguments
X Either a bm_bitmap(), bm_pixmap(), or raster object

Currently ignored.

col Character vector of R color specifications. First color is used for values equal to
0, second color for values equal to 1, etc.
silent Don’t generate messages about clicked pixels.
Value

non

A list with named components "row", "col", and "value" for the last clicked pixel returned invisibly.

See Also

This function wraps grid: :grid.locator().

Examples

if (interactive() && dev.interactive(orNone = TRUE)) {
corn <- farming_crops_16x16()$corn$portrait
bm_pixel_picker(corn)

}

bm_pixmap Bittermelon pixmap matrix object

Description

bm_pixmap() creates an S3 matrix subclass representing a pixmap.

Usage

bm_pixmap(x)

Arguments

X Object to be converted to bm_pixmap(). If not already a color string matrix it
will be cast to one by as_bm_pixmap().

50 bm_print

Details

* Intended to represent raster graphic pixmaps especially (but not limited to) pixel art/sprites.

» Pixmaps are represented as color string matrices with special class methods.

* The bottom left pixel is represented by the first row and first column.

* The bottom right pixel is represented by the first row and last column.

* The top left pixel is represented by the last row and first column.

* The top right pixel is represented by the last row and last column.

* Colors are converted to the "#RRGGBBAA" color string format.

* Fully transparent values like "transparent”, NA, "#00000000" are all standardized to "#FFFFFF@Q".

* See bm_bitmap() for an alternative S3 object backed by a integer matrix.

Value

A character matrix of color strings with a “bm_pixmap” subclass.

Supported S3 methods
e [.bm_bitmap and [<-.bm_bitmap
* as.matrix.bm_pixmap()
e as.raster.bm_bitmap() and plot.bm_bitmap()
e format.bm_pixmap() and print.bm_pixmap()

See Also

as_bm_pixmap(), is_bm_pixmap()

Examples

Bottom left pixel is **firstx* row and first column

pm <- bm_pixmap(matrix(c("red”, "blue", "green"”, "black"),
nrow = 2L, byrow = TRUE))

plot(pm)

bm_print Print bitmap objects

Description

bm_print() prints a representation of the bitmap object to the terminal while bm_format() re-
turns just the character vector without printing it. They are wrappers around as_bm_bitmap() /
as_bm_pixmap() and format.bm_bitmap() / format.bm_pixmap().

bm_print 51

Usage
bm_print(x, ...)
bm_format(x, ...)
Arguments
X A bitmap object that can be cast by as_bm_pixmap() to a bm_pixmap() object.
Passed to format.bm_pixmap() or format.bm_bitmap() depending on the class
of x.
Value

A character vector of the string representation (bm_print () returns this invisibly). As a side effect
bm_print() prints out the string representation to the terminal.

Fonts and terminal settings

Printing bitmaps/pixmaps may or may not look great in your terminal depending on a variety of
factors:

* The terminal should support the Unicode - UTF-8 encoding. We use cli::is_utf8_output()
to guess Unicode support which in turn looks at getOption("cli.unicode”) and 110n_info().
* The terminal should support ANSI sequences and if it does it should support many colors.

— Weuse cli::num_ansi_colors() to detect number of colors supported. num_ansi_colors()
detection algorithm is complicated but it first looks at getOption(”cli.num_colors").

— If cli::num_ansi_colors() equals 16777216 then your terminal supports 24-bit ANSI
colors.

— If using the Windows Command Prompt window you may need to enable ANSI se-
quences support by doing REG ADD HKCU\CONSOLE /f /v VirtualTerminallLevel /t REG_DWORD /d 1
from the command-line or running regedit (Registry Editor) and go to Computer\HKEY_CURRENT_USER\Console
and set VirtualTerminallLevel to 1.

* The font used by the terminal should be a monoscale font that supports the Block Elements
Unicode block.

* The terminal text settings should have a cell spacing around 1.00 times width and 1.00 times
height. For terminals configured by CSS styles this means a 1ine-height of around 1. 0.

See Also

.S3method() to register this as the print method for a non-bittermelon bitmap class.

Examples

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_hex(font_file)

capital_r <- as_bm_bitmap("R", font = font)

bm_print(capital_r)

https://en.wikipedia.org/wiki/Block_Elements

52 bm_replace

corn_r <- as.raster(farming_crops_16x16()$corn$portrait)
if (cli::is_utf8_output() && cli::num_ansi_colors() >= 256L) {
bm_print(corn_r, compress = "v")

}

if (requireNamespace("magick”, quietly = TRUE) &&
cli::is_utf8_output() &&
cli::num_ansi_colors() > 256L) {
rose_mi <- magick::image_read("rose:")
bm_print(rose_mi, compress = "v")

}

Not run: # Change other bitmap classes' “print()" to use “bm_print()" instead
options(bittermelon.compress = "vertical”,
bittermelon.downscale = requireNamespace("magick”, quietly = TRUE))

for (cl in c("glyph_bitmap”, "lofi-matrix"”, "magick-image",

"nativeRaster”, "pixeltrix"”,

"pixmapGrey”, "pixmapIndexed”, "pixmapRGB", "raster")) {

.S3method("print”, cl, bittermelon::bm_print)

}

End(Not run)

bm_replace Replace a color in a bitmap with another color

Description
bm_replace() replaces a bitmap color with another color. In particular default arguments will try
to replace the background color.

Usage

bm_replace(x, value, old)

S3 method for class 'bm_bitmap'
bm_replace(x, value = oL, old = x[1L, 1LI])

S3 method for class 'bm_list'
bm_replace(x, ...)

S3 method for class 'bm_pixmap'
bm_replace(x, value = col2hex("transparent”), old = x[1L, 1LI])

S3 method for class '“magick-image”
bm_replace(x, value = "transparent”, old = as.raster(x)[1L, 1L])

S3 method for class 'nativeRaster'

bm_resize 53

bm_replace(x, value = col2int(”transparent”), old = x[1L, 1L])

S3 method for class 'raster'

bm_replace(x, value = "transparent”, old = x[1L, 1L])
Arguments
X Either abm_bitmap(), bm_font (), bm_list(), "magick-image", "nativeRaster",
bm_pixmap(), or "raster" object.
value New bitmap “color” value.
old Old bitmap “color” value to replace.

Additional arguments to be passed to or from methods.

Value

Depending on x either a bm_bitmap(), bm_font(), bm_list(), magick-image, "nativeRaster",
bm_pixmap(), or raster object.

Examples

corn <- farming_crops_16x16()$corn$portrait

if (cli::is_utf8_output() &% cli::num_ansi_colors() >= 256L) {
print(bm_replace(corn, "cyan"), compress = "v")

3

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)

font <- read_hex(font_file)

capital_r <- font[[str2ucp("R")1]

print(bm_replace(capital_r, 2L))

bm_resize Resize bitmaps by trimming and/or extending

Description

Trim and/or extend bitmaps to a desired height and/or width.

Usage

bm_resize(
X,
value,
width = NULL,
height = NULL,
hjust = "center-left”,
vjust = "center-top”

54

S3 method for class 'bm_bitmap'
bm_resize(

X,
value
width
height
hjust
vjust

)

oL,

NULL,
= NULL,
"center-left”,
"center-top”

S3 method for class 'bm_list'
bm_resize(x, ...)

S3 method for class 'bm_pixmap'

bm_resize(
X,
value = col2hex("transparent”),
width = NULL,
height = NULL,
hjust = "center-left”,
vjust = "center-top”
)
S3 method for class '“magick-image”
bm_resize(
X,
value = "transparent”,
width = NULL,
height = NULL,
hjust = "center-left”,
vjust = "center-top”
)

S3 method for class 'nativeRaster'
bm_resize(

X,
value
width
height
hjust
vjust

)

col2int("transparent”),
NULL,
= NULL,

"center-left”,
"center-top”

S3 method for class 'raster'
bm_resize(

X,
value
width

"transparent”,
NULL,

[

bm_resize

bm_resize 55

height = NULL,
hjust = "center-left”,

vjust = "center-top”
)
Arguments

X Either abm_bitmap(), bm_font (), bm_list(), "magick-image", "nativeRaster",
bm_pixmap(), or "raster" object.

value Value for the new pixels.

width How many pixels wide should the new bitmap be. Use with the hjust argument
or just one of either the left or right arguments.

height How many pixels tall should the new bitmap be. Use with the vjust argument
or just one of either the top or bottom arguments.

hjust One of "left", "center-left", "center-right", "right". "center-left" and "center-
right" will attempt to place in "center" if possible but if not possible will bias
it one pixel left or right respectively. "centre", "center", and "centre-left" are
aliases for "center-left". "centre-right" is an alias for "center-right".

vjust One of "bottom", "center-bottom", "center-top", "top". "center-bottom" and
"center-top" will attempt to place in "center" if possible but if not possible will
bias it one pixel down or up respectively. "centre", "center", and "centre-top"
are aliases for "center-top". "centre-bottom" is an alias for "center-bottom".
Additional arguments to be passed to or from methods.

Details

This function is a convenience wrapper around bm_trim() and bm_extend().

Value

Depending on x either a bm_bitmap(), bm_font(), bm_list(), magick-image, "nativeRaster",
bm_pixmap(), or raster object.

See Also
bm_extend(), bm_pad(), and bm_trim().

Examples

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_hex(font_file)

add a border to an "R"

capital_r <- font[[str2ucp("R")1]

print(capital_r)

capital_r <- bm_resize(capital_r, width = 12L, height = 12L, vjust = "top")
print(capital_r)

corn <- farming_crops_16x16()$corn$portrait

corn_rs <- bm_resize(corn, width = 20L, height = 20L, vjust = "top")

if (cli::is_utf8_output() && cli::num_ansi_colors() >= 256L) {

56 bm_rotate

print(corn_rs, bg = "cyan", compress = "v")
3
bm_rotate Rotate bitmaps 0, 90, 180, or 270 degrees
Description

bm_rotate() losslessly rotates bitmaps by 0, 90, 180, or 270 degrees. If 9@ or 270 degrees are
indicated the width and height of the bitmap will be flipped.

Usage
bm_rotate(x, angle = 0L, clockwise = TRUE)

S3 method for class 'bm_matrix'
bm_rotate(x, angle = OL, clockwise

TRUE)

S3 method for class 'nativeRaster'
bm_rotate(x, angle = 0L, clockwise = TRUE)

S3 method for class '“magick-image™'
bm_rotate(x, angle = 0L, clockwise = TRUE)

S3 method for class 'raster'
bm_rotate(x, angle = 0L, clockwise = TRUE)

S3 method for class 'bm_list'

bm_rotate(x, ...)
Arguments
X Either abm_bitmap(), bm_font (), bm_list(), "magick-image", "nativeRaster",
bm_pixmap(), or "raster" object.
angle Angle to rotate bitmap by.
clockwise If TRUE rotate bitmaps clockwise. Note Unicode’s convention is to rotate glyphs

clockwise i.e. the top of the "BLACK CHESS PAWN ROTATED NINETY
DEGREES" glyph points right.

Additional arguments to be passed to or from methods.

Value

Depending on x either a bm_bitmap(), bm_font(), bm_list(), magick-image, "nativeRaster",
bm_pixmap(), or raster object.

bm_shadow 57

See Also

bm_distort() can do other (distorted) rotations by careful use of its vp grid: :viewport() ar-
gument. bm_flip() with direction "both" and in_place TRUE can rotate glyphs 180 degrees in
place.

Examples

as_bm_list.character()

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_hex(font_file)

capital_r <- font[[str2ucp("R")1]

print(bm_rotate(capital_r, 90))

print(bm_rotate(capital_r, 180))

print(bm_rotate(capital_r, 270))

print(bm_rotate(capital_r, 90, clockwise = FALSE))

corn <- farming_crops_16x16()$corn$portrait
corn_180 <- bm_rotate(corn, 180)
if (cli::is_utf8_output() &% cli::num_ansi_colors() >= 256L) {

print(corn_180, compress = "v")
3
bm_shadow Bitmap shadow, bold, and glow effects
Description

bm_shadow() adds a basic "shadow" effect to the bitmap(s). bm_bold() is a variant with different
defaults to create a basic "bold" effect. bm_glow() adds a basic "glow" effect to the bitmap(s).

Usage

bm_shadow(
X,
value,
top = NULL,
right = NULL,
bottom = NULL,
left = NULL,
extend = TRUE,
bg

S3 method for class 'bm_bitmap'
bm_shadow(

X,

value = 2L,

top = NULL,

58

right = NULL,
bottom = NULL,
left = NULL,
extend = TRUE,
bg = oL

)

S3 method for class 'bm_list'
bm_shadow(x, ...)

S3 method for class 'bm_pixmap'
bm_shadow(

X,

value = col2hex("black"),

top = NULL,

right = NULL,

bottom = NULL,

left = NULL,

extend = TRUE,

bg = col2hex("transparent”)

)

S3 method for class '“magick-image”
bm_shadow(

X,

value = "black”,

top = NULL,

right = NULL,

bottom = NULL,

left = NULL,

extend = TRUE,

bg = "transparent”

)

S3 method for class 'nativeRaster
bm_shadow(

X,

value = col2int("black"),

top = NULL,

right = NULL,

bottom = NULL,

left = NULL,

extend = TRUE,

bg = "transparent”

)

S3 method for class 'raster'
bm_shadow(

bm_shadow

bm_shadow

X)
value = "black”,
top = NULL,
right = NULL,
bottom = NULL,
left = NULL,
extend = TRUE,
bg = "transparent”

)

bm_bold(
X,
value = 1L,
top = NULL,
right = NULL,
bottom = NULL,
left = NULL,
extend = TRUE

)

S3 method for class

bm_bold(
X,
value = 1L,
top = NULL,
right = NULL,
bottom = NULL,
left = NULL,
extend = TRUE

)

S3 method for class
bm_bold(x, ...)

"bm_bitmap'

"bm_list'

S3 method for class 'bm_pixmap'

bm_bold(
X,
value = col2hex("black"),
top = NULL,
right = NULL,
bottom = NULL,
left = NULL,
extend = TRUE

)

S3 method for class
bm_bold(

X,

magick-image™'

59

60

value = "black”,
top = NULL,
right = NULL,
bottom = NULL,
left = NULL,
extend = TRUE

)

S3 method for class 'nativeRaster'
bm_bold(

X,

value = col2int("black"),

top = NULL,

right = NULL,

bottom = NULL,

left = NULL,

extend = TRUE
)

S3 method for class 'raster'
bm_bold(

X,

value = "black”,

top = NULL,

right = NULL,

bottom = NULL,

left = NULL,

extend = TRUE
)

bm_glow(x, value, extend = TRUE, corner = FALSE, bg)

S3 method for class 'bm_bitmap'

bm_glow(x, value = 2L, extend = TRUE, corner = FALSE, bg = 0L)

S3 method for class 'bm_list'
bm_glow(x, ...)

S3 method for class 'bm_pixmap'
bm_glow(

X,

value = col2hex("black"),

extend = TRUE,

corner = FALSE,

bg = col2hex("transparent”)
)

S3 method for class '“magick-image™'

bm_shadow

bm_shadow 61

bm_glow(x, value = "black”, extend = TRUE, corner = FALSE, bg = "transparent")

S3 method for class 'nativeRaster'
bm_glow(x, value = "black”, extend = TRUE, corner = FALSE, bg

"transparent”)

S3 method for class 'raster’
bm_glow(x, value = "black”, extend = TRUE, corner = FALSE, bg

"transparent”)

Arguments
X Either abm_bitmap(), bm_font(), bm_list(), "magick-image", "nativeRaster",
bm_pixmap(), or "raster" object.
value The integer value for the shadow, bold, or glow effect.
top How many pixels above should the shadow go.
right How many pixels right should the shadow go. if top, right, bottom, and left
are all NULL then defaults to 1L.
bottom How many pixels below should the shadow go. if top, right, bottom, and left
are all NULL then defaults to 1L for bm_shadow() and oL for bm_embolden().
left How many pixels left should the shadow go.
extend Make the bitmap larger to give the new glyph more "room".
bg Bitmap background value.
Additional arguments to be passed to or from methods.
corner Fill in the corners.
Value

Depending on x either a bm_bitmap(), bm_font(), bm_list(), magick-image, "nativeRaster",
bm_pixmap(), or raster object.

See Also
bm_extend() and bm_shift()

Examples

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_hex(font_file)

capital_r <- font[[str2ucp("R")1]

print(capital_r)

print(bm_shadow(capital_r))

print(bm_bold(capital_r))

print(bm_glow(capital_r))

print(bm_glow(capital_r, corner = TRUE))

corn <- farming_crops_16x16()$corn$portrait

corn_shadow <- bm_shadow(corn, "red")

if (cli::is_utf8_output() && cli::num_ansi_colors() >= 256L) {
print(corn_shadow, compress = "v")

62 bm_shift

}

corn_glow <- bm_glow(corn, "cyan”, corner = TRUE)
if (cli::is_utf8_output() &% cli::num_ansi_colors() >= 256L) {

print(corn_glow, compress = "v")
3
bm_shift Shift elements within bitmaps
Description

Shifts non-padding elements within bitmaps by trimming on a specified side and padding on the
other while preserving the width and height of the original bitmap.

Usage
bm_shift(x, value, top = NULL, right = NULL, bottom = NULL, left = NULL)

S3 method for class 'bm_bitmap'
bm_shift(x, value = @L, top = NULL, right = NULL, bottom = NULL, left = NULL)

S3 method for class 'bm_list'
bm_shift(x, ...)

S3 method for class 'bm_pixmap'

bm_shift(
X,
value = col2hex("transparent”),
top = NULL,
right = NULL,
bottom = NULL,
left = NULL
)
S3 method for class '“magick-image™'
bm_shift(
X,
value = "transparent”,
top = NULL,
right = NULL,
bottom = NULL,
left = NULL
)

S3 method for class 'nativeRaster'
bm_shift(

bm_shift 63

X ’
value = col2int("transparent”),
top = NULL,
right = NULL,
bottom = NULL,
left = NULL
)
S3 method for class 'raster'’
bm_shift(
X,
value = "transparent”,
top = NULL,
right = NULL,
bottom = NULL,
left = NULL
)
Arguments
X Either abm_bitmap(), bm_font (), bm_list(), "magick-image", "nativeRaster",
bm_pixmap(), or "raster" object.
value Value for the new pixels.
top Number of pixels to shift towards the top side.
right Number of pixels to shift towards the right side.
bottom Number of pixels to shift towards the bottom side.
left Number of pixels to shift towards the left side.
Additional arguments to be passed to or from methods.
Details

This function is a convenience wrapper around bm_trim() and bm_extend().

Value
Depending on x either a bm_bitmap(), bm_font(), bm_list(), magick-image, "nativeRaster",
bm_pixmap(), or raster object.

See Also

bm_trim() and bm_extend()

Examples

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_hex(font_file)

capital_r <- font[[str2ucp("R")1]

print(capital_r)

64 bm_trim

capital_r <- bm_shift(capital_r, bottom = 2L, right = 1L)
print(capital_r)

corn <- farming_crops_16x16()$corn$portrait
print(bm_padding_lengths(corn))

corn_shifted <- bm_shift(corn, left = 1L, top = 2L)

if (cli::is_utf8_output() && cli::num_ansi_colors() >= 256L) {

print(corn_shifted, bg = "cyan"”, compress = "v")
3
bm_trim Trim bitmaps
Description

bm_trim() trims bitmap objects reducing the number of pixels. The directions and amount of
removed pixels are settable.

Usage
bm_trim(

X,

sides = NULL,
top = NULL,
right = NULL,
bottom = NULL,
left = NULL,
width = NULL,

height = NULL,
hjust = "center-left”,

vjust = "center-top”
)
S3 method for class 'bm_matrix'
bm_trim(

X,

sides = NULL,

top = NULL,

right = NULL,

bottom = NULL,

left = NULL,

width = NULL,

height = NULL,
hjust = "center-left”,
vjust = "center-top”

S3 method for class 'bm_list'
bm_trim(x, ...)

bm_trim

S3 method for class

bm_trim(

X,

sides = NULL,
top = NULL,
right = NULL,
bottom = NULL,
left = NULL,
width = NULL,

vjust = "center-top”
)
S3 method for class
bm_trim(

X,

sides = NULL,

top = NULL,

right = NULL,

bottom = NULL,

left = NULL,

width = NULL,

vjust = "center-top”
)
S3 method for class
bm_trim(

X,

sides = NULL,

top = NULL,

right = NULL,

bottom = NULL,

left = NULL,

width = NULL,

height = NULL,

“magick-image”

hjust = "center-left”,

height = NULL,

'nativeRaster’

hjust = "center-left”,

height = NULL,

'raster’

hjust = "center-left”,

vjust = "center-top”

Arguments

X

sides

Either abm_bitmap(), bm_font (), bm_list(), "magick-image
bm_pixmap(), or "raster" object.

non
b}

65

nativeRaster",

If not NULL then an integer vector indicating how many pixels to trim on all four

66

top
right
bottom
left
width

height

hjust

vjust

Value

bm_trim

sides. If the integer vector is of length one it indicates the number of pixels for
all four sides. If of length two gives first the number for the vertical sides and
then the horizontal sides. If of length three gives the number of pixels for top,
the horizontal sides, and then bottom sides. If of length four gives the number
of pixels for top, right, bottom, and then left sides. This is the same scheme as
used by the CSS padding and margin properties.

How many pixels to trim the top.
How many pixels to trim the right.
How many pixels to trim the bottom.
How many pixels to trim the left.

How many pixels wide should the new bitmap be. Use with the hjust argument
or just one of either the left or right arguments.

How many pixels tall should the new bitmap be. Use with the vjust argument
or just one of either the top or bottom arguments.

One of "left", "center-left", "center-right", "right". "center-left" and "center-
right" will attempt to place in "center" if possible but if not possible will bias
it one pixel left or right respectively. "centre", "center", and "centre-left" are
aliases for "center-left". "centre-right" is an alias for "center-right". Note if
"left" we will trim on the right (and vice-versa).

One of "bottom", "center-bottom", "center-top"”, "top". "center-bottom" and
"center-top" will attempt to place in "center" if possible but if not possible will

non

bias it one pixel down or up respectively. "centre", "center", and "centre-top" are
" "

aliases for "center-top". "centre-bottom" is an alias for "center-bottom". Note if
"top" we will trim on the bottom (and vice-versa).

Additional arguments to be passed to or from methods.

Depending on x either a bm_bitmap(), bm_font(), bm_list(), magick-image, "nativeRaster",
bm_pixmap(), or raster object.

See Also

bm_extend(), bm_pad(), and bm_resize().

Examples

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_hex(font_file)
capital_r <- font[[str2ucp("R")1]

print(capital_r)

capital_r_trimmed <- bm_trim(capital_r, c(1, 1, 3, 0))
print(capital_r_trimmed)

corn <- farming_crops_16x16()$corn$portrait
print(bm_padding_lengths(corn))

corn_trimmed <- bm_trim(corn, top = 1L, right = 1L, bottom = 1L)
if (cli::is_utf8_output() && cli::num_ansi_colors() >= 256L) {

c.bm_bitmap

67

print(corn_trimmed, bg = "cyan"”, compress = "v")
3
c.bm_bitmap Combine bitmap objects
Description

c() combines bitmap objects into bm_list() or bm_font() objects. In particular when using it to
combine fonts the later fonts "update" the glyphs in the earlier fonts.

S3 method for

S3 method for

S3 method for

S3 method for

Usage
c(...)
c(...)
c(...)
c(...)

Arguments

Details

class

class

class 'bm_font'

class 'bm_list'

"bm_bitmap'

"bm_pixmap'

bm_bitmap(), bm_list(), and/or bm_font () objects to combine.

The various bitmap objects are "reduced"” in the following ways:

First
bm_bitmap()
bm_bitmap()
bm_bitmap()
bm_bitmap()
bm_pixmap()
bm_pixmap()
bm_pixmap()
bm_pixmap()
bm_font()
bm_font()
bm_font ()
bm_font()
bm_list()

Second
bm_bitmap()
bm_font()
bm_list()
bm_pixmap()
bm_bitmap()
bm_font ()
bm_list()
bm_pixmap()
bm_bitmap()
bm_font()
bm_list()
bm_pixmap()
bm_bitmap()

Result

bm_list()
bm_font()
bm_list()
bm_list()
bm_list()
ERROR

bm_list()
bm_list()
bm_font ()
bm_font()
bm_font ()
ERROR

bm_list()

68 cbind.bm_bitmap

bm_list() bm_font() bm_font()
bm_list() bm_list() bm_list()
bm_list() bm_pixmap() bm_list()

When combining with a bm_font() object if any bm_bitmap() objects share the same name we
only keep the last one. Although names are preserved other attributes such as font comments and
properties are not guaranteed to be preserved.

Value

Either a bm_list() or bm_font() object. See Details for more info.

Examples

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_hex(font_file)

capital_r <- font[[str2ucp("R")1]

stats <- as_bm_list("STATS"”, font = font)

is_bm_list(c(capital_r, capital_r))

rstats <- c(capital_r, stats)

print(bm_call(rstats, cbind))

cbind.bm_bitmap Combine bitmap/pixmap objects by rows or columns

Description
cbind.bm_bitmap() /cbind.bm_pixmap() and rbind.bm_bitmap() / rbind.bm_pixmap() com-
bine by columns or rows respectively.

Usage

S3 method for class 'bm_bitmap'
cbind(..., direction = "left-to-right”, vjust = "center-top")

S3 method for class 'bm_bitmap'
rbind(..., direction = "top-to-bottom”, hjust = "center-left")

S3 method for class 'bm_pixmap'
cbind(..., direction = "left-to-right”, vjust = "center-top”)

S3 method for class 'bm_pixmap'
rbind(..., direction = "top-to-bottom”, hjust

"center-left")

col2hex 69

Arguments
bm_bitmap() or bm_pixmap() objects.
direction For cbind() either "left-to-right" (default) or its aliases "ltr" and "Ir" OR "right-
to-left" or its aliases "rtl" and "rl". For rbind() either "top-to-bottom" (default)
or its aliases "ttb" and "tb" OR "bottom-to-top" or its aliases "btt" and "bt". The
direction argument is not case-sensitive.
vjust Used by bm_extend() if bitmap heights are different.
hjust Used by bm_extend() if bitmap widths are different.
Value

A bm_bitmap() or bm_pixmap() object.

Examples

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_hex(font_file)

capital_b <- font[[str2ucp("B")]]

capital_m <- font[[str2ucp("M")1]

cbm <- cbind(capital_b, capital_m)

print(cbm)

cbm_rl <- cbind(capital_b, capital_m, direction = "right-to-left")
print(cbm_rl)

rbm <- rbind(capital_b, capital_m)

print(rbm)

rbm_bt <- rbind(capital_b, capital_m, direction = "bottom-to-top")
print(rbm_bt)

col2hex Colors to standardized hex strings

Description
col2hex() standardizes R color strings into a unique RGBA hex string. All fully transparent colors
get standardized to "#FFFFFF@Q".

Usage

col2hex(x)

Arguments

X Color value as supported by grDevices: :col2rgh().

Value

A standardized RGBA hex string (as returned by grDevices: :rgb()).

70 col2int

Examples

col2hex("red")
col2hex("green")
col2hex("blue")
col2hex("transparent”)
col2hex(NA_character_)
col2hex("#00000000")

col2int Color to (native) integer conversions

Description

col2int() converts color strings to (native) color integers. int2col() converts (native) color
integers to color strings.

Usage

col2int(x)

int2col(x)

Arguments

X Color value to convert.

Details

* Colors are also standardized by col2hex().

* Requires either the colorfast or the farver package.

Value

col2int() returns an integer. int2col () returns a (hex) color string.

Examples

if (requireNamespace(”farver”, quietly = TRUE)) {
int2col(col2int("red"))
3

https://cran.r-project.org/package=colorfast

farming_crops_16x16 71

farming_crops_16x16 Sprites for twenty farming crops

Description

farming_crops_16x16() returns a named list of bm_list() lists of twenty farming crops in five
stages of growth plus a portrait as bm_pixmap() objects.

Usage
farming_crops_16x16()

Details

 Each sprite is sixteen by sixteen pixels large.

e Farming Crops 16x16 was made and dedicated to the public domain by josehzz.

Value

A named list of bm_1ist () lists of six bm_pixmap() objects (one through five stages of growth plus
a portrait for each crop). The named list has the following twenty crop names:
* "avocado"
* "cassava"
* "coffee"
* "corn"
* "cucumber"
* "eggplant”
* "grapes"
* "lemon"
* "melon"
* "orange"
* "pineapple"
* "potato”
* "rice"
* "rose"
 "strawberry"
* "sunflower"
* "tomato"
* "tulip”
* "turnip"

e "wheat"

https://opengameart.org/content/farming-crops-16x16
https://opengameart.org/users/josehzz

72 hex2ucp

Examples

crops <- farming_crops_16x16()

names(crops)

if (cli::is_utf8_output() &% cli::num_ansi_colors() >= 256L) {
print(crops$corn$portrait, compress = "v")

3

if (cli::is_utf8_output() && cli::num_ansi_colors() >= 256L) {
print(crops$orange$stage5, compress = "v")

3

hex2ucp Get Unicode code points
Description

hex2ucp (), int2ucp(), name2ucp(), and str2ucp() return Unicode code points as character vec-
tors. is_ucp() returns TRUE if a valid Unicode code point.

Usage
hex2ucp(x)
int2ucp(x)
str2ucp(x)
name2ucp(x, type = c("exact”, "grep"), ...)
is_ucp(x)

TRUE)

block2ucp(x, omit_unnamed

range2ucp(x, omit_unnamed = TRUE)

Arguments
X R objects coercible to the respective Unicode character data types. See Unicode: :as.u_char()
for hex2ucp () and int2ucp(), base: :utf8ToInt() for str2ucp(), Unicode: :u_char_from_name()
for name2ucp(), Unicode: :as.u_char_range() for range2ucp(), and Unicode: :u_blocks ()
for block2ucp().
type one of "exact” or "grep", or an abbreviation thereof.

arguments to be passed to grepl when using this for pattern matching.

omit_unnamed Omit control codes or unassigned code points

is_bm_bitmap 73

Details

hex2ucp(x) is a wrapper for as.character(Unicode: :as.u_char(toupper(x))). int2ucp is

a wrapper for as.character(Unicode::as.u_char(as.integer(x))). str2ucp(x) is a wrap-

per for as.character(Unicode: :as.u_char(utf8ToInt(x))). name2ucp(x) is a wrapper for
as.character(Unicode: :u_char_from_name(x)). However missing values are coerced to NA_character_
instead of "<NA>". Note the names of bm_font () objects must be character vectors as returned by

these functions and not Unicode: :u_char objects.

Value

A character vector of Unicode code points.

See Also

ucp2label () and is_combining_character().

Examples

These are all different ways to get the same 'R' code point
hex2ucp("”52")
hex2ucp(as.hexmode("52"))
hex2ucp("0052")

hex2ucp ("U+0052")

hex2ucp ("0x0052")

int2ucp(82) # 82 == as.hexmode("52")
int2ucp("82") # 82 == as.hexmode("52")
int2ucp(utf8ToInt("R"))

ucp2label ("U+0052")

name2ucp("LATIN CAPITAL LETTER R")
str2ucp(”"R")

block2ucp(”Basic Latin")
block2ucp("Basic Latin", omit_unnamed = FALSE)
range2ucp("U+0020..U+0030")

is_bm_bitmap Test if the object is a bitmap object

Description

is_bm_bitmap() returns TRUE for bm_bitmap objects (or subclasses) and FALSE for all other ob-
jects.

Usage

is_bm_bitmap(x)

74 is_bm_font

Arguments

X An object

Value

TRUE or FALSE

See Also

bm_bitmap()

Examples

space_matrix <- matrix(@L, nrow = 16L, ncol = 16L)
is_bm_bitmap(space_matrix)

space_glyph <- bm_bitmap(space_matrix)
is_bm_bitmap(space_glyph)

is_bm_font Test if the object is a bitmap font object

Description

is_bm_font() returns TRUE for bm_font objects (or subclasses) and FALSE for all other objects.

Usage

is_bm_font(x)

Arguments

X An object

Value

TRUE or FALSE

See Also
bm_font ()

Examples

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon")
font <- read_hex(font_file)
is_bm_font(font)

is_bm_lIist 75

is_bm_list Test if the object is a bitmap glyph list object

Description

is_bm_list() returns TRUE for bm_list () objects (or subclasses) and FALSE for all other objects.

Usage

is_bm_list(x)

Arguments

X An object

Value

TRUE or FALSE

See Also
bm_list()

Examples

font_file <- system.file(”fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_hex(font_file)
is_bm_font(font)

is_bm_pixmap Test if the object is a pixmap object

Description
is_bm_pixmap() returns TRUE for bm_pixmap objects (or subclasses) and FALSE for all other ob-
jects.

Usage

is_bm_pixmap(x)

Arguments

X An object

76 is_supported_bitmap

Value

TRUE or FALSE

See Also

bm_pixmap(), as_bm_pixmap()

Examples

pm <- bm_pixmap(matrix(c("red”, "blue"”, "green”, "black"),
nrow = 2L, byrow = TRUE))
is_bm_pixmap(pm)

is_supported_bitmap Test if the object is a bitmap object supported by the methods in this
package

Description

is_supported_bitmap() returns TRUE for bm_bitmap, bm_pixmap, magick-image, nativeRaster,
and raster objects (or subclasses) and FALSE for all other objects.

Usage

is_supported_bitmap(x)

Arguments

X An object

Value

TRUE or FALSE

See Also

is_bm_bitmap(), is_bm_pixmap(), grDevices::is.raster()

Examples

space_matrix <- matrix(@L, nrow = 16L, ncol = 16L)
space_glyph <- bm_bitmap(space_matrix)
is_supported_bitmap(space_glyph)

Ops.bm_bitmap 77

Ops.bm_bitmap S3 Ops group generic methods for bitmap objects

Description

The S3 Ops group generic methods for bm_bitmap() objects are simply the result of the generic
integer matrix method cast back to a bm_bitmap () object (which is an integer matrix). The S3 Ops
group generic methods for bm_list() and bm_font() objects simply returns another object with
that operator applied to every bitmap in the original object.

Usage
S3 method for class 'bm_bitmap'

Ops(el, e2)

S3 method for class 'bm_pixmap'
Ops(el, e2)

S3 method for class 'bm_list'
Ops(el, e2)
Arguments

el, e2 objects.

Value

The various Ops.bm_bitmap and Ops.bm_pixmap methods return a bm_bitmap() object. The vari-
ous Ops.bm_list methods return a bm_list() object.

See Also

base::Ops

Examples

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_hex(font_file)

Examples applied to individual bitmaps
capital_r <- font[[str2ucp("R")1]
print(!capital_r)

capital_b <- font[[str2ucp("B")]1]
print(capital_r & capital_b)
print(capital_r | capital_b)
print(capital_r + 1L)

print(capital_r + 1L > 1L)

Examples applied to “bm_list()" objects

78 plot.bm_matrix

bml <- font[c("U+0023", "U+0052", "U+0053", "U+0054", "U+0041", "U+0054", "U+0053")] # #RSTATS
bml <- as_bm_list(bml)

bm <- do.call(cbind, bml)

print(bm)

bml <- !bml
bm <- do.call(cbind, bml)
print(bm)

bml <- 2 % (bml + 1L)
bm <- do.call(cbind, bml)
print(bm)

crops <- farming_crops_16x16()
corn <- crops$corn$portrait

print(corn == col2hex("transparent”))
plot.bm_matrix Plot bitmap/pixmap objects
Description

plot.bm_bitmap() plots a bm_bitmap() object to the graphics device while plot.bm_pixmap()
plots abm_pixmap () object to the graphics device. They are wrappers around grid: :grid.raster()
and as.raster.bm_bitmap() or as.raster.bm_pixmap(). which converts a bitmap glyph object
to a raster object. col_bitmap is a builtin color string vectors intended for use with the col argu-
ment for casting bm_bitmap() objects to pixmap objects.

Usage

S3 method for class 'bm_bitmap'

plot(
X,
col = getOption("bittermelon.col”, col_bitmap),
interpolate = FALSE

)

S3 method for class 'bm_pixmap'
plot(x, ..., interpolate = FALSE)

S3 method for class 'bm_bitmap'
as.raster(

X,

native = FALSE,

’

col = getOption("bittermelon.col”, col_bitmap)

plot.bm_matrix 79

S3 method for class 'bm_pixmap'

as.raster(x, native = FALSE, ...)
col_bitmap

Arguments
X A bm_bitmap() object

Passed to grid: :grid.raster().

col Character vector of R color specifications. First color is used for values equal to
0, second color for values equal to 1, etc.

interpolate Passed to grid: :grid.raster().

native If TRUE return a "nativeRaster" object instead of a "raster”" object. This will
require that the suggested package farver is installed.

Format

An object of class character of length 4.

Value

plot.bm_bitmap() and plot.bm_pixmap() return a grid::rasterGrob() object silently. As a
side effect will draw to graphics device. as.raster.bm_bitmap() and as.raster.bm_pixmap()
return "raster" objects (see grDevices::as.raster()).

See Also

bm_bitmap(), bm_pixmap()

Examples

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_hex(font_file)

capital_r <- bm_extend(font[[str2ucp("R")1], left = 1L)

capital_r <- bm_extend(capital_r, sides = 1L, value = 2L) # add a border effect

plot(capital_r)
plot(capital_r, col = c("yellow", "blue", "red"))
crops <- farming_crops_16x16()

grapes <- crops$grapes$portrait
plot(grapes)

80 print.bm_bitmap

print.bm_bitmap Print bitmap objects

Description

print.bm_bitmap() prints a representation of bitmap objects to the terminal. It is a wrapper
around format.bm_bitmap() which converts bitmap objects to a character vector. px_unicode and
px_ascii are builtin character vectors intended for use with the px argument (the former contains
Unicode “Block Elements” while the latter is purely ASCII). px_auto() chooses which character
vector to use based on whether cli::is_utf8_output() is TRUE or not.

Usage

S3 method for class 'bm_bitmap'
print(
X’

px = getOption("bittermelon.px”, px_auto()),

fg = getOption("bittermelon.fg", FALSE),
bg = getOption("bittermelon.bg", FALSE),
compress = getOption("bittermelon.compress”, "none"),
downscale = getOption("bittermelon.downscale”, FALSE)
)
S3 method for class 'bm_bitmap'
format(
X’
px = getOption("bittermelon.px”, px_auto()),
fg = getOption("bittermelon.fg", FALSE),
bg = getOption("bittermelon.bg", FALSE),
compress = getOption("bittermelon.compress”, "none"),
downscale = getOption("bittermelon.downscale”, FALSE)
)
px_unicode
px_ascii

px_auto(unicode = px_unicode, ascii = px_ascii)

Arguments
X A bm_bitmap() object
Further arguments passed to or from other methods.
pX Character vector of the pixel to use for each integer value i.e. The first character

for integer 0L, the second character for integer 1L, and so on. Will be recycled.

print.bm_bitmap 81

fg R color strings of foreground colors to use and/or cli ANSI style functions of
class cli_ansi_style. FALSE (default) for no foreground colors. Will be recy-
cled and passed to cli: :make_ansi_style().

bg R color strings of background colors to use and/or cli ANSI style functions
of class cli_ansi_style. FALSE (default) for no background colors. Will be
recycled and passed to cli: :make_ansi_style() with bg = TRUE.

compress If "none" (default) or "n" don’t compress first with bm_compress(). Other-
wise compress first with bm_compress() passing the value of compress as its
direction argument (i.e. either "vertical" or "v", "horizontal" or "h", OR "both"

or "b").
downscale If TRUE and the printed bitmap will be wider than getOption("width") then
shrink the image to fit getOption("width") using bm_downscale().
unicode Character vector to use if cli::is_utf8_output() is TRUE.
ascii Character vector to use if cli::is_utf8_output() is FALSE.
Format

An object of class character of length 20.
An object of class character of length 20.

Value

A character vector of the string representation (print.bm_bitmap() does this invisibly). As a side
effect print.bm_bitmap() prints out the string representation to the terminal.

Fonts and terminal settings

Printing bitmaps/pixmaps may or may not look great in your terminal depending on a variety of
factors:

* The terminal should support the Unicode - UTF-8 encoding. We use cli::is_utf8_output()
to guess Unicode support which in turn looks at getOption(”cli.unicode”) and 110n_info().

* The terminal should support ANSI sequences and if it does it should support many colors.

— Weuse cli::num_ansi_colors() to detect number of colors supported. num_ansi_colors()
detection algorithm is complicated but it first looks at getOption(”cli.num_colors").

— Ifcli::num_ansi_colors() equals 16777216 then your terminal supports 24-bit ANSI
colors.

— If using the Windows Command Prompt window you may need to enable ANSI se-
quences support by doing REG ADD HKCU\CONSOLE /f /v VirtualTerminallLevel /t REG_DWORD /d 1
from the command-line or running regedit (Registry Editor) and go to Computer\HKEY_CURRENT_USER\Console
and set VirtualTerminalLevel to 1.

* The font used by the terminal should be a monoscale font that supports the Block Elements
Unicode block.

* The terminal text settings should have a cell spacing around 1.00 times width and 1.00 times
height. For terminals configured by CSS styles this means a 1ine-height of around 1. 0.

https://en.wikipedia.org/wiki/Block_Elements

82 print.bm_pixmap

See Also

bm_bitmap()

Examples

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_hex(font_file)

bm_R <- font[[str2ucp("R")1]

print(bm_R)

if (cli::is_utf8_output())
print(bm_R, px = px_unicode, compress = "vertical”)

bm_8 <- font[[str2ucp("8"”)1]

bm_8_with_border <- bm_extend(bm_extend(bm_8, left = 1L),
sides = 1L, value = 2L)

print(bm_8_with_border, px = c("."”, "@", "X"))

if (cli::num_ansi_colors() >= 16L) {
print(bm_8_with_border, px = " ",
bg = c(cli::bg_br_white, cli::bg_blue, cli::bg_red))

print.bm_pixmap Print pixmap objects

Description
print.bm_pixmap() prints bittermelon pixmap objects to the terminal It is a wrapper around
format.bm_pixmap().

Usage

S3 method for class 'bm_pixmap'
print(
X,

bg = getOption("bittermelon.bg", FALSE),

compress = getOption("bittermelon.compress”, "none"),
downscale = getOption("bittermelon.downscale”, FALSE)
)
S3 method for class 'bm_pixmap'
format(
X,

bg = getOption("bittermelon.bg", FALSE),
compress = getOption("bittermelon.compress”, "none"),

print.bm_pixmap 83

downscale = getOption("bittermelon.downscale”, FALSE)

)
Arguments
X A bm_pixmap() object
Currently ignored.
bg R color string of background color to use and/or cli ANSI style function of class
cli_ansi_style. FALSE (default) for no background color (i.e. use default
terminal background).
compress How to print the image: * "none" (default) or "n" use one character per pixel.
* "vertical" or "v" use one character per two vertical pixels (makes pixels look
closest to square in typical terminal). * "horizontal" or "h" use one character per
two horizontal pixels. * "both" or "b" use one character per four pixels (this will
be a lossy conversion whenever there are more than two colors per four pixels).
downscale If TRUE and the printed pixmap will be wider than getOption("width"”) then
shrink the image to fit getOption("width") using bm_downscale().
Value

A character vector of the string representation (print.bm_pixmap() does this invisibly). As a side
effect print.bm_pixmap() prints out the string representation to the terminal.

Fonts and terminal settings

Printing bitmaps/pixmaps may or may not look great in your terminal depending on a variety of
factors:

* The terminal should support the Unicode - UTF-8 encoding. We use cli::is_utf8_output()
to guess Unicode support which in turn looks at getOption(”cli.unicode”) and 110n_info().

¢ The terminal should support ANSI sequences and if it does it should support many colors.

— Weusecli::num_ansi_colors() to detect number of colors supported. num_ansi_colors()
detection algorithm is complicated but it first looks at getOption("cli.num_colors").

— If cli::num_ansi_colors() equals 16777216 then your terminal supports 24-bit ANSI
colors.

— If using the Windows Command Prompt window you may need to enable ANSI se-
quences support by doing REG ADD HKCU\CONSOLE /f /v VirtualTerminallLevel /t REG_DWORD /d 1
from the command-line or running regedit (Registry Editor) and go to Computer\HKEY_CURRENT_USER\Console
and set VirtualTerminallLevel to 1.

* The font used by the terminal should be a monoscale font that supports the Block Elements
Unicode block.

* The terminal text settings should have a cell spacing around 1.00 times width and 1.00 times
height. For terminals configured by CSS styles this means a 1ine-height of around 1. 0.

https://en.wikipedia.org/wiki/Block_Elements

84 read_hex

Examples

crops <- farming_crops_16x16()

corn <- crops$corn$portrait

if (cli::is_utf8_output() &% cli::num_ansi_colors() >= 256L) {
print(corn)

3

if (cli::is_utf8_output() && cli::num_ansi_colors() >= 256L) {

print(corn, compress = "v", bg = cli::bg_br_white)

}

if (cli::is_utf8_output() &&
cli::num_ansi_colors() > 256L &&
getOption("width”) >= 100L) {
img <- png::readPNG(system.file("img", "Rlogo.png", package="png"))
pm <- as_bm_pixmap(img)

print(pm, compress = "v")
}
read_hex Read and write hex bitmap font files
Description

read_hex () reads in hex format bitmap font files as a bm_font () object while write_hex() writes
a bm_font () object as a hex format bitmap font file.

Usage

read_hex(con, ucp = NULL)

write_hex(font, con = stdout())

Arguments
con A connection object or a character string of a filename. See base: :readLines()
or base: :writeLines() for more info. If it is a connection it will be explicitly
closed.
ucp Character vector of Unicode Code Points: glyphs not in this vector won’t be
read in. If NULL (default) read every glyph in the font.
font A bm_font () object.
Value

read_hex() returns a bm_font() object. write_hex() returns invisibly a character vector of the
contents of the hex font file it wrote to con as a side effect.

read_monobit 85

See Also
bm_font ()

Examples

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_hex(font_file)

capital_r <- font[[str2ucp("R")1]

print(capital_r)

filename <- tempfile(fileext = ".hex.gz")
write_hex(font, gzfile(filename))

font <- read_hex(font_file, ucp = block2ucp(”Basic Latin"))
capital_r <- font[[str2ucp("R")1]
print(capital_r)

read_monobit Read and write bitmap font files using monobit

Description

read_monobit() reads in bitmap font file as a bm_font() object while write_monobit() writes
a bm_font() object as a bitmap font file. It uses the file extension to determine the appropriate
bitmap font format to use.

Usage
read_monobit(
file,
quietly = FALSE,
monobit_path = getOption("bittermelon.monobit_path”, "monobit-convert")
)
write_monobit(
font,
file,
quietly = FALSE,
monobit_path = getOption("bittermelon.monobit_path”, "monobit-convert")
)
Arguments
file A character string of a filename.
quietly If TRUE suppress any standard output/error from monobit-convert.

monobit_path Path/name of monobit-convert to use. Passed to base: :Sys.which().
font A bm_font() object.

86 read_yaff

Details
* read_monobit() andwrite_monobit () require that the monobit-convert command is avail-
able on the system.

* read_monobit() and write_monobit() uses monobit-convert to convert to/from the yaff
font format which this package can natively read/write from/to.

* One may install monobit-convert using pip3 install monobit.

¢ For more information about monobit see https://github.com/robhagemans/monobit.

Value

read_monobit() returns a bm_font() object. write_monobit() returns NULL invisibly and as a
side effect writes file.

See Also

bm_font () for more information about bitmap font objects. read_hex (), write_hex(), read_yaff(),
write_yaff () for pure R bitmap font readers and writers.

Examples

May take more than 5 seconds on CRAN servers
if (nzchar(Sys.which("monobit-convert”))) {
try({
font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_monobit(font_file)
capital_r <- font[[str2ucp("R")1]
print(capital_r)

filename <- tempfile(fileext = ".yaff")
write_monobit(font, filename)
D)
3
read_yaff Read and write yaff bitmap font files
Description

read_yaff () reads in yaff format bitmap font files as a bm_font () object while write_yaff ()
writes a bm_font () object as a yaff format bitmap font file.

Usage

read_yaff(con)

write_yaff(font, con = stdout())

https://github.com/robhagemans/monobit

Summary.bm_list 87

Arguments
con A connection object or a character string of a filename. See base: :readLines()
or base: :writeLines() for more info. If it is a connection it will be explicitly
closed.
font A bm_font() object.
Value

read_yaff () returns a bm_font () object. write_yaff () returns invisibly a character vector of the
contents of the yaff font file it wrote to con as a side effect.

See Also

bm_font () for information about bitmap font objects. For more information about yaff font format
see https://github.com/robhagemans/monobit#the-yaff-format.

Examples

May take more than 5 seconds on CRAN servers

font_file <- system.file("fonts/fixed/4x6.yaff.gz", package = "bittermelon”)
font <- read_yaff(font_file)

capital_r <- font[[str2ucp("R")1]

print(capital_r)

filename <- tempfile(fileext = ".yaff")
write_yaff(font, filename)

Summary.bm_list max, min, and range for bitmap objects

Description

max(), min(), and range() will provide the maximum and minimum integer values found in the
bm_bitmap(), bm_list(), or bm_list() objects. The other four S3 base::Summary methods -
all(), any(), sum, and prod - are only supported for bm_bitmap() objects (which are subclasses
of integer matrices).

Usage
S3 method for class 'bm_list'
Summary(..., na.rm = FALSE)
Arguments

Passed to relevant functions.

na.rm Passed to min() and max ().

https://github.com/robhagemans/monobit#the-yaff-format

88 ucp2label

Value

An integer vector.

Examples

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_hex(font_file)

min(font)

max (font)

range(font)

ucp2label Other Unicode utilities

Description

ucp2label() returns Unicode code point “labels” as a character vector. ucp_sort () sorts Unicode
code points. is_combining_character () returns TRUE if the character is a “combining” character.

Usage
ucp2label (x)
ucp_sort(x, decreasing = FALSE)

is_combining_character(x, pua_combining = character(@))

Arguments
X A character vector of Unicode code points.
decreasing If TRUE do a decreasing sort.

pua_combining Additional Unicode code points to be considered as a “combining” character
such as characters defined in the Private Use Area (PUA) of a font.

Value
ucp2label () returns a character vector of Unicode labels. ucp_sort() returns a character vector
of Unicode code points. is_combining_character() returns a logical vector.

See Also

block2ucp(), hex2ucp(), int2ucp(), name2ucp(), range2ucp(), and str2ucp() all return Uni-
code code points.

[.bm_matrix 89

Examples

Get the Unicode Code Point "label” for "R"
ucp2label (str2ucp("R"))

is_combining_character(str2ucp(”a"))
is_combining_character (”"U+0300") # COMBINING GRAVE ACCENT

[.bm_matrix Extract or replace parts of a bitmap/pixmap matrix

Description
[.bm_matrix() is defined so that it returns a bm_bitmap() or bm_pixmap() object (if the value is a
matrix). [<-.bm_bitmap() casts any replacement values as integers while [<-.bm_pixmap() casts
any replacement values as standardized color strings.

Usage
S3 method for class 'bm_matrix'

x[i, j, ..., drop = TRUE]

S3 replacement method for class 'bm_bitmap'
x[i, j, ...]1 <= value

S3 replacement method for class 'bm_pixmap'

x[i, j, ...]1 <= value
Arguments
X bm_bitmap() object
i,] indices specifying elements to extract or replace. See [base::[()] for more in-
formation.
. Passed to [base::[()].
drop If TRUE the result is coerced to a integer vector.
value Replacement value
Value

[.bm_matrix() returns a bm_bitmap() or bm_pixmap() object if the value is a matrix and/or drop
is FALSE otherwise it returns a vector of integers or color strings.

Examples

font_file <- system.file("fonts/spleen/spleen-8x16.hex.gz", package = "bittermelon”)
font <- read_hex(font_file)

capital_r <- font[[str2ucp("R")1]

print(capital_r[4:14,2:8])

capital_r[11:13,3:5] <- 2L

print(capital_r)

Index

+ datasets
plot.bm_matrix, 78
print.bm_bitmap, 80
.S3method(), 51
[.bm_bitmap, 15, 50
[.bm_bitmap ([.bm_matrix), 89
[.bm_matrix, 89
[.bm_pixmap ([.bm_matrix), 89
[<-.bm_bitmap ([.bm_matrix), 89
[<-.bm_pixmap ([.bm_matrix), 89

as.array.bm_bitmap, 3

as.array.bm_pixmap
(as.array.bm_bitmap), 3

as.data.frame.bm_bitmap, 4

as.data.frame.bm_pixmap
(as.data.frame.bm_bitmap), 4

as.matrix.bm_bitmap
(as.matrix.bm_matrix), 5

as.matrix.bm_bitmap(), 15

as.matrix.bm_matrix, 5

as.matrix.bm_pixmap
(as.matrix.bm_matrix), 5

as.matrix.bm_pixmap(), 50

as.raster(), 14

as.raster.bm_bitmap (plot.bm_matrix), 78

as.raster.bm_bitmap(), 15, 50

as.raster.bm_pixmap (plot.bm_matrix), 78

as_bm_bitmap, 6

as_bm_bitmap(), 11, 15, 16, 38, 50

as_bm_font, 10

as_bm_font(), 31

as_bm_list, 11

as_bm_list(), 36

as_bm_pixmap, 12

as_bm_pixmap(), 11,49-51,76

base::do.call(), 16
base: :lapply(), 36
base: :0ps, 77

90

base:
base:
base:
base:

:readLines(), 84, 87

:Summary, 87

:Sys.which(), 85

:unique(), 34

base: :utf8TolInt(), 72

base::writelLines(), 84, 87

bittermelon, 40

block2ucp (hex2ucp), 72

block2ucp(), 88

bm_bitmap, 15

bm_bitmap(), 3-5, 9, 16-25, 27, 28, 30-33,
35, 36, 38,41, 43, 44, 46, 48-50, 53,
55, 56, 61, 63, 65-67, 69, 74, 77-79,
82,89

bm_bold (bm_shadow), 57

bm_call, 16

bm_clamp, 17

bm_clamp(), 15, 23

bm_compose, 18

bm_compose(), 9

bm_compress, 19

bm_compress(), 81

bm_distort, 21

bm_distort(), 19, 57

bm_downscale (bm_distort), 21

bm_downscale(), 81, 83

bm_edit, 22

bm_expand, 23

bm_expand(), 22, 27

bm_extend, 25

bm_extend(), 9, 24, 47, 55, 61, 63, 66, 69

bm_extract, 28

bm_f1lip, 29

bm_flip(), 57

bm_font, 31

bm_font(), 9-11, 16-22, 24, 27, 28, 30, 32,
33, 35, 36, 38,41, 43, 44, 46, 48, 53,
55, 56, 61, 63, 65-68, 74, 84-87

bm_format (bm_print), 50

INDEX

bm_glow (bm_shadow), 57

bm_gray, 32

bm_grey (bm_gray), 32

bm_heights, 33

bm_invert, 34

bm_lapply, 35

bm_list, 36

bm_list(), 11, 12, 16-22, 24, 27, 28, 30-33,
35, 36, 38,41, 43, 44, 46, 48, 53, 55,
56,61, 63,65-68,71,75,77

bm_mask, 37

bm_options, 40

bm_outline, 40

bm_overlay, 42

bm_overlay(), I8

bm_pad, 44

bm_pad(), 27, 55, 66

bm_padding_lengths, 47

bm_pixel_picker, 48

bm_pixmap, 49

bm_pixmap(), 3-5, 14-22, 24, 27, 28, 30, 32,
33, 35, 38,41, 43, 44, 46, 48, 49, 51,
53,55, 56,61, 63,65-69, 71,76, 78,
79, 83, 89

bm_print, 50

bm_replace, 52

bm_resize, 53

bm_resize(), 22, 24, 27,47, 66

bm_rotate, 56

bm_shadow, 57

bm_shift, 62

bm_shift(), 61

bm_trim, 64

bm_trim(), 27, 29,47, 55, 63

bm_widths (bm_heights), 33

.bm_bitmap, 67

.bm_font (c.bm_bitmap), 67
.bm_list (c.bm_bitmap), 67
.bm_pixmap (c.bm_bitmap), 67
cbind.bm_bitmap, 68
cbind.bm_bitmap(), 15
cbind.bm_pixmap (cbind.bm_bitmap), 68
cli::is_utf8_output(), 51, 80, 81, 83
cli::make_ansi_style(), 81
cli::num_ansi_colors(), 51, 81,83
col2hex, 69

col2hex(), 70

col2int, 70

[e BN e RN e ENe]

91

col_bitmap (plot.bm_matrix), 78

farming_crops_16x16, 71

farver, 70, 79

format.bm_bitmap (print.bm_bitmap), 80
format.bm_bitmap(), 15, 50, 51
format.bm_pixmap (print.bm_pixmap), 82
format.bm_pixmap(), 50, 51

grDevices::as.raster(), 3, 5, 79
grDevices::col2rgb(), 69
grDevices::is.raster(), 76
grDevices::png(), 9, 14
grDevices::rgh(), 69

grepl, 72
grid::grid.locator(), 49
grid::grid.raster(), 78, 79
grid::rasterGrob(), 79
grid::viewport(), 57

hex2ucp, 72
hex2ucp(), 31, 88

int2col (col2int), 70

int2ucp (hex2ucp), 72
int2ucp(), 88

is_bm_bitmap, 73
is_bm_bitmap(), 16, 76
is_bm_font, 74

is_bm_font(), 31

is_bm_list, 75

is_bm_list(), 36
is_bm_pixmap, 75
is_bm_pixmap(), 14, 50, 76
is_combining_character (ucp2label), 88
is_combining_character(), 18, 73
is_supported_bitmap, 76

is_ucp (hex2ucp), 72

11en_info(), 51, 81, 83

magick-image, I8, 20, 22, 24, 27, 30, 32, 35,
41,44, 46, 53, 55, 56, 61, 63, 66

magick::filter_types(), 20, 22

magick: :image_resize(), 20-22

mazing::find_maze_refpoint(), 9, 14

mazing: :solve_maze(), 9, 14

name2ucp (hex2ucp), 72
name2ucp(), 88

92

Ops.bm_bitmap, 77
Ops.bm_bitmap(), 15

Ops.bm_list (Ops.bm_bitmap), 77
Ops.bm_pixmap (Ops.bm_bitmap), 77
options(), 40

plot.bm_bitmap (plot.bm_matrix), 78
plot.bm_bitmap(), 15, 50
plot.bm_matrix, 78

plot.bm_pixmap (plot.bm_matrix), 78
png::writePNG(), 3
print.bm_bitmap, 80
print.bm_bitmap(), 15
print.bm_pixmap, 82
print.bm_pixmap(), 50

px_ascii (print.bm_bitmap), 80
px_auto (print.bm_bitmap), 80
px_unicode (print.bm_bitmap), 80

ragg::agg_png(), 9, 14

range2ucp (hex2ucp), 72

range2ucp(), 88

raster, 18, 20, 22, 24, 27, 30, 32, 35, 41, 44,
46,49, 53, 55, 56, 61, 63, 66

rbind.bm_bitmap (cbind.bm_bitmap), 68

rbind.bm_bitmap(), 15

rbind.bm_pixmap (cbind.bm_bitmap), 68

read_hex, 84

read_hex(), 86

read_monobit, 85

read_yaff, 86

read_yaff(), 86

str2ucp (hex2ucp), 72
str2ucp(), 88
Summary.bm_list, 87

ucp2label, 88

ucp2label (), 73

ucp_sort (ucp2label), 88
Unicode::as.u_char(), 31,72
Unicode: :as.u_char_range(), 72
Unicode: :u_blocks(), 72
Unicode: :u_char_from_name(), 72
utils::file.edit(), 23

withr::local_options(), 40
withr::with_options(), 40
write_hex (read_hex), 84

write_hex(), 86

write_monobit (read_monobit), 85
write_yaff (read_yaff), 86
write_yaff(), 86

INDEX

	as.array.bm_bitmap
	as.data.frame.bm_bitmap
	as.matrix.bm_matrix
	as_bm_bitmap
	as_bm_font
	as_bm_list
	as_bm_pixmap
	bm_bitmap
	bm_call
	bm_clamp
	bm_compose
	bm_compress
	bm_distort
	bm_edit
	bm_expand
	bm_extend
	bm_extract
	bm_flip
	bm_font
	bm_gray
	bm_heights
	bm_invert
	bm_lapply
	bm_list
	bm_mask
	bm_options
	bm_outline
	bm_overlay
	bm_pad
	bm_padding_lengths
	bm_pixel_picker
	bm_pixmap
	bm_print
	bm_replace
	bm_resize
	bm_rotate
	bm_shadow
	bm_shift
	bm_trim
	c.bm_bitmap
	cbind.bm_bitmap
	col2hex
	col2int
	farming_crops_16x16
	hex2ucp
	is_bm_bitmap
	is_bm_font
	is_bm_list
	is_bm_pixmap
	is_supported_bitmap
	Ops.bm_bitmap
	plot.bm_matrix
	print.bm_bitmap
	print.bm_pixmap
	read_hex
	read_monobit
	read_yaff
	Summary.bm_list
	ucp2label
	[.bm_matrix
	Index

