
Package ‘btml’
February 2, 2026

Type Package

Title Bayesian Treed Machine Learning for Personalized Prediction

Version 0.2.0

Date 2026-02-01

Description Generalization of the Bayesian classification and regression tree (CART) model that par-
titions subjects into terminal nodes and tailors machine learning model to each terminal node.

License GPL (>= 2)

Depends R (>= 4.5.0), glmnet, randomForest, e1071, pROC, stats,
graphics

NeedsCompilation no

Author Yunro Chung [aut, cre] (ORCID: <https://orcid.org/0000-0001-9125-9277>),
Yaliang Zhang [aut]

Maintainer Yunro Chung <yunro.chung@asu.edu>

Repository CRAN

Date/Publication 2026-02-02 06:20:02 UTC

Contents
btml . 1

Index 6

btml Bayeisan Treed Machine Learning

Description

Generalized Bayesian classification and tree (BCART) model that assigns the most effective pre-
dictive model to each terminal node.

1

https://orcid.org/0000-0001-9125-9277

2 btml

Usage

btml(y,x,z,ynew,xnew,znew,MLlist,sparse,nwarm,niter,minsample,base,power)

Arguments

y Response vector. If y is a factor codied as 0 or 1, classification is assumed.
Otherwise, regression is assumed.

x Data.frame or matrix that estimates a decision-tree structure.

z Data.frame or matrix that predicts y in terminal nodes, i.e. terminal-node-
specific ML models.

ynew Response vector for the test set corresponding to y (default ynew=NULL).

xnew Data.frame or matrix for the test set corresponding to x (default xnew=NULL).

znew Data.frame or matrix for the test set corresponding to z (default znew=NULL).

MLlist Candidate predictive models models that can be assigned to each terminal node
(default MLlist=c("lasso","rf","svm")). Any other ML models can be included.
See the details below.

sparse Whether to perform variable and ML model selections based on a sparse Dirich-
let prior rather than simply uniform (default sparse=TRUE).

nwarm Number of warm-up (default nwarm=20000).

niter Number of iteration (defaut niter=20000).

minsample The number of minimum sample size per each node, i.e., length(y)>min_sample
if y is continuous; and min(length(y==1),length(y==0))>min_sample if y is bi-
nary. (default min_sample=20).

base Base parameter for tree prior (default base=0.95).

power Power parameter for tree prior (default power=0.8).

Details

The tgml function uses a stochastic search to identify the optimal decision-tree based rule that
partitions subjects into distinct terminal nodes and assigns the most effective predictive model to
each terminal node.

Ideally, two sets of predictors are used: x and z, where x is used to construct tree splits, and z is
used to fit the predictive models within each terminal node. If this separation is not possible, the
same predictors can be used to predict y based on x, e.g.,

btml(y=y, x=x, z=x, y=ynew, x=xnew, z=xnew)

In terms of node numbering, an internal node s has left and right child nodes 2*s and 2*s+1, respec-
tively. Node 1 is the root node; nodes 2 and 3 are left and right child nodes of node 1; nodes 4 and
5 are left and right nodes of node 2; and so on.

As a default setting, one of the three predictive models in the MLlist is assigned to each ter-
minal node: lasso(), randomForest(), and svm(...,kernel="radial") functions from the R packages
cv.glmnet, randomForest, and e1071, respectively. Additional models can be flexibly incorporated;
see Example 3 below for an illustration.

btml 3

Value

An object of class btml, which is a list with the following components:

terminal Node numbers in terminal nodes.

internal Node numbers in internal nodes.

splitVariable Variable (i.e., x[,u] if splitVariable[k]=u) used to split the internal node k.

cutoff cutoff[k] is the cutoff value to split the internal node k.

selML ML model assigned to the terminal node t.

fitML fitML[[t]] is the fitted ML model at the terminal node t ∈ terminal.

y.hat Estimated y (or estimated probability) on the training set if y is continuous (or
binary).

node.hat Estimated node on the training set.

mse Training MSE.

bs Training Brier Score.

roc Training ROC curve.

auc Training AUC.

y.hat.new Estimated y (or estimated probability) on the test set if y is continuous (or bi-
nary).

node.hat.new Estimated node on the test set.

mse.new Test MSE.

bs.new Test Brier Score.

roc.new Test ROC curve.

auc.new Test AUC.

Author(s)

Yaliang Zhang [aut], Yunro Chung [aut, cre]

References

Yaliang Zhang and Yunro Chung, Bayesian treed machine learning model (in preperation)

Examples

set.seed(9)
###
#1. continuous y
###
n=200*2 #n=200 & 200 for training & test sets

x=matrix(rnorm(n*4),n,4)
z=matrix(rnorm(n*4),n,4)

xcut=median(x[,1])
subgr=1*(x[,1]<xcut)+2*(x[,1]>=xcut) #2 subgroups

4 btml

lp=rep(NA,n)
for(i in 1:n){

if(x[i,1]<0){
lp[i]=1+3*z[i,1]

}else{
lp[i]=1+3*z[i,2]

}
}
y=lp+rnorm(n,0,1)

idx.nex=sample(1:n,n*1/2,replace=FALSE)
ynew=y[idx.nex]
xnew=x[idx.nex,]
znew=z[idx.nex,]

y=y[-idx.nex]
x=x[-idx.nex,]
z=z[-idx.nex,]

fit1=btml(y,x,z,ynew=ynew,xnew=xnew,znew=znew,nwarm=1000,niter=1000)
fit1$mse.new
plot(fit1$y.hat.new~ynew,ylab="Predicted y",xlab="ynew")
abline(a=0,b=1,lwd=2,col="darkgray")

###
#2. binary y
###
x=matrix(rnorm(n*4),n,4)
z=matrix(rnorm(n*4),n,4)

lp=rep(NA,n)
for(i in 1:n){

if(x[i,1]<0){
lp[i]=1+3*z[i,1]

}else{
lp[i]=1+3*z[i,2]

}
}
prob=1/(1+exp(-lp))
y=rbinom(n,1,prob)
y=as.factor(y)

idx.nex=sample(1:n,n*1/2,replace=FALSE)
ynew=y[idx.nex]
xnew=x[idx.nex,]
znew=z[idx.nex,]

y=y[-idx.nex]
x=x[-idx.nex,]
z=z[-idx.nex,]

fit2=btml(y,x,z,ynew=ynew,xnew=xnew,znew=znew,nwarm=1000,niter=1000)

btml 5

fit2$auc.new
plot(fit2$roc.new)

###
#3. add new ML models
1) write two functions:
c_xx & c_xx_predict if y is continuous or
b_xx & b_xx.predict if y is binary
2) MLlist includes xx, not c.xx nor b.xx.
3) run btml using the updated MLlist.
The below is an example of adding ridge regression.
###
#3.1. ridge regression for continuous y.
c_ridge=function(y,x){

x=data.matrix(x)
fit=NULL
suppressWarnings(try(fit<-glmnet::cv.glmnet(x,y,alpha=0),silent=TRUE))
return(fit)

}
c_ridge_predict=function(fit,xnew){

y.hat=rep(NA,nrow(xnew))
if(!is.null(fit)){
xnew=data.matrix(xnew)
y.hat=as.numeric(predict(fit,newx=xnew,s="lambda.min",type="response"))

}
return(y.hat)

}

#3.2. ridge regression for binary y.
b_ridge=function(y,x){

x=data.matrix(x)
fit=NULL
suppressWarnings(try(fit<-glmnet::cv.glmnet(x,y,alpha=1,family="binomial"),silent=TRUE))
return(fit)

}
b_ridge_predict=function(fit,xnew){

y.hat=rep(NA,nrow(xnew))
if(!is.null(fit)){

xnew=data.matrix(xnew)
y.hat=as.numeric(predict(fit,newx=xnew,s="lambda.min",type="response"))

}
return(y.hat)

}

#3.3. update MLlist
MLlist=c("lasso","ridge")
fit3=btml(y,x,z,ynew=ynew,xnew=xnew,znew=znew,MLlist=MLlist,nwarm=1000,niter=1000)
fit3$auc.new
plot(fit3$roc.new)

Index

btml, 1

6

	btml
	Index

