Package ‘btml’

February 2, 2026
Type Package
Title Bayesian Treed Machine Learning for Personalized Prediction
Version 0.2.0
Date 2026-02-01

Description Generalization of the Bayesian classification and regression tree (CART) model that par-
titions subjects into terminal nodes and tailors machine learning model to each terminal node.

License GPL (>=2)

Depends R (>=4.5.0), glmnet, randomForest, e1071, pROC, stats,
graphics

NeedsCompilation no

Author Yunro Chung [aut, cre] (ORCID: <https://orcid.org/0000-0001-9125-9277>),
Yaliang Zhang [aut]

Maintainer Yunro Chung <yunro.chung@asu.edu>
Repository CRAN
Date/Publication 2026-02-02 06:20:02 UTC

Contents
btml . . . 1
Index 6
btml Bayeisan Treed Machine Learning
Description

Generalized Bayesian classification and tree (BCART) model that assigns the most effective pre-
dictive model to each terminal node.

https://orcid.org/0000-0001-9125-9277

2 btml

Usage

btml(y,x,z,ynew,xnew,znew,ML1ist, sparse,nwarm,niter,minsample,base,power)

Arguments

y Response vector. If y is a factor codied as O or 1, classification is assumed.
Otherwise, regression is assumed.

X Data.frame or matrix that estimates a decision-tree structure.

z Data.frame or matrix that predicts y in terminal nodes, i.e. terminal-node-
specific ML models.

ynew Response vector for the test set corresponding to y (default ynew=NULL).

xnew Data.frame or matrix for the test set corresponding to x (default xnew=NULL).

znew Data.frame or matrix for the test set corresponding to z (default znew=NULL).

ML1ist Candidate predictive models models that can be assigned to each terminal node
(default MLlist=c("lasso","rf","svm")). Any other ML models can be included.
See the details below.

sparse Whether to perform variable and ML model selections based on a sparse Dirich-
let prior rather than simply uniform (default sparse=TRUE).

nwarm Number of warm-up (default nwarm=20000).

niter Number of iteration (defaut niter=20000).

minsample The number of minimum sample size per each node, i.e., length(y)>min_sample
if y is continuous; and min(length(y==1),length(y==0))>min_sample if y is bi-
nary. (default min_sample=20).

base Base parameter for tree prior (default base=0.95).

power Power parameter for tree prior (default power=0.8).

Details

The tgml function uses a stochastic search to identify the optimal decision-tree based rule that
partitions subjects into distinct terminal nodes and assigns the most effective predictive model to
each terminal node.

Ideally, two sets of predictors are used: x and z, where X is used to construct tree splits, and z is
used to fit the predictive models within each terminal node. If this separation is not possible, the
same predictors can be used to predict y based on x, e.g.,

btml(y=y, X=X, Z=X, y=ynew, Xx=Xnew, Z=xnew)

In terms of node numbering, an internal node s has left and right child nodes 2*s and 2*s+1, respec-
tively. Node 1 is the root node; nodes 2 and 3 are left and right child nodes of node 1; nodes 4 and
5 are left and right nodes of node 2; and so on.

As a default setting, one of the three predictive models in the MLIist is assigned to each ter-
minal node: lasso(), randomForest(), and svm(....kernel="radial") functions from the R packages
cv.glmnet, randomForest, and e1071, respectively. Additional models can be flexibly incorporated;
see Example 3 below for an illustration.

btml 3

Value

An object of class btml, which is a list with the following components:

terminal Node numbers in terminal nodes.

internal Node numbers in internal nodes.

splitVariable Variable (i.e., x[,u] if splitVariable[k]=u) used to split the internal node k.

cutoff cutoff[k] is the cutoff value to split the internal node k.

selML ML model assigned to the terminal node t.

fitML fitML[[t]] is the fitted ML model at the terminal node t € terminal.

y.hat Estimated y (or estimated probability) on the training set if y is continuous (or
binary).

node.hat Estimated node on the training set.

mse Training MSE.

bs Training Brier Score.

roc Training ROC curve.

auc Training AUC.

y.hat.new Estimated y (or estimated probability) on the test set if y is continuous (or bi-

node.hat.new

nary).

Estimated node on the test set.

mse.new Test MSE.

bs.new Test Brier Score.

roc.new Test ROC curve.

auc.new Test AUC.
Author(s)

Yaliang Zhang [aut], Yunro Chung [aut, cre]

References

Yaliang Zhang and Yunro Chung, Bayesian treed machine learning model (in preperation)

Examples

set.seed(9)

H#HH#

#1. continuous y

fizizid

n=200*2 #n=200 & 200 for training & test sets

x=matrix(rnorm(n*4),n,4)
z=matrix(rnorm(n*4),n,4)

xcut=median(x[,1])
subgr=1*(x[, 1]<xcut)+2*(x[,1]>=xcut) #2 subgroups

1p=rep(NA,n)
for(i in 1:n){
if(x[i,11<0){
1p[il=1+3*z[i,1]
Yelse{
1p[i]=1+3*z[1i,2]
}

3
y=lp+rnorm(n,@,1)

idx.nex=sample(1:n,n*1/2,replace=FALSE)
ynew=y[idx.nex]
xnew=x[idx.nex,]
znew=z[idx.nex,]

y=y[-idx.nex]
x=x[-idx.nex,]
z=z[-idx.nex,]

fit1=btml(y,x,z,ynew=ynew, xnew=xnew, znew=znew, nwarm=1000,niter=1000)
fit1$mse.new

plot(fit1$y.hat.new~ynew,ylab="Predicted y",xlab="ynew")
abline(a=0,b=1,1wd=2,col="darkgray")

it

#2. binary y

fiziz:d
x=matrix(rnorm(n*4),n,4)
z=matrix(rnorm(n*4),n,4)

1p=rep(NA,n)
for(i in 1:n){
if(x[i,11<0){
1p[il=1+3*z[i,1]
Yelse{
1p[i]=1+3*z[i,2]
}
3
prob=1/(1+exp(-1p))
y=rbinom(n, 1, prob)
y=as.factor(y)

idx.nex=sample(1:n,n*1/2,replace=FALSE)
ynew=y[idx.nex]
xnew=x[idx.nex,]
znew=z[idx.nex,]

y=y[-idx.nex]
x=x[-idx.nex,]

z=z[-idx.nex,]

fit2=btml(y, x,z, ynew=ynew, xnew=xnew, znew=znew, nwarm=1000,niter=1000)

btml

btml 5

fit2%auc.new
plot(fit2$roc.new)

fizizid
#3. add new ML models
1) write two functions:
c_xx & c_xx_predict if y is continuous or
b_xx & b_xx.predict if y is binary
2) MLlist includes xx, not c.xx nor b.xx.
3) run btml using the updated MLlist.
The below is an example of adding ridge regression.

od o

H#HHHH
#3.1. ridge regression for continuous y.
c_ridge=function(y,x){
x=data.matrix(x)
fit=NULL
suppressWarnings(try(fit<-glmnet::cv.glmnet(x,y,alpha=0),silent=TRUE))
return(fit)
}
c_ridge_predict=function(fit,xnew){
y.hat=rep(NA, nrow(xnew))
if(lis.null(fit)){
xnew=data.matrix(xnew)
y.hat=as.numeric(predict(fit,newx=xnew,s="lambda.min”,type="response”))
}
return(y.hat)
3

#3.2. ridge regression for binary y.
b_ridge=function(y,x){
x=data.matrix(x)
fit=NULL
suppressWarnings(try(fit<-glmnet::cv.glmnet(x,y,alpha=1,family="binomial”),silent=TRUE))
return(fit)
3
b_ridge_predict=function(fit,xnew){
y.hat=rep(NA, nrow(xnew))
if(tis.null(fit)){
xnew=data.matrix(xnew)
y.hat=as.numeric(predict(fit,newx=xnew,s="lambda.min”, type="response”))
}
return(y.hat)
3

#3.3. update MLlist

ML1list=c("lasso","ridge")

fit3=btml(y, x,z,ynew=ynew, xnew=xnew, znew=znew,ML1ist=ML1list,nwarm=1000,niter=1000)
fit3%auc.new

plot(fit3$roc.new)

Index

btml, 1

	btml
	Index

