
Package ‘crmPack’
January 30, 2026

Title Object-Oriented Implementation of Dose Escalation Designs

Version 2.1.0

Description Implements a wide range of dose escalation
designs. The focus is on model-based designs, ranging from classical and
modern continual reassessment methods (CRMs) based on dose-limiting toxicity
endpoints to dual-endpoint designs taking into account a biomarker/efficacy
outcome. Bayesian inference is performed via MCMC sampling in JAGS, and it is easy
to setup a new design with custom JAGS code. However, it is also possible to
implement 3+3 designs for comparison or models with non-Bayesian estimation.
The whole package is written in a modular form in the S4 class system, making it
very flexible for adaptation to new models, escalation or stopping rules.
Further details are presented in
Sabanés Bové et al. (2019) <doi:10.18637/jss.v089.i10>.

License GPL (>= 2)

URL https://github.com/openpharma/crmPack,

https://openpharma.github.io/crmPack/

BugReports https://github.com/openpharma/crmPack/issues

Depends ggplot2 (>= 3.0.0), graphics, R (>= 4.1.0)

Imports checkmate (>= 2.2.0), dplyr, futile.logger, GenSA, gridExtra,
kableExtra, knitr, lifecycle, magrittr, methods, mvtnorm,
parallel, parallelly, Rdpack, rjags, rlang, survival, tibble,
tidyselect (>= 1.2.0), tools, utils

Suggests bookdown, broom, covr, data.tree, DiagrammeR, ggmcmc, quarto
(>= 1.4), rmarkdown, stringr, testthat (>= 3.0.0), tidyr,
vdiffr, withr

VignetteBuilder knitr, quarto

Config/testthat/edition 3

Encoding UTF-8

Language en-US

LazyLoad yes

RoxygenNote 7.3.3

1

https://doi.org/10.18637/jss.v089.i10
https://github.com/openpharma/crmPack
https://openpharma.github.io/crmPack/
https://github.com/openpharma/crmPack/issues

2

RdMacros Rdpack

Collate 'Backfill-validity.R' 'CrmPackClass-class.R'
'Rules-validity.R' 'helpers.R' 'Rules-class.R'
'Backfill-class.R' 'Backfill-methods.R'
'CrmPackClass-methods.R' 'Data-validity.R' 'Data-class.R'
'helpers_data.R' 'Data-methods.R' 'ModelParams-validity.R'
'ModelParams-class.R' 'Model-validity.R' 'helpers_jags.R'
'Model-class.R' 'Design-validity.R' 'Design-class.R'
'McmcOptions-validity.R' 'McmcOptions-class.R'
'McmcOptions-methods.R' 'Samples-validity.R' 'Samples-class.R'
'logger.R' 'helpers_covr.R' 'mcmc.R' 'Simulations-validity.R'
'Simulations-class.R' 'helpers_broom.R' 'helpers_rules.R'
'Model-methods.R' 'checkmate.R' 'Rules-methods.R'
'Design-methods.R' 'fromQuantiles.R' 'Samples-methods.R'
'Simulations-methods.R' 'crmPack-package.R'
'helpers_backfill.R' 'helpers_design.R' 'helpers_knitr.R'
'helpers_knitr_Backfill.R' 'helpers_knitr_CohortSize.R'
'helpers_knitr_Design.R' 'helpers_knitr_GeneralData.R'
'helpers_knitr_GeneralModel.R' 'helpers_knitr_Increments.R'
'helpers_knitr_NextBest.R' 'helpers_knitr_Opening.R'
'helpers_knitr_Recruitment.R' 'helpers_knitr_SafetyWindow.R'
'helpers_knitr_Stopping.R' 'helpers_model.R'
'helpers_samples.R' 'helpers_simulations.R' 'utils-pipe.R'
'utils.R'

NeedsCompilation no

Author Daniel Sabanés Bové [aut, cre] (ORCID:
<https://orcid.org/0000-0002-0176-9239>),

Wai Yin Yeung [aut],
Burak Kuersad Guenhan [aut],
Giuseppe Palermo [aut],
Thomas Jaki [aut],
Jiawen Zhu [aut],
Ziwei Liao [aut],
Dimitris Kontos [aut],
Marlene Schulte-Goebel [aut],
Doug Kelkhoff [aut] (ORCID: <https://orcid.org/0009-0003-7845-4061>),
Oliver Boix [aut],
Robert Adams [aut],
Clara Beck [aut],
John Kirkpatrick [aut],
Wojciech Wójciak [aut],
Guanya Peng [aut],
Prerana Chandratre [aut],
F. Hoffmann-La Roche AG [cph, fnd],
Merck Healthcare KGaA [cph, fnd],
Bayer AG [cph, fnd],
RPACT GmbH [cph, fnd]

https://orcid.org/0000-0002-0176-9239
https://orcid.org/0009-0003-7845-4061

Contents 3

Maintainer Daniel Sabanés Bové <daniel.sabanes_bove@rconis.com>

Repository CRAN

Date/Publication 2026-01-30 10:20:09 UTC

Contents
.DefaultCohortSize . 9
and,Opening,Opening-method . 10
approximate . 10
assertions . 12
Backfill-class . 13
biomarker . 14
check_equal . 16
check_format . 18
check_length . 19
check_probabilities . 20
check_probability . 22
check_probability_range . 23
check_range . 25
CohortSizeConst-class . 27
CohortSizeDLT-class . 28
CohortSizeMax-class . 29
CohortSizeMin-class . 30
CohortSizeOrdinal-class . 31
CohortSizeParts-class . 32
CohortSizeRandom-class . 32
CohortSizeRange-class . 33
crmPack . 34
CrmPackClass-class . 35
crmPackExample . 35
crmPackHelp . 36
DADesign-class . 36
DALogisticLogNormal-class . 39
dapply . 40
DASimulations-class . 42
Data-class . 42
DataDA-class . 44
DataDual-class . 46
DataGrouped-class . 47
DataMixture-class . 48
DataOrdinal-class . 49
DataParts-class . 50
Design-class . 51
DesignGrouped-class . 54
DesignOrdinal-class . 57
dose . 59
doseFunction . 64

4 Contents

dose_grid_range . 65
DualDesign-class . 67
DualEndpoint-class . 69
DualEndpointBeta-class . 71
DualEndpointEmax-class . 73
DualEndpointRW-class . 74
DualResponsesDesign-class . 76
DualResponsesSamplesDesign-class . 77
DualSimulations-class . 79
DualSimulationsSummary-class . 81
EffFlexi-class . 82
efficacy . 85
efficacyFunction . 87
Effloglog-class . 88
enable_logging . 91
examine . 92
fit . 98
fitGain . 104
fitPEM . 106
FractionalCRM-class . 109
gain . 110
GeneralData-class . 112
GeneralModel-class . 113
GeneralSimulations-class . 114
GeneralSimulationsSummary-class . 115
get,Samples,character-method . 117
getEff . 118
h_all_equivalent . 119
h_blind_plot_data . 119
h_calc_report_label_percentage . 120
h_check_fun_formals . 121
h_convert_ordinal_data . 121
h_convert_ordinal_model . 122
h_convert_ordinal_samples . 123
h_default_if_empty . 123
h_find_interval . 124
h_format_number . 125
h_info_theory_dist . 126
h_in_range . 126
h_is_positive_definite . 127
h_jags_add_dummy . 128
h_jags_extract_samples . 129
h_jags_get_data . 130
h_jags_get_model_inits . 131
h_jags_join_models . 132
h_jags_write_model . 132
h_model_dual_endpoint_beta . 133
h_model_dual_endpoint_rho . 134

Contents 5

h_model_dual_endpoint_sigma2betaw . 135
h_model_dual_endpoint_sigma2w . 136
h_next_best_eligible_doses . 137
h_next_best_mgsamples_plot . 138
h_next_best_mg_ci . 139
h_next_best_mg_doses_at_grid . 140
h_next_best_mg_plot . 141
h_next_best_ncrm_loss_plot . 142
h_next_best_tdsamples_plot . 143
h_next_best_td_plot . 144
h_null_if_na . 145
h_obtain_dose_grid_range . 146
h_plot_data_cohort_lines . 146
h_plot_data_dataordinal . 147
h_plot_data_df . 150
h_rapply . 151
h_slots . 152
h_summarize_add_stats . 153
h_test_named_numeric . 153
h_unpack_stopit . 155
h_validate_combine_results . 155
h_validate_common_data_slots . 156
Increments-class . 156
IncrementsDoseLevels-class . 157
IncrementsHSRBeta-class . 158
IncrementsMaxToxProb-class . 159
IncrementsMin-class . 160
IncrementsOrdinal-class . 161
IncrementsRelative-class . 162
IncrementsRelativeDLT-class . 163
IncrementsRelativeDLTCurrent-class . 164
IncrementsRelativeParts-class . 165
knit_print.Backfill . 166
LogisticIndepBeta-class . 186
LogisticKadane-class . 189
LogisticKadaneBetaGamma-class . 190
LogisticLogNormal-class . 193
LogisticLogNormalGrouped-class . 194
LogisticLogNormalMixture-class . 195
LogisticLogNormalOrdinal-class . 197
LogisticLogNormalSub-class . 198
LogisticNormal-class . 199
LogisticNormalFixedMixture-class . 200
LogisticNormalMixture-class . 202
logit . 204
match_within_tolerance . 204
maxDose . 205
maxRecruits . 211

6 Contents

maxSize . 212
mcmc . 213
McmcOptions-class . 219
MinimalInformative . 221
minSize . 223
ModelEff-class . 224
ModelLogNormal-class . 225
ModelParamsNormal-class . 226
ModelPseudo-class . 227
ModelTox-class . 227
names,Samples-method . 228
nextBest . 229
NextBest-class . 246
NextBestDualEndpoint-class . 246
NextBestEWOC-class . 248
NextBestInfTheory-class . 250
NextBestMaxGain-class . 250
NextBestMaxGainSamples-class . 252
NextBestMinDist-class . 253
NextBestMTD-class . 254
NextBestNCRM-class . 255
NextBestNCRMLoss-class . 256
NextBestOrdinal-class . 258
NextBestProbMTDLTE-class . 259
NextBestProbMTDMinDist-class . 260
NextBestTD-class . 261
NextBestTDsamples-class . 262
NextBestThreePlusThree-class . 263
ngrid . 263
OneParExpPrior-class . 264
OneParLogNormalPrior-class . 265
openCohort . 266
Opening-class . 270
OpeningAll-class . 271
OpeningAny-class . 272
OpeningList-class . 273
OpeningMinCohorts-class . 274
OpeningMinDose-class . 274
OpeningMinResponses-class . 275
OpeningNone-class . 276
or,Opening,Opening-method . 277
or-Stopping-Stopping . 278
or-Stopping-StoppingAny . 278
or-StoppingAny-Stopping . 279
plot,Data,ModelTox-method . 280
plot,DataDA,missing-method . 281
plot,DataDual,missing-method . 282
plot,DataDual,ModelEff-method . 283

Contents 7

plot,DualSimulations,missing-method . 284
plot,DualSimulationsSummary,missing-method . 289
plot,GeneralSimulations,missing-method . 292
plot,GeneralSimulationsSummary,missing-method . 295
plot,PseudoDualFlexiSimulations,missing-method . 296
plot,PseudoDualSimulations,missing-method . 298
plot,PseudoDualSimulationsSummary,missing-method 302
plot,PseudoSimulationsSummary,missing-method . 306
plot,Samples,DALogisticLogNormal-method . 309
plot,Samples,DualEndpoint-method . 310
plot,Samples,GeneralModel-method . 311
plot,Samples,ModelEff-method . 313
plot,Samples,ModelTox-method . 314
plot,SimulationsSummary,missing-method . 316
plot.gtable . 318
plotDualResponses . 319
plotGain . 321
positive_number . 324
prob . 324
probFunction . 328
probit . 330
ProbitLogNormal-class . 330
ProbitLogNormalRel-class . 332
PseudoDualFlexiSimulations-class . 333
PseudoDualSimulations-class . 334
PseudoDualSimulationsSummary-class . 335
PseudoSimulations-class . 336
PseudoSimulationsSummary-class . 338
Quantiles2LogisticNormal . 340
Recruitment-class . 342
RecruitmentRatio-class . 342
RecruitmentUnlimited-class . 343
RuleDesign-class . 344
RuleDesignOrdinal-class . 345
SafetyWindow-class . 347
SafetyWindowConst-class . 347
SafetyWindowSize-class . 348
Samples-class . 349
saveSample . 351
set_seed . 352
show,DualSimulationsSummary-method . 352
show,GeneralSimulations-method . 355
show,GeneralSimulationsSummary-method . 355
show,PseudoDualSimulationsSummary-method . 356
show,PseudoSimulationsSummary-method . 359
show,SimulationsSummary-method . 361
simulate,DADesign-method . 364
simulate,Design-method . 367

8 Contents

simulate,DesignGrouped-method . 371
simulate,DualDesign-method . 374
simulate,DualResponsesDesign-method . 377
simulate,DualResponsesSamplesDesign-method . 380
simulate,RuleDesign-method . 385
simulate,TDDesign-method . 387
simulate,TDsamplesDesign-method . 389
Simulations-class . 392
SimulationsSummary-class . 394
size . 395
Stopping-class . 404
StoppingAll-class . 405
StoppingAny-class . 406
StoppingCohortsNearDose-class . 407
StoppingExternal-class . 408
StoppingHighestDose-class . 409
StoppingList-class . 410
StoppingLowestDoseHSRBeta-class . 411
StoppingMaxGainCIRatio-class . 412
StoppingMinCohorts-class . 413
StoppingMinPatients-class . 414
StoppingMissingDose-class . 415
StoppingMTDCV-class . 416
StoppingMTDdistribution-class . 417
StoppingOrdinal-class . 418
StoppingPatientsNearDose-class . 419
StoppingSpecificDose-class . 420
StoppingTargetBiomarker-class . 421
StoppingTargetProb-class . 422
StoppingTDCIRatio-class . 423
stopTrial . 424
subset-Data . 453
summary,DualSimulations-method . 453
summary,GeneralSimulations-method . 456
summary,PseudoDualFlexiSimulations-method . 457
summary,PseudoDualSimulations-method . 459
summary,PseudoSimulations-method . 463
summary,Simulations-method . 466
TDDesign-class . 468
TDsamplesDesign-class . 470
tidy . 472
TITELogisticLogNormal-class . 477
update,Data-method . 479
update,DataDA-method . 480
update,DataDual-method . 482
update,DataOrdinal-method . 483
update,DataParts-method . 484
update,ModelPseudo-method . 485

.DefaultCohortSize 9

Validate . 487
v_backfill . 487
v_cohort_size . 488
v_data_objects . 489
v_design . 490
v_general_simulations . 491
v_increments . 492
v_mcmcoptions_objects . 493
v_model_objects . 494
v_model_params . 496
v_next_best . 496
v_opening . 498
v_pseudo_simulations . 499
v_recruitment . 500
v_safety_window . 500
v_samples_objects . 501
v_stopping . 502
windowLength . 503
&,Stopping,Stopping-method . 507
&,Stopping,StoppingAll-method . 508
&,StoppingAll,Stopping-method . 508

Index 510

.DefaultCohortSize CohortSize

Description

[Stable]
CohortSize is a class for cohort sizes.

Usage

.DefaultCohortSize()

.DefaultCohortSize()

Note

Typically, end users will not use the DefaultCohortSize() function.

Typically, end users will not use the DefaultCohortSize() function.

See Also

CohortSizeRange, CohortSizeDLT, CohortSizeConst, CohortSizeParts, CohortSizeMin, CohortSizeMin.

10 approximate

and,Opening,Opening-method

Logical AND Operator for Opening Objects

Description

[Experimental]
Combines two Opening objects with AND logic using the & operator. This creates an OpeningAll
object.

Usage

S4 method for signature 'Opening,Opening'
e1 & e2

Arguments

e1 (Opening) the first opening object.

e2 (Opening) the second opening object.

Value

An OpeningAll object combining e1 and e2.

See Also

OpeningAll for more details.

approximate Approximate posterior with (log) normal distribution

Description

To reproduce the resultant approximate model in the future exactly, include seed = xxxx in the call
to approximate.

Usage

approximate(object, model, data, ...)

S4 method for signature 'Samples'
approximate(
object,
model,
data,

approximate 11

points = seq(from = min(data@doseGrid), to = max(data@doseGrid), length = 5L),
refDose = median(points),
logNormal = FALSE,
verbose = TRUE,
create_plot = TRUE,
...

)

Arguments

object the Samples object

model the GeneralModel object

data the Data object

... additional arguments (see methods)

points optional parameter, which gives the dose values at which the approximation
should rely on (default: 5 values equally spaced from minimum to maximum of
the dose grid)

refDose the reference dose to be used (default: median of points)

logNormal use the log-normal prior? (not default) otherwise, the normal prior for the logis-
tic regression coefficients is used

verbose be verbose (progress statements)? (default)

create_plot add a ggplot2 object to the return value (default)

Value

a list containing the approximation model and, if requested, a ggplot2 object containing a graph-
ical representation of the fitted model

Functions

• approximate(Samples): Here the . . . argument can transport additional arguments for Quantiles2LogisticNormal,
e.g. in order to control the approximation quality, etc.

Examples

nolint start

Create some data
data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(
0.1,
0.5,
1.5,
3,
6,

12 assertions

seq(from = 10, to = 80, by = 2)
)

)

Initialize a model
model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Get posterior for all model parameters
options <- McmcOptions(

burnin = 100,
step = 2,
samples = 2000

)
set.seed(94)
samples <- mcmc(data, model, options)

Approximate the posterior distribution with a bivariate normal
max.time and maxit are very small only for the purpose of showing the example. They
should be increased for a real case.
set.seed(94)
approximation <- approximate(

object = samples,
model = model,
data = data,
logNormal = TRUE,
control = list(

threshold.stop = 0.1,
max.time = 1,
maxit = 1

)
)

posterior <- approximation$model

nolint end

assertions Additional Assertions for checkmate

Description

[Experimental]

We provide additional assertion functions that can be used together with the checkmate functions.
These are described in individual help pages linked below.

Backfill-class 13

Value

Depending on the function prefix.

• assert_ functions return the object invisibly if successful, and otherwise throw an error mes-
sage.

• check_ functions return TRUE if successful, otherwise a string with the error message.

• test_ functions just return TRUE or FALSE.

See Also

assert_probabilities(), assert_probability(), assert_probability_range(), assert_length().

Backfill-class Backfill class

Description

[Experimental]

Class representing a backfilling rule in a clinical trial design.

Usage

Backfill(
cohort_size = CohortSizeConst(size = 3),
opening = OpeningMinDose(),
recruitment = RecruitmentUnlimited(),
max_size = 1000000L,
priority = c("highest", "lowest", "random")

)

.DefaultBackfill()

Arguments

cohort_size (CohortSize)
see the slot definition.

opening (Opening)
see the slot definition.

recruitment (Recruitment)
see the slot definition.

max_size (count)
see the slot definition.

priority (character)
see the slot definition.

14 biomarker

Value

An object of class Backfill.

Slots

cohort_size (CohortSize)
the size of cohorts to be backfilled.

opening (Opening)
the opening criteria for backfilling.

recruitment (Recruitment)
recruitment criteria for backfilling.

max_size (count)
the maximum number of patients to be backfilled.

priority (character)
the priority rule for backfilling, one of "highest", "lowest", or "random".

Note

Typically, end users will not use the .DefaultBackfill() function.

biomarker Get the Biomarker Levels for a Given Dual-Endpoint Model, Given
Dose Levels and Samples

Description

[Experimental]

Usage

biomarker(xLevel, model, samples, ...)

S4 method for signature 'integer,DualEndpoint,Samples'
biomarker(xLevel, model, samples, ...)

Arguments

xLevel (integer)
the levels for the doses the patients have been given w.r.t dose grid. See Data
for more details.

model (DualEndpoint)
the model.

samples (Samples)
the samples of model’s parameters that store the value of biomarker levels for
all doses on the dose grid.

... not used.

biomarker 15

Details

This function simply returns a specific columns (with the indices equal to xLevel) of the biomarker
samples matrix, which is included in the the samples object.

Value

The biomarker levels.

Functions

• biomarker(xLevel = integer, model = DualEndpoint, samples = Samples):

Examples

Create the data.
my_data <- DataDual(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10, 20, 20, 20, 40, 40, 40, 50, 50, 50),
y = c(0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1),
ID = 1:17,
cohort = c(
1L,
2L,
3L,
4L,
5L,
6L,
6L,
6L,
7L,
7L,
7L,
8L,
8L,
8L,
9L,
9L,
9L

),
w = c(

0.31,
0.42,
0.59,
0.45,
0.6,
0.7,
0.55,
0.6,
0.52,
0.54,
0.56,
0.43,
0.41,

16 check_equal

0.39,
0.34,
0.38,
0.21

),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Initialize the Dual-Endpoint model (in this case RW1).
my_model <- DualEndpointRW(

mean = c(0, 1),
cov = matrix(c(1, 0, 0, 1), nrow = 2),
sigma2betaW = 0.01,
sigma2W = c(a = 0.1, b = 0.1),
rho = c(a = 1, b = 1),
rw1 = TRUE

)

Set-up some MCMC parameters and generate samples from the posterior.
my_options <- McmcOptions(

burnin = 100,
step = 2,
samples = 500

)
my_samples <- mcmc(my_data, my_model, my_options)

Obtain the biomarker levels (samples) for the second dose from the dose grid,
which is 0.5.
biomarker(

xLevel = 2L,
model = my_model,
samples = my_samples

)

check_equal Check if All Arguments Are Equal

Description

[Experimental] Elements of ... must be numeric vectors or scalars.

This function performs an element-by-element comparison of the first object provided in ... with
every other object in ... and returns TRUE if all comparisons are equal within a given tolerance and
FALSE otherwise.

[Experimental] Elements of ... must be numeric vectors or scalars.

This function performs an element-by-element comparison of the first object provided in ... with
every other object in ... and throws an error if they are not.

check_equal 17

Usage

check_equal(..., tol = sqrt(.Machine$double.eps))

assert_equal(
...,
tol = sqrt(.Machine$double.eps),
.var.name = vname(x),
add = NULL

)

Arguments

... (numeric)
vectors to be compared

tol (numeric)
the maximum difference to be tolerated when judging equality

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

Value

TRUE if all element-by-element differences are less than tolerance in magnitude, FALSE otherwise.

list(...), invisibly.

Note

If there are any missing or infinite values in ..., this function returns FALSE, regardless of the values
of other elements in

If elements in ... are not all of the same length, FALSE is returned.

If there are any missing or infinite values in ..., this function throws an error, regardless of the
values of other elements in

If elements in ... are not all of the same length, an error is thrown.

See Also

assertions for more details.

assertions for more details.

Examples

check_equal(1:2, 1:2) # TRUE
check_equal(1:2, 2:3) # "Not all equal"
check_equal(Inf, Inf) # "Not all equal"
check_equal(0.01, 0.02) # "Not all equal"

18 check_format

check_equal(0.01, 0.02, tol = 0.05) # TRUE
check_equal(1, c(1, 1)) # "Not all equal"
assert_equal(1:2, 1:2) # no error
assert_equal(0.01, 0.02, tol = 0.05) # no error

check_format Check that an argument is a valid format specification

Description

[Stable]

Usage

check_format(x, len = NULL, min.len = NULL, max.len = NULL)

assert_format(
x,
len = NULL,
min.len = NULL,
max.len = NULL,
.var.name = checkmate::vname(x),
add = NULL

)

test_format(x, len = NULL, min.len = NULL, max.len = NULL)

expect_format(
x,
len = NULL,
min.len = NULL,
max.len = NULL,
info = NULL,
label = vname(x)

)

Arguments

x [any]
Object to check.

len [integer(1)]
Exact expected length of x.

min.len [integer(1)]
Minimal length of x.

max.len [integer(1)]
Maximal length of x.

check_length 19

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

TRUE if successful, otherwise a string with the error message.

See Also

assertions for more details.

Examples

check_format("%5.2f")

check_length Check if vectors are of compatible lengths

Description

[Stable]

Two vectors are of compatible size if and only if:

1. At least one vector has size 1

2. or both vectors are of the same size.

Usage

check_length(x, len)

assert_length(x, len, .var.name = checkmate::vname(x), add = NULL)

test_length(x, len)

20 check_probabilities

Arguments

x (any)
the first vector, any object for which length() function is defined.

len (count)
the length of the second vector.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

Value

TRUE if successful, otherwise a string with the error message.

See Also

assertions for more details.

Examples

check_length(1:5, 1)
check_length(1:5, 6)
check_length(1:5, 5)
check_length(10, 1)
check_length(10, 9)

check_probabilities Check if an argument is a probability vector

Description

[Stable]
Check if every element in a given numerical vector or matrix represents a probability, that is a
number within (0, 1) interval, that can optionally be closed at any side.

Usage

check_probabilities(
x,
bounds_closed = TRUE,
len = NULL,
unique = FALSE,
sorted = FALSE

)

check_probabilities 21

assert_probabilities(
x,
bounds_closed = TRUE,
len = NULL,
unique = FALSE,
sorted = FALSE,
.var.name = checkmate::vname(x),
add = NULL

)

test_probabilities(
x,
bounds_closed = TRUE,
len = NULL,
unique = FALSE,
sorted = FALSE

)

expect_probabilities(
x,
bounds_closed = TRUE,
len = NULL,
unique = FALSE,
sorted = FALSE,
info = NULL,
label = vname(x)

)

Arguments

x (numeric)
vector or matrix with numerical values to check.

bounds_closed (logical)
should bounds be closed? This can be a scalar or vector of length two. If it is a
scalar, then its value applies equally to lower bound 0 and upper bound 1. If this
is a vector with two flags, the first flag corresponds to the lower bound 0 only,
and the second to the upper bound 1 only.

len [integer(1)]
Exact expected length of x.

unique [logical(1)]
Must all values be unique? Default is FALSE.

sorted [logical(1)]
Elements must be sorted in ascending order. Missing values are ignored.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

22 check_probability

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

TRUE if successful, otherwise a string with the error message.

Note

If there are any missing or non-finite values in x, this function returns FALSE, regardless of the
values of other elements in x.

See Also

assertions for more details.

Examples

x <- c(0, 0.2, 0.1, 0.3, 1)
check_probabilities(x)
check_probabilities(x, bounds_closed = FALSE)
check_probabilities(x, bounds_closed = c(FALSE, TRUE))

check_probability Check if an argument is a single probability value

Description

[Stable]
Check if a given value represents a probability, that is a number within (0, 1) interval, that can
optionally be closed at any side.

Usage

check_probability(x, bounds_closed = TRUE)

assert_probability(
x,
bounds_closed = TRUE,
.var.name = checkmate::vname(x),
add = NULL

)

check_probability_range 23

test_probability(x, bounds_closed = TRUE)

expect_probability(x, bounds_closed = TRUE, info = NULL, label = vname(x))

Arguments

x (number)
a single value to check.

bounds_closed (logical)
should bounds be closed? This can be a scalar or vector of length two. If it is a
scalar, then its value applies equally to lower bound 0 and upper bound 1. If this
is a vector with two flags, the first flag corresponds to the lower bound 0 only,
and the second to the upper bound 1 only.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

TRUE if successful, otherwise a string with the error message.

See Also

assertions for more details.

Examples

check_probability(0.5)
check_probability(0, bounds_closed = FALSE)
check_probability(0, bounds_closed = c(FALSE, TRUE))

check_probability_range

Check if an argument is a probability range

24 check_probability_range

Description

[Stable]

Check if a given numerical interval represents a probability range, that is a sub-interval of (0, 1)
interval, that can optionally be closed at any side.

Usage

check_probability_range(x, bounds_closed = TRUE)

assert_probability_range(
x,
bounds_closed = TRUE,
.var.name = checkmate::vname(x),
add = NULL

)

test_probability_range(x, bounds_closed = TRUE)

expect_probability_range(
x,
bounds_closed = TRUE,
info = NULL,
label = vname(x)

)

Arguments

x (number)
an interval to check.

bounds_closed (logical)
should bounds be closed? This can be a scalar or vector of length two. If it is a
scalar, then its value applies equally to lower bound 0 and upper bound 1. If this
is a vector with two flags, the first flag corresponds to the lower bound 0 only,
and the second to the upper bound 1 only.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

check_range 25

Value

TRUE if successful, otherwise a string with the error message.

See Also

assertions for more details.

Examples

x <- c(0, 0.2)
check_probability_range(x)
check_probability_range(rev(x))
check_probability_range(x, bounds_closed = FALSE)
check_probability_range(x, bounds_closed = c(FALSE, TRUE))

check_range Check that an argument is a numerical range

Description

[Stable]
An argument x is a numerical range if and only if (all conditions must be met):

1. Is an object of type: integer or double.

2. Is a vector or length two such that the value of the first number is not less than the second
number. Equalness is allowed if and only if unique flag is set to TRUE.

3. Lower bound of the interval is greater than or equal to lower and upper bound of the interval
is less than or equal to upper.

4. It contains only finite (given that finite is TRUE) and non-missing values.

Usage

check_range(x, lower = -Inf, upper = Inf, finite = FALSE, unique = TRUE)

assert_range(
x,
lower = -Inf,
upper = Inf,
finite = FALSE,
unique = TRUE,
.var.name = checkmate::vname(x),
add = NULL

)

test_range(x, lower = -Inf, upper = Inf, finite = FALSE, unique = TRUE)

26 check_range

expect_range(
x,
lower = -Inf,
upper = Inf,
finite = FALSE,
unique = TRUE,
info = NULL,
label = vname(x)

)

Arguments

x [any]
Object to check.

lower [numeric(1)]
Lower value all elements of x must be greater than or equal to.

upper [numeric(1)]
Upper value all elements of x must be lower than or equal to.

finite [logical(1)]
Check for only finite values? Default is FALSE.

unique [logical(1)]
Must all values be unique? Default is FALSE.

.var.name [character(1)]
Name of the checked object to print in assertions. Defaults to the heuristic im-
plemented in vname.

add [AssertCollection]
Collection to store assertion messages. See AssertCollection.

info [character(1)]
Extra information to be included in the message for the testthat reporter. See
expect_that.

label [character(1)]
Name of the checked object to print in messages. Defaults to the heuristic im-
plemented in vname.

Value

TRUE if successful, otherwise a string with the error message.

See Also

assertions for more details.

Examples

check_range(c(1, 5))
check_range(c(-5, 1))
check_range(c(4, 1))

CohortSizeConst-class 27

check_range(c(1, 1))
check_range(c(1, 1), unique = FALSE)
check_range(1:3)

CohortSizeConst-class CohortSizeConst

Description

[Stable]

CohortSizeConst is the class for fixed and constant size of cohort.

Usage

CohortSizeConst(size)

.DefaultCohortSizeConst()

Arguments

size (number)
see slot definition.

Slots

size (integer)
cohort size.

Note

Typically, end users will not use the .DefaultCohortSizeConst() function.

Examples

Cohort of size 3, constant along the study.
my_size <- CohortSizeConst(size = 3)

28 CohortSizeDLT-class

CohortSizeDLT-class CohortSizeDLT

Description

[Stable]

CohortSizeDLT is the class for cohort size based on number of DLTs.

Usage

CohortSizeDLT(intervals, cohort_size)

.DefaultCohortSizeDLT()

Arguments

intervals (numeric)
see slot definition.

cohort_size (numeric)
see slot definition.

Slots

intervals (integer)
a vector with the left bounds of the relevant DLT intervals.

cohort_size (integer)
a vector with the cohort sizes corresponding to the elements of intervals.

Note

Typically, end users will not use the .DefaultCohortSizeDLT() function.

Examples

Rule for having cohort of size 1 until no DLT is observed and having cohort
of size 3 as soon as 1 DLT is observed.
my_size <- CohortSizeDLT(intervals = c(0, 1), cohort_size = c(1, 3))

CohortSizeMax-class 29

CohortSizeMax-class CohortSizeMax

Description

[Stable]

CohortSizeMax is the class for cohort size that is based on maximum of multiple cohort size
rules. The cohort_sizes slot stores a set of cohort size rules, which are again the objects of
class CohortSize. The maximum of these individual cohort sizes is taken to give the final cohort
size.

Usage

.DefaultCohortSizeMax()

CohortSizeMax(cohort_sizes)

Arguments

cohort_sizes (list)
see slot definition.

Slots

cohort_sizes (list)
a list of cohort size rules, i.e. objects of class CohortSize.

Note

Typically, end users will not use the .DefaultCohortSizeMax() function.

Examples

Rule for cohort of size 1 for doses <30 and cohort of size 3 for doses >=30.
my_size1 <- CohortSizeRange(intervals = c(0, 10), cohort_size = c(1, 3))

Rule for cohort of size 1 until no DLT were observed and cohort of size 3
as soon as 1 DLT is observed.
my_size2 <- CohortSizeDLT(intervals = c(0, 1), cohort_size = c(1, 3))

Cohort size rules of class 'CohortSizeMax' which will then be combined with
the 'max' operation.
mySize <- CohortSizeMax(cohort_sizes = list(my_size1, my_size2))

30 CohortSizeMin-class

CohortSizeMin-class CohortSizeMin

Description

[Stable]

CohortSizeMin is the class for cohort size that is based on minimum of multiple cohort size
rules. The cohort_sizes slot stores a set of cohort size rules, which are again the objects of
class CohortSize. The minimum of these individual cohort sizes is taken to give the final cohort
size.

Usage

CohortSizeMin(cohort_sizes)

.DefaultCohortSizeMin()

Arguments

cohort_sizes (list)
see slot definition.

Slots

cohort_sizes (list)
a list of cohort size rules, i.e. objects of class CohortSize.

Note

Typically, end users will not use the .DefaultCohortSizeMin() function.

Examples

Rule for cohort of size 1 for doses <30 and cohort of size 3 for doses >=30.
my_size1 <- CohortSizeRange(intervals = c(0, 10), cohort_size = c(1, 3))

Rule for cohort of size 1 until no DLT were observed and cohort of size 3
as soon as 1 DLT is observed.
my_size2 <- CohortSizeDLT(intervals = c(0, 1), cohort_size = c(1, 3))

Cohort size rules of class 'CohortSizeMin' which will then be combined with
the 'min' operation.
my_size <- CohortSizeMin(cohort_sizes = list(my_size1, my_size2))

CohortSizeOrdinal-class 31

CohortSizeOrdinal-class

CohortSizeOrdinal

Description

[Experimental]

CohortSizeOrdinal is the class for cohort size for an ordinal CRM trial.

Usage

CohortSizeOrdinal(grade, rule)

.DefaultCohortSizeOrdinal()

Arguments

grade (integer)
see slot definition.

rule (CohortSize)
see slot definition.

Slots

grade (integer)
the grade at which the rule should be applied

rule (CohortSize)
the CohortSize rule to apply.

Note

Typically, end users will not use the .DefaultCohortSizeOrdinal() function.

Examples

CohortSizeOrdinal(
grade = 1L,
rule = CohortSizeRange(intervals = c(0, 30), cohort_size = c(1L, 3L))

)

32 CohortSizeRandom-class

CohortSizeParts-class CohortSizeParts

Description

[Stable]

CohortSizeParts is the class for cohort size that changes for the second part of the dose escalation.
It works only in conjunction with DataParts objects.

Usage

CohortSizeParts(cohort_sizes)

.DefaultCohortSizeParts()

Arguments

cohort_sizes (numeric)
see slot definition.

Slots

cohort_sizes (integer)
a vector of length two with two sizes, one for part 1, and one for part 2 respectively.

Note

Typically, end users will not use the .DefaultCohortSizeParts() function.

Examples

Part 1 cohort size = 1, Part 2 cohort size = 3.
my_size <- CohortSizeParts(cohort_sizes = c(1, 3))

CohortSizeRandom-class

CohortSizeRandom

Description

[Experimental]

CohortSizeRandom is the class for random cohort sizes drawn from a uniform distribution between
min_size and max_size (inclusive).

CohortSizeRange-class 33

Usage

CohortSizeRandom(min_size, max_size)

.DefaultCohortSizeRandom()

Arguments

min_size (integer)
see slot definition.

max_size (integer)
see slot definition.

Slots

min_size (integer)
minimum cohort size.

max_size (integer)
maximum cohort size.

Note

Typically, end users will not use the .DefaultCohortSizeRandom() function.

Examples

Random cohort size between 1 and 5.
my_size <- CohortSizeRandom(min_size = 1, max_size = 5)

CohortSizeRange-class CohortSizeRange

Description

[Stable]
CohortSizeRange is the class for cohort size based on dose range.

Usage

CohortSizeRange(intervals, cohort_size)

.DefaultCohortSizeRange()

Arguments

intervals (numeric)
see slot definition.

cohort_size (numeric)
see slot definition.

34 crmPack

Slots

intervals (numeric)
a vector with the left bounds of the relevant dose intervals.

cohort_size (integer)
an integer vector with the cohort sizes corresponding to the elements of intervals.

Note

Typically, end users will not use the .DefaultCohortSizeRange() function.

Examples

Example for the rule having cohort of size 1 for doses <30
and having cohort of size 3 for doses >=30.

my_size <- CohortSizeRange(intervals = c(0, 30), cohort_size = c(1, 3))

crmPack Object-oriented implementation of CRM designs

Description

Object-oriented implementation of CRM designs

Author(s)

Maintainer: Daniel Sabanés Bové <daniel.sabanes_bove@rconis.com> (ORCID)

Authors:

• Wai Yin Yeung <winnie.yeung@roche.com>

• Burak Kuersad Guenhan <burakgunhan@gmail.com>

• Giuseppe Palermo <giuseppe.palermo@roche.com>

• Thomas Jaki <jaki.thomas@gmail.com>

• Jiawen Zhu <zhu.jiawen@gene.com>

• Ziwei Liao <ziwei.liao.fdu@gmail.com>

• Dimitris Kontos <dimitris.kontos@bayer.com>

• Marlene Schulte-Goebel <marlene.schulte-goebel@merckgroup.com>

• Doug Kelkhoff <doug.kelkhoff@gmail.com> (ORCID)

• Oliver Boix <oliver.boix@bayer.com>

• Robert Adams <robert.adams@bayer.com>

• Clara Beck <clara.beck@bayer.com>

• John Kirkpatrick <john@puzzledface.net>

• Wojciech Wójciak <wojciech.wojciak@gmail.com>

https://orcid.org/0000-0002-0176-9239
https://orcid.org/0009-0003-7845-4061

CrmPackClass-class 35

• Guanya Peng
• Prerana Chandratre

Other contributors:

• F. Hoffmann-La Roche AG [copyright holder, funder]
• Merck Healthcare KGaA [copyright holder, funder]
• Bayer AG [copyright holder, funder]
• RPACT GmbH [copyright holder, funder]

References

Sabanés Bové D, Yeung WY, Palermo G, Jaki T (2019). “Model-Based Dose Escalation Designs in
R with crmPack.” Journal of Statistical Software, 89(10), 1–22. doi:10.18637/jss.v089.i10.

See Also

Useful links:

• https://github.com/openpharma/crmPack

• https://openpharma.github.io/crmPack/

• Report bugs at https://github.com/openpharma/crmPack/issues

CrmPackClass-class CrmPackClass

Description

[Experimental]
CrmPackClass is a virtual class, from which all other crmPack classes inherit.

crmPackExample Open the Example PDF for crmPack

Description

[Stable]
Calling this helper function opens the example.pdf document, residing in the doc subfolder of the
package installation directory.

Usage

crmPackExample()

Value

Called for side effects.

https://doi.org/10.18637/jss.v089.i10
https://github.com/openpharma/crmPack
https://openpharma.github.io/crmPack/
https://github.com/openpharma/crmPack/issues

36 DADesign-class

crmPackHelp Open the Browser with Help Pages for crmPack

Description

[Stable]
This convenience function opens your browser with the help pages for crmPack.

Usage

crmPackHelp()

Value

Called for side effects.

DADesign-class DADesign

Description

[Stable]
This class has special requirements for the model and data slots in comparison to the parent class
Design:

Usage

DADesign(model, data, safetyWindow, ...)

.DefaultDADesign()

Arguments

model (GeneralModel)
see slot definition.

data (DataDA)
see slot definition.

safetyWindow (SafetyWindow)
see slot definition.

... Arguments passed on to Design

stopping (Stopping)
see slot definition.

increments (Increments)
see slot definition.

DADesign-class 37

pl_cohort_size (CohortSize)
see slot definition.

backfill (Backfill)
see slot definition.

Details

The safetyWindow slot should be an instance of the SafetyWindow class. It can be customized
to specify the duration of the safety window for your trial. The safety window represents the time
period required to observe toxicity data from the ongoing cohort before opening the next cohort.
Note that even after opening the next cohort, further toxicity data will be collected and analyzed to
make dose escalation decisions.

To specify a constant safety window, use the SafetyWindowConst constructor. For example:

mysafetywindow <- SafetyWindowConst(c(6, 2), 10, 20)

Slots

model (GeneralModel)
the model to use, see in particular DALogisticLogNormal and TITELogisticLogNormal
which make use of the time-to-DLT data.

data (DataDA)
what is the dose grid, any previous data, etc.

safetyWindow (SafetyWindow)
the safety window to apply between cohorts.

Note

Typically, end users will not use the .DefaultDADesign() function.

See Also

SafetyWindowConst for creating a constant safety window.

Examples

empty_data <- DataDA(
doseGrid = c(

0.1,
0.5,
1,
1.5,
3,
6,
seq(from = 10, to = 80, by = 2)

),
Tmax = 60

)

npiece <- 10

38 DADesign-class

t_max <- 60

lambda_prior <- function(k) {
npiece / (t_max * (npiece - k + 0.5))

}

model <- DALogisticLogNormal(
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56,
npiece = npiece,
l = as.numeric(t(apply(as.matrix(c(1:npiece), 1, npiece), 2, lambda_prior))),
c_par = 2

)

my_increments <- IncrementsRelative(
intervals = c(0, 20),
increments = c(1, 0.33)

)

my_next_best <- NextBestNCRM(
target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

my_size1 <- CohortSizeRange(
intervals = c(0, 30),
cohort_size = c(1, 3)

)

my_size2 <- CohortSizeDLT(
intervals = c(0, 1),
cohort_size = c(1, 3)

)

my_size <- maxSize(my_size1, my_size2)

my_stopping1 <- StoppingTargetProb(
target = c(0.2, 0.35),
prob = 0.5

)

my_stopping2 <- StoppingMinPatients(nPatients = 50)

my_stopping <- (my_stopping1 | my_stopping2) | StoppingMissingDose()

my_safety_window <- SafetyWindowConst(c(6, 2), 7, 7)

design <- DADesign(
model = model,
increments = my_increments,
nextBest = my_next_best,

DALogisticLogNormal-class 39

stopping = my_stopping,
cohort_size = my_size,
data = empty_data,
safetyWindow = my_safety_window,
startingDose = 3

)

DALogisticLogNormal-class

DALogisticLogNormal

Description

[Stable]

DALogisticLogNormal is the class for the logistic model with bivariate (log) normal prior and data
augmentation. This class inherits from the LogisticLogNormal class.

Usage

DALogisticLogNormal(npiece = 3, l, c_par = 2, cond_pem = TRUE, ...)

.DefaultDALogisticLogNormal()

Arguments

npiece (number)
the number of pieces in the PEM.

l (numeric)
a vector used in the lambda prior.

c_par (numeric)
a parameter used in the lambda prior; according to Liu’s paper, c_par = 2 is
recommended.

cond_pem (flag)
is a conditional piecewise-exponential model used? (default). Otherwise an
unconditional model is used.

... Arguments passed on to LogisticLogNormal

mean (numeric)
the prior mean vector.

cov (matrix)
the prior covariance matrix. The precision matrix prec is internally calcu-
lated as an inverse of cov.

ref_dose (number)
the reference dose x∗ (strictly positive number).

40 dapply

Slots

npiece (number)
the number of pieces in the PEM.

l (numeric)
a vector used in the lambda prior.

c_par (numeric)
a parameter used in the lambda prior; according to Liu’s paper, c_par = 2 is recommended.

cond_pem (flag)
is a conditional piecewise-exponential model used? (default). Otherwise an unconditional
model is used.

Note

We still need to include here formula for the lambda prior.

Typically, end users will not use the .DefaultDALogisticLogNormal() function.

See Also

ModelLogNormal, LogisticNormal, LogisticLogNormal.

Examples

npiece <- 10
Tmax <- 60 # nolintr

lambda_prior <- function(k) {
npiece / (Tmax * (npiece - k + 0.5))

}

model <- DALogisticLogNormal(
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56,
npiece = npiece,
l = as.numeric(t(apply(as.matrix(c(1:npiece), 1, npiece), 2, lambda_prior))),
c_par = 2

)

dapply Apply a Function to Subsets of Data Frame.

Description

[Experimental]
dapply splits the data df into the subsets defined by f, and applies function FUN to each of the
subset. All the results are row-binded and returned as data.frame object.

dapply 41

Usage

dapply(df, f, FUN, ...)

Arguments

df (data frame)
data set to be divided into groups.

f (factor or formula or list)
a factor in the sense that as.factor(f) defines the grouping, or a list of such
factors in which case their interaction is used for the grouping. f can also be a
formula of the form ~ g1 + ... + gk to split by the interaction of the variables
g1, ..., gk. This parameter is passed directly into split() function.

FUN (function)
the function to be applied to each subset of df defined by f.

... parameters passed to lapply(), which is used when applying a function FUN
over groups defined by f.

Value

The data.frame object with results from FUN.

Examples

df <- data.frame(
dose = c(0.1, 6, 6, 5, 0.1, 5, 6, 6),
cohort = c("B", "B", "B", "A", "A", "A", "B", "B")

)

dapply(
df,
f = ~cohort,
FUN = function(coh) {
data.frame(my_cohort = coh$cohort[1], my_max = max(coh$dose))

}
)

dapply(
df,
f = ~cohort,
FUN = function(coh) {

coh$dose <- sort(coh$dose, decreasing = TRUE)
coh

}
)

42 Data-class

DASimulations-class DASimulations

Description

[Stable]

This class captures the trial simulations from DA based designs. In comparison to the parent class
Simulations, it contains additional slots to capture the time to DLT fits, additional parameters and
the trial duration.

Usage

DASimulations(trial_duration, ...)

.DefaultDASimulations()

Arguments

trial_duration (numeric)
see DASimulations

... additional parameters from Simulations

Slots

trial_duration (numeric)
the vector of trial duration values for all simulations.

Note

Typically, end users will not use the .DefaultDASimulations() function.

Data-class Data

Description

[Stable]

Data is a class for the data input. It inherits from GeneralData.

Data-class 43

Usage

Data(
x = numeric(),
y = integer(),
ID = integer(),
cohort = integer(),
doseGrid = numeric(),
placebo = FALSE,
backfilled = rep(FALSE, length(x)),
response = rep(NA_integer_, length(x)),
...

)

.DefaultData()

Arguments

x (numeric)
the doses for the patients.

y (integer)
the vector of toxicity events (0 or 1). You can also supply numeric vectors, but
these will then be converted to integer internally.

ID (integer)
unique patient IDs. You can also supply numeric vectors, but these will then be
converted to integer internally.

cohort (integer)
the cohort (non-negative sorted) indices. You can also supply numeric vectors,
but these will then be converted to integer internally.

doseGrid (numeric)
all possible doses.

placebo (flag)
if TRUE the first dose level in the doseGrid is considered as placebo.

backfilled (logical)
whether each patient was in a backfill cohort.

response (integer)
whether each patient had a positive efficacy response (1 = yes, 0 = no). May
contain NA.

... not used.

Details

The cohort can be missing if and only if placebo is equal to FALSE.

Slots

x (numeric)
the doses for the patients.

44 DataDA-class

y (integer)
the vector of toxicity events (0 or 1 integers).

doseGrid (numeric)
the vector of all possible doses (sorted), i.e. the dose grid.

nGrid (integer)
number of gridpoints.

xLevel (integer)
the levels for the doses the patients have been given, w.r.t doseGrid.

placebo (logical)
if TRUE the first dose level in the doseGridis considered as PLACEBO.

backfilled (logical)
whether this patient was in a backfill cohort.

response (integer)
whether this patient had a positive efficacy response (0 or 1 integers).

Note

ID and cohort can be missing. Then a message will be issued and the variables will be filled with
default IDs and best guesses cohort, i.e. a sorted (in ascending order) sequence of values from
{1, 2, ...}.

Typically, end users will not use the .DefaultData() function.

Examples

my_data <- Data(
x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
ID = as.integer(1:8),
cohort = as.integer(c(1, 2, 3, 4, 5, 6, 6, 6)),
doseGrid = c(
0.1,
0.5,
1.5,
3,
6,
seq(from = 10, to = 80, by = 2)

)
)
my_data

DataDA-class DataDA

Description

[Stable]
DataDA is a class for the time-to-DLT augmented data. It inherits from Data and it contains addi-
tional DLT free survival times.

DataDA-class 45

Usage

DataDA(
u = numeric(),
t0 = numeric(length(u)),
Tmax = 0 + .Machine$double.xmin,
...

)

.DefaultDataDA()

Arguments

u (numeric)
the continuous vector of DLT free survival times.

t0 (numeric)
time of initial dosing for each patient. Non-negative values sorted in ascending
order. Default to vector of 0s of length equal to length of u.

Tmax (number)
the DLT observation period.

... parameters passed to Data().

Slots

u (numeric)
the continuous vector of DLT free survival times.

t0 (numeric)
time of initial dosing for each patient. Non-negative values sorted in ascending order.

Tmax (number)
the DLT observation period.

Note
survival time here refers to the time period for which the subject did not experience any DLT,
and is not referring to deaths.

Typically, end users will not use the .DefaultDataDA() function.

Examples

my_data <- DataDA(
u = c(42, 30, 15, 5, 20, 25, 30, 60),
t0 = c(0, 15, 30, 40, 55, 70, 75, 85),
Tmax = 60,
x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 1, 1, 0, 0, 1, 0),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Set up an empty data set.

46 DataDual-class

empty_data <- DataDA(
doseGrid = c(0.1, 0.5, 1, 1.5, 3, 6, seq(from = 10, to = 80, by = 2)),
Tmax = 60

)
empty_data

DataDual-class DataDual

Description

[Stable]
DataDual is a class for the dual endpoint data. It inherits from Data and it contains additional
biomarker information.

Usage

DataDual(w = numeric(), ...)

.DefaultDataDual()

Arguments

w (numeric)
the continuous vector of biomarker values.

... parameters passed to Data().

Slots

w (numeric)
the continuous vector of biomarker values.

Note

Typically, end users will not use the .DefaultDataDual() function.

Examples

my_data <- DataDual(
w = rnorm(8),
x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
doseGrid = c(
0.1,
0.5,
1.5,
3,
6,
seq(from = 10, to = 80, by = 2)

DataGrouped-class 47

)
)
my_data

DataGrouped-class DataGrouped

Description

[Stable]
DataGrouped is a class for a two groups dose escalation data set, comprised of a monotherapy
(mono) and a combination therapy (combo) arm. It inherits from Data and it contains the additional
group information.

Usage

DataGrouped(group = character(), ...)

.DefaultDataGrouped()

Arguments

group (factor or character)
whether mono or combo was used. If character then will be coerced to factor
with the correct levels internally.

... parameters passed to Data().

Slots

group (factor)
whether mono or combo was used.

Note

Typically, end users will not use the .DefaultDataGrouped() function.

Examples

my_data <- DataGrouped(
x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 1, 1, 0, 0, 1, 0),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2)),
group = c("mono", "mono", "mono", "mono", "mono", "mono", "combo", "combo")

)

Set up an empty data set.
empty_data <- DataGrouped(

doseGrid = c(0.1, 0.5, 1, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))
)
empty_data

48 DataMixture-class

DataMixture-class DataMixture

Description

[Stable]
DataMixture is a class for the data with mixture sharing. It inherits from Data and it contains
additional information on the mixture sharing.

Usage

DataMixture(xshare = numeric(), yshare = integer(), ...)

.DefaultDataMixture()

Arguments

xshare (numeric)
the doses for the share patients.

yshare (integer)
the vector of toxicity events (0 or 1) for the share patients. You can also supply
numeric vectors, but these will then be converted to integer internally.

... parameters passed to Data().

Slots

xshare (numeric)
the doses for the share patients.

yshare (integer)
the vector of toxicity events (0 or 1) for the share patients.

nObsshare (count)
number of share patients.

Note

Typically, end users will not use the .DefaultDataMixture() function.

Examples

my_data <- DataMixture(
xshare = c(12, 14, 16, 18.0),
yshare = c(0L, 1L, 1L, 1L),
nObsshare = 4L,
x = c(0.1, 0.5, 1.5),
y = c(0, 0, 0),
ID = 1:3,
cohort = 1:3,

DataOrdinal-class 49

doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))
)
my_data

DataOrdinal-class DataOrdinal

Description

[Experimental]

DataOrdinal is a class for ordinal toxicity data. It inherits from GeneralData and it describes
toxicity responses on an ordinal rather than binary scale.

Usage

DataOrdinal(
x = numeric(),
y = integer(),
ID = integer(),
cohort = integer(),
doseGrid = numeric(),
placebo = FALSE,
yCategories = c(`No DLT` = 0L, DLT = 1L),
...

)

.DefaultDataOrdinal()

Arguments

x (numeric)
the doses for the patients.

y (integer)
the vector of toxicity events (0 or 1). You can also supply numeric vectors, but
these will then be converted to integer internally.

ID (integer)
unique patient IDs. You can also supply numeric vectors, but these will then be
converted to integer internally.

cohort (integer)
the cohort (non-negative sorted) indices. You can also supply numeric vectors,
but these will then be converted to integer internally.

doseGrid (numeric)
all possible doses.

placebo (flag)
if TRUE the first dose level in the doseGrid is considered as placebo.

50 DataParts-class

yCategories (named integer)
the names and codes for the toxicity categories used in the data. Category labels
are taken from the names of the vector. The names of the vector must be unique
and its values must be sorted and take the values 0, 1, 2, ...

... not used.

Details

The cohort can be missing if and only if placebo is equal to FALSE.

Note

This class has been implemented as a sibling of the existing Data class (rather than as a parent or
child) to minimise the risk of unintended side effects on existing classes and methods.

The default setting for the yCategories slot replicates the behaviour of the existing Data class.

Typically, end users will not use the .DefaultDataOrdinal() function.

Examples

DataOrdinal(
x = c(10, 20, 30, 40, 50, 50, 50, 60, 60, 60),
y = as.integer(c(0, 0, 0, 0, 0, 1, 0, 0, 1, 2)),
ID = 1L:10L,
cohort = as.integer(c(1:4, 5, 5, 5, 6, 6, 6)),
doseGrid = c(seq(from = 10, to = 100, by = 10)),
yCategories = c("No tox" = 0L, "Sub-tox AE" = 1L, "DLT" = 2L),
placebo = FALSE

)

DataParts-class DataParts

Description

[Stable]

DataParts is a class for the data with two study parts. It inherits from Data and it contains addi-
tional information on the two study parts.

Usage

DataParts(part = integer(), nextPart = 1L, part1Ladder = numeric(), ...)

.DefaultDataParts()

Design-class 51

Arguments

part (integer)
which part does each of the patients belong to?

nextPart (count)
what is the part for the next cohort (1 or 2)?

part1Ladder (numeric)
what is the escalation ladder for part 1? This shall be an ordered subset of the
doseGrid.

... parameters passed to Data().

Slots

part (integer)
which part does each of the patients belong to?

nextPart (count)
what is the part for the next cohort (1 or 2)?

part1Ladder (numeric)
what is the escalation ladder for part 1? This shall be an ordered subset of the doseGrid.

Note

Typically, end users will not use the .DefaultDataParts() function.

Examples

my_data <- DataParts(
x = c(0.1, 0.5, 1.5),
y = c(0, 0, 0),
ID = 1:3,
cohort = 1:3,
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2)),
part = c(1L, 1L, 1L),
nextPart = 1L,
part1Ladder = c(0.1, 0.5, 1.5, 3, 6, 10)

)
my_data

Design-class Design

Description

[Stable]

Design is the class for rule-based designs. The difference between this class and its parent RuleDesign
class is that Design class contains additional model, stopping and increments slots.

52 Design-class

Usage

Design(
model,
stopping,
increments,
pl_cohort_size = CohortSizeConst(0L),
backfill = Backfill(opening = OpeningNone()),
...

)

.DefaultDesign()

Arguments

model (GeneralModel)
see slot definition.

stopping (Stopping)
see slot definition.

increments (Increments)
see slot definition.

pl_cohort_size (CohortSize)
see slot definition.

backfill (Backfill)
see slot definition.

... Arguments passed on to RuleDesign

nextBest (NextBest)
see slot definition.

cohort_size (CohortSize)
see slot definition.

data (Data)
see slot definition.

startingDose (number)
see slot definition.

Slots

model (GeneralModel)
the model to be used.

stopping (Stopping)
stopping rule(s) for the trial.

increments (Increments)
how to control increments between dose levels.

pl_cohort_size (CohortSize)
rules for the cohort sizes for placebo, if any planned (defaults to constant 0 placebo patients).

backfill (Backfill)
rules for backfilling patients in the trial (defaults to no backfilling).

Design-class 53

Note

Typically, end users will not use the .DefaultDesign() function.

Examples

empty_data <- Data(doseGrid = c(1, 3, 5, 10, 15, 20, 25, 40, 50, 80, 100))

Initialize the CRM model.
my_model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Choose the rule for selecting the next dose.
my_next_best <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Choose the rule for the cohort-size.
my_size1 <- CohortSizeRange(

intervals = c(0, 30),
cohort_size = c(1, 3)

)
my_size2 <- CohortSizeDLT(

intervals = c(0, 1),
cohort_size = c(1, 3)

)
my_size <- maxSize(my_size1, my_size2)

Choose the rule for stopping.
my_stopping1 <- StoppingMinCohorts(nCohorts = 3)
my_stopping2 <- StoppingTargetProb(

target = c(0.2, 0.35),
prob = 0.5

)
my_stopping3 <- StoppingMinPatients(nPatients = 20)
my_stopping <- (my_stopping1 & my_stopping2) |

my_stopping3 |
StoppingMissingDose()

Choose the rule for dose increments.
my_increments <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)

Initialize the design.
design <- Design(

model = my_model,

54 DesignGrouped-class

nextBest = my_next_best,
stopping = my_stopping,
increments = my_increments,
cohort_size = my_size,
data = empty_data,
startingDose = 3

)

DesignGrouped-class DesignGrouped

Description

[Experimental]
DesignGrouped combines two Design objects: one for the mono and one for the combo arm of a
joint dose escalation design.

Usage

DesignGrouped(
model,
mono,
combo = mono,
first_cohort_mono_only = TRUE,
same_dose_for_all = !same_dose_for_start,
same_dose_for_start = FALSE,
stop_mono_with_combo = FALSE,
...

)

Arguments

model (LogisticLogNormalGrouped)
see slot definition.

mono (Design)
see slot definition.

combo (Design)
see slot definition.

first_cohort_mono_only

(flag)
see slot definition.

same_dose_for_all

(flag)
see slot definition.

same_dose_for_start

(flag)
see slot definition.

DesignGrouped-class 55

stop_mono_with_combo

(flag)
whether the mono arm should be stopped when the combo arm is stopped (this
makes sense when the only real trial objective is the recommended combo dose).

... not used.

Details

• Note that the model slots inside the mono and combo parameters are ignored (because we don’t
fit separate regression models for the mono and combo arms). Instead, the model parameter is
used to fit a joint regression model for the mono and combo arms together.

• same_dose_for_start = TRUE is useful as an option when we want to use same_dose_for_all
= FALSE combined with first_cohort_mono_only = TRUE. This will allow to randomize pa-
tients to the mono and combo arms at the same dose as long as the selected dose for the cohorts
stay the same. This can therefore further mitigate bias as long as possible between the mono
and combo arms.

Slots

model (LogisticLogNormalGrouped)
the model to be used, currently only one class is allowed.

mono (Design)
defines the dose escalation rules for the mono arm, see details.

combo (Design)
defines the dose escalation rules for the combo arm, see details.

first_cohort_mono_only (flag)
whether first test one mono agent cohort, and then once its DLT data has been collected, we
proceed from the second cohort onwards with concurrent mono and combo cohorts.

same_dose_for_all (flag)
whether the lower dose of the separately determined mono and combo doses should be used
as the next dose for both mono and combo in all cohorts.

same_dose_for_start (flag)
indicates whether, when mono and combo are used in the same cohort for the first time, the
same dose should be used for both. Note that this is different from same_dose_for_all
which will always force them to be the same. If same_dose_for_all = TRUE, this is therefore
ignored. See Details.

Note

Typically, end-users will not use the .DefaultDesignGrouped() function.

Examples

empty_data <- Data(doseGrid = c(1, 3, 5, 10, 15, 20, 25, 40, 50, 80, 100))

Initialize the joint model.
my_model <- LogisticLogNormalGrouped(

mean = c(-0.85, 0, 1, 0),

56 DesignGrouped-class

cov = diag(1, 4),
ref_dose = 56

)

Choose the rule for selecting the next dose.
my_next_best <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Choose the rule for the cohort-size.
my_size1 <- CohortSizeRange(

intervals = c(0, 30),
cohort_size = c(1, 3)

)
my_size2 <- CohortSizeDLT(

intervals = c(0, 1),
cohort_size = c(1, 3)

)
my_size <- maxSize(my_size1, my_size2)

Choose the rule for stopping.
my_stopping1 <- StoppingMinCohorts(nCohorts = 3)
my_stopping2 <- StoppingTargetProb(

target = c(0.2, 0.35),
prob = 0.5

)
my_stopping3 <- StoppingMinPatients(nPatients = 20)
my_stopping <- (my_stopping1 & my_stopping2) |

my_stopping3 |
StoppingMissingDose()

Choose the rule for dose increments.
my_increments <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)

Rules to be used for both arms.
one_arm <- Design(

model = .DefaultModelLogNormal(), # Ignored.
nextBest = my_next_best,
stopping = my_stopping,
increments = my_increments,
cohort_size = my_size,
data = empty_data,
startingDose = 3

)

Initialize the design.
design <- DesignGrouped(

model = my_model,

DesignOrdinal-class 57

mono = one_arm
)

Alternative options: Here e.g.
- use both mono in first cohort and afterwards have mono and combo in parallel,
- in general allow different dose levels for the cohorts,
- but for the start (i.e. second cohort) have the same dose for mono and combo.
- Stop mono arm too, when combo arm is stopped.

design2 <- DesignGrouped(
model = my_model,
mono = one_arm,
first_cohort_mono_only = TRUE,
same_dose_for_all = FALSE,
same_dose_for_start = TRUE,
stop_mono_with_combo = TRUE

)

DesignOrdinal-class DesignOrdinal

Description

[Experimental]
DesignOrdinal is the class for rule-based ordinal designs. The difference between this class and
its parent RuleDesignOrdinal class is that the DesignOrdinal class contains additional model,
stopping, increments and pl_cohort_size slots.

Usage

DesignOrdinal(
model,
stopping,
increments,
pl_cohort_size = CohortSizeOrdinal(1L, CohortSizeConst(0L)),
...

)

.DefaultDesignOrdinal()

Arguments

model (LogisticLogNormalOrdinal)
see slot definition.

stopping (Stopping)
see slot definition.

increments (Increments)
see slot definition.

58 DesignOrdinal-class

pl_cohort_size (CohortSize)
see slot definition.

... Arguments passed on to RuleDesignOrdinal

next_best (NextBestOrdinal)
see slot definition.

cohort_size (CohortSize)
see slot definition.

data (DataOrdinal)
see slot definition.

starting_dose (number)
see slot definition.

Details

Please note that stopping, increments or cohort size rules need to be wrapped into the corresponding
StoppingOrdinal, IncrementsOrdinal or CohortSizeOrdinal classes, before a successful evaluation
of the corresponding methods can take place. Note also that these wrappers cannot be nested,
i.e., you cannot have an IncrementsOrdinal inside another IncrementsOrdinal (which also would
not make sense) because it would not be clear which event grade to use for the methods calcula-
tion. However, multiple rules can be combined using the operators defined for these classes, e.g.,
StoppingOrdinal(1L, rule1 & rule2) | StoppingOrdinal(2L, rule3).

Slots

model (LogisticLogNormalOrdinal)
the model to be used.

stopping (Stopping)
stopping rule(s) for the trial.

increments (Increments)
how to control increments between dose levels.

pl_cohort_size (CohortSize)
rules for the cohort sizes for placebo, if any planned (defaults to constant 0 placebo patients).

Note

Typically, end users will not use the .DefaultDesignOrdinal() function.

Examples

my_size1 <- CohortSizeRange(
intervals = c(0, 30),
cohort_size = c(1, 3)

)
my_size2 <- CohortSizeDLT(

intervals = c(0, 1),
cohort_size = c(1, 3)

)
my_size <- CohortSizeOrdinal(1L, maxSize(my_size1, my_size2))

dose 59

my_stopping1 <- StoppingMinCohorts(nCohorts = 3)
my_stopping2 <- StoppingTargetProb(

target = c(0.2, 0.35),
prob = 0.5

)
my_stopping3 <- StoppingMinPatients(nPatients = 20)
my_stopping <- StoppingOrdinal(

1L,
(my_stopping1 & my_stopping2) | my_stopping3 | StoppingMissingDose()

)

Initialize the design.
design <- DesignOrdinal(

model = LogisticLogNormalOrdinal(
mean = c(-3, -4, 1),
cov = diag(c(3, 4, 1)),
ref_dose = 50

),
next_best = NextBestOrdinal(

1L,
NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)
),
stopping = my_stopping,
increments = IncrementsOrdinal(

1L,
IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)
),
cohort_size = my_size,
data = DataOrdinal(

doseGrid = c(1, 3, 5, 10, 15, 20, 25, 40, 50, 80, 100),
yCategories = c("No tox" = 0L, "Sub-tox AE" = 1L, "DLT" = 2L)

),
starting_dose = 3

)

dose Computing the Doses for a given independent variable, Model and
Samples

Description

[Stable]

60 dose

A function that computes the dose reaching a specific target value of a given variable that dose
depends on. The meaning of this variable depends on the type of the model. For instance, for single
agent dose escalation model or pseudo DLE (dose-limiting events)/toxicity model, this variable
represents the a probability of the occurrence of a DLE. For efficacy models, it represents expected
efficacy. The doses are computed based on the samples of the model parameters (samples).

Usage

dose(x, model, samples, ...)

S4 method for signature 'numeric,LogisticNormal,Samples'
dose(x, model, samples)

S4 method for signature 'numeric,LogisticLogNormal,Samples'
dose(x, model, samples)

S4 method for signature 'numeric,LogisticLogNormalOrdinal,Samples'
dose(x, model, samples, grade)

S4 method for signature 'numeric,LogisticLogNormalSub,Samples'
dose(x, model, samples)

S4 method for signature 'numeric,ProbitLogNormal,Samples'
dose(x, model, samples)

S4 method for signature 'numeric,ProbitLogNormalRel,Samples'
dose(x, model, samples)

S4 method for signature 'numeric,LogisticLogNormalGrouped,Samples'
dose(x, model, samples, group)

S4 method for signature 'numeric,LogisticKadane,Samples'
dose(x, model, samples)

S4 method for signature 'numeric,LogisticKadaneBetaGamma,Samples'
dose(x, model, samples)

S4 method for signature 'numeric,LogisticNormalMixture,Samples'
dose(x, model, samples)

S4 method for signature 'numeric,LogisticNormalFixedMixture,Samples'
dose(x, model, samples)

S4 method for signature 'numeric,LogisticLogNormalMixture,Samples'
dose(x, model, samples)

S4 method for signature 'numeric,DualEndpoint,Samples'
dose(x, model, samples)

dose 61

S4 method for signature 'numeric,LogisticIndepBeta,Samples'
dose(x, model, samples)

S4 method for signature 'numeric,LogisticIndepBeta,missing'
dose(x, model)

S4 method for signature 'numeric,Effloglog,missing'
dose(x, model)

S4 method for signature 'numeric,EffFlexi,Samples'
dose(x, model, samples)

S4 method for signature 'numeric,OneParLogNormalPrior,Samples'
dose(x, model, samples)

S4 method for signature 'numeric,OneParExpPrior,Samples'
dose(x, model, samples)

Arguments

x (proportion or numeric)
a value of an independent variable on which dose depends. The following re-
cycling rule applies when samples is not missing: vectors of size 1 will be
recycled to the size of the sample (i.e. size(samples)). Otherwise, x must
have the same size as the sample.

model (GeneralModel or ModelPseudo)
the model.

samples (Samples)
the samples of model’s parameters that will be used to compute the resulting
doses. Can also be missing for some models.

... model specific parameters when samples are not used.

grade (integer)
The toxicity grade for which probabilities are required

group (character or factor)
for LogisticLogNormalGrouped, indicating whether to calculate the dose for
the mono or for the combo arm.

Details

The dose() function computes the doses corresponding to a value of a given independent variable,
using samples of the model parameter(s). If you work with multivariate model parameters, then as-
sume that your model specific dose() method receives a samples matrix where the rows correspond
to the sampling index, i.e. the layout is then nSamples x dimParameter.

Value

A number or numeric vector with the doses. If non-scalar samples were used, then every element
in the returned vector corresponds to one element of a sample. Hence, in this case, the output vector

62 dose

is of the same length as the sample vector. If scalar samples were used or no samples were used,
e.g. for pseudo DLE/toxicity model, then the output is of the same length as the length of the prob.

Functions

• dose(x = numeric, model = LogisticNormal, samples = Samples): compute the dose level
reaching a specific target probability of the occurrence of a DLE (x).

• dose(x = numeric, model = LogisticLogNormal, samples = Samples): compute the dose
level reaching a specific target probability of the occurrence of a DLE (x).

• dose(x = numeric, model = LogisticLogNormalOrdinal, samples = Samples): compute
the dose level reaching a specific target probability of the occurrence of a DLE (x).
In the case of a LogisticLogNormalOrdinal model, dose returns only the probability of
toxicity at the given grade or higher

• dose(x = numeric, model = LogisticLogNormalSub, samples = Samples): compute the dose
level reaching a specific target probability of the occurrence of a DLE (x).

• dose(x = numeric, model = ProbitLogNormal, samples = Samples): compute the dose level
reaching a specific target probability of the occurrence of a DLE (x).

• dose(x = numeric, model = ProbitLogNormalRel, samples = Samples): compute the dose
level reaching a specific target probability of the occurrence of a DLE (x).

• dose(x = numeric, model = LogisticLogNormalGrouped, samples = Samples): method for
LogisticLogNormalGrouped which needs group argument in addition.

• dose(x = numeric, model = LogisticKadane, samples = Samples): compute the dose level
reaching a specific target probability of the occurrence of a DLE (x).

• dose(x = numeric, model = LogisticKadaneBetaGamma, samples = Samples): compute the
dose level reaching a specific target probability of the occurrence of a DLE (x).

• dose(x = numeric, model = LogisticNormalMixture, samples = Samples): compute the
dose level reaching a specific target probability of the occurrence of a DLE (x).

• dose(x = numeric, model = LogisticNormalFixedMixture, samples = Samples): compute
the dose level reaching a specific target probability of the occurrence of a DLE (x).

• dose(x = numeric, model = LogisticLogNormalMixture, samples = Samples): compute
the dose level reaching a specific target probability of the occurrence of a DLE (x).

• dose(x = numeric, model = DualEndpoint, samples = Samples): compute the dose level
reaching a specific target probability of the occurrence of a DLE (x).

• dose(x = numeric, model = LogisticIndepBeta, samples = Samples): compute the dose
level reaching a specific target probability of the occurrence of a DLE (x).

• dose(x = numeric, model = LogisticIndepBeta, samples = missing): compute the dose
level reaching a specific target probability of the occurrence of a DLE (x). All model parame-
ters (except x) should be present in the model object.

• dose(x = numeric, model = Effloglog, samples = missing): compute the dose level reach-
ing a specific target probability of the occurrence of a DLE (x). All model parameters (except
x) should be present in the model object.

• dose(x = numeric, model = EffFlexi, samples = Samples): compute the dose level reach-
ing a specific target probability of the occurrence of a DLE (x). For this method x must be a
scalar.

dose 63

• dose(x = numeric, model = OneParLogNormalPrior, samples = Samples): compute the dose
level reaching a specific target probability of the occurrence of a DLT (x).

• dose(x = numeric, model = OneParExpPrior, samples = Samples): compute the dose level
reaching a specific target probability of the occurrence of a DLT (x).

Note

The dose() and prob() methods are the inverse of each other, for all dose() methods for which
its first argument, i.e. a given independent variable that dose depends on, represents toxicity proba-
bility.

See Also

doseFunction(), prob(), efficacy().

Examples

Create some data.
my_data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Initialize a model, e.g. 'LogisticLogNormal'.
my_model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Get samples from posterior.
my_options <- McmcOptions(burnin = 100, step = 2, samples = 20)
my_samples <- mcmc(data = my_data, model = my_model, options = my_options)

Posterior for the dose achieving Prob(DLT) = 0.45.
dose(x = 0.45, model = my_model, samples = my_samples)

Create data from the 'Data' (or 'DataDual') class.
dlt_data <- Data(

x = c(25, 50, 25, 50, 75, 300, 250, 150),
y = c(0, 0, 0, 0, 0, 1, 1, 0),
doseGrid = seq(from = 25, to = 300, by = 25)

)

Initialize a toxicity model using 'LogisticIndepBeta' model.
dlt_model <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = dlt_data

64 doseFunction

)

Get samples from posterior.
dlt_sample <- mcmc(data = dlt_data, model = dlt_model, options = my_options)

Posterior for the dose achieving Prob(DLT) = 0.45.
dose(x = 0.45, model = dlt_model, samples = dlt_sample)
dose(x = c(0.45, 0.6), model = dlt_model)
data_ordinal <- .DefaultDataOrdinal()
model <- .DefaultLogisticLogNormalOrdinal()
options <- .DefaultMcmcOptions()
samples <- mcmc(data_ordinal, model, options)

dose(0.25, model, samples, grade = 2L)

doseFunction Getting the Dose Function for a Given Model Type

Description

[Experimental]
A function that returns a dose() method that computes the dose reaching a specific target value of
a given independent variable, based on the model specific parameters.

Usage

doseFunction(model, ...)

S4 method for signature 'GeneralModel'
doseFunction(model, ...)

S4 method for signature 'ModelPseudo'
doseFunction(model, ...)

S4 method for signature 'LogisticLogNormalOrdinal'
doseFunction(model, grade, ...)

Arguments

model (GeneralModel or ModelPseudo)
the model.

... model specific parameters.

grade (integer)
the toxicity grade for which the dose function is required

Value

A dose() method that computes doses.

dose_grid_range 65

Functions

• doseFunction(GeneralModel):
• doseFunction(ModelPseudo):
• doseFunction(LogisticLogNormalOrdinal):

See Also

dose(), probFunction().

Examples

my_model <- LogisticLogNormal(
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 50

)

dose_fun <- doseFunction(my_model, alpha0 = 2, alpha1 = 3)
dose_fun(0.6)
data_ordinal <- .DefaultDataOrdinal()
model <- .DefaultLogisticLogNormalOrdinal()
options <- .DefaultMcmcOptions()
suppressWarnings({

samples <- mcmc(data_ordinal, model, options)
})

doseFunction(
model,
alpha1 = samples@data$alpha2,
beta = samples@data$beta,
grade = 1L

)(x = 0.75)
doseFunction(

model,
alpha2 = samples@data$alpha2,
beta = samples@data$beta,
grade = 2L

)(x = 0.25)

dose_grid_range Getting the Dose Grid Range

Description

[Stable]
A function that returns a vector of length two with the minimum and maximum dose in a grid.
It returns c(-Inf, Inf) if the range cannot be determined, which happens when the dose grid is
empty. User can choose whether the placebo dose (if any) should be counted or not.

[Experimental]

66 dose_grid_range

Usage

dose_grid_range(object, ...)

S4 method for signature 'Data'
dose_grid_range(object, ignore_placebo = TRUE)

S4 method for signature 'DataOrdinal'
dose_grid_range(object, ignore_placebo = TRUE)

Arguments

object (Data)
object with dose grid.

... further arguments passed to class-specific methods.

ignore_placebo (flag)
should placebo dose (if any) not be counted?

Value

A numeric vector containing the minimum and maximum of all the doses in a grid or c(-Inf,
Inf).

Examples

my_data <- Data(
x = c(10, 50, 90, 100, 0.001, 20, 30, 30),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
ID = 1:8,
cohort = c(1L, 2L, 3L, 4L, 5L, 5L, 6L, 6L),
doseGrid = c(0.001, seq(from = 10, to = 100, by = 10)),
placebo = TRUE

)
dose_grid_range(my_data)
dose_grid_range(my_data, ignore_placebo = FALSE)
data <- DataOrdinal(

x = c(10, 20, 30, 40, 50, 50, 50, 60, 60, 60),
y = as.integer(c(0, 0, 0, 0, 0, 1, 0, 0, 1, 2)),
ID = 1L:10L,
cohort = as.integer(c(1:4, 5, 5, 5, 6, 6, 6)),
doseGrid = c(seq(from = 10, to = 100, by = 10)),
yCategories = c("No tox" = 0L, "Sub-tox AE" = 1L, "DLT" = 2L),
placebo = FALSE

)

dose_grid_range(data)

DualDesign-class 67

DualDesign-class DualDesign

Description

[Stable]

DualDesign is the class for the dual-endpoint CRM design. This class has special requirements for
the model and data slots in comparison to the parent class Design.

Usage

DualDesign(model, data, ...)

.DefaultDualDesign()

Arguments

model (DualEndpoint)
see slot definition.

data (DataDual)
see slot definition.

... Arguments passed on to Design

stopping (Stopping)
see slot definition.

increments (Increments)
see slot definition.

pl_cohort_size (CohortSize)
see slot definition.

backfill (Backfill)
see slot definition.

Slots

model (DualEndpoint)
the model to be used.

data (DataDual)
specifies dose grid, any previous data, etc.

Note

the nextBest slot can be of any class, this allows for easy comparison with recommendation meth-
ods that don’t use the biomarker information.

Typically, end users will not use the .DefaultDualDesign() function.

68 DualDesign-class

Examples

empty_data <- DataDual(doseGrid = c(1, 3, 5, 10, 15, 20, 25, 40, 50, 80, 100))

Initialize the CRM model.
my_model <- DualEndpointRW(

mean = c(0, 1),
cov = matrix(c(1, 0, 0, 1), nrow = 2),
sigma2betaW = 0.01,
sigma2W = c(a = 0.1, b = 0.1),
rho = c(a = 1, b = 1),
rw1 = TRUE

)

Choose the rule for selecting the next dose.
my_next_best <- NextBestDualEndpoint(

target = c(0.9, 1),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Choose the rule for the cohort-size.
my_size1 <- CohortSizeRange(

intervals = c(0, 30),
cohort_size = c(1, 3)

)
my_size2 <- CohortSizeDLT(

intervals = c(0, 1),
cohort_size = c(1, 3)

)
my_size <- maxSize(my_size1, my_size2)

Choose the rule for stopping.
my_stopping1 <- StoppingTargetBiomarker(

target = c(0.9, 1),
prob = 0.5

)
my_stopping <- my_stopping1 | StoppingMinPatients(40) | StoppingMissingDose()

Choose the rule for dose increments.
my_increments <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)

Initialize the design.
design <- DualDesign(

model = my_model,
data = empty_data,
nextBest = my_next_best,
stopping = my_stopping,
increments = my_increments,
cohort_size = my_size,

DualEndpoint-class 69

startingDose = 3
)

DualEndpoint-class DualEndpoint

Description

[Experimental]
DualEndpoint is the general class for the dual endpoint model.

Usage

DualEndpoint(mean, cov, ref_dose = 1, use_log_dose = FALSE, sigma2W, rho)

.DefaultDualEndpoint()

Arguments

mean (numeric)
for the probit toxicity model, the prior mean vector.

cov (matrix)
for the probit toxicity model, the prior covariance matrix. The precision matrix
is internally calculated as an inverse of cov.

ref_dose (number)
for the probit toxicity model, the reference dose x∗ (strictly positive number).

use_log_dose (flag)
for the probit toxicity model, whether a log transformation of the (standardized)
dose should be used?

sigma2W (numeric)
the biomarker variance. Either a fixed value or Inverse-Gamma distribution pa-
rameters, i.e. vector with two elements named a and b.

rho (numeric)
either a fixed value for the correlation (between -1 and 1), or a named vector
with two elements named a and b for the Beta prior on the transformation kappa
= (rho + 1) / 2, which is in (0, 1). For example, a = 1, b = 1 leads to a
uniform prior on rho.

Details

The idea of the dual-endpoint models is to model not only the dose-toxicity relationship, but also to
model, at the same time, the relationship of a PD biomarker with the dose. The sub-classes of this
class define how the dose-biomarker relationship is parametrized. This class here shall contain all
the common features to reduce duplicate code. (This class however, must not be virtual as we need
to create objects of it during the construction of subclass objects.)

70 DualEndpoint-class

The dose-toxicity relationship is modeled with probit regression model

probit[p(x)] = betaZ1 + betaZ2 ∗ x/x∗,

or
probit[p(x)] = betaZ1 + betaZ2 ∗ log(x/x∗),

in case when the option use_log_dose is TRUE. Here, p(x) is the probability of observing a DLT
for a given dose x and x∗ is the reference dose. The prior

(betaZ1, log(betaZ2)) Normal(mean, cov).

For the biomarker response w at a dose x, we assume

w(x) Normal(f(x), sigma2W),

where f(x) is a function of the dose x, which is further specified in sub-classes. The biomarker
variance sigma2W can be fixed or assigned an Inverse-Gamma prior distribution; see the details
below under slot sigma2W.

Finally, the two endpoints y (the binary DLT variable) and w (the biomarker) can be correlated,
by assuming a correlation of level rho between the underlying continuous latent toxicity variable z
and the biomarker w. Again, this correlation can be fixed or assigned a prior distribution from the
scaled Beta family; see the details below under slot rho.

Please see the example vignette by typing crmPackExample() for a full example.

Slots

betaZ_params (ModelParamsNormal)
for the probit toxicity model, it contains the prior mean, covariance matrix and precision
matrix which is internally calculated as an inverse of the covariance matrix.

ref_dose (positive_number)
for the probit toxicity model, the reference dose.

use_log_dose (flag)
for the probit toxicity model, whether a log transformation of the (standardized) dose should
be used?

sigma2W (numeric)
the biomarker variance. Either a fixed value or Inverse-Gamma distribution parameters, i.e.
vector with two elements named a and b.

rho (numeric)
either a fixed value for the correlation (between -1 and 1), or a named vector with two elements
named a and b for the Beta prior on the transformation kappa = (rho + 1) / 2, which is in
(0, 1). For example, a = 1, b = 1 leads to a uniform prior on rho.

use_fixed (logical)
indicates whether a fixed value for sigma2W or rho (for each parameter separately) is used or
not. This slot is needed for internal purposes and must not be touched by the user.

Note

Typically, end users will not use the .DefaultDualEndpoint() function.

DualEndpointBeta-class 71

See Also

DualEndpointRW, DualEndpointBeta, DualEndpointEmax.

DualEndpointBeta-class

DualEndpointBeta

Description

[Experimental]

DualEndpointBeta is the class for the dual endpoint model with beta function for dose-biomarker
relationship.

Usage

DualEndpointBeta(E0, Emax, delta1, mode, ref_dose_beta = 1, ...)

.DefaultDualEndpointBeta()

Arguments

E0 (numeric)
either a fixed number or the two uniform distribution parameters.

Emax (numeric)
either a fixed number or the two uniform distribution parameters.

delta1 (numeric)
either a fixed positive number or the two parameters of the uniform distribution,
that can take only positive values.

mode (numeric)
either a fixed positive number or the two parameters of the uniform distribution,
that can take only positive values.

ref_dose_beta (number)
the reference dose x∗ (strictly positive number). Note that this is different from
the ref_dose in the inherited DualEndpoint model).

... parameters passed to DualEndpoint().

Details

This class extends the DualEndpoint class so that the dose-biomarker relationship f(x) is modelled
by a parametric, rescaled beta density function:

f(x) = E0 + (Emax− E0) ∗Beta(delta1, delta2) ∗ (x/x∗)delta1 ∗ (1− x/x∗)delta2,

72 DualEndpointBeta-class

where x∗ is the maximum dose (end of the dose range to be considered), delta1 and delta2 are the
two beta function parameters, and E0, Emax are the minimum and maximum levels, respectively.
For ease of interpretation, we use the parametrization based on delta1 and the mode, where

mode = delta1/(delta1 + delta2),

so that multiplying this by x∗ gives the mode on the dose grid.

All parameters can currently be assigned uniform distributions or be fixed in advance. Note that
E0 and Emax can have negative values or uniform distributions reaching into negative range, while
delta1 and mode must be positive or have uniform distributions in the positive range.

Slots

E0 (numeric)
either a fixed number or the two uniform distribution parameters.

Emax (numeric)
either a fixed number or the two uniform distribution parameters.

delta1 (numeric)
either a fixed positive number or the two parameters of the uniform distribution, that can take
only positive values.

mode (numeric)
either a fixed positive number or the two parameters of the uniform distribution, that can take
only positive values.

ref_dose_beta (positive_number)
the reference dose x∗ (note that this is different from the ref_dose in the inherited DualEndpoint
model).

Note

Typically, end users will not use the .DefaultDualEndpointBeta() function.

See Also

DualEndpoint, DualEndpointRW, DualEndpointEmax.

Examples

my_model <- DualEndpointBeta(
mean = c(0, 1),
cov = matrix(c(1, 0, 0, 1), nrow = 2),
ref_dose = 10,
use_log_dose = TRUE,
sigma2W = c(a = 0.1, b = 0.1),
rho = c(a = 1, b = 1),
E0 = c(0, 100),
Emax = c(0, 500),
delta1 = c(0, 5),
mode = c(1, 15),
ref_dose_beta = 1000

)

DualEndpointEmax-class 73

DualEndpointEmax-class

DualEndpointEmax

Description

[Experimental]
DualEndpointEmax is the class for the dual endpoint model with Emax function for dose-biomarker
relationship.

Usage

DualEndpointEmax(E0, Emax, ED50, ref_dose_emax = 1, ...)

.DefaultDualEndpointEmax()

Arguments

E0 (numeric)
either a fixed number or the two uniform distribution parameters.

Emax (numeric)
either a fixed number or the two uniform distribution parameters.

ED50 (numeric)
either a fixed number or the two uniform distribution parameters.

ref_dose_emax (number)
the reference dose x∗ (strictly positive number). Note that this is different from
the ref_dose in the inherited DualEndpoint model).

... parameters passed to DualEndpoint().

Details

This class extends the DualEndpoint class so that the dose-biomarker relationship f(x) is modelled
by a parametric Emax function:

f(x) = E0 + [(Emax− E0) ∗ (x/x∗)]/[ED50 + (x/x∗)],

where x∗ is a reference dose, E0 and Emax are the minimum and maximum levels for the
biomarker, and ED50 is the dose achieving half of the maximum effect 0.5∗Emax. All parameters
can currently be assigned uniform distributions or be fixed.

Slots

E0 (numeric)
either a fixed number or the two uniform distribution parameters.

Emax (numeric)
either a fixed number or the two uniform distribution parameters.

74 DualEndpointRW-class

ED50 (numeric)
either a fixed number or the two uniform distribution parameters.

ref_dose_emax (positive_number)
the reference dose x∗ (note that this is different from the ref_dose in the inherited DualEndpoint
model).

Note

Typically, end users will not use the .DefaultDualEndpointEmax() function.

See Also

DualEndpoint, DualEndpointRW, DualEndpointBeta.

Examples

my_model <- DualEndpointEmax(
mean = c(0, 1),
cov = matrix(c(1, 0, 0, 1), nrow = 2),
sigma2W = c(a = 0.1, b = 0.1),
rho = c(a = 1, b = 1),
E0 = c(0, 100),
Emax = c(0, 500),
ED50 = c(10, 200),
ref_dose_emax = 1000

)

DualEndpointRW-class DualEndpointRW

Description

[Experimental]

DualEndpointRW is the class for the dual endpoint model with random walk prior for biomarker.

Usage

DualEndpointRW(sigma2betaW, rw1 = TRUE, ...)

.DefaultDualEndpointRW()

Arguments

sigma2betaW (numeric)
the prior variance factor of the random walk prior for the biomarker model.
Either a fixed value or Inverse-Gamma distribution parameters, i.e. vector with
two elements named a and b.

DualEndpointRW-class 75

rw1 (flag)
for specifying the random walk prior on the biomarker level. When TRUE, ran-
dom walk of first order is used. Otherwise, the random walk of second order is
used.

... parameters passed to DualEndpoint().

Details

This class extends the DualEndpoint class so that the dose-biomarker relationship f(x) is modelled
by a non-parametric random walk of first or second order. That means, for the first order random
walk we assume

betaWi − betaWi − 1 Normal(0, (xi − xi − 1) ∗ sigma2betaW),

where betaWi = f(xi) is the biomarker mean at the i-th dose gridpoint xi. For the second order
random walk, the second-order differences instead of the first-order differences of the biomarker
means follow the normal distribution with 0 mean and 2 ∗ (xi − xi − 2) ∗ sigma2betaW variance.

The variance parameter sigma2betaW is important because it steers the smoothness of the function
f(x), i.e.: if it is large, then f(x) will be very wiggly; if it is small, then f(x) will be smooth. This
parameter can either be a fixed value or assigned an inverse gamma prior distribution.

Slots

sigma2betaW (numeric)
the prior variance factor of the random walk prior for the biomarker model. Either a fixed
value or Inverse-Gamma distribution parameters, i.e. vector with two elements named a and
b.

rw1 (flag)
for specifying the random walk prior on the biomarker level. When TRUE, random walk of first
order is used. Otherwise, the random walk of second order is used.

Note

Non-equidistant dose grids can be used now, because the difference xi − xi − 1 is included in
the modelling assumption above. Please note that due to impropriety of the random walk prior
distributions, it is not possible to produce MCMC samples with empty data objects (i.e., sample
from the prior). This is not a bug, but a theoretical feature of this model.

Typically, end users will not use the .DefaultDualEndpointRW() function.

See Also

DualEndpoint, DualEndpointBeta, DualEndpointEmax.

Examples

my_model <- DualEndpointRW(
mean = c(0, 1),
cov = matrix(c(1, 0, 0, 1), nrow = 2),
sigma2W = c(a = 0.1, b = 0.1),

76 DualResponsesDesign-class

rho = c(a = 1, b = 1),
sigma2betaW = 0.01,
rw1 = TRUE

)

DualResponsesDesign-class

DualResponsesDesign.R

Description

[Stable]
This is a class of design based on DLE responses using the LogisticIndepBeta model without
DLE and efficacy samples. It contains all slots from the RuleDesign and TDsamplesDesign classes.

Usage

DualResponsesDesign(eff_model, data, ...)

.DefaultDualResponsesDesign()

Arguments

eff_model (ModelEff)
see slot definition.

data (DataDual)
see slot definition.

... Arguments passed on to TDDesign

model (ModelTox)
see slot definition.

stopping (Stopping)
see slot definition.

increments (Increments)
see slot definition.

pl_cohort_size (CohortSize)
see slot definition.

Slots

data (DataDual)
the data set.

eff_model (ModelEff)
the pseudo efficacy model to be used.

Note

Typically, end users will not use the .DefaultDualResponsesDesign() function.

DualResponsesSamplesDesign-class 77

Examples

empty_data <- DataDual(doseGrid = seq(25, 300, 25))

tox_model <- LogisticIndepBeta(
binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = empty_data

)

eff_model <- Effloglog(
eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = empty_data

)

my_next_best <- NextBestMaxGain(
prob_target_drt = 0.35,
prob_target_eot = 0.3

)

my_increments <- IncrementsRelative(
intervals = c(25, 300),
increments = c(2, 2)

)

my_size <- CohortSizeConst(size = 3)
my_stopping <- StoppingMinPatients(nPatients = 36) | StoppingMissingDose()

design <- DualResponsesDesign(
nextBest = my_next_best,
cohort_size = my_size,
startingDose = 25,
model = tox_model,
eff_model = eff_model,
data = empty_data,
stopping = my_stopping,
increments = my_increments

)

DualResponsesSamplesDesign-class

DualResponsesSamplesDesign

Description

[Stable]
This is a class of design based on DLE responses using the LogisticIndepBeta model with DLE
and efficacy samples. It contain all slots in RuleDesign and TDsamplesDesign class objects.

78 DualResponsesSamplesDesign-class

Usage

DualResponsesSamplesDesign(eff_model, data, ...)

.DefaultDualResponsesSamplesDesign()

Arguments

eff_model (ModelEff)
see slot definition.

data (DataDual)
see slot definition.

... Arguments passed on to TDsamplesDesign

model (ModelTox)
see slot definition.

stopping (Stopping)
see slot definition.

increments (Increments)
see slot definition.

pl_cohort_size (CohortSize)
see slot definition.

Slots

data (DataDual)
the data set.

eff_model (ModelEff)
the pseudo efficacy model to be used.

Note

Typically, end users will not use the .DefaultDualResponsesSamplesDesign() function.

Examples

empty_data <- DataDual(doseGrid = seq(25, 300, 25))

tox_model <- LogisticIndepBeta(
binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = empty_data

)
options <- McmcOptions(burnin = 100, step = 2, samples = 200)
tox_samples <- mcmc(empty_data, tox_model, options)

eff_model <- Effloglog(
eff = c(1.223, 2.513),
eff_dose = c(25, 300),

DualSimulations-class 79

nu = c(a = 1, b = 0.025),
data = empty_data

)
eff_samples <- mcmc(empty_data, eff_model, options)

my_next_best <- NextBestMaxGainSamples(
prob_target_drt = 0.35,
prob_target_eot = 0.3,
derive = function(samples) {

as.numeric(quantile(samples, prob = 0.3))
},
mg_derive = function(mg_samples) {

as.numeric(quantile(mg_samples, prob = 0.5))
}

)

my_increments <- IncrementsRelative(
intervals = c(25, 300),
increments = c(2, 2)

)
my_size <- CohortSizeConst(size = 3)
my_stopping <- StoppingMinPatients(nPatients = 36) | StoppingMissingDose()

design <- DualResponsesSamplesDesign(
nextBest = my_next_best,
cohort_size = my_size,
startingDose = 25,
model = tox_model,
eff_model = eff_model,
data = empty_data,
stopping = my_stopping,
increments = my_increments

)

DualSimulations-class DualSimulations

Description

[Stable]

This class captures the trial simulations from dual-endpoint model based designs. In comparison to
the parent class Simulations, it contains additional slots to capture the dose-biomarker fits, and
the sigma2W and rho estimates.

Usage

DualSimulations(rho_est, sigma2w_est, fit_biomarker, ...)

.DefaultDualSimulations()

80 DualSimulations-class

Arguments

rho_est (numeric)
see DualSimulations

sigma2w_est (numeric)
DualSimulations

fit_biomarker (list)
see DualSimulations

... additional parameters from Simulations

Slots

rho_est (numeric)
vector of final posterior median rho estimates

sigma2w_est (numeric)
vector of final posterior median sigma2W estimates

fit_biomarker (list)
with the final dose-biomarker curve fits

Note

Typically, end users will not use the .DefaultDualSimulations() function.

Examples

data_list <- list(
Data(
x = 1:2,
y = 0:1,
doseGrid = 1:2,
ID = 1L:2L,
cohort = 1L:2L

),
Data(

x = 3:4,
y = 0:1,
doseGrid = 3:4,
ID = 1L:2L,
cohort = 1L:2L

)
)

doses <- c(1, 2)
seed <- as.integer(123)

fit <- list(
c(0.1, 0.2),
c(0.3, 0.4)

)

DualSimulationsSummary-class 81

stop_report <- matrix(c(TRUE, FALSE), nrow = 2)

stop_reasons <- list("A", "B")

additional_stats <- list(a = 1, b = 1)

dual_simulations_obj <- DualSimulations(
rho_est = c(0.25, 0.35),
sigma2w_est = c(0.15, 0.25),
fit_biomarker = list(c(0.3, 0.4), c(0.4, 0.5)),
fit = fit,
stop_report = stop_report,
stop_reasons = stop_reasons,
additional_stats = additional_stats,
data = data_list,
doses = doses,
seed = seed

)

DualSimulationsSummary-class

DualSimulationsSummary

Description

[Stable] This class captures the summary of dual-endpoint simulations output. In comparison to its
parent class SimulationsSummary, it has additional slots.

Usage

.DefaultDualSimulationsSummary()

Slots

biomarker_fit_at_dose_most_selected (numeric)
fitted biomarker level at most often selected dose.

mean_biomarker_fit (list)
list with average, lower (2.5%) and upper (97.5%) quantiles of mean fitted biomarker level at
each dose

Note

Typically, end users will not use the .DefaultDualSimulationsSummary() function.

82 EffFlexi-class

EffFlexi-class EffFlexi

Description

[Stable]
EffFlexi is the class for the efficacy model in flexible form of prior expressed in form of pseudo
data. In this class, a flexible form is used to describe the relationship between the efficacy responses
and the dose levels and it is specified as

(W |betaW, sigma2W) Normal(X ∗ betaW, sigma2W ∗ I),

where W is a vector of the efficacy responses, betaW is a column vector of the mean efficacy
responses for all dose levels, and X is the design matrix with entries Ii, j that are equal to 1 if
subject i is allocated to dose j, and 0 otherwise. The sigma2W is the variance of the efficacy
responses which can be either a fixed number or a number from an inverse gamma distribution.
This flexible form aims to capture different shapes of the dose-efficacy curve. In addition, the first
(RW1) or second order (RW2) random walk model can be used for smoothing data. That is the
random walk model is used to model the first or the second order differences of the mean efficacy
responses to its neighboring dose levels of their mean efficacy responses.

The RW1 model is given as

betaWj − betaWj − 1) Normal(0, sigma2betaW),

and for RW2 as

betaWj − 2− 2 ∗ betaWj − 1 + betaj Normal(0, sigma2betaW),

where betaWj is the vector of mean efficacy responses at dose j, and the sigma2betaW is the prior
variance which can be either a fixed number or a number from an inverse gamma distribution.

The eff and eff_dose are the pseudo efficacy responses and dose levels at which these pseudo
efficacy responses are observed. Both, eff and eff_dose must be vectors of length at least 2. The
positions of the elements specified in eff and eff_dose must correspond to each other between
these vectors.

Usage

EffFlexi(eff, eff_dose, sigma2W, sigma2betaW, rw1 = TRUE, data)

.DefaultEffFlexi()

Arguments

eff (numeric)
the pseudo efficacy responses. Elements of eff must correspond to the elements
of eff_dose.

eff_dose (numeric)
dose levels that correspond to pseudo efficacy responses in eff.

EffFlexi-class 83

sigma2W (numeric)
the prior variance of the efficacy responses. This is either a fixed value or a
named vector with two positive numbers, the shape (a), and the rate (b) param-
eters for the inverse gamma distribution.

sigma2betaW (numeric)
the prior variance of the random walk model used for smoothing. This is either
a fixed value or a named vector with two positive numbers, the shape (a), and
the rate (b) parameters for the inverse gamma distribution.

rw1 (flag)
used for smoothing data for this efficacy model. If it is TRUE, the first-order
random walk model is used for the mean efficacy responses. Otherwise, the
random walk of second order is used.

data (DataDual)
observed data to update estimates of the model parameters.

Details

This model will output the updated value or the updated values of the parameters of the inverse
gamma distributions for sigma2W and sigma2betaW . The EffFlexi inherits all slots from
ModelEff class.

Slots

eff (numeric)
the pseudo efficacy responses. Each element here must represent responses treated based
on one subject. It must be a vector of length at least 2 and the order of its elements must
correspond to values specified in eff_dose.

eff_dose (numeric)
the pseudo efficacy dose levels at which the pseudo efficacy responses are observed. It must be
a vector of length at least 2 and the order of its elements must correspond to values specified
in eff.

sigma2W (numeric)
the prior variance of the flexible efficacy form. This is either a fixed value or a named vector
with two positive numbers, the shape (a), and the rate (b) parameters for the gamma distribu-
tion.

sigma2betaW (numeric)
the prior variance of the random walk model for the mean efficacy responses. This is either
a fixed value or a named vector with two positive numbers, the shape (a), and the rate (b)
parameters for the gamma distribution.

use_fixed (logical)
indicates whether a fixed value for sigma2W and sigma2betaW (for each parameter separately)
is used or not. This slot is needed for internal purposes and must not be touched by the user.

rw1 (flag)
used for smoothing data for this efficacy model. If it is TRUE, the first-order random walk
model is used for the mean efficacy responses. Otherwise, the random walk of second order
is used.

84 EffFlexi-class

X (matrix)
the design matrix for the efficacy responses. It is based on both the pseudo and the observed
efficacy responses.

RW (matrix)
the difference matrix for the random walk model. This slot is needed for internal purposes and
must not be used by the user.

RW_rank (integer)
is the rank of the difference matrix. This slot is needed for internal purposes and must not be
used by the user.

Note

Typically, end users will not use the .DefaultEffFlexi() function.

Examples

Obtain prior estimates for the efficacy model in flexible form, given the pseudo data.
First define an empty data set by defining the dose levels used in the study.
There are 12 dose levels used in the study, ranging from 25 to 300 mg with
increments of 25.
emptydata <- DataDual(doseGrid = seq(25, 300, 25))

Define the pseudo data, i.e.: fixed 2 dose levels 25 and 300 mg (`eff_dose`)
and the efficacy responses 1.223 and 2.513 observed at these two dose levels (`eff`).
The prior variance of the pseudo efficacy responses can be either a fixed value
or two parameters for the inverse gamma distribution, the shape (a) and the
rate (b) (`sigma2W`).
The prior variance of the random walk model can be either a fixed value or two
parameters for the inverse gamma distribution, the shape (a) and the rate (b)
(`sigma2betaW`).
my_model <- EffFlexi(

eff = c(1.223, 2.513),
eff_dose = c(25, 300),
sigma2W = c(a = 0.1, b = 0.1),
sigma2betaW = c(a = 20, b = 50),
rw1 = FALSE,
data = emptydata

)

Obtain estimates from the model given some observed data is available.
data <- DataDual(

x = c(25, 50, 50, 75, 100, 100, 225, 300),
y = c(0, 0, 0, 0, 1, 1, 1, 1),
w = c(0.31, 0.42, 0.59, 0.45, 0.6, 0.7, 0.6, 0.52),
doseGrid = emptydata@doseGrid

)

my_model1 <- EffFlexi(
eff = c(1.223, 2.513),
eff_dose = c(25, 300),
sigma2W = c(a = 0.1, b = 0.1),

efficacy 85

sigma2betaW = c(a = 20, b = 50),
rw1 = FALSE,
data = data

)

efficacy Computing Expected Efficacy for a Given Dose, Model and Samples

Description

[Stable]
A function that computes the value of expected efficacy at a specified dose level, based on the model
specific parameters. The model parameters (samples) are obtained based on prior specified in form
of pseudo data combined with observed responses (if any).

Usage

efficacy(dose, model, samples, ...)

S4 method for signature 'numeric,Effloglog,Samples'
efficacy(dose, model, samples)

S4 method for signature 'numeric,Effloglog,missing'
efficacy(dose, model)

S4 method for signature 'numeric,EffFlexi,Samples'
efficacy(dose, model, samples)

Arguments

dose (numeric)
the dose which is targeted. The following recycling rule applies when samples
is not missing: vectors of size 1 will be recycled to the size of the sample (i.e.
size(samples)). Otherwise, dose must have the same size as the sample.

model (ModelEff)
the efficacy model with pseudo data prior.

samples (Samples)
samples of model’s parameters that will be used to compute expected efficacy
values. Can also be missing for some models.

... model specific parameters when samples are not used.

Details

The efficacy() function computes the expected efficacy for given doses, using samples of the
model parameter(s). If you work with multivariate model parameters, then assume that your model
specific efficacy() method receives a samples matrix where the rows correspond to the sampling
index, i.e. the layout is then nSamples x dimParameter.

86 efficacy

Value

A numeric vector with the values of expected efficacy. If non-scalar samples were used, then
every element in the returned vector corresponds to one element of a sample. Hence, in this case,
the output vector is of the same length as the sample vector. If scalar samples were used or no
samples were used, e.g. for pseudo DLE/toxicity model, then the output is of the same length as
the length of the dose.

Functions

• efficacy(dose = numeric, model = Effloglog, samples = Samples): compute the expected
efficacy at a specified dose level, based on the samples of Effloglog model parameters.

• efficacy(dose = numeric, model = Effloglog, samples = missing): compute the expected
efficacy at a specified dose level, based on the Effloglog model parameters. All model pa-
rameters (except dose) should be present in the model object.

• efficacy(dose = numeric, model = EffFlexi, samples = Samples): compute the expected
efficacy at a specified dose level, based on the samples of EffFlexi model parameters. If a
given dose in the dose vector is from outside of the dose grid range, the NA_real is returned
for this dose and the warning is thrown.

See Also

dose(), prob().

Examples

Obtain the expected efficacy value for a given dose, a given pseudo efficacy
model (in flexible form for prior) and efficacy samples.

Empty data (i.e. no observed data), dose grid only.
my_data <- DataDual(doseGrid = seq(25, 300, 25))

my_model <- EffFlexi(
eff = c(1.223, 2.513),
eff_dose = c(25, 300),
sigma2W = c(a = 0.1, b = 0.1),
sigma2betaW = c(a = 20, b = 50),
rw1 = FALSE,
data = my_data

)

my_options <- McmcOptions(
burnin = 100,
step = 2,
samples = 200,
rng_kind = "Mersenne-Twister",
rng_seed = 94

)

my_samples <- mcmc(data = my_data, model = my_model, options = my_options)

efficacyFunction 87

Efficacy for dose 75.
efficacy(dose = 75, model = my_model, samples = my_samples)

Obtain the expected efficacy value for a given dose, a given pseudo efficacy
model (linear log-log efficacy) and no samples.
my_model_ll <- Effloglog(

eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = my_data,
const = 0

)

efficacy(dose = 75, model = my_model_ll)

efficacyFunction Getting the Efficacy Function for a Given Model Type

Description

[Experimental]
A function that returns an efficacy() function that computes expected efficacy for a given dose
level, based on the model specific parameters.

Usage

efficacyFunction(model, ...)

S4 method for signature 'ModelEff'
efficacyFunction(model, ...)

Arguments

model (ModelEff)
the model.

... model specific parameters.

Value

A efficacy() function that computes expected efficacy.

Functions

• efficacyFunction(ModelEff):

See Also

efficacy().

88 Effloglog-class

Examples

my_data <- DataDual(
doseGrid = c(0.001, seq(25, 300, 25)),
placebo = TRUE

)

my_model <- Effloglog(
eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = my_data,
const = 2

)

eff_fun <- efficacyFunction(my_model, theta1 = -4.8, theta2 = 3.7)
eff_fun(30)

Effloglog-class Effloglog

Description

[Stable]

Effloglog is the class for the linear log-log efficacy model using pseudo data prior. It describes the
relationship between continuous efficacy responses and corresponding dose levels in log-log scale.
This efficacy log-log model is given as

yi = theta1 + theta2 ∗ log(log(xi)) + epsiloni,

where yi is the efficacy response for subject i, xi is the dose level treated for subject i and epsiloni

is the random error term of efficacy model at subject i. The error term epsiloni is a random variable
that follows normal distribution with mean 0 and variance nu−1, which is assumed to be the same
for all subjects. There are three parameters in this model, the intercept theta1, the slope theta2 and
the precision nu of the efficacy responses, also known as the inverse of the variance of the pseudo
efficacy responses. It can be a fixed constant or having a gamma distribution. Therefore, a single
scalar value or a vector with two positive numbers values must be specified for nu slot. If there
are some observed efficacy responses available, in the output, nu will display the updated value of
the precision or the updated values for the parameters of the gamma distribution. The Effloglog
inherits all slots from ModelEff class.

Usage

Effloglog(eff, eff_dose, nu, data, const = 0)

.DefaultEffloglog()

Effloglog-class 89

Arguments

eff (numeric)
the pseudo efficacy responses. Elements of eff must correspond to the elements
of eff_dose.

eff_dose (numeric)
dose levels that correspond to pseudo efficacy responses in eff.

nu (numeric)
the precision (inverse of the variance) of the efficacy responses. This is either a
fixed value or a named vector with two positive numbers, the shape (a), and the
rate (b) parameters for the gamma distribution.

data (DataDual)
observed data to update estimates of the model parameters.

const (number)
the constant value added to the dose level when the dose level value is less than
or equal to 1 and a special form of the linear log-log has to be applied (Yeung et
al. 2015).

Details

The prior of this model is specified in form of pseudo data. First, at least two dose levels are fixed.
Then, using e.g. experts’ opinion, the efficacy values that correspond to these dose levels can be
obtained, The eff and eff_dose arguments represent the prior in form of the pseudo data. The
eff represents the pseudo efficacy values. The eff_dose represents the dose levels at which these
pseudo efficacy values are observed. Hence, the positions of the elements specified in eff and
eff_dose must correspond to each other between these vectors. Since at least 2 pseudo efficacy
values are needed to obtain modal estimates of the intercept and slope parameters, both eff and
eff_dose must be vectors of length at least 2.

The joint prior distribution of the intercept theta1 and the slope theta2 of this model follows
bivariate normal distribution with mean mu and covariance matrix (nu ∗Q)−1. The mean mu is a
2x1 column vector that contains the prior modal estimates of the intercept and the slope. Scalar nu
is the precision of the pseudo efficacy responses and Q is the prior or posterior (given that observed,
no DLT data is available) precision matrix. It is specified as Q = X0T ∗X0+XT ∗X , where X0
is a design matrix that is based on pseudo dose levels only, and X is a design matrix that is based
on dose levels corresponding to the no DLT efficacy responses observed only (if any). Hence, the
X0 (or X) will be of size rx2, if there are r >= 2 pseudo efficacy responses specified (or if there
are r no DLT efficacy responses observed in the data).

Slots

eff (numeric)
the pseudo efficacy responses. Each element here must represent responses treated based
on one subject. It must be a vector of length at least 2 and the order of its elements must
correspond to values specified in eff_dose.

eff_dose (numeric)
the pseudo efficacy dose levels at which the pseudo efficacy responses are observed. It must be
a vector of length at least 2 and the order of its elements must correspond to values specified
in eff.

90 Effloglog-class

nu (numeric)
parameter of the prior precision of pseudo efficacy responses. This is either a fixed value or
a named vector with two positive numbers, the shape (a), and the rate (b) parameters for the
gamma distribution.

use_fixed (flag)
indicates whether nu specified is a fixed value or a vector with two parameters for gamma
distribution. This slot is for internal purposes only and must not be used by the user.

theta1 (number)
the intercept in this efficacy log-log model. This slot is used in output to display the resulting
prior or posterior modal estimates obtained based on the pseudo and observed (if any) data.

theta2 (number)
the slope in this efficacy log-log model. This slot is used in output to display the resulting
prior or posterior modal estimates obtained based on the pseudo and observed (if any) data.

Pcov (matrix)
refers to the 2x2 covariance matrix of the estimators of the intercept theta1 and the slope
theta2 parameters in this model. This is used in output to display the resulting prior and
posterior covariance matrix of theta1 and theta2 obtained, based on the pseudo and observed
(if any) data. This slot is needed for internal purposes.

X (matrix)
is the design matrix that is based on either the pseudo dose levels or observed dose levels
(without DLT). This is used in the output to display the design matrix for the pseudo or the
observed efficacy responses.

Y (numeric)
is a vector that either contains the pseudo efficacy responses or observed efficacy responses
(without DLT).

mu (numeric)
a vector of the prior or the posterior modal estimates of the intercept (theta1) and the slope
(theta2). This slot is used in output to display as the mean of the prior or posterior bivariate
normal distribution for theta1 and theta2.

Q (matrix)
is the prior or posterior (given that observed, no DLT data is available) precision matrix. It is
specified as Q = X0T ∗X0 +XT ∗X , where X0 is a design matrix that is based on pseudo
dose levels only, and X is a design matrix that is based on dose levels corresponding to the
observed, no DLT efficacy values only (if any).

const (number)
a non-negative number (default to 0), leading to the model form described above. In general,
the model has the form yi = theta1 + theta2 ∗ log(log(xi + const)) + epsiloni, such that
dose levels greater than 1− const can be considered as described in Yeung et al. (2015).

Note

Typically, end users will not use the .DefaultEffloglog() function.

References

Yeung WY, Whitehead J, Reigner B, Beyer U, Diack C, Jaki T (2015). “Bayesian adaptive dose-
escalation procedure for binary and continuous responses utilizing a gain function.” Pharmaceutical

enable_logging 91

Statistics. doi:10.1002/pst.1706, Published online ahead of print.

Examples

Obtain prior modal estimates given the pseudo data.
First we use an empty data set such that only the dose levels under
investigations are given. In total, 12 dose levels are under investigation
ranging from 25 to 300 mg with increments of 25 (i.e 25, 50, 75, ..., 300).
emptydata <- DataDual(doseGrid = seq(25, 300, 25), placebo = FALSE)

Define the pseudo data as first by fixing two dose levels 25 and 300 mg (`eff_dose`).
Then, the efficacy responses observed at these two dose levels are 1.223 and 2.513 (`eff`).
We specify the prior precision of the pseudo efficacy responses (`nu`) as a vector
with the shape (a) and the rate (b) parameters for the gamma distribution.
Obtain modal estimates and other estimates from the model (no observations,
only pseudo data).
my_model1 <- Effloglog(

eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = emptydata

)

Observed data.
my_data <- DataDual(

x = c(25, 50, 50, 75, 100, 100, 225, 300),
y = c(0, 0, 0, 0, 1, 1, 1, 1),
w = c(0.31, 0.42, 0.59, 0.45, 0.6, 0.7, 0.6, 0.52),
doseGrid = emptydata@doseGrid

)

Obtain posterior modal estimates and other estimates from the model given some
observed data.
my_model2 <- Effloglog(

eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = my_data

)

enable_logging Verbose Logging

Description

[Experimental]
A family of wrappers of selected futile.logger::futile.logger functions that control the log-
ging mechanism in crmPack. The crmPack uses futile.logger::futile.logger package for
the logging purposes. All the messages logged in crmPack are logged into crmPack logger at the
futile.logger::TRACE level. Hence, enabling verbose logging means that the logging threshold

https://doi.org/10.1002/pst.1706

92 examine

will be set to futile.logger::TRACE for the crmPack logger, and disabling verbose logging means
that it will be set to futile.logger::FATAL.

Usage

enable_logging()

disable_logging()

is_logging_enabled()

log_trace(msg, ..., capture = FALSE)

Arguments

msg The message to log

... Optional arguments to populate the format string

capture Capture print output of variables instead of interpolate

Functions

• enable_logging(): A simple wrapper of futile.logger::flog.threshold() that en-
ables crmPack verbose logging by setting logging threshold to futile.logger::TRACE for
crmPack logger.

• disable_logging(): A simple wrapper of futile.logger::flog.threshold() that dis-
ables crmPack verbose logging by setting logging threshold to futile.logger::FATAL for
crmPack logger.

• is_logging_enabled(): A simple wrapper of futile.logger::flog.logger() that checks
whether current threshold level for crmPack logger is verbose, which is futile.logger::TRACE.
It returns TRUE if the current logging level is verbose, FALSE otherwise.

• log_trace(): A simple wrapper of futile.logger::flog.trace() that prints a log mes-
sage in the crmPack logger.

examine Obtain Hypothetical Trial Course Table for a Design

Description

This generic function takes a design and generates a data.frame showing the beginning of several
hypothetical trial courses under the design. This means, from the generated data.frame one can
read off:

examine 93

Usage

examine(object, ..., maxNoIncrement = 100L)

S4 method for signature 'Design'
examine(object, mcmcOptions = McmcOptions(), ..., maxNoIncrement)

S4 method for signature 'RuleDesign'
examine(object, ..., maxNoIncrement = 100L)

S4 method for signature 'DADesign'
examine(object, mcmcOptions = McmcOptions(), ..., maxNoIncrement)

Arguments

object (Design or RuleDesign)
the design we want to examine

... additional arguments (see methods)

maxNoIncrement maximum number of contiguous next doses at 0 DLTs that are the same as be-
fore, i.e. no increment (default to 100)

mcmcOptions (McmcOptions)
giving the MCMC options for each evaluation in the trial. By default, the stan-
dard options are used

Details

• how many cohorts are required in the optimal case (no DLTs observed) in order to reach the
highest dose of the specified dose grid (or until the stopping rule is fulfilled)

• assuming no DLTs are observed until a certain dose level, what the next recommended dose is
for all possible number of DLTs observed

• the actual relative increments that will be used in these cases

• whether the trial would stop at a certain cohort

Examining the "single trial" behavior of a dose escalation design is the first important step in eval-
uating a design, and cannot be replaced by studying solely the operating characteristics in "many
trials". The cohort sizes are also taken from the design, assuming no DLTs occur until the dose
listed.

Value

The data frame

Functions

• examine(Design): Examine a model-based CRM.

• examine(RuleDesign): Examine a rule-based design.

• examine(DADesign): Examine a model-based CRM.

94 examine

Examples

Define the dose-grid.
emptydata <- Data(doseGrid = c(1, 3, 5, 10, 15, 20, 25))

Initialize the CRM model.
my_model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Choose the rule for selecting the next dose.
my_next_best <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

my_size1 <- CohortSizeRange(
intervals = c(0, 30),
cohort_size = c(1, 3)

)
my_size2 <- CohortSizeDLT(

intervals = c(0, 1),
cohort_size = c(1, 3)

)
my_size <- maxSize(my_size1, my_size2)

Choose the rule for stopping.
my_stopping1 <- StoppingMinCohorts(nCohorts = 3)
my_stopping2 <- StoppingTargetProb(

target = c(0.2, 0.35),
prob = 0.5

)
my_stopping3 <- StoppingMinPatients(nPatients = 20)
my_stopping <- (my_stopping1 & my_stopping2) | my_stopping3 | StoppingMissingDose()

Choose the rule for dose increments.
my_increments <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)

Initialize the design.
my_design <- Design(

model = my_model,
nextBest = my_next_best,
stopping = my_stopping,
increments = my_increments,
cohort_size = my_size,

examine 95

data = emptydata,
startingDose = 3

)

my_options <- McmcOptions(
burnin = 10,
step = 1,
samples = 20,
rng_kind = "Super-Duper",
rng_seed = 94

)

examine(my_design, my_options)

Example where examine stops because stopping rule already fulfilled.
my_stopping4 <- StoppingMinPatients(nPatients = 3)
my_stopping <- (my_stopping1 & my_stopping2) | my_stopping4

my_design <- Design(
model = my_model,
nextBest = my_next_best,
stopping = my_stopping,
increments = my_increments,
cohort_size = my_size,
data = emptydata,
startingDose = 3

)

examine(my_design, mcmcOptions = my_options)

Example where examine stops because infinite looping
(note that here a very low threshold is used for the parameter
"maxNoIncrement" in "examine" to keep the execution time short).
my_increments <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.00001)

)

my_stopping <- (my_stopping1 & my_stopping2) | StoppingMissingDose()

design <- Design(
model = my_model,
nextBest = my_next_best,
stopping = my_stopping,
increments = my_increments,
cohort_size = my_size,
data = emptydata,
startingDose = 3

)

96 examine

examine(my_design, mcmcOptions = my_options, maxNoIncrement = 2)

Define the dose-grid
emptydata <- Data(doseGrid = c(5, 10, 15, 25, 35, 50, 80))

inizialing a 3+3 design with constant cohort size of 3 and
starting dose equal 5
myDesign <- RuleDesign(

nextBest = NextBestThreePlusThree(),
cohort_size = CohortSizeConst(size = 3L),
data = emptydata,
startingDose = 5

)

Examine the design
set.seed(4235)

examine(myDesign)

nolint start

Define the dose-grid and PEM parameters
emptydata <- DataDA(doseGrid = c(

0.1, 0.5, 1, 1.5, 3, 6,
seq(from = 10, to = 80, by = 2)

), Tmax = 60)
Initialize the mDA-CRM model
npiece_ <- 10
Tmax_ <- 60

lambda_prior <- function(k) {
npiece_ / (Tmax_ * (npiece_ - k + 0.5))

}

model <- DALogisticLogNormal(
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56,
npiece = npiece_,
l = as.numeric(t(apply(as.matrix(c(1:npiece_), 1, npiece_), 2, lambda_prior))),
c_par = 2

)
Choose the rule for dose increments
myIncrements <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)

myNextBest <- NextBestNCRM(
target = c(0.2, 0.35),
overdose = c(0.35, 1),

examine 97

max_overdose_prob = 0.25
)

Choose the rule for the cohort-size
mySize1 <- CohortSizeRange(

intervals = c(0, 30),
cohort_size = c(1, 3)

)
mySize2 <- CohortSizeDLT(

intervals = c(0, 1),
cohort_size = c(1, 3)

)
mySize <- maxSize(mySize1, mySize2)

Choose the rule for stopping
myStopping1 <- StoppingTargetProb(

target = c(0.2, 0.35),
prob = 0.5

)
myStopping2 <- StoppingMinPatients(nPatients = 50)

myStopping <- (myStopping1 | myStopping2) | StoppingMissingDose()

Choose the safety window
mysafetywindow <- SafetyWindowConst(c(6, 2), 7, 7)

Initialize the design
design <- DADesign(

model = model,
increments = myIncrements,
nextBest = myNextBest,
stopping = myStopping,
cohort_size = mySize,
data = emptydata,
safetyWindow = mysafetywindow,
startingDose = 3

)

set.seed(4235)
MCMC parameters are set to small values only to show this example. They should be
increased for a real case.
This procedure will take a while.
options <- McmcOptions(

burnin = 10,
step = 1,
samples = 100,
rng_kind = "Mersenne-Twister",
rng_seed = 12

)

testthat::expect_warning(
result <- examine(design, mcmcOptions = options, maxNoIncrement = 2),
"Stopping because 2 times no increment"

98 fit

)

nolint end

fit Fit method for the Samples class

Description

Note this new generic function is necessary because the fitted function only allows the first argu-
ment object to appear in the signature. But we need also other arguments in the signature.

Usage

fit(object, model, data, ...)

S4 method for signature 'Samples,GeneralModel,Data'
fit(
object,
model,
data,
points = data@doseGrid,
quantiles = c(0.025, 0.975),
middle = mean,
...

)

S4 method for signature 'Samples,DualEndpoint,DataDual'
fit(object, model, data, quantiles = c(0.025, 0.975), middle = mean, ...)

S4 method for signature 'Samples,LogisticIndepBeta,Data'
fit(
object,
model,
data,
points = data@doseGrid,
quantiles = c(0.025, 0.975),
middle = mean,
...

)

S4 method for signature 'Samples,Effloglog,DataDual'
fit(
object,
model,
data,

fit 99

points = data@doseGrid,
quantiles = c(0.025, 0.975),
middle = mean,
...

)

S4 method for signature 'Samples,EffFlexi,DataDual'
fit(
object,
model,
data,
points = data@doseGrid,
quantiles = c(0.025, 0.975),
middle = mean,
...

)

S4 method for signature 'Samples,LogisticLogNormalOrdinal,DataOrdinal'
fit(
object,
model,
data,
points = data@doseGrid,
quantiles = c(0.025, 0.975),
middle = mean,
...

)

Arguments

object the Samples object

model the GeneralModel object

data the Data object

... passed down to the prob() method.

points at which dose levels is the fit requested? default is the dose grid

quantiles the quantiles to be calculated (default: 0.025 and 0.975)

middle the function for computing the middle point. Default: mean

Value

the data frame with required information (see method details)

Functions

• fit(object = Samples, model = GeneralModel, data = Data): This method returns a data
frame with dose, middle, lower and upper quantiles for the dose-toxicity curve

100 fit

• fit(object = Samples, model = DualEndpoint, data = DataDual): This method returns a
data frame with dose, and middle, lower and upper quantiles, for both the dose-tox and dose-
biomarker (suffix "Biomarker") curves, for all grid points (Note that currently only the grid
points can be used, because the DualEndpointRW models only allow that)

• fit(object = Samples, model = LogisticIndepBeta, data = Data): This method return a
data frame with dose, middle lower and upper quantiles for the dose-DLE curve using DLE
samples for “LogisticIndepBeta” model class

• fit(object = Samples, model = Effloglog, data = DataDual): This method returns a data
frame with dose, middle, lower, upper quantiles for the dose-efficacy curve using efficacy sam-
ples for “Effloglog” model class

• fit(object = Samples, model = EffFlexi, data = DataDual): This method returns a data
frame with dose, middle, lower and upper quantiles for the dose-efficacy curve using efficacy
samples for “EffFlexi” model class

• fit(object = Samples, model = LogisticLogNormalOrdinal, data = DataOrdinal): This
method returns a data frame with dose, middle, lower and upper quantiles for the dose-efficacy
curve using efficacy samples for the “LogisticLogNormalOrdinal” model class

Examples

nolint start

Create some data
data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Initialize a model
model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Get posterior for all model parameters
options <- McmcOptions(burnin = 100, step = 2, samples = 2000)
set.seed(94)
samples <- mcmc(data, model, options)

Extract the posterior mean (and empirical 2.5 and 97.5 percentile)
for the prob(DLT) by doses
fitted <- fit(

object = samples,
model = model,
data = data,
quantiles = c(0.025, 0.975),
middle = mean

)

fit 101

--
A different example using a different model
we need a data object with doses >= 1:
data <- Data(

x = c(25, 50, 50, 75, 150, 200, 225, 300),
y = c(0, 0, 0, 0, 1, 1, 1, 1),
doseGrid = seq(from = 25, to = 300, by = 25)

)

model <- LogisticIndepBeta(
binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = data

)
options <- McmcOptions(burnin = 100, step = 2, samples = 200)
samples must be from 'Samples' class (object slot in fit)
samples <- mcmc(data, model, options)

fitted <- fit(object = samples, model = model, data = data)

nolint end
nolint start

Create some data
data <- DataDual(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10, 20, 20, 20, 40, 40, 40, 50, 50, 50),
y = c(0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1),
w = c(
0.31,
0.42,
0.59,
0.45,
0.6,
0.7,
0.55,
0.6,
0.52,
0.54,
0.56,
0.43,
0.41,
0.39,
0.34,
0.38,
0.21

),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

102 fit

Initialize the Dual-Endpoint model (in this case RW1)
model <- DualEndpointRW(

mean = c(0, 1),
cov = matrix(c(1, 0, 0, 1), nrow = 2),
sigma2betaW = 0.01,
sigma2W = c(a = 0.1, b = 0.1),
rho = c(a = 1, b = 1),
rw1 = TRUE

)

Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin = 100, step = 2, samples = 500)
set.seed(94)
samples <- mcmc(data, model, options)

Extract the posterior mean (and empirical 2.5 and 97.5 percentile)
for the prob(DLT) by doses and the Biomarker by doses
fitted <- fit(

object = samples,
model = model,
data = data,
quantiles = c(0.025, 0.975),
middle = mean

)

nolint end
##Obtain the 'fit' the middle, uppper and lower quantiles for the dose-DLE curve
at all dose levels using a DLE sample, a DLE model and the data
samples must be from 'Samples' class (object slot)
we need a data object with doses >= 1:
data <- Data(

x = c(25, 50, 50, 75, 150, 200, 225, 300),
y = c(0, 0, 0, 0, 1, 1, 1, 1),
doseGrid = seq(from = 25, to = 300, by = 25)

)
model must be from 'Model' or 'ModelTox' class e.g using 'LogisticIbdepBeta' model class
model <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = data

)
##options for MCMC
options <- McmcOptions(burnin = 100, step = 2, samples = 200)
samples must be from 'Samples' class (object slot in fit)
samples <- mcmc(data, model, options)

fit(object = samples, model = model, data = data)
##Obtain the 'fit' the middle, uppper and lower quantiles for the dose-efficacy curve
at all dose levels using an efficacy sample, a pseudo efficacy model and the data
data must be from 'DataDual' class
data <- DataDual(

x = c(25, 50, 25, 50, 75, 300, 250, 150),

fit 103

y = c(0, 0, 0, 0, 0, 1, 1, 0),
w = c(0.31, 0.42, 0.59, 0.45, 0.6, 0.7, 0.6, 0.52),
doseGrid = seq(25, 300, 25),
placebo = FALSE

)
model must be from 'ModelEff' e.g using 'Effloglog' class
Effmodel <- Effloglog(

c(1.223, 2.513),
c(25, 300),
nu = c(a = 1, b = 0.025),
data = data,
c = 0

)
samples must be from 'Samples' class (object slot in fit)
options <- McmcOptions(burnin = 100, step = 2, samples = 200)
Effsamples <- mcmc(data = data, model = Effmodel, options = options)
fit(object = Effsamples, model = Effmodel, data = data)
nolint start

##Obtain the 'fit' the middle, uppper and lower quantiles for the dose-efficacy curve
at all dose levels using an efficacy sample, the 'EffFlexi' efficacy model and the data
data must be from 'DataDual' class
data <- DataDual(

x = c(25, 50, 25, 50, 75, 300, 250, 150),
y = c(0, 0, 0, 0, 0, 1, 1, 0),
w = c(0.31, 0.42, 0.59, 0.45, 0.6, 0.7, 0.6, 0.52),
doseGrid = seq(25, 300, 25),
placebo = FALSE

)
model must be from 'ModelEff' e.g using 'Effloglog' class
Effmodel <- EffFlexi(

eff = c(1.223, 2.513),
eff_dose = c(25, 300),
sigma2W = c(a = 0.1, b = 0.1),
sigma2betaW = c(a = 20, b = 50),
rw1 = FALSE,
data = data

)

samples must be from 'Samples' class (object slot in fit)
options <- McmcOptions(burnin = 100, step = 2, samples = 200)
Effsamples <- mcmc(data = data, model = Effmodel, options = options)
fit(object = Effsamples, model = Effmodel, data = data)

nolint end
model <- .DefaultLogisticLogNormalOrdinal()
ordinal_data <- .DefaultDataOrdinal()
options <- .DefaultMcmcOptions()
samples <- mcmc(ordinal_data, model, options)

grade1_fit <- fit(samples, model, ordinal_data, grade = 1L)
grade2_fit <- fit(samples, model, ordinal_data, grade = 2L)

104 fitGain

fitGain Get the fitted values for the gain values at all dose levels based on
a given pseudo DLE model, DLE sample, a pseudo efficacy model, a
Efficacy sample and data. This method returns a data frame with dose,
middle, lower and upper quantiles of the gain value samples

Description

Get the fitted values for the gain values at all dose levels based on a given pseudo DLE model, DLE
sample, a pseudo efficacy model, a Efficacy sample and data. This method returns a data frame with
dose, middle, lower and upper quantiles of the gain value samples

Usage

fitGain(DLEmodel, DLEsamples, Effmodel, Effsamples, data, ...)

S4 method for signature 'ModelTox,Samples,ModelEff,Samples,DataDual'
fitGain(
DLEmodel,
DLEsamples,
Effmodel,
Effsamples,
data,
points = data@doseGrid,
quantiles = c(0.025, 0.975),
middle = mean,
...

)

Arguments

DLEmodel the DLE pseudo model of ModelTox class object
DLEsamples the DLE samples of Samples class object
Effmodel the efficacy pseudo model of ModelEff class object
Effsamples the efficacy samples of Samples class object
data the data input of DataDual class object
... additional arguments for methods
points at which dose levels is the fit requested? default is the dose grid
quantiles the quantiles to be calculated (default: 0.025 and 0.975)
middle the function for computing the middle point. Default: mean

Functions

• fitGain(DLEmodel = ModelTox, DLEsamples = Samples, Effmodel = ModelEff, Effsamples
= Samples, data = DataDual): This method returns a data frame with dose, middle, lower,
upper quantiles for the gain values obtained given the DLE and the efficacy samples

fitGain 105

Examples

##Obtain the 'fitGain' the middle, uppper and lower quantiles for the samples of gain values
at all dose levels using a pseudo DLE model, a DLE sample, a pseudo Efficacy model and
a efficacy sample
data must be from 'DataDual' class
data <- DataDual(

x = c(25, 50, 25, 50, 75, 300, 250, 150),
y = c(0, 0, 0, 0, 0, 1, 1, 0),
w = c(0.31, 0.42, 0.59, 0.45, 0.6, 0.7, 0.6, 0.52),
doseGrid = seq(25, 300, 25),
placebo = FALSE

)
DLE model must be from 'ModelTox' class e.g using 'LogisticIndepBeta' model
DLEmodel <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = data

)

Efficacy model must be from 'ModelEff' class e.g using 'Effloglog' model
Effmodel <- Effloglog(

c(1.223, 2.513),
c(25, 300),
nu = c(a = 1, b = 0.025),
data = data,
c = 0

)
samples must be from 'Samples' class (object slot in fit)
options <- McmcOptions(burnin = 100, step = 2, samples = 200)
##set up the same data set in class 'Data' for MCMC sampling for DLE
data1 <- Data(x = data@x, y = data@y, doseGrid = data@doseGrid)

DLEsamples <- mcmc(data = data1, model = DLEmodel, options = options)
Effsamples <- mcmc(data = data, model = Effmodel, options = options)

fitGain(
DLEmodel = DLEmodel,
DLEsamples = DLEsamples,
Effmodel = Effmodel,
Effsamples = Effsamples,
data = data

)
##Obtain the 'fitGain' the middle, uppper and lower quantiles for the samples of gain values
at all dose levels using a pseudo DLE model, a DLE sample, a pseudo Efficacy model and
a efficacy sample
data must be from 'DataDual' class
data <- DataDual(

x = c(25, 50, 25, 50, 75, 300, 250, 150),
y = c(0, 0, 0, 0, 0, 1, 1, 0),
w = c(0.31, 0.42, 0.59, 0.45, 0.6, 0.7, 0.6, 0.52),
doseGrid = seq(25, 300, 25),

106 fitPEM

placebo = FALSE
)
DLE model must be from 'ModelTox' class e.g using 'LogisticIndepBeta' model
DLEmodel <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = data

)

Efficacy model must be from 'ModelEff' class e.g using 'Effloglog' model
Effmodel <- Effloglog(

c(1.223, 2.513),
c(25, 300),
nu = c(a = 1, b = 0.025),
data = data,
c = 0

)
samples must be from 'Samples' class (object slot in fit)
options <- McmcOptions(burnin = 100, step = 2, samples = 200)
##set up the same data set in class 'Data' for MCMC sampling for DLE
data1 <- Data(x = data@x, y = data@y, doseGrid = data@doseGrid)

DLEsamples <- mcmc(data = data1, model = DLEmodel, options = options)
Effsamples <- mcmc(data = data, model = Effmodel, options = options)

fitGain(
DLEmodel = DLEmodel,
DLEsamples = DLEsamples,
Effmodel = Effmodel,
Effsamples = Effsamples,
data = data

)

fitPEM Get the fitted DLT free survival (piecewise exponential model). This
function returns a data frame with dose, middle, lower and upper
quantiles for the PEM curve. If hazard=TRUE,

Description

Get the fitted DLT free survival (piecewise exponential model). This function returns a data frame
with dose, middle, lower and upper quantiles for the PEM curve. If hazard=TRUE,

Usage

fitPEM(
object,
model,
data,

fitPEM 107

quantiles = c(0.025, 0.975),
middle = mean,
hazard = FALSE,
...

)

S4 method for signature 'Samples,DALogisticLogNormal,DataDA'
fitPEM(
object,
model,
data,
quantiles = c(0.025, 0.975),
middle = mean,
hazard = FALSE,
...

)

Arguments

object mcmc samples

model the mDA-CRM model

data the data input, a DataDA class object

quantiles the quantiles to be calculated (default: 0.025 and 0.975)

middle the function for computing the middle point. Default: mean

hazard should the the hazard over time be plotted based on the PEM? (not default) Oth-
erwise ...

... additional arguments for methods

Functions

• fitPEM(object = Samples, model = DALogisticLogNormal, data = DataDA): This method
works for the DALogisticLogNormal model class.

Examples

nolint start

Create the data
data <- DataDA(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 1, 1, 0, 0, 1, 0),
ID = 1L:8L,
cohort = as.integer(c(1:5, 6, 6, 6)),
doseGrid = c(
0.1,
0.5,
1.5,
3,

108 fitPEM

6,
seq(from = 10, to = 80, by = 2)

),
u = c(42, 30, 15, 5, 20, 25, 30, 60),
t0 = c(0, 15, 30, 40, 55, 70, 75, 85),
Tmax = 60

)

Initialize the CRM model used to model the data
npiece_ <- 10
lambda_prior <- function(k) {

npiece_ / (data@Tmax * (npiece_ - k + 0.5))
}

model <- DALogisticLogNormal(
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56,
npiece = npiece_,
l = as.numeric(t(apply(

as.matrix(c(1:npiece_), 1, npiece_),
2,
lambda_prior

))),
c_par = 2

)

Obtain the posterior

options <- McmcOptions(
burnin = 10,
step = 2,
samples = 1e2

)

set.seed(94)
samples <- mcmc(data, model, options)

Extract the posterior mean hazard (and empirical 2.5 and 97.5 percentile)
for the piecewise exponential model
If hazard=FALSE, the posterior PEM will be plot
fitted <- fitPEM(

object = samples,
model = model,
data = data,
middle = mean,
hazard = TRUE,
quantiles = c(0.25, 0.75)

)

nolint end

FractionalCRM-class 109

FractionalCRM-class FractionalCRM

Description

[Stable]
FractionalCRM is the class for a fractional CRM model based on a one parameter CRM (with nor-
mal prior on the log-power parameter) as well as Kaplan-Meier based estimation of the conditional
probability to experience a DLT for non-complete observations.

This fractional CRM model follows the paper and code by Yin et al. (2013).

Usage

FractionalCRM(...)

.DefaultFractionalCRM()

Arguments

... Arguments passed on to OneParLogNormalPrior

skel_probs (numeric)
skeleton prior probabilities. This is a vector of unique and sorted probability
values between 0 and 1.

dose_grid (numeric)
dose grid. It must be must be a sorted vector of the same length as skel_probs.

sigma2 (number)
prior variance of log power parameter alpha.

Note

Typically, end users will not use the .DefaultTITELogisticLogNormal() function.

References

Yin G, Zheng S, Xu J (2013). “Fractional dose-finding methods with late-onset toxicity in phase I
clinical trials.” Journal of Biopharmaceutical Statistics, 23(4), 856–870. doi:10.1080/10543406.2013.789892.

See Also

TITELogisticLogNormal.

Examples

my_model <- FractionalCRM(
skel_probs = c(0.1, 0.2, 0.3, 0.4),
dose_grid = c(10, 30, 50, 100),
sigma2 = 2

)

https://doi.org/10.1080/10543406.2013.789892

110 gain

gain Compute Gain Values based on Pseudo DLE and a Pseudo Efficacy
Models and Using Optional Samples.

Description

[Stable]

Usage

gain(dose, model_dle, samples_dle, model_eff, samples_eff, ...)

S4 method for signature 'numeric,ModelTox,Samples,ModelEff,Samples'
gain(dose, model_dle, samples_dle, model_eff, samples_eff, ...)

S4 method for signature 'numeric,ModelTox,missing,Effloglog,missing'
gain(dose, model_dle, samples_dle, model_eff, samples_eff, ...)

Arguments

dose (number or numeric)
the dose which is targeted. The following recycling rule applies when samples
are not missing: vectors of size 1 will be recycled to the size of the sample.
Otherwise, dose must have the same size as the sample.

model_dle (ModelTox)
pseudo DLE (dose-limiting events)/toxicity model.

samples_dle (Samples)
the samples of model’s parameters that will be used to compute toxicity proba-
bilities. Can also be missing for some models.

model_eff (ModelEff)
the efficacy model with pseudo data prior.

samples_eff (Samples)
samples of model’s parameters that will be used to compute expected efficacy
values. Can also be missing for some models.

... not used.

Details

This function computes the gain values for a given dose level, pseudo DLE and Efficacy models as
well as a given DLE and Efficacy samples.

Value

The gain values.

gain 111

Functions

• gain(dose = numeric, model_dle = ModelTox, samples_dle = Samples, model_eff = ModelEff,
samples_eff = Samples):

• gain(dose = numeric, model_dle = ModelTox, samples_dle = missing, model_eff = Effloglog,
samples_eff = missing): Compute the gain value for a given dose level, pseudo DLE and
Efficacy models without DLE and the Efficacy samples.

Examples

Obtain the gain value for a given dose, a pseudo DLE and efficacy models
as well as DLE and efficacy samples.
emptydata <- DataDual(doseGrid = seq(25, 300, 25), placebo = FALSE)
mcmc_opts <- McmcOptions(burnin = 100, step = 2, samples = 200)

DLE model and samples.
model_dle <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = emptydata

)

samples_dle <- mcmc(emptydata, model_dle, mcmc_opts)

Efficacy model (Effloglog) and samples.
model_effloglog <- Effloglog(

eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = emptydata

)

samples_effloglog <- mcmc(emptydata, model_effloglog, mcmc_opts)

Gain values for dose level 75 and Effloglog efficacy model.
gain(

dose = 75,
model_dle = model_dle,
samples_dle = samples_dle,
model_eff = model_effloglog,
samples_eff = samples_effloglog

)

Efficacy model (EffFlexi) and samples.
model_effflexi <- EffFlexi(

eff = c(1.223, 2.513),
eff_dose = c(25, 300),
sigma2W = c(a = 0.1, b = 0.1),
sigma2betaW = c(a = 20, b = 50),
rw1 = FALSE,
data = emptydata

112 GeneralData-class

)

samples_effflexi <- mcmc(emptydata, model_effflexi, mcmc_opts)

Gain values for dose level 75 and EffFlexi efficacy model.
gain(

dose = 75,
model_dle = model_dle,
samples_dle = samples_dle,
model_eff = model_effflexi,
samples_eff = samples_effflexi

)
Obtain the gain value for a given dose, a pseudo DLE and efficacy models
without DLE and efficacy samples.
emptydata <- DataDual(doseGrid = seq(25, 300, 25), placebo = FALSE)
data <- Data(doseGrid = seq(25, 300, 25), placebo = FALSE)
mcmc_opts <- McmcOptions(burnin = 100, step = 2, samples = 200)

DLE model and samples.
model_dle <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = data

)

Efficacy model and samples.
model_eff <- Effloglog(

eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = emptydata

)

Gain value for dose level 75.
gain(

dose = 75,
model_dle = model_dle,
model_eff = model_eff

)

GeneralData-class GeneralData

Description

[Stable]

GeneralData is a class for general data input.

GeneralModel-class 113

Usage

.DefaultDataGeneral()

Slots

ID (integer)
unique patient IDs.

cohort (integer)
the cohort (non-negative sorted) indices.

nObs (integer)
number of observations, a single value.

Note

Typically, end users will not use the .DefaultDataGeneral() function.

GeneralModel-class GeneralModel

Description

[Stable]
GeneralModel is a general model class, from which all other specific model-like classes inherit.

Usage

.DefaultGeneralModel()

Slots

datamodel (function)
a function representing the JAGS data model specification.

priormodel (function)
a function representing the JAGS prior specification.

modelspecs (function)
a function computing the list of the data model and prior model specifications that are required
to be specified completely (e.g. prior parameters, reference dose, etc.), based on the data
slots that are required as arguments of this function. Apart of data arguments, this function
can be specified with one additional (optional) argument from_prior of type logical and
length one. This from_prior flag can be used to differentiate the output of the modelspecs,
as its value is taken directly from the from_prior argument of the mcmc method that invokes
modelspecs function. That is, when from_prior is TRUE, then only priormodel JAGS model
is used (datamodel is not used) by the mcmc, and hence modelspecs function should return
all the parameters that are required by the priormodel only. If the value of from_prior is
FALSE, then both JAGS models datamodel and priormodel are used in the MCMC sampler,
and hence modelspecs function should return all the parameters required by both datamodel
and priormodel.

114 GeneralSimulations-class

init (function)
a function computing the list of starting values for parameters required to be initialized in the
MCMC sampler, based on the data slots that are required as arguments of this function.

datanames (character)
the names of all data slots that are used by datamodel JAGS function. No other names should
be specified here.

datanames_prior (character)
the names of all data slots that are used by priormodel JAGS function. No other names should
be specified here.

sample (character)
names of all parameters from which you would like to save the MCMC samples.

Note

The datamodel must obey the convention that the data input is called exactly in the same way as
in the corresponding data class. All prior distributions for parameters should be contained in the
model function priormodel. The background is that this can be used to simulate from the prior
distribution, before obtaining any data.

Typically, end users will not use the .DefaultGeneralModel() function.

See Also

ModelPseudo.

GeneralSimulations-class

GeneralSimulations

Description

[Stable]

This class captures trial simulations. Here also the random generator state before starting the sim-
ulation is saved, in order to be able to reproduce the outcome. For this just use set.seed with the
seed as argument before running simulate,Design-method.

Usage

GeneralSimulations(data, doses, seed)

.DefaultGeneralSimulations()

GeneralSimulationsSummary-class 115

Arguments

data (list)
see slot definition.

doses (numeric)
see slot definition.

seed (integer)
see slot definition.

Slots

data (list)
produced Data objects.

doses (numeric)
final dose recommendations.

seed (integer)
random generator state before starting the simulation.

Note

Typically, end users will not use the .DefaultGeneralSimulations() function.

Examples

data <- list(
Data(x = 1:3, y = c(0, 1, 0), doseGrid = 1:3, ID = 1L:3L, cohort = 1L:3L),
Data(x = 4:6, y = c(0, 1, 0), doseGrid = 4:6, ID = 1L:3L, cohort = 1L:3L)

)

doses <- c(1, 2)

seed <- 123L

simulations <- GeneralSimulations(data, doses, seed)

GeneralSimulationsSummary-class

GeneralSimulationsSummary

Description

[Stable]
This class captures the summary of general simulations output. Note that objects should not be
created by users, therefore no initialization function is provided for this class.

Usage

.DefaultGeneralSimulationsSummary()

116 GeneralSimulationsSummary-class

Slots

target (numeric)
target toxicity interval

target_dose_interval (numeric)
corresponding target dose interval

nsim (integer)
number of simulations

prop_dlts (ANY)
A numeric array (multi-dimensional) or list representing proportions of DLTs in the trials

mean_tox_risk (numeric)
mean toxicity risks for the patients

dose_selected (numeric)
doses selected as MTD

tox_at_doses_selected (numeric)
true toxicity at doses selected

prop_at_target (numeric)
Proportion of trials selecting target MTD

dose_most_selected (numeric)
dose most often selected as MTD

obs_tox_rate_at_dose_most_selected (numeric)
observed toxicity rate at dose most often selected

n_obs (ANY)
A numeric array (multi-dimensional) or list representing number of patients overall.

n_above_target (integer)
number of patients treated above target tox interval

dose_grid (numeric)
the dose grid that has been used

placebo (logical)
set to TRUE (default is FALSE) for a design with placebo

any_backfilled (flag)
indicates if any backfill cohorts were used

n_backfill (ANY)
number of patients in backfill cohorts (only if any_backfilled=TRUE)

backfill_doses (ANY)
list with doses used in backfill cohorts (only if any_backfilled=TRUE)

Note

Typically, end users will not use the .DefaultGeneralSimulationsSummary() function.

get,Samples,character-method 117

get,Samples,character-method

Get specific parameter samples and produce a data.frame

Description

Here you have to specify with pos which parameter you would like to extract from the Samples
object

Usage

S4 method for signature 'Samples,character'
get(x, pos = -1L, envir = NULL, mode = NULL, inherits = NULL)

Arguments

x the Samples object

pos the name of the parameter

envir for vectorial parameters, you can give the indices of the elements you would like
to extract. If NULL, the whole vector samples will be returned

mode not used

inherits not used

Value

the data frame suitable for use with ggmcmc

Examples

nolint start

Create some data
data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Initialize a model
model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Get posterior for all model parameters
options <- McmcOptions(burnin = 100, step = 2, samples = 2000)

118 getEff

set.seed(94)
samples <- mcmc(data, model, options)

now extract the alpha0 samples (intercept of the regression model)
alpha0samples <- get(samples, "alpha0")

nolint end

getEff Extracting Efficacy Responses for Subjects Categorized by the DLT

Description

[Stable]
A method that extracts efficacy responses for subjects and categorizes it with respect to DLT, i.e.
DLT or no DLT. The efficacy responses are reported together with their corresponding dose levels.

Usage

getEff(object, ...)

S4 method for signature 'DataDual'
getEff(object, no_dlt = FALSE)

Arguments

object (DataDual)
object from which the responses and dose levels are extracted.

... further arguments passed to class-specific methods.

no_dlt (flag)
should only no DLT responses be returned? Otherwise, all responses are re-
turned.

Value

list with efficacy responses categorized by the DLT value.

Examples

Example data.
data <- DataDual(

x = c(25, 50, 25, 50, 75, 300, 250, 150),
y = c(0, 0, 0, 0, 0, 1, 1, 0),
w = c(0.31, 0.42, 0.59, 0.45, 0.6, 0.7, 0.6, 0.52),
doseGrid = seq(25, 300, 25)

)

Get the efficacy response and their corresponding dose levels

h_all_equivalent 119

categorized by the DLT.
getEff(data)

h_all_equivalent Comparison with Numerical Tolerance and Without Name Compari-
son

Description

[Experimental]

This helper function ensures a default tolerance level equal to 1e-10, and ignores names and other
attributes. In contrast to all.equal(), it always returns a logical type object.

Usage

h_all_equivalent(target, current, tolerance = 1e-10)

Arguments

target (numeric)
target values.

current (numeric)
current values.

tolerance (number) relative differences smaller than this are not reported.

Value

TRUE when target and current do not differ up to desired tolerance and without looking at names
or other attributes, FALSE otherwise.

h_blind_plot_data Helper Function to Blind Plot Data

Description

Helper Function to Blind Plot Data

Usage

h_blind_plot_data(df, blind, has_placebo, pbo_dose)

120 h_calc_report_label_percentage

Arguments

df (GeneralData)
The data to be blinded

blind (flag)
Should the data be blinded?

has_placebo (flag)
Does the data contain a placebo dose?

pbo_dose (positive_number)
The dose to be taken as placebo. Ignored if has_placebo is FALSE

Value

The blinded data

h_calc_report_label_percentage

Helper function to calculate percentage of true stopping rules for re-
port label output calculates true column means and converts output
into percentages before combining the output with the report label;
output is passed to show() and output with cat to console

Description

Helper function to calculate percentage of true stopping rules for report label output calculates true
column means and converts output into percentages before combining the output with the report
label; output is passed to show() and output with cat to console

Usage

h_calc_report_label_percentage(stop_report)

Arguments

stop_report object from summary method

Value

named list with label and percentage of rule activation

h_check_fun_formals 121

h_check_fun_formals Checking Formals of a Function

Description

[Experimental]

This helper function checks whether a given function fun has required or allowed arguments. The
argument check is based only on the names of the arguments. No any further logic is verified here.

Usage

h_check_fun_formals(fun, mandatory = NULL, allowed = NULL)

Arguments

fun (function)
a function name whose argument names will be checked.

mandatory (character or NULL)
the names of the arguments which must be present in fun. If mandatory is
specified as NULL (default) this requirement is ignored.

allowed (character or NULL)
the names of the arguments which are allowed in fun. Names that do not belong
to allowed are simply not allowed. The allowed parameter is independent
from the mandatory, in a sense that if mandatory is specified as a character
vector, it does not have to be repeated in allowed. If allowed is specified as
NULL (default), then it means that there must be no any arguments in fun (except
these ones which are specified in mandatory).

h_convert_ordinal_data

Convert a Ordinal Data to the Equivalent Binary Data for a Specific
Grade

Description

[Experimental]

A simple helper function that takes a DataOrdinal object and an integer grade and converts them
to the equivalent Data object.

Usage

h_convert_ordinal_data(data_ord, grade)

122 h_convert_ordinal_model

Arguments

data_ord (DataOrdinal)
the DataOrdinal object to covert

grade (integer)
the toxicity grade for which the equivalent data is required.

Value

A Data object.

h_convert_ordinal_model

Convert an ordinal CRM model to the Equivalent Binary CRM Model
for a Specific Grade

Description

[Experimental]

A simple helper function that takes a LogisticLogNormalOrdinal and an integer grade and con-
verts them to the equivalent LogisticLogNormal model.

Usage

h_convert_ordinal_model(x, grade)

Arguments

x (LogisticLogNormalOrdinal)
the LogisticLogNormalOrdinal model to covert

grade (integer)
the toxicity grade for which the equivalent model is required.

Value

A LogisticLogNormal model.

h_convert_ordinal_samples 123

h_convert_ordinal_samples

Convert a Samples Object from an ordinal Model to the Equivalent
Samples Object from a Binary Model

Description

[Experimental]
A simple helper function that converts a Samples object from the fit of an ordinal CRM model to
that which would have been obtained from fitting a binary CRM model for toxicities of a specified
grade to the same observed data.

Usage

h_convert_ordinal_samples(obj, grade)

Arguments

obj (Samples)
the Samples object to covert

grade (integer)
the toxicity grade for which the equivalent data is required.

Value

A Samples object.

h_default_if_empty Getting the default value for an empty object

Description

[Stable]
A simple helper function that sets a default value for an empty or missing object, that is an object
for which length() function returns 0L or it has length 1 and is.na() returns TRUE.

Usage

h_default_if_empty(x, default)

Arguments

x (any)
an object to handle. It can be any object for which length() function is defined.

default (any)
a default value for x object.

124 h_find_interval

Examples

h_default_if_empty(character(0), default = "default label")
h_default_if_empty("custom label", default = "default label")
h_default_if_empty(NA, default = "default label")

h_find_interval Find Interval Numbers or Indices and Return Custom Number For 0.

Description

[Stable]
A simple wrapper of findInterval() function that invokes findInterval(), takes its output and
replaces all the elements with 0 value to a custom number as specified in replacement argument.

Usage

h_find_interval(..., replacement = -Inf)

Arguments

... Arguments passed on to base::findInterval

x numeric.
vec numeric, sorted (weakly) increasingly, of length N, say.
rightmost.closed logical; if true, the rightmost interval, vec[N-1] .. vec[N]

is treated as closed, see below.
all.inside logical; if true, the returned indices are coerced into 1,...,N-1,

i.e., 0 is mapped to 1 and N to N-1.
left.open logical; if true all the intervals are open at left and closed at right;

in the formulas below, ≤ should be swapped with < (and > with ≥), and
rightmost.closed means ‘leftmost is closed’. This may be useful, e.g., in
survival analysis computations.

checkSorted logical indicating if vec should be checked, i.e., is.unsorted(vec)
is asserted to be false. Setting this to FALSE skips the check gaining speed,
but may return nonsense results in case vec is not sorted.

checkNA logical indicating if each x[i] should be checked as with is.na(.).
Setting this to FALSE in case of NA’s in x[] may result in platform dependent
nonsense.

replacement (number)
a custom number to be used as a replacement for 0. Default to -Inf.

Examples

h_find_interval(1, c(2, 4, 6))
h_find_interval(3, c(2, 4, 6))
h_find_interval(1, c(2, 4, 6), replacement = -1)

h_format_number 125

h_format_number Conditional Formatting Using C-style Formats

Description

[Experimental]

This helper function conditionally formats a number with formatC() function using "E" format and
specific number of digits as given by the user. A number is formatted if and only if its absolute value
is less than 0.001 or greater than 10000. Otherwise, the number is not formatted. Additionally,
custom prefix or suffix can be appended to character string with formatted number, so that the
changes are marked.

Usage

h_format_number(x, digits = 5, prefix = "", suffix = "")

Arguments

x (number)
a number to be formatted.

digits (function)
the desired number of significant digits.

prefix (string)
a prefix to be added in front of the formatted number.

suffix (string)
a suffix to be appended after the formatted number.

Value

Either formatted x as string or unchanged x if the formatting condition is not met.

Note

This function was primarily designed as a helper for h_jags_write_model() function.

Examples

h_format_number(50000)
h_format_number(50000, prefix = "P", suffix = "S")

126 h_in_range

h_info_theory_dist Calculating the Information Theoretic Distance

Description

[Experimental]

Helper function which provides the value of the divergence as given by equation in (7) in the refer-
ence at https://doi.org/10.1002/sim.8450.

Usage

h_info_theory_dist(prob, target, asymmetry)

Arguments

prob (numeric)
vector or matrix with probabilities of a DLT occurring.

target (number)
single target probability of a DLT.

asymmetry (number)
describes the rate of penalization for overly toxic does, range 0 to 2.

Examples

h_info_theory_dist(c(0.5, 0.2), 0.4, 1.2)

h_in_range Check which elements are in a given range

Description

[Stable]

A simple helper function that tests whether elements of a given vector or matrix are within specified
interval.

Usage

h_in_range(x, range = c(0, 1), bounds_closed = TRUE)

h_is_positive_definite 127

Arguments

x (numeric)
vector or matrix with elements to test.

range (numeric)
an interval, i.e. sorted two-elements vector.

bounds_closed (logical)
should bounds in the range be treated as closed? This can be a scalar or vector
of length two. If it is a scalar, then its value applies to lower bound range[1]
and upper bound range[2]. If this is a vector with two flags, the first flag
corresponds to the lower bound only, and the second to the upper bound only.

Value

A logical vector or matrix of length equal to the length of x, that for every element of x, indicates
whether a given element of x is in the range.

Examples

x <- 1:4
h_in_range(x, range = c(1, 3))
h_in_range(x, range = c(1, 3), bounds_closed = FALSE)
h_in_range(x, range = c(1, 3), bounds_closed = c(FALSE, TRUE))
mat <- matrix(c(2, 5, 3, 10, 4, 9, 1, 8, 7), nrow = 3)
h_in_range(mat, range = c(1, 5))

h_is_positive_definite

Testing Matrix for Positive Definiteness

Description

[Experimental]
This helper function checks whether a given numerical matrix x is a positive-definite square matrix
of a given size, without any missing values. This function is used to test if a given matrix is a
covariance matrix, since every symmetric positive semi-definite matrix is a covariance matrix.

Usage

h_is_positive_definite(x, size = 2, tol = 1e-06)

Arguments

x (matrix)
a matrix to be checked.

size (integer)
a size of the square matrix x to be checked against for.

128 h_jags_add_dummy

tol (number)
a given tolerance number used to check whether an eigenvalue is positive or not.
An eigenvalue is considered as positive if and only if it is greater than the tol.

Details

The positive definiteness test implemented in this function is based on the following characterization
valid for real matrices: A symmetric matrix is positive-definite if and only if all of its eigenvalues are positive.
In this function an eigenvalue is considered as positive if and only if it is greater than the tol.

Value

TRUE if a given matrix is a positive-definite, FALSE otherwise.

h_jags_add_dummy Appending a Dummy Number for Selected Slots in Data

Description

[Experimental]
A helper function that appends a dummy value to a given slots in GeneralData class object, if and
only if the total number of observations (as indicated by object@nObs) equals to 1. Otherwise, the
object is not changed.

Usage

h_jags_add_dummy(object, where, dummy = 0)

Arguments

object (GeneralData)
object into which dummy values will be added.

where (character)
names of slots in object to which a dummy number will be appended.

dummy (number)
a dummy number that will be appended to selected slots in object. Default to
0.

Value

A GeneralData object with slots updated with dummy number.

Note

The main motivation behind this function is related to the JAGS. If there is only one observation, the
data is not passed correctly to JAGS, i.e. e.g. x and y are treated like scalars in the data file. Therefore
it is necessary to add dummy values to the vectors in this case As we don’t change the number of
observations (nObs), this addition of zeros doesn’t affect the results of JAGS computations.

h_jags_extract_samples 129

Examples

Create some data of class 'Data'
my_data <- Data(

x = 0.1,
y = 0,
doseGrid = c(0.1, 0.5)

)

my_data_2 <- Data(
x = c(0.1, 0.5),
y = c(0, 1),
doseGrid = c(0.1, 0.5)

)

Append dummy to `x` and `y`.
h_jags_add_dummy(my_data, where = c("x", "y"))

Append dummy to `x` and `y`. No effect as `my_data_2@nObs != 1`.
h_jags_add_dummy(my_data_2, where = c("x", "y"))

h_jags_extract_samples

Extracting Samples from JAGS mcarray Object

Description

[Stable]

A simple helper function that extracts a sample from rjags::mcarray.object S3 class object.
The rjags::mcarray.object object is used by the rjags::jags.samples() function to represent
MCMC output from a JAGS model.

Usage

h_jags_extract_samples(x)

Arguments

x an rjags::mcarray.object object.

130 h_jags_get_data

h_jags_get_data Getting Data for JAGS

Description

[Experimental]

A simple helper function that prepares an object for data argument of rjags::jags.model(),
which is invoked by mcmc() method.

Usage

h_jags_get_data(model, data, from_prior)

Arguments

model (GeneralModel)
an input model.

data (GeneralData)
an input data.

from_prior (flag)
sample from the prior only? In this case data will not be appended to the out-
put, i.e. only the variables required by the model@priormodel model will be
returned in data.

Examples

Create some data from the class `Data`.
my_data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Initialize the CRM model.
my_model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

jags_data <- h_jags_get_data(my_model, my_data, from_prior = FALSE)
jags_data

h_jags_get_model_inits 131

h_jags_get_model_inits

Setting Initial Values for JAGS Model Parameters

Description

[Experimental]

A simple helper function that prepares an object for inits argument of rjags::jags.model(),
which is invoked by mcmc() method. The inits argument specifies initial values for model param-
eters.

Usage

h_jags_get_model_inits(model, data)

Arguments

model (GeneralModel)
an input model.

data (GeneralData)
an input data.

Value

A list of starting values for parameters required to be initialized in the MCMC JAGS sampler.

Examples

Create some data from the class `Data`.
my_data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Initialize the CRM model.
my_model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

h_jags_get_model_inits(model = my_model, data = my_data)

132 h_jags_write_model

h_jags_join_models Joining JAGS Models

Description

[Stable]
This helper function joins two JAGS models in the way that the body of the second model is ap-
pended to the body of the first model (in this order). After that, the first, body-extended model is
returned. The arguments of model1, model2 model functions (if any) are not combined in any way.

Usage

h_jags_join_models(model1, model2)

Arguments

model1 (function)
the first model to join.

model2 (function)
the second model to join.

Value

joined models.

Note

model1 and model2 functions must have a multi-expression body, i.e. braced expression(s). Envi-
ronments or any attributes of the function bodies are not preserved in any way after joining.

h_jags_write_model Writing JAGS Model to a File

Description

[Stable]
This function converts a R function with JAGS model into a text and then writes it into a given file.
During the "model into text" conversion, the format of numbers of which absolute value is less than
0.001 or greater than 10000 is changed. These numbers will be converted into scientific format
with specified number of significant digits using formatC() function.

Usage

h_jags_write_model(model, file = NULL, digits = 5)

h_model_dual_endpoint_beta 133

Arguments

model (function)
function containing the JAGS model.

file (string or NULL)
the name of the file (including the optional path) where the model will be saved.
If NULL, the file will be created in a R_crmPack folder placed under temporary
directory indicated by tempdir() function.

digits (count)
a desired number of significant digits for for numbers used in JAGS input, see
formatC().

Value

The name of the file where the model was saved.

Note

JAGS syntax allows truncation specification like dnorm(...) I(...), which is illegal in R. To
overcome this incompatibility, use dummy operator \%_\% before I(...), i.e. dnorm(...) \%_\% I(...)
in the model’s code. This dummy operator \%_\% will be removed just before saving the JAGS code
into a file. Due to technical issues related to conversion of numbers to scientific format, it is required
that the body of a model function does not contain TEMP_NUM_PREF_ or _TEMP_NUM_SUF character
constants in its body.

Examples

Some model function
my_model <- function() {

alpha0 <- mean(1:10)
alpha1 <- 600000

}

h_jags_write_model(my_model, digits = 5)

h_model_dual_endpoint_beta

Update certain components of DualEndpoint model with regard to
parameters of the function that models dose-biomarker relationship
defined in the DualEndpointBeta class.

Description

[Stable]
A simple helper function that takes DualEndpoint object and updates use_fixed, priormodel,
modelspecs, init, sample slots with regard to a given parameter of the dose-biomarker relation-
ship f(x) defined in the DualEndpointBeta class. This update solely depends on whether a given

134 h_model_dual_endpoint_rho

parameter’s value param is a fixed-valued scalar or two-elements numeric vector. In the later case,
it is assumed that param represents two parameters of a probability distribution that will be used in
priormodel function to generate values for the param_name parameter of f(x). See the help page
for DualEndpointBeta class for more details.

Usage

h_model_dual_endpoint_beta(
param,
param_name,
param_suffix = c("_low", "_high"),
priormodel = NULL,
de

)

Arguments

param (numeric)
the value of a given param_name parameter of the dose-biomarker relationship
function f(x). Either a fixed-valued scalar or vector with two elements that
are the parameters of a probability distribution that will be used in priormodel
function to generate values for the param_name parameter of f(x).

param_name (string)
the name of the parameter of f(x), whose value depends on param.

param_suffix (character)
the two suffixes to be appended to the elements of param_name and then used
when updating modelspecs. The value of this argument is ignored when param
is a scalar.

priormodel (function or NULL)
a function representing the JAGS prior specification that will be appended to ex-
isting de@priormodel specification if param is not a scalar. Otherwise, de@priormodel
remains unchanged.

de (DualEnpoint)
dual endpoint model whose slots will be updated.

Value

A DualEndpoint model with updated use_fixed, priormodel, modelspecs, init, sample slots.

h_model_dual_endpoint_rho

Update DualEndpoint class model components with regard to DLT
and biomarker correlation.

h_model_dual_endpoint_sigma2betaw 135

Description

[Stable]

A simple helper function that takes DualEndpoint model existing components (priormodel, modelspecs,
init, sample), and updates them with regard to DLT and biomarker correlation rho.

Usage

h_model_dual_endpoint_rho(use_fixed, rho, comp)

Arguments

use_fixed (flag)
indicates whether a fixed value for DLT and biomarker correlation rho should be
used or not. If rho is not supposed to be a fixed value, a prior distribution from
the scaled Beta family will be used. See the details below, under rho argument.

rho (numeric)
DLT and biomarker correlation. It must be either a fixed value (between -1 and
1), or a named vector with two elements, named a and b for the Beta prior on
the transformation kappa = (rho + 1) / 2, which is in (0, 1). For example,
a = 1, b = 1 leads to a uniform prior on rho.

comp (list)
a named list with model components that will be updated. The names should be:
priormodel, modelspecs, init, sample. For definitions of the components,
see GeneralModel class. The modelspecs and init components on comp list
are specified up to the body of corresponding GeneralModel@modelspecs and
GeneralModel@init functions. These bodies are simply a lists itself.

Value

A list with updated model components.

h_model_dual_endpoint_sigma2betaw

Update certain components of DualEndpoint model with regard to
prior variance factor of the random walk.

Description

[Stable]

A simple helper function that takes DualEndpoint object and updates priormodel, modelspecs,
init, sample slots according to the random walk variance.

Usage

h_model_dual_endpoint_sigma2betaw(use_fixed, sigma2betaW, de)

136 h_model_dual_endpoint_sigma2w

Arguments

use_fixed (flag)
indicates whether a fixed value for sigma2betaW should be used or not. If
sigma2betaW is not supposed to be a fixed value, a prior distribution from
the Inverse-Gamma distribution will be used. See the details below, under
sigma2betaW argument.

sigma2betaW (numeric)
the prior variance factor of the random walk prior for the biomarker model.
Either a fixed value or Inverse-Gamma distribution parameters, i.e. vector with
two elements named a and b.

de (DualEnpoint)
dual endpoint model whose slots will be updated.

Value

A DualEndpoint model with updated priormodel, modelspecs, init, sample slots.

See Also

DualEndpointRW.

h_model_dual_endpoint_sigma2w

Update DualEndpoint class model components with regard to
biomarker regression variance.

Description

[Stable]
A simple helper function that takes DualEndpoint model existing components (priormodel, modelspecs,
init, sample), and updates them with regard to to biomarker regression variance sigma2W.

Usage

h_model_dual_endpoint_sigma2w(use_fixed, sigma2W, comp)

Arguments

use_fixed (flag)
indicates whether a fixed value for the biomarker regression variance sigma2W
should be used or not. If sigma2W is not supposed to be a fixed value, a prior
distribution from the Inverse-Gamma distribution will be used. See the details
below, under sigma2W argument.

sigma2W (numeric)
the biomarker variance. Either a fixed value or Inverse-Gamma distribution pa-
rameters, i.e. vector with two elements named a and b.

h_next_best_eligible_doses 137

comp (list)
a named list with model components that will be updated. The names should be:
priormodel, modelspecs, init, sample. For definitions of the components,
see GeneralModel class. The modelspecs and init components on comp list
are specified up to the body of corresponding GeneralModel@modelspecs and
GeneralModel@init functions. These bodies are simply a lists itself.

Value

list with updated model components.

h_next_best_eligible_doses

Get Eligible Doses from the Dose Grid.

Description

[Experimental]
Helper function that gets the eligible doses from the dose grid. The eligible doses are the doses
which do not exceed a given doselimit. For placebo design, if safety allows (i.e. if there is at least
one non-placebo dose which does not exceed the dose limit), the placebo dose is then excluded from
the eligible doses.

Usage

h_next_best_eligible_doses(dose_grid, doselimit, placebo, levels = FALSE)

Arguments

dose_grid (numeric)
all possible doses.

doselimit (number)
the maximum allowed next dose.

placebo (flag)
if TRUE the first dose level in the dose_grid is considered as placebo.

levels (flag)
if TRUE the levels of eligible doses are returned, otherwise, the doses (default).

Value

A numeric vector with eligible doses or eligible dose levels if levels flag is TRUE.

Examples

dose_grid <- c(0.001, seq(25, 200, 25))
h_next_best_eligible_doses(dose_grid, 79, TRUE)
h_next_best_eligible_doses(dose_grid, 24, TRUE)

138 h_next_best_mgsamples_plot

h_next_best_mgsamples_plot

Building the Plot for nextBest-NextBestMaxGainSamples Method.

Description

[Experimental]
Helper function which creates the plot for nextBest-NextBestMaxGainSamples() method.

Usage

h_next_best_mgsamples_plot(
prob_target_drt,
dose_target_drt,
prob_target_eot,
dose_target_eot,
dose_mg,
dose_mg_samples,
next_dose,
doselimit,
dose_grid_range

)

Arguments

prob_target_drt

(proportion)
target DLT probability during the trial.

dose_target_drt

(number)
target dose estimate during the trial.

prob_target_eot

(proportion)
target DLT probability at the end of the trial.

dose_target_eot

(number)
target dose estimate at the end of the trial.

dose_mg (number)
the dose corresponding to the maximum gain.

dose_mg_samples

(numeric)
for every sample, the dose (from the dose grid) that gives the maximum gain
value.

next_dose (number)
next best dose.

h_next_best_mg_ci 139

doselimit (number)
the maximum allowed next dose.

dose_grid_range

(numeric)
dose grid range.

h_next_best_mg_ci Credibility Intervals for Max Gain and Target Doses at
nextBest-NextBestMaxGain Method.

Description

[Experimental]

Helper function for nextBest-NextBestMaxGain() method. It computes a 95% credibility inter-
vals for given target dose and max gain dose. It also returns a ratio of upper and lower bounds of
the interval.

Usage

h_next_best_mg_ci(dose_target, dose_mg, prob_target, placebo, model, model_eff)

Arguments

dose_target (number)
target dose estimate.

dose_mg (number)
the dose corresponding to the maximum gain.

prob_target (proportion)
target DLT probability.

placebo (flag)
if TRUE the first dose level in the dose grid used is considered as placebo. This is
needed to adjust the max gain dose using efficacy constant value. If the placebo
was used, then the model_eff@const is added to dose_mg.

model (ModelTox)
the DLT model.

model_eff (Effloglog)
the efficacy model.

References

Yeung WY, Whitehead J, Reigner B, Beyer U, Diack C, Jaki T (2015). “Bayesian adaptive dose-
escalation procedure for binary and continuous responses utilizing a gain function.” Pharmaceutical
Statistics. doi:10.1002/pst.1706, Published online ahead of print.

https://doi.org/10.1002/pst.1706

140 h_next_best_mg_doses_at_grid

h_next_best_mg_doses_at_grid

Get Closest Grid Doses for a Given Target Doses for
nextBest-NextBestMaxGain Method.

Description

[Experimental]

Helper function that for a given target doses finds the dose in grid that is closest and below the
target. There are four different targets in the context of nextBest-NextBestMaxGain() method:
min(‘dosemg‘, ‘dosetargetdrt‘), dose_mg, dose_target_drt or dose_target_eot.

Usage

h_next_best_mg_doses_at_grid(
dose_target_drt,
dose_target_eot,
dose_mg,
dose_grid,
doselimit,
placebo

)

Arguments

dose_target_drt

(number)
target dose estimate during the trial.

dose_target_eot

(number)
target dose estimate at the end of the trial.

dose_mg (number)
the dose corresponding to the maximum gain.

dose_grid (numeric)
all possible doses.

doselimit (number)
the maximum allowed next dose.

placebo (flag)
if TRUE the first dose level in the dose_grid is considered as placebo.

h_next_best_mg_plot 141

h_next_best_mg_plot Building the Plot for nextBest-NextBestMaxGain Method.

Description

[Experimental]

Helper function which creates the plot for nextBest-NextBestMaxGain() method.

Usage

h_next_best_mg_plot(
prob_target_drt,
dose_target_drt,
prob_target_eot,
dose_target_eot,
dose_mg,
max_gain,
next_dose,
doselimit,
data,
model,
model_eff

)

Arguments

prob_target_drt

(proportion)
target DLT probability during the trial.

dose_target_drt

(number)
target dose estimate during the trial.

prob_target_eot

(proportion)
target DLT probability at the end of the trial.

dose_target_eot

(number)
target dose estimate at the end of the trial.

dose_mg (number)
the dose corresponding to the maximum gain.

max_gain (number)
the maximum gain estimate.

next_dose (number)
next best dose.

142 h_next_best_ncrm_loss_plot

doselimit (number)
the maximum allowed next dose.

data (DataDual)
the data object from which the dose grid will be fetched.

model (ModelTox)
the DLT model.

model_eff (Effloglog)
the efficacy model.

h_next_best_ncrm_loss_plot

Building the Plot for nextBest-NextBestNCRMLoss Method.

Description

[Experimental]

Helper function which creates the plot for nextBest-NextBestNCRMLoss() method.

Usage

h_next_best_ncrm_loss_plot(
prob_mat,
posterior_loss,
max_overdose_prob,
dose_grid,
max_eligible_dose_level,
doselimit,
next_dose,
is_unacceptable_specified

)

Arguments

prob_mat (numeric)
matrix with probabilities of a grid doses to be in a given interval. If is_unacceptable_specified
is TRUE, there must be 4 intervals (columns) in prob_mat: underdosing, target,
excessive, unacceptable. Otherwise, there must be 3 intervals (columns):
underdosing, target, overdose. Number of rows must be equal to number of
doses in a grid.

posterior_loss (numeric)
posterior losses.

max_overdose_prob

(number)
maximum overdose posterior probability that is allowed.

h_next_best_tdsamples_plot 143

dose_grid (numeric)
dose grid.

max_eligible_dose_level

(number)
maximum eligible dose level in the dose_grid.

doselimit (number)
the maximum allowed next dose.

next_dose (number)
next best dose.

is_unacceptable_specified

(flag)
is unacceptable interval specified?

h_next_best_tdsamples_plot

Building the Plot for nextBest-NextBestTDsamples Method.

Description

[Experimental]
Helper function which creates the plot for nextBest-NextBestTDsamples() method.

Usage

h_next_best_tdsamples_plot(
dose_target_drt_samples,
dose_target_eot_samples,
dose_target_drt,
dose_target_eot,
dose_grid_range,
nextBest,
doselimit,
next_dose

)

Arguments

dose_target_drt_samples

(numeric)
vector of in-trial samples.

dose_target_eot_samples

(numeric)
vector of end-of-trial samples.

dose_target_drt

(number)
target in-trial estimate.

144 h_next_best_td_plot

dose_target_eot

(number)
target end-of-trial estimate.

dose_grid_range

(numeric)
range of dose grid.

nextBest (NextBestTDsamples)
the rule for the next best dose.

doselimit (number)
the maximum allowed next dose.

next_dose (number)
next best dose.

h_next_best_td_plot Building the Plot for nextBest-NextBestTD Method.

Description

[Experimental]
Helper function which creates the plot for nextBest-NextBestTD() method.

Usage

h_next_best_td_plot(
prob_target_drt,
dose_target_drt,
prob_target_eot,
dose_target_eot,
data,
prob_dlt,
doselimit,
next_dose

)

Arguments

prob_target_drt

(proportion)
target DLT probability during the trial.

dose_target_drt

(number)
target dose estimate during the trial.

prob_target_eot

(proportion)
target DLT probability at the end of the trial.

h_null_if_na 145

dose_target_eot

(number)
target dose estimate at the end of the trial.

data (Data)
the data object from which the dose grid will be fetched.

prob_dlt (numeric)
DLT probabilities for doses in grid.

doselimit (number)
the maximum allowed next dose.

next_dose (number)
next best dose.

h_null_if_na Getting NULL for NA

Description

[Stable]

A simple helper function that replaces NA object by NULL object.

Usage

h_null_if_na(x)

Arguments

x (any)
atomic object of length 1. For the definition of "atomic", see is.atomic().

Value

NULL if x is NA, otherwise, x.

Examples

h_null_if_na(NA)

146 h_plot_data_cohort_lines

h_obtain_dose_grid_range

Helper Function Containing Common Functionality

Description

Used by dose_grid_range-Data and dose_grid_range-DataOrdinal

Usage

h_obtain_dose_grid_range(object, ignore_placebo)

Arguments

object (Data or DataOrdinal)
the object for which the dose grid range is required

ignore_placebo (flag)
should placebo dose (if any) not be counted?

h_plot_data_cohort_lines

Preparing Cohort Lines for Data Plot

Description

[Experimental]
This helper function prepares a ggplot geom with reference lines separating different cohorts on
the plot of Data class object. Lines are either vertical or horizontal of green color and longdash
type.

Usage

h_plot_data_cohort_lines(cohort, placebo, vertical = TRUE)

Arguments

cohort (integer)
the cohort indices.

placebo (flag)
is placebo included in the doses? If it so, this function returns NULL object as in
this case all doses in a given cohort are equal and there is no need to separate
them.

vertical (flag)
should the line be vertical? Otherwise it is horizontal.

h_plot_data_dataordinal 147

Details

The geom object is returned if and only if placebo is equal to TRUE and there are more than one
unique values in cohort. Otherwise, this function returns NULL object.

h_plot_data_dataordinal

Helper Function for the Plot Method of the Data and DataOrdinal
Classes

Description

[Stable]
A method that creates a plot for Data and DataOrdinal objects.

[Stable]
A method that creates a plot for Data object.

[Experimental]
A method that creates a plot for DataOrdinal object.

Usage

h_plot_data_dataordinal(
x,
blind = FALSE,
legend = TRUE,
tox_labels = c(Yes = "red", No = "black"),
tox_shapes = c(Yes = 17L, No = 16L),
mark_backfill = FALSE,
...

)

S4 method for signature 'Data,missing'
plot(
x,
y,
blind = FALSE,
legend = TRUE,
include_backfill = TRUE,
mark_backfill = FALSE,
mark_response = FALSE,
...,
text_size_markings = 9,
point_cex_markings = 1.1

)

S4 method for signature 'DataOrdinal,missing'

148 h_plot_data_dataordinal

plot(
x,
y,
blind = FALSE,
legend = TRUE,
tox_labels = NULL,
tox_shapes = NULL,
...

)

Arguments

x (DataOrdinal)
object we want to plot.

blind (flag)
indicates whether to blind the data. If TRUE, then placebo subjects are reported
at the same level as the active dose level in the corresponding cohort, and DLTs
are always assigned to the first subjects in a cohort.

legend (flag)
whether the legend should be added.

tox_labels (named list of character)
the labels of the toxicity categories.

tox_shapes (names list of integers)
the symbols used to identify the toxicity categories.

mark_backfill (flag)
whether to mark backfilled patients with empty shape.

... not used.

y (missing)
missing object, for compatibility with the generic function.

include_backfill

(flag)
whether to include backfilled patients.

mark_response (flag)
whether to mark patients with response with rectangle.

text_size_markings

(number)
text size for the markings legend.

point_cex_markings

(number)
point size multiplier for the markings legend.

Value

The ggplot2::ggplot2 object.

The ggplot2::ggplot2 object.

The ggplot2::ggplot2 object.

h_plot_data_dataordinal 149

Note

The default values of tox_shapes and tox_labels result in DLTs being displayed as red triangles
and other responses as black circles.

With more than 9 toxicity categories, toxicity symbols must be specified manually.
With more than 5 toxicity categories, toxicity labels must be specified manually.

Examples

Create some data of class 'Data'.
my_data <- Data(

x = c(0.001, 0.1, 0.1, 0.5, 0.001, 3, 3, 0.001, 10, 10, 10),
y = c(0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0),
cohort = c(1, 1, 1, 2, 3, 3, 3, 4, 4, 4, 4),
doseGrid = c(0.001, 0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2)),
placeb = TRUE

)

Plot the data.
plot(my_data)

We can also mark backfill patients and response outcomes.
my_data@backfilled <- c(

FALSE,
FALSE,
FALSE,
FALSE,
TRUE,
TRUE,
TRUE,
FALSE,
FALSE,
FALSE,
FALSE

)
my_data@response <- as.integer(c(

NA,
NA,
1,
NA,
NA,
0,
1,
NA,
1,
0,
0

))
plot(

my_data,
mark_backfill = TRUE,
mark_response = TRUE

150 h_plot_data_df

)
data <- DataOrdinal(

x = c(10, 20, 30, 40, 50, 50, 50, 60, 60, 60),
y = as.integer(c(0, 0, 0, 0, 0, 1, 0, 0, 1, 2)),
ID = 1L:10L,
cohort = as.integer(c(1:4, 5, 5, 5, 6, 6, 6)),
doseGrid = c(seq(from = 10, to = 100, by = 10)),
yCategories = c("No tox" = 0L, "Sub-tox AE" = 1L, "DLT" = 2L),
placebo = FALSE

)

plot(data)

h_plot_data_df Preparing Data for Plotting

Description

[Experimental]
This helper function prepares a data.frame object based on Data class object. The resulting data
frame is used by the plot function for Data class objects.

[Experimental]
A method that transforms GeneralData objects into a tibble suitable for plotting with ggplot2
methods

Usage

h_plot_data_df(data, ...)

h_plot_data_df(data, ...)

S4 method for signature 'Data'
h_plot_data_df(data, blind = FALSE, legend = TRUE, ...)

S4 method for signature 'DataOrdinal'
h_plot_data_df(data, blind = FALSE, legend = TRUE, ...)

Arguments

data (Data)
object from which data is extracted and converted into a data frame.

... further arguments passed to data.frame constructor. It can be e.g. an extra
column_name = value pair based on a slot from x (which in this case might be
a subclass of Data) which does not appear in Data.

blind (flag)
should data be blinded? If TRUE, then for each cohort, all DLTs are assigned
to the first subjects in the cohort. In addition, the placebo (if any) is set to the
active dose level for that cohort.

h_rapply 151

legend (flag)
Display the legend for the toxicity categories

Value

A data.frame object with values to plot.

data.frame containing columns for patient, cohort, dose and toxicity grade

A data.frame object with columns patient, ID, cohort, dose and toxicity.

Methods (by class)

• h_plot_data_df(Data): method for Data.

• h_plot_data_df(DataOrdinal): Class specific method for DataOrdinal

h_rapply Recursively Apply a Function to a List

Description

[Experimental]

This helper function recursively iterates through a "list-like" object and it checks whether an element
is of a given class. If it so, then it replaces that element by the result of an execution of a given
function. Otherwise, and if the element is of length greater than 1 (i.e. not a scalar), it replaces that
element by the result of h_rapply(), recursively called for that element. In the remaining case, that
is, the element is not of a given class and is a scalar, then that element remains unchanged.

Usage

h_rapply(x, fun, classes, ...)

Arguments

x (any)
"list-like" object for which subsetting operator [[is defined.

fun (function)
a function of one "principal" argument, passing further arguments via

classes (character)
class names.

... further arguments passed to function fun.

Value

"list-like" object of similar structure as x.

152 h_slots

Note

This helper function is conceptually similar the same as rapply() function. However, it differs
from rapply() in two major ways. First, the h_rapply() is not limited to objects of type list
or expression only. It can be any "list-like" object of any type for which subsetting operator [[
is defined. This can be, for example, an object of type language, often obtained from the body()
function. The second difference is that the flexibility of rapply() on how the result is structured is
not available with h_rapply() for the user. That is, with h_rapply() each element of x, which has
a class included in classes, is replaced by the result of applying fun to the element. This behavior
corresponds to rapply() when invoked with fixed how = replace. This function was primarily
designed as a helper for h_jags_write_model() function.

Examples

Some model function.
my_model <- function() {

alpha0 <- mean(1:10)
alpha1 <- 600000

}

Replace format of numbers using `formatC` function.
h_rapply(

x = body(my_model),
fun = formatC,
classes = c("integer", "numeric"),
digits = 3,
format = "E"

)

h_slots Getting the Slots from a S4 Object

Description

[Experimental]
This helper function extracts requested slots from the S4 class object. It is a simple wrapper of
methods::slot() function.

Usage

h_slots(object, names, simplify = FALSE)

Arguments

object (S4)
an object from a formally defined S4 class.

names (character)
a vector with names of slots to be fetched. This function assumes that for every
element in names, there exists a slot of the same name in the object.

h_summarize_add_stats 153

simplify (flag)
should an output be simplified? This has an effect if and only if a single slot is
about to be extracted, i.e. names is just a single string.

Value

list with the slots extracted from object according to names, or single slot if simplification is
required and possible.

h_summarize_add_stats Helper function to calculate average across iterations for each addi-
tional reporting parameter extracts parameter names as specified by
user and averaged the values for each specified parameter to show()
and output with cat to console

Description

Helper function to calculate average across iterations for each additional reporting parameter ex-
tracts parameter names as specified by user and averaged the values for each specified parameter to
show() and output with cat to console

Usage

h_summarize_add_stats(stats_list)

Arguments

stats_list object from simulation with nested parameter values (sublist for each parameter)

Value

list of parameter names and averaged values for console output

h_test_named_numeric Check that an argument is a named vector of type numeric

Description

[Stable]

A simple helper function that tests whether an object is a named numerical vector.

154 h_test_named_numeric

Usage

h_test_named_numeric(
x,
subset.of = NULL,
must.include = NULL,
permutation.of = NULL,
identical.to = NULL,
disjunct.from = NULL,
lower = 0 + .Machine$double.xmin,
finite = TRUE,
any.missing = FALSE,
len = 2,
...

)

Arguments

x (any)
object to check.

subset.of [character]
Names provided in x must be subset of the set subset.of.

must.include [character]
Names provided in x must be a superset of the set must.include.

permutation.of [character]
Names provided in x must be a permutation of the set permutation.of. Du-
plicated names in permutation.of are stripped out and duplicated names in x
thus lead to a failed check. Use this argument instead of identical.to if the
order of the names is not relevant.

identical.to [character]
Names provided in x must be identical to the vector identical.to. Use this
argument instead of permutation.of if the order of the names is relevant.

disjunct.from [character]
Names provided in x must may not be present in the vector disjunct.from.

lower [numeric(1)]
Lower value all elements of x must be greater than or equal to.

finite [logical(1)]
Check for only finite values? Default is FALSE.

any.missing [logical(1)]
Are vectors with missing values allowed? Default is TRUE.

len [integer(1)]
Exact expected length of x.

... further parameters passed to checkmate::test_numeric().

Value

TRUE if x is a named vector of type numeric, otherwise FALSE.

h_unpack_stopit 155

Note

This function is based on checkmate::test_numeric() and checkmate::test_names() func-
tions.

Examples

h_test_named_numeric(1:2, permutation.of = c("a", "b"))
h_test_named_numeric(c(a = 1, b = 2), permutation.of = c("a", "b"))
h_test_named_numeric(c(a = 1, b = 2), permutation.of = c("b", "a"))

h_unpack_stopit Helper function to recursively unpack stopping rules and return lists
with logical value and label given

Description

Helper function to recursively unpack stopping rules and return lists with logical value and label
given

Usage

h_unpack_stopit(stopit_tree)

Arguments

stopit_tree object from simulate method

Value

named list

h_validate_combine_results

Combining S4 Class Validation Results

Description

[Experimental]

A simple helper function that combines two outputs from calls to result() function which is placed
in a slot of Validate() reference class.

Usage

h_validate_combine_results(v1, v2)

156 Increments-class

Arguments

v1 (logical or character)
an output from result() function from Validate() reference class, to be com-
bined with v2.

v2 (logical or character)
an output from result() function from Validate() reference class, to be com-
bined with v1.

Examples

h_validate_combine_results(TRUE, "some_message")

h_validate_common_data_slots

Helper Function performing validation Common to Data and DataOr-
dinal

Description

Helper Function performing validation Common to Data and DataOrdinal

Usage

h_validate_common_data_slots(object)

Arguments

object (Data or DataOrdinal)
the object to be validated

Value

a Validate object containing the result of the validation

Increments-class Increments

Description

[Stable]
Increments is a virtual class for controlling increments, from which all other specific increments
classes inherit.

Usage

.DefaultIncrements()

IncrementsDoseLevels-class 157

Note

Typically, end users will not use the .DefaultIncrements() function.

See Also

IncrementsRelative, IncrementsRelativeDLT, IncrementsDoseLevels, IncrementsHSRBeta,
IncrementsMin.

IncrementsDoseLevels-class

IncrementsDoseLevels

Description

[Stable]

IncrementsDoseLevels is the class for increments control based on the number of dose levels.

Usage

IncrementsDoseLevels(levels = 1L, basis_level = "last")

.DefaultIncrementsDoseLevels()

Arguments

levels (count)
see slot definition.

basis_level (string)
see slot definition.

Slots

levels (count)
maximum number of dose levels to increment for the next dose. It defaults to 1, which means
that no dose skipping is allowed, i.e. the next dose can be maximum one level higher than the
current base dose. The current base dose level is the dose level used to increment from (see
basis_level parameter).

basis_level (string)
defines the current base dose level. It can take one out of two possible values: last or max.
If last is specified (default), the current base dose level is set to the last dose given. If max is
specified, then the current base dose level is set to the maximum dose level given.

Note

Typically, end users will not use the .DefaultIncrementsDoseLevels() function.

158 IncrementsHSRBeta-class

Examples

The rule for dose increments which allows for maximum skip one dose level,
that is 2 dose levels higher than the last dose given.
my_increments <- IncrementsDoseLevels(levels = 2, basis_level = "last")

IncrementsHSRBeta-class

IncrementsHSRBeta

Description

[Experimental]
IncrementsHSRBeta is a class for limiting further increments using a Hard Safety Rule based on
the Bin-Beta model. Increment control is based on the number of observed DLTs and number of
subjects at each dose level. The probability of toxicity is calculated using a Bin-Beta model with
prior (a,b). If the probability exceeds the threshold for a given dose, that dose and all doses above
are excluded from further escalation. This is a hard safety rule that limits further escalation based
on the observed data per dose level, independent from the underlying model.

Usage

IncrementsHSRBeta(target = 0.3, prob = 0.95, a = 1, b = 1)

.DefaultIncrementsHSRBeta()

Arguments

target (proportion)
see slot definition.

prob (proportion)
see slot definition.

a (number)
see slot definition.

b (number)
see slot definition.

Slots

target (proportion)
the target toxicity, except 0 or 1.

prob (proportion)
the threshold probability (except 0 or 1) for a dose being toxic.

a (number)
shape parameter a > 0 of probability distribution Beta (a,b).

b (number)
shape parameter b > 0 of probability distribution Beta (a,b).

IncrementsMaxToxProb-class 159

Note

Typically, end users will not use the .DefaultIncrementsHSRBeta() function.

Examples

Limit the escalation with a hard safety criteria to the doses that are below
the first dose that is toxic with a probability of 0.95.
my_increments <- IncrementsHSRBeta(target = 0.3, prob = 0.95)

IncrementsMaxToxProb-class

IncrementsMaxToxProb

Description

[Experimental]

IncrementsMaxToxProb is the class for increments control based on probability of toxicity

Usage

IncrementsMaxToxProb(prob)

.DefaultIncrementsMaxToxProb()

Arguments

prob (numeric)
see slot definition.

Slots

prob (numeric)
See Usage Notes below.

Usage Notes

For binary models, prob should be a scalar probability.

For ordinal models, prob should be a named vector containing the maximum permissible proba-
bility of toxicity by grade. The names should match the names of the yCategories slot of the
associated DataOrdinal object.

Note

Typically, end users will not use the .DefaultIncrementsMaxToxProb() function.

160 IncrementsMin-class

Examples

For use with binary models and data
IncrementsMaxToxProb(prob = 0.35)

For use with ordinal models and data
IncrementsMaxToxProb(prob = c("DLAE" = 0.2, "DLT" = 0.05))

IncrementsMin-class IncrementsMin

Description

[Stable]
IncrementsMin is the class that combines multiple increment rules with the minimum operation.
Slot increments_list contains all increment rules, which are itself the objects of class Increments.
The minimum of these individual increments is taken to give the final maximum increment.

Usage

IncrementsMin(increments_list)

.DefaultIncrementsMin()

Arguments

increments_list

(list)
see slot definition.

Slots

increments_list (list)
list with increment rules.

Note

Typically, end users will not use the .DefaultIncrementsMin() function.

Examples

As example, here we are combining 2 different increment rules.

The first rule is the following:
maximum doubling the dose if no DLTs were observed at the current dose
or maximum increasing the dose by 1.33 if 1 or 2 DLTs were observed at the current dose
or maximum increasing the dose by 1.22 if 3 or more DLTs were observed.
my_increments_1 <- IncrementsRelativeDLT(

intervals = c(0, 1, 3),

IncrementsOrdinal-class 161

increments = c(1, 0.33, 0.2)
)

The second rule is the following:
maximum doubling the dose if the current dose is <20
or only maximum increasing the dose by 1.33 if the current dose is >=20.
my_increments_2 <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)

Now we combine the 2 rules.
comb_increments <- IncrementsMin(

increments_list = list(my_increments_1, my_increments_2)
)

IncrementsOrdinal-class

IncrementsOrdinal

Description

[Experimental]
IncrementsOrdinal is the class for applying a standard Increments rule to the results of an ordinal
CRM trial.

Usage

IncrementsOrdinal(grade, rule)

.DefaultIncrementsOrdinal()

Arguments

grade (numeric)
see slot definition.

rule (Increments)
see slot definition.

Slots

grade (integer)
the toxicity grade to which the rule should be applied.

rule (Increments)
the standard Increments rule to be applied

Note

Typically, end users will not use the .DefaultIncrementsOrdinal() function.

162 IncrementsRelative-class

Examples

IncrementsOrdinal(
grade = 1L,
rule = IncrementsRelative(
intervals = c(0, 20),
increments = c(1, 0.33)

)
)

IncrementsRelative-class

IncrementsRelative

Description

[Stable]

IncrementsRelative is the class for increments control based on relative differences in intervals.

Usage

IncrementsRelative(intervals, increments)

.DefaultIncrementsRelative()

Arguments

intervals (numeric)
see slot definition.

increments (numeric)
see slot definition.

Slots

intervals (numeric)
a vector with the left bounds of the relevant intervals. For example, intervals = c(0, 50,
100) specifies three intervals: (0, 50), [50, 100) and [100,+Inf). That means, the right bound
of the intervals are exclusive to the interval and the last interval goes from the last value to
infinity.

increments (numeric)
a vector of the same length with the maximum allowable relative increments in the intervals.

Note

Typically, end users will not use the .DefaultIncrementsRelative() function.

IncrementsRelativeDLT-class 163

Examples

This is the example of a rule for:
maximum doubling the dose if the current dose is <20
or only maximum increasing the dose by 1.33 if the current dose is >=20.
my_increments <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)

IncrementsRelativeDLT-class

IncrementsRelativeDLT

Description

[Stable]
IncrementsRelativeDLT is the class for increments control based on relative differences in terms
of DLTs.

Usage

IncrementsRelativeDLT(intervals, increments)

.DefaultIncrementsRelativeDLT()

Arguments

intervals (numeric)
see slot definition.

increments (numeric)
see slot definition.

Slots

intervals (integer)
a vector with the left bounds of the relevant DLT intervals. For example, intervals = c(0,
1, 3) specifies three intervals (sets of DLTs: first, 0 DLT; second 1 or 2 DLTs; and the third
one, at least 3 DLTs. That means, the right bound of the intervals are exclusive to the interval
and the last interval goes from the last value to infinity.

increments (numeric)
a vector of maximum allowable relative increments corresponding to intervals. IT must be
of the same length as the length of intervals.

Note

This considers all DLTs across all cohorts observed so far.

Typically, end users will not use the .DefaultIncrementsRelativeDLT() function.

164 IncrementsRelativeDLTCurrent-class

See Also

IncrementsRelativeDLTCurrent which only considers the DLTs in the current cohort.

Examples

This is the example of a rule for:
maximum doubling the dose if no DLTs were observed in the whole study so far
or maximum increasing the dose by 1.33 if 1 or 2 DLTs were observed so far
or maximum increasing the dose by 1.22 if 3 or more DLTs were observed so far.
my_increments <- IncrementsRelativeDLT(

intervals = c(0, 1, 3),
increments = c(1, 0.33, 0.2)

)

IncrementsRelativeDLTCurrent-class

IncrementsRelativeDLTCurrent

Description

[Experimental]

IncrementsRelativeDLTCurrent is the class for increments control based on relative differences
and current DLTs. The class is based on the number of DLTs observed in the current cohort, but not
cumulatively over all cohorts so far.

Usage

IncrementsRelativeDLTCurrent(intervals = c(0L, 1L), increments = c(2L, 1L))

.DefaultIncrementsRelativeDLTCurrent()

Arguments

intervals (numeric)
see slot definition.

increments (numeric)
see slot definition.

Note

Typically, end users will not use the .DefaultIncrementsRelativeDLTCurrent() function.

See Also

IncrementsRelativeDLT.

IncrementsRelativeParts-class 165

Examples

As example, here is the rule for:
maximum doubling the dose if no DLTs were observed at the current dose
or maximum increasing the dose by 1.33 if 1 or 2 DLTs were observed at the current dose
or maximum increasing the dose by 1.22 if 3 or more DLTs were observed.

my_increments <- IncrementsRelativeDLTCurrent(
intervals = c(0, 1, 3),
increments = c(1, 0.33, 0.2)

)

IncrementsRelativeParts-class

IncrementsRelativeParts

Description

[Stable]
IncrementsRelativeParts is the class for increments control based on relative differences in
intervals, with special rules for part 1 and beginning of part 2.

Usage

IncrementsRelativeParts(dlt_start, clean_start, ...)

.DefaultIncrementsRelativeParts()

Arguments

dlt_start (count)
see slot definition.

clean_start (count)
see slot definition.

... Arguments passed on to IncrementsRelative

intervals (numeric)
see slot definition.

increments (numeric)
see slot definition.

Details

This class works only in conjunction with DataParts objects. If part 2 will just be started in the
next cohort, then the next maximum dose will be either dlt_start (e.g. -1) shift of the last part 1
dose in case of a DLT in part 1, or clean_start shift (e.g. -1) in case of no DLTs in part 1, given
that clean_start <= 0 (see description of clean_start slot for more details). If part 1 will still be
on in the next cohort, then the next dose level will be the next higher dose level in the part1Ladder
slot of the data object. If part 2 has been started before, the usual relative increment rules apply, see
IncrementsRelative.

166 knit_print.Backfill

Slots

dlt_start (integer)
a scalar, the dose level increment for starting part 2 in case of at least one DLT event in part 1.

clean_start (integer)
a scalar, the dose level increment for starting part 2 in case of no DLTs in part 1. If clean_start
<= 0, then the part 1 ladder will be used to find the maximum next dose. Otherwise, the relative
increment rules will be applied to find the next maximum dose level.

Note

We require that clean_start >= dlt_start. However, this precondition is not a prerequisite for
any function (except of the class’ validation function) that works with objects of this class. It is
rather motivated by the semantics. That is, if we observe a DLT in part 1, we cannot be more
aggressive than in case of a clean part 1 without DLT.

Typically, end users will not use the .DefaultIncrementsRelativeParts() function.

Examples

my_increments <- IncrementsRelativeParts(dlt_start = 0, clean_start = 1)

knit_print.Backfill Render a CohortSizeConst Object

Description

[Experimental]
[Experimental]
We provide additional utility functions to allow human-friendly rendition of crmPack objects in
Markdown and Quarto files

[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
We provide additional utility functions to allow human-friendly rendition of crmPack objects in
Markdown and Quarto files. This file contains methods for all design classes, not just those that are
direct descendants of Design.

[Experimental]

knit_print.Backfill 167

[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]

168 knit_print.Backfill

[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
We provide additional utility functions to allow human-friendly rendition of crmPack objects in
Markdown and Quarto files

[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]
[Experimental]

knit_print.Backfill 169

[Experimental]

[Experimental]

[Experimental]

Usage

S3 method for class 'Backfill'
knit_print(x, ..., asis = TRUE)

S3 method for class 'CohortSizeConst'
knit_print(x, ..., asis = TRUE, label = c("participant", "participants"))

S3 method for class 'CohortSizeRange'
knit_print(x, ..., asis = TRUE)

S3 method for class 'CohortSizeDLT'
knit_print(x, ..., tox_label = "toxicity", asis = TRUE)

S3 method for class 'CohortSizeParts'
knit_print(x, ..., asis = TRUE, label = c("participant", "participants"))

S3 method for class 'CohortSizeMax'
knit_print(x, ..., asis = TRUE)

S3 method for class 'CohortSizeMin'
knit_print(x, ..., asis = TRUE)

S3 method for class 'CohortSizeOrdinal'
knit_print(x, ..., tox_label = "toxicity", asis = TRUE)

S3 method for class 'CohortSizeRandom'
knit_print(x, ..., asis = TRUE, label = c("participant", "participants"))

S3 method for class 'StartingDose'
knit_print(x, ..., asis = TRUE)

S3 method for class 'RuleDesign'
knit_print(x, ..., level = 2L, title = "Design", sections = NA, asis = TRUE)

S3 method for class 'Design'
knit_print(x, ..., level = 2L, title = "Design", sections = NA, asis = TRUE)

S3 method for class 'DualDesign'
knit_print(x, ..., level = 2L, title = "Design", sections = NA, asis = TRUE)

S3 method for class 'DADesign'
knit_print(x, ..., level = 2L, title = "Design", sections = NA, asis = TRUE)

170 knit_print.Backfill

S3 method for class 'TDDesign'
knit_print(x, ..., level = 2L, title = "Design", sections = NA, asis = TRUE)

S3 method for class 'DualResponsesDesign'
knit_print(x, ..., level = 2L, title = "Design", sections = NA, asis = TRUE)

S3 method for class 'DesignOrdinal'
knit_print(x, ..., level = 2L, title = "Design", sections = NA, asis = TRUE)

S3 method for class 'DesignGrouped'
knit_print(
x,
...,
level = 2L,
title = "Design",
sections = c(model = "Dose toxicity model", mono = "Monotherapy rules", combo =

"Combination therapy rules", other = "Other details"),
asis = TRUE

)

S3 method for class 'TDsamplesDesign'
knit_print(x, ..., level = 2L, title = "Design", sections = NA, asis = TRUE)

S3 method for class 'DualResponsesDesign'
knit_print(x, ..., level = 2L, title = "Design", sections = NA, asis = TRUE)

S3 method for class 'DualResponsesSamplesDesign'
knit_print(x, ..., level = 2L, title = "Design", sections = NA, asis = TRUE)

S3 method for class 'RuleDesignOrdinal'
knit_print(x, ..., level = 2L, title = "Design", sections = NA, asis = TRUE)

S3 method for class 'GeneralData'
knit_print(
x,
...,
asis = TRUE,
label = c("participant", "participants"),
full_grid = FALSE,
summarise = c("none", "dose", "cohort"),
summarize = summarise,
units = NA,
format_func = h_knit_format_func

)

S3 method for class 'DataParts'
knit_print(
x,

knit_print.Backfill 171

...,
asis = TRUE,
label = c("participant", "participants"),
full_grid = FALSE,
summarise = c("none", "dose", "cohort"),
summarize = summarise,
units = NA,
format_func = h_knit_format_func

)

S3 method for class 'DualEndpoint'
knit_print(
x,
...,
asis = TRUE,
use_values = TRUE,
fmt = "%5.2f",
units = NA,
tox_label = "toxicity",
biomarker_label = "PD biomarker"

)

S3 method for class 'ModelParamsNormal'
knit_print(
x,
use_values = TRUE,
fmt = "%5.2f",
params = c("alpha", "beta"),
preamble = "The prior for θ is given by\\n",
asis = TRUE,
theta = "\\theta",
...

)

S3 method for class 'GeneralModel'
knit_print(
x,
...,
params = c("alpha", "beta"),
asis = TRUE,
use_values = TRUE,
fmt = "%5.2f",
units = NA

)

S3 method for class 'LogisticKadane'
knit_print(
x,

172 knit_print.Backfill

...,
asis = TRUE,
use_values = TRUE,
fmt = "%5.2f",
units = NA,
tox_label = "toxicity"

)

S3 method for class 'LogisticKadaneBetaGamma'
knit_print(
x,
...,
asis = TRUE,
use_values = TRUE,
fmt = "%5.2f",
tox_label = "toxicity",
units = NA

)

S3 method for class 'LogisticLogNormal'
knit_print(
x,
...,
use_values = TRUE,
fmt = "%5.2f",
params = c(`\\alpha` = "alpha", `log(\\beta)` = "beta"),
preamble = "The prior for θ is given by\\n",
asis = TRUE

)

S3 method for class 'LogisticLogNormalMixture'
knit_print(x, ..., asis = TRUE, use_values = TRUE, fmt = "%5.2f", units = NA)

S3 method for class 'LogisticLogNormalSub'
knit_print(
x,
...,
use_values = TRUE,
fmt = "%5.2f",
params = c(`\\alpha` = "alpha", `log(\\beta)` = "beta"),
preamble = "The prior for θ is given by\\n",
asis = TRUE

)

S3 method for class 'LogisticNormalMixture'
knit_print(x, ..., asis = TRUE, use_values = TRUE, fmt = "%5.2f", units = NA)

S3 method for class 'LogisticNormalFixedMixture'

knit_print.Backfill 173

knit_print(x, ..., asis = TRUE, use_values = TRUE, fmt = "%5.2f", units = NA)

S3 method for class 'OneParLogNormalPrior'
knit_print(
x,
...,
tox_label = "toxicity",
asis = TRUE,
use_values = TRUE,
fmt = "%5.2f"

)

S3 method for class 'OneParExpPrior'
knit_print(x, ..., asis = TRUE)

S3 method for class 'LogisticLogNormalGrouped'
knit_print(
x,
...,
use_values = TRUE,
fmt = "%5.2f",
params = c(`\\alpha` = "alpha", `\\beta` = "beta", `log(\\delta_0)` = "delta_0",

`log(\\delta_1)` = "delta_1"),
preamble = "The prior for θ is given by\\n",
asis = TRUE

)

S3 method for class 'LogisticLogNormalOrdinal'
knit_print(
x,
...,
use_values = TRUE,
fmt = "%5.2f",
params = NA,
preamble = "The prior for θ is given by\\n",
asis = TRUE

)

S3 method for class 'LogisticIndepBeta'
knit_print(
x,
...,
use_values = TRUE,
fmt = "%5.2f",
params = NA,
tox_label = "DLAE",
preamble = "The prior for θ is given by\\n",
asis = TRUE

174 knit_print.Backfill

)

S3 method for class 'Effloglog'
knit_print(
x,
...,
use_values = TRUE,
fmt = "%5.2f",
params = NA,
tox_label = "DLAE",
eff_label = "efficacy",
label = "participant",
preamble = "The prior for θ is given by\\n",
asis = TRUE

)

S3 method for class 'IncrementsRelative'
knit_print(x, ..., asis = TRUE)

S3 method for class 'IncrementsRelativeDLT'
knit_print(x, ..., asis = TRUE)

S3 method for class 'IncrementsDoseLevels'
knit_print(x, ..., asis = TRUE)

S3 method for class 'IncrementsHSRBeta'
knit_print(x, ..., asis = TRUE)

S3 method for class 'IncrementsMin'
knit_print(x, ..., asis = TRUE)

S3 method for class 'IncrementsOrdinal'
knit_print(x, ..., asis = TRUE)

S3 method for class 'IncrementsRelativeParts'
knit_print(x, ..., asis = TRUE, tox_label = c("toxicity", "toxicities"))

S3 method for class 'IncrementsRelativeDLTCurrent'
knit_print(x, ..., asis = TRUE, tox_label = c("DLT", "DLTs"))

S3 method for class 'NextBestMTD'
knit_print(
x,
...,
target_label = "the 25th centile",
tox_label = "toxicity",
asis = TRUE

)

knit_print.Backfill 175

S3 method for class 'NextBestNCRM'
knit_print(x, ..., tox_label = "toxicity", asis = TRUE)

S3 method for class 'NextBestThreePlusThree'
knit_print(
x,
...,
tox_label = c("toxicity", "toxicities"),
label = "participant",
asis = TRUE

)

S3 method for class 'NextBestDualEndpoint'
knit_print(
x,
...,
tox_label = "toxicity",
biomarker_label = "the biomarker",
biomarker_units = ifelse(x@target_relative, "%", ""),
asis = TRUE

)

S3 method for class 'NextBestMinDist'
knit_print(x, ..., tox_label = "toxicity", asis = TRUE)

S3 method for class 'NextBestInfTheory'
knit_print(
x,
...,
tox_label = "toxicity",
citation_text = "Mozgunov & Jaki (2019)",
citation_link = "https://doi.org/10.1002/sim.8450",
asis = TRUE

)

S3 method for class 'NextBestTD'
knit_print(x, ..., tox_label = "toxicity", asis = TRUE)

S3 method for class 'NextBestMaxGain'
knit_print(x, ..., tox_label = "toxicity", asis = TRUE)

S3 method for class 'NextBestProbMTDLTE'
knit_print(x, ..., tox_label = "toxicity", asis = TRUE)

S3 method for class 'NextBestProbMTDMinDist'
knit_print(x, ..., tox_label = "toxicity", asis = TRUE)

176 knit_print.Backfill

S3 method for class 'NextBestNCRMLoss'
knit_print(
x,
...,
tox_label = "toxicity",
asis = TRUE,
format_func = h_knit_format_func

)

S3 method for class 'NextBestTDsamples'
knit_print(x, ..., tox_label = "toxicity", asis = TRUE)

S3 method for class 'NextBestMaxGainSamples'
knit_print(x, ..., tox_label = "toxicity", asis = TRUE)

S3 method for class 'NextBestOrdinal'
knit_print(x, ..., tox_label = "toxicity", asis = TRUE)

S3 method for class 'OpeningMinDose'
knit_print(x, ..., asis = TRUE)

S3 method for class 'OpeningMinCohorts'
knit_print(x, ..., asis = TRUE)

S3 method for class 'OpeningNone'
knit_print(x, ..., asis = TRUE)

S3 method for class 'OpeningMinResponses'
knit_print(x, ..., asis = TRUE)

S3 method for class 'OpeningList'
knit_print(x, ..., preamble, indent = 0L, asis = TRUE)

S3 method for class 'OpeningAll'
knit_print(x, ..., preamble, asis = TRUE)

S3 method for class 'OpeningAny'
knit_print(x, ..., preamble, asis = TRUE)

S3 method for class 'RecruitmentUnlimited'
knit_print(x, ..., asis = TRUE)

S3 method for class 'RecruitmentRatio'
knit_print(x, ..., asis = TRUE)

S3 method for class 'SafetyWindow'
knit_print(x, ..., asis = TRUE, time_unit = "day", label = "participant")

knit_print.Backfill 177

S3 method for class 'SafetyWindowConst'
knit_print(
x,
...,
asis = TRUE,
label = "participant",
ordinals = c("first", "second", "third", "fourth", "fifth", "sixth", "seventh",

"eighth", "ninth", "tenth"),
time_unit = "day"

)

S3 method for class 'SafetyWindowSize'
knit_print(
x,
...,
asis = TRUE,
ordinals = c("first", "second", "third", "fourth", "fifth", "sixth", "seventh",

"eighth", "ninth", "tenth"),
label = "participant",
time_unit = "day",
level = 2L

)

S3 method for class 'StoppingOrdinal'
knit_print(x, ..., asis = TRUE)

S3 method for class 'StoppingMaxGainCIRatio'
knit_print(x, ..., asis = TRUE)

S3 method for class 'StoppingList'
knit_print(x, ..., preamble, indent = 0L, asis = TRUE)

S3 method for class 'StoppingAny'
knit_print(x, ..., preamble, asis = TRUE)

S3 method for class 'StoppingAll'
knit_print(x, ..., preamble, asis = TRUE)

S3 method for class 'StoppingTDCIRatio'
knit_print(
x,
...,
dose_label = "the next best dose",
tox_label = "toxicity",
fmt_string =
paste0("%sIf, at %s, the ratio of the upper to the lower limit of the posterior ",
"95%% credible interval for %s (targetting %2.0f%%) is less than or equal to "),
asis = TRUE

178 knit_print.Backfill

)

S3 method for class 'StoppingTargetBiomarker'
knit_print(
x,
...,
dose_label = "the next best dose",
biomarker_label = "the target biomarker",
fmt_string =
paste0("%sIf, at %s, the posterior probability that %s is in the range ",
"(%.2f, %.2f)%s is %.0f%% or more.\n\n"),

asis = TRUE
)

S3 method for class 'StoppingLowestDoseHSRBeta'
knit_print(
x,
...,
tox_label = "toxicity",
fmt_string =
paste0("%sIf, using a Hard Stopping Rule with a prior of Beta(%.0f, %.0f), the ",
"lowest dose in the dose grid has a posterior probability of %s of ",
"%.0f%% or more.\n\n"),

asis = TRUE
)

S3 method for class 'StoppingMTDCV'
knit_print(
x,
...,
fmt_string =
paste0("%sIf the posterior estimate of the robust coefficient of variation of ",
"the MTD (targetting %2.0f%%), is than or equal to %.0f%%.\n\n"),

asis = TRUE
)

S3 method for class 'StoppingMTDdistribution'
knit_print(
x,
...,
fmt_string =
"%sIf the mean posterior probability of %s at %.0f%% of %s is at least %4.2f.\n\n",
dose_label = "the next best dose",
tox_label = "toxicity",
asis = TRUE

)

S3 method for class 'StoppingHighestDose'

knit_print.Backfill 179

knit_print(
x,
...,
dose_label = "the highest dose in the dose grid",
asis = TRUE

)

S3 method for class 'StoppingSpecificDose'
knit_print(x, ..., dose_label = as.character(x@dose), asis = TRUE)

S3 method for class 'StoppingTargetProb'
knit_print(
x,
...,
fmt_string =
paste0("%sIf the probability of %s at %s is in the range [%4.2f, %4.2f] ",
"is at least %4.2f.\n\n"),

dose_label = "the next best dose",
tox_label = "toxicity",
asis = TRUE

)

S3 method for class 'StoppingMinCohorts'
knit_print(x, ..., asis = TRUE)

S3 method for class 'StoppingMinPatients'
knit_print(x, ..., label = "participant", asis = TRUE)

S3 method for class 'StoppingPatientsNearDose'
knit_print(
x,
...,
dose_label = "the next best dose",
label = "participants",
asis = TRUE

)

S3 method for class 'StoppingCohortsNearDose'
knit_print(x, ..., dose_label = "the next best dose", asis = TRUE)

S3 method for class 'StoppingMissingDose'
knit_print(x, ..., asis = TRUE)

Arguments

x (ModelParamsNormal)
the object to be rendered

... passed to knitr::kable()

180 knit_print.Backfill

asis (flag)
Not used at present

label (character)
the term used to label participants

tox_label (character)
the term used to describe toxicity

level (count)
the markdown level at which the headings for cohort size will be printed. An
integer between 1 and 6

title (character) The text of the heading of the section describing the design

sections (character) a named vector of length at least 4 defining the headings used to
define the sections corresponding to the design’s slots. The element names must
match the Design’s slot names.

full_grid (flag)
Should the full dose grid appear in the output table or simply those doses for
whom at least one evaluable participant is available? Ignored unless summarise
== "dose".

summarise (character)
How to summarise the observed data. The default, "none", lists observed data at
the participant level. "dose" presents participant counts by dose and "cohort"
by cohort.

summarize (character)
Synonym for summarise

units (character)
The units in which the values in doseGrid are

format_func (function)
The function used to format the range table.

use_values (flag)
print the values associated with hyperparameters, or the symbols used to define
the hyper-parameters. That is, for example, mu or 1.

fmt (character)
the sprintf format string used to render numerical values. Ignored if use_values
is FALSE.

biomarker_label

(character)
the term used to describe the biomarker

params (character)
The names of the model parameters. See Usage Notes below.

preamble (character)
the text that introduces the list of rules

theta (character)
the LaTeX representation of the theta vector

eff_label (character)
the term used to describe efficacy

knit_print.Backfill 181

target_label (character)
the term used to describe the target toxicity rate

biomarker_units

(character)
the units in which the biomarker is measured

citation_text (character)
the text used to cite Mozgunov & Jaki

citation_link (character)
the link to Mozgunov & Jaki

indent (integer)
the indent level of the current stopping rule list. Spaces with length indent * 4
will be prepended to the beginning of the rendered stopping rule list.

time_unit (character)
the word used to describe units of time. See Usage Notes below.

ordinals (character)
a character vector whose nth defines the word used as the written representation
of the nth ordinal number.

dose_label (character)
the term used to describe the target dose

fmt_string (character)
the character string that defines the format of the output

Value

a character string that represents the object in markdown.

The markdown representation of the object, as a character string

a character string that represents the object in markdown.

A character string containing a LaTeX rendition of the object.

a character string that represents the object in markdown.

Usage Notes

label describes the trial’s participants.

It should be a character vector of length 1 or 2. If of length 2, the first element describes a
cohort_size of 1 and the second describes all other cohort_sizes. If of length 1, the charac-
ter s is appended to the value when cohort_size is not 1.

The default value of col.names is c("Lower", "Upper", "Cohort size") and that of caption
is "Defined by the dose to be used in the next cohort". These values can be overridden by
passing col.names and caption in the function call.

The by default, the columns are labelled Lower, Upper and Cohort size. The table’s caption is
Defined by the number of <tox_label[2]> so far observed. These values can be overridden
by passing col.names and caption in the function call.

label describes the trial’s participants.

182 knit_print.Backfill

It should be a character vector of length 1 or 2. If of length 2, the first element describes a single par-
ticipant and the second describes all other situations. If of length 1, the character s is appended to the
value when the number of participants is not 1. The default values of col.names and caption vary
depending on the summary requested. The default values can be overridden by passing col.names
and caption in the function call.

params must be a character vector of length equal to that of x@mean (and x@cov). Its values represent
the parameters of the model as entries in the vector theta, on the left-hand side of "~" in the
definition of the prior. If named, names should be valid LaTeX, escaped as usual for R character
variables. For example, "\\alpha" or "\\beta_0". If unnamed, names are constructed by pre-
pending an escaped backslash to each value provided.

The default value of col.names is c("Min", "Max", "Increment") and that of caption is "Defined
by highest dose administered so far". These values can be overridden by passing col.names
and caption in the function call.

The default value of col.names is c("Min", "Max", "Increment") and that of caption is "Defined
by number of DLTs reported so far". These values can be overridden by passing col.names and
caption in the function call.

label defines how toxicities are described.

It should be a character vector of length 1 or 2. If of length 2, the first element describes a single
toxicity and the second describes all other toxicity counts. If of length 1, the character s is appended
to the value describing a single toxicity.

The default value of col.names is c("Min", "Max", "Increment") and that of caption is "Defined
by number of DLTs in the current cohort". These values can be overridden by passing col.names
and caption in the function call.

tox_label defines how toxicities are described.

It should be a character vector of length 1 or 2. If of length 2, the first element describes a single
toxicity and the second describes all other toxicity counts. If of length 1, the character s is appended
to the value describing a single toxicity.

This section describes the use of label and tox_label, collectively referred to as labels. A label
should be a scalar or a vector of length 2. If a scalar, it is converted by adding a second element
that is equal to the first, suffixed by s. For example, tox_label = "DLT" becomes tox_label =
c("DLT", "DLTs"). The first element of the vector is used to describe a count of 1. The second is
used in all other cases.

To use a BibTeX-style citation, specify (for example) citation_text = "@MOZGUNOV", citation_link = "".

label should be a character vector of length 1 or 2. If of length 2, the first element describes a
count of 1 and the second describes all other counts. If of length 1, the character s is appended to
the value when the count is not 1.

label and time_unit are, collectively, labels.

A label should be a character vector of length 1 or 2. If of length 2, the first element describes a
count of 1 and the second describes all other counts. If of length 1, the character s is appended to
the value when the count is not 1.

label describes the trial’s participants.

It should be a character vector of length 1 or 2. If of length 2, the first element describes a
cohort_size of 1 and the second describes all other cohort_sizes. If of length 1, the charac-
ter s is appended to the value when cohort_size is not 1.

knit_print.Backfill 183

The default value of col.names is c("Lower", "Upper", "Cohort size") and that of caption
is "Defined by the dose to be used in the next cohort". These values can be overridden by
passing col.names and caption in the function call.

The by default, the columns are labelled Lower, Upper and Cohort size. The table’s caption is
Defined by the number of <tox_label[2]> so far observed. These values can be overridden
by passing col.names and caption in the function call.

label describes the trial’s participants.

It should be a character vector of length 1 or 2. If of length 2, the first element describes a single par-
ticipant and the second describes all other situations. If of length 1, the character s is appended to the
value when the number of participants is not 1. The default values of col.names and caption vary
depending on the summary requested. The default values can be overridden by passing col.names
and caption in the function call.

params must be a character vector of length equal to that of x@mean (and x@cov). Its values represent
the parameters of the model as entries in the vector theta, on the left-hand side of "~" in the
definition of the prior. If named, names should be valid LaTeX, escaped as usual for R character
variables. For example, "\\alpha" or "\\beta_0". If unnamed, names are constructed by pre-
pending an escaped backslash to each value provided.

The default value of col.names is c("Min", "Max", "Increment") and that of caption is "Defined
by highest dose administered so far". These values can be overridden by passing col.names
and caption in the function call.

The default value of col.names is c("Min", "Max", "Increment") and that of caption is "Defined
by number of DLTs reported so far". These values can be overridden by passing col.names and
caption in the function call.

label defines how toxicities are described.

It should be a character vector of length 1 or 2. If of length 2, the first element describes a single
toxicity and the second describes all other toxicity counts. If of length 1, the character s is appended
to the value describing a single toxicity.

The default value of col.names is c("Min", "Max", "Increment") and that of caption is "Defined
by number of DLTs in the current cohort". These values can be overridden by passing col.names
and caption in the function call.

tox_label defines how toxicities are described.

It should be a character vector of length 1 or 2. If of length 2, the first element describes a single
toxicity and the second describes all other toxicity counts. If of length 1, the character s is appended
to the value describing a single toxicity.

This section describes the use of label and tox_label, collectively referred to as labels. A label
should be a scalar or a vector of length 2. If a scalar, it is converted by adding a second element
that is equal to the first, suffixed by s. For example, tox_label = "DLT" becomes tox_label =
c("DLT", "DLTs"). The first element of the vector is used to describe a count of 1. The second is
used in all other cases.

To use a BibTeX-style citation, specify (for example) citation_text = "@MOZGUNOV", citation_link = "".

label should be a character vector of length 1 or 2. If of length 2, the first element describes a
count of 1 and the second describes all other counts. If of length 1, the character s is appended to
the value when the count is not 1.

label and time_unit are, collectively, labels.

184 knit_print.Backfill

A label should be a character vector of length 1 or 2. If of length 2, the first element describes a
count of 1 and the second describes all other counts. If of length 1, the character s is appended to
the value when the count is not 1.

label describes the trial’s participants.

It should be a character vector of length 1 or 2. If of length 2, the first element describes a
cohort_size of 1 and the second describes all other cohort_sizes. If of length 1, the charac-
ter s is appended to the value when cohort_size is not 1.

The default value of col.names is c("Lower", "Upper", "Cohort size") and that of caption
is "Defined by the dose to be used in the next cohort". These values can be overridden by
passing col.names and caption in the function call.

The by default, the columns are labelled Lower, Upper and Cohort size. The table’s caption is
Defined by the number of <tox_label[2]> so far observed. These values can be overridden
by passing col.names and caption in the function call.

label describes the trial’s participants.

It should be a character vector of length 1 or 2. If of length 2, the first element describes a single par-
ticipant and the second describes all other situations. If of length 1, the character s is appended to the
value when the number of participants is not 1. The default values of col.names and caption vary
depending on the summary requested. The default values can be overridden by passing col.names
and caption in the function call.

params must be a character vector of length equal to that of x@mean (and x@cov). Its values represent
the parameters of the model as entries in the vector theta, on the left-hand side of "~" in the
definition of the prior. If named, names should be valid LaTeX, escaped as usual for R character
variables. For example, "\\alpha" or "\\beta_0". If unnamed, names are constructed by pre-
pending an escaped backslash to each value provided.

The default value of col.names is c("Min", "Max", "Increment") and that of caption is "Defined
by highest dose administered so far". These values can be overridden by passing col.names
and caption in the function call.

The default value of col.names is c("Min", "Max", "Increment") and that of caption is "Defined
by number of DLTs reported so far". These values can be overridden by passing col.names and
caption in the function call.

label defines how toxicities are described.

It should be a character vector of length 1 or 2. If of length 2, the first element describes a single
toxicity and the second describes all other toxicity counts. If of length 1, the character s is appended
to the value describing a single toxicity.

The default value of col.names is c("Min", "Max", "Increment") and that of caption is "Defined
by number of DLTs in the current cohort". These values can be overridden by passing col.names
and caption in the function call.

tox_label defines how toxicities are described.

It should be a character vector of length 1 or 2. If of length 2, the first element describes a single
toxicity and the second describes all other toxicity counts. If of length 1, the character s is appended
to the value describing a single toxicity.

This section describes the use of label and tox_label, collectively referred to as labels. A label
should be a scalar or a vector of length 2. If a scalar, it is converted by adding a second element
that is equal to the first, suffixed by s. For example, tox_label = "DLT" becomes tox_label =

knit_print.Backfill 185

c("DLT", "DLTs"). The first element of the vector is used to describe a count of 1. The second is
used in all other cases.

To use a BibTeX-style citation, specify (for example) citation_text = "@MOZGUNOV", citation_link = "".

label should be a character vector of length 1 or 2. If of length 2, the first element describes a
count of 1 and the second describes all other counts. If of length 1, the character s is appended to
the value when the count is not 1.

label and time_unit are, collectively, labels.

A label should be a character vector of length 1 or 2. If of length 2, the first element describes a
count of 1 and the second describes all other counts. If of length 1, the character s is appended to
the value when the count is not 1.

label describes the trial’s participants.

It should be a character vector of length 1 or 2. If of length 2, the first element describes a
cohort_size of 1 and the second describes all other cohort_sizes. If of length 1, the charac-
ter s is appended to the value when cohort_size is not 1.

The default value of col.names is c("Lower", "Upper", "Cohort size") and that of caption
is "Defined by the dose to be used in the next cohort". These values can be overridden by
passing col.names and caption in the function call.

The by default, the columns are labelled Lower, Upper and Cohort size. The table’s caption is
Defined by the number of <tox_label[2]> so far observed. These values can be overridden
by passing col.names and caption in the function call.

label describes the trial’s participants.

It should be a character vector of length 1 or 2. If of length 2, the first element describes a single par-
ticipant and the second describes all other situations. If of length 1, the character s is appended to the
value when the number of participants is not 1. The default values of col.names and caption vary
depending on the summary requested. The default values can be overridden by passing col.names
and caption in the function call.

params must be a character vector of length equal to that of x@mean (and x@cov). Its values represent
the parameters of the model as entries in the vector theta, on the left-hand side of "~" in the
definition of the prior. If named, names should be valid LaTeX, escaped as usual for R character
variables. For example, "\\alpha" or "\\beta_0". If unnamed, names are constructed by pre-
pending an escaped backslash to each value provided.

The default value of col.names is c("Min", "Max", "Increment") and that of caption is "Defined
by highest dose administered so far". These values can be overridden by passing col.names
and caption in the function call.

The default value of col.names is c("Min", "Max", "Increment") and that of caption is "Defined
by number of DLTs reported so far". These values can be overridden by passing col.names and
caption in the function call.

label defines how toxicities are described.

It should be a character vector of length 1 or 2. If of length 2, the first element describes a single
toxicity and the second describes all other toxicity counts. If of length 1, the character s is appended
to the value describing a single toxicity.

The default value of col.names is c("Min", "Max", "Increment") and that of caption is "Defined
by number of DLTs in the current cohort". These values can be overridden by passing col.names
and caption in the function call.

186 LogisticIndepBeta-class

tox_label defines how toxicities are described.

It should be a character vector of length 1 or 2. If of length 2, the first element describes a single
toxicity and the second describes all other toxicity counts. If of length 1, the character s is appended
to the value describing a single toxicity.

This section describes the use of label and tox_label, collectively referred to as labels. A label
should be a scalar or a vector of length 2. If a scalar, it is converted by adding a second element
that is equal to the first, suffixed by s. For example, tox_label = "DLT" becomes tox_label =
c("DLT", "DLTs"). The first element of the vector is used to describe a count of 1. The second is
used in all other cases.

To use a BibTeX-style citation, specify (for example) citation_text = "@MOZGUNOV", citation_link = "".

label should be a character vector of length 1 or 2. If of length 2, the first element describes a
count of 1 and the second describes all other counts. If of length 1, the character s is appended to
the value when the count is not 1.

label and time_unit are, collectively, labels.

A label should be a character vector of length 1 or 2. If of length 2, the first element describes a
count of 1 and the second describes all other counts. If of length 1, the character s is appended to
the value when the count is not 1.

See Also

knit_print for more details.

LogisticIndepBeta-class

LogisticIndepBeta

Description

[Stable]
LogisticIndepBeta is the class for the two-parameters logistic regression dose-limiting events
(DLE) model with prior expressed in form of pseudo data. This model describes the relationship
between the binary DLE responses and the dose levels. More specifically, it represents the relation-
ship of the probabilities of the occurrence of a DLE for corresponding dose levels in log scale. This
model is specified as

p(x) = exp(phi1 + phi2 ∗ log(x))/(1 + exp(phi1 + phi2 ∗ log(x)))

where p(x) is the probability of the occurrence of a DLE at dose x. The two parameters of this
model are the intercept phi1 and the slope phi2. The LogisticIndepBeta inherits all slots from
ModelTox class.

In the context of pseudo data, the following three arguments are used, binDLE, DLEdose and
DLEweights. The DLEdose represents fixed dose levels at which the pseudo DLE responses binDLE
are observed. DLEweights represents total number of subjects treated per each dose level in DLEdose.
The binDLE represents the number of subjects observed with DLE per each dose level in DLEdose.
Hence, all these three vectors must be of the same length and the order of the elements in any of the

LogisticIndepBeta-class 187

vectors binDLE, DLEdose and DLEweights must be kept, so that an element of a given vector cor-
responds to the elements of the remaining two vectors (see the example for more insight). Finally,
since at least two DLE pseudo responses are needed to obtain prior modal estimates (same as the
maximum likelihood estimates) for the model parameters, the binDLE, DLEdose and DLEweights
must all be vectors of at least length 2.

Usage

LogisticIndepBeta(binDLE, DLEdose, DLEweights, data)

.DefaultLogisticIndepBeta()

Arguments

binDLE (numeric)
the number of subjects observed with a DLE, the pseudo DLE responses, de-
pending on dose levels DLEdose. Elements of binDLE must correspond to the
elements of DLEdose and DLEweights.

DLEdose (numeric)
dose levels for the pseudo DLE responses. Elements of DLEdose must corre-
spond to the elements of binDLE and DLEweights.

DLEweights (numeric)
the total number of subjects treated at each of the dose levels DLEdose, pseudo
weights. Elements of DLEweights must correspond to the elements of binDLE
and DLEdose.

data (Data)
the input data to update estimates of the model parameters.

Details

The pseudo data can be interpreted as if we obtain some observations before the trial starts. It can
be used to express our prior, i.e. the initial beliefs for the model parameters. The pseudo data is
expressed in the following way. First, fix at least two dose levels, then ask for experts’ opinion
on how many subjects are to be treated at each of these dose levels and on the number of subjects
observed with a DLE. At each dose level, the number of subjects observed with a DLE, divided by
the total number of subjects treated, is the probability of the occurrence of a DLE at that particular
dose level. The probabilities of the occurrence of a DLE based on this pseudo data are independent
and they follow Beta distributions. Therefore, the joint prior probability density function of all
these probabilities can be obtained. Hence, by a change of variable, the joint prior probability
density function of the two parameters in this model can also be obtained. In addition, a conjugate
joint prior density function of the two parameters in the model is used. For details about the form
of all these joint prior and posterior probability density functions, please refer to Whitehead and
Williamson (1998).

Slots

binDLE (numeric)
a vector of total numbers of DLE responses. It must be at least of length 2 and the order of its
elements must correspond to values specified in DLEdose and DLEweights.

188 LogisticIndepBeta-class

DLEdose (numeric)
a vector of the dose levels corresponding to It must be at least of length 2 and the order of its
elements must correspond to values specified in binDLE and DLEweights.

DLEweights (integer)
total number of subjects treated at each of the pseudo dose level DLEdose. It must be at least
of length 2 and the order of its elements must correspond to values specified in binDLE and
DLEdose.

phi1 (number)
the intercept of the model. This slot is used in output to display the resulting prior or poste-
rior modal estimate of the intercept obtained based on the pseudo data and (if any) observed
data/responses.

phi2 (number)
the slope of the model. This slot is used in output to display the resulting prior or posterior
modal estimate of the slope obtained based on the pseudo data and (if any) the observed
data/responses.

Pcov (matrix)
refers to the 2x2 covariance matrix of the intercept (phi1) and the slope parameters (phi2)
of the model. This is used in output to display the resulting prior and posterior covariance
matrix of phi1 and phi2 obtained, based on the pseudo data and (if any) the observed data and
responses. This slot is needed for internal purposes.

Note

Typically, end users will not use the .DefaultLogisticIndepBeta() function.

References

Whitehead J, Williamson D (1998). “Bayesian decision procedures based on logistic regression
models for dose-finding studies.” Journal of Biopharmaceutical Statistics, 8(3), 445–467.

Examples

Obtain prior modal estimates given the pseudo data.
First we used an empty data set such that only the dose levels under
investigations are given. In total, 12 dose levels are under investigation
ranging from 25 to 300 mg with increments of 25 (i.e 25, 50, 75, ..., 300).
emptydata <- Data(doseGrid = seq(25, 300, 25))

Fix two dose levels 25 and 300 mg (DLEdose).
Total number of subjects treated in each of these levels is 3, (DLEweights).
The number of subjects observed with a DLE is 1.05 at dose 25 mg and 1.8 at dose 300 mg (binDLE).
my_model1 <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEdose = c(25, 300),
DLEweights = c(3, 3),
data = emptydata

)

Use observed DLE responses to obtain posterior modal estimates.

LogisticKadane-class 189

my_data <- Data(
x = c(25, 50, 50, 75, 100, 100, 225, 300),
y = c(0, 0, 0, 0, 1, 1, 1, 1),
doseGrid = emptydata@doseGrid

)

my_model2 <- LogisticIndepBeta(
binDLE = c(1.05, 1.8),
DLEdose = c(25, 300),
DLEweights = c(3, 3),
data = my_data

)

LogisticKadane-class LogisticKadane

Description

[Stable]
LogisticKadane is the class for the logistic model in the parametrization of Kadane et al. (1980).

Usage

LogisticKadane(theta, xmin, xmax)

.DefaultLogisticKadane()

Arguments

theta (proportion)
the target toxicity probability.

xmin (number)
the minimum of the dose range.

xmax (number)
the maximum of the dose range.

Details

Let rho0 = p(xmin) be the probability of a DLT at the minimum dose xmin, and let gamma be the
dose with target toxicity probability theta, i.e. p(gamma) = theta. Then it can easily be shown
that the logistic regression model has intercept

[gamma ∗ logit(rho0)− xmin ∗ logit(theta)]/[gamma− xmin]

and slope
[logit(theta)− logit(rho0)]/[gamma− xmin].

The priors are
gamma Unif(xmin, xmax).

and
rho0 Unif(0, theta).

190 LogisticKadaneBetaGamma-class

Slots

theta (proportion)
the target toxicity probability.

xmin (number)
the minimum of the dose range.

xmax (number)
the maximum of the dose range.

Note

The slots of this class, required for creating the model, are the target toxicity, as well as the minimum
and maximum of the dose range. Note that these can be different from the minimum and maximum
of the dose grid in the data later on.

Typically, end-users will not use the .DefaultLogisticKadane() function.

References

Kadane JB, Dickey JM, Winkler RL, Smith WS, Peters SC (1980). “Interactive Elicitation of Opin-
ion for a Normal Linear Model.” Journal of the American Statistical Association, 75(372), 845–854.
ISSN 01621459, 1537274X, doi:10.2307/2287171, http://www.jstor.org/stable/2287171.

See Also

ModelLogNormal

Examples

my_model <- LogisticKadane(theta = 0.33, xmin = 1, xmax = 200)

LogisticKadaneBetaGamma-class

LogisticKadaneBetaGamma

Description

[Experimental]

LogisticKadaneBetaGamma is the class for the logistic model in the parametrization of Kadane et
al. (1980), using a beta and a gamma distribution as the model priors.

Usage

LogisticKadaneBetaGamma(theta, xmin, xmax, alpha, beta, shape, rate)

.DefaultLogisticKadaneBetaGamma()

https://doi.org/10.2307/2287171
http://www.jstor.org/stable/2287171

LogisticKadaneBetaGamma-class 191

Arguments

theta (proportion)
the target toxicity probability.

xmin (number)
the minimum of the dose range.

xmax (number)
the maximum of the dose range.

alpha (number)
the first shape parameter of the Beta prior distribution rho0 = p(xmin) the prob-
ability of a DLT at the minimum dose xmin.

beta (number)
the second shape parameter of the Beta prior distribution rho0 = p(xmin) the
probability of a DLT at the minimum dose xmin.

shape (number)
the shape parameter of the Gamma prior distribution gamma the dose with target
toxicity probability theta.

rate (number)
the rate parameter of the Gamma prior distribution gamma the dose with target
toxicity probability theta.

Details

Let rho0 = p(xmin) be the probability of a DLT at the minimum dose xmin, and let gamma be the
dose with target toxicity probability theta, i.e. p(gamma) = theta. Then it can easily be shown
that the logistic regression model has intercept

[gamma ∗ logit(rho0)− xmin ∗ logit(theta)]/[gamma− xmin]

and slope
[logit(theta)− logit(rho0)]/[gamma− xmin].

The prior for gamma, is
gamma Gamma(shape, rate).

. The prior for rho0 = p(xmin), is

rho0 Beta(alpha, beta).

Slots

theta (proportion)
the target toxicity probability.

xmin (number)
the minimum of the dose range.

xmax (number)
the maximum of the dose range.

192 LogisticKadaneBetaGamma-class

alpha (number)
the first shape parameter of the Beta prior distribution of rho0 = p(xmin) the probability of a
DLT at the minimum dose xmin.

beta (number)
the second shape parameter of the Beta prior distribution of rho0 = p(xmin) the probability
of a DLT at the minimum dose xmin.

shape (number)
the shape parameter of the Gamma prior distribution of gamma the dose with target toxicity
probability theta.

rate (number)
the rate parameter of the Gamma prior distribution of gamma the dose with target toxicity
probability theta.

Note

The slots of this class, required for creating the model, are the same as in the LogisticKadane
class. In addition, the shape parameters of the Beta prior distribution of rho0 and the shape and rate
parameters of the Gamma prior distribution of gamma, are required for creating the prior model.

Typically, end users will not use the .Default() function.

References

Kadane JB, Dickey JM, Winkler RL, Smith WS, Peters SC (1980). “Interactive Elicitation of Opin-
ion for a Normal Linear Model.” Journal of the American Statistical Association, 75(372), 845–854.
ISSN 01621459, 1537274X, doi:10.2307/2287171, http://www.jstor.org/stable/2287171.

See Also

ModelLogNormal, LogisticKadane.

Examples

my_model <- LogisticKadaneBetaGamma(
theta = 0.3,
xmin = 0,
xmax = 7,
alpha = 1,
beta = 19,
shape = 0.5625,
rate = 0.125

)

https://doi.org/10.2307/2287171
http://www.jstor.org/stable/2287171

LogisticLogNormal-class 193

LogisticLogNormal-class

LogisticLogNormal

Description

[Stable]

LogisticLogNormal is the class for the usual logistic regression model with a bivariate normal
prior on the intercept and log slope.

Usage

LogisticLogNormal(mean, cov, ref_dose = 1)

.DefaultLogisticLogNormal()

Arguments

mean (numeric)
the prior mean vector.

cov (matrix)
the prior covariance matrix. The precision matrix prec is internally calculated
as an inverse of cov.

ref_dose (number)
the reference dose x∗ (strictly positive number).

Details

The covariate is the natural logarithm of the dose x divided by the reference dose x∗, i.e.:

logit[p(x)] = alpha0 + alpha1 ∗ log(x/x∗),

where p(x) is the probability of observing a DLT for a given dose x. The prior

(alpha0, log(alpha1)) Normal(mean, cov).

Note

Typically, end users will not use the .DefaultLogisticLogNormal() function.

See Also

ModelLogNormal, LogisticNormal, LogisticLogNormalSub, ProbitLogNormal, ProbitLogNormalRel,
LogisticLogNormalMixture, DALogisticLogNormal.

194 LogisticLogNormalGrouped-class

Examples

my_model <- LogisticLogNormal(
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 50

)
my_model

LogisticLogNormalGrouped-class

LogisticLogNormalGrouped

Description

[Experimental]
LogisticLogNormalGrouped is the class for a logistic regression model for both the mono and the
combo arms of the simultaneous dose escalation design.

Usage

LogisticLogNormalGrouped(mean, cov, ref_dose = 1)

.DefaultLogisticLogNormalGrouped()

Arguments

mean (numeric)
the prior mean vector.

cov (matrix)
the prior covariance matrix. The precision matrix prec is internally calculated
as an inverse of cov.

ref_dose (number)
the reference dose x∗ (strictly positive number).

Details

The continuous covariate is the natural logarithm of the dose x divided by the reference dose x∗ as
in LogisticLogNormal. In addition, Ic is a binary indicator covariate which is 1 for the combo arm
and 0 for the mono arm. The model is then defined as:

logit[p(x)] = (alpha0 + Ic ∗ delta0) + (alpha1 + Ic ∗ delta1) ∗ log(x/x∗),

where p(x) is the probability of observing a DLT for a given dose x, and delta0 and delta1 are
the differences in the combo arm compared to the mono intercept and slope parameters alpha0 and
alpha1. The prior is defined as

(alpha0, log(delta0), log(alpha1), log(delta1)) Normal(mean, cov).

LogisticLogNormalMixture-class 195

Note

Typically, end users will not use the .DefaultLogisticLogNormalGrouped() function.

See Also

ModelLogNormal, LogisticLogNormal.

Examples

my_model <- LogisticLogNormalGrouped(
mean = c(-0.85, 0, 1, 0),
cov = diag(1, 4),
ref_dose = 50

)
my_model

LogisticLogNormalMixture-class

LogisticLogNormalMixture

Description

[Stable]

LogisticLogNormalMixture is the class for standard logistic model with online mixture of two
bivariate log normal priors.

Usage

LogisticLogNormalMixture(mean, cov, ref_dose, share_weight)

.DefaultLogisticLogNormalMixture()

Arguments

mean (numeric)
the prior mean vector.

cov (matrix)
the prior covariance matrix. The precision matrix prec is internally calculated
as an inverse of cov.

ref_dose (number)
the reference dose x∗ (strictly positive number).

share_weight (proportion)
the prior weight for the share component.

196 LogisticLogNormalMixture-class

Details

This model can be used when data is arising online from the informative component of the prior, at
the same time with the data of the trial of main interest. Formally, this is achieved by assuming that
the probability of a DLT at dose x is given by

p(x) = π ∗ p1(x) + (1− π) ∗ p2(x)

where π is the probability for the model p(x) being the same as the model p1(x), which is the
informative component of the prior. From this model data arises in parallel: at doses xshare,
DLT information yshare is observed, in total nObsshare data points (see DataMixture). On the
other hand, 1 − π, is the probability of a separate model p2(x). Both components have the same
log normal prior distribution, which can be specified by the user, and which is inherited from the
LogisticLogNormal class.

Slots

share_weight (proportion)
the prior weight for the share component p1(x).

Note

Typically, end users will not use the .DefaultLogNormalMixture() function.

See Also

ModelLogNormal, LogisticNormalMixture, LogisticNormalFixedMixture.

Examples

Decide on the dose grid and MCMC options.
dose_grid <- 1:80
my_options <- McmcOptions()

Classic model.
my_model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 50

)

empty_data <- Data(doseGrid = dose_grid)
prior_samples <- mcmc(empty_data, my_model, my_options)
plot(prior_samples, my_model, empty_data)

Set up the mixture model and data share object.
model_share <- LogisticLogNormalMixture(

share_weight = 0.1,
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 50

)

LogisticLogNormalOrdinal-class 197

empty_data_share <- DataMixture(
doseGrid = dose_grid,
xshare = rep(c(10, 20, 40), each = 4),
yshare = rep(0L, 12),

)

Compare with the resulting prior model.
prior_samples_share <- mcmc(empty_data_share, model_share, my_options)
plot(prior_samples_share, model_share, empty_data_share)

LogisticLogNormalOrdinal-class

LogisticLogNormalOrdinal

Description

[Experimental]
LogisticLogNormalOrdinal is the class for a logistic lognormal CRM model using an ordinal
toxicity scale.

Usage

LogisticLogNormalOrdinal(mean, cov, ref_dose)

.DefaultLogisticLogNormalOrdinal()

Arguments

mean (numeric)
the prior mean vector.

cov (matrix)
the prior covariance matrix. The precision matrix prec is internally calculated
as an inverse of cov.

ref_dose (number)
the reference dose x∗ (strictly positive number).

Note

Typically, end users will not use the .DefaultLogisticLogNormalOrdinal() function.

Examples

LogisticLogNormalOrdinal(
mean = c(3, 4, 0),
cov = diag(c(4, 3, 1)),
ref_dose = 1

)

198 LogisticLogNormalSub-class

LogisticLogNormalSub-class

LogisticLogNormalSub

Description

[Stable]

LogisticLogNormalSub is the class for a standard logistic model with bivariate (log) normal prior
with subtractive dose standardization.

Usage

LogisticLogNormalSub(mean, cov, ref_dose = 0)

.DefaultLogisticLogNormalSub()

Arguments

mean (numeric)
the prior mean vector.

cov (matrix)
the prior covariance matrix. The precision matrix prec is internally calculated
as an inverse of cov.

ref_dose (number)
the reference dose x∗.

Details

The covariate is the dose x minus the reference dose x∗, i.e.:

logit[p(x)] = alpha0 + alpha1 ∗ (x− x∗),

where p(x) is the probability of observing a DLT for a given dose x. The prior

(alpha0, log(alpha1)) Normal(mean, cov).

Slots

params (ModelParamsNormal)
bivariate normal prior parameters.

ref_dose (number)
the reference dose x∗.

Note

Typically, end-users will not use the .DefaultLogisticLogNormalSub() function.

LogisticNormal-class 199

See Also

LogisticNormal, LogisticLogNormal, ProbitLogNormal, ProbitLogNormalRel.

Examples

my_model <- LogisticLogNormalSub(
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 50

)

LogisticNormal-class LogisticNormal

Description

[Stable]

LogisticNormal is the class for the usual logistic regression model with a bivariate normal prior
on the intercept and slope.

Usage

LogisticNormal(mean, cov, ref_dose = 1)

.DefaultLogisticNormal()

Arguments

mean (numeric)
the prior mean vector.

cov (matrix)
the prior covariance matrix. The precision matrix prec is internally calculated
as an inverse of cov.

ref_dose (number)
the reference dose x∗ (strictly positive number).

Details

The covariate is the natural logarithm of the dose x divided by the reference dose x∗, i.e.:

logit[p(x)] = alpha0 + alpha1 ∗ log(x/x∗),

where p(x) is the probability of observing a DLT for a given dose x. The prior

(alpha0, alpha1) Normal(mean, cov).

200 LogisticNormalFixedMixture-class

Note

Typically, end users will not use the .DefaultLogisticNormal() function.

See Also

ModelLogNormal, LogisticLogNormal, LogisticLogNormalSub, ProbitLogNormal, ProbitLogNormalRel,
LogisticNormalMixture.

Examples

Define the dose-grid.
empty_data <- Data(doseGrid = c(1, 3, 5, 10, 15, 20, 25, 40, 50, 80, 100))

my_model <- LogisticNormal(
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2)

)

my_options <- McmcOptions(burnin = 10, step = 2, samples = 100)

samples <- mcmc(empty_data, my_model, my_options)
samples

LogisticNormalFixedMixture-class

LogisticNormalFixedMixture

Description

[Stable]

LogisticNormalFixedMixture is the class for standard logistic regression model with fixed mix-
ture of multiple bivariate (log) normal priors on the intercept and slope parameters. The weights of
the normal priors are fixed, hence no additional model parameters are introduced. This type of prior
is often used to better approximate a given posterior distribution, or when the information is given
in terms of a mixture.

Usage

LogisticNormalFixedMixture(components, weights, ref_dose, log_normal = FALSE)

.DefaultLogisticNormalFixedMixture()

Arguments

components (list)
the specifications of the mixture components, a list with ModelParamsNormal
objects for each bivariate (log) normal prior.

LogisticNormalFixedMixture-class 201

weights (numeric)
the weights of the components; these must be positive and will be normalized to
sum to 1.

ref_dose (number)
the reference dose x∗ (strictly positive number).

log_normal (flag)
should a log normal prior be specified, such that the mean vectors and covariance
matrices are valid for the intercept and log slope?

Details

The covariate is the natural logarithm of the dose x divided by the reference dose x∗, i.e.:

logit[p(x)] = alpha0 + alpha1 ∗ log(x/x∗),

where p(x) is the probability of observing a DLT for a given dose x. The prior

(alpha0, alpha1) w1 ∗Normal(mean1, cov1) + ...+ wK ∗Normal(meanK, covK),

if a normal prior is used and

(alpha0, log(alpha1)) w1 ∗Normal(mean1, cov1) + ...+ wK ∗Normal(meanK, covK),

if a log normal prior is used. The weights w1, ..., wK of the components are fixed and sum to 1.

The slots of this class comprise a list with components parameters. Every single component contains
the mean vector and the covariance matrix of bivariate normal distributions. Remaining slots are
the weights of the components as well as the reference dose. Moreover, a special indicator slot
specifies whether a log normal prior is used.

Slots

components (list)
the specifications of the mixture components, a list with ModelParamsNormal objects for each
bivariate (log) normal prior.

weights (numeric)
the weights of the components; these must be positive and must sum to 1.

ref_dose (positive_number)
the reference dose.

log_normal (flag)
should a log normal prior be used, such that the mean vectors and covariance matrices are
valid for the intercept and log slope?

Note

Typically, end-users will not use the .DefaultLogisticNormalFixedMixture() function.

See Also

ModelParamsNormal, ModelLogNormal, LogisticNormalMixture, LogisticLogNormalMixture.

202 LogisticNormalMixture-class

Examples

my_model <- LogisticNormalFixedMixture(
components = list(
comp1 = ModelParamsNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2)

),
comp2 = ModelParamsNormal(

mean = c(1, 1.5),
cov = matrix(c(1.2, -0.45, -0.45, 0.6), nrow = 2)

)
),
weights = c(0.3, 0.7),
ref_dose = 50

)

LogisticNormalMixture-class

LogisticNormalMixture

Description

[Stable]

LogisticNormalMixture is the class for standard logistic regression model with a mixture of two
bivariate normal priors on the intercept and slope parameters.

Usage

LogisticNormalMixture(comp1, comp2, weightpar, ref_dose)

.DefaultLogisticNormalMixture()

Arguments

comp1 (ModelParamsNormal)
bivariate normal prior specification of the first component. See ModelParamsNormal
for more details.

comp2 (ModelParamsNormal)
bivariate normal prior specification of the second component. See ModelParamsNormal
for more details.

weightpar (numeric)
the beta parameters for the weight of the first component. It must a be a named
vector of length 2 with names a and b and with strictly positive values.

ref_dose (number)
the reference dose x∗ (strictly positive number).

LogisticNormalMixture-class 203

Details

The covariate is the natural logarithm of the dose x divided by the reference dose x∗, i.e.:

logit[p(x)] = alpha0 + alpha1 ∗ log(x/x∗),

where p(x) is the probability of observing a DLT for a given dose x. The prior

(alpha0, alpha1) w ∗Normal(mean1, cov1) + (1− w) ∗Normal(mean2, cov2).

The weight w for the first component is assigned a beta prior B(a, b).

Slots

comp1 (ModelParamsNormal)
bivariate normal prior specification of the first component.

comp2 (ModelParamsNormal)
bivariate normal prior specification of the second component.

weightpar (numeric)
the beta parameters for the weight of the first component. It must a be a named vector of
length 2 with names a and b and with strictly positive values.

ref_dose (positive_number)
the reference dose.

Note

The weight of the two normal priors is a model parameter, hence it is a flexible mixture. This type
of prior is often used with a mixture of a minimal informative and an informative component, in
order to make the CRM more robust to data deviations from the informative component.

Typically, end-users will not use the .DefaultLogisticNormalMixture() function.

See Also

ModelParamsNormal, ModelLogNormal, LogisticNormalFixedMixture, LogisticLogNormalMixture.

Examples

my_model <- LogisticNormalMixture(
comp1 = ModelParamsNormal(
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2)

),
comp2 = ModelParamsNormal(

mean = c(1, 1.5),
cov = matrix(c(1.2, -0.45, -0.45, 0.6), nrow = 2)

),
weightpar = c(a = 1, b = 1),
ref_dose = 50

)

204 match_within_tolerance

logit Shorthand for Logit Function

Description

[Stable]
Computes the logit transformation.

Usage

logit(x)

Arguments

x (numeric)
the function argument.

Value

The logit of x, computed as log(x / (1 - x)).

Examples

logit(0.5)
logit(c(0.1, 0.5, 0.9))

match_within_tolerance

Helper Function for Value Matching with Tolerance

Description

[Stable]
This is a modified version of match() that supports tolerance.

Usage

match_within_tolerance(x, table, tolerance = 1e-10)

Arguments

x (numeric)
the values to be matched.

table (numeric)
the values to be matched against.

tolerance (number)
the numerical tolerance for comparison.

maxDose 205

Value

An integer vector of the same length as x giving the position in table of the first match, or an empty
integer vector if table is empty. NA is returned for values in x that have no match.

Examples

match_within_tolerance(c(0.1, 0.2, 0.3), c(0.10000001, 0.5, 0.3))
match_within_tolerance(1.5, numeric(0))

maxDose Determine the Maximum Possible Next Dose

Description

[Stable]
This function determines the upper limit of the next dose based on the incrementsand the data.

Usage

maxDose(increments, data, ...)

S4 method for signature 'IncrementsRelative,Data'
maxDose(increments, data, ...)

S4 method for signature 'IncrementsRelativeDLT,Data'
maxDose(increments, data, ...)

S4 method for signature 'IncrementsRelativeDLTCurrent,Data'
maxDose(increments, data, ...)

S4 method for signature 'IncrementsRelativeParts,DataParts'
maxDose(increments, data, ...)

S4 method for signature 'IncrementsDoseLevels,Data'
maxDose(increments, data, ...)

S4 method for signature 'IncrementsHSRBeta,Data'
maxDose(increments, data, ...)

S4 method for signature 'IncrementsMin,Data'
maxDose(increments, data, ...)

S4 method for signature 'IncrementsMin,DataOrdinal'
maxDose(increments, data, ...)

S4 method for signature 'IncrementsOrdinal,DataOrdinal'
maxDose(increments, data, ...)

206 maxDose

S4 method for signature 'IncrementsMaxToxProb,DataOrdinal'
maxDose(increments, data, model, samples, ...)

S4 method for signature 'IncrementsMaxToxProb,Data'
maxDose(increments, data, model, samples, ...)

Arguments

increments (Increments)
the rule for the next best dose.

data (Data)
input data.

... additional arguments without method dispatch.

model (GeneralModel)
The model on which probabilities will be based

samples (Samples)
The MCMC samples to which model will be applied

Value

A number, the maximum possible next dose.

Functions

• maxDose(increments = IncrementsRelative, data = Data): determine the maximum pos-
sible next dose based on relative increments.

• maxDose(increments = IncrementsRelativeDLT, data = Data): determine the maximum
possible next dose based on relative increments determined by DLTs so far.

• maxDose(increments = IncrementsRelativeDLTCurrent, data = Data): determine the max-
imum possible next dose based on relative increments determined by DLTs in the current
cohort.

• maxDose(increments = IncrementsRelativeParts, data = DataParts): determine the max-
imum possible next dose based on relative increments as well as part 1 and beginning of part
2.

• maxDose(increments = IncrementsDoseLevels, data = Data): determine the maximum
possible next dose based on the number of dose grid levels. That is, the max dose is de-
termined as the one which level is equal to: base dose level + level increment. The base dose
level is the level of the last dose in grid or the level of the maximum dose applied, which is
defined in increments object. Find out more in IncrementsDoseLevels.

• maxDose(increments = IncrementsHSRBeta, data = Data): determine the maximum pos-
sible next dose for escalation.

• maxDose(increments = IncrementsMin, data = Data): determine the maximum possible
next dose based on multiple increment rules, taking the minimum across individual incre-
ments.

maxDose 207

• maxDose(increments = IncrementsMin, data = DataOrdinal): determine the maximum
possible next dose based on multiple increment rules, taking the minimum across individual
increments.

• maxDose(increments = IncrementsOrdinal, data = DataOrdinal): determine the maxi-
mum possible next dose in an ordinal CRM trial

• maxDose(increments = IncrementsMaxToxProb, data = DataOrdinal): determine the max-
imum possible next dose based on the probability of toxicity

• maxDose(increments = IncrementsMaxToxProb, data = Data): determine the maximum
possible next dose based on the probability of toxicity

Examples

Example of usage for `IncrementsRelative` maxDose class.

Create the data.
my_data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 8, 8, 8),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
ID = 1:8,
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, 8, 10:40)

)

Define a rule for dose increments which allows for:
- doubling the dose if the last dose was below 20,
- increasing the dose by 33% of the last dose, only if the last dose was
above or equal to 20.
my_increments <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)

Based on the rule above, the maximum dose allowed is:
max_dose <- maxDose(my_increments, data = my_data)
Example of usage for `IncrementsRelativeDLT` maxDose class.

Create the data.
my_data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 8, 8, 8),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
ID = 1:8,
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, 8, seq(from = 10, to = 80, by = 2))

)

Define a rule for dose increments which allows for:
- doubling the dose if no DLTs were yet observed,
- increasing the dose by 33% if 1 or 2 DLTs were already observed,
- increasing the dose by 20% if at least 3 DLTs were already observed.
my_increments <- IncrementsRelativeDLT(

intervals = c(0, 1, 3),

208 maxDose

increments = c(1, 0.33, 0.2)
)

Based on the rule above, the maximum dose allowed is:
max_dose <- maxDose(my_increments, data = my_data)
Example of usage for `IncrementsRelativeDLTCurrent` maxDose class.

Create the data.
my_data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
ID = 1:8,
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Define a rule for dose increments which allows for:
- doubling the dose if no DLTs were observed in current (i.e. last) cohort,
- only increasing the dose by 33% if 1 or 2 DLTs were observed in current cohort,
- only increasing the dose by 20% if at least 3 DLTs were observed in current cohort.
my_increments <- IncrementsRelativeDLTCurrent(

intervals = c(0, 1, 3),
increments = c(1, 0.33, 0.2)

)

Based on the rule above, the maximum dose allowed is:
max_dose <- maxDose(my_increments, data = my_data)
Example of usage for `IncrementsRelativeParts` maxDose class.

Create an object of class `DataParts`.
my_data <- DataParts(

x = c(0.1, 0.5, 1.5),
y = c(0, 0, 0),
ID = 1:3,
cohort = 1:3,
doseGrid = c(0.1, 0.5, 1.5, 3, 6, 10),
part = c(1L, 1L, 1L),
nextPart = 1L,
part1Ladder = c(0.1, 0.5, 1.5, 3, 6, 10)

)

my_increments <- IncrementsRelativeParts(
dlt_start = 0,
clean_start = 1

)

max_dose <- maxDose(my_increments, data = my_data)
Example of usage for `IncrementsDoseLevels` maxDose class.

Create the data.
my_data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 8, 8, 12, 12, 12, 16, 16, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1),

maxDose 209

ID = 1:14,
cohort = c(1, 2, 3, 4, 5, 6, 6, 7, 7, 7, 8, 8, 9, 9),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, 8, 10:30)

)

In this first example we define a rule for dose increments which allows for
maximum skip one dose level, that is 2 dose levels higher than the last dose
given.
my_increments_1 <- IncrementsDoseLevels(levels = 2, basis_level = "last")

Based on the rule above, the maximum dose allowed is:
max_dose_1 <- maxDose(my_increments_1, data = my_data)

In this second example we define a rule for dose increments which allows for
maximum skip one dose level, that is 2 dose levels higher than the max dose
given.
my_increments_2 <- IncrementsDoseLevels(levels = 2, basis_level = "max")

Based on the rule above, the maximum dose allowed is:
max_dose_2 <- maxDose(my_increments_2, data = my_data)
Create the data.
my_data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 8, 8, 8, 6, 6, 6),
y = c(0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1),
cohort = c(0, 1, 2, 3, 4, 5, 5, 5, 6, 6, 6),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, 8, seq(from = 10, to = 80, by = 2))

)

In this example we define a rule for dose increments that limits the further
dose escalation to doses below 6, because dose 6 is above the probability
toxicity threshold.
my_increments <- IncrementsHSRBeta(target = 0.3, prob = 0.95)

Based on the rule above, we then calculate the maximum dose allowed.
my_next_max_dose <- maxDose(my_increments, data = my_data)
Example of usage for `IncrementsRelativeDLTCurrent` maxDose class.

Create the data.
my_data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 8, 8, 8),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
ID = 1:8,
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, 8, 10:80)

)

Here, we combine two different increment rules.

The first rule allows for:
- doubling the dose if no DLTs were observed at the current dose,
- increasing the dose by 33% if 1 or 2 DLTs were observed at the current dose,
- increasing the dose by 22% if 3 or more DLTs were observed.
my_increments_1 <- IncrementsRelativeDLT(

210 maxDose

intervals = c(0, 1, 3),
increments = c(1, 0.33, 0.2)

)

The second rule allows for:
- doubling the dose if the current dose is <20,
- increasing the dose by 33% if the current dose is >=20.
my_increments_2 <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)

Finally, the maximum dose allowed is computed by taking the minimum dose from
the maximum doses computed by the two rules.
my_increments <- IncrementsMin(

increments_list = list(my_increments_1, my_increments_2)
)
max_dose <- maxDose(my_increments, my_data)
maxDose(

increments = IncrementsOrdinal(2L, .DefaultIncrementsRelative()),
data = .DefaultDataOrdinal()

)
model <- LogisticLogNormalOrdinal(

mean = c(0.25, 0.15, 0.5),
cov = matrix(c(1.5, 0, 0, 0, 2, 0, 0, 0, 1), nrow = 3),
ref_dose = 30

)

emptyData <- DataOrdinal(
doseGrid = c(1, 3, 9, 25, 50, 75, 100),
yCategories = c("No tox" = 0L, "DLAE" = 1L, "CRS" = 2L)

)

For warning regarding tox, see issue #748 https://github.com/openpharma/crmPack/issues/748
suppressWarnings({

samples <- mcmc(emptyData, model, .DefaultMcmcOptions())
})
toxIncrements <- IncrementsMaxToxProb(prob = c("DLAE" = 0.2, "CRS" = 0.05))
maxDose(toxIncrements, emptyData, model, samples)
model <- LogisticLogNormalOrdinal(

mean = c(0.25, 0.15, 0.5),
cov = matrix(c(1.5, 0, 0, 0, 2, 0, 0, 0, 1), nrow = 3),
ref_dose = 30

)

emptyData <- DataOrdinal(
doseGrid = c(1, 3, 9, 25, 50, 75, 100),
yCategories = c("No tox" = 0L, "DLAE" = 1L, "CRS" = 2L)

)

For warning regarding tox, see issue #748 https://github.com/openpharma/crmPack/issues/748
suppressWarnings({

samples <- mcmc(emptyData, model, .DefaultMcmcOptions())

maxRecruits 211

})
toxIncrements <- IncrementsMaxToxProb(prob = c("DLAE" = 0.2, "CRS" = 0.05))
maxDose(toxIncrements, emptyData, model, samples)

maxRecruits Calculate Maximum Number of Backfill Patients

Description

[Experimental]

Calculates the maximum number of backfill patients that can be recruited based on the recruitment
rule and the active cohort size.

Usage

maxRecruits(object, active_cohort_size, ...)

S4 method for signature 'RecruitmentUnlimited'
maxRecruits(object, active_cohort_size, ...)

S4 method for signature 'RecruitmentRatio'
maxRecruits(object, active_cohort_size, ...)

Arguments

object (Recruitment)
the recruitment rule.

active_cohort_size

(integer)
the current size of the active dose escalation cohort.

... further arguments (not used).

Value

The maximum number of backfill patients as an integer.

Functions

• maxRecruits(RecruitmentUnlimited): method for RecruitmentUnlimited class. Re-
turns a very large number (practically unlimited).

• maxRecruits(RecruitmentRatio): method for RecruitmentRatio class. Returns ceiling(ratio
* active_cohort_size).

See Also

Recruitment, RecruitmentUnlimited, RecruitmentRatio.

212 maxSize

Examples

Create a RecruitmentUnlimited object
recruitment <- RecruitmentUnlimited()

Calculate maximum recruits for various active cohort sizes
max_recruits_10 <- maxRecruits(recruitment, active_cohort_size = 10)
print(max_recruits_10) # Returns 1e6

max_recruits_100 <- maxRecruits(recruitment, active_cohort_size = 100)
print(max_recruits_100) # Still returns 1e6 (unlimited)

With RecruitmentUnlimited, the active_cohort_size is ignored
Create a RecruitmentRatio object with ratio 0.5
recruitment <- RecruitmentRatio(ratio = 0.5)

Calculate maximum recruits based on active cohort size
For active cohort of 10: ceiling(0.5 * 10) = 5
max_recruits_10 <- maxRecruits(recruitment, active_cohort_size = 10)
print(max_recruits_10) # 5

For active cohort of 7: ceiling(0.5 * 7) = ceiling(3.5) = 4
max_recruits_7 <- maxRecruits(recruitment, active_cohort_size = 7)
print(max_recruits_7) # 4

For active cohort of 15: ceiling(0.5 * 15) = ceiling(7.5) = 8
max_recruits_15 <- maxRecruits(recruitment, active_cohort_size = 15)
print(max_recruits_15) # 8

maxSize "MAX" Combination of Cohort Size Rules

Description

[Stable]
This function combines cohort size rules by taking the maximum of all sizes.

Usage

maxSize(...)

S4 method for signature 'CohortSize'
maxSize(...)

Arguments

... Objects of class CohortSize.

Value

The combination as an object of class CohortSizeMax.

mcmc 213

Functions

• maxSize(CohortSize): The method combining cohort size rules by taking maximum.

See Also

minSize()

Examples

Here is the rule for:
having cohort of size 1 for doses <30
and having cohort of size 3 for doses >=30
mySize1 <- CohortSizeRange(intervals = c(0, 30), cohort_size = c(1, 3))

Here is the rule for:
having cohort of size 1 until no DLT were observed
and having cohort of size 3 as soon as 1 DLT is observed
mySize2 <- CohortSizeDLT(intervals = c(0, 1), cohort_size = c(1, 3))

This is combining the two rules above by taking the maximum of the sample sizes of
the single rules
mySize <- maxSize(mySize1, mySize2)

mcmc Obtaining Posterior Samples for all Model Parameters

Description

[Stable]
This is the function that actually runs the JAGS MCMC machinery to produce posterior samples
from all model parameters and required derived values. It is a generic function, so that customized
versions may be conveniently defined for specific subclasses of GeneralData, GeneralModel, and
McmcOptions input.

Usage

mcmc(data, model, options, ...)

S4 method for signature 'GeneralData,GeneralModel,McmcOptions'
mcmc(data, model, options, from_prior = data@nObs == 0L, ...)

S4 method for signature 'GeneralData,DualEndpointRW,McmcOptions'
mcmc(data, model, options, from_prior = data@nObs == 0L, ...)

S4 method for signature 'GeneralData,DualEndpointBeta,McmcOptions'
mcmc(data, model, options, from_prior = data@nObs == 0L, ...)

S4 method for signature 'GeneralData,DualEndpointEmax,McmcOptions'

214 mcmc

mcmc(data, model, options, from_prior = data@nObs == 0L, ...)

S4 method for signature 'GeneralData,OneParLogNormalPrior,McmcOptions'
mcmc(data, model, options, from_prior = data@nObs == 0L, ...)

S4 method for signature 'GeneralData,OneParExpPrior,McmcOptions'
mcmc(data, model, options, from_prior = data@nObs == 0L, ...)

S4 method for signature 'DataMixture,GeneralModel,McmcOptions'
mcmc(
data,
model,
options,
from_prior = data@nObs == 0L & data@nObsshare == 0L,
...

)

S4 method for signature 'Data,LogisticIndepBeta,McmcOptions'
mcmc(data, model, options, ...)

S4 method for signature 'DataDual,Effloglog,McmcOptions'
mcmc(data, model, options, ...)

S4 method for signature 'DataDual,EffFlexi,McmcOptions'
mcmc(data, model, options, ...)

S4 method for signature 'DataOrdinal,LogisticLogNormalOrdinal,McmcOptions'
mcmc(data, model, options, ...)

Arguments

data (GeneralData)
an input data.

model (GeneralModel)
an input model.

options (McmcOptions)
MCMC options.

... not used.

from_prior (flag)
sample from the prior only? Default to TRUE when number of observations in
data is 0. For some models it might be necessary to specify it manually here
though.

Value

The posterior samples, an object of class Samples.

mcmc 215

Functions

• mcmc(data = GeneralData, model = GeneralModel, options = McmcOptions): Standard method
which uses JAGS.

• mcmc(data = GeneralData, model = DualEndpointRW, options = McmcOptions): Standard
method which uses JAGS. For the DualEndpointRW model, it is required that there are at least
two (in case of random walk prior of the first order on the biomarker level) or three doses in
the grid.

• mcmc(data = GeneralData, model = DualEndpointBeta, options = McmcOptions): Stan-
dard method which uses JAGS. For the DualEndpointBeta model, it is required that the
value of ref_dose_beta slot is greater than the maximum dose in a grid. This requirement
comes from definition of the beta function that is used to model dose-biomarker relationship
in DualEndpointBeta model. The other requirement is that there must be at least one dose in
the grid.

• mcmc(data = GeneralData, model = DualEndpointEmax, options = McmcOptions): Stan-
dard method which uses JAGS. For the DualEndpointEmax model, it is required that there is
at least one dose in the grid.

• mcmc(data = GeneralData, model = OneParLogNormalPrior, options = McmcOptions): Stan-
dard method which uses JAGS. For the OneParLogNormalPrior model, it is required that the
length of skeleton prior probabilities vector should be equal to the length of the number of
doses.

• mcmc(data = GeneralData, model = OneParExpPrior, options = McmcOptions): Standard
method which uses JAGS. For the OneParExpPrior model, it is required that the length of
skeleton prior probabilities vector should be equal to the length of the number of doses.

• mcmc(data = DataMixture, model = GeneralModel, options = McmcOptions): Method for
DataMixture with different from_prior default. Samples from the prior only when both the
number of observations and the number of shared observations are zero.

• mcmc(data = Data, model = LogisticIndepBeta, options = McmcOptions): Obtain pos-
terior samples for the model parameters based on the pseudo LogisticIndepBeta DLE model.
The joint prior and posterior probability density function of the intercept ϕ1 (phi1) and the
slope ϕ2 (phi2) are given in Whitehead and Williamson (1998). However, since asymptot-
ically, the joint posterior probability density will be bivariate normal, we use the bivariate
normal distribution to generate posterior samples of the intercept and the slope parameters.
For the prior samples of the intercept and the slope, a bivariate normal distribution with mean
and the covariance matrix given in Whitehead and Williamson (1998) is used.

• mcmc(data = DataDual, model = Effloglog, options = McmcOptions): Obtain the poste-
rior samples for the model parameters in the Effloglog model. Given the value of ν, the
precision of the efficacy responses, the joint prior or the posterior probability of the intercept
θ1 (theta1) and the slope θ2 (theta2) is a bivariate normal distribution. The ν (nu), the pre-
cision of the efficacy responses is either a fixed value or has a gamma distribution. If a gamma
distribution is used, the samples of nu will be first generated. Then the mean of the nu samples
will be used to generate samples of the intercept and slope parameters of the model.

• mcmc(data = DataDual, model = EffFlexi, options = McmcOptions): Obtain the posterior
samples for the estimates in the EffFlexi model. This is the MCMC procedure based on what
is described in Lang and Brezger (2004) such that samples of the mean efficacy responses at
all dose levels, samples of sigma2 σ2, the variance of the efficacy response and samples of

216 mcmc

sigma2betaW σ2
βW

, the variance of the random walk model will be generated. Please refer to
Lang and Brezger (2004) for the procedures and the form of the joint prior and posterior proba-
bility density for the mean efficacy responses. In addition, both sigma2 and sigma2betaW can
be fixed or have an inverse-gamma prior and posterior distribution. Therefore, if the inverse
gamma distribution(s) are used, the parameters in the distribution will be first updated and
then samples of sigma2 and sigma2betaW will be generated using the updated parameters.

• mcmc(data = DataOrdinal, model = LogisticLogNormalOrdinal, options = McmcOptions
): Obtain the posterior samples for the model parameters in the LogisticLogNormalOrdinal
model.
The generic mcmc method returns a Samples object with elements of the data slot named
alpha[1], alpha[2], ..., alpha[k] and beta when passed a LogisticLogNormalOrdinal
object. This makes the "alpha elements" awkward to access and is inconsistent with other
model objects. So rename the alpha elements to alpha1, alpha2, ..., alpha<k> for ease and
consistency.

Note

The type of Random Number Generator (RNG) and its initial seed used by JAGS are taken from the
options argument. If no initial values are supplied (i.e RNG kind or seed slot in options has NA),
then they will be generated automatically by JAGS.

References

Lang S, Brezger A (2004). “Bayesian P-Splines.” Journal of Computational and Graphical Statis-
tics, 13(1), 183–212. ISSN 10618600, doi:10.1198/1061860043010, http://www.jstor.org/
stable/1391151.

Whitehead J, Williamson D (1998). “Bayesian decision procedures based on logistic regression
models for dose-finding studies.” Journal of Biopharmaceutical Statistics, 8(3), 445–467.

Examples

Create some data from the class `Data`.
my_data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Initialize the CRM model.
my_model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Sample from the posterior distribution.
my_options <- McmcOptions(

burnin = 100,
step = 2,

https://doi.org/10.1198/1061860043010
http://www.jstor.org/stable/1391151
http://www.jstor.org/stable/1391151

mcmc 217

samples = 1000
)

samples <- mcmc(data = my_data, model = my_model, options = my_options)
samples
Create some data from the class `DataDual`.
plcb <- 0.001
my_data <- DataDual(

w = c(13, 77, 86, 26, 27, 36, 37, 97, 21, 49, 87, 48),
x = c(plcb, 25, 25, 25, plcb, 50, 50, 50, plcb, 100, 100, 100),
y = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L),
doseGrid = c(plcb, seq(25, 300, 25)),
placebo = TRUE,
ID = 1:12,
cohort = c(1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L)

)

Initialize the CRM model.
my_model <- DualEndpointRW(

mean = c(0, 1),
cov = matrix(c(1, 0, 0, 1), nrow = 2),
sigma2W = c(a = 0.1, b = 0.1),
rho = c(a = 1, b = 1),
sigma2betaW = 0.01,
rw1 = TRUE

)

Sample from the posterior distribution.
my_options <- McmcOptions(

burnin = 50,
step = 2,
samples = 4,
rng_kind = "Mersenne-Twister",
rng_seed = 1

)

samples <- mcmc(data = my_data, model = my_model, options = my_options)
samples
Create some data from the class `DataDual`.
plcb <- 0.001
my_data <- DataDual(

w = c(13, 77, 86, 26, 27, 36, 37, 97, 21, 49, 87, 48),
x = c(plcb, 25, 25, 25, plcb, 50, 50, 50, plcb, 100, 100, 100),
y = c(0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L),
doseGrid = c(plcb, seq(25, 300, 25)),
placebo = TRUE,
ID = 1:12,
cohort = c(1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L)

)

Initialize the CRM model.
my_model <- DualEndpointBeta(

mean = c(0, 1),

218 mcmc

cov = diag(2),
ref_dose = 2,
use_log_dose = FALSE,
sigma2W = c(a = 1, b = 2),
rho = c(a = 1.5, b = 2.5),
E0 = 2,
Emax = 50,
delta1 = 6,
mode = 9,
ref_dose_beta = my_data@doseGrid[my_data@nGrid] + 10

)

Sample from the posterior distribution.
my_options <- McmcOptions(

burnin = 50,
step = 2,
samples = 4,
rng_kind = "Mersenne-Twister",
rng_seed = 1

)

samples <- mcmc(data = my_data, model = my_model, options = my_options)
samples
##obtain mcmc DLE samples given the data, LogisticIndepBeta (DLE model) and mcmc simulations options
data must be of 'Data' class
data <- Data(

x = c(25, 50, 50, 75, 100, 100, 225, 300),
y = c(0, 0, 0, 0, 1, 1, 1, 1),
doseGrid = seq(25, 300, 25)

)
model must be of 'LogisticIndepBeta' class
model <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = data

)
options must be ''McmcOptions' class
options <- McmcOptions(burnin = 100, step = 2, samples = 200)
set.seed(94)
samples <- mcmc(data = data, model = model, options = options)
nolint start
##obtain mcmc efficacy samples given the data, 'Effloglog' model (efficacy model) and
mcmc simulations options data must be of 'DataDual' class
data <- DataDual(

x = c(25, 50, 25, 50, 75, 300, 250, 150),
y = c(0, 0, 0, 0, 0, 1, 1, 0),
w = c(0.31, 0.42, 0.59, 0.45, 0.6, 0.7, 0.6, 0.52),
doseGrid = seq(25, 300, 25),
placebo = FALSE

)
model must be of 'Effloglog' class
Effmodel <- Effloglog(

McmcOptions-class 219

eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = data

)

options must be ''McmcOptions' class
options <- McmcOptions(burnin = 100, step = 2, samples = 200)
set.seed(94)
samples <- mcmc(data = data, model = Effmodel, options = options)
nolint end
obtain mcmc efficacy samples given the data, 'EffFlexi' model (efficacy model) and
mcmc simulations options
data must be of 'DataDual' class
data <- DataDual(

x = c(25, 50, 25, 50, 75, 300, 250, 150),
y = c(0, 0, 0, 0, 0, 1, 1, 0),
w = c(0.31, 0.42, 0.59, 0.45, 0.6, 0.7, 0.6, 0.52),
doseGrid = seq(25, 300, 25)

)
model must be of 'EffFlexi' class

effmodel <- EffFlexi(
eff = c(1.223, 2.513),
eff_dose = c(25, 300),
sigma2W = c(a = 0.1, b = 0.1),
sigma2betaW = c(a = 20, b = 50),
rw1 = FALSE,
data = data

)

options must be ''McmcOptions' class
options <- McmcOptions(burnin = 100, step = 2, samples = 200)
set.seed(94)
samples <- mcmc(data = data, model = effmodel, options = options)
ordinal_data <- .DefaultDataOrdinal()
ordinal_model <- .DefaultLogisticLogNormalOrdinal()
mcmc_options <- .DefaultMcmcOptions()

samples <- mcmc(ordinal_data, ordinal_model, mcmc_options)

McmcOptions-class McmcOptions

Description

[Stable]

McmcOptions is a class for the three canonical MCMC options as well as Random Number Gener-
ator settings.

220 McmcOptions-class

Usage

McmcOptions(
burnin = 10000L,
step = 2L,
samples = 10000L,
rng_kind = NA_character_,
rng_seed = NA_integer_

)

.DefaultMcmcOptions()

Arguments

burnin (count)
number of burn-in iterations which are not saved.

step (count)
only every step-th iteration is saved after the burn-in.

samples (count)
number of resulting samples.

rng_kind (string)
the name of the RNG type. Possible types are: Wichmann-Hill, Marsaglia-Multicarry,
Super-Duper, Mersenne-Twister. If it is NA (default), then the RNG kind will
be chosen by [rjags].

rng_seed (number)
RNG seed corresponding to chosen rng_kind. It must be an integer value or NA
(default), which means that the seed will be chosen by [rjags].

Slots

iterations (count)
number of MCMC iterations.

burnin (count)
number of burn-in iterations which are not saved.

step (count)
only every step-th iteration is saved after the burnin. In other words, a sample from iteration
i = 1,...,iterations, is saved if and only if (i - burnin) mod step = 0.
For example, for iterations = 6, burnin = 0 and step = 2, only samples from iterations
2,4,6 will be saved.

rng_kind (string)
a Random Number Generator (RNG) type used by rjags::rjags. It must be one out of the
following four values: base::Wichmann-Hill, base::Marsaglia-Multicarry, base::Super-Duper,
base::Mersenne-Twister, or NA_character_. If it is NA_character_ (default), then the
RNG kind will be chosen by rjags::rjags.

rng_seed (number)
a Random Number Generator (RNG) seed used by rjags::rjags for a chosen rng_kind.
It must be an integer scalar or NA_integer_, which means that the seed will be chosen by
rjags::rjags.

MinimalInformative 221

Note

Typically, end users will not use the .DefaultMcmcOptions() function.

Examples

Set up MCMC option in order to have a burn-in of 10000 iterations and
then take every other iteration up to a collection of 10000 samples.
McmcOptions(burnin = 10000, step = 2, samples = 10000)

MinimalInformative Construct a Minimally Informative Prior

Description

[Stable]

This function constructs a minimally informative prior, which is captured in a LogisticNormal (or
LogisticLogNormal) object.

Based on the proposal by Neuenschwander et al. (2008), a minimally informative prior distribution
is constructed. The required key input is the minimum (d1 in the notation of the Appendix A.1 of
that paper) and the maximum value (dJ) of the dose grid supplied to this function. Then threshmin
is the probability threshold q1, such that any probability of DLT larger than q1 has only 5% prob-
ability. Therefore q1 is the 95% quantile of the beta distribution and hence p1 = 0.95. Likewise,
threshmax is the probability threshold qJ , such that any probability of DLT smaller than qJ has
only 5% probability (pJ = 0.05). The probabilities 1 − p1 and pJ can be controlled with the ar-
guments probmin and probmax, respectively. Subsequently, for all doses supplied in the dosegrid
argument, beta distributions are set up from the assumption that the prior medians are linear in
log-dose on the logit scale, and Quantiles2LogisticNormal() is used to transform the resulting
quantiles into an approximating LogisticNormal (or LogisticLogNormal) model. Note that the
reference dose is not required for these computations.

Usage

MinimalInformative(
dosegrid,
refDose,
threshmin = 0.2,
threshmax = 0.3,
probmin = 0.05,
probmax = 0.05,
...

)

222 MinimalInformative

Arguments

dosegrid (numeric)
the dose grid.

refDose (number)
the reference dose.

threshmin (number)
any toxicity probability above this threshold would be very unlikely (see probmin)
at the minimum dose.

threshmax (number)
any toxicity probability below this threshold would be very unlikely (see probmax)
at the maximum dose.

probmin (number)
the prior probability of exceeding threshmin at the minimum dose.

probmax (number)
the prior probability of being below threshmax at the maximum dose.

... additional arguments for computations, see Quantiles2LogisticNormal(), e.g.
refDose and logNormal=TRUE to obtain a minimal informative log normal prior.

Value

See Quantiles2LogisticNormal().

References

Neuenschwander B, Branson M, Gsponer T (2008). “Critical aspects of the Bayesian approach
to phase I cancer trials.” Statistics in Medicine, 27(13), 2420–2439. https://onlinelibrary.
wiley.com/doi/10.1002/sim.3230.

Examples

Setting up a minimal informative prior
max.time is quite small only for the purpose of showing the example. They
should be increased for a real case.
set.seed(132)
coarseGrid <- c(0.1, 10, 30, 60, 100)
minInfModel <- MinimalInformative(dosegrid = coarseGrid,

refDose=50,
threshmin=0.2,
threshmax=0.3,
control=## for real case: leave out control

list(max.time=0.1))

Plotting the result
matplot(x=coarseGrid,

y=minInfModel$required,
type="b", pch=19, col="blue", lty=1,
xlab="dose",
ylab="prior probability of DLT")

https://onlinelibrary.wiley.com/doi/10.1002/sim.3230
https://onlinelibrary.wiley.com/doi/10.1002/sim.3230

minSize 223

matlines(x=coarseGrid,
y=minInfModel$quantiles,
type="b", pch=19, col="red", lty=1)

legend("right",
legend=c("quantiles", "approximation"),
col=c("blue", "red"),
lty=1,
bty="n")

minSize "MIN" Combination of Cohort Size Rules

Description

[Stable]
This function combines cohort size rules by taking the minimum of all sizes.

Usage

minSize(...)

S4 method for signature 'CohortSize'
minSize(...)

Arguments

... Objects of class CohortSize.

Value

The combination as an object of class CohortSizeMin.

Functions

• minSize(CohortSize): The method combining cohort size rules by taking minimum.

See Also

maxSize()

Examples

Here is the rule for:
having cohort of size 1 for doses <30
and having cohort of size 3 for doses >=30
mySize1 <- CohortSizeRange(intervals = c(0, 30), cohort_size = c(1, 3))

Here is the rule for:

224 ModelEff-class

having cohort of size 1 until no DLT were observed
and having cohort of size 3 as soon as 1 DLT is observed
mySize2 <- CohortSizeDLT(intervals = c(0, 1), cohort_size = c(1, 3))

This is combining the two rules above by taking the minimum of the sample sizes of
the single rules
mySize <- minSize(mySize1, mySize2)

ModelEff-class ModelEff

Description

[Stable]

ModelEff is the parent class for efficacy models using pseudo data prior. It is dedicated all efficacy
models that have their prior specified in the form of pseudo data (as if there is some data before the
trial starts).

The data must obey the convention of the DataDual class. This refers to any observed effi-
cacy/biomarker responses (w in DataDual), the dose levels at which these responses are observed
(x in DataDual), all dose levels considered in the study (doseGrid in DataDual), and finally other
specifications in DataDual class that can be used to generate prior or posterior modal estimates or
samples estimates for model parameter(s). If no responses are observed, at least doseGrid has to be
specified in data for which prior modal estimates or samples can be obtained for model parameters
based on the specified pseudo data.

Usage

.DefaultModelEff()

Slots

data (DataDual)
observed data that is used to obtain model parameters estimates or samples (see details above).

Note

Typically, end users will not use the .DefaultModelEff() function.

See Also

ModelTox.

ModelLogNormal-class 225

ModelLogNormal-class ModelLogNormal

Description

[Stable]

ModelLogNormal is the class for a model with a reference dose and bivariate normal prior on the
model parameters alpha0 and natural logarithm of alpha1, i.e.:

(alpha0, log(alpha1)) Normal(mean, cov),

. Transformations other than log, e.g. identity, can be specified too in priormodel slot. The
parameter alpha1 has a log-normal distribution by default to ensure positivity of alpha1 which
further guarantees exp(alpha1) > 1. The slots of this class contain the mean vector, the covariance
and precision matrices of the bivariate normal distribution, as well as the reference dose. Note
that the precision matrix is an inverse of the covariance matrix in the JAGS. All ("normal") model
specific classes inherit from this class.

Usage

ModelLogNormal(mean, cov, ref_dose = 1)

.DefaultModelLogNormal()

Arguments

mean (numeric)
the prior mean vector.

cov (matrix)
the prior covariance matrix. The precision matrix prec is internally calculated
as an inverse of cov.

ref_dose (number)
the reference dose x∗ (strictly positive number).

Slots

params (ModelParamsNormal)
bivariate normal prior parameters.

ref_dose (positive_number)
the reference dose.

Note

Typically, end users will not use the .DefaultModelLogNormal() function.

226 ModelParamsNormal-class

See Also

ModelParamsNormal, LogisticNormal, LogisticLogNormal, LogisticLogNormalSub, ProbitLogNormal,
ProbitLogNormalRel.

ModelParamsNormal-class

ModelParamsNormal

Description

[Experimental]

ModelParamsNormal is the class for a bivariate normal model parameters, i.e. the mean vector,
covariance matrix and precision matrix. The precision matrix is an inverse of the covariance matrix
in the JAGS and it is computed internally by the object constructor function.

Usage

ModelParamsNormal(mean, cov)

.DefaultModelParamsNormal()

Arguments

mean (numeric)
the prior mean vector.

cov (matrix)
the prior covariance matrix. The precision matrix prec is internally calculated
as an inverse of cov.

Slots

mean (numeric)
the mean vector.

cov (matrix)
the covariance matrix.

prec (matrix)
the precision matrix, which is an inverse matrix of the cov.

Note

Typically, end users will not use the .ModelPAramsNormal() function.

See Also

ModelLogNormal, LogisticNormalMixture.

ModelPseudo-class 227

Examples

ModelParamsNormal(mean = c(1, 6), cov = diag(2))

ModelPseudo-class ModelPseudo

Description

[Stable]

ModelPseudo is the parent class for models that express their prior in the form of pseudo data (as if
there is some data before the trial starts).

Usage

.DefaultModelPseudo()

Note

Typically, end users will not use the .DefaultModelPseudo() function.

See Also

GeneralModel.

ModelTox-class ModelTox

Description

[Stable]

ModelTox is the parent class for DLE (dose-limiting events) models using pseudo data prior. It is
dedicated for DLE models or toxicity models that have their prior specified in the form of pseudo
data (as if there is some data before the trial starts).

The data must obey the convention of the Data class. This refers to any observed DLE responses
(y in Data), the dose levels (x in Data) at which these responses are observed, all dose levels
considered in the study (doseGrid in Data), and finally other specifications in Data class that can
be used to generate prior or posterior modal estimates or samples estimates for model parameter(s).
If no responses are observed, at least doseGrid has to be specified in data for which prior modal
estimates or samples can be obtained for model parameters based on the specified pseudo data.

Usage

.DefaultModelTox()

228 names,Samples-method

Slots

data (Data)
observed data that is used to obtain model parameters estimates or samples (see details above).

Note

Typically, end users will not use the .DefaultModelTox() function.

See Also

ModelEff.

names,Samples-method The Names of the Sampled Parameters

Description

[Stable]

A method that returns names of the parameters that are sampled.

Usage

S4 method for signature 'Samples'
names(x)

Arguments

x (Samples)
object with samples.

Examples

my_samples <- Samples(
data = list(alpha = 1:5, beta = 15:19),
options = McmcOptions(burnin = 2, step = 2, samples = 5)

)

names(my_samples)

nextBest 229

nextBest Finding the Next Best Dose

Description

[Stable]

A function that computes the recommended next best dose based on the corresponding rule nextBest,
the posterior samples from the model and the underlying data.

Usage

nextBest(nextBest, doselimit, samples, model, data, ...)

S4 method for signature 'NextBestEWOC,numeric,Samples,GeneralModel,Data'
nextBest(nextBest, doselimit = Inf, samples, model, data, ...)

S4 method for signature 'NextBestMTD,numeric,Samples,GeneralModel,Data'
nextBest(nextBest, doselimit = Inf, samples, model, data, ...)

S4 method for signature 'NextBestNCRM,numeric,Samples,GeneralModel,Data'
nextBest(nextBest, doselimit = Inf, samples, model, data, ...)

S4 method for signature
'NextBestNCRM,numeric,Samples,GeneralModel,DataParts'
nextBest(nextBest, doselimit = Inf, samples, model, data, ...)

S4 method for signature 'NextBestNCRMLoss,numeric,Samples,GeneralModel,Data'
nextBest(nextBest, doselimit = Inf, samples, model, data, ...)

S4 method for signature
'NextBestThreePlusThree,missing,missing,missing,Data'
nextBest(nextBest, doselimit, samples, model, data, ...)

S4 method for signature
'NextBestDualEndpoint,numeric,Samples,DualEndpoint,Data'
nextBest(nextBest, doselimit = Inf, samples, model, data, ...)

S4 method for signature 'NextBestMinDist,numeric,Samples,GeneralModel,Data'
nextBest(nextBest, doselimit = Inf, samples, model, data, ...)

S4 method for signature
'NextBestInfTheory,numeric,Samples,GeneralModel,Data'
nextBest(nextBest, doselimit = Inf, samples, model, data, ...)

S4 method for signature 'NextBestTD,numeric,missing,LogisticIndepBeta,Data'
nextBest(nextBest, doselimit = Inf, model, data, in_sim = FALSE, ...)

230 nextBest

S4 method for signature
'NextBestTDsamples,numeric,Samples,LogisticIndepBeta,Data'
nextBest(nextBest, doselimit = Inf, samples, model, data, in_sim, ...)

S4 method for signature 'NextBestMaxGain,numeric,missing,ModelTox,DataDual'
nextBest(
nextBest,
doselimit = Inf,
model,
data,
model_eff,
in_sim = FALSE,
...

)

S4 method for signature
'NextBestMaxGainSamples,numeric,Samples,ModelTox,DataDual'
nextBest(
nextBest,
doselimit = Inf,
samples,
model,
data,
model_eff,
samples_eff,
in_sim = FALSE,
...

)

S4 method for signature
'NextBestProbMTDLTE,numeric,Samples,GeneralModel,Data'
nextBest(nextBest, doselimit, samples, model, data, ...)

S4 method for signature
'NextBestProbMTDMinDist,numeric,Samples,GeneralModel,Data'
nextBest(nextBest, doselimit, samples, model, data, ...)

S4 method for signature 'NextBestOrdinal,numeric,Samples,GeneralModel,Data'
nextBest(nextBest, doselimit = Inf, samples, model, data, ...)

S4 method for signature
'NextBestOrdinal,numeric,Samples,LogisticLogNormalOrdinal,DataOrdinal'
nextBest(nextBest, doselimit = Inf, samples, model, data, ...)

Arguments

nextBest (NextBest)
the rule for the next best dose.

nextBest 231

doselimit (number)
the maximum allowed next dose. If it is an infinity (default), then essentially no
dose limit will be applied in the course of dose recommendation calculation.

samples (Samples)
posterior samples from model parameters given data.

model (ModelTox)
the DLT model.

data (Data)
data that was used to generate the samples.

... additional arguments without method dispatch.

in_sim (flag)
is this method used in simulations? Default as FALSE. If this flag is TRUE and
target dose estimates (during trial and end-of-trial) are outside of the dose grid
range, the information message is printed by this method.

model_eff (Effloglog or EffFlexi)
the efficacy model.

samples_eff (Samples)
posterior samples from model_eff parameters given data.

Value

A list with the next best dose recommendation (element named value) from the grid defined in
data, and a plot depicting this recommendation (element named plot). In case of multiple plots
also an element named singlePlots is included. The singlePlots is itself a list with single plots.
An additional list with elements describing the outcome of the rule can be contained too.

Functions

• nextBest(nextBest = NextBestEWOC, doselimit = numeric, samples = Samples, model
= GeneralModel, data = Data): find the next best dose based on the EWOC rule.

• nextBest(nextBest = NextBestMTD, doselimit = numeric, samples = Samples, model =
GeneralModel, data = Data): find the next best dose based on the MTD rule.

• nextBest(nextBest = NextBestNCRM, doselimit = numeric, samples = Samples, model
= GeneralModel, data = Data): find the next best dose based on the NCRM method. The
additional element probs in the output’s list contains the target and overdosing probabilities
(across all doses in the dose grid) used in the derivation of the next best dose.

• nextBest(nextBest = NextBestNCRM, doselimit = numeric, samples = Samples, model
= GeneralModel, data = DataParts): find the next best dose based on the NCRM method
when two parts trial is used.

• nextBest(nextBest = NextBestNCRMLoss, doselimit = numeric, samples = Samples, model
= GeneralModel, data = Data): find the next best dose based on the NCRM method and loss
function.

• nextBest(nextBest = NextBestThreePlusThree, doselimit = missing, samples = missing,
model = missing, data = Data): find the next best dose based on the 3+3 method.

232 nextBest

• nextBest(nextBest = NextBestDualEndpoint, doselimit = numeric, samples = Samples,
model = DualEndpoint, data = Data): find the next best dose based on the dual endpoint
model. The additional list element probs contains the target and overdosing probabilities
(across all doses in the dose grid) used in the derivation of the next best dose.

• nextBest(nextBest = NextBestMinDist, doselimit = numeric, samples = Samples, model
= GeneralModel, data = Data): gives the dose which is below the dose limit and has an es-
timated DLT probability which is closest to the target dose.

• nextBest(nextBest = NextBestInfTheory, doselimit = numeric, samples = Samples, model
= GeneralModel, data = Data): gives the appropriate dose within an information theoretic
framework.

• nextBest(nextBest = NextBestTD, doselimit = numeric, samples = missing, model = LogisticIndepBeta,
data = Data): find the next best dose based only on the DLT responses and for LogisticIndepBeta
model class object without DLT samples.

• nextBest(nextBest = NextBestTDsamples, doselimit = numeric, samples = Samples, model
= LogisticIndepBeta, data = Data): find the next best dose based only on the DLT re-
sponses and for LogisticIndepBeta model class object involving DLT samples.

• nextBest(nextBest = NextBestMaxGain, doselimit = numeric, samples = missing, model
= ModelTox, data = DataDual): find the next best dose based only on pseudo DLT model
ModelTox and Effloglog efficacy model without samples.

• nextBest(nextBest = NextBestMaxGainSamples, doselimit = numeric, samples = Samples,
model = ModelTox, data = DataDual): find the next best dose based on DLT and efficacy
responses with DLT and efficacy samples.

• nextBest(nextBest = NextBestProbMTDLTE, doselimit = numeric, samples = Samples,
model = GeneralModel, data = Data): find the next best dose based with the highest prob-
ability of having a toxicity rate less or equal to the target toxicity level.

• nextBest(nextBest = NextBestProbMTDMinDist, doselimit = numeric, samples = Samples,
model = GeneralModel, data = Data): find the next best dose based with the highest prob-
ability of having a toxicity rate with minimum distance to the target toxicity level.

• nextBest(nextBest = NextBestOrdinal, doselimit = numeric, samples = Samples, model
= GeneralModel, data = Data): find the next best dose for ordinal CRM models.

• nextBest(nextBest = NextBestOrdinal, doselimit = numeric, samples = Samples, model
= LogisticLogNormalOrdinal, data = DataOrdinal): find the next best dose for ordinal
CRM models.

Examples

Example of usage for `NextBestEWOC` NextBest class.

Create the data.
my_data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
ID = 1:8,
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

nextBest 233

Initialize the CRM model used to model the data.
my_model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Set-up some MCMC parameters and generate samples from the posterior.
my_options <- McmcOptions(burnin = 5, step = 1, samples = 10)
my_samples <- mcmc(my_data, my_model, my_options)

Define the rule for dose increments and calculate the maximum dose allowed.
my_increments <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)
next_max_dose <- maxDose(my_increments, data = my_data)

Define the rule which will be used to select the next best dose
based on the 'NextBestEWOC' class.
ewoc_next_best <- NextBestEWOC(

target = 0.30,
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Calculate the next best dose.
dose_recommendation <- nextBest(

nextBest = ewoc_next_best,
doselimit = next_max_dose,
samples = my_samples,
model = my_model,
data = my_data

)

See the probabilities.
dose_recommendation$probs
Example of usage for `NextBestMTD` NextBest class.

Create the data.
my_data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
ID = 1:8,
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Initialize the CRM model used to model the data.
my_model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

234 nextBest

)

Set-up some MCMC parameters and generate samples from the posterior.
my_options <- McmcOptions(burnin = 5, step = 1, samples = 10)
my_samples <- mcmc(my_data, my_model, my_options)

Define the rule for dose increments and calculate the maximum dose allowed.
my_increments <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)
next_max_dose <- maxDose(my_increments, data = my_data)

Define the rule which will be used to select the next best dose
based on the 'NextBestMTD' class.
mtd_next_best <- NextBestMTD(

target = 0.33,
derive = function(mtd_samples) {
quantile(mtd_samples, probs = 0.25)

}
)

Calculate the next best dose.
dose_recommendation <- nextBest(

nextBest = mtd_next_best,
doselimit = next_max_dose,
samples = my_samples,
model = my_model,
data = my_data

)
Example of usage for `NextBestNCRM` NextBest class.

Create the data.
my_data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
ID = 1:8,
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Initialize the CRM model used to model the data.
my_model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Set-up some MCMC parameters and generate samples from the posterior.
my_options <- McmcOptions(burnin = 5, step = 1, samples = 10)
my_samples <- mcmc(my_data, my_model, my_options)

Define the rule for dose increments and calculate the maximum dose allowed.

nextBest 235

my_increments <- IncrementsRelative(
intervals = c(0, 20),
increments = c(1, 0.33)

)
next_max_dose <- maxDose(my_increments, data = my_data)

Define the rule which will be used to select the next best dose
based on the 'NextBestNCRM' class.
nrcm_next_best <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Calculate the next best dose.
dose_recommendation <- nextBest(

nextBest = nrcm_next_best,
doselimit = next_max_dose,
samples = my_samples,
model = my_model,
data = my_data

)

See the probabilities.
dose_recommendation$probs
Example of usage for `NextBestNCRM-DataParts` NextBest class.

Create the data.
my_data <- DataParts(

x = c(0.1, 0.5, 1.5),
y = c(0, 0, 0),
ID = 1:3,
cohort = 1:3,
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2)),
part = c(1L, 1L, 1L),
nextPart = 1L,
part1Ladder = c(0.1, 0.5, 1.5, 3, 6, 10)

)

Initialize the CRM model used to model the data.
my_model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Set-up some MCMC parameters and generate samples from the posterior.
my_options <- McmcOptions(burnin = 5, step = 1, samples = 10)
my_samples <- mcmc(my_data, my_model, my_options)

Define the rule for dose increments and calculate the maximum dose allowed.
my_increments <- IncrementsRelativeParts(

dlt_start = 0,

236 nextBest

clean_start = 1
)
next_max_dose <- maxDose(my_increments, data = my_data)

Define the rule which will be used to select the next best dose
based on the 'NextBestNCRM' class.
nrcm_next_best <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Calculate the next best dose.
dose_recommendation <- nextBest(

nextBest = nrcm_next_best,
doselimit = next_max_dose,
samples = my_samples,
model = my_model,
data = my_data

)

dose_recommendation
Example of usage for `NextBestNCRMLoss` NextBest class.

Create the data.
my_data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
ID = 1:8,
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Initialize the CRM model used to model the data.
my_model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Set-up some MCMC parameters and generate samples from the posterior.
my_options <- McmcOptions(burnin = 5, step = 1, samples = 10)
my_samples <- mcmc(my_data, my_model, my_options)

Define the rule for dose increments and calculate the maximum dose allowed.
my_increments <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)
next_max_dose <- maxDose(my_increments, data = my_data)

Define the rule which will be used to select the next best dose
based on the class `NextBestNCRMLoss`.

nextBest 237

nrcm_loss_next_best <- NextBestNCRMLoss(
target = c(0.2, 0.35),
overdose = c(0.35, 0.6),
unacceptable = c(0.6, 1),
max_overdose_prob = 0.999,
losses = c(1, 0, 1, 2)

)

Calculate the next best dose.
dose_recommendation <- nextBest(

nextBest = nrcm_loss_next_best,
doselimit = next_max_dose,
samples = my_samples,
model = my_model,
data = my_data

)

Next best dose.
dose_recommendation$value

Look at the probabilities.
dose_recommendation$probs

Define another rule (loss function of 3 elements).
nrcm_loss_next_best_losses_3 <- NextBestNCRMLoss(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.30,
losses = c(1, 0, 2)

)

Calculate the next best dose.
dose_recommendation_losses_3 <- nextBest(

nextBest = nrcm_loss_next_best_losses_3,
doselimit = next_max_dose,
samples = my_samples,
model = my_model,
data = my_data

)

Next best dose.
dose_recommendation_losses_3$value

Look at the probabilities.
dose_recommendation_losses_3$probs
Example of usage for `NextBestThreePlusThree` NextBest class.

Create the data.
my_data <- Data(

x = c(5, 5, 5, 10, 10, 10),
y = c(0, 0, 0, 0, 1, 0),
ID = 1:6,
cohort = c(0, 0, 0, 1, 1, 1),

238 nextBest

doseGrid = c(0.1, 0.5, 1.5, 3, 5, seq(from = 10, to = 80, by = 2))
)

The rule to select the next best dose will be based on the 3+3 method.
my_next_best <- NextBestThreePlusThree()

Calculate the next best dose.
dose_recommendation <- nextBest(my_next_best, data = my_data)
Example of usage for `NextBestDualEndpoint` NextBest class.

Create the data.
my_data <- DataDual(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10, 20, 20, 20, 40, 40, 40, 50, 50, 50),
y = c(0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1),
ID = 1:17,
cohort = c(
1L,
2L,
3L,
4L,
5L,
6L,
6L,
6L,
7L,
7L,
7L,
8L,
8L,
8L,
9L,
9L,
9L

),
w = c(

0.31,
0.42,
0.59,
0.45,
0.6,
0.7,
0.55,
0.6,
0.52,
0.54,
0.56,
0.43,
0.41,
0.39,
0.34,
0.38,
0.21

),

nextBest 239

doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))
)

Initialize the Dual-Endpoint model (in this case RW1).
my_model <- DualEndpointRW(

mean = c(0, 1),
cov = matrix(c(1, 0, 0, 1), nrow = 2),
sigma2betaW = 0.01,
sigma2W = c(a = 0.1, b = 0.1),
rho = c(a = 1, b = 1),
rw1 = TRUE

)

Set-up some MCMC parameters and generate samples from the posterior.
my_options <- McmcOptions(burnin = 5, step = 1, samples = 10)

my_samples <- mcmc(my_data, my_model, my_options)

Define the rule for dose increments and calculate the maximum dose allowed.
my_increments <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)
next_max_dose <- maxDose(my_increments, data = my_data)

Define the rule which will be used to select the next best dose. In this case,
target a dose achieving at least 0.9 of maximum biomarker level (efficacy)
and with a probability below 0.25 that prob(DLT)>0.35 (safety).
de_next_best <- NextBestDualEndpoint(

target = c(0.9, 1),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Calculate the next best dose.
dose_recommendation <- nextBest(

nextBest = de_next_best,
doselimit = next_max_dose,
samples = my_samples,
model = my_model,
data = my_data

)

See the probabilities.
dose_recommendation$probs

Joint plot.
print(dose_recommendation$plot)

Show customization of single plot.
variant1 <- dose_recommendation$singlePlots$plot1 + xlim(0, 20)
print(variant1)

240 nextBest

Example of usage for `NextBestTD` NextBest class.
my_data <- Data(

x = c(25, 50, 50, 75, 150, 200, 225, 300),
y = c(0, 0, 0, 0, 1, 1, 1, 1),
ID = 1:8,
cohort = c(1L, 2L, 2L, 3L, 4L, 5L, 6L, 7L),
doseGrid = seq(from = 25, to = 300, by = 25)

)

my_model <- LogisticIndepBeta(
binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = my_data

)

Target probabilities of the occurrence of a DLT during trial and
at the end of the trial are defined as 0.35 and 0.3, respectively.
td_next_best <- NextBestTD(prob_target_drt = 0.35, prob_target_eot = 0.3)

doselimit is the maximum allowable dose level to be given to subjects.
dose_recommendation <- nextBest(

nextBest = td_next_best,
doselimit = max(my_data@doseGrid),
model = my_model,
data = my_data

)

dose_recommendation$next_dose_drt
dose_recommendation$plot
Example of usage for `NextBestTDsamples` NextBest class.
my_data <- Data(

x = c(25, 50, 50, 75, 150, 200, 225, 300),
y = c(0, 0, 0, 0, 1, 1, 1, 1),
ID = 1:8,
cohort = c(1L, 2L, 2L, 3L, 4L, 5L, 6L, 7L),
doseGrid = seq(from = 25, to = 300, by = 25)

)

my_model <- LogisticIndepBeta(
binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = my_data

)

Set-up some MCMC parameters and generate samples.
my_options <- McmcOptions(burnin = 100, step = 2, samples = 800)
my_samples <- mcmc(my_data, my_model, my_options)

Target probabilities of the occurrence of a DLT during trial and
at the end of the trial are defined as 0.35 and 0.3, respectively.

nextBest 241

'derive' is specified such that the 30% posterior quantile of the TD35 and
TD30 samples will be used as TD35 and TD30 estimates.
tds_next_best <- NextBestTDsamples(

prob_target_drt = 0.35,
prob_target_eot = 0.3,
derive = function(samples) {
as.numeric(quantile(samples, probs = 0.3))

}
)

doselimit is the maximum allowable dose level to be given to subjects.
dose_recommendation <- nextBest(

nextBest = tds_next_best,
doselimit = max(my_data@doseGrid),
samples = my_samples,
model = my_model,
data = my_data

)

dose_recommendation$next_dose_drt
dose_recommendation$plot
Example of usage for `NextBestMaxGain` NextBest class.

Create the data.
my_data <- DataDual(

x = c(25, 50, 25, 50, 75, 300, 250, 150),
y = c(0, 0, 0, 0, 0, 1, 1, 0),
ID = 1:8,
cohort = 1:8,
w = c(0.31, 0.42, 0.59, 0.45, 0.6, 0.7, 0.6, 0.52),
doseGrid = seq(25, 300, 25),
placebo = FALSE

)

'ModelTox' DLT model, e.g 'LogisticIndepBeta'.
my_model_dlt <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = my_data

)

'ModelEff' efficacy model, e.g. 'Effloglog'.
my_model_eff <- Effloglog(

eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = my_data

)

Target probabilities of the occurrence of a DLT during trial and at the
end of trial are defined as 0.35 and 0.3, respectively.
mg_next_best <- NextBestMaxGain(

242 nextBest

prob_target_drt = 0.35,
prob_target_eot = 0.3

)

doselimit is the maximum allowable dose level to be given to subjects.
dose_recommendation <- nextBest(

nextBest = mg_next_best,
doselimit = 300,
model = my_model_dlt,
model_eff = my_model_eff,
data = my_data

)

dose_recommendation$next_dose
dose_recommendation$plot
Example of usage for `NextBestMaxGainSamples` NextBest class.

Create the data.
my_data <- DataDual(

x = c(25, 50, 25, 50, 75, 300, 250, 150),
y = c(0, 0, 0, 0, 0, 1, 1, 0),
w = c(0.31, 0.42, 0.59, 0.45, 0.6, 0.7, 0.6, 0.52),
ID = 1:8,
cohort = 1:8,
doseGrid = seq(25, 300, 25),
placebo = FALSE

)

'ModelTox' DLT model, e.g 'LogisticIndepBeta'.
my_model_dlt <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = my_data

)

'ModelEff' efficacy model, e.g 'Effloglog'.
my_model_effll <- Effloglog(

eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = my_data

)

Set-up some MCMC parameters and generate samples from the posterior.
my_options <- McmcOptions(burnin = 5, step = 1, samples = 10)
my_samples_dlt <- mcmc(my_data, my_model_dlt, my_options)
my_samples_effll <- mcmc(my_data, my_model_effll, my_options)

Target probabilities of the occurrence of a DLT during trial and at the end of
trial are defined as 0.35 and 0.3, respectively.
Use 30% posterior quantile of the TD35 and TD30 samples as estimates of TD35
and TD30.

nextBest 243

Use 50% posterior quantile of the Gstar (the dose which gives the maxim gain value)
samples as Gstar estimate.
mgs_next_best <- NextBestMaxGainSamples(

prob_target_drt = 0.35,
prob_target_eot = 0.3,
derive = function(samples) {
as.numeric(quantile(samples, prob = 0.3))

},
mg_derive = function(mg_samples) {

as.numeric(quantile(mg_samples, prob = 0.5))
}

)

dose_recommendation <- nextBest(
nextBest = mgs_next_best,
doselimit = max(my_data@doseGrid),
samples = my_samples_dlt,
model = my_model_dlt,
data = my_data,
model_eff = my_model_effll,
samples_eff = my_samples_effll

)

dose_recommendation$next_dose
dose_recommendation$plot

Now using the 'EffFlexi' class efficacy model:

my_model_effflexi <- EffFlexi(
eff = c(1.223, 2.513),
eff_dose = c(25, 300),
sigma2W = c(a = 0.1, b = 0.1),
sigma2betaW = c(a = 20, b = 50),
rw1 = FALSE,
data = my_data

)

my_samples_effflexi <- mcmc(my_data, my_model_effflexi, my_options)

dose_recommendation <- nextBest(
nextBest = mgs_next_best,
doselimit = max(my_data@doseGrid),
samples = my_samples_dlt,
model = my_model_dlt,
data = my_data,
model_eff = my_model_effflexi,
samples_eff = my_samples_effflexi

)

dose_recommendation$next_dose
dose_recommendation$plot

244 nextBest

Example of usage for `NextBestProbMTDLTE` NextBest class.

Create the data.
my_data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
ID = 1:8,
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Initialize the CRM model used to model the data.
my_model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Set-up some MCMC parameters and generate samples from the posterior.
my_options <- McmcOptions(burnin = 5, step = 1, samples = 10)
my_samples <- mcmc(my_data, my_model, my_options)

Define the rule for dose increments and calculate the maximum dose allowed.
my_increments <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)
next_max_dose <- maxDose(my_increments, data = my_data)

Define the rule which will be used to select the next best dose
based on the 'NextBestProbMTDLTE' class.
nb_mtd_lte <- NextBestProbMTDLTE(target = 0.33)

Calculate the next best dose.
dose_recommendation <- nextBest(

nextBest = nb_mtd_lte,
doselimit = next_max_dose,
samples = my_samples,
model = my_model,
data = my_data

)
Example of usage for `NextBestProbMTDMinDist` NextBest class.

Create the data.
my_data <- Data(

x = c(1.5, 1.5, 1.5, 2.5, 2.5, 2.5, 3.5, 3.5, 3.5),
y = c(0, 0, 0, 0, 0, 0, 1, 1, 0),
ID = 1:9,
cohort = c(1, 1, 1, 2, 2, 2, 3, 3, 3),
doseGrid = c(1.5, 2.5, 3.5, 4.5, 6, 7)

)

Initialize the CRM model used to model the data.

nextBest 245

my_model <- my_model <- LogisticKadaneBetaGamma(
theta = 0.3,
xmin = 1.5,
xmax = 7,
alpha = 1,
beta = 19,
shape = 0.5625,
rate = 0.125

)

Set-up some MCMC parameters and generate samples from the posterior.
my_options <- McmcOptions(burnin = 5, step = 1, samples = 10)
my_samples <- mcmc(my_data, my_model, my_options)

Define the rule for dose increments and calculate the maximum dose allowed.
my_increments <- IncrementsDoseLevels(levels = 1)

next_max_dose <- maxDose(my_increments, data = my_data)

Define the rule which will be used to select the next best dose
based on the 'NextBestProbMTDMinDist' class.
nb_mtd_min_dist <- NextBestProbMTDMinDist(target = 0.3)

Calculate the next best dose.
dose_recommendation <- nextBest(

nextBest = nb_mtd_min_dist,
doselimit = next_max_dose,
samples = my_samples,
model = my_model,
data = my_data

)
ordinal_data <- .DefaultDataOrdinal()
ordinal_model <- .DefaultLogisticLogNormalOrdinal()
options <- .DefaultMcmcOptions()

ordinal_samples <- mcmc(ordinal_data, ordinal_model, options)

nextBest(
nextBest = NextBestOrdinal(2L, .DefaultNextBestNCRM()),
samples = ordinal_samples,
doselimit = Inf,
model = ordinal_model,
data = ordinal_data

)

ordinal_data <- .DefaultDataOrdinal()
ordinal_model <- .DefaultLogisticLogNormalOrdinal()
options <- .DefaultMcmcOptions()

ordinal_samples <- mcmc(ordinal_data, ordinal_model, options)

246 NextBestDualEndpoint-class

nextBest(
nextBest = NextBestOrdinal(2L, .DefaultNextBestNCRM()),
samples = ordinal_samples,
doselimit = Inf,
model = ordinal_model,
data = ordinal_data

)

NextBest-class NextBest

Description

[Stable]

NextBest is a virtual class for finding next best dose, from which all other specific next best dose
classes inherit.

Usage

.DefaultNextBest()

Note

Typically, end users will not use the DefaultNextBest() function.

See Also

NextBestEWOC, NextBestMTD, NextBestNCRM, NextBestNCRMLoss, NextBestThreePlusThree,
NextBestDualEndpoint, NextBestMinDist, NextBestInfTheory, NextBestTD, NextBestTDsamples,
NextBestMaxGain, NextBestMaxGainSamples, NextBestProbMTDLTE, NextBestProbMTDMinDist,
NextBestOrdinal.

NextBestDualEndpoint-class

NextBestDualEndpoint

Description

[Experimental]

NextBestDualEndpoint is the class for next best dose that is based on the dual endpoint model.

NextBestDualEndpoint-class 247

Usage

NextBestDualEndpoint(
target,
overdose,
max_overdose_prob,
target_relative = TRUE,
target_thresh = 0.01

)

.DefaultNextBestDualEndpoint()

Arguments

target (numeric)
see slot definition.

overdose (numeric)
see slot definition.

max_overdose_prob

(proportion)
see slot definition.

target_relative

(flag)
see slot definition.

target_thresh (proportion)
see slot definition.

Details

Under this rule, at first admissible doses are found, which are those with toxicity probability to fall
in overdose category and being below max_overdose_prob. Next, it picks (from the remaining
admissible doses) the one that maximizes the probability to be in the target biomarker range. By
default (target_relative = TRUE) the target is specified as relative to the maximum biomarker
level across the dose grid or relative to the Emax parameter in case a parametric model was selected
(i.e. DualEndpointBeta, DualEndpointEmax). However, if target_relative = FALSE, then the
absolute biomarker range can be used as a target.

Slots

target (numeric)
the biomarker target range that needs to be reached. For example, the target range (0.8, 1.0)
and target_relative = TRUE means that we target a dose with at least 80% of maximum
biomarker level. As an other example, (0.5, 0.8) would mean that we target a dose between
50% and 80% of the maximum biomarker level.

overdose (numeric)
the overdose toxicity interval (lower limit excluded, upper limit included).

max_overdose_prob (proportion)
maximum overdose probability that is allowed.

248 NextBestEWOC-class

target_relative (flag)
is target specified as relative? If TRUE, then the target is interpreted relative to the max-
imum, so it must be a probability range. Otherwise, the target is interpreted as absolute
biomarker range.

target_thresh (proportion)
a target probability threshold that needs to be fulfilled before the target probability will be
used for deriving the next best dose (default to 0.01).

Note

Typically, end users will not use the .DefaultNextBestDualEndpoint() function.

Examples

Target a dose achieving at least 0.9 of maximum biomarker level (efficacy)
and with a probability below 0.25 that prob(DLT) > 0.35 (safety).
my_next_best <- NextBestDualEndpoint(

target = c(0.9, 1),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Now, using absolute target on the natural biomarker scale.
my_next_best_absolute <- NextBestDualEndpoint(

target = c(200, 300),
overdose = c(0.35, 1),
max_overdose_prob = 0.25,
target_relative = FALSE

)

NextBestEWOC-class NextBestEWOC

Description

[Stable]

NextBestEWOC is the class implementing Escalation With Overdose Control (EWOC). It recom-
mends the highest possible dose subject to a probabilistic constraint that the posterior probability
of overdosing does not exceed max_overdose_prob. Overdosing is defined as the model-based
toxicity probability lying inside the interval given by overdose.

Usage

NextBestEWOC(target, overdose, max_overdose_prob)

.DefaultNextBestEWOC()

NextBestEWOC-class 249

Arguments

target (proportion)
see slot definition.

overdose (numeric)
see slot definition.

max_overdose_prob

(proportion)
see slot definition.

Slots

target (proportion)
target toxicity probability to be achieved, below overdose[1]; only used for simulation re-
porting purposes.

overdose (numeric)
the (exclusive) lower and (inclusive) upper boundaries of the toxicity probability interval con-
sidered an overdose region. The prototype uses c(0.35, 1) meaning probabilities > 0.35 are
treated as overly toxic.

max_overdose_prob (proportion)
maximum acceptable posterior probability that the next recommended dose is in the overdose
interval.

Note

Typically, end users will not use the .DefaultNextBestEWOC() function.

See Also

NextBest, other next-best classes listed in its documentation.

Examples

Example: Define EWOC next best dose rule.
Target toxicity probability is 0.30. Overdose region is any probability > 0.35.
We restrict posterior probability of recommending an overdosing dose to <= 0.25.
next_best_ewoc <- NextBestEWOC(

target = 0.30,
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

250 NextBestMaxGain-class

NextBestInfTheory-class

NextBestInfTheory

Description

[Stable]

NextBestInfTheory is the class for next best dose that is based on information theory as proposed
in https://doi.org/10.1002/sim.8450.

Usage

NextBestInfTheory(target, asymmetry)

.DefaultNextBestInfTheory()

Arguments

target (proportion)
see slot definition.

asymmetry (number)
see slot definition.

Slots

target (proportion)
target toxicity probability, except 0 or 1.

asymmetry (number)
value of the asymmetry exponent in the divergence function that describes the rate of penal-
ization for overly toxic does. It must be a value from (0, 2) interval.

Note

Typically, end users will not use the .DefaultNextBestInfTheory() function.

NextBestMaxGain-class NextBestMaxGain

NextBestMaxGain-class 251

Description

[Stable]

NextBestMaxGain is the class to find a next best dose with maximum gain value based on a pseudo
DLT and efficacy models without samples. It is based solely on the probabilities of the occurrence
of a DLT and the values of the mean efficacy responses obtained by using the modal estimates of
the DLT and efficacy model parameters. There are two target probabilities of the occurrence of a
DLT that must be specified: target probability to be used during the trial and target probability to
be used at the end of the trial. It is suitable to use it only with the ModelTox model and ModelEff
classes (except EffFlexi).

Usage

NextBestMaxGain(prob_target_drt, prob_target_eot)

.DefaultNextBestMaxGain()

Arguments

prob_target_drt

(proportion)
see slot definition.

prob_target_eot

(proportion)
see slot definition.

Slots

prob_target_drt (proportion)
the target probability of the occurrence of a DLT to be used during the trial.

prob_target_eot (proportion)
the target probability of the occurrence of a DLT to be used at the end of the trial.

Note

Typically, end users will not use the .DefaultNextBestMaxGain() function.

Examples

my_next_best <- NextBestMaxGain(0.35, 0.3)

252 NextBestMaxGainSamples-class

NextBestMaxGainSamples-class

NextBestMaxGainSamples

Description

[Stable]
NextBestMaxGainSamples is the class to find a next best dose with maximum gain value based on
a pseudo DLT and efficacy models and DLT and efficacy samples. There are two target probabilities
of the occurrence of a DLT that must be specified: target probability to be used during the trial and
target probability to be used at the end of the trial. It is suitable to use it only with the ModelTox
model and ModelEff classes.

Usage

NextBestMaxGainSamples(prob_target_drt, prob_target_eot, derive, mg_derive)

.DefaultNextBestMaxGainSamples()

Arguments

prob_target_drt

(proportion)
see slot definition in NextBestMaxGain.

prob_target_eot

(proportion)
see slot definition in NextBestMaxGain.

derive (function)
see slot definition.

mg_derive (function)
see slot definition.

Slots

derive (function)
derives, based on a vector of posterior dose samples, the target dose that has the probability of
the occurrence of DLT equals to either the prob_target_drt or prob_target_eot. It must
therefore accept one and only one argument, which is a numeric vector, and return a number.

mg_derive (function)
derives, based on a vector of posterior dose samples that give the maximum gain value, the
final next best estimate of the dose that gives the maximum gain value. It must therefore accept
one and only one argument, which is a numeric vector, and return a number.

Note

Typically, end users will not use the .DefaultNextBestMaxGainSamples() function.

NextBestMinDist-class 253

Examples

Target probability of the occurrence of a DLT during the trial is set to 0.35.
Target probability of the occurrence of a DLT at the end of the trial is set to 0.3.
We want the use the 30% posterior quantile (the 30th percentile) of the TD35
(the dose level with probability of the DLT equals 0.35) and TD30 samples.
For `mg_derive` function (which takes the sample of doses which give the maximum
gain), we will use the 50% posterior quantile (the median or th 50th percentile)
of the sample.
my_next_best <- NextBestMaxGainSamples(

prob_target_drt = 0.35,
prob_target_eot = 0.3,
derive = function(samples) {
as.numeric(quantile(samples, prob = 0.3))

},
mg_derive = function(mg_samples) {

as.numeric(quantile(mg_samples, prob = 0.5))
}

)

NextBestMinDist-class NextBestMinDist

Description

[Stable]

NextBestMinDist is the class for next best dose that is based on minimum distance to target prob-
ability.

Usage

NextBestMinDist(target)

.DefaultNextBestMinDist()

Arguments

target (proportion)
see slot definition.

Slots

target (proportion)
single target toxicity probability, except 0 or 1.

Note

Typically, end users will not use the .DefaultNextBestMinDist() function.

254 NextBestMTD-class

Examples

In the example below, the MTD is defined as the dose with the toxicity rate
with minimal distance to the target of 30%.
next_best_min_dist <- NextBestMinDist(target = 0.3)

NextBestMTD-class NextBestMTD

Description

[Stable]
NextBestMTD is the class for next best dose based on MTD estimate.

Usage

NextBestMTD(target, derive)

.DefaultNextBestMTD()

Arguments

target (proportion)
see slot definition.

derive (function)
see slot definition.

Slots

target (proportion)
target toxicity probability, except 0 or 1.

derive (function)
a function which derives the final next best MTD estimate, based on vector of posterior MTD
samples. It must therefore accept one and only one argument, which is a numeric vector, and
return a number.

Note

Typically, end users will not use the .DefaultNextBestMTD() function.

Examples

In the example below, the MTD is defined as the dose for which prob(DLE) = 0.33
and we will use the 25th quantile of the posterior of MTD as our next best dose.
next_best_mtd <- NextBestMTD(

target = 0.33,
derive = function(mtd_samples) {
quantile(mtd_samples, probs = 0.25)

}
)

NextBestNCRM-class 255

NextBestNCRM-class NextBestNCRM

Description

[Stable]
NextBestNCRM is the class for next best dose that finds the next dose with high posterior probability
to be in the target toxicity interval.

Usage

NextBestNCRM(target, overdose, max_overdose_prob)

.DefaultNextBestNCRM()

Arguments

target (numeric)
see slot definition.

overdose (numeric)
see slot definition.

max_overdose_prob

(proportion)
see slot definition.

Details

To avoid numerical problems, the dose selection algorithm has been implemented as follows: First
admissible doses are found, which are those with probability to fall in overdose category being
below max_overdose_prob. Next, within the admissible doses, the maximum probability to fall in
the target category is calculated. If that is above 5% (i.e. it is not just numerical error), then the
corresponding dose is the next recommended dose. Otherwise, the highest admissible dose is the
next recommended dose.

Slots

target (numeric)
the target toxicity interval (limits included).

overdose (numeric)
the overdose toxicity interval (lower limit excluded, upper limit included). It is used to filter
probability samples.

max_overdose_prob (proportion)
maximum overdose posterior probability that is allowed, except 0 or 1.

Note

Typically, end users will not use the .DefaultNextBestNCRM() function.

256 NextBestNCRMLoss-class

Examples

In the example below, the target toxicity interval [0.2, 0.35] while the
overdose interval is (0.35,1]. Finally we would like to constrain the
probability of overdosing below 25%.
my_next_best <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

NextBestNCRMLoss-class

NextBestNCRMLoss

Description

[Stable]

NextBestNCRMLoss is the class based on NCRM rule and loss function. This class is similar to
NextBestNCRM class, but differences are the addition of loss function and re-defined toxicity in-
tervals, see each toxicity interval documentation and the note for details. As in NCRM rule, first
admissible doses are found, which are those with probability to fall in overdose category being be-
low max_overdose_prob. Next, within the admissible doses, the loss function is calculated, i.e.
losses %*% target. Finally, the corresponding dose with lowest loss function (Bayes risk) is
recommended for the next dose.

Usage

NextBestNCRMLoss(
target,
overdose,
unacceptable = c(1, 1),
max_overdose_prob,
losses

)

.DefaultNextBestNCRMLoss()

Arguments

target (numeric)
see slot definition.

overdose (numeric)
see slot definition.

unacceptable (numeric)
see slot definition.

NextBestNCRMLoss-class 257

max_overdose_prob

(proportion)
see slot definition in NextBestNCRM.

losses (numeric)
see slot definition.

Slots

target (numeric)
the target toxicity interval (limits included). It has to be a probability range excluding 0 and 1.

overdose (numeric)
the overdose toxicity interval (lower limit excluded, upper limit included) or the excessive
toxicity interval (lower limit excluded, upper limit included) if unacceptable is not provided.
It has to be a probability range. It is used to filter probability samples.

unacceptable (numeric)
an unacceptable toxicity interval (lower limit excluded, upper limit included). This must be
specified if the overdose does not include 1. Otherwise, it is c(1, 1) (default), which is
essentially a scalar equals 1. It has to be a probability range.

losses (numeric)
a vector specifying the loss function. If the unacceptable is provided, the vector length must
be 4, otherwise 3.

Note

The loss function should be a vector of either 3 or 4 values. This is because the loss function values
must be specified for each interval, that is under-dosing, target toxicity, and overdosing toxicity or
under-dosing, target toxicity, overdosing (excessive) toxicity, and unacceptable toxicity intervals.

Typically, end users will not use the .DefaultNextBestnCRMLoss() function.

Examples

In the example below, the target toxicity interval [0.2, 0.35] while the
overdose interval is (0.35, 1]. We would like to constrain the probability
of overdosing below 25%. The loss function is c(1, 0, 1, 2).
my_next_best <- NextBestNCRMLoss(

target = c(0.2, 0.35),
overdose = c(0.35, 0.6),
unacceptable = c(0.6, 1),
max_overdose_prob = 0.25,
losses = c(1, 0, 1, 2)

)

258 NextBestOrdinal-class

NextBestOrdinal-class NextBestOrdinal

Description

[Experimental]

NextBestOrdinal is the class for applying a standard NextBest rule to the results of an ordinal
CRM trial.

Usage

NextBestOrdinal(grade, rule)

.DefaultNextBestOrdinal()

Arguments

grade (numeric)
see slot definition.

rule (NextBest)
see slot definition.

Slots

grade (integer)
the toxicity grade to which the rule should be applied.

rule (NextBest)
the standard NextBest rule to be applied

Note

Typically, end users will not use the .DefaultNextBestOrdinal() function.

Examples

NextBestOrdinal(
grade = 1L,
rule = NextBestMTD(
0.25,
function(mtd_samples) {

quantile(mtd_samples, probs = 0.25)
}

)
)

NextBestProbMTDLTE-class 259

NextBestProbMTDLTE-class

NextBestProbMTDLTE

Description

[Experimental]

NextBestProbMTDLTE is the class of finding a next best dose that selects the dose with the highest
probability of having a toxicity rate less or equal to the toxicity target. The dose is determined
by calculating the posterior toxicity probability for each dose per iteration and select the maximum
dose that has a toxicity probability below or equal to the target. The dose with the highest frequency
of being selected as MTD across iterations is the next best dose. Placebo is not considered in the
calculation and removed from the dose grid for any calculations.

Usage

NextBestProbMTDLTE(target)

.DefaultNextBestProbMTDLTE()

Arguments

target (numeric)
see slot definition.

Slots

target (numeric)
the target toxicity probability.

Note

Typically, end users will not use the .DefaultNextBestProbMTDLTE() function.

Examples

In the example below, the MTD is defined as the dose with the highest
probability of having a toxicity rate below 30%.
next_best_prob_mtd_lte <- NextBestProbMTDLTE(target = 0.3)

260 NextBestProbMTDMinDist-class

NextBestProbMTDMinDist-class

NextBestProbMTDMinDist

Description

[Experimental]

NextBestProbMTDMinDist is the class of finding a next best dose that selects the dose with the
highest probability of having a toxicity rate with the smallest distance to the toxicity target. The
dose is determined by calculating the posterior toxicity probability for each dose per iteration and
select the dose that has the smallest toxicity probability distance to the target. The dose with the
highest frequency of being selected as MTD across iterations is the next best dose. Placebo is not
considered as the next dose and for that reason not used in calculations. I.e. for placebo the toxicity
probability distance to target is not calculated and taken into account for determination of the next
dose.

Usage

NextBestProbMTDMinDist(target)

.DefaultNextBestProbMTDMinDist()

Arguments

target (numeric)
see slot definition.

Slots

target (numeric)
the target toxicity probability.

Note

Typically, end users will not use the .DefaultNextBestProbMTDMinDist() function.

Examples

In the example below, the MTD is defined as the dose with the highest
probability of having a toxicity rate with minimal distance
to the target of 30%.
next_best_prob_mtd_min_dist <- NextBestProbMTDMinDist(target = 0.3)

NextBestTD-class 261

NextBestTD-class NextBestTD

Description

[Stable]

NextBestTD is the class to find a next best dose based on pseudo DLT model without samples.
Namely, it is to find two next best doses, one for allocation during the trial and the second for final
recommendation at the end of a trial without involving any samples, i.e. only DLT responses will
be incorporated for the dose-allocation. This is based solely on the probabilities of the occurrence
of a DLT obtained by using the modal estimates of the model parameters. There are two target
probabilities of the occurrence of a DLT that must be specified: target probability to be used during
the trial and target probability to be used at the end of the trial. It is suitable to use it only with the
ModelTox model class.

Usage

.DefaultNextBestTD()

NextBestTD(prob_target_drt, prob_target_eot)

Arguments

prob_target_drt

(proportion)
see slot definition.

prob_target_eot

(proportion)
see slot definition.

Slots

prob_target_drt (proportion)
the target probability (except 0 or 1) of the occurrence of a DLT to be used during the trial.

prob_target_eot (proportion)
the target probability (except 0 or 1) of the occurrence of a DLT to be used at the end of the
trial.

Note

Typically, end users will not use the .DefaultNextBestTD() function.

Examples

my_next_best <- NextBestTD(0.35, 0.3)

262 NextBestTDsamples-class

NextBestTDsamples-class

NextBestTDsamples

Description

[Stable]
NextBestTDsamples is the class to find a next best dose based on Pseudo DLT model with samples.
Namely, it is to find two next best doses, one for allocation during the trial and the second for final
recommendation at the end of a trial. Hence, there are two target probabilities of the occurrence of
a DLT that must be specified: target probability to be used during the trial and target probability to
be used at the end of the trial.

Usage

NextBestTDsamples(prob_target_drt, prob_target_eot, derive)

.DefaultNextBestTDsamples()

Arguments

prob_target_drt

(proportion)
see slot definition in NextBestTD.

prob_target_eot

(proportion)
see slot definition in NextBestTD.

derive (function)
see slot definition.

Slots

derive (function)
derives, based on a vector of posterior dose samples, the target dose that has the probability of
the occurrence of DLT equals to either the prob_target_drt or prob_target_eot. It must
therefore accept one and only one argument, which is a numeric vector, and return a number.

Note

Typically, end users will not use the .DefaultNextBestTDsamples() function.

Examples

Target probability of the occurrence of a DLT during the trial is set to 0.35.
Target probability of the occurrence of a DLT at the end of the trial is set to 0.3.
We want the use the 30% posterior quantile (the 30th percentile) of the TD35
(the dose level with probability of the DLT equals 0.35) and TD30 samples.

NextBestThreePlusThree-class 263

my_next_best <- NextBestTDsamples(
prob_target_drt = 0.35,
prob_target_eot = 0.3,
derive = function(samples) {
as.numeric(quantile(samples, probs = 0.3))

}
)

NextBestThreePlusThree-class

NextBestThreePlusThree

Description

[Stable]
NextBestThreePlusThree is the class for next best dose that implements the classical 3+3 dose
recommendation. No input is required, hence this class has no slots.

Usage

NextBestThreePlusThree()

.DefaultNextBestThreePlusThree()

Note

Typically, end users will not use the .DefaultNextBestThreePlusThree() function.

Examples

Next best dose class object using the classical 3+3 design.
my_next_best <- NextBestThreePlusThree()

ngrid Number of Doses in Grid

Description

[Stable]
A function that gets the number of doses in grid. User can choose whether the placebo dose (if any)
should be counted or not.

Usage

ngrid(object, ignore_placebo = TRUE, ...)

S4 method for signature 'Data'
ngrid(object, ignore_placebo = TRUE, ...)

264 OneParExpPrior-class

Arguments

object (Data)
object with dose grid.

ignore_placebo (flag)
should placebo dose (if any) not be counted?

... further arguments passed to class-specific methods.

Value

integer the number of doses in grid.

Examples

my_data <- Data(
x = c(10, 50, 90, 100, 0.001, 20, 30, 30),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
ID = 1:8,
cohort = c(1L, 2L, 3L, 4L, 5L, 5L, 6L, 6L),
doseGrid = c(0.001, seq(from = 10, to = 100, by = 10)),
placebo = TRUE

)
ngrid(my_data)
ngrid(my_data, ignore_placebo = FALSE)

OneParExpPrior-class OneParExpPrior

Description

[Experimental]
OneParExpPrior is the class for a standard CRM with an exponential prior on the power parameter
for the skeleton prior probabilities. It is an implementation of a version of the one-parameter CRM
(O’Quigley et al. 1990).

Usage

OneParExpPrior(skel_probs, dose_grid, lambda)

.DefaultOneParExpPrior()

Arguments

skel_probs see slot definition.

dose_grid (numeric)
dose grid. It must be must be a sorted vector of the same length as skel_probs.

lambda see slot definition.

OneParLogNormalPrior-class 265

Slots

skel_fun (function)
function to calculate the prior DLT probabilities.

skel_fun_inv (function)
inverse function of skel_fun.

skel_probs (numeric)
skeleton prior probabilities. This is a vector of unique and sorted probability values between
0 and 1.

lambda (number)
rate parameter of prior exponential distribution for theta.

Note

Typically, end users will not use the .DefaultOneparExpPrior() function.

Typically, end users will not use the .DefaultOneParLogNormalPrior() function.

References

O’Quigley J, Pepe M, Fisher L (1990). “Continual reassessment method: a practical design for
phase 1 clinical trials in cancer.” Biometrics, 46(1). doi:10.2307/2531628.

Examples

my_model <- OneParExpPrior(
skel_probs = c(0.1, 0.3, 0.5, 0.7, 0.9),
dose_grid = 1:5,
lambda = 2

)

OneParLogNormalPrior-class

OneParLogNormalPrior

Description

[Stable]

OneParLogNormalPrior is the class for a standard CRM with a normal prior on the log power
parameter for the skeleton prior probabilities.

Usage

OneParLogNormalPrior(skel_probs, dose_grid, sigma2)

.DefaultOneParLogNormalPrior()

https://doi.org/10.2307/2531628

266 openCohort

Arguments

skel_probs (numeric)
skeleton prior probabilities. This is a vector of unique and sorted probability
values between 0 and 1.

dose_grid (numeric)
dose grid. It must be must be a sorted vector of the same length as skel_probs.

sigma2 (number)
prior variance of log power parameter alpha.

Value

an instance of the OneParLogNormalPrior class

Slots

skel_fun (function)
function to calculate the prior DLT probabilities.

skel_fun_inv (function)
inverse function of skel_fun.

skel_probs (numeric)
skeleton prior probabilities. This is a vector of unique and sorted probability values between
0 and 1.

sigma2 (number)
prior variance of log power parameter alpha.

See Also

ModelLogNormal.

Examples

my_model <- OneParLogNormalPrior(
skel_probs = seq(from = 0.1, to = 0.9, length = 5),
dose_grid = 1:5,
sigma2 = 2

)

openCohort Open / recruit backfill patients into a cohort?

Description

[Experimental]

openCohort 267

Usage

openCohort(opening, cohort, data, dose, ...)

S4 method for signature 'OpeningMinDose'
openCohort(opening, cohort, data, dose, ...)

S4 method for signature 'OpeningMinCohorts'
openCohort(opening, cohort, data, dose, ...)

S4 method for signature 'OpeningNone'
openCohort(opening, cohort, data, dose, ...)

S4 method for signature 'OpeningMinResponses'
openCohort(opening, cohort, data, dose, ...)

S4 method for signature 'OpeningList'
openCohort(opening, cohort, data, dose, summary_fun, ...)

S4 method for signature 'OpeningAll'
openCohort(opening, cohort, data, dose, ...)

S4 method for signature 'OpeningAny'
openCohort(opening, cohort, data, dose, ...)

Arguments

opening (Opening)
opening rule to be applied.

cohort (int)
backfill cohort index.

data (Data)
current trial data.

dose (numeric)
the recommended next best dose.

... further arguments (not used).

summary_fun (function)
to apply to the list of results (e.g., all or any). Only used for OpeningList and
its subclasses.

Value

TRUE if this backfill cohort can be opened / recruited into, FALSE otherwise.

Functions

• openCohort(OpeningMinDose): method for OpeningMinDose class.

• openCohort(OpeningMinCohorts): method for OpeningMinCohorts class.

268 openCohort

• openCohort(OpeningNone): method for OpeningNone class, which never opens a cohort, i.e.
the trial design will not use backfilling.

• openCohort(OpeningMinResponses): method for OpeningMinResponses class.

• openCohort(OpeningList): method for OpeningList class.

• openCohort(OpeningAll): method for OpeningAll class. Returns TRUE if ALL opening
criteria are satisfied.

• openCohort(OpeningAny): method for OpeningAny class. Returns TRUE if ANY opening
criteria are satisfied.

Examples

Create a simple data object with some dose information
data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
cohort = c(1, 2, 3, 4, 5, 6, 6, 6),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Define the opening rule: open backfill cohorts when dose is at least 5
my_opening <- OpeningMinDose(min_dose = 5)

Check if the first backfill cohort can be opened when the
cohort has a dose 6, i.e. larger than 5.
Note that `dose` is not used in this rule.
can_open <- openCohort(my_opening, cohort = 5, data = data, dose = 7)
can_open

Check if the first backfill cohort can be opened when the
cohort has a dose 3, i.e. smaller than 5.
(should return FALSE because dose < min_dose)
can_open_low <- openCohort(my_opening, cohort = 4, data = data, dose = 15)
can_open_low
Create a data object with multiple cohorts
data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Define the opening rule: open backfill cohorts after at least 3 cohorts
my_opening <- OpeningMinCohorts(min_cohorts = 3)

Check if a backfill cohort can be opened
Current number of cohorts is 6, so it should open (6 >= 3)
can_open <- openCohort(my_opening, cohort = 1, data = data, dose = 25)
can_open
Create an OpeningNone object which never opens backfill cohorts
opening <- OpeningNone()

openCohort 269

Create sample trial data
data <- Data(

x = c(20, 30, 40, 50),
y = c(0, 0, 1, 0),
cohort = c(1, 2, 3, 4),
doseGrid = seq(10, 100, by = 10)

)

Create dose recommendation
dose <- 60

Check if backfill cohort should be opened for cohort 5
OpeningNone always returns FALSE
should_open <- openCohort(opening, cohort = 5, data = data, dose = dose)
print(should_open) # FALSE
Create an OpeningMinResponses object requiring 2 responses at the cohort dose
opening <- OpeningMinResponses(min_responses = 2, include_lower_doses = FALSE)

Create sample trial data with responses at different dose levels
data <- Data(

x = c(10, 10, 20, 20, 20, 30, 30, 30),
y = c(0, 1, 0, 1, 0, 1, 1, 0),
response = c(1, 1, NA, 0, 1, NA, 1, 0),
cohort = c(1, 1, 2, 2, 2, 3, 3, 3),
doseGrid = seq(10, 100, by = 10)

)

Check if backfill cohort can be opened at dose 20
At dose 20, there is 1 response
should_open <- openCohort(opening, cohort = 2, data = data, dose = 30)
print(should_open) # FALSE

Check at dose 10 where there are 2 responses
should_open_2 <- openCohort(opening, cohort = 1, data = data, dose = 30)
print(should_open_2) # TRUE
Create sample trial data
data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
cohort = c(1, 2, 3, 4, 5, 6, 6, 6),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Create opening criteria:
- opening1: open if dose >= 10
- opening2: open if at least 5 cohorts have been treated
opening1 <- OpeningMinDose(min_dose = 10)
opening2 <- OpeningMinCohorts(min_cohorts = 5)

Combine with AND logic: both must be true
opening_all <- opening1 & opening2

Test if backfill cohort 7 can be opened

270 Opening-class

Cohort 6 dose is 10 (>= 10: TRUE), max cohort is 6 (>= 5: TRUE), so AND is TRUE
should_open <- openCohort(opening_all, cohort = 6, data = data, dose = 20)
print(should_open) # TRUE

Test if backfill cohort at dose 6 can be opened
Cohort 4 dose is 3 (>= 10: FALSE), so AND is FALSE
should_open_2 <- openCohort(opening_all, cohort = 4, data = data, dose = 20)
print(should_open_2) # FALSE
Create sample trial data
data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
cohort = c(1, 2, 3, 4, 5, 6, 6, 6),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Create opening criteria:
- opening1: open if dose >= 20
- opening2: open if at least 5 cohorts have been treated
opening1 <- OpeningMinDose(min_dose = 20)
opening2 <- OpeningMinCohorts(min_cohorts = 5)

Combine with OR logic: at least one must be true
opening_any <- opening1 | opening2

Test if backfill cohort 7 can be opened at dose 10
Cohort 6 dose is 10 (>= 20: FALSE), max cohort is 6 (>= 5: TRUE), so OR is TRUE
should_open <- openCohort(opening_any, cohort = 6, data = data, dose = 20)
print(should_open) # TRUE

Test with a different scenario:
It does not matter which cohort index we give, because
the number of cohorts is already above 5.
should_open_2 <- openCohort(opening_any, cohort = 1, data = data, dose = 25)
print(should_open_2) # TRUE

Opening-class Opening

Description

[Experimental]

Opening is a virtual class for opening criteria, from which all other specific opening criteria classes
inherit. The subclasses are used for backfill cohort designs.

Usage

.DefaultOpening()

OpeningAll-class 271

Note

Typically, end users will not use the .DefaultOpening() function.

See Also

OpeningMinDose, OpeningMinCohorts, OpeningNone, OpeningMinResponses, OpeningAll, OpeningAny.

OpeningAll-class OpeningAll

Description

[Experimental]
OpeningAll combines multiple Opening objects using AND logic. A backfill cohort is opened only
if ALL opening criteria in the list are satisfied. This can also be created using the & operator.

Usage

OpeningAll(...)

.DefaultOpeningAll()

Arguments

... (Opening) opening objects to combine with AND logic.

Slots

open_list (list) a list of Opening objects to be combined with AND logic.

Note

Typically, end users will not use the .DefaultOpeningAll() function.

See Also

Opening, OpeningAny, OpeningList.

Examples

Create two opening criteria
opening1 <- OpeningMinDose(min_dose = 10)
opening2 <- OpeningMinCohorts(min_cohorts = 3)

Combine them with AND logic: both must be satisfied
opening_all <- OpeningAll(opening1, opening2)
print(opening_all)

272 OpeningAny-class

Alternative: use the & operator
opening_all_alt <- opening1 & opening2
print(opening_all_alt)

OpeningAny-class OpeningAny

Description

[Experimental]
OpeningAny combines multiple Opening objects using OR logic. A backfill cohort is opened if
ANY opening criteria in the list are satisfied. This can also be created using the | operator.

Usage

OpeningAny(...)

.DefaultOpeningAny()

Arguments

... (Opening) opening objects to combine with OR logic.

Slots

open_list (list)
a list of Opening objects to be combined with OR logic.

Note

Typically, end users will not use the .DefaultOpeningAny() function.

See Also

Opening, OpeningAll, OpeningList.

Examples

Create two opening criteria
opening1 <- OpeningMinDose(min_dose = 10)
opening2 <- OpeningMinCohorts(min_cohorts = 3)

Combine them with OR logic: at least one must be satisfied
opening_any <- OpeningAny(opening1, opening2)
print(opening_any)

Alternative: use the | operator
opening_any_alt <- opening1 | opening2
print(opening_any_alt)

OpeningList-class 273

OpeningList-class OpeningList

Description

[Experimental]

OpeningList is a virtual class for combining multiple Opening objects using logical operators. It
is used as a base class for OpeningAll and OpeningAny.

Usage

OpeningList(...)

.DefaultOpeningList()

Arguments

... (Opening)
opening objects to combine.

Slots

open_list (list) a list of Opening objects to be combined.

Note

Typically, end users will not use the .DefaultOpeningList() function.

See Also

Opening, OpeningAll, OpeningAny.

Examples

Create two simple opening criteria
opening1 <- OpeningMinDose(min_dose = 10)
opening2 <- OpeningMinCohorts(min_cohorts = 3)

Create an OpeningList that combines them
opening_list <- OpeningList(opening1, opening2)
print(opening_list)

You can also create with more than two criteria
opening3 <- OpeningNone()
opening_list_multi <- OpeningList(opening1, opening2, opening3)
print(opening_list_multi)

274 OpeningMinDose-class

OpeningMinCohorts-class

OpeningMinCohorts

Description

[Experimental]

OpeningMinCohorts opens backfill cohorts when the overall number of cohorts treated so far in the
trial reaches or exceeds a minimum threshold. This can be used to implement a "delayed backfill
cohort opening" rule.

Usage

OpeningMinCohorts(min_cohorts = 2L)

.DefaultOpeningMinCohorts()

Arguments

min_cohorts (integer)
see slot definition.

Slots

min_cohorts (integer)
the minimum number of cohorts that must have been treated before backfilling can be opened.

Note

Typically, end users will not use the .DefaultOpeningMinCohorts() function.

See Also

Opening and the other subclasses listed in there.

OpeningMinDose-class OpeningMinDose

Description

[Experimental]

OpeningMinDose opens a backfill cohort when the cohort’s dose is above or equal to the minimum
dose specified. Note that the next recommended dose is not taken into account.

OpeningMinResponses-class 275

Usage

OpeningMinDose(min_dose = 0)

.DefaultOpeningMinDose()

Arguments

min_dose (number)
see slot definition.

Slots

min_dose (number)
the minimum dose at which backfill cohorts can be opened.

Note

Typically, end users will not use the .DefaultOpeningMinDose() function.

See Also

Opening and the other subclasses listed in there.

Examples

Opening backfill cohort when dose is at least 50
my_opening <- OpeningMinDose(min_dose = 50)

OpeningMinResponses-class

OpeningMinResponses

Description

[Experimental]

OpeningMinResponses opens backfill cohorts when a minimum number of responses has been
observed in the trial. The responses can be counted at the cohort’s dose level only, or also at lower
dose levels if include_lower_doses is set to TRUE.

Usage

OpeningMinResponses(min_responses = 1L, include_lower_doses = FALSE)

.DefaultOpeningMinResponses()

276 OpeningNone-class

Arguments

min_responses (count)
see slot definition.

include_lower_doses

(logical)
see slot definition.

Slots

min_responses (count)
the minimum number of responses required before backfill cohorts can be opened (at least 1).

include_lower_doses (logical)
if TRUE, responses at all doses less than or equal to the cohort’s dose are counted. If FALSE,
only responses at the cohort’s dose are counted.

Note

Typically, end users will not use the .DefaultOpeningMinResponses() function.

See Also

Opening and the other subclasses listed in there.

Examples

Create an OpeningMinResponses object that requires 2 responses
opening <- OpeningMinResponses(min_responses = 2, include_lower_doses = FALSE)

Display the object
print(opening)

Create a variant that includes lower doses
opening_inclusive <- OpeningMinResponses(

min_responses = 2,
include_lower_doses = TRUE

)
print(opening_inclusive)

OpeningNone-class OpeningNone

Description

[Experimental]

OpeningNone never opens any backfill cohorts. This can be used when no backfill cohorts should
be available in a trial design.

or,Opening,Opening-method 277

Usage

OpeningNone()

.DefaultOpeningNone()

Note

Typically, end users will not use the .DefaultOpeningNone() function.

or,Opening,Opening-method

Logical OR Operator for Opening Objects

Description

[Experimental]

Combines two Opening objects with OR logic using the | operator. This creates an OpeningAny
object.

Usage

S4 method for signature 'Opening,Opening'
e1 | e2

Arguments

e1 (Opening) the first opening object.

e2 (Opening) the second opening object.

Value

An OpeningAny object combining e1 and e2.

See Also

OpeningAny for more details.

278 or-Stopping-StoppingAny

or-Stopping-Stopping Combine Two Stopping Rules with OR

Description

[Stable]
The method combining two atomic stopping rules.

Usage

S4 method for signature 'Stopping,Stopping'
e1 | e2

Arguments

e1 (Stopping)
first stopping rule object.

e2 (Stopping)
second stopping rule object.

Value

The StoppingAny object.

Examples

Example of combining two atomic stopping rules with an OR ('|') operator

myStopping1 <- StoppingMinCohorts(nCohorts = 3)
myStopping2 <- StoppingTargetProb(target = c(0.2, 0.35), prob = 0.5)

myStopping <- myStopping1 | myStopping2

or-Stopping-StoppingAny

Combine an Atomic Stopping Rule and a Stopping List with OR

Description

[Stable]
The method combining an atomic stopping rule and a stopping list.

Usage

S4 method for signature 'Stopping,StoppingAny'
e1 | e2

or-StoppingAny-Stopping 279

Arguments

e1 (Stopping)
stopping rule object.

e2 (StoppingAny)
stopping list object.

Value

The modified StoppingAny object.

Examples

Example of combining an atomic stopping rule with a list of stopping rules
with an OR ('|') operator

myStopping1 <- StoppingMinCohorts(nCohorts = 3)
myStopping2 <- StoppingTargetProb(target = c(0.2, 0.35), prob = 0.5)

myStopping3 <- StoppingMinPatients(nPatients = 20)

myStopping <- myStopping3 | (myStopping1 & myStopping2)

or-StoppingAny-Stopping

Combine a Stopping List and an Atomic Stopping Rule with OR

Description

[Stable]

The method combining a stopping list and an atomic stopping rule.

Usage

S4 method for signature 'StoppingAny,Stopping'
e1 | e2

Arguments

e1 (StoppingAny)
stopping list object.

e2 (Stopping)
stopping rule object.

Value

The modified StoppingAny object.

280 plot,Data,ModelTox-method

Examples

Example of combining a list of stopping rules with an atomic stopping rule
with an OR ('|') operator

myStopping1 <- StoppingMinCohorts(nCohorts = 3)
myStopping2 <- StoppingTargetProb(target = c(0.2, 0.35), prob = 0.5)

myStopping3 <- StoppingMinPatients(nPatients = 20)

myStopping <- (myStopping1 & myStopping2) | myStopping3

plot,Data,ModelTox-method

Plot of the fitted dose-tox based with a given pseudo DLE model and
data without samples

Description

Plot of the fitted dose-tox based with a given pseudo DLE model and data without samples

Usage

S4 method for signature 'Data,ModelTox'
plot(
x,
y,
xlab = "Dose level",
ylab = "Probability of DLE",
showLegend = TRUE,
...

)

Arguments

x the data of Data class object

y the model of the ModelTox class object

xlab the x axis label

ylab the y axis label

showLegend should the legend be shown? (default)

... not used

Value

This returns the ggplot object for the dose-DLE model plot

plot,DataDA,missing-method 281

Examples

plot the dose-DLE curve given a pseudo DLE model using data without samples
data must be of 'Data' class
define the data
data <- Data(

x = c(25, 50, 50, 75, 100, 100, 225, 300),
y = c(0, 0, 0, 0, 1, 1, 1, 1),
ID = 1L:8L,
cohort = as.integer(c(1, 2, 2, 3, 4, 4, 5, 6)),
doseGrid = seq(25, 300, 25)

)
model must be from 'ModelTox' class e.g 'LogisticIndepBeta' class model
define the model (see LogisticIndepBeta example)
model <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = data

)
plot the dose-DLE curve
'x' is the data and 'y' is the model in plot
plot(x = data, y = model)

plot,DataDA,missing-method

Plot Method for the DataDA Class

Description

[Stable]
A method that creates a plot for DataDA object.

Usage

S4 method for signature 'DataDA,missing'
plot(x, y, blind = FALSE, ...)

Arguments

x (DataDA)
object we want to plot.

y (missing)
missing object, for compatibility with the generic function.

blind (flag)
indicates whether to blind the data. If TRUE, then placebo subjects are reported
at the same level as the active dose level in the corresponding cohort, and DLTs
are always assigned to the first subjects in a cohort.

... passed to the first inherited method plot after this current method.

282 plot,DataDual,missing-method

Value

The ggplot2::ggplot2 object.

Examples

Create some data of class 'DataDA'.
my_data <- DataDA(

u = c(42, 30, 15, 5, 20, 25, 30, 60),
t0 = c(0, 15, 30, 40, 55, 70, 75, 85),
Tmax = 60,
x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 1, 1, 0, 0, 1, 0),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Plot the data.
plot(my_data)

plot,DataDual,missing-method

Plot Method for the DataDual Class

Description

[Stable]
A method that creates a plot for DataDual object.

Usage

S4 method for signature 'DataDual,missing'
plot(x, y, blind = FALSE, ...)

Arguments

x (DataDual)
object we want to plot.

y (missing)
missing object, for compatibility with the generic function.

blind (flag)
indicates whether to blind the data. If TRUE, then placebo subjects are reported
at the same level as the active dose level in the corresponding cohort, and DLTs
are always assigned to the first subjects in a cohort.

... passed to the first inherited method plot after this current method.

Value

The ggplot2::ggplot2 object.

plot,DataDual,ModelEff-method 283

Examples

Create some data of class 'DataDual'.
my_data <- DataDual(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
w = rnorm(8),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Plot the data.
plot(my_data)

plot,DataDual,ModelEff-method

Plot of the fitted dose-efficacy based with a given pseudo efficacy
model and data without samples

Description

Plot of the fitted dose-efficacy based with a given pseudo efficacy model and data without samples

Usage

S4 method for signature 'DataDual,ModelEff'
plot(
x,
y,
...,
xlab = "Dose level",
ylab = "Expected Efficacy",
showLegend = TRUE

)

Arguments

x the data of DataDual class object

y the model of the ModelEff class object

... not used

xlab the x axis label

ylab the y axis label

showLegend should the legend be shown? (default)

Value

This returns the ggplot object for the dose-efficacy model plot

284 plot,DualSimulations,missing-method

Examples

nolint start

##plot the dose-efficacy curve given a pseudo efficacy model using data without samples
##data must be of 'DataDual' class
##define the data
data <- DataDual(

x = c(25, 50, 50, 75, 100, 100, 225, 300),
y = c(0, 0, 0, 0, 1, 1, 1, 1),
w = c(0.31, 0.42, 0.59, 0.45, 0.6, 0.7, 0.6, 0.52),
doseGrid = seq(25, 300, 25),
placebo = FALSE

)
##model must be from 'ModelEff' class e.g 'Effloglog' class model
##define the model (see Effloglog example)
Effmodel <- Effloglog(

eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = data

)
plot the dose-efficacy curve
'x' is the data and 'y' is the model in plot
plot(x = data, y = Effmodel)

nolint end

plot,DualSimulations,missing-method

Plot DualSimulations

Description

[Stable]

This plot method can be applied to DualSimulations objects in order to summarize them graphi-
cally. In addition to the standard plot types, there is:

sigma2W Plot a boxplot of the final biomarker variance estimates in the simulated trials

rho Plot a boxplot of the final correlation estimates in the simulated trials

Usage

S4 method for signature 'DualSimulations,missing'
plot(x, y, type = c("trajectory", "dosesTried", "sigma2W", "rho"), ...)

plot,DualSimulations,missing-method 285

Arguments

x (DualSimulations)
the object we want to plot from.

y (missing)
not used.

type (character)
the type of plots you want to obtain.

... not used.

Value

A single ggplot object if a single plot is asked for, otherwise a gtable object.

Examples

Define the dose-grid.
emptydata <- DataDual(doseGrid = c(1, 3, 5, 10, 15, 20, 25, 40, 50, 80, 100))

Create some data.
my_data <- DataDual(

x = c(
0.1,
0.5,
1.5,
3,
6,
10,
10,
10,
20,
20,
20,
40,
40,
40,
50,
50,
50

),
y = c(

0,
0,
0,
0,
0,
0,
1,
0,
0,
1,

286 plot,DualSimulations,missing-method

1,
0,
0,
1,
0,
1,
1

),
ID = 1:17,
cohort = c(

1L,
2L,
3L,
4L,
5L,
6L,
6L,
6L,
7L,
7L,
7L,
8L,
8L,
8L,
9L,
9L,
9L

),
w = c(

0.31,
0.42,
0.59,
0.45,
0.6,
0.7,
0.55,
0.6,
0.52,
0.54,
0.56,
0.43,
0.41,
0.39,
0.34,
0.38,
0.21

),
doseGrid = c(

0.1,
0.5,
1.5,
3,
6,

plot,DualSimulations,missing-method 287

seq(from = 10, to = 80, by = 2)
)

)

Initialize the CRM model.
my_model <- DualEndpointRW(

mean = c(0, 1),
cov = matrix(c(1, 0, 0, 1), nrow = 2),
sigma2betaW = 0.01,
sigma2W = c(a = 0.1, b = 0.1),
rho = c(a = 1, b = 1),
rw1 = TRUE

)

Choose the rule for selecting the next dose.
my_next_best <- NextBestDualEndpoint(

target = c(0.9, 1),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Choose the rule for the cohort-size
mySize1 <- CohortSizeRange(

intervals = c(0, 30),
cohort_size = c(1, 3)

)
mySize2 <- CohortSizeDLT(

intervals = c(0, 1),
cohort_size = c(1, 3)

)
mySize <- maxSize(mySize1, mySize2)

Choose the rule for stopping
myStopping4 <- StoppingTargetBiomarker(

target = c(0.9, 1),
prob = 0.5

)
myStopping <- myStopping4 | StoppingMinPatients(40) | StoppingMissingDose()

my_size1 <- CohortSizeRange(
intervals = c(0, 30),
cohort_size = c(1, 3)

)
my_size2 <- CohortSizeDLT(

intervals = c(0, 1),
cohort_size = c(1, 3)

)
my_size <- maxSize(my_size1, my_size2)

Choose the rule for stopping
my_stopping4 <- StoppingTargetBiomarker(

target = c(0.9, 1),
prob = 0.5

288 plot,DualSimulations,missing-method

)
my_stopping <- my_stopping4 | StoppingMinPatients(40) | StoppingMissingDose()

Choose the rule for dose increments
my_increments <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)

Initialize the design

my_design <- DualDesign(
model = my_model,
data = emptydata,
nextBest = my_next_best,
stopping = my_stopping,
increments = my_increments,
cohort_size = CohortSizeConst(3),
startingDose = 3

)

Define scenarios for the TRUE toxicity and efficacy profiles.
beta_mod <- function(dose, e0, eMax, delta1, delta2, scal) {

maxDens <- (delta1^delta1) *
(delta2^delta2) /
((delta1 + delta2)^(delta1 + delta2))

dose <- dose / scal
e0 + eMax / maxDens * (dose^delta1) * (1 - dose)^delta2

}

true_biomarker <- function(dose) {
beta_mod(

dose,
e0 = 0.2,
eMax = 0.6,
delta1 = 5,
delta2 = 5 * 0.5 / 0.5,
scal = 100

)
}

true_tox <- function(dose) {
pnorm((dose - 60) / 10)

}

Draw the TRUE profiles
par(mfrow = c(1, 2))
curve(true_tox(x), from = 0, to = 80)
curve(true_biomarker(x), from = 0, to = 80)

Run the simulation on the desired design.
We only generate 1 trial outcome here for illustration, for the actual study.
Also for illustration purpose, we will use 5 burn-ins to generate 20 samples,

plot,DualSimulationsSummary,missing-method 289

this should be increased of course.
my_sims <- simulate(

object = my_design,
trueTox = true_tox,
trueBiomarker = true_biomarker,
sigma2W = 0.01,
rho = 0,
nsim = 1,
parallel = FALSE,
seed = 9,
startingDose = 6,
mcmcOptions = McmcOptions(
burnin = 1,
step = 1,
samples = 2

)
)

Plot the results of the simulation.
print(plot(my_sims))

plot,DualSimulationsSummary,missing-method

Plot Dual-Endpoint Design Simulation Summary

Description

[Stable]
Graphical display of dual-endpoint simulation summary.

This plot method can be applied to DualSimulationsSummary objects in order to summarize them
graphically. Possible type of plots at the moment are those listed in plot,SimulationsSummary,missing-method
plus:

meanBiomarkerFit Plot showing the average fitted dose-biomarker curve across the trials, to-
gether with 95% credible intervals, and comparison with the assumed truth (as specified by
the trueBiomarker argument to summary,DualSimulations-method)

You can specify any subset of these in the type argument.

Usage

S4 method for signature 'DualSimulationsSummary,missing'
plot(
x,
y,
type = c("nObs", "doseSelected", "propDLTs", "nAboveTarget", "meanFit",
"meanBiomarkerFit"),

...
)

290 plot,DualSimulationsSummary,missing-method

Arguments

x (DualSimulationsSummary)
the object we want to plot from.

y (missing)
not used.

type (character)
the types of plots you want to obtain.

... not used.

Value

A single ggplot object if a single plot is asked for, otherwise a gtable object.

Examples

Define the dose-grid.
emptydata <- DataDual(doseGrid = c(1, 3, 5, 10, 15, 20, 25, 40, 50, 80, 100))

Initialize the CRM model.
my_model <- DualEndpointRW(

mean = c(0, 1),
cov = matrix(c(1, 0, 0, 1), nrow = 2),
sigma2betaW = 0.01,
sigma2W = c(a = 0.1, b = 0.1),
rho = c(a = 1, b = 1),
rw1 = TRUE

)

Choose the rule for selecting the next dose.
my_next_best <- NextBestDualEndpoint(

target = c(0.9, 1),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Choose the rule for the cohort-size.
my_size1 <- CohortSizeRange(

intervals = c(0, 30),
cohort_size = c(1, 3)

)
my_size2 <- CohortSizeDLT(

intervals = c(0, 1),
cohort_size = c(1, 3)

)
my_size <- maxSize(my_size1, my_size2)

Choose the rule for stopping.
my_stopping4 <- StoppingTargetBiomarker(

plot,DualSimulationsSummary,missing-method 291

target = c(0.9, 1),
prob = 0.5

)
Only 10 patients here for illustration!
my_stopping <- my_stopping4 | StoppingMinPatients(10) | StoppingMissingDose()

Choose the rule for dose increments.
my_increments <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)

Initialize the design.
my_design <- DualDesign(

model = my_model,
data = emptydata,
nextBest = my_next_best,
stopping = my_stopping,
increments = my_increments,
cohort_size = CohortSizeConst(3),
startingDose = 3

)

Define scenarios for the TRUE toxicity and efficacy profiles.
beta_mod <- function(dose, e0, eMax, delta1, delta2, scal) {

maxDens <- (delta1^delta1) *
(delta2^delta2) /
((delta1 + delta2)^(delta1 + delta2))

dose <- dose / scal
e0 + eMax / maxDens * (dose^delta1) * (1 - dose)^delta2

}

true_biomarker <- function(dose) {
beta_mod(

dose,
e0 = 0.2,
eMax = 0.6,
delta1 = 5,
delta2 = 5 * 0.5 / 0.5,
scal = 100

)
}

true_tox <- function(dose) {
pnorm((dose - 60) / 10)

}

Draw the TRUE profiles.
par(mfrow = c(1, 2))
curve(true_tox(x), from = 0, to = 80)
curve(true_biomarker(x), from = 0, to = 80)

292 plot,GeneralSimulations,missing-method

Run the simulation on the desired design.
We only generate 1 trial outcome here for illustration, for the actual study.
For illustration purpose we will use 5 burn-ins to generate 20 samples,
this should be increased of course.
my_sims <- simulate(

object = my_design,
trueTox = true_tox,
trueBiomarker = true_biomarker,
sigma2W = 0.01,
rho = 0,
nsim = 1,
parallel = FALSE,
seed = 3,
startingDose = 6,
mcmcOptions = McmcOptions(
burnin = 5,
step = 1,
samples = 20

)
)

Plot the summary of the Simulations.
plot(summary(my_sims, trueTox = true_tox, trueBiomarker = true_biomarker))

plot,GeneralSimulations,missing-method

Plot GeneralSimulations

Description

[Stable]

Summarize the simulations with plots.

This plot method can be applied to GeneralSimulations objects in order to summarize them
graphically. Possible types of plots at the moment are:

trajectory Summary of the trajectory of the simulated trials

dosesTried Average proportions of the doses tested in patients

You can specify one or both of these in the type argument.

Usage

S4 method for signature 'GeneralSimulations,missing'
plot(x, y, type = c("trajectory", "dosesTried"), ...)

plot,GeneralSimulations,missing-method 293

Arguments

x (GeneralSimulations)
the object we want to plot from.

y (missing)
not used.

type (character)
the type of plots you want to obtain.

... not used.

Value

A single ggplot object if a single plot is asked for, otherwise a gtable object.

Examples

nolint start

obtain the plot for the simulation results
If only DLE responses are considered in the simulations

Specified your simulations when no DLE samples are used
Define your data set first using an empty data set
with dose levels from 25 to 300 with increments 25
data <- Data(doseGrid = seq(25, 300, 25))

Specified the model of 'ModelTox' class eg 'LogisticIndepBeta' class model
model <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = data

)
Then the escalation rule
tdNextBest <- NextBestTD(

prob_target_drt = 0.35,
prob_target_eot = 0.3

)

The cohort size, size of 3 subjects
mySize <- CohortSizeConst(size = 3)
Deifne the increments for the dose-escalation process
The maximum increase of 200% for doses up to the maximum of the dose specified in the doseGrid
The maximum increase of 200% for dose above the maximum of the dose specified in the doseGrid
This is to specified a maximum of 3-fold restriction in dose-esclation
myIncrements <- IncrementsRelative(

intervals = c(min(data@doseGrid), max(data@doseGrid)),
increments = c(2, 2)

)
Specified the stopping rule e.g stop when the maximum sample size of 12 patients has been reached
myStopping <- StoppingMinPatients(nPatients = 12) | StoppingMissingDose()

294 plot,GeneralSimulations,missing-method

Now specified the design with all the above information and starting with a dose of 25
design <- TDDesign(

model = model,
nextBest = tdNextBest,
stopping = myStopping,
increments = myIncrements,
cohort_size = mySize,
data = data,
startingDose = 25

)

Specify the truth of the DLE responses
myTruth <- probFunction(model, phi1 = -53.66584, phi2 = 10.50499)

Then specified the simulations and generate the trial
For illustration purpose only 1 simulation is produced (nsim=1).
The simulations
mySim <- simulate(

design,
args = NULL,
truth = myTruth,
nsim = 1,
seed = 819,
parallel = FALSE

)

plot the simulations
print(plot(mySim))

If DLE samples are involved
The escalation rule
tdNextBest <- NextBestTDsamples(

prob_target_drt = 0.35,
prob_target_eot = 0.3,
derive = function(samples) {
as.numeric(quantile(samples, probs = 0.3))

}
)
specify the design
design <- TDsamplesDesign(

model = model,
nextBest = tdNextBest,
stopping = myStopping,
increments = myIncrements,
cohort_size = mySize,
data = data,
startingDose = 25

)
options for MCMC
The simulations
For illustration purpose only 1 simulation is produced (nsim=1).

plot,GeneralSimulationsSummary,missing-method 295

mySim <- simulate(design,
args=NULL,
truth=myTruth,
nsim=1,
seed=819,
mcmcOptions=options,
parallel=FALSE)
#
##plot the simulations
print(plot(mySim))
#

nolint end

plot,GeneralSimulationsSummary,missing-method

Plot GeneralSimulationsSummary

Description

[Stable]
Graphical display of the general simulation summary.

This plot method can be applied to GeneralSimulationsSummary objects in order to summarize
them graphically. Possible types of plots at the moment are:

nObs Distribution of the number of patients in the simulated trials
doseSelected Distribution of the final selected doses in the trials. Note that this can include zero

entries, meaning that the trial was stopped because all doses in the dose grid appeared too
toxic.

propDLTs Distribution of the proportion of patients with DLTs in the trials
nAboveTarget Distribution of the number of patients treated at doses which are above the target

toxicity interval (as specified by the truth and target arguments to summary,GeneralSimulations-method)

You can specify any subset of these in the type argument.

Usage

S4 method for signature 'GeneralSimulationsSummary,missing'
plot(x, y, type = c("nObs", "doseSelected", "propDLTs", "nAboveTarget"), ...)

Arguments

x (GeneralSimulationsSummary)
the object we want to plot from.

y (missing)
not used.

type (character)
the types of plots you want to obtain.

... not used.

296 plot,PseudoDualFlexiSimulations,missing-method

Value

A single ggplot object if a single plot is asked for, otherwise a gtable object.

plot,PseudoDualFlexiSimulations,missing-method

Plot PseudoDualFlexiSimulations

Description

[Stable]

Summarize the simulations with plots.

This plot method can be applied to PseudoDualFlexiSimulations objects in order to summarize
them graphically. Possible types of plots at the moment are:

trajectory Summary of the trajectory of the simulated trials

dosesTried Average proportions of the doses tested in patients

sigma2 The variance of the efficacy responses

sigma2betaW The variance of the random walk model

You can specify one or both of these in the type argument.

Usage

S4 method for signature 'PseudoDualFlexiSimulations,missing'
plot(x, y, type = c("trajectory", "dosesTried", "sigma2", "sigma2betaW"), ...)

Arguments

x (PseudoDualFlexiSimulations)
the object we want to plot from.

y (missing)
missing object, not used.

type (character)
the type of plots you want to obtain.

... not used.

Value

A single ggplot2 object if a single plot is asked for, otherwise a gtable object.

plot,PseudoDualFlexiSimulations,missing-method 297

Examples

Obtain the plot for the simulation results if DLE and efficacy responses
are considered in the simulations.
emptydata <- DataDual(doseGrid = seq(25, 300, 25))

The DLE model must be of 'ModelTox' (e.g 'LogisticIndepBeta') class.
dle_model <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = emptydata

)

The efficacy model must be of 'EffFlexi' class.
eff_model <- EffFlexi(

eff = c(1.223, 2.513),
eff_dose = c(25, 300),
sigma2W = c(a = 0.1, b = 0.1),
sigma2betaW = c(a = 20, b = 50),
rw1 = FALSE,
data = emptydata

)

The escalation rule using the 'NextBestMaxGainSamples' class.
my_next_best <- NextBestMaxGainSamples(

prob_target_drt = 0.35,
prob_target_eot = 0.3,
derive = function(samples) {
as.numeric(quantile(samples, prob = 0.3))

},
mg_derive = function(mg_samples) {

as.numeric(quantile(mg_samples, prob = 0.5))
}

)

The cohort size, size of 3 subjects.
my_size <- CohortSizeConst(size = 3)

Allow increase of 200%.
my_increments <- IncrementsRelative(intervals = 0, increments = 2)

Define the stopping rule. Stop when the maximum sample size of 36 patients has
been reached or when the next dose is NA.
my_stopping <- StoppingMinPatients(nPatients = 36) | StoppingMissingDose()

Specify the design.
design <- DualResponsesSamplesDesign(

nextBest = my_next_best,
cohort_size = my_size,
startingDose = 25,
model = dle_model,
eff_model = eff_model,

298 plot,PseudoDualSimulations,missing-method

data = emptydata,
stopping = my_stopping,
increments = my_increments

)
Specify the true DLE curve and the true expected efficacy values
at all dose levels.
my_truth_dle <- probFunction(dle_model, phi1 = -53.66584, phi2 = 10.50499)

my_truth_eff <- c(
-0.5478867,
0.1645417,
0.5248031,
0.7604467,
0.9333009,
1.0687031,
1.1793942,
1.2726408,
1.3529598,
1.4233411,
1.4858613,
1.5420182

)

The true gain curve.
my_truth_gain <- function(dose) {

return((myTruthEff(dose)) / (1 + (myTruthDLE(dose) / (1 - myTruthDLE(dose)))))
}

MCMC options.
my_options <- McmcOptions(burnin = 10, step = 1, samples = 20)

For illustration purpose only 1 simulation is produced.
my_sim <- simulate(

object = design,
args = NULL,
trueDLE = my_truth_dle,
trueEff = my_truth_eff,
trueSigma2 = 0.025,
trueSigma2betaW = 1,
mcmcOptions = my_options,
nsim = 1,
seed = 819,
parallel = FALSE

)

Plot the simulated results.
print(plot(my_sim))

plot,PseudoDualSimulations,missing-method

Plot PseudoDualSimulations

plot,PseudoDualSimulations,missing-method 299

Description

[Stable]
Summarize the simulations with plots.

This plot method can be applied to PseudoDualSimulations objects in order to summarize them
graphically. Possible types of plots at the moment are:

trajectory Summary of the trajectory of the simulated trials

dosesTried Average proportions of the doses tested in patients

sigma2 The variance of the efficacy responses

You can specify one or both of these in the type argument.

Usage

S4 method for signature 'PseudoDualSimulations,missing'
plot(x, y, type = c("trajectory", "dosesTried", "sigma2"), ...)

Arguments

x (PseudoDualSimulations)
the object we want to plot from.

y (missing)
missing object, not used.

type (character)
the type of plots you want to obtain.

... not used.

Value

A single ggplot2 object if a single plot is asked for, otherwise a gtable object.

Examples

Obtain the plot for the simulation results if DLE and efficacy responses
are considered in the simulations.

Example to run simulations when no samples are used. The data object
must be defined with doses >= 1:
emptydata <- DataDual(doseGrid = seq(25, 300, 25), placebo = FALSE)

The DLE model must be of 'ModelTox' (e.g 'LogisticIndepBeta') class.
dle_model <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = emptydata

)

The efficacy model must be of 'ModelEff' (e.g 'Effloglog') class.

300 plot,PseudoDualSimulations,missing-method

eff_model <- Effloglog(
eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = emptydata

)

The escalation rule using the 'NextBestMaxGain' class.
my_next_best <- NextBestMaxGain(

prob_target_drt = 0.35,
prob_target_eot = 0.3

)

Allow increase of 200%.
my_increments <- IncrementsRelative(intervals = 0, increments = 2)

Cohort size of 3.
my_size <- CohortSizeConst(size = 3)

Stop only when 36 subjects are treated or next dose is NA.
my_stopping <- StoppingMinPatients(nPatients = 36) | StoppingMissingDose()

Now specify the design with all the above information and starting with a
dose of 25 (for details please refer to the 'DualResponsesDesign' example).
my_design <- DualResponsesDesign(

nextBest = my_next_best,
model = dle_model,
eff_model = eff_model,
stopping = my_stopping,
increments = my_increments,
cohort_size = my_size,
data = emptydata,
startingDose = 25

)

Specify the true DLE and efficacy curves.
my_truth_dle <- probFunction(dle_model, phi1 = -53.66584, phi2 = 10.50499)
my_truth_eff <- efficacyFunction(

eff_model,
theta1 = -4.818429,
theta2 = 3.653058

)

Run simulations (for illustration purpose only 1 simulation is produced).

my_sim <- simulate(
object = my_design,
args = NULL,
trueDLE = my_truth_dle,
trueEff = my_truth_eff,
trueNu = 1 / 0.025,
nsim = 1,
seed = 819,

plot,PseudoDualSimulations,missing-method 301

parallel = FALSE
)

Plot the simulation results.
print(plot(my_sim))

Example if DLE and efficacy samples are involved.
The escalation rule using the 'NextBestMaxGainSamples' class.
my_next_best <- NextBestMaxGainSamples(

prob_target_drt = 0.35,
prob_target_eot = 0.3,
derive = function(samples) {
as.numeric(quantile(samples, prob = 0.3))

},
mg_derive = function(mg_samples) {

as.numeric(quantile(mg_samples, prob = 0.5))
}

)

The design of 'DualResponsesSamplesDesign' class.
my_design <- DualResponsesSamplesDesign(

nextBest = my_next_best,
cohort_size = my_size,
startingDose = 25,
model = dle_model,
eff_model = eff_model,
data = emptydata,
stopping = my_stopping,
increments = my_increments

)

Options for MCMC.
my_options <- McmcOptions(burnin = 10, step = 1, samples = 20)

For illustration purpose only 1 simulation is produced (nsim = 1).
my_sim <- simulate(

object = my_design,
args = NULL,
trueDLE = my_truth_dle,
trueEff = my_truth_eff,
trueNu = 1 / 0.025,
nsim = 1,
mcmcOptions = my_options,
seed = 819,
parallel = FALSE

)

Plot the simulation results.
print(plot(my_sim))

302 plot,PseudoDualSimulationsSummary,missing-method

plot,PseudoDualSimulationsSummary,missing-method

Plot PseudoDualSimulationsSummary

Description

[Stable]

Plot the summary of PseudoDualSimulations.

This plot method can be applied to PseudoDualSimulationsSummary objects in order to summa-
rize them graphically. Possible type of plots at the moment are those listed in plot,PseudoSimulationsSummary,missing-method
plus:

meanEffFit Plot showing the fitted dose-efficacy curve. If no samples are involved, only the aver-
age fitted dose-efficacy curve across the trials will be plotted. If samples (DLE and efficacy)
are involved, the average fitted dose-efficacy curve across the trials, together with the 95%
credibility interval; and comparison with the assumed truth (as specified by the trueEff ar-
gument to summary,PseudoDualSimulations-method)

You can specify any subset of these in the type argument.

Usage

S4 method for signature 'PseudoDualSimulationsSummary,missing'
plot(
x,
y,
type = c("nObs", "doseSelected", "propDLE", "nAboveTargetEndOfTrial", "meanFit",

"meanEffFit"),
...

)

Arguments

x (PseudoDualSimulationsSummary)
the object we want to plot from.

y (missing)
not used.

type (character)
the types of plots you want to obtain.

... not used.

Value

A single ggplot2 object if a single plot is asked for, otherwise a gtable object.

plot,PseudoDualSimulationsSummary,missing-method 303

Examples

Obtain the summary plot for the simulation results if DLE and efficacy
responses are considered in the simulations.

In the example when no samples are used a data object with doses >= 1
needs to be defined.
emptydata <- DataDual(doseGrid = seq(25, 300, 25), placebo = FALSE)

The DLE model must be of 'ModelTox' (e.g 'LogisticIndepBeta') class.
dle_model <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = emptydata

)

The efficacy model of 'ModelEff' (e.g 'Effloglog') class.
eff_model <- Effloglog(

eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = emptydata

)

The escalation rule using the 'NextBestMaxGain' class.
my_next_best <- NextBestMaxGain(

prob_target_drt = 0.35,
prob_target_eot = 0.3

)

Allow increase of 200%.
my_increments <- IncrementsRelative(intervals = 0, increments = 2)

Cohort size of 3.
my_size <- CohortSizeConst(size = 3)

Stop when 10 subjects are treated (for illustration only).
my_stopping <- StoppingMinPatients(nPatients = 10) | StoppingMissingDose()

Now specified the design with all the above information and starting with a dose of 25

Specify the design. (For details please refer to the 'DualResponsesDesign' example.)
my_design <- DualResponsesDesign(

nextBest = my_next_best,
model = dle_model,
eff_model = eff_model,
stopping = my_stopping,
increments = my_increments,
cohort_size = my_size,
data = emptydata,
startingDose = 25

)

304 plot,PseudoDualSimulationsSummary,missing-method

Specify the true DLE and efficacy curves.
my_truth_dle <- probFunction(dle_model, phi1 = -53.66584, phi2 = 10.50499)
my_truth_eff <- efficacyFunction(eff_model, theta1 = -4.818429, theta2 = 3.653058)

For illustration purpose only 1 simulation is produced.
my_sim <- simulate(

object = my_design,
args = NULL,
trueDLE = my_truth_dle,
trueEff = my_truth_eff,
trueNu = 1 / 0.025,
nsim = 1,
mcmcOptions = McmcOptions(burnin = 10, step = 1, samples = 50),
seed = 819,
parallel = FALSE

)

Summary of the simulations.
my_sum <- summary(

my_sim,
trueDLE = my_truth_dle,
trueEff = my_truth_eff

)

Plot the summary of the simulations.
print(plot(my_sum))

Example where DLE and efficacy samples are involved.
Please refer to design-method 'simulate DualResponsesSamplesDesign' examples
for details.
Specify the next best method.
my_next_best <- NextBestMaxGainSamples(

prob_target_drt = 0.35,
prob_target_eot = 0.3,
derive = function(samples) {
as.numeric(quantile(samples, prob = 0.3))

},
mg_derive = function(mg_samples) {

as.numeric(quantile(mg_samples, prob = 0.5))
}

)

Specify the design.
my_design <- DualResponsesSamplesDesign(

nextBest = my_next_best,
cohort_size = my_size,
startingDose = 25,
model = dle_model,
eff_model = eff_model,
data = emptydata,

plot,PseudoDualSimulationsSummary,missing-method 305

stopping = my_stopping,
increments = my_increments

)

MCMC options.
my_options <- McmcOptions(burnin = 5, step = 1, samples = 10)

For illustration purpose only 1 simulation is produced.
my_sim <- simulate(

object = my_design,
args = NULL,
trueDLE = my_truth_dle,
trueEff = my_truth_eff,
trueNu = 1 / 0.025,
nsim = 1,
mcmcOptions = my_options,
seed = 819,
parallel = FALSE

)

Generate a summary of the simulations.
my_sum <- summary(

my_sim,
trueDLE = my_truth_dle,
trueEff = my_truth_eff

)

Plot the summary of the simulations.
print(plot(my_sum))

Example where the 'EffFlexi' class is used for the efficacy model.
eff_model <- EffFlexi(

eff = c(1.223, 2.513),
eff_dose = c(25, 300),
sigma2W = c(a = 0.1, b = 0.1),
sigma2betaW = c(a = 20, b = 50),
rw1 = FALSE,
data = emptydata

)

Specify the design.
my_design <- DualResponsesSamplesDesign(

nextBest = my_next_best,
cohort_size = my_size,
startingDose = 25,
model = dle_model,
eff_model = eff_model,
data = emptydata,
stopping = my_stopping,
increments = my_increments

306 plot,PseudoSimulationsSummary,missing-method

)

Specify the true DLE curve and the true expected efficacy values at all dose levels.
my_truth_dle <- probFunction(dle_model, phi1 = -53.66584, phi2 = 10.50499)

my_truth_eff <- c(
-0.5478867, 0.1645417, 0.5248031, 0.7604467,
0.9333009, 1.0687031, 1.1793942, 1.2726408,
1.3529598, 1.4233411, 1.4858613, 1.5420182

)

Define the true gain curve.
my_truth_gain <- function(dose) {

return((my_truth_eff(dose)) / (1 + (my_truth_dle(dose) / (1 - my_truth_dle(dose)))))
}

The simulations
For illustration purpose only 1 simulation is produced (nsim=1).
mySim <- simulate(

object = my_design,
args = NULL,
trueDLE = my_truth_dle,
trueEff = my_truth_eff,
trueSigma2 = 0.025,
trueSigma2betaW = 1,
nsim = 1,
mcmcOptions = my_options,
seed = 819,
parallel = FALSE

)

Produce a summary of the simulations.
my_sum <- summary(

my_sim,
trueDLE = my_truth_dle,
trueEff = my_truth_eff

)

Plot the summary of the simulations.
print(plot(my_sim))

plot,PseudoSimulationsSummary,missing-method

Plot PseudoSimulationsSummary

Description

[Stable]

plot,PseudoSimulationsSummary,missing-method 307

Graphical display of the simulation summary.

This plot method can be applied to PseudoSimulationsSummary objects in order to summarize
them graphically. This can be used when only DLE responses are involved in the simulations. This
also applied to results with or without samples generated during the simulations.

Usage

S4 method for signature 'PseudoSimulationsSummary,missing'
plot(
x,
y,
type = c("nObs", "doseSelected", "propDLE", "nAboveTargetEndOfTrial", "meanFit"),
...

)

Arguments

x (PseudoSimulationsSummary)
the object we want to plot from.

y (missing)
missing object, not used.

type (character)
the types of plots you want to obtain.

... not used.

Value

A single ggplot2 object if a single plot is asked for, otherwise a gtable object.

Examples

nolint start

obtain the plot for the simulation results
If only DLE responses are considered in the simulations
Specified your simulations when no DLE samples are used
Define your data set first using an empty data set
with dose levels from 25 to 300 with increments 25
data <- Data(doseGrid = seq(25, 300, 25))

Specified the model of 'ModelTox' class eg 'LogisticIndepBeta' class model
model <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = data

)
Then the escalation rule
tdNextBest <- NextBestTD(

prob_target_drt = 0.35,

308 plot,PseudoSimulationsSummary,missing-method

prob_target_eot = 0.3
)

The cohort size, size of 3 subjects
mySize <- CohortSizeConst(size = 3)
Deifne the increments for the dose-escalation process
The maximum increase of 200% for doses up to the maximum of the dose specified in the doseGrid
The maximum increase of 200% for dose above the maximum of the dose specified in the doseGrid
This is to specified a maximum of 3-fold restriction in dose-esclation
myIncrements <- IncrementsRelative(

intervals = c(min(data@doseGrid), max(data@doseGrid)),
increments = c(2, 2)

)
Specified the stopping rule e.g stop when the maximum sample size of 12 patients has been reached
myStopping <- StoppingMinPatients(nPatients = 12) | StoppingMissingDose()
Now specified the design with all the above information and starting with a dose of 25
design <- TDDesign(

model = model,
nextBest = tdNextBest,
stopping = myStopping,
increments = myIncrements,
cohort_size = mySize,
data = data,
startingDose = 25

)

Specify the truth of the DLE responses
myTruth <- probFunction(model, phi1 = -53.66584, phi2 = 10.50499)

Then specified the simulations and generate the trial
For illustration purpose only 1 simulation is produced (nsim=1).
The simulations
mySim <- simulate(

design,
args = NULL,
truth = myTruth,
nsim = 1,
seed = 819,
parallel = FALSE

)

Then produce a summary of your simulations
MYSUM <- summary(mySim, truth = myTruth)
plot the summary of the simulations
print(plot(MYSUM))

If DLE samples are involved
The escalation rule
tdNextBest <- NextBestTDsamples(

prob_target_drt = 0.35,
prob_target_eot = 0.3,
derive = function(samples) {

as.numeric(quantile(samples, probs = 0.3))

plot,Samples,DALogisticLogNormal-method 309

}
)
specify the design
design <- TDsamplesDesign(

model = model,
nextBest = tdNextBest,
stopping = myStopping,
increments = myIncrements,
cohort_size = mySize,
data = data,
startingDose = 25

)
options for MCMC
options <- McmcOptions(burnin = 100, step = 2, samples = 200)
The simulations
For illustration purpose only 1 simulation is produced (nsim=1).
mySim <- simulate(design,
args=NULL,
truth=myTruth,
nsim=1,
seed=819,
mcmcOptions=options,
parallel=FALSE)
##Then produce a summary of your simulations
MYSUM <- summary(mySim,
truth=myTruth)
##plot the summary of the simulations
print(plot(MYSUM))

nolint end

plot,Samples,DALogisticLogNormal-method

Plotting dose-toxicity model fits

Description

Plotting dose-toxicity model fits

Usage

S4 method for signature 'Samples,DALogisticLogNormal'
plot(x, y, data, hazard = FALSE, ..., showLegend = TRUE)

Arguments

x the Samples object

y the DALogisticLogNormal object

data the DataDA object

310 plot,Samples,DualEndpoint-method

hazard see fitPEM for the explanation

... not used

showLegend should the legend be shown? (default)

Value

This returns the ggplot object for the dose-toxicity model fit

plot,Samples,DualEndpoint-method

Plotting dose-toxicity and dose-biomarker model fits

Description

When we have the dual endpoint model, also the dose-biomarker fit is shown in the plot

Usage

S4 method for signature 'Samples,DualEndpoint'
plot(x, y, data, extrapolate = TRUE, showLegend = FALSE, ...)

Arguments

x the Samples object

y the DualEndpoint object

data the DataDual object

extrapolate should the biomarker fit be extrapolated to the whole dose grid? (default)

showLegend should the legend be shown? (not default)

... additional arguments for the parent method plot,Samples,GeneralModel-method

Value

This returns the ggplot object with the dose-toxicity and dose-biomarker model fits

Examples

nolint start

Create some data
data <- DataDual(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10, 20, 20, 20, 40, 40, 40, 50, 50, 50),
y = c(0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1),
w = c(

0.31,
0.42,
0.59,

plot,Samples,GeneralModel-method 311

0.45,
0.6,
0.7,
0.55,
0.6,
0.52,
0.54,
0.56,
0.43,
0.41,
0.39,
0.34,
0.38,
0.21

),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Initialize the Dual-Endpoint model (in this case RW1)
model <- DualEndpointRW(

mean = c(0, 1),
cov = matrix(c(1, 0, 0, 1), nrow = 2),
sigma2betaW = 0.01,
sigma2W = c(a = 0.1, b = 0.1),
rho = c(a = 1, b = 1),
rw1 = TRUE

)

Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin = 100, step = 2, samples = 500)
set.seed(94)
samples <- mcmc(data, model, options)

Plot the posterior mean (and empirical 2.5 and 97.5 percentile)
for the prob(DLT) by doses and the Biomarker by doses
#grid.arrange(plot(x = samples, y = model, data = data))

plot(x = samples, y = model, data = data)

nolint end

plot,Samples,GeneralModel-method

Plotting dose-toxicity model fits

Description

Plotting dose-toxicity model fits

312 plot,Samples,GeneralModel-method

Usage

S4 method for signature 'Samples,GeneralModel'
plot(
x,
y,
data,
...,
xlab = "Dose level",
ylab = "Probability of DLT [%]",
showLegend = TRUE

)

Arguments

x the Samples object

y the GeneralModel object

data the Data object

... not used

xlab the x axis label

ylab the y axis label

showLegend should the legend be shown? (default)

Value

This returns the ggplot object for the dose-toxicity model fit

Examples

nolint start

Create some data
data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Initialize a model
model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Get posterior for all model parameters
options <- McmcOptions(burnin = 100, step = 2, samples = 2000)
set.seed(94)

plot,Samples,ModelEff-method 313

samples <- mcmc(data, model, options)

Plot the posterior mean (and empirical 2.5 and 97.5 percentile)
for the prob(DLT) by doses
plot(x = samples, y = model, data = data)

nolint end

plot,Samples,ModelEff-method

Plot the fitted dose-efficacy curve using a model from ModelEff class
with samples

Description

Plot the fitted dose-efficacy curve using a model from ModelEff class with samples

Usage

S4 method for signature 'Samples,ModelEff'
plot(
x,
y,
data,
...,
xlab = "Dose level",
ylab = "Expected Efficacy",
showLegend = TRUE

)

Arguments

x the Samples object

y the ModelEff model class object

data the Data object

... not used

xlab the x axis label

ylab the y axis label

showLegend should the legend be shown? (default)

Value

This returns the ggplot object for the dose-efficacy model fit

314 plot,Samples,ModelTox-method

Examples

nolint start

we need a data object with doses >= 1:
data <- DataDual(

x = c(25, 50, 25, 50, 75, 300, 250, 150),
y = c(0, 0, 0, 0, 0, 1, 1, 0),
w = c(0.31, 0.42, 0.59, 0.45, 0.6, 0.7, 0.6, 0.52),
doseGrid = seq(25, 300, 25),
placebo = FALSE

)
##plot the dose-efficacy curve with samples using the model from 'ModelEff'
##class e.g. 'Effloglog' class model
##define the model (see Effloglog example)
Effmodel <- Effloglog(

eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = data

)
define the samples obtained using the 'Effloglog' model (see details in 'Samples' example)
##options for MCMC
options <- McmcOptions(burnin = 100, step = 2, samples = 200)
samples must be of 'Samples' class
samples <- mcmc(data = data, model = Effmodel, options = options)
plot the fitted dose-efficacy curve including the 95% credibility interval of the samples
'x' should be of 'Samples' class and 'y' of 'ModelEff' class
plot(x = samples, y = Effmodel, data = data)
nolint end

plot,Samples,ModelTox-method

Plot the fitted dose-DLE curve using a ModelTox class model with
samples

Description

Plot the fitted dose-DLE curve using a ModelTox class model with samples

Usage

S4 method for signature 'Samples,ModelTox'
plot(
x,
y,
data,
...,
xlab = "Dose level",
ylab = "Probability of DLT [%]",

plot,Samples,ModelTox-method 315

showLegend = TRUE
)

Arguments

x the Samples object

y the ModelTox model class object

data the Data object

... not used

xlab the x axis label

ylab the y axis label

showLegend should the legend be shown? (default)

Value

This returns the ggplot object for the dose-DLE model fit

Examples

we need a data object with doses >= 1:
data <- Data(

x = c(25, 50, 50, 75, 150, 200, 225, 300),
y = c(0, 0, 0, 0, 1, 1, 1, 1),
doseGrid = seq(from = 25, to = 300, by = 25)

)
plot the dose-DLE curve with samples using the model from 'ModelTox'
class e.g. 'LogisticIndepBeta' class model
define the model (see LogisticIndepBeta example)
model <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = data

)
define the samples obtained using the 'LogisticIndepGBeta' model

Define options for MCMC
options <- McmcOptions(burnin = 100, step = 2, samples = 200)
(see details in 'Samples' example) samples must be of 'Samples' class
samples <- mcmc(data = data, model = model, options = options)
plot the fitted dose-DLE curve including the 95% credibility interval of the samples
'x' should be of 'Samples' class and 'y' of 'ModelTox' class
plot(x = samples, y = model, data = data)

316 plot,SimulationsSummary,missing-method

plot,SimulationsSummary,missing-method

Plot Model-Based Design Simulation Summary

Description

[Stable]

Graphical display of the simulation summary.

This plot method can be applied to SimulationsSummary objects in order to summarize them
graphically. Possible type of plots at the moment are those listed in plot,GeneralSimulationsSummary,missing-method
plus:

meanFit Plot showing the average fitted dose-toxicity curve across the trials, together with 95%
credible intervals, and comparison with the assumed truth (as specified by the truth argument
to summary,Simulations-method)

You can specify any subset of these in the type argument.

Usage

S4 method for signature 'SimulationsSummary,missing'
plot(
x,
y,
type = c("nObs", "doseSelected", "propDLTs", "nAboveTarget", "meanFit"),
...

)

Arguments

x (SimulationsSummary)
the object we want to plot from.

y (missing)
not used.

type (character)
the types of plots you want to obtain.

... not used.

Value

A single ggplot object if a single plot is asked for, otherwise a gtable object.

plot,SimulationsSummary,missing-method 317

Examples

nolint start

Define the dose-grid
emptydata <- Data(doseGrid = c(1, 3, 5, 10, 15, 20, 25, 40, 50, 80, 100))

Initialize the CRM model
model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Choose the rule for selecting the next dose
myNextBest <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Choose the rule for the cohort-size
mySize1 <- CohortSizeRange(

intervals = c(0, 30),
cohort_size = c(1, 3)

)
mySize2 <- CohortSizeDLT(

intervals = c(0, 1),
cohort_size = c(1, 3)

)
mySize <- maxSize(mySize1, mySize2)

Choose the rule for stopping
myStopping1 <- StoppingMinCohorts(nCohorts = 3)
myStopping2 <- StoppingTargetProb(

target = c(0.2, 0.35),
prob = 0.5

)
myStopping3 <- StoppingMinPatients(nPatients = 20)
myStopping <- (myStopping1 & myStopping2) | myStopping3 | StoppingMissingDose()

Choose the rule for dose increments
myIncrements <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)

Initialize the design
design <- Design(

model = model,
nextBest = myNextBest,
stopping = myStopping,
increments = myIncrements,

318 plot.gtable

cohort_size = mySize,
data = emptydata,
startingDose = 3

)

define the true function
myTruth <- probFunction(model, alpha0 = 7, alpha1 = 8)

Run the simulation on the desired design
We only generate 1 trial outcomes here for illustration, for the actual study
this should be increased of course
options <- McmcOptions(

burnin = 5,
step = 1,
samples = 10

)
time <- system.time(

mySims <- simulate(
design,
args = NULL,
truth = myTruth,
nsim = 1,
seed = 819,
mcmcOptions = options,
parallel = FALSE

)
)[3]

Plot the Summary of the Simulations
plot(summary(mySims, truth = myTruth))

nolint end

plot.gtable Plot gtable Objects

Description

[Stable]
This is needed because crmPack uses gridExtra::arrangeGrob() to combine ggplot2 plots, and
the resulting gtable object is not plotted otherwise when implicitly printing it in the console.

Usage

S3 method for class 'gtable'
plot(x, ...)

S3 method for class 'gtable'
print(x, ...)

plotDualResponses 319

Arguments

x (gtable)
object to print.

... additional parameters passed to plot.gtable().

Value

Called for side effects.

plotDualResponses Plot of the DLE and efficacy curve side by side given a DLE pseudo
model, a DLE sample, an efficacy pseudo model and a given efficacy
sample

Description

Plot of the DLE and efficacy curve side by side given a DLE pseudo model, a DLE sample, an
efficacy pseudo model and a given efficacy sample

Plot of the dose-DLE and dose-efficacy curve side by side given a DLE pseudo model and a given
pseudo efficacy model without DLE and efficacy samples

Usage

plotDualResponses(DLEmodel, DLEsamples, Effmodel, Effsamples, data, ...)

S4 method for signature 'ModelTox,Samples,ModelEff,Samples'
plotDualResponses(
DLEmodel,
DLEsamples,
Effmodel,
Effsamples,
data,
extrapolate = TRUE,
showLegend = FALSE,
...

)

S4 method for signature 'ModelTox,missing,ModelEff,missing'
plotDualResponses(DLEmodel, DLEsamples, Effmodel, Effsamples, data, ...)

Arguments

DLEmodel the pseudo DLE model of ModelTox class object

DLEsamples the DLE samples of Samples class object

Effmodel the pseudo efficacy model of ModelEff class object

320 plotDualResponses

Effsamples the Efficacy samples of Samples class object

data the data input of DataDual class object

... additional arguments for the parent method plot,Samples,GeneralModel-method

extrapolate should the biomarker fit be extrapolated to the whole dose grid? (default)

showLegend should the legend be shown? (not default)

Value

This returns the ggplot object with the dose-toxicity and dose-efficacy model fits

Functions

• plotDualResponses(DLEmodel = ModelTox, DLEsamples = Samples, Effmodel = ModelEff,
Effsamples = Samples): function still to be documented

• plotDualResponses(DLEmodel = ModelTox, DLEsamples = missing, Effmodel = ModelEff,
Effsamples = missing): Plot the DLE and efficacy curve side by side given a DLE model
and an efficacy model without any samples

Examples

nolint start

we need a data object with doses >= 1:
data <- DataDual(

x = c(25, 50, 25, 50, 75, 300, 250, 150),
y = c(0, 0, 0, 0, 0, 1, 1, 0),
w = c(0.31, 0.42, 0.59, 0.45, 0.6, 0.7, 0.6, 0.52),
doseGrid = seq(25, 300, 25),
placebo = FALSE

)
##plot the dose-DLE and dose-efficacy curves in two plots with DLE and efficacy samples
##define the DLE model which must be of 'ModelTox' class
##(e.g 'LogisticIndepBeta' class model)
DLEmodel <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = data

)
define the efficacy model which must be of 'ModelEff' class
(e.g 'Effloglog' class)
Effmodel <- Effloglog(

eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = data

)
##define the DLE sample of 'Samples' class
##set up the same data set in class 'Data' for MCMC sampling for DLE
data1 <- Data(x = data@x, y = data@y, doseGrid = data@doseGrid)

plotGain 321

##Specify the options for MCMC
options <- McmcOptions(burnin = 100, step = 2, samples = 1000)

DLEsamples <- mcmc(data = data1, model = DLEmodel, options = options)
##define the efficacy sample of 'Samples' class
Effsamples <- mcmc(data = data, model = Effmodel, options = options)
##plot the dose-DLE and dose-efficacy curves with two plot side by side.
##For each curve the 95% credibility interval of the two samples are alos given
plotDualResponses(

DLEmodel = DLEmodel,
DLEsamples = DLEsamples,
Effmodel = Effmodel,
Effsamples = Effsamples,
data = data

)

nolint end
nolint start

we need a data object with doses >= 1:
data <- DataDual(

x = c(25, 50, 25, 50, 75, 300, 250, 150),
y = c(0, 0, 0, 0, 0, 1, 1, 0),
w = c(0.31, 0.42, 0.59, 0.45, 0.6, 0.7, 0.6, 0.52),
doseGrid = seq(25, 300, 25),
placebo = FALSE

)
##plot the dose-DLE and dose-efficacy curves in two plots without DLE and efficacy samples
##define the DLE model which must be of 'ModelTox' class
##(e.g 'LogisticIndepBeta' class model)
DLEmodel <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = data

)
define the efficacy model which must be of 'ModelEff' class
(e.g 'Effloglog' class)
Effmodel <- Effloglog(

eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = data

)
##plot the dose-DLE and dose-efficacy curves with two plot side by side.
plotDualResponses(DLEmodel = DLEmodel, Effmodel = Effmodel, data = data)

nolint end

322 plotGain

plotGain Plot the gain curve in addition with the dose-DLE and dose-efficacy
curve using a given DLE pseudo model, a DLE sample, a given effi-
cacy pseudo model and an efficacy sample

Description

Plot the gain curve in addition with the dose-DLE and dose-efficacy curve using a given DLE pseudo
model, a DLE sample, a given efficacy pseudo model and an efficacy sample

Plot the gain curve in addition with the dose-DLE and dose-efficacy curve using a given DLE pseudo
model, and a given efficacy pseudo model

Usage

plotGain(DLEmodel, DLEsamples, Effmodel, Effsamples, data, ...)

S4 method for signature 'ModelTox,Samples,ModelEff,Samples'
plotGain(DLEmodel, DLEsamples, Effmodel, Effsamples, data, ...)

S4 method for signature 'ModelTox,missing,ModelEff,missing'
plotGain(DLEmodel, Effmodel, data, size = c(8L, 8L), shape = c(16L, 17L), ...)

Arguments

DLEmodel the dose-DLE model of ModelTox class object

DLEsamples the DLE sample of Samples class object

Effmodel the dose-efficacy model of ModelEff class object

Effsamples the efficacy sample of of Samples class object

data the data input of DataDual class object

... not used

size (integer)
a vector of length two defining the sizes of the shapes used to identify the doses
with, respectively, p(DLE = 0.3) and the maximum gain

shape (integer)
a vector of length two defining the shapes used to identify the doses with, re-
spectively, p(DLE = 0.3) and the maximum gain

Value

This returns the ggplot object for the plot

Functions

• plotGain(DLEmodel = ModelTox, DLEsamples = Samples, Effmodel = ModelEff, Effsamples
= Samples): Standard method

• plotGain(DLEmodel = ModelTox, DLEsamples = missing, Effmodel = ModelEff, Effsamples
= missing): Standard method

plotGain 323

Examples

nolint start

we need a data object with doses >= 1:
data <- DataDual(

x = c(25, 50, 25, 50, 75, 300, 250, 150),
y = c(0, 0, 0, 0, 0, 1, 1, 0),
w = c(0.31, 0.42, 0.59, 0.45, 0.6, 0.7, 0.6, 0.52),
doseGrid = seq(25, 300, 25),
placebo = FALSE

)
##plot the dose-DLE , dose-efficacy and gain curve in the same plot with DLE and efficacy samples
##define the DLE model which must be of 'ModelTox' class
##(e.g 'LogisticIndepBeta' class model)
DLEmodel <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = data

)
define the efficacy model which must be of 'ModelEff' class
(e.g 'Effloglog' class)
Effmodel <- Effloglog(

eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = data,
const = 0

)
##define the DLE sample of 'Samples' class
##set up the same data set in class 'Data' for MCMC sampling for DLE
data1 <- Data(x = data@x, y = data@y, doseGrid = data@doseGrid)

##Define the options for MCMC
options <- McmcOptions(burnin = 100, step = 2, samples = 1000)

DLEsamples <- mcmc(data = data1, model = DLEmodel, options = options)
##define the efficacy sample of 'Samples' class
Effsamples <- mcmc(data = data, model = Effmodel, options = options)
##plot the three curves of mean values of the DLEsamples, Effsamples and
##gain value samples (obtained within this plotGain function) at all dose levels
plotGain(

DLEmodel = DLEmodel,
DLEsamples = DLEsamples,
Effmodel = Effmodel,
Effsamples = Effsamples,
data = data

)
nolint end
nolint start
we need a data object with doses >= 1:

324 prob

data <- DataDual(
x = c(25, 50, 25, 50, 75, 300, 250, 150),
y = c(0, 0, 0, 0, 0, 1, 1, 0),
w = c(0.31, 0.42, 0.59, 0.45, 0.6, 0.7, 0.6, 0.52),
doseGrid = seq(25, 300, 25),
placebo = FALSE

)
##plot the dose-DLE , dose-efficacy and gain curve in the same plot with DLE and efficacy samples
##define the DLE model which must be of 'ModelTox' class
##(e.g 'LogisticIndepBeta' class model)
DLEmodel <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = data

)
define the efficacy model which must be of 'ModelEff' class
(e.g 'Effloglog' class)
Effmodel <- Effloglog(

eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = data

)
##plot the three curves of using modal estimates of model parameters at all dose levels
plotGain(DLEmodel = DLEmodel, Effmodel = Effmodel, data = data)
nolint end

positive_number positive_number

Description

[Experimental]
The positive_number class is a class to store not NULL, non NA, finite and strictly positive numerical
value. It is mainly used to store reference dose value in model classes.

prob Computing Toxicity Probabilities for a Given Dose, Model and Sam-
ples

Description

[Stable]
A function that computes the probability of the occurrence of a DLE at a specified dose level, based
on the model parameters (samples).

prob 325

Usage

prob(dose, model, samples, ...)

S4 method for signature 'numeric,LogisticNormal,Samples'
prob(dose, model, samples, ...)

S4 method for signature 'numeric,LogisticLogNormal,Samples'
prob(dose, model, samples, ...)

S4 method for signature 'numeric,LogisticLogNormalSub,Samples'
prob(dose, model, samples, ...)

S4 method for signature 'numeric,ProbitLogNormal,Samples'
prob(dose, model, samples, ...)

S4 method for signature 'numeric,ProbitLogNormalRel,Samples'
prob(dose, model, samples, ...)

S4 method for signature 'numeric,LogisticLogNormalGrouped,Samples'
prob(dose, model, samples, group, ...)

S4 method for signature 'numeric,LogisticKadane,Samples'
prob(dose, model, samples, ...)

S4 method for signature 'numeric,LogisticKadaneBetaGamma,Samples'
prob(dose, model, samples, ...)

S4 method for signature 'numeric,LogisticNormalMixture,Samples'
prob(dose, model, samples, ...)

S4 method for signature 'numeric,LogisticNormalFixedMixture,Samples'
prob(dose, model, samples, ...)

S4 method for signature 'numeric,LogisticLogNormalMixture,Samples'
prob(dose, model, samples, ...)

S4 method for signature 'numeric,DualEndpoint,Samples'
prob(dose, model, samples, ...)

S4 method for signature 'numeric,LogisticIndepBeta,Samples'
prob(dose, model, samples, ...)

S4 method for signature 'numeric,LogisticIndepBeta,missing'
prob(dose, model, samples, ...)

S4 method for signature 'numeric,OneParLogNormalPrior,Samples'
prob(dose, model, samples, ...)

326 prob

S4 method for signature 'numeric,OneParExpPrior,Samples'
prob(dose, model, samples, ...)

S4 method for signature 'numeric,LogisticLogNormalOrdinal,Samples'
prob(dose, model, samples, grade, cumulative = TRUE, ...)

Arguments

dose (number or numeric)
the dose which is targeted. The following recycling rule applies when samples
is not missing: vectors of size 1 will be recycled to the size of the sample (i.e.
size(samples)). Otherwise, dose must have the same size as the sample.

model (GeneralModel or ModelTox)
the model for single agent dose escalation or pseudo DLE (dose-limiting events)/toxicity
model.

samples (Samples)
the samples of model’s parameters that will be used to compute toxicity proba-
bilities. Can also be missing for some models.

... model specific parameters when samples are not used.

group (character or factor)
for LogisticLogNormalGrouped, indicating whether to calculate the probabil-
ity for the mono or for the combo arm.

grade (integer or integer_vector)
The toxicity grade for which probabilities are required

cumulative (flag)
Should the returned probability be cumulative (the default) or grade-specific?

Details

The prob() function computes the probability of toxicity for given doses, using samples of the
model parameter(s). If you work with multivariate model parameters, then assume that your model
specific prob() method receives a samples matrix where the rows correspond to the sampling index,
i.e. the layout is then nSamples x dimParameter.

Value

A proportion or numeric vector with the toxicity probabilities. If non-scalar samples were used,
then every element in the returned vector corresponds to one element of a sample. Hence, in this
case, the output vector is of the same length as the sample vector. If scalar samples were used or
no samples were used, e.g. for pseudo DLE/toxicity model, then the output is of the same length
as the length of the dose. In the case of LogisticLogNormalOrdinal, the probabilities relate to
toxicities of grade given by grade.

Functions

• prob(dose = numeric, model = LogisticNormal, samples = Samples):

• prob(dose = numeric, model = LogisticLogNormal, samples = Samples):

prob 327

• prob(dose = numeric, model = LogisticLogNormalSub, samples = Samples):

• prob(dose = numeric, model = ProbitLogNormal, samples = Samples):

• prob(dose = numeric, model = ProbitLogNormalRel, samples = Samples):

• prob(dose = numeric, model = LogisticLogNormalGrouped, samples = Samples): method
for LogisticLogNormalGrouped which needs group argument in addition.

• prob(dose = numeric, model = LogisticKadane, samples = Samples):

• prob(dose = numeric, model = LogisticKadaneBetaGamma, samples = Samples):

• prob(dose = numeric, model = LogisticNormalMixture, samples = Samples):

• prob(dose = numeric, model = LogisticNormalFixedMixture, samples = Samples):

• prob(dose = numeric, model = LogisticLogNormalMixture, samples = Samples):

• prob(dose = numeric, model = DualEndpoint, samples = Samples):

• prob(dose = numeric, model = LogisticIndepBeta, samples = Samples): compute toxi-
city probabilities of the occurrence of a DLE at a specified dose level, based on the samples
of LogisticIndepBeta model parameters.

• prob(dose = numeric, model = LogisticIndepBeta, samples = missing): compute toxi-
city probabilities of the occurrence of a DLE at a specified dose level, based on the LogisticIndepBeta
model parameters. All model parameters (except dose) should be present in the model object.

• prob(dose = numeric, model = OneParLogNormalPrior, samples = Samples):

• prob(dose = numeric, model = OneParExpPrior, samples = Samples):

• prob(dose = numeric, model = LogisticLogNormalOrdinal, samples = Samples):

Note

The prob() and dose() functions are the inverse of each other, for all dose() methods for which
its first argument, i.e. a given independent variable that dose depends on, represents toxicity proba-
bility.

See Also

probFunction(), dose(), efficacy().

Examples

Create some data.
my_data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Initialize a model, e.g. 'LogisticLogNormal'.
my_model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

328 probFunction

)

Get samples from posterior.
my_options <- McmcOptions(burnin = 100, step = 2, samples = 20)
my_samples <- mcmc(data = my_data, model = my_model, options = my_options)

Posterior for Prob(DLT | dose = 50).
prob(dose = 50, model = my_model, samples = my_samples)

Create data from the 'DataDual' class.
data_dual <- DataDual(

x = c(25, 50, 25, 50, 75, 300, 250, 150),
y = c(0, 0, 0, 0, 0, 1, 1, 0),
w = c(0.31, 0.42, 0.59, 0.45, 0.6, 0.7, 0.6, 0.52),
doseGrid = seq(from = 25, to = 300, by = 25)

)

Initialize a toxicity model using 'LogisticIndepBeta' model.
dlt_model <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = data_dual

)

Get samples from posterior.
dlt_sample <- mcmc(data = data_dual, model = dlt_model, options = my_options)

Posterior for Prob(DLT | dose = 100).
prob(dose = 100, model = dlt_model, samples = dlt_sample)
prob(dose = c(50, 150), model = dlt_model)

probFunction Getting the Prob Function for a Given Model Type

Description

[Experimental]
A function that returns a prob() function that computes the toxicity probabilities for a given dose
level, based on the model specific parameters.

Usage

probFunction(model, ...)

S4 method for signature 'GeneralModel'
probFunction(model, ...)

S4 method for signature 'ModelTox'

probFunction 329

probFunction(model, ...)

S4 method for signature 'LogisticLogNormalOrdinal'
probFunction(model, grade, ...)

Arguments

model (GeneralModel or ModelTox)
the model.

... model specific parameters.

grade (integer)
the toxicity grade for which the dose function is required

Value

A prob() function that computes toxicity probabilities.

Functions

• probFunction(GeneralModel):

• probFunction(ModelTox):

• probFunction(LogisticLogNormalOrdinal):

See Also

prob(), doseFunction().

Examples

my_model <- LogisticLogNormal(
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 50

)

prob_fun <- probFunction(my_model, alpha0 = 2, alpha1 = 3)
prob_fun(30)
ordinal_data <- .DefaultDataOrdinal()
ordinal_model <- .DefaultLogisticLogNormalOrdinal()
opts <- .DefaultMcmcOptions()
samples <- mcmc(ordinal_data, ordinal_model, opts)

probFunction(
ordinal_model,
grade = 2L,
alpha2 = samples@data$alpha1,
beta = samples@data$beta

)(50)

330 ProbitLogNormal-class

probit Shorthand for Probit Function

Description

[Stable]

Computes the probit (inverse cumulative distribution function of standard normal) transformation.

Usage

probit(x)

Arguments

x (numeric)
the function argument.

Value

The probit of x, the quantile function of the standard normal distribution.

Examples

probit(0.5)
probit(c(0.025, 0.5, 0.975))

ProbitLogNormal-class ProbitLogNormal

Description

[Stable]

ProbitLogNormal is the class for probit regression model with a bivariate normal prior on the
intercept and log slope.

Usage

ProbitLogNormal(mean, cov, ref_dose = 1)

.DefaultProbitLogNormal()

ProbitLogNormal-class 331

Arguments

mean (numeric)
the prior mean vector.

cov (matrix)
the prior covariance matrix. The precision matrix prec is internally calculated
as an inverse of cov.

ref_dose (number)
the reference dose x∗ (strictly positive number).

Details

The covariate is the natural logarithm of dose x divided by a reference dose x∗, i.e.:

probit[p(x)] = alpha0 + alpha1 ∗ log(x/x∗),

where p(x) is the probability of observing a DLT for a given dose x. The prior

(alpha0, log(alpha1)) Normal(mean, cov).

Note

The model used in the DualEndpoint classes is an extension of this model: DualEndpoint supports
both ProbitNormal (which is not implemented yet) and ProbitLogNormal models through its
use_log_dose slot. ProbitLogNormal has no such flag, so always uses log(x/x*)as a covariate
in its model. Therefore this class can be used to check the prior assumptions on the dose-toxicity
model, even when sampling from the prior distribution of the dual endpoint model is not possible,
when use_log_dose = TRUE is used.

Typically, end users will not use the .DefaultProbitLogNormal() function.

See Also

ModelLogNormal, LogisticNormal, LogisticLogNormal, LogisticLogNormalSub, ProbitLogNormalRel.

Examples

my_model <- ProbitLogNormal(
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 7.2

)

332 ProbitLogNormalRel-class

ProbitLogNormalRel-class

ProbitLogNormalRel

Description

[Stable]

ProbitLogNormalRel is the class for probit regression model with a bivariate normal prior on the
intercept and log slope.

Usage

ProbitLogNormalRel(mean, cov, ref_dose = 1)

.DefaultProbitLogNormalRel()

Arguments

mean (numeric)
the prior mean vector.

cov (matrix)
the prior covariance matrix. The precision matrix prec is internally calculated
as an inverse of cov.

ref_dose (number)
the reference dose x∗ (strictly positive number).

Details

The covariate is the dose x divided by a reference dose x∗, i.e.:

probit[p(x)] = alpha0 + alpha1 ∗ x/x∗,

where p(x) is the probability of observing a DLT for a given dose x. The prior

(alpha0, log(alpha1)) Normal(mean, cov).

Note

This model is also used in the DualEndpoint classes, so this class can be used to check the prior
assumptions on the dose-toxicity model, even when sampling from the prior distribution of the dual
endpoint model is not possible.

Typically, end users will not use the .DefaultProbitLogNormalRel() function.

See Also

ModelLogNormal, LogisticNormal, LogisticLogNormal, LogisticLogNormalSub, ProbitLogNormal.

PseudoDualFlexiSimulations-class 333

Examples

my_model <- ProbitLogNormalRel(
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2)

)

PseudoDualFlexiSimulations-class

PseudoDualFlexiSimulations

Description

[Stable] This class captures the trial simulations design using both the DLE and efficacy responses
using EffFlexi efficacy model. It extends PseudoDualSimulations by adding the capability to
capture the sigma2betaW estimates.

Usage

PseudoDualFlexiSimulations(sigma2_beta_w_est, ...)

.DefaultPseudoDualFlexiSimulations()

Arguments

sigma2_beta_w_est

(numeric)
the vector of the final posterior mean sigma2betaW estimates

... additional parameters from PseudoDualSimulations

Slots

sigma2_beta_w_est (numeric)
the vector of the final posterior mean sigma2betaW estimates

Note

Typically, end users will not use the .DefaultPseudoFlexiSimulations() function.

334 PseudoDualSimulations-class

PseudoDualSimulations-class

PseudoDualSimulations

Description

[Stable] This class conducts trial simulations for designs using both the DLE and efficacy responses.
It defines final values for efficacy fit and DLE, estimates of Gstar, optimal dose and sigma2.

Usage

PseudoDualSimulations(
fit_eff,
final_gstar_estimates,
final_gstar_at_dose_grid,
final_gstar_cis,
final_gstar_ratios,
final_optimal_dose,
final_optimal_dose_at_dose_grid,
sigma2_est,
...

)

.DefaultPseudoDualSimulations()

Arguments

fit_eff (list)
see slot definition.

final_gstar_estimates

(numeric)
see slot definition.

final_gstar_at_dose_grid

(numeric)
see slot definition.

final_gstar_cis

(list)
see slot definition.

final_gstar_ratios

(numeric)
see slot definition.

final_optimal_dose

(numeric)
see slot definition.

final_optimal_dose_at_dose_grid

(numeric)
see slot definition.

PseudoDualSimulationsSummary-class 335

sigma2_est (numeric)
see slot definition.

... additional parameters from PseudoSimulations

Slots

fit_eff (list)
final values of efficacy fit.

final_gstar_estimates (numeric)
final Gstar estimates.

final_gstar_at_dose_grid (numeric)
final Gstar estimates at dose grid.

final_gstar_cis (list)
list of 95% confidence interval for Gstar estimates.

final_gstar_ratios (numeric)
ratios of confidence intervals for Gstar estimates.

final_optimal_dose (numeric)
final optimal dose.

final_optimal_dose_at_dose_grid (numeric)
final optimal dose at dose grid.

sigma2_est (numeric)
final sigma2 estimates.

Note

Do not use the .DefaultPseudoDualSimulations() function.

PseudoDualSimulationsSummary-class

PseudoDualSimulationsSummary

Description

[Stable]

This class captures the summary of the dual responses simulations using pseudo models. It con-
tains all slots from PseudoSimulationsSummary object. In addition to the slots in the parent class
PseudoSimulationsSummary, it contains additional slots for the efficacy model fit information.

Note that objects should not be created by users, therefore no initialization function is provided for
this class.

Usage

.DefaultPseudoDualSimulationsSummary()

336 PseudoSimulations-class

Slots

target_gstar (numeric)
the target dose level such that its gain value is at maximum

target_gstar_at_dose_grid (numeric)
the dose level at dose Grid closest and below Gstar

gstar_summary (table)
the six-number table summary (lowest, 25th, 50th (median), 75th percentile, mean and highest
value) of the final Gstar values obtained across all simulations

ratio_gstar_summary (table)
the six-number summary table of the ratios of the upper to the lower 95% credibility intervals
of the final Gstar across all simulations

eff_fit_at_dose_most_selected (numeric)
fitted expected mean efficacy value at dose most often selected

mean_eff_fit (list)
list with mean, lower (2.5%) and upper (97.5%) quantiles of the fitted expected efficacy value
at each dose level.

Note

Typically, end users will not use the .DefaultPseudoDualSimulationsSummary() function.

PseudoSimulations-class

PseudoSimulations

Description

[Stable] This class captures trial simulations from designs using pseudo model. It has additional
slots fit and stop_reasons compared to the general class GeneralSimulations.

Usage

PseudoSimulations(
fit,
final_td_target_during_trial_estimates,
final_td_target_end_of_trial_estimates,
final_td_target_during_trial_at_dose_grid,
final_td_target_end_of_trial_at_dose_grid,
final_tdeot_cis,
final_tdeot_ratios,
final_cis,
final_ratios,
stop_report,
stop_reasons,
...

PseudoSimulations-class 337

)

.DefaultPseudoSimulations()

Arguments

fit (list)
see slot definition.

final_td_target_during_trial_estimates

(numeric)
see slot definition.

final_td_target_end_of_trial_estimates

(numeric)
see slot definition.

final_td_target_during_trial_at_dose_grid

(numeric)
see slot definition.

final_td_target_end_of_trial_at_dose_grid

(numeric)
see slot definition.

final_tdeot_cis

(list)
see slot definition.

final_tdeot_ratios

(numeric)
see slot definition.

final_cis (list)
see slot definition.

final_ratios (numeric)
see slot definition.

stop_report see PseudoSimulations

stop_reasons (list)
see slot definition.

... additional parameters from GeneralSimulations

Slots

fit (list)
final fit values.

final_td_target_during_trial_estimates (numeric)
final estimates of the td_target_during_trial.

final_td_target_end_of_trial_estimates (numeric)
final estimates of the td_target_end_of_trial.

final_td_target_during_trial_at_dose_grid (numeric)
dose levels at dose grid closest below the final td_target_during_trial estimates.

338 PseudoSimulationsSummary-class

final_td_target_end_of_trial_at_dose_grid (numeric)
dose levels at dose grid closest below the final td_target_end_of_trial estimates.

final_tdeot_cis (list)
95% credibility intervals of the final estimates for td_target_end_of_trial.

final_tdeot_ratios (numeric)
ratio of the upper to the lower 95% credibility intervals for td_target_end_of_trial.

final_cis (list)
final 95% credibility intervals for td_target_end_of_trial estimates.

final_ratios (numeric)
final ratios of the upper to the lower 95% credibility interval for td_target_end_of_trial.

stop_report (matrix)
outcomes of stopping rules.

stop_reasons (list)
reasons for stopping each simulation run.

Note

Typically, end users will not use the .DefaultPseudoSimulations() function.

PseudoSimulationsSummary-class

PseudoSimulationsSummary

Description

[Stable]
This class captures the summary of pseudo-models simulations output. Note that objects should not
be created by users, therefore no initialization function is provided for this class.

Usage

.DefaultPseudoSimulationsSummary()

Slots

target_end_of_trial (numeric)
the target probability of DLE wanted at the end of a trial

target_dose_end_of_trial (numeric)
the dose level corresponds to the target probability of DLE wanted at the end of a trial, TDEOT

target_dose_end_of_trial_at_dose_grid (numeric)
the dose level at dose grid corresponds to the target probability of DLE wanted at the end of a
trial

target_during_trial (numeric)
the target probability of DLE wanted during a trial

PseudoSimulationsSummary-class 339

target_dose_during_trial (numeric)
the dose level corresponds to the target probability of DLE wanted during the trial. TDDT

target_dose_during_trial_at_dose_grid (numeric)
the dose level at dose grid corresponds to the target probability of DLE wanted during a trial

tdeot_summary (table)
the six-number table summary, include the lowest, the 25th percentile (lower quartile), the
50th percentile (median), the mean, the 75th percentile and the highest values of the final dose
levels obtained corresponds to the target probability of DLE want at the end of a trial across
all simulations

tddt_summary (table)
the six-number table summary, include the lowest, the 25th percentile (lower quartile), the
50th percentile (median), the mean, the 75th percentile and the highest values of the final
dose levels obtained corresponds to the target probability of DLE want during a trial across all
simulations

final_dose_rec_summary (table)
the six-number table summary, include the lowest, the 25th percentile (lower quartile), the
50th percentile (median), the mean, the 75th percentile and the highest values of the final
optimal doses, which is either the TDEOT when only DLE response are incorporated into
the escalation procedure or the minimum of the TDEOT and Gstar when DLE and efficacy
responses are incorporated, across all simulations

ratio_tdeot_summary (table)
the six-number summary table of the final ratios of the upper to the lower 95% credibility
intervals of the final TDEOTs across all simulations

final_ratio_summary (table)
the six-number summary table of the final ratios of the upper to the lower 95% credibility
intervals of the final optimal doses across all simulations

nsim (integer)
number of simulations

prop_dle (numeric)
proportions of DLE in the trials

mean_tox_risk (numeric)
mean toxicity risks for the patients

dose_selected (numeric)
doses selected as MTD (target_dose_end_of_trial)

tox_at_doses_selected (numeric)
true toxicity at doses selected

prop_at_target_end_of_trial (numeric)
Proportion of trials selecting at the dose_grid closest below the MTD, the target_dose_end_of_trial

prop_at_target_during_trial (numeric)
Proportion of trials selecting at the dose_grid closest below the target_dose_during_trial

dose_most_selected (numeric)
dose most often selected as MTD

obs_tox_rate_at_dose_most_selected (numeric)
observed toxicity rate at dose most often selected

340 Quantiles2LogisticNormal

n_obs (integer)
number of patients overall

n_above_target_end_of_trial (integer)
number of patients treated above target_dose_end_of_trial

n_above_target_during_trial (integer)
number of patients treated above target_dose_during_trial

dose_grid (numeric)
the dose grid that has been used

fit_at_dose_most_selected (numeric)
fitted toxicity rate at dose most often selected

mean_fit (list)
list with the average, lower (2.5%) and upper (97.5%) quantiles of the mean fitted toxicity at
each dose level

stop_report (matrix)
matrix of stopping rule outcomes

Note

Typically, end users will not use the .DefaultPseudoSimulationsSummary() function.

Quantiles2LogisticNormal

Convert Prior Quantiles to Logistic (Log) Normal Model

Description

[Stable]
This function uses generalized simulated annealing to optimize a LogisticNormal model to be as
close as possible to the given prior quantiles.

Usage

Quantiles2LogisticNormal(
dosegrid,
refDose,
lower,
median,
upper,
level = 0.95,
logNormal = FALSE,
parstart = NULL,
parlower = c(-10, -10, 0, 0, -0.95),
parupper = c(10, 10, 10, 10, 0.95),
seed = 12345,
verbose = TRUE,

Quantiles2LogisticNormal 341

control = list(threshold.stop = 0.01, maxit = 50000, temperature = 50000, max.time =
600)

)

Arguments

dosegrid (numeric)
the dose grid.

refDose (number)
the reference dose.

lower (numeric)
the lower quantiles.

median (numeric)
the medians.

upper (numeric)
the upper quantiles.

level (number)
the credible level of the (lower, upper) intervals. Default is 0.95.

logNormal (flag)
use the log-normal prior? If FALSE (default), the normal prior for the logistic
regression coefficients is used.

parstart (numeric or NULL)
starting values for the parameters. By default, these are determined from the
medians supplied.

parlower (numeric)
lower bounds on the parameters (intercept alpha and the slope beta, the corre-
sponding standard deviations and the correlation).

parupper (numeric)
upper bounds on the parameters.

seed (count)
seed for random number generation.

verbose (flag)
should the function be verbose?

control (list)
additional options for the optimisation routine, see GenSA::GenSA() for more
details.

Value

A list with the best approximating model (LogisticNormal or LogisticLogNormal), the resulting
quantiles, the required quantiles and the distance to the required quantiles, as well as the final
parameters (which could be used for running the algorithm a second time).

342 RecruitmentRatio-class

Recruitment-class Recruitment

Description

[Experimental]
Recruitment is a virtual class for recruitment criteria, from which all other specific recruitment
criteria classes inherit. The subclasses are used to specify the maximum number of backfill patients
that can be recruited relative to the main trial cohort size.

Usage

.DefaultRecruitment()

Note

Typically, end users will not use the .DefaultRecruitment() function.

See Also

RecruitmentUnlimited, RecruitmentRatio.

RecruitmentRatio-class

RecruitmentRatio

Description

[Experimental]
RecruitmentRatio constrains the recruitment of backfill patients based on a ratio to the main
trial cohort size. The maximum number of backfill patients is calculated as ceiling(ratio *
active_cohort_size).

Usage

RecruitmentRatio(ratio = 1)

.DefaultRecruitmentRatio()

Arguments

ratio (number) see slot definition.

Slots

ratio (number) the recruitment ratio, specifying the maximum number of backfill patients per
patient in the main trial cohort (non-negative).

RecruitmentUnlimited-class 343

Note

Typically, end users will not use the .DefaultRecruitmentRatio() function.

See Also

Recruitment and the other subclasses listed in there.

Examples

Create a RecruitmentRatio object with ratio 0.5
This means 1 backfill patient for every 2 patients in the active cohort
recruitment <- RecruitmentRatio(ratio = 0.5)
print(recruitment)

Create a variant with ratio 1 (1:1)
recruitment_one_to_one <- RecruitmentRatio(ratio = 1)
print(recruitment_one_to_one)

RecruitmentUnlimited-class

RecruitmentUnlimited

Description

[Experimental]

RecruitmentUnlimited allows unlimited recruitment of backfill patients. There is no constraint
on the number of backfill patients relative to the main trial cohort size.

Usage

RecruitmentUnlimited()

.DefaultRecruitmentUnlimited()

Note

Typically, end users will not use the .DefaultRecruitmentUnlimited() function.

See Also

Recruitment and the other subclasses listed in there.

344 RuleDesign-class

Examples

Create a RecruitmentUnlimited object
recruitment <- RecruitmentUnlimited()
print(recruitment)

Calculate maximum recruits for an active cohort of size 10
max_recruits <- maxRecruits(recruitment, active_cohort_size = 10)
print(max_recruits) # Practically unlimited (1e6)

RuleDesign-class RuleDesign

Description

[Stable]

RuleDesign is the class for rule-based designs. The difference between this class and the Design
class is that RuleDesign does not contain model, stopping and increments slots.

Usage

RuleDesign(nextBest, cohort_size, data, startingDose)

.DefaultRuleDesign()

ThreePlusThreeDesign(doseGrid)

Arguments

nextBest (NextBest)
see slot definition.

cohort_size (CohortSize)
see slot definition.

data (Data)
see slot definition.

startingDose (number)
see slot definition.

doseGrid (numeric)
the dose grid to be used (sorted).

Functions

• ThreePlusThreeDesign(): creates a new 3+3 design object from a dose grid.

RuleDesignOrdinal-class 345

Slots

nextBest (NextBest)
how to find the next best dose.

cohort_size (CohortSize)
rules for the cohort sizes.

data (Data)
specifies dose grid, any previous data, etc.

startingDose (number)
the starting dose, it must lie on the dose grid in data.

Note

Typically, end users will not use the .DefaultRuleDesign() function.

Examples

Specify the design to run simulations. The design comprises a model,
the escalation rule, starting data, a cohort size and a starting dose.

Initialing a 3+3 design with constant cohort size of 3 and starting dose equal 5.
my_design <- RuleDesign(

nextBest = NextBestThreePlusThree(),
cohort_size = CohortSizeConst(size = 3L),
data = Data(doseGrid = c(5, 10, 15, 25, 35, 50, 80)),
startingDose = 5

)
Initialing a 3+3 design with constant cohort size of 3 and starting dose equal 8.
my_design <- ThreePlusThreeDesign(doseGrid = c(8, 10, 15, 25, 35, 50, 80))

RuleDesignOrdinal-class

RuleDesignOrdinal

Description

[Experimental]

RuleDesignOrdinal is the class for rule-based designs. The difference between this class and the
DesignOrdinal class is that RuleDesignOrdinal does not contain model, stopping and increments
slots.

Usage

RuleDesignOrdinal(next_best, cohort_size, data, starting_dose)

.DefaultRuleDesignOrdinal()

346 RuleDesignOrdinal-class

Arguments

next_best (NextBestOrdinal)
see slot definition.

cohort_size (CohortSize)
see slot definition.

data (DataOrdinal)
see slot definition.

starting_dose (number)
see slot definition.

Details

Please note that the cohort size rules need to be wrapped into the corresponding CohortSizeOrdinal
class, before a successful evaluation of the corresponding methods can take place. Note also that
these wrappers cannot be nested, i.e., you cannot have a CohortSizeOrdinal inside another Cohort-
SizeOrdinal (which also would not make sense) because it would not be clear which event grade
to use for the methods calculation. However, multiple rules can be combined using the operators de-
fined, e.g., CohortSizeMin(list(CohortSizeOrdinal(1L, rule1), CohortSizeOrdinal(2L, rule2))).

Slots

next_best (NextBestOrdinal)
how to find the next best dose.

cohort_size (CohortSize)
rules for the cohort sizes.

data (DataOrdinal)
specifies dose grid, any previous data, etc.

starting_dose (number)
the starting dose, it must lie on the dose grid in data.

Note

Typically, end users will not use the .DefaultRuleDesignOrdinal() function.

Examples

RuleDesignOrdinal(
next_best = NextBestOrdinal(
1L,
NextBestMTD(

target = 0.25,
derive = function(x) median(x, na.rm = TRUE)

)
),
cohort_size = CohortSizeOrdinal(1L, CohortSizeConst(size = 3L)),
data = DataOrdinal(doseGrid = c(5, 10, 15, 25, 35, 50, 80)),
starting_dose = 5

)

SafetyWindow-class 347

SafetyWindow-class SafetyWindow

Description

[Stable]

SafetyWindow is a class for safety window.

Usage

.DefaultSafetyWindow()

Note

Typically, end users will not use the .DefaultSafetyWindow() function.

See Also

SafetyWindowSize, SafetyWindowConst.

SafetyWindowConst-class

SafetyWindowConst

Description

[Stable]

SafetyWindowConst is the class for safety window length and it is used when the gap should be
kept constant across cohorts (though it may vary within a cohort).

Usage

SafetyWindowConst(gap, follow, follow_min)

.DefaultSafetyWindowConst()

Arguments

gap see slot definition.

follow see slot definition.

follow_min see slot definition.

348 SafetyWindowSize-class

Slots

gap (integer)
a vector, the constant gap between patients.

follow (count)
how long to follow each patient. The period of time that each patient in the cohort needs to be
followed before the next cohort opens.

follow_min (count)
minimum follow up. At least one patient in the cohort needs to be followed at the minimal
follow up time.

Note

Typically, end users will not use the .DefaultSafetyWindowConst() function.

Examples

This is to have along the study constant parameters settings of safety window
length, regardless of the cohort size.
my_win_len <- SafetyWindowConst(

gap = c(7, 5, 3),
follow = 7,
follow_min = 14

)

SafetyWindowSize-class

SafetyWindowSize

Description

[Stable]
SafetyWindowSize is the class for safety window length based on cohort size. This class is used to
decide the rolling rule from the clinical perspective.

Usage

SafetyWindowSize(gap, size, follow, follow_min)

.DefaultSafetyWindowSize()

Arguments

gap see slot definition.

size see slot definition.

follow see slot definition.

follow_min see slot definition.

Samples-class 349

Slots

gap (list)
observed period of the previous patient before the next patient can be dosed. This is used as
follows. If for instance, the cohort size is 4 and we want to specify three time intervals between
these four consecutive patients, i.e. 7 units of time between the 1st and the 2nd patient, 5 units
between the 2nd and the 3rd one, and finally 3 units between the 3rd and the 4th one, then,
gap = list(c(7L, 5L, 3L)). Sometimes, we want that the interval only between the 1st and
2nd patient should be increased for the safety consideration and the rest time intervals should
remain constant, regardless of what the cohort size is. Then, gap = list(c(7L, 3L)) and the
the package will automatically repeat the last element of the vector for the remaining time
intervals.

size (integer)
a vector with the left bounds of the relevant cohort size intervals. This is used as follows.
For instance, when we want to change the gap based on the cohort size, i.e. the time interval
between the 1st and 2nd patient = 9 units of time and the rest time intervals are of 5 units of
time when the cohort size is equal to or larger than 4. And the time interval between the 1st
and 2nd patient = 7 units of time and the rest time intervals are 3 units of time when the cohort
size is smaller than 4, then we specify both gap = list(c(7, 3), c(9, 5)) and size = c(0L,
4L). This means, the right bounds of the intervals are excluded from the interval, and the last
interval goes from the last value to infinity.

follow (count)
the period of time that each patient in the cohort needs to be followed before the next cohort
opens.

follow_min (count)
at least one patient in the cohort needs to be followed at the minimal follow up time.

Note

Typically, end users will not use the .DefaultSafetyWindowSize() function.

Examples

Rule for having patient gap (7,3,3,3,...) for cohort size < 4, and
patient gap (9,5,5,5...) for cohort size >= 4.
my_window_len <- SafetyWindowSize(

gap = list(c(7, 3), c(9, 5)),
size = c(1, 4),
follow = 7,
follow_min = 14

)

Samples-class Samples

350 Samples-class

Description

[Stable]

Samples is the class to store the MCMC samples.

Usage

Samples(data, options)

.DefaultSamples()

Arguments

data see slot definition.

options see slot definition.

Slots

data (list)
MCMC samples of the parameter. Each entry in this list must be a vector (in case of a scalar
parameter) or matrix (in case of a vector-valued parameter) with samples. In case of matrix,
every row is a separate sample, while columns correspond to the dimension of the parameter.

options (McmcOptions)
MCMC options that were used to generate the samples.

Note

Typically, end users will not use the .DefaultSamples() function.

Examples

The MCMC options that were used to generate the samples.
my_options <- McmcOptions(

burnin = 1000,
step = 2,
samples = 1000

)

Create an object of class 'Samples'
Here the parameters 'alpha' and 'beta' are randomly generated. Of course, in
a real example these would be a samples coming from MCMC procedures.
my_samples <- Samples(

data = list(alpha = rnorm(1000), beta = rnorm(1000)),
options = my_options

)

saveSample 351

saveSample Determining if this Sample Should be Saved

Description

[Stable]

A method that determines if a sample from a given iteration should be saved. The sample should
be saved if and only if: it is not in burn-in period and it matches the step.

Usage

saveSample(object, iteration, ...)

S4 method for signature 'McmcOptions'
saveSample(object, iteration, ...)

Arguments

object (McmcOptions)
object based on which the answer is determined.

iteration (count)
the current iteration index.

... not used.

Value

TRUE if this sample should be saved.

Functions

• saveSample(McmcOptions): determine if a sample should be saved.

Examples

Set up the MCMC option in order to have a burn-in of 10000 iterations and
then take every other iteration up to a collection of 10000 samples.
my_options <- McmcOptions(burnin = 10000, step = 2, samples = 10000)

size(my_options)
saveSample(my_options, iteration = 5)

352 show,DualSimulationsSummary-method

set_seed Helper Function to Set and Save the RNG Seed

Description

[Stable]

This code is basically copied from stats:::simulate.lm.

Usage

set_seed(seed = NULL)

Arguments

seed an object specifying if and how the random number generator should be initial-
ized ("seeded"). Either NULL (default) or an integer that will be used in a call
to set.seed() before simulating the response vectors. If set, the value is saved
as the seed slot of the returned object. The default, NULL will not change the
random generator state.

Value

The integer vector containing the random number generate state will be returned, in order to call
this function with this input to reproduce the obtained simulation results.

show,DualSimulationsSummary-method

Show the Summary of Dual-Endpoint Simulations

Description

[Stable]

Display a summary of dual-endpoint simulation results.

Usage

S4 method for signature 'DualSimulationsSummary'
show(object)

Arguments

object (DualSimulationsSummary)
the object we want to print.

show,DualSimulationsSummary-method 353

Value

Invisibly returns a data frame of the results with one row and appropriate column names.

Examples

Define the dose-grid.
emptydata <- DataDual(doseGrid = c(1, 3, 5, 10, 15, 20, 25, 30))

Initialize the CRM model.
my_model <- DualEndpointRW(

mean = c(0, 1),
cov = matrix(c(1, 0, 0, 1), nrow = 2),
sigma2betaW = 0.01,
sigma2W = c(a = 0.1, b = 0.1),
rho = c(a = 1, b = 1),
rw1 = TRUE

)

Choose the rule for selecting the next dose.
my_next_best <- NextBestDualEndpoint(

target = c(0.9, 1),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Choose the rule for the cohort-size.
my_size1 <- CohortSizeRange(

intervals = c(0, 30),
cohort_size = c(1, 3)

)
my_size2 <- CohortSizeDLT(

intervals = c(0, 1),
cohort_size = c(1, 3)

)
my_size <- maxSize(my_size1, my_size2)

Choose the rule for stopping.
my_stopping1 <- StoppingTargetBiomarker(

target = c(0.9, 1),
prob = 0.5

)

Stop with a small number of patients for illustration.
my_stopping <- my_stopping1 | StoppingMinPatients(10) | StoppingMissingDose()

Choose the rule for dose increments.
my_increments <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)

Initialize the design.

354 show,DualSimulationsSummary-method

my_design <- DualDesign(
model = my_model,
data = emptydata,
nextBest = my_next_best,
stopping = my_stopping,
increments = my_increments,
cohort_size = CohortSizeConst(3),
startingDose = 3

)

Define scenarios for the TRUE toxicity and efficacy profiles.
beta_mod <- function(dose, e0, eMax, delta1, delta2, scal) {

maxDens <- (delta1^delta1) *
(delta2^delta2) /
((delta1 + delta2)^(delta1 + delta2))

dose <- dose / scal
e0 + eMax / maxDens * (dose^delta1) * (1 - dose)^delta2

}

true_biomarker <- function(dose) {
beta_mod(

dose,
e0 = 0.2,
eMax = 0.6,
delta1 = 5,
delta2 = 5 * 0.5 / 0.5,
scal = 100

)
}

true_tox <- function(dose) {
pnorm((dose - 60) / 10)

}

Draw the TRUE profiles.
par(mfrow = c(1, 2))
curve(true_tox(x), from = 0, to = 80)
curve(true_biomarker(x), from = 0, to = 80)

Run the simulation on the desired design.
For illustration purposes only 1 trial outcome is generated and 5 burn-ins
to generate 20 samples are used here.
my_sims <- simulate(

object = my_design,
trueTox = true_tox,
trueBiomarker = true_biomarker,
sigma2W = 0.01,
rho = 0,
nsim = 1,
parallel = FALSE,
seed = 3,
startingDose = 6,
mcmcOptions = McmcOptions(

show,GeneralSimulations-method 355

burnin = 5,
step = 1,
samples = 20

)
)

Show the summary of the simulations.
show(summary(

my_sims,
trueTox = true_tox,
trueBiomarker = true_biomarker

))

show,GeneralSimulations-method

Show Simulations Objects

Description

[Stable]

Display a brief representation of the GeneralSimulations object.

Usage

S4 method for signature 'GeneralSimulations'
show(object)

Arguments

object (GeneralSimulations)
the object we want to print.

Value

Invisibly returns the object itself.

show,GeneralSimulationsSummary-method

Show the Summary of the Simulations

Description

[Stable]

Display a summary of general simulation results.

356 show,PseudoDualSimulationsSummary-method

Usage

S4 method for signature 'GeneralSimulationsSummary'
show(object)

Arguments

object (GeneralSimulationsSummary)
the object we want to print.

Value

Invisibly returns a data frame of the results with one row and appropriate column names.

show,PseudoDualSimulationsSummary-method

Show the Summary of PseudoDualSimulations

Description

[Stable]
Display a summary of pseudo dual simulation results.

Usage

S4 method for signature 'PseudoDualSimulationsSummary'
show(object)

Arguments

object (PseudoDualSimulationsSummary)
the object we want to print.

Value

Invisibly returns a data frame of the results with one row and appropriate column names.

Examples

Example where DLE and efficacy responses are considered in the simulations.
In simulations where no samples are used a data object with doses >= 1 needs
to be generated.
emptydata <- DataDual(doseGrid = seq(25, 300, 25), placebo = FALSE)

The DLE model must be of 'ModelTox' (e.g 'LogisticIndepBeta') class.
dle_model <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),

show,PseudoDualSimulationsSummary-method 357

data = emptydata
)

The efficacy model of 'ModelEff' (e.g 'Effloglog') class.
eff_model <- Effloglog(

eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = emptydata

)

The escalation rule using the 'NextBestMaxGain' class.
my_next_best <- NextBestMaxGain(

prob_target_drt = 0.35,
prob_target_eot = 0.3

)

Allow increase of 200%.
my_increments <- IncrementsRelative(intervals = 0, increments = 2)

Cohort size of 3.
my_size <- CohortSizeConst(size = 3)

Stop when 36 subjects are treated or next dose is NA.
my_stopping <- StoppingMinPatients(nPatients = 36) | StoppingMissingDose()

Specify the design. (For details please refer to the 'DualResponsesDesign' example.)
my_design <- DualResponsesDesign(

nextBest = my_next_best,
model = dle_model,
eff_model = eff_model,
stopping = my_stopping,
increments = my_increments,
cohort_size = my_size,
data = emptydata,
startingDose = 25

)

Specify the true DLE and efficacy curves.
my_truth_dle <- probFunction(dle_model, phi1 = -53.66584, phi2 = 10.50499)
my_truth_eff <- efficacyFunction(eff_model, theta1 = -4.818429, theta2 = 3.653058)

For illustration purpose only 2 simulations are produced.
my_sim <- simulate(

object = my_design,
args = NULL,
trueDLE = my_truth_dle,
trueEff = my_truth_eff,
trueNu = 1 / 0.025,
nsim = 2,
seed = 819,
parallel = FALSE

358 show,PseudoDualSimulationsSummary-method

)

Summary of the simulations.
my_sum <- summary(

my_sim,
trueDLE = my_truth_dle,
trueEff = my_truth_eff

)

Show the summary of the simulations in a data frame.
show(my_sum)

Example when DLE and efficacy samples are involved.

The escalation rule using the 'NextBestMaxGainSamples' class.
my_next_best <- NextBestMaxGainSamples(

prob_target_drt = 0.35,
prob_target_eot = 0.3,
derive = function(samples) {
as.numeric(quantile(samples, prob = 0.3))

},
mg_derive = function(mg_samples) {

as.numeric(quantile(mg_samples, prob = 0.5))
}

)

The design of 'DualResponsesSamplesDesign' class.
my_design <- DualResponsesSamplesDesign(

nextBest = my_next_best,
cohort_size = my_size,
startingDose = 25,
model = dle_model,
eff_model = eff_model,
data = emptydata,
stopping = my_stopping,
increments = my_increments

)

MCMC options.
For illustration purpose 50 burn-ins to generate 200 samples are used.
my_options <- McmcOptions(burnin = 50, step = 2, samples = 200)

For illustration purpose 2 trials are simulated.
my_sim <- simulate(

object = my_design,
args = NULL,
trueDLE = my_truth_dle,
trueEff = my_truth_eff,
trueNu = 1 / 0.025,
nsim = 2,
mcmcOptions = my_options,

show,PseudoSimulationsSummary-method 359

seed = 819,
parallel = FALSE

)

Produce a summary of the simulations.
my_sum <- summary(

my_sim,
trueDLE = my_truth_dle,
trueEff = my_truth_eff

)

Show the summary in data frame for the simulations.
show(my_sum)

show,PseudoSimulationsSummary-method

Show the Summary of PseudoSimulations

Description

[Stable]
Display a summary of pseudo simulation results.

Usage

S4 method for signature 'PseudoSimulationsSummary'
show(object)

Arguments

object (PseudoSimulationsSummary)
the object we want to print.

Value

Invisibly returns a data frame of the results with one row and appropriate column names.

Examples

Obtain the plot for the simulation results if only DLE responses are
considered in the simulations.

Specified simulations when no DLE samples are used.
emptydata <- Data(doseGrid = seq(25, 300, 25))

The design only incorporate DLE responses and DLE samples are involved.
Specify the model of 'ModelTox' class eg 'LogisticIndepBeta' class model.
my_model <- LogisticIndepBeta(

360 show,PseudoSimulationsSummary-method

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = emptydata

)

The escalation rule.
td_next_best <- NextBestTD(

prob_target_drt = 0.35,
prob_target_eot = 0.3

)

The cohort size is 3 subjects.
my_size <- CohortSizeConst(size = 3)

Allow increase of 200%.
my_increments <- IncrementsRelative(intervals = 0, increments = 2)

Specify the stopping rule with maximum sample size of 36 patients or when the
next dose is NA.
my_stopping <- StoppingMinPatients(nPatients = 36) | StoppingMissingDose()

Specify the design. (For details please refer to the 'TDDesign' example.)
my_design <- TDDesign(

model = my_model,
nextBest = td_next_best,
stopping = my_stopping,
increments = my_increments,
cohort_size = my_size,
data = emptydata,
startingDose = 25

)

Specify the truth of the DLE responses.
my_truth <- probFunction(my_model, phi1 = -53.66584, phi2 = 10.50499)

For illustration purpose only 1 simulation is produced.
my_sim <- simulate(

object = my_design,
args = NULL,
truth = my_truth,
nsim = 1,
seed = 819,
parallel = FALSE

)

Summary of the simulations.
my_sum <- summary(

my_sim,
truth = my_truth

)

Show the summary of the simulated results in a data frame.

show,SimulationsSummary-method 361

show(my_sum)

Example where DLE samples are involved.

The escalation rule.
td_next_best <- NextBestTDsamples(

prob_target_drt = 0.35,
prob_target_eot = 0.3,
derive = function(samples) {
as.numeric(quantile(samples, probs = 0.3))

}
)

The design.
my_design <- TDsamplesDesign(

model = my_model,
nextBest = td_next_best,
stopping = my_stopping,
increments = my_increments,
cohort_size = my_size,
data = emptydata,
startingDose = 25

)

For illustration purposes 2 trails are simulated with 50 burn-ins to generate
200 samples.
my_options <- McmcOptions(burnin = 50, step = 2, samples = 200)

my_sim <- simulate(
object = my_design,
args = NULL,
truth = my_truth,
nsim = 2,
seed = 819,
mcmcOptions = my_options,
parallel = FALSE

)

Produce a summary of the simulations.
my_sum <- summary(

my_sim,
truth = my_truth

)

Show the summary of the simulated results in a data frame.
show(my_sum)

show,SimulationsSummary-method

Show the Summary of Model-Based Design Simulations

362 show,SimulationsSummary-method

Description

[Stable]

Display a summary of model-based design simulation results.

Usage

S4 method for signature 'SimulationsSummary'
show(object)

Arguments

object (SimulationsSummary)
the object we want to print.

Value

Invisibly returns a data frame of the results with one row and appropriate column names.

Examples

nolint start

Define the dose-grid
emptydata <- Data(doseGrid = c(1, 3, 5, 10, 15, 20, 25, 40, 50, 80, 100))

Initialize the CRM model
model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Choose the rule for selecting the next dose
myNextBest <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Choose the rule for the cohort-size
mySize1 <- CohortSizeRange(

intervals = c(0, 30),
cohort_size = c(1, 3)

)
mySize2 <- CohortSizeDLT(

intervals = c(0, 1),
cohort_size = c(1, 3)

)
mySize <- maxSize(mySize1, mySize2)

Choose the rule for stopping

show,SimulationsSummary-method 363

myStopping1 <- StoppingMinCohorts(nCohorts = 3)
myStopping2 <- StoppingTargetProb(

target = c(0.2, 0.35),
prob = 0.5

)
myStopping3 <- StoppingMinPatients(nPatients = 20)
myStopping <- (myStopping1 & myStopping2) | myStopping3 | StoppingMissingDose()

Choose the rule for dose increments
myIncrements <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)

Initialize the design
design <- Design(

model = model,
nextBest = myNextBest,
stopping = myStopping,
increments = myIncrements,
cohort_size = mySize,
data = emptydata,
startingDose = 3

)

define the true function
myTruth <- probFunction(model, alpha0 = 7, alpha1 = 8)

Run the simulation on the desired design
We only generate 1 trial outcome here for illustration, for the actual study
this should be increased of course
options <- McmcOptions(

burnin = 100,
step = 2,
samples = 1000

)
time <- system.time(

mySims <- simulate(
design,
args = NULL,
truth = myTruth,
nsim = 1,
seed = 819,
mcmcOptions = options,
parallel = FALSE

)
)[3]

Show the Summary of the Simulations
show(summary(mySims, truth = myTruth))

nolint end

364 simulate,DADesign-method

simulate,DADesign-method

Simulate outcomes from a time-to-DLT augmented CRM design

Description

[Stable]

This method simulates dose escalation trials using time-to-DLT data, where the timing of dose-
limiting toxicities is explicitly modeled.

Usage

S4 method for signature 'DADesign'
simulate(
object,
nsim = 1L,
seed = NULL,
truthTox,
truthSurv,
trueTmax = NULL,
args = NULL,
firstSeparate = FALSE,
deescalate = TRUE,
mcmcOptions = McmcOptions(),
DA = TRUE,
parallel = FALSE,
nCores = min(parallel::detectCores(), 5),
derive = list(),
...

)

Arguments

object the DADesign object we want to simulate data from

nsim (count)
the number of simulations (default: 1)

seed see set_seed()

truthTox (function)
a function which takes as input a dose (vector) and returns the true probability
(vector) for toxicity and the time DLT occurs. Additional arguments can be
supplied in args.

truthSurv (function)
a CDF which takes as input a time (vector) and returns the true cumulative prob-
ability (vector) that the DLT would occur conditioning on the patient has DLTs.

simulate,DADesign-method 365

trueTmax (number or NULL)
the true maximum time at which DLTs can occur. Note that this must be larger
than Tmax from the object’s base data, which is the length of the DLT window,
i.e. until which time DLTs are officially declared as such and used in the trial.

args (data.frame)
data frame with arguments for the truthTox function. The column names cor-
respond to the argument names, the rows to the values of the arguments. The
rows are appropriately recycled in the nsim simulations. In order to produce
outcomes from the posterior predictive distribution, e.g, pass an object that
contains the data observed so far, truthTox contains the prob function from the
model in object, and args contains posterior samples from the model.

firstSeparate (flag)
enroll the first patient separately from the rest of the cohort? (not default) If yes,
the cohort will be closed if a DLT occurs in this patient.

deescalate (flag)
allow deescalation when a DLT occurs in cohorts with lower dose level? (de-
fault: TRUE)

mcmcOptions (McmcOptions)
object of class McmcOptions, giving the MCMC options for each evaluation in
the trial. By default, the standard options are used.

DA (flag)
use dose-adaptation rules? (default: TRUE)

parallel (flag)
should the simulation runs be parallelized across the clusters of the computer?
(not default)

nCores (count)
how many cores should be used for parallel computing? Defaults to the number
of cores on the machine, maximum 5.

derive (list)
a named list of functions which derives statistics, based on the vector of poste-
rior MTD samples. Each list element must therefore accept one and only one
argument, which is a numeric vector, and return a number.

... not used

Value

an object of class Simulations

Note

Backfill cohorts are not yet implemented and therefore will lead to an error if used in the DADesign
object.

Examples

nolint start

366 simulate,DADesign-method

Define the dose-grid and PEM parameters
emptydata <- DataDA(

doseGrid = c(0.1, 0.5, 1, 1.5, 3, 6, seq(from = 10, to = 80, by = 2)),
Tmax = 60

)

Initialize the mDA-CRM model
npiece_ <- 10
Tmax_ <- 60

lambda_prior <- function(k) {
npiece_ / (Tmax_ * (npiece_ - k + 0.5))

}

model <- DALogisticLogNormal(
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56,
npiece = npiece_,
l = as.numeric(t(apply(as.matrix(c(1:npiece_), 1, npiece_), 2, lambda_prior))),
c_par = 2

)

Choose the rule for dose increments
myIncrements <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)

myNextBest <- NextBestNCRM(
target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Choose the rule for the cohort-size
mySize1 <- CohortSizeRange(

intervals = c(0, 30),
cohort_size = c(1, 3)

)
mySize2 <- CohortSizeDLT(

intervals = c(0, 1),
cohort_size = c(1, 3)

)
mySize <- maxSize(mySize1, mySize2)

Choose the rule for stopping
myStopping1 <- StoppingTargetProb(

target = c(0.2, 0.35),
prob = 0.5

)
myStopping2 <- StoppingMinPatients(nPatients = 50)

simulate,Design-method 367

myStopping <- (myStopping1 | myStopping2) | StoppingMissingDose()

Choose the safety window
mysafetywindow <- SafetyWindowConst(c(6, 2), 7, 7)

Initialize the design
design <- DADesign(

model = model,
increments = myIncrements,
nextBest = myNextBest,
stopping = myStopping,
cohort_size = mySize,
data = emptydata,
safetyWindow = mysafetywindow,
startingDose = 3

)

set up truth curves
myTruth <- probFunction(model, alpha0 = 2, alpha1 = 3)
curve(myTruth(x), from = 0, to = 100, ylim = c(0, 1))

exp_cond.cdf <- function(x, onset = 15) {
a <- pexp(28, 1 / onset, lower.tail = FALSE)
1 - (pexp(x, 1 / onset, lower.tail = FALSE) - a) / (1 - a)

}

set up simulation settings
options <- McmcOptions(

burnin = 10,
step = 1,
samples = 200

)

mySims <- simulate(design,
args = NULL,
truthTox = myTruth,
truthSurv = exp_cond.cdf,
trueTmax = 80,
nsim = 2,
seed = 819,
mcmcOptions = options,
firstSeparate = TRUE,
deescalate = FALSE,
parallel = FALSE

)

nolint end

368 simulate,Design-method

simulate,Design-method

Simulate outcomes from a CRM design

Description

[Stable]

Usage

S4 method for signature 'Design'
simulate(
object,
nsim = 1L,
seed = NULL,
truth,
truthResponse = plogis,
args = NULL,
firstSeparate = FALSE,
mcmcOptions = McmcOptions(),
parallel = FALSE,
nCores = min(parallel::detectCores(), 5),
derive = list(),
...

)

Arguments

object the Design object we want to simulate data from

nsim (count)
the number of simulations (default: 1)

seed see set_seed()

truth (function)
a function which takes as input a dose (vector) and returns the true probability
(vector) for toxicity. Additional arguments can be supplied in args.

truthResponse (function)
a function which takes as input a dose (vector) and returns the probability (vec-
tor) for a positive efficacy response.

args (data.frame)
data frame with arguments for the truth function. The column names corre-
spond to the argument names, the rows to the values of the arguments. The
rows are appropriately recycled in the nsim simulations. In order to produce
outcomes from the posterior predictive distribution, e.g, pass an object that
contains the data observed so far, truth contains the prob function from the
model in object, and args contains posterior samples from the model.

simulate,Design-method 369

firstSeparate (flag)
enroll the first patient separately from the rest of the cohort? (not default) If yes,
the cohort will be closed if a DLT occurs in this patient.

mcmcOptions (McmcOptions)
object of class McmcOptions, giving the MCMC options for each evaluation in
the trial. By default, the standard options are used

parallel (flag)
should the simulation runs be parallelized across the clusters of the computer?
(not default)

nCores (count)
how many cores should be used for parallel computing? Defaults to the number
of cores on the machine, maximum 5.

derive (list)
a named list of functions which derives statistics, based on the vector of poste-
rior MTD samples. Each list element must therefore accept one and only one
argument, which is a numeric vector, and return a number.

... not used

Value

an object of class Simulations

Examples

nolint start

Define the dose-grid
emptydata <- Data(doseGrid = c(1, 3, 5, 10, 15, 20, 25, 40, 50, 80, 100))

Initialize the CRM model
model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Choose the rule for selecting the next dose
myNextBest <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Choose the rule for the cohort-size
mySize1 <- CohortSizeRange(

intervals = c(0, 30),
cohort_size = c(1, 3)

)
mySize2 <- CohortSizeDLT(

intervals = c(0, 1),

370 simulate,Design-method

cohort_size = c(1, 3)
)
mySize <- maxSize(mySize1, mySize2)

Choose the rule for stopping
myStopping1 <- StoppingMinCohorts(nCohorts = 3)
myStopping2 <- StoppingTargetProb(

target = c(0.2, 0.35),
prob = 0.5

)
myStopping3 <- StoppingMinPatients(nPatients = 20)
myStopping <- (myStopping1 & myStopping2) | myStopping3 | StoppingMissingDose()

Choose the rule for dose increments
myIncrements <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)

Initialize the design
design <- Design(

model = model,
nextBest = myNextBest,
stopping = myStopping,
increments = myIncrements,
cohort_size = mySize,
data = emptydata,
startingDose = 3

)

define the true function
myTruth <- probFunction(model, alpha0 = 7, alpha1 = 8)

Run the simulation on the desired design
We only generate 1 trial outcomes here for illustration, for the actual study
this should be increased of course
options <- McmcOptions(

burnin = 5,
step = 1,
samples = 10

)

time <- system.time(
mySims <- simulate(

design,
args = NULL,
truth = myTruth,
nsim = 1,
seed = 819,
mcmcOptions = options,
parallel = FALSE

)
)[3]

simulate,DesignGrouped-method 371

nolint end

simulate,DesignGrouped-method

Simulate Method for the DesignGrouped Class

Description

[Experimental]

A simulate method for DesignGrouped designs.

Usage

S4 method for signature 'DesignGrouped'
simulate(
object,
nsim = 1L,
seed = NULL,
truth,
combo_truth,
args = data.frame(),
firstSeparate = FALSE,
mcmcOptions = McmcOptions(),
parallel = FALSE,
nCores = min(parallelly::availableCores(), 5),
...

)

Arguments

object (DesignGrouped)
the design we want to simulate trials from.

nsim (number)
how many trials should be simulated.

seed (RNGstate)
generated with set_seed().

truth (function)
a function which takes as input a dose (vector) and returns the true probability
(vector) for toxicity for the mono arm. Additional arguments can be supplied in
args.

combo_truth (function)
same as truth but for the combo arm.

372 simulate,DesignGrouped-method

args (data.frame)
optional data.frame with arguments that work for both the truth and combo_truth
functions. The column names correspond to the argument names, the rows to
the values of the arguments. The rows are appropriately recycled in the nsim
simulations.

firstSeparate (flag)
whether to enroll the first patient separately from the rest of the cohort and close
the cohort in case a DLT occurs in this first patient.

mcmcOptions (McmcOptions)
MCMC options for each evaluation in the trial.

parallel (flag)
whether the simulation runs are parallelized across the cores of the computer.

nCores (number)
how many cores should be used for parallel computing.

... not used.

Value

A list of mono and combo simulation results as Simulations objects.

Examples

Assemble ingredients for our group design.
my_stopping <- StoppingTargetProb(target = c(0.2, 0.35), prob = 0.5) |

StoppingMinPatients(10) |
StoppingMissingDose()

my_increments <- IncrementsDoseLevels(levels = 3L)
my_next_best <- NextBestNCRM(

target = c(0.2, 0.3),
overdose = c(0.3, 1),
max_overdose_prob = 0.3

)
my_cohort_size <- CohortSizeConst(3)
empty_data <- Data(

doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))
)
my_model <- LogisticLogNormalGrouped(

mean = c(-4, -4, -4, -4),
cov = diag(rep(6, 4)),
ref_dose = 0.1

)

Put together the design. Note that if we only specify the mono arm,
then the combo arm is having the same settings.
my_design <- DesignGrouped(

model = my_model,
mono = Design(
model = my_model,
stopping = my_stopping,
increments = my_increments,

simulate,DesignGrouped-method 373

nextBest = my_next_best,
cohort_size = my_cohort_size,
data = empty_data,
startingDose = 0.1

),
first_cohort_mono_only = TRUE,
same_dose_for_all = TRUE

)

Set up a realistic simulation scenario.
my_truth <- function(x) plogis(-4 + 0.2 * log(x / 0.1))
my_combo_truth <- function(x) plogis(-4 + 0.5 * log(x / 0.1))
matplot(

x = empty_data@doseGrid,
y = cbind(

mono = my_truth(empty_data@doseGrid),
combo = my_combo_truth(empty_data@doseGrid)

),
type = "l",
ylab = "true DLT prob",
xlab = "dose"

)
legend("topright", c("mono", "combo"), lty = c(1, 2), col = c(1, 2))

Start the simulations.
set.seed(123)

my_sims <- simulate(
my_design,
nsim = 1, # This should be at least 100 in actual applications.
seed = 123,
truth = my_truth,
combo_truth = my_combo_truth

)

Looking at the summary of the simulations:
mono_sims_sum <- summary(my_sims$mono, truth = my_truth)
combo_sims_sum <- summary(my_sims$combo, truth = my_combo_truth)

mono_sims_sum
combo_sims_sum

plot(mono_sims_sum)
plot(combo_sims_sum)

Looking at specific simulated trials:
trial_index <- 1
plot(my_sims$mono@data[[trial_index]])
plot(my_sims$combo@data[[trial_index]])

374 simulate,DualDesign-method

simulate,DualDesign-method

Simulate outcomes from a dual-endpoint design

Description

[Stable]

Usage

S4 method for signature 'DualDesign'
simulate(
object,
nsim = 1L,
seed = NULL,
trueTox,
trueBiomarker,
args = NULL,
sigma2W,
rho = 0,
firstSeparate = FALSE,
mcmcOptions = McmcOptions(),
parallel = FALSE,
nCores = min(parallel::detectCores(), 5),
derive = list(),
...

)

Arguments

object the DualDesign object we want to simulate data from

nsim (count)
the number of simulations (default: 1)

seed see set_seed()

trueTox (function)
a function which takes as input a dose (vector) and returns the true probability
(vector) for toxicity. Additional arguments can be supplied in args.

trueBiomarker (function)
a function which takes as input a dose (vector) and returns the true biomarker
level (vector). Additional arguments can be supplied in args.

args (data.frame)
data frame with arguments for the trueTox and trueBiomarker function. The
column names correspond to the argument names, the rows to the values of the
arguments. The rows are appropriately recycled in the nsim simulations.

simulate,DualDesign-method 375

sigma2W (number)
variance for the biomarker measurements

rho (number)
correlation between toxicity and biomarker measurements (default: 0)

firstSeparate (flag)
enroll the first patient separately from the rest of the cohort? (not default) If yes,
the cohort will be closed if a DLT occurs in this patient.

mcmcOptions (McmcOptions)
object of class McmcOptions, giving the MCMC options for each evaluation in
the trial. By default, the standard options are used

parallel (flag)
should the simulation runs be parallelized across the clusters of the computer?
(not default)

nCores (count)
how many cores should be used for parallel computing? Defaults to the number
of cores on the machine, maximum 5.

derive (list)
a named list of functions which derives statistics, based on the vector of poste-
rior MTD samples. Each list element must therefore accept one and only one
argument, which is a numeric vector, and return a number.

... not used

Value

an object of class DualSimulations

Note

Backfill cohorts are not yet implemented and therefore will lead to an error if used in the DualDesign
object.

Examples

nolint start

Define the dose-grid
emptydata <- DataDual(doseGrid = c(1, 3, 5, 10, 15, 20, 25, 40, 50, 80, 100))

Initialize the CRM model
model <- DualEndpointRW(

mean = c(0, 1),
cov = matrix(c(1, 0, 0, 1), nrow = 2),
sigma2betaW = 0.01,
sigma2W = c(a = 0.1, b = 0.1),
use_log_dose = TRUE,
ref_dose = 2,
rho = c(a = 1, b = 1),
rw1 = TRUE

376 simulate,DualDesign-method

)

Choose the rule for selecting the next dose
myNextBest <- NextBestDualEndpoint(

target = c(0.9, 1),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Choose the rule for the cohort-size
mySize1 <- CohortSizeRange(

intervals = c(0, 30),
cohort_size = c(1, 3)

)
mySize2 <- CohortSizeDLT(

intervals = c(0, 1),
cohort_size = c(1, 3)

)
mySize <- maxSize(mySize1, mySize2)

Choose the rule for stopping
myStopping4 <- StoppingTargetBiomarker(

target = c(0.9, 1),
prob = 0.5

)
myStopping <- myStopping4 | StoppingMinPatients(10) | StoppingMissingDose()

Choose the rule for dose increments
myIncrements <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)

Initialize the design
design <- DualDesign(

model = model,
data = emptydata,
nextBest = myNextBest,
stopping = myStopping,
increments = myIncrements,
cohort_size = mySize,
startingDose = 3

)

define scenarios for the TRUE toxicity and efficacy profiles
betaMod <- function(dose, e0, eMax, delta1, delta2, scal) {

maxDens <- (delta1^delta1) *
(delta2^delta2) /
((delta1 + delta2)^(delta1 + delta2))

dose <- dose / scal
e0 + eMax / maxDens * (dose^delta1) * (1 - dose)^delta2

}

simulate,DualResponsesDesign-method 377

trueBiomarker <- function(dose) {
betaMod(
dose,
e0 = 0.2,
eMax = 0.6,
delta1 = 5,
delta2 = 5 * 0.5 / 0.5,
scal = 100

)
}

trueTox <- function(dose) {
pnorm((dose - 60) / 10)

}

Draw the TRUE profiles
par(mfrow = c(1, 2))
curve(trueTox(x), from = 0, to = 80)
curve(trueBiomarker(x), from = 0, to = 80)

Run the simulation on the desired design
We only generate 1 trial outcome here for illustration, for the actual study
this should be increased of course, similarly for the McmcOptions -
they also need to be increased.

mySims <- simulate(
design,
trueTox = trueTox,
trueBiomarker = trueBiomarker,
sigma2W = 0.01,
rho = 0,
nsim = 1,
parallel = FALSE,
seed = 3,
startingDose = 6,
mcmcOptions = McmcOptions(

burnin = 10,
step = 1,
samples = 100

)
)

nolint end

simulate,DualResponsesDesign-method

Simulate dose escalation procedure using both DLE and efficacy re-
sponses without samples

378 simulate,DualResponsesDesign-method

Description

[Stable]
This is a method to simulate dose escalation procedure using both DLE and efficacy responses.
This is a method based on the DualResponsesDesign where DLE model used are of ModelTox
class object and efficacy model used are of ModelEff class object. In addition, no DLE and efficacy
samples are involved or generated in the simulation process.

Usage

S4 method for signature 'DualResponsesDesign'
simulate(
object,
nsim = 1L,
seed = NULL,
trueDLE,
trueEff,
trueNu,
args = NULL,
firstSeparate = FALSE,
parallel = FALSE,
nCores = min(parallel::detectCores(), 5L),
...

)

Arguments

object the DualResponsesDesign object we want to simulate the data from

nsim (count)
the number of simulations (default: 1)

seed see set_seed()

trueDLE (function)
a function which takes as input a dose (vector) and returns the true probability
(vector) of the occurrence of a DLE. Additional arguments can be supplied in
args.

trueEff (function)
a function which takes as input a dose (vector) and returns the expected efficacy
responses (vector). Additional arguments can be supplied in args.

trueNu (number)
the precision, the inverse of the variance of the efficacy responses

args (data.frame)
data frame with arguments for the trueDLE and trueEff function. The col-
umn names correspond to the argument names, the rows to the values of the
arguments. The rows are appropriately recycled in the nsim simulations.

firstSeparate (flag)
enroll the first patient separately from the rest of the cohort? (not default) If yes,
the cohort will be closed if a DLT occurs in this patient.

simulate,DualResponsesDesign-method 379

parallel (flag)
should the simulation runs be parallelized across the clusters of the computer?
(not default)

nCores (count)
how many cores should be used for parallel computing? Defaults to the number
of cores on the machine, maximum 5.

... not used

Value

an object of class PseudoDualSimulations

Examples

nolint start

Simulate dose-escalation procedure based on DLE and efficacy responses where no DLE
and efficacy samples are used
we need a data object with doses >= 1:
data <- DataDual(doseGrid = seq(25, 300, 25), placebo = FALSE)
First for the DLE model
The DLE model must be of 'ModelTox' (e.g 'LogisticIndepBeta') class
DLEmodel <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = data

)

The efficacy model of 'ModelEff' (e.g 'Effloglog') class
Effmodel <- Effloglog(

eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = data

)

The escalation rule using the 'NextBestMaxGain' class
mynextbest <- NextBestMaxGain(

prob_target_drt = 0.35,
prob_target_eot = 0.3

)

The increments (see Increments class examples)
200% allowable increase for dose below 300 and 200% increase for dose above 300
myIncrements <- IncrementsRelative(

intervals = c(25, 300),
increments = c(2, 2)

)
cohort size of 3
mySize <- CohortSizeConst(size = 3)

380 simulate,DualResponsesSamplesDesign-method

Stop only when 36 subjects are treated
myStopping <- StoppingMinPatients(nPatients = 36) | StoppingMissingDose()
Now specified the design with all the above information and starting with a dose of 25

Specified the design(for details please refer to the 'DualResponsesDesign' example)
design <- DualResponsesDesign(

nextBest = mynextbest,
model = DLEmodel,
eff_model = Effmodel,
stopping = myStopping,
increments = myIncrements,
cohort_size = mySize,
data = data,
startingDose = 25

)
Specify the true DLE and efficacy curves
myTruthDLE <- probFunction(DLEmodel, phi1 = -53.66584, phi2 = 10.50499)
myTruthEff <- efficacyFunction(Effmodel, theta1 = -4.818429, theta2 = 3.653058)

The true gain curve can also be seen
myTruthGain <- function(dose) {

return((myTruthEff(dose)) / (1 + (myTruthDLE(dose) / (1 - myTruthDLE(dose)))))
}

Then specified the simulations and generate the trial
For illustration purpose only 1 simulation is produced (nsim=1).
options <- McmcOptions(burnin = 100, step = 2, samples = 200)
mySim <- simulate(

object = design,
args = NULL,
trueDLE = myTruthDLE,
trueEff = myTruthEff,
trueNu = 1 / 0.025,
nsim = 1,
seed = 819,
parallel = FALSE

)

nolint end

simulate,DualResponsesSamplesDesign-method

Simulate dose escalation procedure using DLE and efficacy responses
with samples

Description

[Stable]

simulate,DualResponsesSamplesDesign-method 381

This is a method to simulate dose escalation procedure using both DLE and efficacy responses. This
is a method based on the DualResponsesSamplesDesign where DLE model used are of ModelTox
class object and efficacy model used are of ModelEff class object (special case is EffFlexi class
model object). In addition, DLE and efficacy samples are involved or generated in the simulation
process.

Usage

S4 method for signature 'DualResponsesSamplesDesign'
simulate(
object,
nsim = 1L,
seed = NULL,
trueDLE,
trueEff,
trueNu = NULL,
trueSigma2 = NULL,
trueSigma2betaW = NULL,
args = NULL,
firstSeparate = FALSE,
mcmcOptions = McmcOptions(),
parallel = FALSE,
nCores = min(parallel::detectCores(), 5L),
...

)

Arguments

object the DualResponsesSamplesDesign object we want to simulate the data from

nsim (count)
the number of simulations (default: 1)

seed see set_seed()

trueDLE (function)
a function which takes as input a dose (vector) and returns the true probability
(vector) of the occurrence of a DLE. Additional arguments can be supplied in
args.

trueEff (function)
a function which takes as input a dose (vector) and returns the expected efficacy
responses (vector). Additional arguments can be supplied in args.

trueNu (number)
(not with EffFlexi) the precision, the inverse of the variance of the efficacy
responses

trueSigma2 (number)
(only with EffFlexi) the true variance of the efficacy responses which must be
a single positive scalar.

382 simulate,DualResponsesSamplesDesign-method

trueSigma2betaW

(number)
(only with EffFlexi) the true variance for the random walk model used for
smoothing. This must be a single positive scalar.

args (data.frame)
data frame with arguments for the trueDLE and trueEff function. The col-
umn names correspond to the argument names, the rows to the values of the
arguments. The rows are appropriately recycled in the nsim simulations.

firstSeparate (flag)
enroll the first patient separately from the rest of the cohort? (not default) If yes,
the cohort will be closed if a DLT occurs in this patient.

mcmcOptions (McmcOptions)
object of class McmcOptions, giving the MCMC options for each evaluation in
the trial. By default, the standard options are used

parallel (flag)
should the simulation runs be parallelized across the clusters of the computer?
(not default)

nCores (count)
how many cores should be used for parallel computing? Defaults to the number
of cores on the machine, maximum 5.

... not used

Value

an object of class PseudoDualSimulations or PseudoDualFlexiSimulations

Examples

nolint start

Simulate dose-escalation procedure based on DLE and efficacy responses where DLE
and efficacy samples are used
data <- DataDual(doseGrid = seq(25, 300, 25), placebo = FALSE)
First for the DLE model
The DLE model must be of 'ModelTox' (e.g 'LogisticIndepBeta') class
DLEmodel <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = data

)

The efficacy model of 'ModelEff' (e.g 'Effloglog') class
Effmodel <- Effloglog(

eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = data

)

simulate,DualResponsesSamplesDesign-method 383

The escalation rule using the 'NextBestMaxGainSamples' class
mynextbest <- NextBestMaxGainSamples(

prob_target_drt = 0.35,
prob_target_eot = 0.3,
derive = function(samples) {
as.numeric(quantile(samples, prob = 0.3))

},
mg_derive = function(mg_samples) {

as.numeric(quantile(mg_samples, prob = 0.5))
}

)

The increments (see Increments class examples)
200% allowable increase for dose below 300 and 200% increase for dose above 300
myIncrements <- IncrementsRelative(

intervals = c(25, 300),
increments = c(2, 2)

)
cohort size of 3
mySize <- CohortSizeConst(size = 3)
Stop only when 10 subjects are treated (only for illustration such a low
sample size)
myStopping <- StoppingMinPatients(nPatients = 10) | StoppingMissingDose()
Now specified the design with all the above information and starting with
a dose of 25

Specified the design
design <- DualResponsesSamplesDesign(

nextBest = mynextbest,
cohort_size = mySize,
startingDose = 25,
model = DLEmodel,
eff_model = Effmodel,
data = data,
stopping = myStopping,
increments = myIncrements

)
specified the true DLE and efficacy curve
myTruthDLE <- probFunction(DLEmodel, phi1 = -53.66584, phi2 = 10.50499)
myTruthEff <- efficacyFunction(Effmodel, theta1 = -4.818429, theta2 = 3.653058)

The true gain curve can also be seen
myTruthGain <- function(dose) {

return((myTruthEff(dose)) / (1 + (myTruthDLE(dose) / (1 - myTruthDLE(dose)))))
}

simulate the trial for 10 times involving samples
for illustration purposes, in reality larger number of burnin and samples shoud be used
options <- McmcOptions(burnin = 10, step = 1, samples = 50)
For illustration purpose only 1 simulations are produced (nsim=1).
mySim <- simulate(

384 simulate,DualResponsesSamplesDesign-method

design,
args = NULL,
trueDLE = myTruthDLE,
trueEff = myTruthEff,
trueNu = 1 / 0.025,
nsim = 1,
mcmcOptions = options,
seed = 819,
parallel = FALSE

)

Simulate dose-escalation procedure based on DLE and efficacy responses where DLE
and efficacy samples are used
when the efficacy model is of 'EffFlexi' class
Effmodel <- EffFlexi(

eff = c(1.223, 2.513),
eff_dose = c(25, 300),
sigma2W = c(a = 0.1, b = 0.1),
sigma2betaW = c(a = 20, b = 50),
rw1 = FALSE,
data = data

)

Specified the design
design <- DualResponsesSamplesDesign(

nextBest = mynextbest,
cohort_size = mySize,
startingDose = 25,
model = DLEmodel,
eff_model = Effmodel,
data = data,
stopping = myStopping,
increments = myIncrements

)
specified the true DLE curve and the true expected efficacy values at all dose levels
myTruthDLE <- probFunction(DLEmodel, phi1 = -53.66584, phi2 = 10.50499)

myTruthEff <- c(
-0.5478867,
0.1645417,
0.5248031,
0.7604467,
0.9333009,
1.0687031,
1.1793942,
1.2726408,
1.3529598,
1.4233411,
1.4858613,
1.5420182

)

simulate,RuleDesign-method 385

The true gain curve can also be seen
d1 <- data@doseGrid
myTruthGain <- (myTruthEff) / (1 + (myTruthDLE(d1) / (1 - myTruthDLE(d1))))

mySim <- simulate(
object = design,
args = NULL,
trueDLE = myTruthDLE,
trueEff = myTruthEff,
trueSigma2 = 0.025,
trueSigma2betaW = 1,
mcmcOptions = options,
nsim = 1,
seed = 819,
parallel = FALSE

)

nolint end

simulate,RuleDesign-method

Simulate outcomes from a rule-based design

Description

[Stable]

Usage

S4 method for signature 'RuleDesign'
simulate(
object,
nsim = 1L,
seed = NULL,
truth,
args = NULL,
parallel = FALSE,
nCores = min(parallel::detectCores(), 5L),
...

)

Arguments

object the RuleDesign object we want to simulate data from

nsim (count)
the number of simulations (default: 1)

seed see set_seed()

386 simulate,RuleDesign-method

truth (function)
a function which takes as input a dose (vector) and returns the true probability
(vector) for toxicity. Additional arguments can be supplied in args.

args (data.frame)
data frame with arguments for the truth function. The column names corre-
spond to the argument names, the rows to the values of the arguments. The rows
are appropriately recycled in the nsim simulations.

parallel (flag)
should the simulation runs be parallelized across the clusters of the computer?
(not default)

nCores (count)
how many cores should be used for parallel computing? Defaults to the number
of cores on the machine, maximum 5.

... not used

Value

an object of class GeneralSimulations

Examples

nolint start

Define the dose-grid
emptydata <- Data(doseGrid = c(5, 10, 15, 25, 35, 50, 80))

inizialing a 3+3 design with constant cohort size of 3 and
starting dose equal 5
myDesign <- RuleDesign(

nextBest = NextBestThreePlusThree(),
cohort_size = CohortSizeConst(size = 3L),
data = emptydata,
startingDose = 5

)

model <- LogisticLogNormal(
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 50

)

define the true function
myTruth <- probFunction(model, alpha0 = 7, alpha1 = 8)

Perform the simulation
For illustration purpose only 10 simulation is produced (nsim=10).
threeSims <- simulate(

myDesign,
nsim = 10,
seed = 35,

simulate,TDDesign-method 387

truth = myTruth,
parallel = FALSE

)

nolint end

simulate,TDDesign-method

Simulate dose escalation procedure using DLE responses only without
samples

Description

[Stable]

This is a method to simulate dose escalation procedure only using the DLE responses. This is a
method based on the TDDesign where model used are of ModelTox class object and no samples are
involved.

Usage

S4 method for signature 'TDDesign'
simulate(
object,
nsim = 1L,
seed = NULL,
truth,
args = NULL,
firstSeparate = FALSE,
parallel = FALSE,
nCores = min(parallel::detectCores(), 5L),
...

)

Arguments

object the TDDesign object we want to simulate the data from

nsim (count)
the number of simulations (default: 1)

seed see set_seed()

truth (function)
a function which takes as input a dose (vector) and returns the true probability
(vector) of the occurrence of a DLE. Additional arguments can be supplied in
args.

388 simulate,TDDesign-method

args (data.frame)
data frame with arguments for the truth function. The column names corre-
spond to the argument names, the rows to the values of the arguments. The
rows are appropriately recycled in the nsim simulations. In order to produce
outcomes from the posterior predictive distribution, e.g, pass an object that
contains the data observed so far, truth contains the prob function from the
model in object, and args contains posterior samples from the model.

firstSeparate (flag)
enroll the first patient separately from the rest of the cohort? (not default) If yes,
the cohort will be closed if a DLT occurs in this patient.

parallel (flag)
should the simulation runs be parallelized across the clusters of the computer?
(not default)

nCores (count)
how many cores should be used for parallel computing? Defaults to the number
of cores on the machine, maximum 5.

... not used

Value

an object of class PseudoSimulations

Examples

nolint start

Simulate dose-escalation procedure based only on DLE responses and no DLE samples are used

The design comprises a model, the escalation rule, starting data,
a cohort size and a starting dose
Define your data set first using an empty data set
with dose levels from 25 to 300 with increments 25
data <- Data(doseGrid = seq(25, 300, 25))

The design only incorporate DLE responses and DLE samples are involved
Specified the model of 'ModelTox' class eg 'LogisticIndepBeta' class model
model <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = data

)
Then the escalation rule
tdNextBest <- NextBestTD(

prob_target_drt = 0.35,
prob_target_eot = 0.3

)
doseRecommendation <- nextBest(

tdNextBest,
doselimit = max(data@doseGrid),

simulate,TDsamplesDesign-method 389

model = model,
data = data

)
Then the starting data, an empty data set
emptydata <- Data(doseGrid = seq(25, 300, 25))
The cohort size, size of 3 subjects
mySize <- CohortSizeConst(size = 3)
Deifne the increments for the dose-escalation process
The maximum increase of 200% for doses up to the maximum of the dose specified in the doseGrid
The maximum increase of 200% for dose above the maximum of the dose specified in the doseGrid
This is to specified a maximum of 3-fold restriction in dose-esclation
myIncrements <- IncrementsRelative(

intervals = c(min(data@doseGrid), max(data@doseGrid)),
increments = c(2, 2)

)
Specified the stopping rule e.g stop when the maximum sample size of 36 patients has been reached
myStopping <- StoppingMinPatients(nPatients = 36) | StoppingMissingDose()

Specified the design(for details please refer to the 'TDDesign' example)
design <- TDDesign(

model = model,
nextBest = tdNextBest,
stopping = myStopping,
increments = myIncrements,
cohort_size = mySize,
data = data,
startingDose = 25

)

Specify the truth of the DLE responses
myTruth <- probFunction(model, phi1 = -53.66584, phi2 = 10.50499)

then plot the truth to see how the truth dose-DLE curve look like
curve(myTruth(x), from = 0, to = 300, ylim = c(0, 1))

For illustration purpose only 1 simulation is produced (nsim=1).
mySim <- simulate(

object = design,
args = NULL,
truth = myTruth,
nsim = 1,
seed = 819,
parallel = FALSE

)

nolint end

390 simulate,TDsamplesDesign-method

simulate,TDsamplesDesign-method

Simulate dose escalation procedure using DLE responses only with
DLE samples

Description

[Stable]

This is a method to simulate dose escalation procedure only using the DLE responses. This is
a method based on the TDsamplesDesign where model used are of ModelTox class object DLE
samples are also used.

Usage

S4 method for signature 'TDsamplesDesign'
simulate(
object,
nsim = 1L,
seed = NULL,
truth,
args = NULL,
firstSeparate = FALSE,
mcmcOptions = McmcOptions(),
parallel = FALSE,
nCores = min(parallel::detectCores(), 5L),
...

)

Arguments

object the TDsamplesDesign object we want to simulate the data from

nsim (count)
the number of simulations (default: 1)

seed see set_seed()

truth (function)
a function which takes as input a dose (vector) and returns the true probability
(vector) of the occurrence of a DLE. Additional arguments can be supplied in
args.

args (data.frame)
data frame with arguments for the truth function. The column names corre-
spond to the argument names, the rows to the values of the arguments. The
rows are appropriately recycled in the nsim simulations. In order to produce
outcomes from the posterior predictive distribution, e.g, pass an object that
contains the data observed so far, truth contains the prob function from the
model in object, and args contains posterior samples from the model.

simulate,TDsamplesDesign-method 391

firstSeparate (flag)
enroll the first patient separately from the rest of the cohort? (not default) If yes,
the cohort will be closed if a DLT occurs in this patient.

mcmcOptions (McmcOptions)
object of class McmcOptions, giving the MCMC options for each evaluation in
the trial. By default, the standard options are used

parallel (flag)
should the simulation runs be parallelized across the clusters of the computer?
(not default)

nCores (count)
how many cores should be used for parallel computing? Defaults to the number
of cores on the machine, maximum 5.

... not used

Value

an object of class PseudoSimulations

Examples

nolint start

Simulate dose-escalation procedure based only on DLE responses with DLE samples involved

The design comprises a model, the escalation rule, starting data,
a cohort size and a starting dose
Define your data set first using an empty data set
with dose levels from 25 to 300 with increments 25
data <- Data(doseGrid = seq(25, 300, 25))

The design only incorporate DLE responses and DLE samples are involved
Specified the model of 'ModelTox' class eg 'LogisticIndepBeta' class model
model <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = data

)
Then the escalation rule
tdNextBest <- NextBestTDsamples(

prob_target_drt = 0.35,
prob_target_eot = 0.3,
derive = function(samples) {
as.numeric(quantile(samples, probs = 0.3))

}
)

The cohort size, size of 3 subjects
mySize <- CohortSizeConst(size = 3)
Deifne the increments for the dose-escalation process

392 Simulations-class

The maximum increase of 200% for doses up to the maximum of the dose specified in the doseGrid
The maximum increase of 200% for dose above the maximum of the dose specified in the doseGrid
This is to specified a maximum of 3-fold restriction in dose-esclation
myIncrements <- IncrementsRelative(

intervals = c(min(data@doseGrid), max(data@doseGrid)),
increments = c(2, 2)

)
Specified the stopping rule e.g stop when the maximum sample size of 36 patients has been reached
myStopping <- StoppingMinPatients(nPatients = 36) | StoppingMissingDose()

Specified the design(for details please refer to the 'TDsamplesDesign' example)
design <- TDsamplesDesign(

model = model,
nextBest = tdNextBest,
stopping = myStopping,
increments = myIncrements,
cohort_size = mySize,
data = data,
startingDose = 25

)

Specify the truth of the DLE responses
myTruth <- probFunction(model, phi1 = -53.66584, phi2 = 10.50499)

then plot the truth to see how the truth dose-DLE curve look like
curve(myTruth(x), from = 0, to = 300, ylim = c(0, 1))

Then specified the simulations and generate the trial
options for MCMC
options <- McmcOptions(burnin = 100, step = 2, samples = 200)
The simulations
For illustration purpose only 1 simulation is produced (nsim=1).
mySim <- simulate(

object = design,
args = NULL,
truth = myTruth,
nsim = 1,
seed = 819,
mcmcOptions = options,
parallel = FALSE

)

nolint end

Simulations-class Simulations

Description

[Stable]

Simulations-class 393

This class captures the trial simulations from model based designs. Additional slots fit, stop_reasons,
stop_report,additional_stats compared to the general class GeneralSimulations.

Usage

Simulations(fit, stop_reasons, stop_report, additional_stats, ...)

.DefaultSimulations()

Arguments

fit (list)
see slot definition.

stop_reasons (list)
see slot definition.

stop_report see Simulations

additional_stats

(list)
see slot definition.

... additional parameters from GeneralSimulations

Slots

fit (list)
final fits

stop_reasons (list)
stopping reasons for each simulation run

stop_report matrix of stopping rule outcomes

additional_stats list of additional statistical summary

Note

Typically, end users will not use the .DefaultSimulations() function.

Examples

data <- list(
Data(
x = 1:2,
y = 0:1,
doseGrid = 1:2,
ID = 1L:2L,
cohort = 1L:2L

),
Data(

x = 3:4,
y = 0:1,
doseGrid = 3:4,
ID = 1L:2L,

394 SimulationsSummary-class

cohort = 1L:2L
)

)

doses <- c(1, 2)

seed <- as.integer(123)

fit <- list(
c(0.1, 0.2),
c(0.3, 0.4)

)

stop_report <- matrix(c(TRUE, FALSE), nrow = 2)

stop_reasons <- list("A", "B")

additional_stats <- list(a = 1, b = 1)

simulations <- Simulations(
fit = fit,
stop_report = stop_report,
stop_reasons = stop_reasons,
additional_stats = additional_stats,
data,
doses,
seed

)

SimulationsSummary-class

SimulationsSummary

Description

[Stable]
In addition to the slots in the parent class GeneralSimulationsSummary, it contains two slots with
model fit information.

Usage

.DefaultSimulationsSummary()

Slots

stop_report (matrix)
matrix of stopping rule outcomes

fit_at_dose_most_selected (numeric)
fitted toxicity rate at dose most often selected

size 395

additional_stats (list)
list of additional statistical summary

mean_fit (list)
list with the average, lower (2.5%) and upper (97.5%) quantiles of the mean fitted toxicity at
each dose level

Note

Typically, end users will not use the .DefaultSimulationsSummary() function.

size Size of an Object

Description

[Stable]

A method that computes the size of a given object. This can be for instance a size of a MCMC
sample, or the size of a cohort. See the help of a specific method for more details.

Usage

size(object, ...)

S4 method for signature 'McmcOptions'
size(object, ...)

S4 method for signature 'CohortSizeRange'
size(object, dose, data)

S4 method for signature 'CohortSizeDLT'
size(object, dose, data)

S4 method for signature 'CohortSizeMax'
size(object, dose, data)

S4 method for signature 'CohortSizeMin'
size(object, dose, data)

S4 method for signature 'CohortSizeConst'
size(object, dose, ...)

S4 method for signature 'CohortSizeRandom'
size(object, dose, ...)

S4 method for signature 'CohortSizeParts'
size(object, dose, data)

396 size

S4 method for signature 'CohortSizeOrdinal'
size(object, dose, data, ...)

S4 method for signature 'Samples'
size(object, ...)

Arguments

object (McmcOptions or Samples or CohortSize)
an object for which the size is computed.

... not used.

dose (numeric) the next dose.

data the data input, an object of class DataOrdinal.

Value

A size of a given object.

Functions

• size(McmcOptions): compute the number of MCMC samples based on McmcOptions object.

• size(CohortSizeRange): Determines the size of the next cohort based on the range into
which the next dose falls into.

• size(CohortSizeDLT): Determines the size of the next cohort based on the number of DLTs
so far.

• size(CohortSizeMax): Determines the size of the next cohort based on maximum of multi-
ple cohort size rules.

• size(CohortSizeMin): Determines the size of the next cohort based on minimum of multiple
cohort size rules.

• size(CohortSizeConst): Constant cohort size.

• size(CohortSizeRandom): Random cohort size drawn uniformly between min and max size.

• size(CohortSizeParts): Determines the size of the next cohort based on the parts.

• size(CohortSizeOrdinal): Determines the size of the next cohort in a ordinal CRM trial.

• size(Samples): get the number of MCMC samples from Samples object.

Examples

Set up the MCMC option in order to have a burn-in of 10000 iterations and
then take every other iteration up to a collection of 10000 samples.
my_options <- McmcOptions(burnin = 10000, step = 2, samples = 10000)

size(my_options)
nolint start

Create the data

size 397

data <- Data(
x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Initialize the CRM model used to model the data
model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin = 100, step = 2, samples = 2000)
set.seed(94)
samples <- mcmc(data, model, options)

Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)
nextMaxDose <- maxDose(myIncrements, data = data)

Define the rule which will be used to select the next best dose
based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Calculate the next best dose
doseRecommendation <- nextBest(

myNextBest,
doselimit = nextMaxDose,
samples = samples,
model = model,
data = data

)

Rule for the cohort size:
- having cohort of size 1 for doses <10
- and having cohort of size 3 for doses >=10
mySize <- CohortSizeRange(intervals = c(0, 10), cohort_size = c(1, 3))

Determine the cohort size for the next cohort
size(mySize, dose = doseRecommendation$value, data = data)

nolint end
nolint start

398 size

Create the data
data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(
0.1,
0.5,
1.5,
3,
6,
seq(from = 10, to = 80, by = 2)

)
)

Initialize the CRM model used to model the data
model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(

burnin = 100,
step = 2,
samples = 2000

)
set.seed(94)
samples <- mcmc(data, model, options)

Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)
nextMaxDose <- maxDose(myIncrements, data = data)

Define the rule which will be used to select the next best dose
based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Calculate the next best dose
doseRecommendation <- nextBest(

myNextBest,
doselimit = nextMaxDose,
samples = samples,
model = model,

size 399

data = data
)

Rule for the cohort size:
- having cohort of size 1 if no DLTs were yet observed
- and having cohort of size 3 if at least 1 DLT was already observed
mySize <- CohortSizeDLT(

intervals = c(0, 1),
cohort_size = c(1, 3)

)

Determine the cohort size for the next cohort
size(mySize, dose = doseRecommendation$value, data = data)

nolint end
nolint start

Create the data
data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(

0.1,
0.5,
1.5,
3,
6,
seq(from = 10, to = 80, by = 2)

)
)

Initialize the CRM model used to model the data
model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(

burnin = 100,
step = 2,
samples = 2000

)
set.seed(94)
samples <- mcmc(data, model, options)

Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)

400 size

nextMaxDose <- maxDose(myIncrements, data = data)

Define the rule which will be used to select the next best dose
based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Calculate the next best dose
doseRecommendation <- nextBest(

myNextBest,
doselimit = nextMaxDose,
samples = samples,
model = model,
data = data

)

Rule for having cohort of size 1 for doses <30
and having cohort of size 3 for doses >=30
mySize1 <- CohortSizeRange(

intervals = c(0, 10),
cohort_size = c(1, 3)

)

Rule for having cohort of size 1 until no DLT were observed
and having cohort of size 3 as soon as 1 DLT is observed
mySize2 <- CohortSizeDLT(

intervals = c(0, 1),
cohort_size = c(1, 3)

)

Combining the two rules for cohort size by taking the maximum of the sample sizes
of the single rules
mySize <- maxSize(mySize1, mySize2)

Determine the cohort size for the next cohort
size(mySize, dose = doseRecommendation$value, data = data)

nolint end
nolint start

Create the data
data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(
0.1,
0.5,
1.5,
3,

size 401

6,
seq(from = 10, to = 80, by = 2)

)
)

Initialize the CRM model used to model the data
model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(

burnin = 100,
step = 2,
samples = 2000

)
set.seed(94)
samples <- mcmc(data, model, options)

Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)
nextMaxDose <- maxDose(myIncrements, data = data)

Define the rule which will be used to select the next best dose
based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Calculate the next best dose
doseRecommendation <- nextBest(

myNextBest,
doselimit = nextMaxDose,
samples = samples,
model = model,
data = data

)

Rule for having cohort of size 1 for doses <30
and having cohort of size 3 for doses >=30
mySize1 <- CohortSizeRange(

intervals = c(0, 30),
cohort_size = c(1, 3)

)

Rule for having cohort of size 1 until no DLT were observed

402 size

and having cohort of size 3 as soon as 1 DLT is observed
mySize2 <- CohortSizeDLT(

intervals = c(0, 1),
cohort_size = c(1, 3)

)

Combining the two rules for cohort size by taking the minimum of the sample sizes
of the single rules
mySize <- minSize(mySize1, mySize2)

Determine the cohort size for the next cohort
size(mySize, dose = doseRecommendation$value, data = data)

nolint end
nolint start

Create the data
data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Initialize the CRM model used to model the data
model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin = 100, step = 2, samples = 2000)
set.seed(94)
samples <- mcmc(data, model, options)

Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)
nextMaxDose <- maxDose(myIncrements, data = data)

Define the rule which will be used to select the next best dose
based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Calculate the next best dose
doseRecommendation <- nextBest(

size 403

myNextBest,
doselimit = nextMaxDose,
samples = samples,
model = model,
data = data

)

Rule for having cohorts with constant cohort size of 3
mySize <- CohortSizeConst(size = 3)

Determine the cohort size for the next cohort
size(mySize, dose = doseRecommendation$value)

nolint end
Rule for having cohorts with random cohort size between 2 and 4
mySize <- CohortSizeRandom(min_size = 2, max_size = 4)

Determine the cohort size for the next cohort
This will return a random integer between 2 and 4 (inclusive)
set.seed(123)
size(mySize, dose = 5)
nolint start

create an object of class 'DataParts'
data <- DataParts(

x = c(0.1, 0.5, 1.5),
y = c(0, 0, 0),
doseGrid = c(
0.1,
0.5,
1.5,
3,
6,
seq(from = 10, to = 80, by = 2)

),
part = c(1L, 1L, 1L),
nextPart = 1L,
part1Ladder = c(0.1, 0.5, 1.5, 3, 6, 10)

)

Initialize the CRM model used to model the data
model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(

burnin = 100,
step = 2,
samples = 2000

)

404 Stopping-class

set.seed(94)
samples <- mcmc(data, model, options)

myIncrements <- IncrementsRelativeParts(
dlt_start = 0,
clean_start = 1

)
nextMaxDose <- maxDose(myIncrements, data = data)

Define the rule which will be used to select the next best dose
based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Calculate the next best dose
doseRecommendation <- nextBest(

myNextBest,
doselimit = nextMaxDose,
samples = samples,
model = model,
data = data

)

Rule for the cohort size:
mySize <- CohortSizeParts(cohort_sizes = c(1, 3))

Determine the cohort size for the next cohort
size(mySize, dose = doseRecommendation$value, data = data)

nolint end
CohortSizeOrdinal(

grade = 1L,
rule = CohortSizeRange(intervals = c(0L, 30L), cohort_size = c(1L, 3L))

)
Set up the MCMC option in order to have a burn-in of 100 iterations and
then take every other iteration up to a collection of 200 samples.
my_options <- McmcOptions(burnin = 100, step = 2, samples = 200)

my_samples <- Samples(
data = list(alpha = rnorm(200), beta = rnorm(200)),
options = my_options

)

size(my_samples)

Stopping-class Stopping

StoppingAll-class 405

Description

[Stable]
Stopping is a class for stopping rules.

Slots

report_label (string)
a label for the stopping report. The meaning of this parameter is twofold. If it is equal to
NA_character_ (default), the report_label will not be used in the report at all. Otherwise,
if it is specified as an empty character (i.e. character(0)) in a user constructor, then a default,
class-specific label will be created for this slot. Finally, for the remaining cases, a user can
provide a custom label.

See Also

StoppingList, StoppingCohortsNearDose, StoppingPatientsNearDose, StoppingMinCohorts,
StoppingMinPatients, StoppingTargetProb, StoppingMTDdistribution, StoppingTargetBiomarker,
StoppingHighestDose StoppingMTDCV, StoppingLowestDoseHSRBeta, StoppingSpecificDose.

StoppingAll-class StoppingAll

Description

[Stable]
StoppingAll is the class for testing a stopping rule that consists of many single stopping rules that
are in turn the objects of class Stopping. All single stopping rules must be satisfied in order the
result of this rule to be TRUE.

Usage

StoppingAll(stop_list, report_label = NA_character_)

.DefaultStoppingAll()

Arguments

stop_list (list)
see slot definition.

report_label (string)
see slot definition.

Slots

stop_list (list)
list of stopping rules.

report_label label for reporting

406 StoppingAny-class

Note

Typically, end users will not use the .DefaultStoppingAll() function.

Examples

Define some stopping rules.
my_stopping1 <- StoppingMinCohorts(nCohorts = 3)
my_stopping2 <- StoppingTargetProb(target = c(0.2, 0.35), prob = 0.5)
my_stopping3 <- StoppingMinPatients(nPatients = 20)

Create a list of stopping rules (of class `StoppingAll`) which would then be
summarized by the `all` function, meaning that the study would be stopped only
if all of the single stopping rules are `TRUE`.
my_stopping <- StoppingAll(

stop_list = c(my_stopping1, my_stopping2, my_stopping3)
)

StoppingAny-class StoppingAny

Description

[Stable]

StoppingAny is the class for testing a stopping rule that consists of many single stopping rules that
are in turn the objects of class Stopping. At least one single stopping rule must be satisfied in order
the result of this rule to be TRUE.

Usage

StoppingAny(stop_list, report_label = NA_character_)

.DefaultStoppingAny()

Arguments

stop_list (list)
see slot definition.

report_label (string)
see slot definition.

Slots

stop_list (list)
list of stopping rules.

report_label label for reporting

StoppingCohortsNearDose-class 407

Note

Typically, end users will not use the .DefaultStoppingAny() function.

Examples

Define some stopping rules.
my_stopping1 <- StoppingMinCohorts(nCohorts = 3)
my_stopping2 <- StoppingTargetProb(target = c(0.2, 0.35), prob = 0.5)
my_stopping3 <- StoppingMinPatients(nPatients = 20)

Create a list of stopping rules (of class `StoppingAny`) which would then be
summarized by the `any` function, meaning that the study would be stopped if
any of the single stopping rules is `TRUE`.
my_stopping <- StoppingAny(

stop_list = c(my_stopping1, my_stopping2, my_stopping3)
)

StoppingCohortsNearDose-class

StoppingCohortsNearDose

Description

[Stable]

StoppingCohortsNearDose is the class for stopping based on number of cohorts near to next best
dose.

Usage

StoppingCohortsNearDose(
nCohorts = 2L,
percentage = 50,
report_label = NA_character_

)

.DefaultStoppingCohortsNearDose()

Arguments

nCohorts (number)
see slot definition.

percentage (number)
see slot definition.

report_label (string or NA)
see slot definition.

408 StoppingExternal-class

Slots

nCohorts (number)
number of required cohorts.

percentage (number)
percentage (between and including 0 and 100) within the next best dose the cohorts must lie.

Note

Typically, end users will not use the .DefaultStoppingCohortsNearDose() function.

Examples

Here, is the rule for stopping the study if at least 3 cohorts were dosed
at a dose within (1 +/- 0.2) of the next best dose.
my_stopping <- StoppingCohortsNearDose(

nCohorts = 3,
percentage = 0.2

)

StoppingExternal-class

StoppingExternal

Description

[Experimental]
StoppingExternal is the class for stopping based on an external flag.

Usage

StoppingExternal(report_label = NA_character_)

.DefaultStoppingExternal(report_label = NA_character_)

Arguments

report_label (string or NA)
see slot definition.

Note

Typically, end users will not use the .DefaultStoppingExternal() function.

Examples

my_stopping <- StoppingExternal()

StoppingHighestDose-class 409

StoppingHighestDose-class

StoppingHighestDose

Description

[Experimental]

StoppingHighestDose is the class for stopping based on the highest dose. That is, the stopping
occurs when the highest dose is reached.

Usage

StoppingHighestDose(report_label = NA_character_)

.DefaultStoppingHighestDose()

Arguments

report_label (string or NA)
see slot definition.

Note

Typically, end users will not use the .DefaultStoppingHighestDose() function.

Examples

The following stopping rule is met when:
- next proposed dose is highest dose, and
- there are already at least 3 patients on that dose, and
- we are sure that this dose is safe, e.g. the probability to be in (0%, 20%)
interval of the DLT rate is above 50%.
my_stopping <- StoppingHighestDose() &

StoppingPatientsNearDose(nPatients = 3, percentage = 0) &
StoppingTargetProb(target = c(0, 0.2), prob = 0.5)

We note that this rule would then need to be combined with the other standard
stopping rules, when the MTD is found based on being near e.g. a 30% DLT
probability or having reached maximal sample size, in the manner of:
stop_rule <- stop_high | stop_low | stop_sample_size # nolintr.

410 StoppingList-class

StoppingList-class StoppingList

Description

[Stable]
StoppingList is the class for testing a stopping rule that consists of many single stopping rules that
are in turn the objects of class Stopping. The summary slot stores a function that takes a logical
vector of the size of stop_list and returns a single logical value. For example, if the function
all is specified as a summary function, then that all stopping rules defined in stop_list must be
satisfied in order the result of this rule to be TRUE.

Usage

StoppingList(stop_list, summary)

.DefaultStoppingList()

Arguments

stop_list (list)
see slot definition.

summary (function)
see slot definition.

Slots

stop_list (list)
list of stopping rules.

summary (function)
a summary function to combine the results of the stopping rules into a single result.

Note

Typically, end users will not use the .DefaultStoppingList() function.

Examples

Define some stopping rules.
my_stopping1 <- StoppingMinCohorts(nCohorts = 3)
my_stopping2 <- StoppingTargetProb(target = c(0.2, 0.35), prob = 0.5)
my_stopping3 <- StoppingMinPatients(nPatients = 20)

Create a list of stopping rules (of class `StoppingList`) which will then be
summarized (in this specific example) with the `any` function, meaning that
the study would be stopped if any of the single stopping rules is `TRUE`.
my_stopping <- StoppingList(

StoppingLowestDoseHSRBeta-class 411

stop_list = c(my_stopping1, my_stopping2, my_stopping3),
summary = any

)

StoppingLowestDoseHSRBeta-class

StoppingLowestDoseHSRBeta

Description

[Experimental]

StoppingLowestDoseHSRBeta is a class for stopping based on a Hard Safety Rule using the Beta
posterior distribution with Beta(a,b) prior and a Bin-Beta model based on the observed data at the
lowest dose level. The rule is triggered when the first dose is considered to be toxic (i.e. above
threshold probability) based on the observed data at the lowest dose level and a Beta(a,b) prior
distribution. The default prior is Beta(1,1). In case that placebo is used, the rule is evaluated at the
second dose of the dose grid, i.e. at the lowest non-placebo dose.

Usage

StoppingLowestDoseHSRBeta(
target = 0.3,
prob = 0.95,
a = 1,
b = 1,
report_label = NA_character_

)

.DefaultStoppingLowestDoseHSRBeta()

Arguments

target (proportion)
see slot definition.

prob (proportion)
see slot definition.

a (number)
see slot definition.

b (number)
see slot definition.

report_label (string or NA)
see slot definition.

412 StoppingMaxGainCIRatio-class

Slots

target (proportion)
the target toxicity.

prob (proportion)
the threshold probability for the lowest dose being toxic.

a (number)
shape parameter a > 0 of probability distribution Beta (a,b).

b (number)
shape parameter b > 0 of probability distribution Beta (a,b).

Note

This stopping rule is independent from the underlying model.

Typically, end users will not use the .DefaultStoppingLowestDoseHSRBeta() function.

Examples

Stopping the study if the first dose is toxic with more than 90%
probability based on a Beta posterior distribution with Beta(1,1) prior.
my_stopping <- StoppingLowestDoseHSRBeta(

target = 0.3,
prob = 0.9

)

Stopping the study if the first dose is toxic with more than 90%
probability based on a Beta posterior distribution with Beta(0.5,0.5) prior.
my_stopping <- StoppingLowestDoseHSRBeta(

target = 0.3,
prob = 0.9,
a = 0.5,
b = 0.5

)

StoppingMaxGainCIRatio-class

StoppingMaxGainCIRatio

Description

[Stable]

StoppingMaxGainCIRatio is the class for testing a stopping rule that is based on a target ratio of
the 95% credibility interval. Specifically, this is the ratio of the upper to the lower bound of the 95%
credibility interval’s estimate of the: (1) target dose (i.e. a dose that corresponds to a given target
probability of the occurrence of a DLT prob_target), or (2) max gain dose (i.e. a dose which gives
the maximum gain), depending on which one out of these two is smaller.

StoppingMinCohorts-class 413

Usage

StoppingMaxGainCIRatio(
target_ratio = 5,
prob_target = 0.3,
report_label = NA_character_

)

.DefaultStoppingMaxGainCIRatio()

Arguments

target_ratio (numeric)
see slot definition.

prob_target (proportion)
see slot definition.

report_label (string or NA)
see slot definition.

Slots

target_ratio (numeric)
target for the ratio of the 95% credibility interval’s estimate, that is required to stop a trial.

prob_target (proportion)
the target probability of the occurrence of a DLT.

Examples

Define the target stopping ratio (5) and the target probability of a DLT to
be used (0.3).
my_stopping <- StoppingMaxGainCIRatio(target_ratio = 5, prob_target = 0.3)
.DefaultStoppingMaxGainCIRatio()

StoppingMinCohorts-class

StoppingMinCohorts

Description

[Stable]
StoppingMinCohorts is the class for stopping based on minimum number of cohorts.

Usage

StoppingMinCohorts(nCohorts = 2L, report_label = NA_character_)

.DefaultStoppingMinCohorts()

414 StoppingMinPatients-class

Arguments

nCohorts (number)
see slot definition.

report_label (string or NA)
see slot definition.

Slots

nCohorts (number)
minimum required number of cohorts.

Note

Typically, end users will not use the .DefaultStoppingMinCohorts() function.

Examples

As example, here is the rule for stopping the study if at least 6 cohorts
were already dosed.
my_stopping <- StoppingMinCohorts(nCohorts = 6)

StoppingMinPatients-class

StoppingMinPatients

Description

[Stable]
StoppingMinPatients is the class for stopping based on minimum number of patients

Usage

StoppingMinPatients(nPatients = 20L, report_label = NA_character_)

.DefaultStoppingMinPatients()

Arguments

nPatients (number)
see slot definition.

report_label (string or NA)
see slot definition.

Slots

nPatients (number)
minimum allowed number of patients.

StoppingMissingDose-class 415

Note

Typically, end users will not use the .DefaultStoppingMinPatients() function.

Examples

As example, here is the rule for stopping the study if at least 20 patients
were already dosed
my_stopping <- StoppingMinPatients(nPatients = 20)

StoppingMissingDose-class

StoppingMissingDose

Description

[Experimental]

StoppingMissingDose is the class for stopping based on NA returned by next best dose.

Usage

StoppingMissingDose(report_label = NA_character_)

.DefaultStoppingMissingDose()

Arguments

report_label (string or NA)
see slot definition.

Note

Typically, end users will not use the .DefaultStoppingMissingDose() function.

Examples

The rule for stopping the study if NA or Placebo is returned as
next best dose.
my_stopping <- StoppingMissingDose()

416 StoppingMTDCV-class

StoppingMTDCV-class StoppingMTDCV

Description

[Experimental]

StoppingMTDCV is a class for stopping rule based on precision of MTD which is calculated as the
coefficient of variation (CV) of the MTD. Here, the MTD is defined as the dose that reaches a
specific target probability of the occurrence of a DLT.

Usage

StoppingMTDCV(target = 0.3, thresh_cv = 40, report_label = NA_character_)

.DefaultStoppingMTDCV()

Arguments

target (proportion)
see slot definition.

thresh_cv (number)
see slot definition.

report_label (string or NA)
see slot definition.

Slots

target (proportion)
toxicity target of MTD (except 0 or 1).

thresh_cv (number)
threshold (percentage > 0) for CV to be considered accurate enough to stop the trial. The
stopping occurs when the CV is less than or equal to tresh_cv.

Note

Typically, end users will not use the .DefaultStoppingMTDCV() function.

Examples

Stopping the study if the MTD estimation is precise enough, i.e. if robust
coefficient of variation of the MTD is below 40%.
my_stopping <- StoppingMTDCV(target = 0.3, thresh_cv = 40)

StoppingMTDdistribution-class 417

StoppingMTDdistribution-class

StoppingMTDdistribution

Description

[Stable]

StoppingMTDdistribution is the class for stopping based on the posterior distribution of the
MTD. It is used for the cases where the stopping occurs when the probability of MTD > thresh
* next_dose is greater than or equal to prob, where the next_dose is the recommended next best
dose. Here, the MTD is defined as the dose that reaches a specific target probability of the occur-
rence of a DLT.

Usage

StoppingMTDdistribution(
target = 0.33,
thresh = 0.5,
prob = 0.9,
report_label = NA_character_

)

.DefaultStoppingMTDdistribution()

Arguments

target (proportion)
see slot definition.

thresh (proportion)
see slot definition.

prob (proportion)
see slot definition.

report_label (string or NA)
see slot definition.

Slots

target (proportion)
the target toxicity probability (except 0 or 1) defining the MTD.

thresh (proportion)
the threshold (except 0 or 1) relative to the recommended next best dose.

prob (proportion)
required minimum probability, except 0 or 1.

418 StoppingOrdinal-class

Note

Typically, end users will not use the .DefaultStoppingMTDDistribution() function.

Examples

As example, here is the rule for stopping the study if there is at least 0.9
probability that MTD > 0.5 * next_dose. Here MTD is defined as the dose for
which prob(DLT) = 0.33
my_stopping <- StoppingMTDdistribution(

target = 0.33,
thresh = 0.5,
prob = 0.9

)

StoppingOrdinal-class StoppingOrdinal

Description

[Experimental]

StoppingOrdinal is the class for stopping based on a Stopping rule applied to a specific toxicity
grade in an ordinal CRM trial

Usage

StoppingOrdinal(grade, rule)

.DefaultStoppingOrdinal()

Arguments

grade (integer)
see slot definition.

rule (Stopping)
see slot definition.

Slots

grade (integer)
the grade to which the rule should be applied

rule (Stopping)
the rule to apply

Note

Typically, end users will not use the .DefaultStoppingOrdinal() function.

StoppingPatientsNearDose-class 419

Examples

StoppingOrdinal(
1L,
StoppingTargetProb(target = c(0.2, 0.35), prob = 0.6)

)

StoppingPatientsNearDose-class

StoppingPatientsNearDose

Description

[Stable]
StoppingPatientsNearDose is the class for stopping based on number of patients near to next best
dose.

Usage

StoppingPatientsNearDose(
nPatients = 10L,
percentage = 50,
include_backfill = TRUE,
report_label = NA_character_

)

.DefaultStoppingPatientsNearDose()

Arguments

nPatients (number)
see slot definition.

percentage (number)
see slot definition.

include_backfill

(flag)
see slot definition.

report_label (string or NA)
see slot definition.

Slots

nPatients (number)
number of required patients.

percentage (number)
percentage (between and including 0 and 100) within the next best dose the patients must lie.

include_backfill (flag)
whether to include backfill patients.

420 StoppingSpecificDose-class

Note

Typically, end users will not use the .DefaultStoppingPatientsNearDose() function.

Examples

As example, here is the rule for stopping the study if at least 9 patients
were dosed at a dose within (1 +/- 0.2) of the next best dose.

my_stopping <- StoppingPatientsNearDose(
nPatients = 9,
percentage = 20

)

Variant which excludes backfill cohorts.

my_stopping <- StoppingPatientsNearDose(
nPatients = 9,
percentage = 20,
include_backfill = FALSE

)

StoppingSpecificDose-class

StoppingSpecificDose

Description

[Experimental]
StoppingSpecificDose is the class for testing a stopping rule at specific dose of the dose grid and
not at the next best dose.

Usage

StoppingSpecificDose(
rule = StoppingTargetProb(target = c(0, 0.3), prob = 0.8),
dose = 80,
report_label = NA_character_

)

.DefaultStoppingSpecificDose()

Arguments

rule (Stopping)
see slot definition.

dose (number)
see slot definition.

report_label (string or NA)
see slot definition.

StoppingTargetBiomarker-class 421

Slots

rule (Stopping)
a stopping rule available in this package.

dose (positive_number)
a dose that is defined as part of the dose grid of the data.

Note

Typically, end users will not use the .DefaultStoppingSpecificDose() function.

Examples

Stop if highest dose 80 is safe.
highest_dose_safe <- StoppingSpecificDose(

rule = StoppingTargetProb(target = c(0, 0.3), prob = 0.8),
dose = 80

)

Stop if lowest dose 10 is toxic.
lowest_dose_toxic <- StoppingSpecificDose(

rule = StoppingTargetProb(target = c(0.3, 1), prob = 0.8),
dose = 10

)

StoppingTargetBiomarker-class

StoppingTargetBiomarker

Description

[Stable]

StoppingTargetBiomarker is a class for stopping based on probability of target biomarker.

Usage

StoppingTargetBiomarker(
target = c(0.9, 1),
prob = 0.3,
is_relative = TRUE,
report_label = NA_character_

)

.DefaultStoppingTargetBiomarker()

422 StoppingTargetProb-class

Arguments

target (numeric)
see slot definition.

prob (proportion)
see slot definition.

is_relative (flag)
see slot definition.

report_label (string or NA)
see slot definition.

Slots

target (numeric)
the biomarker target range that needs to be reached. For example, target = c(0.8, 1.0) with
is_relative = TRUE means that we target a dose with at least 80% of maximum biomarker
level.

is_relative (flag)
is target relative? If it so (default), then the target is interpreted relative to the maximum,
so it must be a probability range. Otherwise, the target is interpreted as absolute biomarker
range.

prob (proportion)
required target probability (except 0 or 1) for reaching sufficient precision.

Note

Typically, end users will not use the .DefaultStoppingTargetBiomarker() function.

Examples

Stopping the study if there is at least 0.5 probability that the biomarker
(efficacy) is within the biomarker target range of [0.9, 1.0] (relative to the
maximum for the biomarker).

my_stopping <- StoppingTargetBiomarker(target = c(0.9, 1), prob = 0.5)

StoppingTargetProb-class

StoppingTargetProb

Description

[Stable]

StoppingTargetProb is the class for stopping based on the probability of the DLT rate being in the
target toxicity interval.

StoppingTDCIRatio-class 423

Usage

StoppingTargetProb(
target = c(0.2, 0.35),
prob = 0.4,
report_label = NA_character_

)

.DefaultStoppingTargetProb()

Arguments

target (number)
see slot definition.

prob (proportion)
see slot definition.

report_label (string or NA)
see slot definition.

Slots

target (number)
the target toxicity interval, e.g. c(0.2, 0.35).

prob (proportion)
required target toxicity probability (except 0 or 1) for reaching sufficient precision.

Note

Typically, end users will not use the .DefaultStoppingTargetProb() function.

Examples

As example, here is the rule for stopping the study if the posterior
probability that [0.2 =< Prob(DLT | dose) <= 0.35] for the next best dose
is above 0.5.
my_stopping <- StoppingTargetProb(target = c(0.2, 0.35), prob = 0.5)

StoppingTDCIRatio-class

StoppingTDCIRatio

Description

[Stable]
StoppingTDCIRatio is the class for testing a stopping rule that is based on a target ratio of the 95%
credibility interval. Specifically, this is the ratio of the upper to the lower bound of the 95% credi-
bility interval’s estimate of the target dose (i.e. a dose that corresponds to a given target probability
of the occurrence of a DLT prob_target).

424 stopTrial

Usage

StoppingTDCIRatio(
target_ratio = 5,
prob_target = 0.3,
report_label = NA_character_

)

.DefaultStoppingTDCIRatio()

Arguments

target_ratio (numeric)
see slot definition.

prob_target (proportion)
see slot definition.

report_label (string or NA)
see slot definition.

Slots

target_ratio (numeric)
target for the ratio of the 95% credibility interval’s estimate, that is required to stop a trial.

prob_target (proportion)
the target probability of the occurrence of a DLT.

Note

Typically, end users will not use the .DefaultStoppingTDCIRatio() function.

Examples

Define the target stopping ratio (5) and the target probability of a DLT to
be used (0.3).
my_stopping <- StoppingTDCIRatio(

target_ratio = 5,
prob_target = 0.3

)

stopTrial Stop the trial?

stopTrial 425

Description

[Stable]
This function returns whether to stop the trial.

[Experimental]
[Stable]
[Stable]
[Stable]
[Stable]
[Stable]
[Stable]
[Stable]
[Stable]
Stopping rule based precision of the MTD estimation. The trial is stopped, when the MTD can be
estimated with sufficient precision. The criteria is based on the robust coefficient of variation (CV)
calculated from the posterior distribution. The robust CV is defined mad(MTD) / median(MTD),
where mad is the median absolute deviation.

Stopping based based on the lowest non placebo dose. The trial is stopped when the lowest non
placebo dose meets the Hard Safety Rule, i.e. it is deemed to be overly toxic. Stopping is based on
the observed data at the lowest dose level using a Bin-Beta model based on DLT probability.

[Stable]
[Experimental]
[Experimental]
[Experimental]
[Stable]
[Stable]
[Stable]
[Stable]

Usage

stopTrial(stopping, dose, samples, model, data, ...)

S4 method for signature 'StoppingMissingDose,numeric,ANY,ANY,Data'
stopTrial(stopping, dose, samples, model, data, ...)

S4 method for signature 'StoppingList,ANY,ANY,ANY,ANY'
stopTrial(stopping, dose, samples, model, data, ...)

S4 method for signature 'StoppingAll,ANY,ANY,ANY,ANY'
stopTrial(stopping, dose, samples, model, data, ...)

S4 method for signature 'StoppingAny,ANY,ANY,ANY,ANY'

426 stopTrial

stopTrial(stopping, dose, samples, model, data, ...)

S4 method for signature 'StoppingCohortsNearDose,numeric,ANY,ANY,Data'
stopTrial(stopping, dose, samples, model, data, ...)

S4 method for signature 'StoppingPatientsNearDose,numeric,ANY,ANY,Data'
stopTrial(stopping, dose, samples, model, data, ...)

S4 method for signature 'StoppingMinCohorts,ANY,ANY,ANY,Data'
stopTrial(stopping, dose, samples, model, data, ...)

S4 method for signature 'StoppingMinPatients,ANY,ANY,ANY,Data'
stopTrial(stopping, dose, samples, model, data, ...)

S4 method for signature
'StoppingTargetProb,numeric,Samples,GeneralModel,ANY'
stopTrial(stopping, dose, samples, model, data, ...)

S4 method for signature
'StoppingMTDdistribution,numeric,Samples,GeneralModel,ANY'
stopTrial(stopping, dose, samples, model, data, ...)

S4 method for signature 'StoppingMTDCV,numeric,Samples,GeneralModel,ANY'
stopTrial(stopping, dose, samples, model, data, ...)

S4 method for signature 'StoppingLowestDoseHSRBeta,numeric,Samples,ANY,ANY'
stopTrial(stopping, dose, samples, model, data, ...)

S4 method for signature
'StoppingTargetBiomarker,numeric,Samples,DualEndpoint,ANY'
stopTrial(stopping, dose, samples, model, data, ...)

S4 method for signature 'StoppingSpecificDose,numeric,ANY,ANY,Data'
stopTrial(stopping, dose, samples, model, data, ...)

S4 method for signature 'StoppingHighestDose,numeric,ANY,ANY,Data'
stopTrial(stopping, dose, samples, model, data, ...)

S4 method for signature
'StoppingOrdinal,numeric,ANY,LogisticLogNormalOrdinal,DataOrdinal'
stopTrial(stopping, dose, samples, model, data, ...)

S4 method for signature 'StoppingOrdinal,numeric,ANY,ANY,ANY'
stopTrial(stopping, dose, samples, model, data, ...)

S4 method for signature 'StoppingExternal,numeric,ANY,ANY,ANY'
stopTrial(stopping, dose, samples, model, data, external, ...)

stopTrial 427

S4 method for signature 'StoppingTDCIRatio,ANY,Samples,ModelTox,ANY'
stopTrial(stopping, dose, samples, model, data, ...)

S4 method for signature 'StoppingTDCIRatio,ANY,missing,ModelTox,ANY'
stopTrial(stopping, dose, samples, model, data, ...)

S4 method for signature
'StoppingMaxGainCIRatio,ANY,Samples,ModelTox,DataDual'
stopTrial(
stopping,
dose,
samples,
model,
data,
TDderive,
Effmodel,
Effsamples,
Gstarderive,
...

)

S4 method for signature
'StoppingMaxGainCIRatio,ANY,missing,ModelTox,DataDual'
stopTrial(stopping, dose, model, data, Effmodel, ...)

Arguments

stopping (Stopping)
the rule for stopping the trial.

dose the recommended next best dose.

samples (Samples)
the mcmc samples.

model (GeneralModel)
the model.

data (Data)
input data.

... additional arguments without method dispatch.

external (flag)
whether to stop based on the external result or not.

TDderive (function)
the function which derives from the input, a vector of the posterior samples
called TDsamples of the dose which has the probability of the occurrence of
DLE equals to either the targetDuringTrial or targetEndOfTrial, the final next
best TDtargetDuringTrial (the dose with probability of the occurrence of DLE
equals to the targetDuringTrial) and TDtargetEndOfTrial estimate.

Effmodel (ModelEff)
the efficacy model.

428 stopTrial

Effsamples (Samples)
the efficacy samples.

Gstarderive (function)
the function which derives from the input, a vector of the posterior Gstar (the
dose which gives the maximum gain value) samples called Gstarsamples, the
final next best Gstar estimate.

Value

logical value: TRUE if the trial can be stopped, FALSE otherwise. It should have an attribute message
which gives the reason for the decision.

Functions

• stopTrial(stopping = StoppingMissingDose, dose = numeric, samples = ANY, model =
ANY, data = Data): Stop based on value returned by next best dose.

• stopTrial(stopping = StoppingList, dose = ANY, samples = ANY, model = ANY, data =
ANY): Stop based on multiple stopping rules.

• stopTrial(stopping = StoppingAll, dose = ANY, samples = ANY, model = ANY, data = ANY
): Stop based on fulfillment of all multiple stopping rules.

• stopTrial(stopping = StoppingAny, dose = ANY, samples = ANY, model = ANY, data = ANY
): Stop based on fulfillment of any stopping rule.

• stopTrial(stopping = StoppingCohortsNearDose, dose = numeric, samples = ANY, model
= ANY, data = Data): Stop based on number of cohorts near to next best dose.

• stopTrial(stopping = StoppingPatientsNearDose, dose = numeric, samples = ANY, model
= ANY, data = Data): Stop based on number of patients near to next best dose.

• stopTrial(stopping = StoppingMinCohorts, dose = ANY, samples = ANY, model = ANY,
data = Data): Stop based on minimum number of cohorts.

• stopTrial(stopping = StoppingMinPatients, dose = ANY, samples = ANY, model = ANY,
data = Data): Stop based on minimum number of patients.

• stopTrial(stopping = StoppingTargetProb, dose = numeric, samples = Samples, model
= GeneralModel, data = ANY): Stop based on probability of target tox interval

• stopTrial(stopping = StoppingMTDdistribution, dose = numeric, samples = Samples,
model = GeneralModel, data = ANY): Stop based on MTD distribution.

• stopTrial(stopping = StoppingTargetBiomarker, dose = numeric, samples = Samples,
model = DualEndpoint, data = ANY): Stop based on probability of targeting biomarker

• stopTrial(stopping = StoppingSpecificDose, dose = numeric, samples = ANY, model
= ANY, data = Data): if Stopping rule is met for specific dose of the planned dose grid and
not just for the default next best dose.

• stopTrial(stopping = StoppingHighestDose, dose = numeric, samples = ANY, model =
ANY, data = Data): Stop when the highest dose is reached.

• stopTrial(stopping = StoppingOrdinal, dose = numeric, samples = ANY, model = LogisticLogNormalOrdinal,
data = DataOrdinal): Stop based on value returned by next best dose.

• stopTrial(stopping = StoppingOrdinal, dose = numeric, samples = ANY, model = ANY,
data = ANY): Stop based on value returned by next best dose.

stopTrial 429

• stopTrial(stopping = StoppingExternal, dose = numeric, samples = ANY, model = ANY,
data = ANY): Stop based on an external flag.

• stopTrial(stopping = StoppingTDCIRatio, dose = ANY, samples = Samples, model = ModelTox,
data = ANY): Stop based on StoppingTDCIRatio class when reaching the target ratio of the
upper to the lower 95% credibility interval of the estimate (TDtargetEndOfTrial). This is a
stopping rule which incorporates only DLE responses and DLE samples are given.

• stopTrial(stopping = StoppingTDCIRatio, dose = ANY, samples = missing, model = ModelTox,
data = ANY): Stop based on StoppingTDCIRatio class when reaching the target ratio of the
upper to the lower 95% credibility interval of the estimate (TDtargetEndOfTrial). This is a
stopping rule which incorporates only DLE responses and no DLE samples are involved.

• stopTrial(stopping = StoppingMaxGainCIRatio, dose = ANY, samples = Samples, model
= ModelTox, data = DataDual): Stop based on reaching the target ratio of the upper to the
lower 95% credibility interval of the estimate (the minimum of Gstar and TDtargetEndOf-
Trial). This is a stopping rule which incorporates DLE and efficacy responses and DLE and
efficacy samples are also used.

• stopTrial(stopping = StoppingMaxGainCIRatio, dose = ANY, samples = missing, model
= ModelTox, data = DataDual): Stop based on reaching the target ratio of the upper to the
lower 95% credibility interval of the estimate (the minimum of Gstar and TDtargetEndOf-
Trial). This is a stopping rule which incorporates DLE and efficacy responses without DLE
and efficacy samples involved.

Examples

Example of combining stopping rules with '&' and/or '|' operators

myStopping1 <- StoppingMinCohorts(nCohorts = 3)
myStopping2 <- StoppingTargetProb(target = c(0.2, 0.35), prob = 0.5)
myStopping3 <- StoppingMinPatients(nPatients = 20)

myStopping <- (myStopping1 & myStopping2) | myStopping3
Example of usage for `StoppingMissingDose` StopTrial class.

Create the data.
my_data <- Data(

x = c(0.01, 0.1, 0.5, 3, 6, 10, 10, 10),
y = c(0, 1, 1, 0, 0, 0, 0, 1),
cohort = c(1, 1, 2, 3, 4, 5, 5, 5),
ID = 1:8,
doseGrid = c(
0.01,
0.1,
0.5,
1.5,
3,
6,
seq(from = 10, to = 80, by = 2)

),
placebo = TRUE

)

430 stopTrial

Initialize the CRM model used to model the data.
my_model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Set-up some MCMC parameters and generate samples from the posterior.
my_options <- McmcOptions(burnin = 5, step = 1, samples = 10)
my_samples <- mcmc(my_data, my_model, my_options)

Define the rule for dose increments and calculate the maximum dose allowed.
my_increments <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)

next_max_dose <- maxDose(my_increments, data = my_data)

Define the rule which will be used to select the next best dose based
on the class 'NextBestNCRM'.
my_next_best <- NextBestNCRM(

target = c(0.1, 0.25),
overdose = c(0.2, 1),
max_overdose_prob = 0.25

)

Calculate the next best dose.
dose_recommendation <- nextBest(

my_next_best,
doselimit = next_max_dose,
samples = my_samples,
model = my_model,
data = my_data

)

Define the stopping rule such that the study would be stopped if there is
no safe active dose returned from dose_recommendation.
my_stopping <- StoppingMissingDose()
my_stopping <- StoppingAny(

stop_list = c(
StoppingMinPatients(nPatients = 16),
StoppingMissingDose()

)
)

Evaluate if to stop the trial.
stopTrial(

stopping = my_stopping,
dose = dose_recommendation$value,
data = my_data,
model = my_model

)

stopTrial 431

nolint start

Create some data
data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Initialize the CRM model used to model the data
model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin = 5, step = 1, samples = 10)
set.seed(94)
samples <- mcmc(data, model, options)

Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)
nextMaxDose <- maxDose(myIncrements, data = data)

Define the rule which will be used to select the next best dose
based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Calculate the next best dose
doseRecommendation <- nextBest(

myNextBest,
doselimit = nextMaxDose,
samples = samples,
model = model,
data = data

)

Define the stopping rules
myStopping1 <- StoppingMinCohorts(nCohorts = 3)
myStopping2 <- StoppingTargetProb(target = c(0.2, 0.35), prob = 0.5)
myStopping3 <- StoppingMinPatients(nPatients = 20)

Create a list of stopping rules (of class 'StoppingList') which will then be
summarized (in this specific example) with the 'any' function, meaning that the study

432 stopTrial

would be stopped if 'any' of the single stopping rules is TRUE.
mystopping <- StoppingList(

stop_list = c(myStopping1, myStopping2, myStopping3),
summary = any

)

Evaluate if to stop the Trial
stopTrial(

stopping = myStopping,
dose = doseRecommendation$value,
samples = samples,
model = model,
data = data

)

nolint end
nolint start

Create some data
data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Initialize the CRM model used to model the data
model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin = 5, step = 1, samples = 10)
set.seed(94)
samples <- mcmc(data, model, options)

Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)
nextMaxDose <- maxDose(myIncrements, data = data)

Define the rule which will be used to select the next best dose
based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

stopTrial 433

Calculate the next best dose
doseRecommendation <- nextBest(

myNextBest,
doselimit = nextMaxDose,
samples = samples,
model = model,
data = data

)

Define the stopping rules
myStopping1 <- StoppingMinCohorts(nCohorts = 3)
myStopping2 <- StoppingTargetProb(target = c(0.2, 0.35), prob = 0.5)
myStopping3 <- StoppingMinPatients(nPatients = 20)

Combine the stopping rules, obtaining (in this specific example) a list of stopping
rules of class 'StoppingAll'
myStopping <- (myStopping1 | myStopping2) & myStopping3

Evaluate if to stop the Trial
stopTrial(

stopping = myStopping,
dose = doseRecommendation$value,
samples = samples,
model = model,
data = data

)

nolint end
nolint start

Create some data
data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Initialize the CRM model used to model the data
model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin = 5, step = 1, samples = 10)
set.seed(94)
samples <- mcmc(data, model, options)

Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(

intervals = c(0, 20),

434 stopTrial

increments = c(1, 0.33)
)
nextMaxDose <- maxDose(myIncrements, data = data)

Define the rule which will be used to select the next best dose
based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Calculate the next best dose
doseRecommendation <- nextBest(

myNextBest,
doselimit = nextMaxDose,
samples = samples,
model = model,
data = data

)

Define the stopping rules
myStopping1 <- StoppingMinCohorts(nCohorts = 3)
myStopping2 <- StoppingTargetProb(target = c(0.2, 0.35), prob = 0.5)
myStopping3 <- StoppingMinPatients(nPatients = 20)

Combine the stopping rules, obtaining (in this specific example) a list of stopping
rules of class 'StoppingAny'
myStopping <- (myStopping1 | myStopping2) | myStopping3

Evaluate if to stop the Trial
stopTrial(

stopping = myStopping,
dose = doseRecommendation$value,
samples = samples,
model = model,
data = data

)

nolint end
nolint start

Create the data
data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Initialize the CRM model used to model the data
model <- LogisticLogNormal(

mean = c(-0.85, 1),

stopTrial 435

cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin = 5, step = 1, samples = 10)
set.seed(94)
samples <- mcmc(data, model, options)

Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)
nextMaxDose <- maxDose(myIncrements, data = data)

Define the rule which will be used to select the next best dose
based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Calculate the next best dose
doseRecommendation <- nextBest(

myNextBest,
doselimit = nextMaxDose,
samples = samples,
model = model,
data = data

)

Define the stopping rule such that the study would be stopped if at least 3
cohorts were already dosed within 1 +/- 0.2 of the next best dose
myStopping <- StoppingCohortsNearDose(nCohorts = 3, percentage = 0.2)

Evaluate if to stop the trial
stopTrial(stopping = myStopping, dose = doseRecommendation$value, data = data)

nolint end
nolint start

Create the data
data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Initialize the CRM model used to model the data
model <- LogisticLogNormal(

436 stopTrial

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin = 5, step = 1, samples = 10)
set.seed(94)
samples <- mcmc(data, model, options)

Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)
nextMaxDose <- maxDose(myIncrements, data = data)

Define the rule which will be used to select the next best dose
based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Calculate the next best dose
doseRecommendation <- nextBest(

myNextBest,
doselimit = nextMaxDose,
samples = samples,
model = model,
data = data

)

Define the stopping rule such that the study would be stopped if at least 9
patients were already dosed within 1 +/- 0.2 of the next best dose
myStopping <- StoppingPatientsNearDose(nPatients = 9, percentage = 0.2)

Evaluate if to stop the trial
stopTrial(stopping = myStopping, dose = doseRecommendation$value, data = data)

nolint end
nolint start

Create the data
data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Initialize the CRM model used to model the data

stopTrial 437

model <- LogisticLogNormal(
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin = 5, step = 1, samples = 10)
set.seed(94)
samples <- mcmc(data, model, options)

Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)
nextMaxDose <- maxDose(myIncrements, data = data)

Define the rule which will be used to select the next best dose
based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Calculate the next best dose
doseRecommendation <- nextBest(

myNextBest,
doselimit = nextMaxDose,
samples = samples,
model = model,
data = data

)

Define the stopping rule such that the study would be stopped if at least 6
cohorts were already dosed
myStopping <- StoppingMinCohorts(nCohorts = 6)

Evaluate if to stop the trial
stopTrial(stopping = myStopping, dose = doseRecommendation$value, data = data)

nolint end
nolint start

Create the data
data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

438 stopTrial

Initialize the CRM model used to model the data
model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin = 5, step = 1, samples = 10)
set.seed(94)
samples <- mcmc(data, model, options)

Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)
nextMaxDose <- maxDose(myIncrements, data = data)

Define the rule which will be used to select the next best dose
based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Calculate the next best dose
doseRecommendation <- nextBest(

myNextBest,
doselimit = nextMaxDose,
samples = samples,
model = model,
data = data

)

Define the stopping rule such that the study would be stopped if at least 20
patients were already dosed
myStopping <- StoppingMinPatients(nPatients = 20)

Evaluate if to stop the trial
stopTrial(stopping = myStopping, dose = doseRecommendation$value, data = data)

nolint end
nolint start

Create the data
data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

stopTrial 439

Initialize the CRM model used to model the data
model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin = 5, step = 1, samples = 10)
set.seed(94)
samples <- mcmc(data, model, options)

Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)
nextMaxDose <- maxDose(myIncrements, data = data)

Define the rule which will be used to select the next best dose
based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Calculate the next best dose
doseRecommendation <- nextBest(

myNextBest,
doselimit = nextMaxDose,
samples = samples,
model = model,
data = data

)

Define the stopping rule such that the study would be stopped if there is at least
0.5 posterior probability that [0.2 =< Prob(DLT | next-best-dose) <= 0.35]
myStopping <- StoppingTargetProb(target = c(0.2, 0.35), prob = 0.5)

Evaluate if to stop the trial
stopTrial(

stopping = myStopping,
dose = doseRecommendation$value,
samples = samples,
model = model,
data = data

)

nolint end
nolint start

440 stopTrial

Create the data
data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Initialize the CRM model used to model the data
model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin = 5, step = 1, samples = 10)
set.seed(94)
samples <- mcmc(data, model, options)

Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)
nextMaxDose <- maxDose(myIncrements, data = data)

Define the rule which will be used to select the next best dose
based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Calculate the next best dose
doseRecommendation <- nextBest(

myNextBest,
doselimit = nextMaxDose,
samples = samples,
model = model,
data = data

)

Define the stopping rule such that the study would be stopped if there is at least
0.9 probability that MTD > 0.5*next_best_dose. Here MTD is defined as the dose for
which prob(DLE)=0.33
myStopping <- StoppingMTDdistribution(target = 0.33, thresh = 0.5, prob = 0.9)

Evaluate if to stop the trial
stopTrial(

stopping = myStopping,
dose = doseRecommendation$value,

stopTrial 441

samples = samples,
model = model,
data = data

)

nolint end
Create the data.
my_data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Initialize the CRM model used to model the data.
my_model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Set-up some MCMC parameters and generate samples from the posterior.
my_options <- McmcOptions(burnin = 5, step = 1, samples = 10)
my_samples <- mcmc(my_data, my_model, my_options)

Define the rule for dose increments and calculate the maximum dose allowed.
my_increments <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)
next_max_dose <- maxDose(my_increments, data = my_data)

Define the rule which will be used to select the next best dose
based on the class 'NextBestNCRM'.
my_next_best <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Calculate the next best dose.
dose_recommendation <- nextBest(

my_next_best,
doselimit = next_max_dose,
samples = my_samples,
model = my_model,
data = my_data

)

Define the stopping rule such that the study would be stopped if the
the MTD can be estimated with sufficient precision, i.e. if robust coefficient
of variation is below 40%.
my_stopping <- StoppingMTDCV(target = 0.3, thresh_cv = 40)

442 stopTrial

Evaluate if to stop the trial.
stopTrial(

stopping = my_stopping,
dose = dose_recommendation$value,
samples = my_samples,
model = my_model,
data = my_data

)
Create the data.
data <- Data(

x = c(0.1, 0.1, 0.1),
y = c(0, 0, 1),
cohort = c(1, 1, 1),
doseGrid = c(
0.1,
0.5,
1.5,
3,
6,
seq(from = 10, to = 80, by = 2)

),
ID = 1:3

)

Initialize the CRM model used to model the data.
model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Set-up some MCMC parameters and generate samples from the posterior.
options <- McmcOptions(burnin = 5, step = 1, samples = 10)
set.seed(94)

samples <- mcmc(data, model, options)

Define the rule for dose increments and calculate the maximum dose allowed.
my_increments <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)

next_max_dose <- maxDose(my_increments, data = data)

Define the rule which will be used to select the next best dose
based on the class 'NextBestNCRM'.
my_next_best <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

stopTrial 443

Calculate the next best dose.
dose_recommendation <- nextBest(

my_next_best,
doselimit = next_max_dose,
samples = samples,
model = model,
data = data

)

Define the stopping rule such that the study would be stopped if first dose
is toxic based on a Beta posterior distribution with Beta(1,1) prior.
my_stopping <- StoppingLowestDoseHSRBeta(

target = 0.3,
prob = 0.9

)

Evaluate if the trial will be stopped.
stopTrial(

stopping = my_stopping,
dose = dose_recommendation$value,
samples = samples,
model = model,
data = data

)

nolint start

Create the data
data <- DataDual(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10, 20, 20, 20, 40, 40, 40, 50, 50, 50),
y = c(0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1),
w = c(
0.31,
0.42,
0.59,
0.45,
0.6,
0.7,
0.55,
0.6,
0.52,
0.54,
0.56,
0.43,
0.41,
0.39,
0.34,
0.38,
0.21

),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

444 stopTrial

Initialize the Dual-Endpoint model (in this case RW1)
model <- DualEndpointRW(

mean = c(0, 1),
cov = matrix(c(1, 0, 0, 1), nrow = 2),
sigma2betaW = 0.01,
sigma2W = c(a = 0.1, b = 0.1),
rho = c(a = 1, b = 1),
rw1 = TRUE

)

Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin = 5, step = 1, samples = 10)
set.seed(94)

samples <- mcmc(data, model, options)

Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)
nextMaxDose <- maxDose(myIncrements, data = data)

Define the rule which will be used to select the next best dose
In this case target a dose achieving at least 0.9 of maximum biomarker level (efficacy)
and with a probability below 0.25 that prob(DLT)>0.35 (safety)
myNextBest <- NextBestDualEndpoint(

target = c(0.9, 1),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Calculate the next best dose
doseRecommendation <- nextBest(

myNextBest,
doselimit = nextMaxDose,
samples = samples,
model = model,
data = data

)

Define the stopping rule such that the study would be stopped if if there is at
least 0.5 posterior probability that the biomarker (efficacy) is within the
biomarker target range of [0.9, 1.0] (relative to the maximum for the biomarker).
myStopping <- StoppingTargetBiomarker(target = c(0.9, 1), prob = 0.5)

Evaluate if to stop the trial
stopTrial(

stopping = myStopping,
dose = doseRecommendation$value,
samples = samples,
model = model,

stopTrial 445

data = data
)

nolint end
Create some data.
my_data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
ID = 1:8,
cohort = c(0, 1, 2, 3, 4, 5, 5, 5),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Initialize the CRM model used to model the data.
my_model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 50

)

Set-up some MCMC parameters and generate samples from the posterior.
my_options <- McmcOptions(burnin = 5, step = 1, samples = 10)
my_samples <- mcmc(my_data, my_model, my_options)

Define the rule which will be used to select the next best dose
based on the class 'NextBestNCRM'.
my_nb_ncrm <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Calculate the next best dose.
my_dose_recommendation <- nextBest(

nextBest = my_nb_ncrm,
doselimit = 100,
samples = my_samples,
model = my_model,
data = my_data

)

Define the stopping rules.
highest_dose_safe <- StoppingSpecificDose(

rule = StoppingTargetProb(target = c(0, 0.3), prob = 0.8),
dose = 80

)
max_patients <- StoppingMinPatients(nPatients = 20)
patients_near_dose <- StoppingPatientsNearDose(nPatients = 3, percentage = 0)

Create a list of stopping rules (of class 'StoppingList') which will then be
summarized (in this specific example) with the 'any' function, meaning that
the study would be stopped if 'any' of the single stopping rules is TRUE.
my_stopping <- highest_dose_safe | max_patients | patients_near_dose

446 stopTrial

Evaluate if to stop the Trial
stopTrial(

stopping = my_stopping,
dose = my_dose_recommendation$value,
samples = my_samples,
model = my_model,
data = my_data

)
nolint start

Create the data
data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10, 20, 20, 20, 40, 40, 40, 80, 80, 80),
y = c(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
cohort = c(0, 1, 2, 3, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Initialize the CRM model used to model the data
model <- LogisticLogNormal(

mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin = 5, step = 1, samples = 10)
set.seed(94)
samples <- mcmc(data, model, options)

Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)
nextMaxDose <- maxDose(myIncrements, data = data)

Define the rule which will be used to select the next best dose
based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Calculate the next best dose
doseRecommendation <- nextBest(

myNextBest,
doselimit = nextMaxDose,
samples = samples,
model = model,
data = data

stopTrial 447

)

Define the stopping rule such that the study would be stopped if there is at least
0.5 posterior probability that [0.2 =< Prob(DLT | next-best-dose) <= 0.35]
stopTarget <- StoppingTargetProb(target = c(0.2, 0.35), prob = 0.5)

now use the StoppingHighestDose rule:
stopHigh <-

StoppingHighestDose() &
StoppingPatientsNearDose(nPatients = 3, percentage = 0) &
StoppingTargetProb(target = c(0, 0.2), prob = 0.5)

and combine everything:
myStopping <- stopTarget | stopHigh

Then evaluate if to stop the trial
stopTrial(

stopping = myStopping,
dose = doseRecommendation$value,
samples = samples,
model = model,
data = data

)

nolint end
data <- .DefaultDataOrdinal()
model <- .DefaultLogisticLogNormalOrdinal()
options <- McmcOptions(burnin = 5, step = 1, samples = 10)
samples <- mcmc(data, model, options)

myIncrements <- .DefaultIncrementsOrdinal()
nextMaxDose <- maxDose(myIncrements, data = data)

myNextBest <- .DefaultNextBestOrdinal()

doseRecommendation <- nextBest(
myNextBest,
doselimit = nextMaxDose,
samples = samples,
model = model,
data = data

)

myStopping <- .DefaultStoppingOrdinal()

stopTrial(
stopping = myStopping,
dose = doseRecommendation$value,
samples = samples,
model = model,
data = data

)
data <- .DefaultDataOrdinal()

448 stopTrial

model <- .DefaultLogisticLogNormalOrdinal()
options <- McmcOptions(burnin = 5, step = 1, samples = 10)
samples <- mcmc(data, model, options)

myIncrements <- .DefaultIncrementsOrdinal()
nextMaxDose <- maxDose(myIncrements, data = data)

myNextBest <- .DefaultNextBestOrdinal()

doseRecommendation <- nextBest(
myNextBest,
doselimit = nextMaxDose,
samples = samples,
model = model,
data = data

)

myStopping <- .DefaultStoppingOrdinal()

stopTrial(
stopping = myStopping,
dose = doseRecommendation$value,
samples = samples,
model = model,
data = data

)
my_rule <- StoppingExternal(report_label = "Based on combo stop")

stopTrial(
my_rule,
5,
.DefaultSamples(),
.DefaultModelLogNormal(),
.DefaultData(),
external = TRUE

)
nolint start

##define the stopping rules based on the 'StoppingTDCIRatio' class
##Using only DLE responses with samples
we need a data object with doses >= 1:
data <- Data(

x = c(25, 50, 50, 75, 150, 200, 225, 300),
y = c(0, 0, 0, 0, 1, 1, 1, 1),
doseGrid = seq(from = 25, to = 300, by = 25)

)

##model can be specified of 'Model' or 'ModelTox' class
##For example, the 'logisticIndepBeta' class model
model <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),

stopTrial 449

data = data
)
##define MCMC options
for illustration purposes, in reality larger number of burnin and samples shoud be used
options <- McmcOptions(burnin = 5, step = 1, samples = 10)
##samples of 'Samples' class
samples <- mcmc(data, model, options)
##define the 'StoppingTDCIRatio' class
myStopping <- StoppingTDCIRatio(target_ratio = 5, prob_target = 0.3)
##Find the next Recommend dose using the nextBest method (plesae refer to nextbest examples)
tdNextBest <- NextBestTDsamples(

prob_target_drt = 0.35,
prob_target_eot = 0.3,
derive = function(samples) {
as.numeric(quantile(samples, probs = 0.3))

}
)

RecommendDose <- nextBest(
tdNextBest,
doselimit = max(data@doseGrid),
samples = samples,
model = model,
data = data

)
##use 'stopTrial' to determine if the rule has been fulfilled
##use 0.3 as the target proability of DLE at the end of the trial

stopTrial(
stopping = myStopping,
dose = RecommendDose$next_dose_drt,
samples = samples,
model = model,
data = data

)

nolint end
nolint start

##define the stopping rules based on the 'StoppingTDCIRatio' class
##Using only DLE responses
we need a data object with doses >= 1:
data <- Data(

x = c(25, 50, 50, 75, 150, 200, 225, 300),
y = c(0, 0, 0, 0, 1, 1, 1, 1),
doseGrid = seq(from = 25, to = 300, by = 25)

)

##model must be of 'ModelTox' class
##For example, the 'logisticIndepBeta' class model
model <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),

450 stopTrial

DLEdose = c(25, 300),
data = data

)
##define the 'StoppingTDCIRatio' class
myStopping <- StoppingTDCIRatio(target_ratio = 5, prob_target = 0.3)
##Find the next Recommend dose using the nextBest method (plesae refer to nextbest examples)
tdNextBest <- NextBestTD(prob_target_drt = 0.35, prob_target_eot = 0.3)

RecommendDose <- nextBest(
tdNextBest,
doselimit = max(data@doseGrid),
model = model,
data = data

)
##use 'stopTrial' to determine if the rule has been fulfilled
##use 0.3 as the target proability of DLE at the end of the trial

stopTrial(
stopping = myStopping,
dose = RecommendDose$next_dose_drt,
model = model,
data = data

)

nolint end
nolint start
##define the stopping rules based on the 'StoppingMaxGainCIRatio' class
##Using both DLE and efficacy responses
we need a data object with doses >= 1:
data <- DataDual(

x = c(25, 50, 25, 50, 75, 300, 250, 150),
y = c(0, 0, 0, 0, 0, 1, 1, 0),
w = c(0.31, 0.42, 0.59, 0.45, 0.6, 0.7, 0.6, 0.52),
doseGrid = seq(25, 300, 25),
placebo = FALSE

)

##DLEmodel must be of 'ModelTox' class
##For example, the 'logisticIndepBeta' class model
DLEmodel <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = data

)

##Effmodel must be of 'ModelEff' class
##For example, the 'Effloglog' class model
Effmodel <- Effloglog(

eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),

stopTrial 451

data = data
)
##for illustration purposes, in reality larger number of burnin and samples shoud be used
options <- McmcOptions(burnin = 5, step = 1, samples = 10)
##DLE and efficacy samples must be of 'Samples' class

DLEsamples <- mcmc(data, DLEmodel, options)
Effsamples <- mcmc(data, Effmodel, options)

##define the 'StoppingMaxGainCIRatio' class
myStopping <- StoppingMaxGainCIRatio(target_ratio = 5, prob_target = 0.3)
##Find the next Recommend dose using the nextBest method (plesae refer to nextbest examples)
mynextbest <- NextBestMaxGainSamples(

prob_target_drt = 0.35,
prob_target_eot = 0.3,
derive = function(samples) {
as.numeric(quantile(samples, prob = 0.3))

},
mg_derive = function(mg_samples) {

as.numeric(quantile(mg_samples, prob = 0.5))
}

)

RecommendDose <- nextBest(
mynextbest,
doselimit = max(data@doseGrid),
samples = DLEsamples,
model = DLEmodel,
data = data,
model_eff = Effmodel,
samples_eff = Effsamples

)
##use 'stopTrial' to determine if the rule has been fulfilled
##use 0.3 as the target proability of DLE at the end of the trial

stopTrial(
stopping = myStopping,
dose = RecommendDose$next_dose,
samples = DLEsamples,
model = DLEmodel,
data = data,
TDderive = function(TDsamples) {
quantile(TDsamples, prob = 0.3)

},
Effmodel = Effmodel,
Effsamples = Effsamples,
Gstarderive = function(Gstarsamples) {

quantile(Gstarsamples, prob = 0.5)
}

)

nolint end
nolint start

452 stopTrial

##define the stopping rules based on the 'StoppingMaxGainCIRatio' class
##Using both DLE and efficacy responses
we need a data object with doses >= 1:
data <- DataDual(

x = c(25, 50, 25, 50, 75, 300, 250, 150),
y = c(0, 0, 0, 0, 0, 1, 1, 0),
w = c(0.31, 0.42, 0.59, 0.45, 0.6, 0.7, 0.6, 0.52),
doseGrid = seq(25, 300, 25),
placebo = FALSE

)

##DLEmodel must be of 'ModelTox' class
##For example, the 'logisticIndepBeta' class model
DLEmodel <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = data

)

##Effmodel must be of 'ModelEff' class
##For example, the 'Effloglog' class model
Effmodel <- Effloglog(

eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = data

)

##define the 'StoppingMaxGainCIRatio' class
myStopping <- StoppingMaxGainCIRatio(target_ratio = 5, prob_target = 0.3)
##Find the next Recommend dose using the nextBest method (plesae refer to nextbest examples)
mynextbest <- NextBestMaxGain(prob_target_drt = 0.35, prob_target_eot = 0.3)

RecommendDose <- nextBest(
mynextbest,
doselimit = max(data@doseGrid),
model = DLEmodel,
model_eff = Effmodel,
data = data

)

##use 'stopTrial' to determine if the rule has been fulfilled
##use 0.3 as the target proability of DLE at the end of the trial

stopTrial(
stopping = myStopping,
dose = RecommendDose$next_dose,
model = DLEmodel,
data = data,
Effmodel = Effmodel

subset-Data 453

)

nolint end

subset-Data Subsetting Operator for the Data Class

Description

[Stable]
Subset observations (patients) from a Data object using numeric or logical indexing.

Usage

S4 method for signature 'Data,numeric,missing,missing'
x[i]

S4 method for signature 'Data,logical,missing,missing'
x[i]

Arguments

x (Data)
what to subset.

i (integer or logical)
indices or logical vector for subsetting observations.

Value

A Data object with the selected observations.

summary,DualSimulations-method

Summarize Dual-Endpoint Design Simulations

Description

[Stable]
Summarize the dual-endpoint design simulations, relative to given true dose-toxicity and dose-
biomarker curves.

Usage

S4 method for signature 'DualSimulations'
summary(object, trueTox, trueBiomarker, target = c(0.2, 0.35), ...)

454 summary,DualSimulations-method

Arguments

object (DualSimulations)
the object we want to summarize.

trueTox (function)
a function which takes as input a dose (vector) and returns the true probability
(vector) for toxicity.

trueBiomarker (function)
a function which takes as input a dose (vector) and returns the true biomarker
level (vector).

target (numeric)
the target toxicity interval (default: 20-35%) used for the computations.

... additional arguments can be supplied here for trueTox and trueBiomarker.

Value

An object of class DualSimulationsSummary.

Examples

Define the dose-grid.
emptydata <- DataDual(doseGrid = c(1, 3, 5, 10, 15, 20, 25, 40, 50, 80, 100))

Initialize the CRM model.
my_model <- DualEndpointRW(

mean = c(0, 1),
cov = matrix(c(1, 0, 0, 1), nrow = 2),
sigma2betaW = 0.01,
sigma2W = c(a = 0.1, b = 0.1),
rho = c(a = 1, b = 1),
rw1 = TRUE

)

Choose the rule for selecting the next dose.
my_next_best <- NextBestDualEndpoint(

target = c(0.9, 1),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Choose the rule for stopping.
my_stopping1 <- StoppingTargetBiomarker(

target = c(0.9, 1),
prob = 0.5

)

For illustration stop with 6 subjects.
my_stopping <- my_stopping1 | StoppingMinPatients(6) | StoppingMissingDose()

Choose the rule for dose increments.

summary,DualSimulations-method 455

my_increments <- IncrementsRelative(
intervals = c(0, 20),
increments = c(1, 0.33)

)

Initialize the design.
design <- DualDesign(

model = my_model,
data = emptydata,
nextBest = my_next_best,
stopping = my_stopping,
increments = my_increments,
cohort_size = CohortSizeConst(3),
startingDose = 3

)

Define scenarios for the TRUE toxicity and efficacy profiles.
beta_mod <- function(dose, e0, eMax, delta1, delta2, scal) {

maxDens <- (delta1^delta1) *
(delta2^delta2) /
((delta1 + delta2)^(delta1 + delta2))

dose <- dose / scal
e0 + eMax / maxDens * (dose^delta1) * (1 - dose)^delta2

}

true_biomarker <- function(dose) {
beta_mod(

dose,
e0 = 0.2,
eMax = 0.6,
delta1 = 5,
delta2 = 5 * 0.5 / 0.5,
scal = 100

)
}

true_tox <- function(dose) {
pnorm((dose - 60) / 10)

}

Draw the TRUE profiles.
par(mfrow = c(1, 2))
curve(true_tox(x), from = 0, to = 80)
curve(true_biomarker(x), from = 0, to = 80)

Run the simulation on the desired design.
For illustration purposes 1 trial is simulated with 5 burn-ins to generate 20 samples.
my_sims <- simulate(

object = design,
trueTox = true_tox,
trueBiomarker = true_biomarker,
sigma2W = 0.01,
rho = 0,

456 summary,GeneralSimulations-method

nsim = 1,
parallel = FALSE,
seed = 3,
startingDose = 6,
mcmcOptions = McmcOptions(

burnin = 5,
step = 1,
samples = 20

)
)

Summarize the results of the simulations.
summary(

my_sims,
trueTox = true_tox,
trueBiomarker = true_biomarker

)

summary,GeneralSimulations-method

Summarize the GeneralSimulations, Relative to a Given Truth

Description

[Stable]
Summarize simulations relative to a given true dose-toxicity curve.

Usage

S4 method for signature 'GeneralSimulations'
summary(object, truth, target = c(0.2, 0.35), ...)

Arguments

object (GeneralSimulations)
the object we want to summarize.

truth (function)
a function which takes as input a dose (vector) and returns the true probability
(vector) for toxicity.

target (numeric)
the target toxicity interval (default: 20-35%) used for the computations.

... additional arguments can be supplied here for truth.

Value

An object of class GeneralSimulationsSummary.

summary,PseudoDualFlexiSimulations-method 457

summary,PseudoDualFlexiSimulations-method

Summarize PseudoDualFlexiSimulations

Description

[Stable]

Summary for PseudoDualFlexiSimulations given a pseudo DLE model and the flexible efficacy
model.

Usage

S4 method for signature 'PseudoDualFlexiSimulations'
summary(
object,
trueDLE,
trueEff,
targetEndOfTrial = 0.3,
targetDuringTrial = 0.35,
...

)

Arguments

object (PseudoDualFlexiSimulations)
the object we want to summarize.

trueDLE (function)
a function which takes as input a dose (vector) and returns the true probability
of DLE (vector).

trueEff (numeric)
a vector which takes as input the true mean efficacy values at all dose levels (in
order).

targetEndOfTrial

(number)
the target probability of DLE that are used at the end of a trial. Default at 0.3.

targetDuringTrial

(number)
the target probability of DLE that are used during the trial. Default at 0.35.

... additional arguments can be supplied here for trueDLE and trueEff.

Value

An object of class PseudoDualSimulationsSummary.

458 summary,PseudoDualFlexiSimulations-method

Examples

nolint start

If DLE and efficacy responses are considered in the simulations and the 'EffFlexi' class is used
we need a data object with doses >= 1:
data <- DataDual(doseGrid = seq(25, 300, 25))
First for the DLE model
The DLE model must be of 'ModelTox' (e.g 'LogisticIndepBeta') class
DLEmodel <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = data

)

for the efficacy model
Effmodel <- EffFlexi(

eff = c(1.223, 2.513),
eff_dose = c(25, 300),
sigma2W = c(a = 0.1, b = 0.1),
sigma2betaW = c(a = 20, b = 50),
rw1 = FALSE,
data = data

)

specified the next best
mynextbest <- NextBestMaxGainSamples(

prob_target_drt = 0.35,
prob_target_eot = 0.3,
derive = function(samples) {
as.numeric(quantile(samples, prob = 0.3))

},
mg_derive = function(mg_samples) {

as.numeric(quantile(mg_samples, prob = 0.5))
}

)

The increments (see Increments class examples)
200% allowable increase for dose below 300 and 200% increase for dose above 300
myIncrements <- IncrementsRelative(

intervals = c(25, 300),
increments = c(2, 2)

)
cohort size of 3
mySize <- CohortSizeConst(size = 3)
Stop only when 10 subjects are treated:
very low sample size is just for illustration here
myStopping <- StoppingMinPatients(nPatients = 10) | StoppingMissingDose()

Specified the design
design <- DualResponsesSamplesDesign(

summary,PseudoDualSimulations-method 459

nextBest = mynextbest,
cohort_size = mySize,
startingDose = 25,
model = DLEmodel,
eff_model = Effmodel,
data = data,
stopping = myStopping,
increments = myIncrements

)
specified the true DLE curve and the true expected efficacy values at all dose levels
myTruthDLE <- probFunction(DLEmodel, phi1 = -53.66584, phi2 = 10.50499)

myTruthEff <- c(
-0.5478867,
0.1645417,
0.5248031,
0.7604467,
0.9333009,
1.0687031,
1.1793942,
1.2726408,
1.3529598,
1.4233411,
1.4858613,
1.5420182

)

specify the options for MCMC
for illustration purposes, in reality larger number of burnin and samples shoud be used
options <- McmcOptions(burnin = 5, step = 1, samples = 10)
The simulation
For illustration purpose only 1 simulation is produced (nsim=1).
mySim <- simulate(

object = design,
args = NULL,
trueDLE = myTruthDLE,
trueEff = myTruthEff,
trueSigma2 = 0.025,
trueSigma2betaW = 1,
nsim = 1,
seed = 819,
parallel = FALSE,
mcmcOptions = options

)
summarize the simulation results
summary(mySim, trueDLE = myTruthDLE, trueEff = myTruthEff)

nolint end

460 summary,PseudoDualSimulations-method

summary,PseudoDualSimulations-method

Summarize PseudoDualSimulations

Description

[Stable]

Summary for Pseudo Dual responses simulations, relative to a given pseudo DLE and efficacy
model (except the EffFlexi class model).

Usage

S4 method for signature 'PseudoDualSimulations'
summary(
object,
trueDLE,
trueEff,
targetEndOfTrial = 0.3,
targetDuringTrial = 0.35,
...

)

Arguments

object (PseudoDualSimulations)
the object we want to summarize.

trueDLE (function)
a function which takes as input a dose (vector) and returns the true probability
(vector) of DLE.

trueEff (function)
a function which takes as input a dose (vector) and returns the mean efficacy
value(s) (vector).

targetEndOfTrial

(number)
the target probability of DLE that are used at the end of a trial. Default at 0.3.

targetDuringTrial

(number)
the target probability of DLE that are used during the trial. Default at 0.35.

... additional arguments can be supplied here for trueDLE and trueEff.

Value

An object of class PseudoDualSimulationsSummary.

summary,PseudoDualSimulations-method 461

Examples

Obtain the plot for the simulation results if DLE and efficacy responses
are considered in the simulations.

Specified simulations when no samples are used.
emptydata <- DataDual(doseGrid = seq(25, 300, 25))

The DLE model must be of 'ModelTox' (e.g 'LogisticIndepBeta') class.
dle_model <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = emptydata

)

The efficacy model of 'ModelEff' (e.g 'Effloglog') class.
eff_model <- Effloglog(

eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = emptydata

)

The escalation rule using the 'NextBestMaxGain' class.
my_next_best <- NextBestMaxGain(

prob_target_drt = 0.35,
prob_target_eot = 0.3

)

Allow increase of 200%.
my_increments <- IncrementsRelative(intervals = 0, increments = 2)

Cohort size of 3.
my_size <- CohortSizeConst(size = 3)

Stop when 36 subjects are treated or next dose is NA.
my_stopping <- StoppingMinPatients(nPatients = 36) | StoppingMissingDose()

Specify the design. (For details please refer to the 'DualResponsesDesign' example.)
my_design <- DualResponsesDesign(

nextBest = my_next_best,
model = dle_model,
eff_model = eff_model,
stopping = my_stopping,
increments = my_increments,
cohort_size = my_size,
data = emptydata,
startingDose = 25

)

Specify the true DLE and efficacy curves.
my_truth_dle <- probFunction(dle_model, phi1 = -53.66584, phi2 = 10.50499)

462 summary,PseudoDualSimulations-method

my_truth_eff <- efficacyFunction(eff_model, theta1 = -4.818429, theta2 = 3.653058)

Specify the simulations and generate the 2 trials.
my_sim <- simulate(

object = my_design,
args = NULL,
trueDLE = my_truth_dle,
trueEff = my_truth_eff,
trueNu = 1 / 0.025,
nsim = 2,
seed = 819,
parallel = FALSE

)

Produce a summary of the simulations.
summary(

my_sim,
trueDLE = my_truth_dle,
trueEff = my_truth_eff

)

Example where DLE and efficacy samples are involved.
Please refer to design-method 'simulate DualResponsesSamplesDesign' examples for details.

Specify the next best rule.
my_next_best <- NextBestMaxGainSamples(

prob_target_drt = 0.35,
prob_target_eot = 0.3,
derive = function(samples) {
as.numeric(quantile(samples, prob = 0.3))

},
mg_derive = function(mg_samples) {

as.numeric(quantile(mg_samples, prob = 0.5))
}

)

Specify the design.
my_design <- DualResponsesSamplesDesign(

nextBest = my_next_best,
cohort_size = my_size,
startingDose = 25,
model = dle_model,
eff_model = eff_model,
data = emptydata,
stopping = my_stopping,
increments = my_increments

)

For illustration purpose 50 burn-ins to generate 200 samples are used.
my_options <- McmcOptions(burnin = 50, step = 2, samples = 200)

summary,PseudoSimulations-method 463

fmt: skip

For illustration purpose 2 simulation are created.
my_sim <- simulate(

object = my_design,
args = NULL,
trueDLE = my_truth_dle,
trueEff = my_truth_eff,
trueNu = 1 / 0.025,
nsim = 2,
mcmcOptions = my_options,
seed = 819,
parallel = FALSE

)

Produce a summary of the simulations.
summary(

my_sim,
trueDLE = my_truth_dle,
trueEff = my_truth_eff

)

summary,PseudoSimulations-method

Summarize PseudoSimulations

Description

[Stable]

Summarize the simulations, relative to a given truth.

Usage

S4 method for signature 'PseudoSimulations'
summary(object, truth, targetEndOfTrial = 0.3, targetDuringTrial = 0.35, ...)

Arguments

object (PseudoSimulations)
the object we want to summarize.

truth (function)
a function which takes as input a dose (vector) and returns the true probability
(vector) for toxicity.

targetEndOfTrial

(number)
the target probability of DLE wanted to achieve at the end of a trial.

464 summary,PseudoSimulations-method

targetDuringTrial

(number)
the target probability of DLE wanted to achieve during a trial.

... additional arguments can be supplied here for truth.

Value

An object of class PseudoSimulationsSummary.

Examples

emptydata <- Data(doseGrid = seq(25, 300, 25))

The design incorporate DLE responses and DLE samples.
Specify the model of 'ModelTox' class eg 'LogisticIndepBeta' class model.
my_model <- LogisticIndepBeta(

binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = emptydata

)

The escalation rule.
td_next_best <- NextBestTD(

prob_target_drt = 0.35,
prob_target_eot = 0.3

)

Cohort size is 3 subjects.
my_size <- CohortSizeConst(size = 3)

Allow increase of 200%.
my_increments <- IncrementsRelative(intervals = 0, increments = 2)

Stopp when the maximum sample size of 36 patients has been reached or the next
dose is NA.
my_stopping <- StoppingMinPatients(nPatients = 36) | StoppingMissingDose()

Specify the design. (For details please refer to the 'TDDesign' example.)
my_design <- TDDesign(

model = my_model,
nextBest = td_next_best,
stopping = my_stopping,
increments = my_increments,
cohort_size = my_size,
data = emptydata,
startingDose = 25

)

Specify the truth of the DLE responses.
my_truth <- probFunction(my_model, phi1 = -53.66584, phi2 = 10.50499)

summary,PseudoSimulations-method 465

For illustration purpose 50 burn-ins to generate 200 samples are used.
my_options <- McmcOptions(burnin = 50, step = 2, samples = 200)

Refer to design-method 'simulate TDDesign' examples for details.
For illustration purpose only 1 simulation is produced.
my_sim <- simulate(

object = my_design,
args = NULL,
truth = my_truth,
nsim = 1,
seed = 819,
parallel = FALSE,
mcmcOptions = my_options

)

Produce a summary of the simulations.
summary(

my_sim,
truth = my_truth

)

Example where DLE samples are involved.

Specify the next best rule.
td_next_best <- NextBestTDsamples(

prob_target_drt = 0.35,
prob_target_eot = 0.3,
derive = function(samples) {
as.numeric(quantile(samples, probs = 0.3))

}
)

The design.
my_design <- TDsamplesDesign(

model = my_model,
nextBest = td_next_best,
stopping = my_stopping,
increments = my_increments,
cohort_size = my_size,
data = emptydata,
startingDose = 25

)

For illustration purpose 50 burn-ins to generate 200 samples are used.
my_options <- McmcOptions(burnin = 50, step = 2, samples = 200)

For illustration purpose 2 trials are simulated.
my_sim <- simulate(

object = my_design,
args = NULL,
truth = my_truth,
nsim = 2,
seed = 819,

466 summary,Simulations-method

mcmcOptions = my_options,
parallel = FALSE

)

Produce a summary of the simulations.
summary(

my_sim,
truth = my_truth

)

summary,Simulations-method

Summarize Model-Based Design Simulations

Description

[Stable]
Summarize the model-based design simulations, relative to a given truth.

Usage

S4 method for signature 'Simulations'
summary(object, truth, target = c(0.2, 0.35), ...)

Arguments

object (Simulations)
the object we want to summarize.

truth (function)
a function which takes as input a dose (vector) and returns the true probability
(vector) for toxicity.

target (numeric)
the target toxicity interval (default: 20-35%) used for the computations.

... additional arguments can be supplied here for truth.

Value

An object of class SimulationsSummary.

Examples

nolint start

Define the dose-grid
emptydata <- Data(doseGrid = c(1, 3, 5, 10, 15, 20, 25, 40, 50, 80, 100))

Initialize the CRM model

summary,Simulations-method 467

model <- LogisticLogNormal(
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

Choose the rule for selecting the next dose
myNextBest <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Choose the rule for the cohort-size
mySize1 <- CohortSizeRange(

intervals = c(0, 30),
cohort_size = c(1, 3)

)
mySize2 <- CohortSizeDLT(

intervals = c(0, 1),
cohort_size = c(1, 3)

)
mySize <- maxSize(mySize1, mySize2)

Choose the rule for stopping
myStopping1 <- StoppingMinCohorts(nCohorts = 3)
myStopping2 <- StoppingTargetProb(

target = c(0.2, 0.35),
prob = 0.5

)
myStopping3 <- StoppingMinPatients(nPatients = 20)
myStopping <- (myStopping1 & myStopping2) | myStopping3 | StoppingMissingDose()

Choose the rule for dose increments
myIncrements <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)

Initialize the design
design <- Design(

model = model,
nextBest = myNextBest,
stopping = myStopping,
increments = myIncrements,
cohort_size = mySize,
data = emptydata,
startingDose = 3

)

define the true function
myTruth <- probFunction(model, alpha0 = 7, alpha1 = 8)

468 TDDesign-class

Run the simulation on the desired design
We only generate 1 trial outcomes here for illustration, for the actual study
this should be increased of course
options <- McmcOptions(

burnin = 100,
step = 2,
samples = 1000

)
time <- system.time(

mySims <- simulate(
design,
args = NULL,
truth = myTruth,
nsim = 1,
seed = 819,
mcmcOptions = options,
parallel = FALSE,
derive = list(

max_mtd = max,
mean_mtd = mean,
median_mtd = median

),
)

)[3]

Summarize the Results of the Simulations
summary(mySims, truth = myTruth)

nolint end

TDDesign-class TDDesign

Description

[Stable]
TDDesign is the class of design based only on DLT responses using ModelTox class model (i.e.
LogisticIndepBeta) without MCMC samples.

Usage

TDDesign(
model,
stopping,
increments,
pl_cohort_size = CohortSizeConst(0L),
...

)

.DefaultTDDesign()

TDDesign-class 469

Arguments

model (ModelTox)
see slot definition.

stopping (Stopping)
see slot definition.

increments (Increments)
see slot definition.

pl_cohort_size (CohortSize)
see slot definition.

... Arguments passed on to RuleDesign

nextBest (NextBest)
see slot definition.

cohort_size (CohortSize)
see slot definition.

data (Data)
see slot definition.

startingDose (number)
see slot definition.

Slots

model (ModelTox)
the pseudo DLT model to be used.

stopping (Stopping)
stopping rule(s) for the trial.

increments (Increments)
how to control increments between dose levels.

pl_cohort_size (CohortSize)
rules for the cohort sizes for placebo, if any planned (defaults to constant 0 placebo patients).

Note

Typically, end users will not use the .DefaultTDDesign() function.

Examples

empty_data <- Data(doseGrid = seq(25, 300, 25))

my_model <- LogisticIndepBeta(
binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = empty_data

)

The escalation rule.

470 TDsamplesDesign-class

my_next_best <- NextBestTD(
prob_target_drt = 0.35,
prob_target_eot = 0.3

)

my_size <- CohortSizeConst(size = 3)

The increments for the dose-escalation process:
the maximum increase of 200% for doses up to the maximum dose in grid,
the maximum increase of 200% for dose above the maximum dose in grid.
my_increments <- IncrementsRelative(

intervals = range(empty_data@doseGrid),
increments = c(2, 2)

)

Stop when the maximum sample size of 36 patients is reached.
my_stopping <- StoppingMinPatients(nPatients = 36) | StoppingMissingDose()

The design with all the above information and starting with a dose of 25.
This design incorporates only DLT responses and no DLT samples are involved
during the simulation.
design <- TDDesign(

model = my_model,
stopping = my_stopping,
increments = my_increments,
nextBest = my_next_best,
cohort_size = my_size,
data = empty_data,
startingDose = 25

)

TDsamplesDesign-class TDsamplesDesign

Description

[Stable]
TDsamplesDesign is the class of design based only on DLT responses using ModelTox class model
(i.e. LogisticIndepBeta) as well as MCMC samples obtained for this model.

Usage

TDsamplesDesign(
model,
stopping,
increments,
pl_cohort_size = CohortSizeConst(0L),
...

)

TDsamplesDesign-class 471

.DefaultTDsamplesDesign()

Arguments

model (ModelTox)
see slot definition.

stopping (Stopping)
see slot definition.

increments (Increments)
see slot definition.

pl_cohort_size (CohortSize)
see slot definition.

... Arguments passed on to RuleDesign

nextBest (NextBest)
see slot definition.

cohort_size (CohortSize)
see slot definition.

data (Data)
see slot definition.

startingDose (number)
see slot definition.

Slots

model (ModelTox)
the pseudo DLT model to be used.

stopping (Stopping)
stopping rule(s) for the trial.

increments (Increments)
how to control increments between dose levels.

pl_cohort_size (CohortSize)
rules for the cohort sizes for placebo, if any planned (defaults to constant 0 placebo patients).

Note

Typically, end users will not use the .DefaultTDsamplesDesign() function.

Examples

empty_data <- Data(doseGrid = seq(25, 300, 25))

my_model <- LogisticIndepBeta(
binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = empty_data

472 tidy

)

The escalation rule.
my_next_best <- NextBestTDsamples(

prob_target_drt = 0.35,
prob_target_eot = 0.3,
derive = function(samples) {
as.numeric(quantile(samples, probs = 0.3))

}
)

my_size <- CohortSizeConst(size = 3)

The increments for the dose-escalation process:
the maximum increase of 200% for doses up to the maximum dose in grid,
the maximum increase of 200% for dose above the maximum dose in grid.
my_increments <- IncrementsRelative(

intervals = range(empty_data@doseGrid),
increments = c(2, 2)

)

Stop when the maximum sample size of 36 patients is reached.
my_stopping <- StoppingMinPatients(nPatients = 36) | StoppingMissingDose()

The design with all the above information and starting with a dose of 25.
design <- TDsamplesDesign(

model = my_model,
stopping = my_stopping,
increments = my_increments,
nextBest = my_next_best,
cohort_size = my_size,
data = empty_data,
startingDose = 25

)

tidy Tidying CrmPackClass objects

Description

[Experimental]
In the spirit of the broom package, provide a method to convert a CrmPackClass object to a (list of)
tibbles.

Following the principles of the broom package, convert a CrmPackClass object to a (list of) tibbles.
This is a basic, default representation.

[Experimental]
A method that tidies a GeneralData object.

[Experimental]

tidy 473

A method that tidies a Data object.

[Experimental]
A method that tidies a DataGrouped object.

[Experimental]
A method that tidies a DataDA object.

[Experimental]
A method that tidies a DataDual object.

[Experimental]
A method that tidies a DataParts object.

[Experimental]
A method that tidies a DataMixture object.

[Experimental]
A method that tidies a DataOrdinal object.

[Experimental]
A method that tidies a LogisticIndepBeta object.

[Experimental]
A method that tidies a Effloglog object.

Usage

tidy(x, ...)

S4 method for signature 'CrmPackClass'
tidy(x, ...)

S4 method for signature 'GeneralData'
tidy(x, ...)

S4 method for signature 'Data'
tidy(x, ...)

S4 method for signature 'DataGrouped'
tidy(x, ...)

S4 method for signature 'DataDA'
tidy(x, ...)

S4 method for signature 'DataDual'
tidy(x, ...)

S4 method for signature 'DataParts'
tidy(x, ...)

S4 method for signature 'DataMixture'

474 tidy

tidy(x, ...)

S4 method for signature 'DataOrdinal'
tidy(x, ...)

S4 method for signature 'Simulations'
tidy(x, ...)

S4 method for signature 'LogisticIndepBeta'
tidy(x, ...)

S4 method for signature 'Effloglog'
tidy(x, ...)

S4 method for signature 'IncrementsMaxToxProb'
tidy(x, ...)

S4 method for signature 'IncrementsRelative'
tidy(x, ...)

S4 method for signature 'CohortSizeDLT'
tidy(x, ...)

S4 method for signature 'CohortSizeMin'
tidy(x, ...)

S4 method for signature 'CohortSizeMax'
tidy(x, ...)

S4 method for signature 'CohortSizeRange'
tidy(x, ...)

S4 method for signature 'CohortSizeParts'
tidy(x, ...)

S4 method for signature 'IncrementsMin'
tidy(x, ...)

S4 method for signature 'IncrementsRelative'
tidy(x, ...)

S4 method for signature 'IncrementsRelativeDLT'
tidy(x, ...)

S4 method for signature 'IncrementsRelativeParts'
tidy(x, ...)

S4 method for signature 'NextBestNCRM'

tidy 475

tidy(x, ...)

S4 method for signature 'NextBestNCRMLoss'
tidy(x, ...)

S4 method for signature 'DualDesign'
tidy(x, ...)

S4 method for signature 'Samples'
tidy(x, ...)

Arguments

x (CrmPackClass)
the object to be tidied.

... potentially used by class-specific methods.

Value

A (list of) tibble(s) representing the object in tidy form.

The tibble::tibble object.

The tibble::tibble object.

The tibble::tibble object.

The tibble::tibble object.

The tibble::tibble object.

The tibble::tibble object.

The tibble::tibble object.

The tibble::tibble object.

The list of tibble::tibble objects.

The list of tibble::tibble objects.

Usage Notes

The prior observations are indicated by a Cohort value of 0 in the returned tibble.

Examples

CohortSizeConst(3) %>% tidy()
.DefaultData() %>% tidy()
.DefaultDataOrdinal() %>% tidy()
.DefaultDataGrouped() %>% tidy()
.DefaultDataDA() %>% tidy()
Create a sample Data object
sample_data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
cohort = c(1, 2, 3, 4, 5, 6, 6, 6),

476 tidy

doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2)),
response = c(0, 0, 0, 0, 0, 1, NA, NA),
backfilled = c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE)

)

Tidy the Data object
tidied_data <- tidy(sample_data)

Print the tidied data
print(tidied_data)
.DefaultData() %>% tidy()
.DefaultDataOrdinal() %>% tidy()
.DefaultDataGrouped() %>% tidy()
.DefaultDataDA() %>% tidy()
.DefaultData() %>% tidy()
.DefaultDataOrdinal() %>% tidy()
.DefaultDataGrouped() %>% tidy()
.DefaultDataDA() %>% tidy()
.DefaultData() %>% tidy()
.DefaultDataOrdinal() %>% tidy()
.DefaultDataGrouped() %>% tidy()
.DefaultDataDA() %>% tidy()
.DefaultData() %>% tidy()
.DefaultDataOrdinal() %>% tidy()
.DefaultDataGrouped() %>% tidy()
.DefaultDataDA() %>% tidy()
.DefaultData() %>% tidy()
.DefaultDataOrdinal() %>% tidy()
.DefaultDataGrouped() %>% tidy()
.DefaultDataDA() %>% tidy()
.DefaultData() %>% tidy()
.DefaultDataOrdinal() %>% tidy()
.DefaultDataGrouped() %>% tidy()
.DefaultDataDA() %>% tidy()
.DefaultSimulations() %>% tidy()
.DefaultLogisticIndepBeta() %>% tidy()
.DefaultEffloglog() %>% tidy()
IncrementsMaxToxProb(prob = c("DLAE" = 0.2, "CRS" = 0.05)) %>% tidy()
CohortSizeRange(intervals = c(0, 20), cohort_size = c(1, 3)) %>% tidy()
.DefaultCohortSizeDLT() %>% tidy()
.DefaultCohortSizeMin() %>% tidy()
.DefaultCohortSizeMax() %>% tidy()
.DefaultCohortSizeRange() %>% tidy()
CohortSizeParts(cohort_sizes = c(1, 3)) %>% tidy()
.DefaultIncrementsMin() %>% tidy()
CohortSizeRange(intervals = c(0, 20), cohort_size = c(1, 3)) %>% tidy()
x <- .DefaultIncrementsRelativeDLT()
x %>% tidy()
.DefaultIncrementsRelativeParts() %>% tidy()
NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

TITELogisticLogNormal-class 477

) %>%
tidy()

.DefaultNextBestNCRMLoss() %>% tidy()

.DefaultDualDesign() %>% tidy()
options <- McmcOptions(

burnin = 100,
step = 1,
samples = 2000

)

emptydata <- Data(doseGrid = c(1, 3, 5, 10, 15, 20, 25, 40, 50, 80, 100))

model <- LogisticLogNormal(
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56

)

samples <- mcmc(emptydata, model, options)
samples %>% tidy()

TITELogisticLogNormal-class

TITELogisticLogNormal

Description

[Stable]
TITELogisticLogNormal is the class for TITE-CRM based on a logistic regression model using a
bivariate normal prior on the intercept and log slope parameters.

This class inherits from the LogisticLogNormal.

Usage

TITELogisticLogNormal(weight_method = "linear", ...)

.DefaultTITELogisticLogNormal()

Arguments

weight_method (string)
see the slot description.

... Arguments passed on to LogisticLogNormal

mean (numeric)
the prior mean vector.

cov (matrix)
the prior covariance matrix. The precision matrix prec is internally calcu-
lated as an inverse of cov.

478 TITELogisticLogNormal-class

ref_dose (number)
the reference dose x∗ (strictly positive number).

Details

Basically, the adaptive function allocates more weight to each record than the linear function when
DLTs are observed early and less weight when DLTs are observed late. When DLT times are evenly
distributed both weights are similar. In addition, with more DLTs, the adaptive weights become
more extreme and different from the linear weights.

Slots

weight_method (string)
the weight function method: either linear or adaptive; see Liu et al. (2013).

Note

Typically, end users will not use the .DefaultTITELogisticLogNormal() function.

References

Liu S, Yin G, Yuan Y (2013). “Bayesian data augmentation dose finding with continual reassess-
ment method and delayed toxicity.” The Annals of Applied Statistics, 7(4), 2138–2156. doi:10.1214/
13AOAS661.

See Also

DALogisticLogNormal.

Examples

my_model <- TITELogisticLogNormal(
mean = c(0, 1),
cov = diag(2),
ref_dose = 1,
weight_method = "linear"

)

my_model1 <- TITELogisticLogNormal(
mean = c(0, 1),
cov = diag(2),
ref_dose = 1,
weight_method = "adaptive"

)

https://doi.org/10.1214/13-AOAS661
https://doi.org/10.1214/13-AOAS661

update,Data-method 479

update,Data-method Updating Data Objects

Description

[Stable]
A method that updates existing Data object with new data.

Usage

S4 method for signature 'Data'
update(
object,
x,
y,
response = rep(NA_integer_, length(y)),
ID = length(object@ID) + seq_along(y),
new_cohort = TRUE,
check = TRUE,
backfill = FALSE,
cohort = NULL,
...

)

Arguments

object (Data)
object you want to update.

x (number)
the dose level (one level only!).

y (integer)
the DLT vector (0/1 vector) for all patients in this cohort. You can also supply
numeric vectors, but these will then be converted to integer internally.

response (integer)
the efficacy response vector (0/1 vector). May contain NA.

ID (integer)
the patient IDs. You can also supply numeric vectors, but these will then be
converted to integer internally.

new_cohort (flag)
if TRUE (default) the new data are assigned to a new cohort.

check (flag)
whether the validation of the updated object should be conducted. See details
below.

backfill (flag)
whether the new patients being added are from a backfill cohort.

480 update,DataDA-method

cohort (int)
if provided, the new patients will be assigned to this cohort index. If NULL (de-
fault), the cohort index will be determined based on the new_cohort parameter.

... not used.

Details

The current implementation of this update method allows for updating the Data class object by
adding a single dose level x only. However, there might be some use cases where the new cohort
to be added contains a placebo and active dose. Hence, such update would need to be performed
iteratively by calling the update method twice. For example, in the first call a user can add a
placebo, and then in the second call, an active dose. Since having a cohort with placebo only is not
allowed, the update method would normally throw the error when attempting to add a placebo in
the first call. To allow for such updates, the check parameter should be then set to FALSE for that
first call.

Value

The new, updated Data object.

Examples

Create some data of class 'Data'.
my_data <- Data(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Update the data with a new cohort.
my_data1 <- update(my_data, x = 20, y = c(0L, 1L, 1L))
my_data1

update,DataDA-method Updating DataDA Objects

Description

[Stable]

A method that updates existing DataDA object with new data.

Usage

S4 method for signature 'DataDA'
update(object, u, t0, trialtime, y, ..., check = TRUE)

update,DataDA-method 481

Arguments

object (DataDA)
object you want to update.

u (numeric)
the new DLT free survival times for all patients, i.e. for existing patients in the
object as well as for new patients.

t0 (numeric)
the time that each patient starts DLT observation window. This parameter covers
all patients, i.e. existing patients in the object as well as for new patients.

trialtime (number)
current time in the trial, i.e. a followup time.

y (numeric)
the new DLTs for all patients, i.e. for existing patients in the object as well as
for new patients.

... further arguments passed to Data update method update-Data. These are used
when there are new patients to be added to the cohort.

check (flag)
whether the validation of the updated object should be conducted. See help for
update-Data for more details on the use case of this parameter.

Value

The new, updated DataDA object.

Note

This function is capable of not only adding new patients but also updates existing ones with respect
to y, t0, u slots.

Examples

Create an object of class 'DataDA'.
my_data <- DataDA(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 1, 1, 0, 0, 1, 0),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2)),
u = c(42, 30, 15, 5, 20, 25, 30, 60),
t0 = c(0, 15, 30, 40, 55, 70, 75, 85),
Tmax = 60

)

Update the data.
my_data1 <- update(

object = my_data,
y = c(my_data@y, 0), # The 'y' will be updated according to 'u'.
u = c(my_data@u, 20),
t0 = c(my_data@t0, 95),
x = 20,

482 update,DataDual-method

trialtime = 120 # This is the global timeline for a trial.
)
my_data1

update,DataDual-method

Updating DataDual Objects

Description

[Stable]
A method that updates existing DataDual object with new data.

Usage

S4 method for signature 'DataDual'
update(object, w, ..., check = TRUE)

Arguments

object (DataDual)
object you want to update.

w (numeric)
the continuous vector of biomarker values for all the patients in this update.

... further arguments passed to Data update method update-Data.

check (flag)
whether the validation of the updated object should be conducted. See help for
update-Data for more details on the use case of this parameter.

Value

The new, updated DataDual object.

Examples

Create some data of class 'DataDual'.
my_data <- DataDual(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 0, 0, 0, 0, 1, 0),
w = rnorm(8),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2))

)

Update the data with a new cohort.
my_data1 <- update(my_data, x = 20, y = c(0, 1, 1), w = c(0.4, 1.2, 2.2))
my_data1

update,DataOrdinal-method 483

update,DataOrdinal-method

Updating DataOrdinal Objects

Description

[Experimental]

A method that updates existing DataOrdinal object with new data.

Usage

S4 method for signature 'DataOrdinal'
update(
object,
x,
y,
ID = length(object@ID) + seq_along(y),
new_cohort = TRUE,
check = TRUE,
...

)

Arguments

object (DataOrdinal)
object you want to update.

x (number)
the dose level (one level only!).

y (integer)
the vector of toxicity grades (0, 1, 2, ...) for all patients in this cohort. You
can also supply numeric vectors, but these will then be converted to integer
internally.

ID (integer)
the patient IDs. You can also supply numeric vectors, but these will then be
converted to integer internally.

new_cohort (flag)
if TRUE (default) the new data are assigned to a new cohort.

check (flag)
whether the validation of the updated object should be conducted. See Details
below.

... not used.

484 update,DataParts-method

Details

The current implementation of this update method allows for updating the DataOrdinal class
object by adding a single dose level x only. However, there might be some use cases where the
new cohort to be added contains a placebo and active dose. Hence, such update would need to
be performed iteratively by calling the update method twice. For example, in the first call a user
can add a placebo, and then in the second call, an active dose. Since having a cohort with placebo
only is not allowed, the update method would normally throw the error when attempting to add a
placebo in the first call. To allow for such updates, the check parameter should be then set to FALSE
for that first call.

Value

The new, updated DataOrdinal object.

Examples

data <- DataOrdinal(
x = c(10, 20, 30, 40, 50, 50, 50, 60, 60, 60),
y = as.integer(c(0, 0, 0, 0, 0, 1, 0, 0, 1, 2)),
ID = 1L:10L,
cohort = as.integer(c(1:4, 5, 5, 5, 6, 6, 6)),
doseGrid = c(seq(from = 10, to = 100, by = 10)),
yCategories = c("No tox" = 0L, "Sub-tox AE" = 1L, "DLT" = 2L),
placebo = FALSE

)

update(data, x = 70, y = c(1L, 2L, 1L))

update,DataParts-method

Updating DataParts Objects

Description

[Stable]
A method that updates existing DataParts object with new data.

Usage

S4 method for signature 'DataParts'
update(object, x, y, ..., check = TRUE)

Arguments

object (DataParts)
object you want to update.

x (number)
the dose level (one level only!).

update,ModelPseudo-method 485

y (integer)
the DLT vector (0/1 vector) for all patients in this cohort. You can also supply
numeric vectors, but these will then be converted to integer internally.

... further arguments passed to Data update method update-Data.

check (flag)
whether the validation of the updated object should be conducted. See help for
update-Data for more details on the use case of this parameter.

Value

The new, updated DataParts object.

Examples

Create an object of class 'DataParts'.
my_data <- DataParts(

x = c(0.1, 0.5, 1.5),
y = c(0, 0, 0),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2)),
part = c(1L, 1L, 1L),
nextPart = 1L,
part1Ladder = c(0.1, 0.5, 1.5, 3, 6, 10)

)

Update the data with a new cohort.
Note that since we reached the last level from 'part1Ladder'
then the 'nextPart' is switched from '1' to '2'.
my_data1 <- update(my_data, x = 10, y = 0L)
my_data1

update,ModelPseudo-method

Update method for the ModelPseudo model class. This is a method
to update the model class slots (estimates, parameters, variables and
etc.), when the new data (e.g. new observations of responses) are
available. This method is mostly used to obtain new modal estimates
for pseudo model parameters.

Description

Update method for the ModelPseudo model class. This is a method to update the model class slots
(estimates, parameters, variables and etc.), when the new data (e.g. new observations of responses)
are available. This method is mostly used to obtain new modal estimates for pseudo model param-
eters.

Usage

S4 method for signature 'ModelPseudo'
update(object, data, ...)

486 update,ModelPseudo-method

Arguments

object (ModelPseudo)
the model to update.

data (Data)
all currently available of data.

... not used.

Value

the new ModelPseudo class object.

Examples

Update the 'LogisticIndepBeta' model with new data.
empty_data <- Data(doseGrid = seq(25, 300, 25))

my_model_lib <- LogisticIndepBeta(
binDLE = c(1.05, 1.8),
DLEweights = c(3, 3),
DLEdose = c(25, 300),
data = empty_data

)

Then, we have some new observations data.
data <- Data(

x = c(25, 50, 50, 75, 100, 100, 225, 300),
y = c(0, 0, 0, 0, 1, 1, 1, 1),
ID = 1:8,
cohort = c(1L, 2L, 2L, 3L, 4L, 4L, 5L, 6L),
doseGrid = empty_data@doseGrid

)

Update the model to get new estimates.
new_model_lib <- update(object = my_model_lib, data = data)

Update the 'Effloglog' model with new data.
empty_data_dual <- DataDual(doseGrid = seq(25, 300, 25), placebo = FALSE)

my_model_eff <- Effloglog(
eff = c(1.223, 2.513),
eff_dose = c(25, 300),
nu = c(a = 1, b = 0.025),
data = empty_data_dual,
const = 0

)

Data with new observations data.
my_data_dual <- DataDual(

x = c(25, 50, 50, 75, 100, 100, 225, 300),
y = c(0, 0, 0, 0, 1, 1, 1, 1),
w = c(0.31, 0.42, 0.59, 0.45, 0.6, 0.7, 0.6, 0.52),

Validate 487

ID = 1:8,
cohort = c(1L, 2L, 2L, 3L, 4L, 4L, 5L, 6L),
doseGrid = empty_data_dual@doseGrid

)

Update the model to get new estimates.
new_model_eff <- update(object = my_model_eff, data = my_data_dual)

Validate Validate

Description

[Stable]
The Validate class is a Reference Class to help programming validation for new S4 classes.

Details

Starting from an empty msg vector, with each check that is returning FALSE the vector gets a new
element - the string explaining the failure of the validation.

Fields

msg (character)
the cumulative messages.

Methods

check(test, string = "") Check whether the test is TRUE; if so, return NULL. Otherwise, add
the string message into the cumulative messages vector msg.

result() Return either cumulative messages vector msg (which contains the error messages from
all the checks), or NULL, if msg is empty (i.e. all the checks were successful).

v_backfill Internal Helper Functions for Validation of Backfill Objects

Description

[Experimental]
These functions are only used internally to validate the format of an input Backfill object and
therefore not exported.

Usage

v_backfill(object)

488 v_cohort_size

Arguments

object (Backfill)
object to validate.

Value

A character vector with the validation failure messages, or TRUE in case validation passes.

Functions

• v_backfill(): validates that the Backfill object contains valid slots.

v_cohort_size Internal Helper Functions for Validation of CohortSize Objects

Description

[Stable]

These functions are only used internally to validate the format of an input CohortSize or inherited
classes and therefore not exported.

Usage

v_cohort_size_range(object)

v_cohort_size_dlt(object)

v_cohort_size_const(object)

v_cohort_size_random(object)

v_cohort_size_parts(object)

v_cohort_size_max(object)

Arguments

object (CohortSize)
object to validate.

Value

A character vector with the validation failure messages, or TRUE in case validation passes.

v_data_objects 489

Functions

• v_cohort_size_range(): validates that the CohortSizeRange object contains valid intervals
and cohort_size slots.

• v_cohort_size_dlt(): validates that the CohortSizeDLT object contains valid intervals
and cohort_size slots.

• v_cohort_size_const(): validates that the CohortSizeConst object contains valid size
slot.

• v_cohort_size_random(): validates that the CohortSizeRandom object contains valid min_size
and max_size slots.

• v_cohort_size_parts(): validates that the CohortSizeParts object contains valid sizes
slot.

• v_cohort_size_max(): validates that the CohortSizeMax object contains valid cohort_sizes
slot.

v_data_objects Internal Helper Functions for Validation of GeneralData Objects

Description

[Stable]

These functions are only used internally to validate the format of an input GeneralData or inherited
classes and therefore not exported.

Usage

v_general_data(object)

h_doses_unique_per_cohort(dose, cohort)

v_data(object)

v_data_dual(object)

v_data_parts(object)

v_data_mixture(object)

v_data_da(object)

v_data_ordinal(object)

v_data_grouped(object)

490 v_design

Arguments

object (GeneralData)
object to validate.

dose (numeric)
dose values.

cohort (integer)
cohort indices parallel to doses.

Value

A character vector with the validation failure messages, or TRUE in case validation passes.

TRUE if dose is unique per cohort, otherwise FALSE.

Functions

• v_general_data(): validates that the GeneralData object contains unique ID, non-negative
cohort indices and ID and cohort vectors are of the same length nObs.

• h_doses_unique_per_cohort(): helper function which verifies whether the dose values are
unique in each and every different cohort.

• v_data(): validates that the Data object contains valid elements with respect to their types,
dependency and length.

• v_data_dual(): validates that the DataDual object contains valid biomarker vector with
respect to its type and the length.

• v_data_parts(): validates that the DataParts object contains valid elements with respect to
their types, dependency and length.

• v_data_mixture(): validates that the DataMixture object contains valid elements with re-
spect to their types, dependency and length.

• v_data_da(): validates that the DataDA object contains valid elements with respect to their
types, dependency and length.

• v_data_ordinal(): validates that the DataOrdinal object contains valid elements with re-
spect to their types, dependency and length.

• v_data_grouped(): validates that the DataGrouped object contains valid group information.

v_design Internal Helper Functions for Validation of RuleDesign Objects

Description

[Stable]
These functions are only used internally to validate the format of an input RuleDesign or inherited
classes and therefore not exported.

[Experimental]
These functions are only used internally to validate the format of an input RuleDesignOrdinal or
inherited classes and therefore not exported.

v_general_simulations 491

Usage

v_rule_design(object)

v_rule_design_ordinal(object)

v_design_grouped(object)

Arguments

object (RuleDesignOrdinal)
object to validate.

Value

A character vector with the validation failure messages, or TRUE in case validation passes.

A character vector with the validation failure messages, or TRUE in case validation passes.

Functions

• v_rule_design(): validates that the RuleDesign object contains valid startingDose.

• v_rule_design_ordinal(): validates that the RuleDesignOrdinal object contains valid
starting_dose.

• v_design_grouped(): validates that the DesignGrouped object contains valid flags.

v_general_simulations Internal Helper Functions for Validation of GeneralSimulations
Objects

Description

[Stable]

These functions are only used internally to validate the format of an input GeneralSimulations or
inherited classes and therefore not exported.

Usage

v_general_simulations(object)

v_simulations(object)

v_dual_simulations(object)

v_da_simulations(object)

492 v_increments

Arguments

object (GeneralSimulations)
object to validate.

Value

A character vector with the validation failure messages, or TRUE in case validation passes.

Functions

• v_general_simulations(): validates that the GeneralSimulations object contains valid
data object and valid dose simulations.

• v_simulations(): validates that the Simulations object contains valid object fit, stop_reasons,
stop_report, and additional_stats compared to the general class GeneralSimulations.

• v_dual_simulations(): validates that the DualSimulations object and capture the dose-
biomarker fits, and the sigma2W and rho estimates.

• v_da_simulations(): validates that the DASimulations object contains valid trial_duration
the vector of trial duration values for all simulations.

v_increments Internal Helper Functions for Validation of Increments Objects

Description

[Stable]
These functions are only used internally to validate the format of an input Increments or inherited
classes and therefore not exported.

Usage

v_increments_relative(object)

v_increments_relative_parts(object)

v_increments_relative_dlt(object)

v_increments_dose_levels(object)

v_increments_hsr_beta(object)

v_increments_min(object)

v_increments_maxtoxprob(object)

v_increments_ordinal(object)

v_cohort_size_ordinal(object)

v_mcmcoptions_objects 493

Arguments

object (Increments)
object to validate.

Value

A character vector with the validation failure messages, or TRUE in case validation passes.

Functions

• v_increments_relative(): validates that the IncrementsRelative object contains valid
intervals and increments parameters.

• v_increments_relative_parts(): validates that the IncrementsRelativeParts object
contains valid dlt_start and clean_start parameters.

• v_increments_relative_dlt(): validates that the IncrementsRelativeDLT object con-
tains valid intervals and increments parameters.

• v_increments_dose_levels(): validates that the IncrementsDoseLevels object contains
valid levels and basis_level option.

• v_increments_hsr_beta(): validates that the IncrementsHSRBeta object contains valid
probability target, threshold and shape parameters.

• v_increments_min(): validates that the IncrementsMin object contains a list with Increments
objects.

• v_increments_maxtoxprob(): validates the IncrementsMaxToxProb

• v_increments_ordinal(): validates that the IncrementsOrdinal object contains valid grade
and standard Increments rule.

• v_cohort_size_ordinal(): validates that the CohortSizeOrdinal object contains valid
grade and standard CohortSize rule.

v_mcmcoptions_objects Internal Helper Functions for Validation of McmcOptions Objects

Description

[Stable]
These functions are only used internally to validate the format of an input McmcOptions or inherited
classes and therefore not exported.

Usage

v_mcmc_options(object)

Arguments

object (McmcOptions)
object to validate.

494 v_model_objects

Value

A character vector with the validation failure messages, or TRUE in case validation passes.

Functions

• v_mcmc_options(): validates that the McmcOptions object contains valid integer scalars
iterations, burnin and step as well as proper parameters for Random Number Genera-
tor.

v_model_objects Internal Helper Functions for Validation of GeneralModel and
ModelPseudo Objects

Description

[Stable]
These functions are only used internally to validate the format of an input GeneralModel and
ModelPseudo or inherited classes and therefore are not exported.

Usage

v_general_model(object)

v_model_logistic_kadane(object)

v_model_logistic_kadane_beta_gamma(object)

v_model_logistic_normal_mix(object)

v_model_logistic_normal_fixed_mix(object)

v_model_logistic_log_normal_mix(object)

v_model_dual_endpoint(object)

v_model_dual_endpoint_rw(object)

v_model_dual_endpoint_beta(object)

v_model_dual_endpoint_emax(object)

v_model_logistic_indep_beta(object)

v_model_eff_log_log(object)

v_model_eff_flexi(object)

v_model_objects 495

v_model_da_logistic_log_normal(object)

v_model_tite_logistic_log_normal(object)

v_model_one_par_exp_normal_prior(object)

v_model_one_par_exp_prior(object)

v_logisticlognormalordinal(object)

Arguments

object (GeneralModel) or (ModelPseudo)
object to validate.

Value

A character vector with the validation failure messages, or TRUE in case validation passes.

Functions

• v_general_model(): validates that the names of the arguments in init function are included
in datanames or datanames_prior slots.

• v_model_logistic_kadane(): validates that the logistic Kadane model parameters are valid.

• v_model_logistic_kadane_beta_gamma(): validates that the logistic Kadane model param-
eters with a beta and gamma prior are valid.

• v_model_logistic_normal_mix(): validates that weightpar is valid.

• v_model_logistic_normal_fixed_mix(): validates that component is a list with valid ModelParamsNormal
objects as well as weights are correct.

• v_model_logistic_log_normal_mix(): validates that share_weight represents probabil-
ity.

• v_model_dual_endpoint(): validates that DualEndpoint class slots are valid.

• v_model_dual_endpoint_rw(): validates that DualEndpointRW class slots are valid.

• v_model_dual_endpoint_beta(): validates that DualEndpointBeta class slots are valid.

• v_model_dual_endpoint_emax(): validates that DualEndpointEmax class slots are valid.

• v_model_logistic_indep_beta(): validates that LogisticIndepBeta class slots are valid.

• v_model_eff_log_log(): validates that Effloglog class slots are valid.

• v_model_eff_flexi(): validates that EffFlexi class slots are valid.

• v_model_da_logistic_log_normal(): validates that DALogisticLogNormal class slots are
valid.

• v_model_tite_logistic_log_normal(): validates that TITELogisticLogNormal class slots
are valid.

• v_model_one_par_exp_normal_prior(): validates that OneParLogNormalPrior class slots
are valid.

496 v_next_best

• v_model_one_par_exp_prior(): validates that OneParExpPrior class slots are valid.

• v_logisticlognormalordinal(): confirms that cov is diagonal

v_model_params Internal Helper Functions for Validation of Model Parameters Objects

Description

[Experimental]

These functions are only used internally to validate the format of an object with model parameters
or inherited classes and therefore not exported.

Usage

v_model_params_normal(object)

Arguments

object (ModelParamsNormal)
multivariate normal parameters object to validate.

Value

A character vector with the validation failure messages, or TRUE in case validation passes.

Functions

• v_model_params_normal(): a helper function that validates multivariate normal parameters.

v_next_best Internal Helper Functions for Validation of NextBest Objects

Description

[Stable]

These functions are only used internally to validate the format of an input NextBest or inherited
classes and therefore not exported.

v_next_best 497

Usage

v_next_best_mtd(object)

v_next_best_ncrm(object)

v_next_best_ncrm_loss(object)

v_next_best_dual_endpoint(object)

v_next_best_min_dist(object)

v_next_best_ewoc(object)

v_next_best_inf_theory(object)

v_next_best_td(object)

v_next_best_td_samples(object)

v_next_best_max_gain_samples(object)

v_next_best_prob_mtd_lte(object)

v_next_best_prob_mtd_min_dist(object)

v_next_best_ordinal(object)

Arguments

object (NextBest)
object to validate.

Value

A character vector with the validation failure messages, or TRUE in case validation passes.

Functions

• v_next_best_mtd(): validates that the NextBestMTD object contains valid target probabil-
ity and derive function.

• v_next_best_ncrm(): validates that the NextBestNCRM object contains valid target proba-
bility, overdose and max_overdose_prob probability ranges.

• v_next_best_ncrm_loss(): validates that the NextBestNCRMLoss object contains valid ob-
jects.

• v_next_best_dual_endpoint(): validates that the NextBestDualEndpoint object contains
valid probability objects.

• v_next_best_min_dist(): validates that the NextBestMinDist object contains valid target
object.

498 v_opening

• v_next_best_ewoc(): validates that the NextBestEWOC object contains valid target, overdose
and max_overdose_prob parameters.

• v_next_best_inf_theory(): validates that the NextBestInfTheory object contains valid
target and asymmetry objects.

• v_next_best_td(): validates that the NextBestTD object contains valid prob_target_drt
and prob_target_eot probabilities.

• v_next_best_td_samples(): validates that the NextBestTDsamples object contains valid
derive function.

• v_next_best_max_gain_samples(): validates that the NextBestMaxGainSamples object
contains valid derive and mg_derive functions.

• v_next_best_prob_mtd_lte(): validates that the NextBestProbMTDLTE object contains valid
target probability and method string value.

• v_next_best_prob_mtd_min_dist(): validates that the NextBestProbMTDMinDist object
contains valid target probability and method string value.

• v_next_best_ordinal(): validates that the NextBestOrdinal object contains valid grade
and standard NextBest rule.

v_opening Internal Helper Functions for Validation of Opening Objects

Description

[Experimental]

These functions are only used internally to validate the format of an input Opening or inherited
classes and therefore not exported.

Usage

v_opening_min_dose(object)

v_opening_min_cohorts(object)

v_opening_min_responses(object)

Arguments

object (Opening)
object to validate.

Value

A character vector with the validation failure messages, or TRUE in case validation passes.

v_pseudo_simulations 499

Functions

• v_opening_min_dose(): validates that the OpeningMinDose object contains valid min_dose
slot.

• v_opening_min_cohorts(): validates that the OpeningMinCohorts object contains valid
min_cohorts slot.

• v_opening_min_responses(): validates that the OpeningMinResponses object contains valid
min_responses and include_lower_doses slots.

v_pseudo_simulations Internal Helper Functions for Validation of PseudoSimulations Ob-
jects

Description

[Stable]

These functions are only used internally to validate the format of an input PseudoSimulations or
inherited classes and therefore not exported.

Usage

v_pseudo_simulations(object)

v_pseudo_dual_simulations(object)

v_pseudo_dual_flex_simulations(object)

Arguments

object (PseudoSimulations)
object to validate.

Value

A character vector with the validation failure messages, or TRUE in case validation passes.

Functions

• v_pseudo_simulations(): validates that the PseudoSimulations object contains valid fit,
FinalTDtargetEndOfTrialEstimates , FinalTDtargetDuringTrialAtDoseGrid,FinalTDtargetEndOfTrialAtDoseGrid
, FinalTDEOTCIs, FinalTDEOTRatios, FinalCIs, FinalRatios, object and valid stopReasons
simulations.

• v_pseudo_dual_simulations(): validates that the PseudoDualSimulations object con-
tains valid fit_eff, final_gstar_estimates , final_gstar_at_dose_grid, final_gstar_cis
, final_gstar_ratios, final_optimal_dose, final_optimal_dose_at_dose_grid ob-
ject and valid sigma2_est simulations.

500 v_safety_window

• v_pseudo_dual_flex_simulations(): validates that the PseudoDualFlexiSimulations
object contains valid sigma2_beta_w_est vector of the final posterior mean sigma2betaW
estimates.FinalGstarEstimates , FinalGstarAtDoseGrid,

v_recruitment Internal Helper Functions for Validation of Recruitment Objects

Description

[Experimental]

These functions are only used internally to validate the format of an input Recruitment or inherited
classes and therefore not exported.

Usage

v_recruitment_ratio(object)

Arguments

object (Recruitment) object to validate.

Value

A character vector with the validation failure messages, or TRUE in case validation passes.

Functions

• v_recruitment_ratio(): validates that the RecruitmentRatio object contains valid ratio
slot.

v_safety_window Internal Helper Functions for Validation of SafetyWindow Objects

Description

[Stable]

These functions are only used internally to validate the format of an input SafetyWindow or inher-
ited classes and therefore not exported.

Usage

v_safety_window_size(object)

v_safety_window_const(object)

v_samples_objects 501

Arguments

object (SafetyWindow)
object to validate.

Value

A character vector with the validation failure messages, or TRUE in case validation passes.

Functions

• v_safety_window_size(): validates that the SafetyWindowSize object contains valid slots.

• v_safety_window_const(): validates that the SafetyWindowConst object contains valid
slots.

v_samples_objects Internal Helper Functions for Validation of Samples Objects

Description

These functions are only used internally to validate the format of an input Samples or inherited
classes and therefore not exported.

Usage

v_samples(object)

Arguments

object (Samples)
object to validate.

Value

A character vector with the validation failure messages, or TRUE in case validation passes.

Functions

• v_samples(): validates that the Samples object contains valid data slot.

502 v_stopping

v_stopping Internal Helper Functions for Validation of Stopping Objects

Description

[Stable]

These functions are only used internally to validate the format of an input Stopping or inherited
classes and therefore not exported.

Usage

v_stopping_cohorts_near_dose(object)

v_stopping_patients_near_dose(object)

v_stopping_min_cohorts(object)

v_stopping_min_patients(object)

v_stopping_target_prob(object)

v_stopping_mtd_distribution(object)

v_stopping_mtd_cv(object)

v_stopping_target_biomarker(object)

v_stopping_list(object)

v_stopping_all(object)

v_stopping_tdci_ratio(object)

Arguments

object (Stopping)
object to validate.

Value

A character vector with the validation failure messages, or TRUE in case validation passes.

Functions

• v_stopping_cohorts_near_dose(): validates that the StoppingCohortsNearDose object
contains valid nCohorts and percentage parameters.

windowLength 503

• v_stopping_patients_near_dose(): validates that the StoppingPatientsNearDose ob-
ject contains valid nPatients and percentage parameters.

• v_stopping_min_cohorts(): validates that the StoppingMinCohorts object contains valid
nCohorts parameter.

• v_stopping_min_patients(): validates that the StoppingMinPatients object contains valid
nPatients parameter.

• v_stopping_target_prob(): validates that the StoppingTargetProb object contains valid
target and prob parameters.

• v_stopping_mtd_distribution(): validates that the StoppingMTDdistribution object
contains valid target, thresh and prob parameters.

• v_stopping_mtd_cv(): validates that the StoppingMTDCV object contains valid probability
target and percentage threshold.

• v_stopping_target_biomarker(): validates that the StoppingTargetBiomarker object
contains valid target, is_relative and probslots.

• v_stopping_list(): validates that the StoppingList object contains valid stop_list, summary
slots.

• v_stopping_all(): validates that the StoppingAll object contains valid stop_list slot.

• v_stopping_tdci_ratio(): validates that the StoppingTDCIRatio object contains valid
target_ratio and prob_target slots.

windowLength Determine the Safety Window Length of the Next Cohort

Description

[Stable]
This function determines the safety window length of the next cohort.

Usage

windowLength(safetyWindow, size, ...)

S4 method for signature 'SafetyWindowSize'
windowLength(safetyWindow, size, data, ...)

S4 method for signature 'SafetyWindowConst'
windowLength(safetyWindow, size, ...)

Arguments

safetyWindow (SafetyWindow)
the rule, an object of class SafetyWindow.

size (integer)
the next cohort size.

504 windowLength

... additional arguments without method dispatch.

data (DataDA)
the data input, an object of class DataDA.

Value

The windowLength as a list of safety window parameters (gap, follow, follow_min).

Functions

• windowLength(SafetyWindowSize): Determine safety window length based on the cohort
size.

• windowLength(SafetyWindowConst): Constant safety window length.

Examples

nolint start

Create the data
data <- DataDA(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 1, 1, 0, 0, 1, 0),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2)),
u = c(42, 30, 15, 5, 20, 25, 30, 60),
t0 = c(0, 15, 30, 40, 55, 70, 75, 85),
Tmax = 60

)

Initialize the CRM model used to model the data
npiece_ <- 10
lambda_prior <- function(k) {

npiece_ / (data@Tmax * (npiece_ - k + 0.5))
}

model <- DALogisticLogNormal(
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56,
npiece = npiece_,
l = as.numeric(t(apply(
as.matrix(c(1:npiece_), 1, npiece_),
2,
lambda_prior

))),
c_par = 2

)

Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin = 100, step = 2, samples = 200)
set.seed(94)
samples <- mcmc(data, model, options)

windowLength 505

Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)
nextMaxDose <- maxDose(myIncrements, data = data)

Define the rule which will be used to select the next best dose
based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Calculate the next best dose
doseRecommendation <- nextBest(

myNextBest,
doselimit = nextMaxDose,
samples = samples,
model = model,
data = data

)

Define the rule which will be used to select the next cohort size
based on the class 'CohortSizeConst'
mySize <- CohortSizeConst(size = 3)

Determine the cohort size for the next cohort
sizeRecommendation <- size(mySize, dose = doseRecommendation$value, data = data)

Rule for the safety window length:
-having patientGap as (0,7,3,3,...) for cohort size <4
-and having patientGap as (0,9,5,5,...) for cohort size >=4
myWindowLength <- SafetyWindowSize(

gap = list(c(7, 3), c(9, 5)),
size = c(1, 4),
follow = 7,
follow_min = 14

)

Determine the safety window parameters for the next cohort
windowLength(myWindowLength, size = sizeRecommendation)

nolint end
nolint start

Create the data
data <- DataDA(

x = c(0.1, 0.5, 1.5, 3, 6, 10, 10, 10),
y = c(0, 0, 1, 1, 0, 0, 1, 0),
doseGrid = c(0.1, 0.5, 1.5, 3, 6, seq(from = 10, to = 80, by = 2)),
u = c(42, 30, 15, 5, 20, 25, 30, 60),

506 windowLength

t0 = c(0, 15, 30, 40, 55, 70, 75, 85),
Tmax = 60

)

Initialize the CRM model used to model the data
npiece_ <- 10
lambda_prior <- function(k) {

npiece_ / (data@Tmax * (npiece_ - k + 0.5))
}

model <- DALogisticLogNormal(
mean = c(-0.85, 1),
cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2),
ref_dose = 56,
npiece = npiece_,
l = as.numeric(t(apply(

as.matrix(c(1:npiece_), 1, npiece_),
2,
lambda_prior

))),
c_par = 2

)

Set-up some MCMC parameters and generate samples from the posterior
options <- McmcOptions(burnin = 100, step = 2, samples = 200)
set.seed(94)
samples <- mcmc(data, model, options)

Define the rule for dose increments and calculate the maximum dose allowed
myIncrements <- IncrementsRelative(

intervals = c(0, 20),
increments = c(1, 0.33)

)
nextMaxDose <- maxDose(myIncrements, data = data)

Define the rule which will be used to select the next best dose
based on the class 'NextBestNCRM'
myNextBest <- NextBestNCRM(

target = c(0.2, 0.35),
overdose = c(0.35, 1),
max_overdose_prob = 0.25

)

Calculate the next best dose
doseRecommendation <- nextBest(

myNextBest,
doselimit = nextMaxDose,
samples = samples,
model = model,
data = data

)

Define the rule which will be used to select the next cohort size

&,Stopping,Stopping-method 507

based on the class 'CohortSizeConst'
mySize <- CohortSizeConst(size = 3)

Determine the cohort size for the next cohort
sizeRecommendation <- size(mySize, dose = doseRecommendation$value, data = data)

Rule for having safety window length with constant safety window parameters
myWindowLength <- SafetyWindowConst(gap = c(7, 3), follow = 7, follow_min = 14)

Determine the safety window parameters for the next cohort
windowLength(myWindowLength, size = sizeRecommendation)

nolint end

&,Stopping,Stopping-method

Combine Two Stopping Rules with AND

Description

[Stable]
The method combining two atomic stopping rules.

Usage

S4 method for signature 'Stopping,Stopping'
e1 & e2

Arguments

e1 (Stopping)
first stopping rule object.

e2 (Stopping)
second stopping rule object.

Value

The StoppingAll object.

Examples

Example of combining two atomic stopping rules with an AND ('&') operator

myStopping1 <- StoppingMinCohorts(nCohorts = 3)
myStopping2 <- StoppingTargetProb(target = c(0.2, 0.35), prob = 0.5)

myStopping <- myStopping1 & myStopping2

508 &,StoppingAll,Stopping-method

&,Stopping,StoppingAll-method

Combine an Atomic Stopping Rule and a Stopping List with AND

Description

[Stable]
The method combining an atomic stopping rule and a stopping list.

Usage

S4 method for signature 'Stopping,StoppingAll'
e1 & e2

Arguments

e1 (Stopping)
stopping rule object.

e2 (StoppingAll)
stopping list object.

Value

The modified StoppingAll object.

Examples

Example of combining an atomic stopping rule with a list of stopping rules
with an AND ('&') operator

myStopping1 <- StoppingMinCohorts(nCohorts = 3)
myStopping2 <- StoppingTargetProb(target = c(0.2, 0.35), prob = 0.5)

myStopping3 <- StoppingMinPatients(nPatients = 20)

myStopping <- myStopping3 & (myStopping1 | myStopping2)

&,StoppingAll,Stopping-method

Combine a Stopping List and an Atomic Stopping Rule with AND

Description

[Stable]
The method combining a stopping list and an atomic stopping rule.

&,StoppingAll,Stopping-method 509

Usage

S4 method for signature 'StoppingAll,Stopping'
e1 & e2

Arguments

e1 (StoppingAll)
stopping list object.

e2 (Stopping)
stopping rule object.

Value

The modified StoppingAll object.

Examples

Example of combining a list of stopping rules with an atomic stopping rule
with an AND ('&') operator

myStopping1 <- StoppingMinCohorts(nCohorts = 3)
myStopping2 <- StoppingTargetProb(target = c(0.2, 0.35), prob = 0.5)

myStopping3 <- StoppingMinPatients(nPatients = 20)

myStopping <- (myStopping1 | myStopping2) & myStopping3

Index

∗ methods
approximate, 10
examine, 92
fit, 98
fitGain, 104
fitPEM, 106
get,Samples,character-method, 117
plot,Data,ModelTox-method, 280
plot,DataDual,ModelEff-method, 283
plot,Samples,ModelEff-method, 313
plot,Samples,ModelTox-method, 314
plotDualResponses, 319
plotGain, 322
tidy, 472

∗ package
crmPack, 34

∗ regression
examine, 92

.Backfill (Backfill-class), 13

.CohortSizeConst
(CohortSizeConst-class), 27

.CohortSizeDLT (CohortSizeDLT-class), 28

.CohortSizeMax (CohortSizeMax-class), 29

.CohortSizeMin (CohortSizeMin-class), 30

.CohortSizeOrdinal
(CohortSizeOrdinal-class), 31

.CohortSizeParts
(CohortSizeParts-class), 32

.CohortSizeRandom
(CohortSizeRandom-class), 32

.CohortSizeRange
(CohortSizeRange-class), 33

.CrmPackClass (CrmPackClass-class), 35

.DADesign (DADesign-class), 36

.DALogisticLogNormal
(DALogisticLogNormal-class), 39

.DASimulations (DASimulations-class), 42

.Data (Data-class), 42

.DataDA (DataDA-class), 44

.DataDual (DataDual-class), 46

.DataGrouped (DataGrouped-class), 47

.DataMixture (DataMixture-class), 48

.DataOrdinal (DataOrdinal-class), 49

.DataParts (DataParts-class), 50

.DefaultBackfill (Backfill-class), 13

.DefaultCohortSize, 9

.DefaultCohortSizeConst
(CohortSizeConst-class), 27

.DefaultCohortSizeDLT
(CohortSizeDLT-class), 28

.DefaultCohortSizeMax
(CohortSizeMax-class), 29

.DefaultCohortSizeMin
(CohortSizeMin-class), 30

.DefaultCohortSizeOrdinal
(CohortSizeOrdinal-class), 31

.DefaultCohortSizeParts
(CohortSizeParts-class), 32

.DefaultCohortSizeRandom
(CohortSizeRandom-class), 32

.DefaultCohortSizeRange
(CohortSizeRange-class), 33

.DefaultDADesign (DADesign-class), 36

.DefaultDALogisticLogNormal
(DALogisticLogNormal-class), 39

.DefaultDASimulations
(DASimulations-class), 42

.DefaultData (Data-class), 42

.DefaultDataDA (DataDA-class), 44

.DefaultDataDual (DataDual-class), 46

.DefaultDataGeneral
(GeneralData-class), 112

.DefaultDataGrouped
(DataGrouped-class), 47

.DefaultDataMixture
(DataMixture-class), 48

.DefaultDataOrdinal
(DataOrdinal-class), 49

510

INDEX 511

.DefaultDataParts (DataParts-class), 50

.DefaultDesign (Design-class), 51

.DefaultDesignGrouped
(DesignGrouped-class), 54

.DefaultDesignOrdinal
(DesignOrdinal-class), 57

.DefaultDualDesign (DualDesign-class),
67

.DefaultDualEndpoint
(DualEndpoint-class), 69

.DefaultDualEndpointBeta
(DualEndpointBeta-class), 71

.DefaultDualEndpointEmax
(DualEndpointEmax-class), 73

.DefaultDualEndpointRW
(DualEndpointRW-class), 74

.DefaultDualResponsesDesign
(DualResponsesDesign-class), 76

.DefaultDualResponsesSamplesDesign
(DualResponsesSamplesDesign-class),
77

.DefaultDualSimulations
(DualSimulations-class), 79

.DefaultDualSimulationsSummary
(DualSimulationsSummary-class),
81

.DefaultEffFlexi (EffFlexi-class), 82

.DefaultEffloglog (Effloglog-class), 88

.DefaultFractionalCRM
(FractionalCRM-class), 109

.DefaultGeneralModel
(GeneralModel-class), 113

.DefaultGeneralSimulations
(GeneralSimulations-class), 114

.DefaultGeneralSimulationsSummary
(GeneralSimulationsSummary-class),
115

.DefaultIncrements (Increments-class),
156

.DefaultIncrementsDoseLevels
(IncrementsDoseLevels-class),
157

.DefaultIncrementsHSRBeta
(IncrementsHSRBeta-class), 158

.DefaultIncrementsMaxToxProb
(IncrementsMaxToxProb-class),
159

.DefaultIncrementsMin

(IncrementsMin-class), 160
.DefaultIncrementsOrdinal

(IncrementsOrdinal-class), 161
.DefaultIncrementsRelative

(IncrementsRelative-class), 162
.DefaultIncrementsRelativeDLT

(IncrementsRelativeDLT-class),
163

.DefaultIncrementsRelativeDLTCurrent
(IncrementsRelativeDLTCurrent-class),
164

.DefaultIncrementsRelativeParts
(IncrementsRelativeParts-class),
165

.DefaultLogisticIndepBeta
(LogisticIndepBeta-class), 186

.DefaultLogisticKadane
(LogisticKadane-class), 189

.DefaultLogisticKadaneBetaGamma
(LogisticKadaneBetaGamma-class),
190

.DefaultLogisticLogNormal
(LogisticLogNormal-class), 193

.DefaultLogisticLogNormalGrouped
(LogisticLogNormalGrouped-class),
194

.DefaultLogisticLogNormalMixture
(LogisticLogNormalMixture-class),
195

.DefaultLogisticLogNormalOrdinal
(LogisticLogNormalOrdinal-class),
197

.DefaultLogisticLogNormalSub
(LogisticLogNormalSub-class),
198

.DefaultLogisticNormal
(LogisticNormal-class), 199

.DefaultLogisticNormalFixedMixture
(LogisticNormalFixedMixture-class),
200

.DefaultLogisticNormalMixture
(LogisticNormalMixture-class),
202

.DefaultMcmcOptions
(McmcOptions-class), 219

.DefaultModelEff (ModelEff-class), 224

.DefaultModelLogNormal
(ModelLogNormal-class), 225

512 INDEX

.DefaultModelParamsNormal
(ModelParamsNormal-class), 226

.DefaultModelPseudo
(ModelPseudo-class), 227

.DefaultModelTox (ModelTox-class), 227

.DefaultNextBest (NextBest-class), 246

.DefaultNextBestDualEndpoint
(NextBestDualEndpoint-class),
246

.DefaultNextBestEWOC
(NextBestEWOC-class), 248

.DefaultNextBestInfTheory
(NextBestInfTheory-class), 250

.DefaultNextBestMTD
(NextBestMTD-class), 254

.DefaultNextBestMaxGain
(NextBestMaxGain-class), 250

.DefaultNextBestMaxGainSamples
(NextBestMaxGainSamples-class),
252

.DefaultNextBestMinDist
(NextBestMinDist-class), 253

.DefaultNextBestNCRM
(NextBestNCRM-class), 255

.DefaultNextBestNCRMLoss
(NextBestNCRMLoss-class), 256

.DefaultNextBestOrdinal
(NextBestOrdinal-class), 258

.DefaultNextBestProbMTDLTE
(NextBestProbMTDLTE-class), 259

.DefaultNextBestProbMTDMinDist
(NextBestProbMTDMinDist-class),
260

.DefaultNextBestTD (NextBestTD-class),
261

.DefaultNextBestTDsamples
(NextBestTDsamples-class), 262

.DefaultNextBestThreePlusThree
(NextBestThreePlusThree-class),
263

.DefaultOneParExpPrior
(OneParExpPrior-class), 264

.DefaultOneParLogNormalPrior
(OneParLogNormalPrior-class),
265

.DefaultOpening (Opening-class), 270

.DefaultOpeningAll (OpeningAll-class),
271

.DefaultOpeningAny (OpeningAny-class),
272

.DefaultOpeningList
(OpeningList-class), 273

.DefaultOpeningMinCohorts
(OpeningMinCohorts-class), 274

.DefaultOpeningMinDose
(OpeningMinDose-class), 274

.DefaultOpeningMinResponses
(OpeningMinResponses-class),
275

.DefaultOpeningNone
(OpeningNone-class), 276

.DefaultProbitLogNormal
(ProbitLogNormal-class), 330

.DefaultProbitLogNormalRel
(ProbitLogNormalRel-class), 332

.DefaultPseudoDualFlexiSimulations
(PseudoDualFlexiSimulations-class),
333

.DefaultPseudoDualSimulations
(PseudoDualSimulations-class),
334

.DefaultPseudoDualSimulationsSummary
(PseudoDualSimulationsSummary-class),
335

.DefaultPseudoSimulations
(PseudoSimulations-class), 336

.DefaultPseudoSimulationsSummary
(PseudoSimulationsSummary-class),
338

.DefaultRecruitment
(Recruitment-class), 342

.DefaultRecruitmentRatio
(RecruitmentRatio-class), 342

.DefaultRecruitmentUnlimited
(RecruitmentUnlimited-class),
343

.DefaultRuleDesign (RuleDesign-class),
344

.DefaultRuleDesignOrdinal
(RuleDesignOrdinal-class), 345

.DefaultSafetyWindow
(SafetyWindow-class), 347

.DefaultSafetyWindowConst
(SafetyWindowConst-class), 347

.DefaultSafetyWindowSize
(SafetyWindowSize-class), 348

INDEX 513

.DefaultSamples (Samples-class), 349

.DefaultSimulations
(Simulations-class), 392

.DefaultSimulationsSummary
(SimulationsSummary-class), 394

.DefaultStoppingAll
(StoppingAll-class), 405

.DefaultStoppingAny
(StoppingAny-class), 406

.DefaultStoppingCohortsNearDose
(StoppingCohortsNearDose-class),
407

.DefaultStoppingExternal
(StoppingExternal-class), 408

.DefaultStoppingHighestDose
(StoppingHighestDose-class),
409

.DefaultStoppingList
(StoppingList-class), 410

.DefaultStoppingLowestDoseHSRBeta
(StoppingLowestDoseHSRBeta-class),
411

.DefaultStoppingMTDCV
(StoppingMTDCV-class), 416

.DefaultStoppingMTDdistribution
(StoppingMTDdistribution-class),
417

.DefaultStoppingMaxGainCIRatio
(StoppingMaxGainCIRatio-class),
412

.DefaultStoppingMinCohorts
(StoppingMinCohorts-class), 413

.DefaultStoppingMinPatients
(StoppingMinPatients-class),
414

.DefaultStoppingMissingDose
(StoppingMissingDose-class),
415

.DefaultStoppingOrdinal
(StoppingOrdinal-class), 418

.DefaultStoppingPatientsNearDose
(StoppingPatientsNearDose-class),
419

.DefaultStoppingSpecificDose
(StoppingSpecificDose-class),
420

.DefaultStoppingTDCIRatio
(StoppingTDCIRatio-class), 423

.DefaultStoppingTargetBiomarker
(StoppingTargetBiomarker-class),
421

.DefaultStoppingTargetProb
(StoppingTargetProb-class), 422

.DefaultTDDesign (TDDesign-class), 468

.DefaultTDsamplesDesign
(TDsamplesDesign-class), 470

.DefaultTITELogisticLogNormal
(TITELogisticLogNormal-class),
477

.Design (Design-class), 51

.DesignGrouped (DesignGrouped-class), 54

.DesignOrdinal (DesignOrdinal-class), 57

.DualDesign (DualDesign-class), 67

.DualEndpoint (DualEndpoint-class), 69

.DualEndpointBeta
(DualEndpointBeta-class), 71

.DualEndpointEmax
(DualEndpointEmax-class), 73

.DualEndpointRW (DualEndpointRW-class),
74

.DualResponsesDesign
(DualResponsesDesign-class), 76

.DualResponsesSamplesDesign
(DualResponsesSamplesDesign-class),
77

.DualSimulations
(DualSimulations-class), 79

.DualSimulationsSummary
(DualSimulationsSummary-class),
81

.EffFlexi (EffFlexi-class), 82

.Effloglog (Effloglog-class), 88

.FractionalCRM (FractionalCRM-class),
109

.GeneralData (GeneralData-class), 112

.GeneralModel (GeneralModel-class), 113

.GeneralSimulations
(GeneralSimulations-class), 114

.GeneralSimulationsSummary
(GeneralSimulationsSummary-class),
115

.IncrementsDoseLevels
(IncrementsDoseLevels-class),
157

.IncrementsHSRBeta
(IncrementsHSRBeta-class), 158

514 INDEX

.IncrementsMaxToxProb
(IncrementsMaxToxProb-class),
159

.IncrementsMin (IncrementsMin-class),
160

.IncrementsOrdinal
(IncrementsOrdinal-class), 161

.IncrementsRelative
(IncrementsRelative-class), 162

.IncrementsRelativeDLT
(IncrementsRelativeDLT-class),
163

.IncrementsRelativeDLTCurrent
(IncrementsRelativeDLTCurrent-class),
164

.IncrementsRelativeParts
(IncrementsRelativeParts-class),
165

.LogisticIndepBeta
(LogisticIndepBeta-class), 186

.LogisticKadane (LogisticKadane-class),
189

.LogisticKadaneBetaGamma
(LogisticKadaneBetaGamma-class),
190

.LogisticLogNormal
(LogisticLogNormal-class), 193

.LogisticLogNormalGrouped
(LogisticLogNormalGrouped-class),
194

.LogisticLogNormalMixture
(LogisticLogNormalMixture-class),
195

.LogisticLogNormalOrdinal
(LogisticLogNormalOrdinal-class),
197

.LogisticLogNormalSub
(LogisticLogNormalSub-class),
198

.LogisticNormal (LogisticNormal-class),
199

.LogisticNormalFixedMixture
(LogisticNormalFixedMixture-class),
200

.LogisticNormalMixture
(LogisticNormalMixture-class),
202

.McmcOptions (McmcOptions-class), 219

.ModelEff (ModelEff-class), 224

.ModelLogNormal (ModelLogNormal-class),
225

.ModelParamsNormal
(ModelParamsNormal-class), 226

.ModelPseudo (ModelPseudo-class), 227

.ModelTox (ModelTox-class), 227

.NextBestDualEndpoint
(NextBestDualEndpoint-class),
246

.NextBestEWOC (NextBestEWOC-class), 248

.NextBestInfTheory
(NextBestInfTheory-class), 250

.NextBestMTD (NextBestMTD-class), 254

.NextBestMaxGain
(NextBestMaxGain-class), 250

.NextBestMaxGainSamples
(NextBestMaxGainSamples-class),
252

.NextBestMinDist
(NextBestMinDist-class), 253

.NextBestNCRM (NextBestNCRM-class), 255

.NextBestNCRMLoss
(NextBestNCRMLoss-class), 256

.NextBestOrdinal
(NextBestOrdinal-class), 258

.NextBestProbMTDLTE
(NextBestProbMTDLTE-class), 259

.NextBestProbMTDMinDist
(NextBestProbMTDMinDist-class),
260

.NextBestTD (NextBestTD-class), 261

.NextBestTDsamples
(NextBestTDsamples-class), 262

.NextBestThreePlusThree
(NextBestThreePlusThree-class),
263

.OneParExpPrior (OneParExpPrior-class),
264

.OneParLogNormalPrior
(OneParLogNormalPrior-class),
265

.Opening (Opening-class), 270

.OpeningAll (OpeningAll-class), 271

.OpeningAny (OpeningAny-class), 272

.OpeningList (OpeningList-class), 273

.OpeningMinCohorts
(OpeningMinCohorts-class), 274

INDEX 515

.OpeningMinDose (OpeningMinDose-class),
274

.OpeningMinResponses
(OpeningMinResponses-class),
275

.OpeningNone (OpeningNone-class), 276

.ProbitLogNormal
(ProbitLogNormal-class), 330

.ProbitLogNormalRel
(ProbitLogNormalRel-class), 332

.PseudoDualFlexiSimulations
(PseudoDualFlexiSimulations-class),
333

.PseudoDualSimulations
(PseudoDualSimulations-class),
334

.PseudoDualSimulationsSummary
(PseudoDualSimulationsSummary-class),
335

.PseudoSimulations
(PseudoSimulations-class), 336

.PseudoSimulationsSummary
(PseudoSimulationsSummary-class),
338

.Recruitment (Recruitment-class), 342

.RecruitmentRatio
(RecruitmentRatio-class), 342

.RecruitmentUnlimited
(RecruitmentUnlimited-class),
343

.RuleDesign (RuleDesign-class), 344

.RuleDesignOrdinal
(RuleDesignOrdinal-class), 345

.SafetyWindowConst
(SafetyWindowConst-class), 347

.SafetyWindowSize
(SafetyWindowSize-class), 348

.Samples (Samples-class), 349

.Simulations (Simulations-class), 392

.SimulationsSummary
(SimulationsSummary-class), 394

.StoppingAll (StoppingAll-class), 405

.StoppingAny (StoppingAny-class), 406

.StoppingCohortsNearDose
(StoppingCohortsNearDose-class),
407

.StoppingExternal
(StoppingExternal-class), 408

.StoppingHighestDose
(StoppingHighestDose-class),
409

.StoppingList (StoppingList-class), 410

.StoppingLowestDoseHSRBeta
(StoppingLowestDoseHSRBeta-class),
411

.StoppingMTDCV (StoppingMTDCV-class),
416

.StoppingMTDdistribution
(StoppingMTDdistribution-class),
417

.StoppingMaxGainCIRatio
(StoppingMaxGainCIRatio-class),
412

.StoppingMinCohorts
(StoppingMinCohorts-class), 413

.StoppingMinPatients
(StoppingMinPatients-class),
414

.StoppingMissingDose
(StoppingMissingDose-class),
415

.StoppingOrdinal
(StoppingOrdinal-class), 418

.StoppingPatientsNearDose
(StoppingPatientsNearDose-class),
419

.StoppingSpecificDose
(StoppingSpecificDose-class),
420

.StoppingTDCIRatio
(StoppingTDCIRatio-class), 423

.StoppingTargetBiomarker
(StoppingTargetBiomarker-class),
421

.StoppingTargetProb
(StoppingTargetProb-class), 422

.TDDesign (TDDesign-class), 468

.TDsamplesDesign
(TDsamplesDesign-class), 470

.TITELogisticLogNormal
(TITELogisticLogNormal-class),
477

[,Data,logical,missing,missing-method
(subset-Data), 453

[,Data,numeric,missing,missing-method
(subset-Data), 453

516 INDEX

[[, 151, 152
&,Opening,Opening-method

(and,Opening,Opening-method),
10

&,Stopping,Stopping-method, 507
&,Stopping,StoppingAll-method, 508
&,StoppingAll,Stopping-method, 508

all.equal(), 119
and,Opening,Opening-method, 10
and-Stopping-Stopping

(&,Stopping,Stopping-method),
507

and-Stopping-StoppingAll
(&,Stopping,StoppingAll-method),
508

and-StoppingAll-Stopping
(&,StoppingAll,Stopping-method),
508

approximate, 10
approximate,Samples-method

(approximate), 10
assert_equal (check_equal), 16
assert_format (check_format), 18
assert_length (check_length), 19
assert_length(), 13
assert_probabilities

(check_probabilities), 20
assert_probabilities(), 13
assert_probability (check_probability),

22
assert_probability(), 13
assert_probability_range

(check_probability_range), 23
assert_probability_range(), 13
assert_range (check_range), 25
AssertCollection, 17, 19–21, 23, 24, 26
assertions, 12, 17, 19, 20, 22, 23, 25, 26

Backfill, 487, 488
Backfill (Backfill-class), 13
Backfill-class, 13
base::findInterval, 124
biomarker, 14
biomarker,integer,DualEndpoint,Samples-method

(biomarker), 14
biomarker-DualEndpoint (biomarker), 14
body(), 152

check_equal, 16
check_format, 18
check_length, 19
check_probabilities, 20
check_probability, 22
check_probability_range, 23
check_range, 25
checkmate::test_names(), 155
checkmate::test_numeric(), 154, 155
CohortSize, 9, 29, 30, 212, 223, 488
CohortSize (.DefaultCohortSize), 9
CohortSize-class (.DefaultCohortSize), 9
CohortSizeConst, 9, 27, 489
CohortSizeConst

(CohortSizeConst-class), 27
CohortSizeConst-class, 27
CohortSizeDLT, 9, 28, 489
CohortSizeDLT (CohortSizeDLT-class), 28
CohortSizeDLT-class, 28
CohortSizeMax, 29, 212, 489
CohortSizeMax (CohortSizeMax-class), 29
CohortSizeMax-class, 29
CohortSizeMin, 9, 30, 223
CohortSizeMin (CohortSizeMin-class), 30
CohortSizeMin-class, 30
CohortSizeOrdinal, 31, 58, 346, 493
CohortSizeOrdinal

(CohortSizeOrdinal-class), 31
CohortSizeOrdinal-class, 31
CohortSizeParts, 9, 32, 489
CohortSizeParts

(CohortSizeParts-class), 32
CohortSizeParts-class, 32
CohortSizeRandom, 32, 489
CohortSizeRandom

(CohortSizeRandom-class), 32
CohortSizeRandom-class, 32
CohortSizeRange, 9, 33, 489
CohortSizeRange

(CohortSizeRange-class), 33
CohortSizeRange-class, 33
crmPack, 34
crmPack-package (crmPack), 34
CrmPackClass, 35
CrmPackClass (CrmPackClass-class), 35
CrmPackClass-class, 35
crmPackExample, 35
crmPackHelp, 36

INDEX 517

DADesign, 364
DADesign (DADesign-class), 36
DADesign-class, 36
DALogisticLogNormal, 37, 39, 107, 193, 309,

478, 495
DALogisticLogNormal

(DALogisticLogNormal-class), 39
DALogisticLogNormal-class, 39
dapply, 40
DASimulations, 42, 492
DASimulations (DASimulations-class), 42
DASimulations-class, 42
Data, 11, 14, 42, 44, 46–48, 50, 99, 115, 122,

147, 151, 227, 280, 312, 313, 315,
453, 473, 479, 480, 490

Data (Data-class), 42
Data(), 45–48, 51
Data-class, 42
data.frame, 41, 151
DataDA, 44, 107, 281, 309, 473, 480, 481, 490,

504
DataDA (DataDA-class), 44
DataDA-class, 44
DataDual, 46, 104, 224, 282, 283, 310, 320,

322, 473, 482, 490
DataDual (DataDual-class), 46
DataDual-class, 46
DataGrouped, 47, 473, 490
DataGrouped (DataGrouped-class), 47
DataGrouped-class, 47
DataMixture, 48, 196, 215, 473, 490
DataMixture (DataMixture-class), 48
DataMixture-class, 48
DataOrdinal, 49, 121, 147, 151, 396, 473,

483, 484, 490
DataOrdinal (DataOrdinal-class), 49
DataOrdinal-class, 49
DataParts, 32, 50, 165, 473, 484, 485, 490
DataParts (DataParts-class), 50
DataParts-class, 50
Design, 36, 51, 54, 67, 93, 344, 368
Design (Design-class), 51
Design-class, 51
DesignGrouped, 54, 371, 491
DesignGrouped (DesignGrouped-class), 54
DesignGrouped-class, 54
DesignOrdinal, 57, 345
DesignOrdinal (DesignOrdinal-class), 57

DesignOrdinal-class, 57
disable_logging (enable_logging), 91
dose, 59
dose(), 63–65, 86, 327
dose,numeric,DualEndpoint,Samples-method

(dose), 59
dose,numeric,EffFlexi,Samples-method

(dose), 59
dose,numeric,Effloglog,missing-method

(dose), 59
dose,numeric,LogisticIndepBeta,missing-method

(dose), 59
dose,numeric,LogisticIndepBeta,Samples-method

(dose), 59
dose,numeric,LogisticKadane,Samples-method

(dose), 59
dose,numeric,LogisticKadaneBetaGamma,Samples-method

(dose), 59
dose,numeric,LogisticLogNormal,Samples-method

(dose), 59
dose,numeric,LogisticLogNormalGrouped,Samples-method

(dose), 59
dose,numeric,LogisticLogNormalMixture,Samples-method

(dose), 59
dose,numeric,LogisticLogNormalOrdinal,Samples-method

(dose), 59
dose,numeric,LogisticLogNormalSub,Samples-method

(dose), 59
dose,numeric,LogisticNormal,Samples-method

(dose), 59
dose,numeric,LogisticNormalFixedMixture,Samples-method

(dose), 59
dose,numeric,LogisticNormalMixture,Samples-method

(dose), 59
dose,numeric,OneParExpPrior,Samples-method

(dose), 59
dose,numeric,OneParLogNormalPrior,Samples-method

(dose), 59
dose,numeric,ProbitLogNormal,Samples-method

(dose), 59
dose,numeric,ProbitLogNormalRel,Samples-method

(dose), 59
dose-DualEndpoint (dose), 59
dose-EffFlexi (dose), 59
dose-Effloglog-noSamples (dose), 59
dose-LogisticIndepBeta (dose), 59
dose-LogisticIndepBeta-noSamples

(dose), 59

518 INDEX

dose-LogisticKadane (dose), 59
dose-LogisticKadaneBetaGamma (dose), 59
dose-LogisticLogNormal (dose), 59
dose-LogisticLogNormalGrouped (dose), 59
dose-LogisticLogNormalMixture (dose), 59
dose-LogisticLogNormalOrdinal (dose), 59
dose-LogisticLogNormalSub (dose), 59
dose-LogisticNormal (dose), 59
dose-LogisticNormalFixedMixture (dose),

59
dose-LogisticNormalMixture (dose), 59
dose-OneParExpPrior (dose), 59
dose-OneParLogNormalPrior (dose), 59
dose-ProbitLogNormal (dose), 59
dose-ProbitLogNormalRel (dose), 59
dose_grid_range, 65
dose_grid_range,Data-method

(dose_grid_range), 65
dose_grid_range,DataOrdinal-method

(dose_grid_range), 65
dose_grid_range-Data (dose_grid_range),

65
doseFunction, 64
doseFunction(), 63, 329
doseFunction,GeneralModel-method

(doseFunction), 64
doseFunction,LogisticLogNormalOrdinal-method

(doseFunction), 64
doseFunction,ModelPseudo-method

(doseFunction), 64
doseFunction-GeneralModel

(doseFunction), 64
doseFunction-LogisticLogNormalOrdinal

(doseFunction), 64
doseFunction-ModelPseudo

(doseFunction), 64
DualDesign, 67, 374
DualDesign (DualDesign-class), 67
DualDesign-class, 67
DualEndpoint, 69, 71–75, 133–136, 310, 331,

332, 495
DualEndpoint (DualEndpoint-class), 69
DualEndpoint(), 71, 73, 75
DualEndpoint-class, 69
DualEndpointBeta, 71, 74, 75, 133, 134, 215,

247, 495
DualEndpointBeta

(DualEndpointBeta-class), 71

DualEndpointBeta-class, 71
DualEndpointEmax, 71–73, 75, 215, 247, 495
DualEndpointEmax

(DualEndpointEmax-class), 73
DualEndpointEmax-class, 73
DualEndpointRW, 71, 72, 74, 136, 215, 495
DualEndpointRW (DualEndpointRW-class),

74
DualEndpointRW-class, 74
DualResponsesDesign, 378
DualResponsesDesign

(DualResponsesDesign-class), 76
DualResponsesDesign-class, 76
DualResponsesSamplesDesign, 381
DualResponsesSamplesDesign

(DualResponsesSamplesDesign-class),
77

DualResponsesSamplesDesign-class, 77
DualSimulations, 80, 284, 375, 492
DualSimulations

(DualSimulations-class), 79
DualSimulations-class, 79
DualSimulationsSummary, 289, 454
DualSimulationsSummary

(DualSimulationsSummary-class),
81

DualSimulationsSummary-class, 81

EffFlexi, 82, 86, 215, 251, 333, 381, 382, 495
EffFlexi (EffFlexi-class), 82
EffFlexi-class, 82
efficacy, 85
efficacy(), 63, 87, 327
efficacy,numeric,EffFlexi,Samples-method

(efficacy), 85
efficacy,numeric,Effloglog,missing-method

(efficacy), 85
efficacy,numeric,Effloglog,Samples-method

(efficacy), 85
efficacy-EffFlexi (efficacy), 85
efficacy-Effloglog (efficacy), 85
efficacy-Effloglog-noSamples

(efficacy), 85
efficacyFunction, 87
efficacyFunction,ModelEff-method

(efficacyFunction), 87
efficacyFunction-ModelEff

(efficacyFunction), 87
Effloglog, 86, 88, 215, 232, 473, 495

INDEX 519

Effloglog (Effloglog-class), 88
Effloglog-class, 88
enable_logging, 91
examine, 92
examine,DADesign-method (examine), 92
examine,Design-method (examine), 92
examine,RuleDesign-method (examine), 92
expect_format (check_format), 18
expect_probabilities

(check_probabilities), 20
expect_probability (check_probability),

22
expect_probability_range

(check_probability_range), 23
expect_range (check_range), 25
expect_that, 19, 22–24, 26

findInterval(), 124
fit, 98
fit,Samples,DualEndpoint,DataDual-method

(fit), 98
fit,Samples,EffFlexi,DataDual-method

(fit), 98
fit,Samples,Effloglog,DataDual-method

(fit), 98
fit,Samples,GeneralModel,Data-method

(fit), 98
fit,Samples,LogisticIndepBeta,Data-method

(fit), 98
fit,Samples,LogisticLogNormalOrdinal,DataOrdinal-method

(fit), 98
fitGain, 104
fitGain,ModelTox,Samples,ModelEff,Samples,DataDual-method

(fitGain), 104
fitPEM, 106, 310
fitPEM,Samples,DALogisticLogNormal,DataDA-method

(fitPEM), 106
fitted, 98
formatC(), 125, 132, 133
FractionalCRM, 109
FractionalCRM (FractionalCRM-class), 109
FractionalCRM-class, 109
futile.logger::FATAL, 92
futile.logger::flog.logger(), 92
futile.logger::flog.threshold(), 92
futile.logger::flog.trace(), 92
futile.logger::futile.logger, 91
futile.logger::TRACE, 91, 92

gain, 110
gain,numeric,ModelTox,missing,Effloglog,missing-method

(gain), 110
gain,numeric,ModelTox,Samples,ModelEff,Samples-method

(gain), 110
gain-ModelTox-Effloglog-noSamples

(gain), 110
gain-ModelTox-ModelEff (gain), 110
GeneralData, 42, 49, 112, 128, 150, 213, 472,

489, 490
GeneralData (GeneralData-class), 112
GeneralData-class, 112
GeneralModel, 11, 99, 113, 135, 137, 213,

227, 312, 494
GeneralModel (GeneralModel-class), 113
GeneralModel-class, 113
GeneralSimulations, 292, 336, 337, 355,

386, 393, 491, 492
GeneralSimulations

(GeneralSimulations-class), 114
GeneralSimulations-class, 114
GeneralSimulationsSummary, 295, 394, 456
GeneralSimulationsSummary

(GeneralSimulationsSummary-class),
115

GeneralSimulationsSummary-class, 115
GenSA::GenSA(), 341
get,Samples,character-method, 117
getEff, 118
getEff,DataDual-method (getEff), 118
getEff-DataDual (getEff), 118
ggmcmc, 117
ggplot, 280, 283, 310, 312, 313, 315, 320, 322
ggplot2::ggplot2, 148, 282
gridExtra::arrangeGrob(), 318

h_all_equivalent, 119
h_blind_plot_data, 119
h_calc_report_label_percentage, 120
h_check_fun_formals, 121
h_convert_ordinal_data, 121
h_convert_ordinal_model, 122
h_convert_ordinal_samples, 123
h_default_if_empty, 123
h_doses_unique_per_cohort

(v_data_objects), 489
h_find_interval, 124
h_format_number, 125
h_in_range, 126

520 INDEX

h_info_theory_dist, 126
h_is_positive_definite, 127
h_jags_add_dummy, 128
h_jags_extract_samples, 129
h_jags_get_data, 130
h_jags_get_model_inits, 131
h_jags_join_models, 132
h_jags_write_model, 132
h_jags_write_model(), 125, 152
h_model_dual_endpoint_beta, 133
h_model_dual_endpoint_rho, 134
h_model_dual_endpoint_sigma2betaw, 135
h_model_dual_endpoint_sigma2w, 136
h_next_best_eligible_doses, 137
h_next_best_mg_ci, 139
h_next_best_mg_doses_at_grid, 140
h_next_best_mg_plot, 141
h_next_best_mgsamples_plot, 138
h_next_best_ncrm_loss_plot, 142
h_next_best_td_plot, 144
h_next_best_tdsamples_plot, 143
h_null_if_na, 145
h_obtain_dose_grid_range, 146
h_plot_data_cohort_lines, 146
h_plot_data_dataordinal, 147
h_plot_data_df, 150
h_plot_data_df,Data-method

(h_plot_data_df), 150
h_plot_data_df,DataOrdinal-method

(h_plot_data_df), 150
h_rapply, 151
h_slots, 152
h_summarize_add_stats, 153
h_test_named_numeric, 153
h_unpack_stopit, 155
h_validate_combine_results, 155
h_validate_common_data_slots, 156

Increments, 156, 160, 492
Increments (Increments-class), 156
Increments-class, 156
IncrementsDoseLevels, 157, 206, 493
IncrementsDoseLevels

(IncrementsDoseLevels-class),
157

IncrementsDoseLevels-class, 157
IncrementsHSRBeta, 157, 158, 493
IncrementsHSRBeta

(IncrementsHSRBeta-class), 158

IncrementsHSRBeta-class, 158
IncrementsMaxToxProb, 159, 493
IncrementsMaxToxProb

(IncrementsMaxToxProb-class),
159

IncrementsMaxToxProb-class, 159
IncrementsMin, 157, 160, 493
IncrementsMin (IncrementsMin-class), 160
IncrementsMin-class, 160
IncrementsOrdinal, 58, 161, 493
IncrementsOrdinal

(IncrementsOrdinal-class), 161
IncrementsOrdinal-class, 161
IncrementsRelative, 157, 162, 165, 493
IncrementsRelative

(IncrementsRelative-class), 162
IncrementsRelative-class, 162
IncrementsRelativeDLT, 157, 163, 164, 493
IncrementsRelativeDLT

(IncrementsRelativeDLT-class),
163

IncrementsRelativeDLT-class, 163
IncrementsRelativeDLTCurrent, 164
IncrementsRelativeDLTCurrent

(IncrementsRelativeDLTCurrent-class),
164

IncrementsRelativeDLTCurrent-class,
164

IncrementsRelativeParts, 165, 493
IncrementsRelativeParts

(IncrementsRelativeParts-class),
165

IncrementsRelativeParts-class, 165
is.atomic(), 145
is.na, 124
is.na(), 123
is.unsorted, 124
is_logging_enabled (enable_logging), 91

knit_print, 186
knit_print (knit_print.Backfill), 166
knit_print.Backfill, 166
knitr::kable(), 179

lapply(), 41
length(), 20, 123
list, 475
log_trace (enable_logging), 91

INDEX 521

LogisticIndepBeta, 76, 77, 186, 215, 232,
327, 468, 470, 473, 495

LogisticIndepBeta
(LogisticIndepBeta-class), 186

LogisticIndepBeta-class, 186
LogisticKadane, 189, 192
LogisticKadane (LogisticKadane-class),

189
LogisticKadane-class, 189
LogisticKadaneBetaGamma, 190
LogisticKadaneBetaGamma

(LogisticKadaneBetaGamma-class),
190

LogisticKadaneBetaGamma-class, 190
LogisticLogNormal, 39, 40, 122, 193–196,

199, 200, 221, 226, 331, 332, 341,
477

LogisticLogNormal
(LogisticLogNormal-class), 193

LogisticLogNormal-class, 193
LogisticLogNormalGrouped, 61, 62, 194,

326, 327
LogisticLogNormalGrouped

(LogisticLogNormalGrouped-class),
194

LogisticLogNormalGrouped-class, 194
LogisticLogNormalMixture, 193, 195, 201,

203
LogisticLogNormalMixture

(LogisticLogNormalMixture-class),
195

LogisticLogNormalMixture-class, 195
LogisticLogNormalOrdinal, 122, 197, 216
LogisticLogNormalOrdinal

(LogisticLogNormalOrdinal-class),
197

LogisticLogNormalOrdinal-class, 197
LogisticLogNormalSub, 193, 198, 200, 226,

331, 332
LogisticLogNormalSub

(LogisticLogNormalSub-class),
198

LogisticLogNormalSub-class, 198
LogisticNormal, 40, 193, 199, 221, 226, 331,

332, 340, 341
LogisticNormal (LogisticNormal-class),

199
LogisticNormal-class, 199

LogisticNormalFixedMixture, 196, 200,
203

LogisticNormalFixedMixture
(LogisticNormalFixedMixture-class),
200

LogisticNormalFixedMixture-class, 200
LogisticNormalMixture, 196, 200–202, 226
LogisticNormalMixture

(LogisticNormalMixture-class),
202

LogisticNormalMixture-class, 202
logit, 204

match(), 204
match_within_tolerance, 204
maxDose, 205
maxDose,IncrementsDoseLevels,Data-method

(maxDose), 205
maxDose,IncrementsHSRBeta,Data-method

(maxDose), 205
maxDose,IncrementsMaxToxProb,Data-method

(maxDose), 205
maxDose,IncrementsMaxToxProb,DataOrdinal-method

(maxDose), 205
maxDose,IncrementsMin,Data-method

(maxDose), 205
maxDose,IncrementsMin,DataOrdinal-method

(maxDose), 205
maxDose,IncrementsOrdinal,DataOrdinal-method

(maxDose), 205
maxDose,IncrementsRelative,Data-method

(maxDose), 205
maxDose,IncrementsRelativeDLT,Data-method

(maxDose), 205
maxDose,IncrementsRelativeDLTCurrent,Data-method

(maxDose), 205
maxDose,IncrementsRelativeParts,DataParts-method

(maxDose), 205
maxDose-IncrementsDoseLevels (maxDose),

205
maxDose-IncrementsHSRBeta (maxDose), 205
maxDose-IncrementsMaxToxProb (maxDose),

205
maxDose-IncrementsMin (maxDose), 205
maxDose-IncrementsOrdinal (maxDose), 205
maxDose-IncrementsRelative (maxDose),

205
maxDose-IncrementsRelativeDLT

(maxDose), 205

522 INDEX

maxDose-IncrementsRelativeDLTCurrent
(maxDose), 205

maxDose-IncrementsRelativeParts
(maxDose), 205

maxRecruits, 211
maxRecruits,RecruitmentRatio-method

(maxRecruits), 211
maxRecruits,RecruitmentUnlimited-method

(maxRecruits), 211
maxRecruits-RecruitmentRatio

(maxRecruits), 211
maxRecruits-RecruitmentUnlimited

(maxRecruits), 211
maxSize, 212
maxSize(), 223
maxSize,CohortSize-method (maxSize), 212
maxSize-CohortSize (maxSize), 212
mcmc, 213
mcmc(), 130, 131
mcmc,Data,LogisticIndepBeta,McmcOptions-method

(mcmc), 213
mcmc,DataDual,EffFlexi,McmcOptions-method

(mcmc), 213
mcmc,DataDual,Effloglog,McmcOptions-method

(mcmc), 213
mcmc,DataMixture,GeneralModel,McmcOptions-method

(mcmc), 213
mcmc,DataOrdinal,LogisticLogNormalOrdinal,McmcOptions-method

(mcmc), 213
mcmc,GeneralData,DualEndpointBeta,McmcOptions-method

(mcmc), 213
mcmc,GeneralData,DualEndpointEmax,McmcOptions-method

(mcmc), 213
mcmc,GeneralData,DualEndpointRW,McmcOptions-method

(mcmc), 213
mcmc,GeneralData,GeneralModel,McmcOptions-method

(mcmc), 213
mcmc,GeneralData,OneParExpPrior,McmcOptions-method

(mcmc), 213
mcmc,GeneralData,OneParLogNormalPrior,McmcOptions-method

(mcmc), 213
mcmc-Data-LogisticIndepBeta (mcmc), 213
mcmc-DataDual-EffFlexi (mcmc), 213
mcmc-DataDual-Effloglog (mcmc), 213
mcmc-DataMixture (mcmc), 213
mcmc-DataOrdinal-LogisticLogNormalOrdinal

(mcmc), 213
mcmc-GeneralData (mcmc), 213

mcmc-GeneralData-DualEndpointBeta
(mcmc), 213

mcmc-GeneralData-DualEndpointEmax
(mcmc), 213

mcmc-GeneralData-DualEndpointRW (mcmc),
213

mcmc-GeneralData-OneParExpPrior (mcmc),
213

mcmc-GeneralData-OneParLogNormalPrior
(mcmc), 213

McmcOptions, 93, 213, 219, 365, 369, 375,
382, 391, 493, 494

McmcOptions (McmcOptions-class), 219
McmcOptions-class, 219
mean, 99, 104, 107
methods::slot(), 152
MinimalInformative, 221
minSize, 223
minSize(), 213
minSize,CohortSize-method (minSize), 223
minSize-CohortSize (minSize), 223
ModelEff, 83, 88, 104, 224, 228, 251, 252,

283, 313, 319, 322, 378, 381
ModelEff (ModelEff-class), 224
ModelEff-class, 224
ModelLogNormal, 40, 190, 192, 193, 195, 196,

200, 201, 203, 225, 226, 266, 331,
332

ModelLogNormal (ModelLogNormal-class),
225

ModelLogNormal-class, 225
ModelParamsNormal, 200–203, 226
ModelParamsNormal

(ModelParamsNormal-class), 226
ModelParamsNormal-class, 226
ModelPseudo, 114, 227, 485, 486, 494
ModelPseudo (ModelPseudo-class), 227
ModelPseudo-class, 227
ModelTox, 104, 186, 224, 227, 232, 251, 252,

261, 280, 314, 315, 319, 322, 378,
381, 387, 390, 468, 470

ModelTox (ModelTox-class), 227
ModelTox-class, 227

names,Samples-method, 228
names-Samples (names,Samples-method),

228
NextBest, 246, 249, 496
NextBest (NextBest-class), 246

INDEX 523

nextBest, 229
nextBest,NextBestDualEndpoint,numeric,Samples,DualEndpoint,Data-method

(nextBest), 229
nextBest,NextBestEWOC,numeric,Samples,GeneralModel,Data-method

(nextBest), 229
nextBest,NextBestInfTheory,numeric,Samples,GeneralModel,Data-method

(nextBest), 229
nextBest,NextBestMaxGain,numeric,missing,ModelTox,DataDual-method

(nextBest), 229
nextBest,NextBestMaxGainSamples,numeric,Samples,ModelTox,DataDual-method

(nextBest), 229
nextBest,NextBestMinDist,numeric,Samples,GeneralModel,Data-method

(nextBest), 229
nextBest,NextBestMTD,numeric,Samples,GeneralModel,Data-method

(nextBest), 229
nextBest,NextBestNCRM,numeric,Samples,GeneralModel,Data-method

(nextBest), 229
nextBest,NextBestNCRM,numeric,Samples,GeneralModel,DataParts-method

(nextBest), 229
nextBest,NextBestNCRMLoss,numeric,Samples,GeneralModel,Data-method

(nextBest), 229
nextBest,NextBestOrdinal,numeric,Samples,GeneralModel,Data-method

(nextBest), 229
nextBest,NextBestOrdinal,numeric,Samples,LogisticLogNormalOrdinal,DataOrdinal-method

(nextBest), 229
nextBest,NextBestProbMTDLTE,numeric,Samples,GeneralModel,Data-method

(nextBest), 229
nextBest,NextBestProbMTDMinDist,numeric,Samples,GeneralModel,Data-method

(nextBest), 229
nextBest,NextBestTD,numeric,missing,LogisticIndepBeta,Data-method

(nextBest), 229
nextBest,NextBestTDsamples,numeric,Samples,LogisticIndepBeta,Data-method

(nextBest), 229
nextBest,NextBestThreePlusThree,missing,missing,missing,Data-method

(nextBest), 229
NextBest-class, 246
nextBest-NextBestDualEndpoint

(nextBest), 229
nextBest-NextBestEWOC (nextBest), 229
nextBest-NextBestInfTheory (nextBest),

229
nextBest-NextBestMaxGain (nextBest), 229
nextBest-NextBestMaxGainSamples

(nextBest), 229
nextBest-NextBestMinDist (nextBest), 229
nextBest-NextBestMTD (nextBest), 229
nextBest-NextBestNCRM (nextBest), 229
nextBest-NextBestNCRM-DataParts

(nextBest), 229
nextBest-NextBestNCRMLoss (nextBest),

229
nextBest-NextBestOrdinal (nextBest), 229
nextBest-NextBestProbMTDLTE (nextBest),

229
nextBest-NextBestProbMTDMinDist

(nextBest), 229
nextBest-NextBestTD (nextBest), 229
nextBest-NextBestTDsamples (nextBest),

229
nextBest-NextBestThreePlusThree

(nextBest), 229
NextBestDualEndpoint, 246, 497
NextBestDualEndpoint

(NextBestDualEndpoint-class),
246

NextBestDualEndpoint-class, 246
NextBestEWOC, 246, 248, 498
NextBestEWOC (NextBestEWOC-class), 248
NextBestEWOC-class, 248
NextBestInfTheory, 246, 250, 498
NextBestInfTheory

(NextBestInfTheory-class), 250
NextBestInfTheory-class, 250
NextBestMaxGain, 246, 251, 252
NextBestMaxGain

(NextBestMaxGain-class), 250
NextBestMaxGain-class, 250
NextBestMaxGainSamples, 246, 252, 498
NextBestMaxGainSamples

(NextBestMaxGainSamples-class),
252

NextBestMaxGainSamples-class, 252
NextBestMinDist, 246, 253, 497
NextBestMinDist

(NextBestMinDist-class), 253
NextBestMinDist-class, 253
NextBestMTD, 246, 254, 497
NextBestMTD (NextBestMTD-class), 254
NextBestMTD-class, 254
NextBestNCRM, 246, 255–257, 497
NextBestNCRM (NextBestNCRM-class), 255
NextBestNCRM-class, 255
NextBestNCRMLoss, 246, 256, 497
NextBestNCRMLoss

(NextBestNCRMLoss-class), 256
NextBestNCRMLoss-class, 256

524 INDEX

NextBestOrdinal, 246, 258, 498
NextBestOrdinal

(NextBestOrdinal-class), 258
NextBestOrdinal-class, 258
NextBestProbMTDLTE, 246, 259, 498
NextBestProbMTDLTE

(NextBestProbMTDLTE-class), 259
NextBestProbMTDLTE-class, 259
NextBestProbMTDMinDist, 246, 260, 498
NextBestProbMTDMinDist

(NextBestProbMTDMinDist-class),
260

NextBestProbMTDMinDist-class, 260
NextBestTD, 246, 261, 262, 498
NextBestTD (NextBestTD-class), 261
NextBestTD-class, 261
NextBestTDsamples, 246, 262, 498
NextBestTDsamples

(NextBestTDsamples-class), 262
NextBestTDsamples-class, 262
NextBestThreePlusThree, 246, 263
NextBestThreePlusThree

(NextBestThreePlusThree-class),
263

NextBestThreePlusThree-class, 263
ngrid, 263
ngrid,Data-method (ngrid), 263
ngrid-Data (ngrid), 263

OneParExpPrior, 215, 264, 496
OneParExpPrior (OneParExpPrior-class),

264
OneParExpPrior-class, 264
OneParLogNormalPrior, 109, 215, 265, 495
OneParLogNormalPrior

(OneParLogNormalPrior-class),
265

OneParLogNormalPrior-class, 265
openCohort, 266
openCohort,OpeningAll-method

(openCohort), 266
openCohort,OpeningAny-method

(openCohort), 266
openCohort,OpeningList-method

(openCohort), 266
openCohort,OpeningMinCohorts-method

(openCohort), 266
openCohort,OpeningMinDose-method

(openCohort), 266

openCohort,OpeningMinResponses-method
(openCohort), 266

openCohort,OpeningNone-method
(openCohort), 266

openCohort-OpeningAll (openCohort), 266
openCohort-OpeningAny (openCohort), 266
openCohort-OpeningList (openCohort), 266
openCohort-OpeningMinCohorts

(openCohort), 266
openCohort-OpeningMinDose (openCohort),

266
openCohort-OpeningMinResponses

(openCohort), 266
openCohort-OpeningNone (openCohort), 266
Opening, 10, 270–277, 498
Opening (Opening-class), 270
Opening-class, 270
OpeningAll, 10, 271–273
OpeningAll (OpeningAll-class), 271
OpeningAll-class, 271
OpeningAny, 271–273, 277
OpeningAny (OpeningAny-class), 272
OpeningAny-class, 272
OpeningList, 271–273
OpeningList (OpeningList-class), 273
OpeningList-class, 273
OpeningMinCohorts, 271, 274, 499
OpeningMinCohorts

(OpeningMinCohorts-class), 274
OpeningMinCohorts-class, 274
OpeningMinDose, 271, 274, 499
OpeningMinDose (OpeningMinDose-class),

274
OpeningMinDose-class, 274
OpeningMinResponses, 271, 275, 499
OpeningMinResponses

(OpeningMinResponses-class),
275

OpeningMinResponses-class, 275
OpeningNone, 271, 276
OpeningNone (OpeningNone-class), 276
OpeningNone-class, 276
or,Opening,Opening-method, 277
or-Stopping-Stopping, 278
or-Stopping-StoppingAny, 278
or-StoppingAny-Stopping, 279

plot,Data,missing-method
(h_plot_data_dataordinal), 147

INDEX 525

plot,Data,ModelTox-method, 280
plot,DataDA,missing-method, 281
plot,DataDual,missing-method, 282
plot,DataDual,ModelEff-method, 283
plot,DataOrdinal,missing-method

(h_plot_data_dataordinal), 147
plot,DualSimulations,missing-method,

284
plot,DualSimulationsSummary,missing-method,

289
plot,GeneralSimulations,missing-method,

292
plot,GeneralSimulationsSummary,missing-method,

295
plot,PseudoDualFlexiSimulations,missing-method,

296
plot,PseudoDualSimulations,missing-method,

298
plot,PseudoDualSimulationsSummary,missing-method,

302
plot,PseudoSimulationsSummary,missing-method,

306
plot,Samples,DALogisticLogNormal-method,

309
plot,Samples,DualEndpoint-method, 310
plot,Samples,GeneralModel-method, 311
plot,Samples,ModelEff-method, 313
plot,Samples,ModelTox-method, 314
plot,SimulationsSummary,missing-method,

316
plot-Data (h_plot_data_dataordinal), 147
plot-DataDA

(plot,DataDA,missing-method),
281

plot-DataDual
(plot,DataDual,missing-method),
282

plot-DualSimulations-missing
(plot,DualSimulations,missing-method),
284

plot-DualSimulationsSummary-missing
(plot,DualSimulationsSummary,missing-method),
289

plot-GeneralSimulations-missing
(plot,GeneralSimulations,missing-method),
292

plot-GeneralSimulationsSummary-missing
(plot,GeneralSimulationsSummary,missing-method),

295
plot-PseudoDualFlexiSimulations-missing

(plot,PseudoDualFlexiSimulations,missing-method),
296

plot-PseudoDualSimulations-missing
(plot,PseudoDualSimulations,missing-method),
298

plot-PseudoDualSimulationsSummary-missing
(plot,PseudoDualSimulationsSummary,missing-method),
302

plot-PseudoSimulationsSummary-missing
(plot,PseudoSimulationsSummary,missing-method),
306

plot-SimulationsSummary-missing
(plot,SimulationsSummary,missing-method),
316

plot.gtable, 318
plot.gtable(), 319
plotDualResponses, 319
plotDualResponses,ModelTox,missing,ModelEff,missing-method

(plotDualResponses), 319
plotDualResponses,ModelTox,Samples,ModelEff,Samples-method

(plotDualResponses), 319
plotGain, 321
plotGain,ModelTox,missing,ModelEff,missing-method

(plotGain), 322
plotGain,ModelTox,Samples,ModelEff,Samples-method

(plotGain), 322
positive_number, 324, 324
print.gtable (plot.gtable), 318
prob, 324
prob(), 63, 86, 99, 327–329
prob,numeric,DualEndpoint,Samples-method

(prob), 324
prob,numeric,LogisticIndepBeta,missing-method

(prob), 324
prob,numeric,LogisticIndepBeta,Samples-method

(prob), 324
prob,numeric,LogisticKadane,Samples-method

(prob), 324
prob,numeric,LogisticKadaneBetaGamma,Samples-method

(prob), 324
prob,numeric,LogisticLogNormal,Samples-method

(prob), 324
prob,numeric,LogisticLogNormalGrouped,Samples-method

(prob), 324
prob,numeric,LogisticLogNormalMixture,Samples-method

(prob), 324

526 INDEX

prob,numeric,LogisticLogNormalOrdinal,Samples-method
(prob), 324

prob,numeric,LogisticLogNormalSub,Samples-method
(prob), 324

prob,numeric,LogisticNormal,Samples-method
(prob), 324

prob,numeric,LogisticNormalFixedMixture,Samples-method
(prob), 324

prob,numeric,LogisticNormalMixture,Samples-method
(prob), 324

prob,numeric,OneParExpPrior,Samples-method
(prob), 324

prob,numeric,OneParLogNormalPrior,Samples-method
(prob), 324

prob,numeric,ProbitLogNormal,Samples-method
(prob), 324

prob,numeric,ProbitLogNormalRel,Samples-method
(prob), 324

prob-DualEndpoint (prob), 324
prob-LogisticIndepBeta (prob), 324
prob-LogisticIndepBeta-noSamples

(prob), 324
prob-LogisticKadane (prob), 324
prob-LogisticKadaneBetaGamma (prob), 324
prob-LogisticLogNormal (prob), 324
prob-LogisticLogNormalGrouped (prob),

324
prob-LogisticLogNormalMixture (prob),

324
prob-LogisticLogNormalOrdinal (prob),

324
prob-LogisticLogNormalSub (prob), 324
prob-LogisticNormal (prob), 324
prob-LogisticNormalFixedMixture (prob),

324
prob-LogisticNormalMixture (prob), 324
prob-OneParExpPrior (prob), 324
prob-OneParLogNormalPrior (prob), 324
prob-ProbitLogNormal (prob), 324
prob-ProbitLogNormalRel (prob), 324
probFunction, 328
probFunction(), 65, 327
probFunction,GeneralModel-method

(probFunction), 328
probFunction,LogisticLogNormalOrdinal-method

(probFunction), 328
probFunction,ModelTox-method

(probFunction), 328

probFunction-GeneralModel
(probFunction), 328

probFunction-LogisticLogNormalOrdinal
(probFunction), 328

probFunction-ModelTox (probFunction),
328

probit, 330
ProbitLogNormal, 193, 199, 200, 226, 330,

332
ProbitLogNormal

(ProbitLogNormal-class), 330
ProbitLogNormal-class, 330
ProbitLogNormalLogDose

(ProbitLogNormal-class), 330
ProbitLogNormalRel, 193, 199, 200, 226,

331, 332
ProbitLogNormalRel

(ProbitLogNormalRel-class), 332
ProbitLogNormalRel-class, 332
PseudoDualFlexiSimulations, 296, 382,

500
PseudoDualFlexiSimulations

(PseudoDualFlexiSimulations-class),
333

PseudoDualFlexiSimulations-class, 333
PseudoDualSimulations, 299, 333, 379, 382,

499
PseudoDualSimulations

(PseudoDualSimulations-class),
334

PseudoDualSimulations-class, 334
PseudoDualSimulationsSummary, 302, 457,

460
PseudoDualSimulationsSummary

(PseudoDualSimulationsSummary-class),
335

PseudoDualSimulationsSummary-class,
335

PseudoSimulations, 335, 337, 388, 391, 499
PseudoSimulations

(PseudoSimulations-class), 336
PseudoSimulations-class, 336
PseudoSimulationsSummary, 307, 335, 464
PseudoSimulationsSummary

(PseudoSimulationsSummary-class),
338

PseudoSimulationsSummary-class, 338

Quantiles2LogisticNormal, 11, 340

INDEX 527

Quantiles2LogisticNormal(), 221, 222

rapply(), 152
Recruitment, 211, 342, 343, 500
Recruitment (Recruitment-class), 342
Recruitment-class, 342
RecruitmentRatio, 211, 342, 500
RecruitmentRatio

(RecruitmentRatio-class), 342
RecruitmentRatio-class, 342
RecruitmentUnlimited, 211, 342, 343
RecruitmentUnlimited

(RecruitmentUnlimited-class),
343

RecruitmentUnlimited-class, 343
rjags::jags.model(), 130, 131
rjags::jags.samples(), 129
rjags::mcarray.object, 129
rjags::rjags, 220
RuleDesign, 51, 52, 76, 77, 93, 344, 385, 469,

471, 490, 491
RuleDesign (RuleDesign-class), 344
RuleDesign-class, 344
RuleDesignOrdinal, 57, 58, 345, 490, 491
RuleDesignOrdinal

(RuleDesignOrdinal-class), 345
RuleDesignOrdinal-class, 345

SafetyWindow, 347, 500, 503
SafetyWindow (SafetyWindow-class), 347
SafetyWindow-class, 347
SafetyWindowConst, 37, 347, 501
SafetyWindowConst

(SafetyWindowConst-class), 347
SafetyWindowConst-class, 347
SafetyWindowSize, 347, 348, 501
SafetyWindowSize

(SafetyWindowSize-class), 348
SafetyWindowSize-class, 348
Samples, 11, 99, 104, 117, 123, 214, 216, 309,

310, 312, 313, 315, 319, 320, 322,
350, 501

Samples (Samples-class), 349
Samples-class, 349
saveSample, 351
saveSample,McmcOptions-method

(saveSample), 351
saveSample-McmcOptions (saveSample), 351
set.seed, 114

set.seed(), 352
set_seed, 352
set_seed(), 364, 368, 371, 374, 378, 381,

385, 387, 390
show(), 120, 153
show,DualSimulationsSummary-method,

352
show,GeneralSimulations-method, 355
show,GeneralSimulationsSummary-method,

355
show,PseudoDualSimulationsSummary-method,

356
show,PseudoSimulationsSummary-method,

359
show,SimulationsSummary-method, 361
show-DualSimulationsSummary

(show,DualSimulationsSummary-method),
352

show-GeneralSimulations
(show,GeneralSimulations-method),
355

show-GeneralSimulationsSummary
(show,GeneralSimulationsSummary-method),
355

show-PseudoDualSimulationsSummary
(show,PseudoDualSimulationsSummary-method),
356

show-PseudoSimulationsSummary
(show,PseudoSimulationsSummary-method),
359

show-SimulationsSummary
(show,SimulationsSummary-method),
361

simulate,DADesign-method, 364
simulate,Design-method, 367
simulate,DesignGrouped-method, 371
simulate,DualDesign-method, 374
simulate,DualResponsesDesign-method,

377
simulate,DualResponsesSamplesDesign-method,

380
simulate,RuleDesign-method, 385
simulate,TDDesign-method, 387
simulate,TDsamplesDesign-method, 389
simulate-DesignGrouped

(simulate,DesignGrouped-method),
371

Simulations, 42, 79, 80, 365, 369, 372, 393,

528 INDEX

492
Simulations (Simulations-class), 392
Simulations-class, 392
SimulationsSummary, 81, 316, 466
SimulationsSummary

(SimulationsSummary-class), 394
SimulationsSummary-class, 394
size, 395
size,CohortSizeConst-method (size), 395
size,CohortSizeDLT-method (size), 395
size,CohortSizeMax-method (size), 395
size,CohortSizeMin-method (size), 395
size,CohortSizeOrdinal-method (size),

395
size,CohortSizeParts-method (size), 395
size,CohortSizeRandom-method (size), 395
size,CohortSizeRange-method (size), 395
size,McmcOptions-method (size), 395
size,Samples-method (size), 395
size-CohortSizeConst (size), 395
size-CohortSizeDLT (size), 395
size-CohortSizeMax (size), 395
size-CohortSizeMin (size), 395
size-CohortSizeOrdinal (size), 395
size-CohortSizeParts (size), 395
size-CohortSizeRandom (size), 395
size-CohortSizeRange (size), 395
size-McmcOptions (size), 395
size-Samples (size), 395
split(), 41
Stopping, 405, 502
Stopping (Stopping-class), 404
Stopping-class, 404
StoppingAll, 405, 503, 507–509
StoppingAll (StoppingAll-class), 405
StoppingAll-class, 405
StoppingAny, 278, 279, 406
StoppingAny (StoppingAny-class), 406
StoppingAny-class, 406
StoppingCohortsNearDose, 405, 407, 502
StoppingCohortsNearDose

(StoppingCohortsNearDose-class),
407

StoppingCohortsNearDose-class, 407
StoppingExternal, 408
StoppingExternal

(StoppingExternal-class), 408
StoppingExternal-class, 408

StoppingHighestDose, 405, 409
StoppingHighestDose

(StoppingHighestDose-class),
409

StoppingHighestDose-class, 409
StoppingList, 405, 410, 503
StoppingList (StoppingList-class), 410
StoppingList-class, 410
StoppingLowestDoseHSRBeta, 405, 411
StoppingLowestDoseHSRBeta

(StoppingLowestDoseHSRBeta-class),
411

StoppingLowestDoseHSRBeta-class, 411
StoppingMaxGainCIRatio, 412
StoppingMaxGainCIRatio

(StoppingMaxGainCIRatio-class),
412

StoppingMaxGainCIRatio-class, 412
StoppingMinCohorts, 405, 413, 503
StoppingMinCohorts

(StoppingMinCohorts-class), 413
StoppingMinCohorts-class, 413
StoppingMinPatients, 405, 414, 503
StoppingMinPatients

(StoppingMinPatients-class),
414

StoppingMinPatients-class, 414
StoppingMissingDose, 415
StoppingMissingDose

(StoppingMissingDose-class),
415

StoppingMissingDose-class, 415
StoppingMTDCV, 405, 416, 503
StoppingMTDCV (StoppingMTDCV-class), 416
StoppingMTDCV-class, 416
StoppingMTDdistribution, 405, 417, 503
StoppingMTDdistribution

(StoppingMTDdistribution-class),
417

StoppingMTDdistribution-class, 417
StoppingOrdinal, 58, 418
StoppingOrdinal

(StoppingOrdinal-class), 418
StoppingOrdinal-class, 418
StoppingPatientsNearDose, 405, 419, 503
StoppingPatientsNearDose

(StoppingPatientsNearDose-class),
419

INDEX 529

StoppingPatientsNearDose-class, 419
StoppingSpecificDose, 405, 420
StoppingSpecificDose

(StoppingSpecificDose-class),
420

StoppingSpecificDose-class, 420
StoppingTargetBiomarker, 405, 421, 503
StoppingTargetBiomarker

(StoppingTargetBiomarker-class),
421

StoppingTargetBiomarker-class, 421
StoppingTargetProb, 405, 422, 503
StoppingTargetProb

(StoppingTargetProb-class), 422
StoppingTargetProb-class, 422
StoppingTDCIRatio, 423, 429, 503
StoppingTDCIRatio

(StoppingTDCIRatio-class), 423
StoppingTDCIRatio-class, 423
stopTrial, 424
stopTrial,StoppingAll,ANY,ANY,ANY,ANY-method

(stopTrial), 424
stopTrial,StoppingAny,ANY,ANY,ANY,ANY-method

(stopTrial), 424
stopTrial,StoppingCohortsNearDose,numeric,ANY,ANY,Data-method

(stopTrial), 424
stopTrial,StoppingExternal,numeric,ANY,ANY,ANY-method

(stopTrial), 424
stopTrial,StoppingHighestDose,numeric,ANY,ANY,Data-method

(stopTrial), 424
stopTrial,StoppingList,ANY,ANY,ANY,ANY-method

(stopTrial), 424
stopTrial,StoppingLowestDoseHSRBeta,numeric,Samples,ANY,ANY-method

(stopTrial), 424
stopTrial,StoppingMaxGainCIRatio,ANY,missing,ModelTox,DataDual-method

(stopTrial), 424
stopTrial,StoppingMaxGainCIRatio,ANY,Samples,ModelTox,DataDual-method

(stopTrial), 424
stopTrial,StoppingMinCohorts,ANY,ANY,ANY,Data-method

(stopTrial), 424
stopTrial,StoppingMinPatients,ANY,ANY,ANY,Data-method

(stopTrial), 424
stopTrial,StoppingMissingDose,numeric,ANY,ANY,Data-method

(stopTrial), 424
stopTrial,StoppingMTDCV,numeric,Samples,GeneralModel,ANY-method

(stopTrial), 424
stopTrial,StoppingMTDdistribution,numeric,Samples,GeneralModel,ANY-method

(stopTrial), 424

stopTrial,StoppingOrdinal,numeric,ANY,ANY,ANY-method
(stopTrial), 424

stopTrial,StoppingOrdinal,numeric,ANY,LogisticLogNormalOrdinal,DataOrdinal-method
(stopTrial), 424

stopTrial,StoppingPatientsNearDose,numeric,ANY,ANY,Data-method
(stopTrial), 424

stopTrial,StoppingSpecificDose,numeric,ANY,ANY,Data-method
(stopTrial), 424

stopTrial,StoppingTargetBiomarker,numeric,Samples,DualEndpoint,ANY-method
(stopTrial), 424

stopTrial,StoppingTargetProb,numeric,Samples,GeneralModel,ANY-method
(stopTrial), 424

stopTrial,StoppingTDCIRatio,ANY,missing,ModelTox,ANY-method
(stopTrial), 424

stopTrial,StoppingTDCIRatio,ANY,Samples,ModelTox,ANY-method
(stopTrial), 424

stopTrial-StoppingAll (stopTrial), 424
stopTrial-StoppingAny (stopTrial), 424
stopTrial-StoppingCohortsNearDose

(stopTrial), 424
stopTrial-StoppingExternal (stopTrial),

424
stopTrial-StoppingHighestDose

(stopTrial), 424
stopTrial-StoppingList (stopTrial), 424
stopTrial-StoppingLowestDoseHSRBeta

(stopTrial), 424
stopTrial-StoppingMaxGainCIRatio

(stopTrial), 424
stopTrial-StoppingMinCohorts

(stopTrial), 424
stopTrial-StoppingMinPatients

(stopTrial), 424
stopTrial-StoppingMissingDose

(stopTrial), 424
stopTrial-StoppingMTDCV (stopTrial), 424
stopTrial-StoppingMTDdistribution

(stopTrial), 424
stopTrial-StoppingOrdinal (stopTrial),

424
stopTrial-StoppingPatientsNearDose

(stopTrial), 424
stopTrial-StoppingSpecificDose

(stopTrial), 424
stopTrial-StoppingTargetBiomarker

(stopTrial), 424
stopTrial-StoppingTargetProb

(stopTrial), 424

530 INDEX

stopTrial-StoppingTDCIRatio
(stopTrial), 424

subset-Data, 453
summary,DualSimulations-method, 453
summary,GeneralSimulations-method, 456
summary,PseudoDualFlexiSimulations-method,

457
summary,PseudoDualSimulations-method,

459
summary,PseudoSimulations-method, 463
summary,Simulations-method, 466
summary-DualSimulations

(summary,DualSimulations-method),
453

summary-GeneralSimulations
(summary,GeneralSimulations-method),
456

summary-PseudoDualFlexiSimulations
(summary,PseudoDualFlexiSimulations-method),
457

summary-PseudoDualSimulations
(summary,PseudoDualSimulations-method),
460

summary-PseudoSimulations
(summary,PseudoSimulations-method),
463

summary-Simulations
(summary,Simulations-method),
466

TDDesign, 76, 387, 468
TDDesign (TDDesign-class), 468
TDDesign-class, 468
TDsamplesDesign, 76–78, 390, 470
TDsamplesDesign

(TDsamplesDesign-class), 470
TDsamplesDesign-class, 470
tempdir(), 133
test_format (check_format), 18
test_length (check_length), 19
test_probabilities

(check_probabilities), 20
test_probability (check_probability), 22
test_probability_range

(check_probability_range), 23
test_range (check_range), 25
ThreePlusThreeDesign

(RuleDesign-class), 344
tibble::tibble, 475

tidy, 472
tidy,CohortSizeDLT-method (tidy), 472
tidy,CohortSizeMax-method (tidy), 472
tidy,CohortSizeMin-method (tidy), 472
tidy,CohortSizeParts-method (tidy), 472
tidy,CohortSizeRange-method (tidy), 472
tidy,CrmPackClass-method (tidy), 472
tidy,Data-method (tidy), 472
tidy,DataDA-method (tidy), 472
tidy,DataDual-method (tidy), 472
tidy,DataGrouped-method (tidy), 472
tidy,DataMixture-method (tidy), 472
tidy,DataOrdinal-method (tidy), 472
tidy,DataParts-method (tidy), 472
tidy,DualDesign-method (tidy), 472
tidy,Effloglog-method (tidy), 472
tidy,GeneralData-method (tidy), 472
tidy,IncrementsMaxToxProb-method

(tidy), 472
tidy,IncrementsMin-method (tidy), 472
tidy,IncrementsRelative-method (tidy),

472
tidy,IncrementsRelativeDLT-method

(tidy), 472
tidy,IncrementsRelativeParts-method

(tidy), 472
tidy,LogisticIndepBeta-method (tidy),

472
tidy,NextBestNCRM-method (tidy), 472
tidy,NextBestNCRMLoss-method (tidy), 472
tidy,Samples-method (tidy), 472
tidy,Simulations-method (tidy), 472
tidy-CohortSizeDLT (tidy), 472
tidy-CohortSizeMax (tidy), 472
tidy-CohortSizeMin (tidy), 472
tidy-CohortSizeParts (tidy), 472
tidy-CohortSizeRange (tidy), 472
tidy-CrmPackClass (tidy), 472
tidy-Data (tidy), 472
tidy-DataDA (tidy), 472
tidy-DataDual (tidy), 472
tidy-DataGrouped (tidy), 472
tidy-DataMixture (tidy), 472
tidy-DataOrdinal (tidy), 472
tidy-DataParts (tidy), 472
tidy-DualDesign (tidy), 472
tidy-Effloglog (tidy), 472
tidy-GeneralData (tidy), 472

INDEX 531

tidy-IncrementsMaxToxProb (tidy), 472
tidy-IncrementsMin (tidy), 472
tidy-IncrementsRelative (tidy), 472
tidy-IncrementsRelativeDLT (tidy), 472
tidy-IncrementsRelativeParts (tidy), 472
tidy-LogisticIndepBeta (tidy), 472
tidy-NextBestNCRM (tidy), 472
tidy-NextBestNCRMLoss (tidy), 472
tidy-Samples (tidy), 472
tidy-Simulations (tidy), 472
TITELogisticLogNormal, 37, 109, 477, 495
TITELogisticLogNormal

(TITELogisticLogNormal-class),
477

TITELogisticLogNormal-class, 477

update,Data-method, 479
update,DataDA-method, 480
update,DataDual-method, 482
update,DataOrdinal-method, 483
update,DataParts-method, 484
update,ModelPseudo-method, 485
update-Data (update,Data-method), 479
update-DataDA (update,DataDA-method),

480
update-DataDual

(update,DataDual-method), 482
update-DataOrdinal

(update,DataOrdinal-method),
483

update-DataParts
(update,DataParts-method), 484

update-ModelPseudo
(update,ModelPseudo-method),
485

v_backfill, 487
v_cohort_size, 488
v_cohort_size_const (v_cohort_size), 488
v_cohort_size_dlt (v_cohort_size), 488
v_cohort_size_max (v_cohort_size), 488
v_cohort_size_ordinal (v_increments),

492
v_cohort_size_parts (v_cohort_size), 488
v_cohort_size_random (v_cohort_size),

488
v_cohort_size_range (v_cohort_size), 488
v_da_simulations

(v_general_simulations), 491

v_data (v_data_objects), 489
v_data_da (v_data_objects), 489
v_data_dual (v_data_objects), 489
v_data_grouped (v_data_objects), 489
v_data_mixture (v_data_objects), 489
v_data_objects, 489
v_data_ordinal (v_data_objects), 489
v_data_parts (v_data_objects), 489
v_design, 490
v_design_grouped (v_design), 490
v_dual_simulations

(v_general_simulations), 491
v_general_data (v_data_objects), 489
v_general_model (v_model_objects), 494
v_general_simulations, 491
v_increments, 492
v_increments_dose_levels

(v_increments), 492
v_increments_hsr_beta (v_increments),

492
v_increments_maxtoxprob (v_increments),

492
v_increments_min (v_increments), 492
v_increments_ordinal (v_increments), 492
v_increments_relative (v_increments),

492
v_increments_relative_dlt

(v_increments), 492
v_increments_relative_parts

(v_increments), 492
v_logisticlognormalordinal

(v_model_objects), 494
v_mcmc_options (v_mcmcoptions_objects),

493
v_mcmcoptions_objects, 493
v_model_da_logistic_log_normal

(v_model_objects), 494
v_model_dual_endpoint

(v_model_objects), 494
v_model_dual_endpoint_beta

(v_model_objects), 494
v_model_dual_endpoint_emax

(v_model_objects), 494
v_model_dual_endpoint_rw

(v_model_objects), 494
v_model_eff_flexi (v_model_objects), 494
v_model_eff_log_log (v_model_objects),

494

532 INDEX

v_model_logistic_indep_beta
(v_model_objects), 494

v_model_logistic_kadane
(v_model_objects), 494

v_model_logistic_kadane_beta_gamma
(v_model_objects), 494

v_model_logistic_log_normal_mix
(v_model_objects), 494

v_model_logistic_normal_fixed_mix
(v_model_objects), 494

v_model_logistic_normal_mix
(v_model_objects), 494

v_model_objects, 494
v_model_one_par_exp_normal_prior

(v_model_objects), 494
v_model_one_par_exp_prior

(v_model_objects), 494
v_model_params, 496
v_model_params_normal (v_model_params),

496
v_model_tite_logistic_log_normal

(v_model_objects), 494
v_next_best, 496
v_next_best_dual_endpoint

(v_next_best), 496
v_next_best_ewoc (v_next_best), 496
v_next_best_inf_theory (v_next_best),

496
v_next_best_max_gain_samples

(v_next_best), 496
v_next_best_min_dist (v_next_best), 496
v_next_best_mtd (v_next_best), 496
v_next_best_ncrm (v_next_best), 496
v_next_best_ncrm_loss (v_next_best), 496
v_next_best_ordinal (v_next_best), 496
v_next_best_prob_mtd_lte (v_next_best),

496
v_next_best_prob_mtd_min_dist

(v_next_best), 496
v_next_best_td (v_next_best), 496
v_next_best_td_samples (v_next_best),

496
v_opening, 498
v_opening_min_cohorts (v_opening), 498
v_opening_min_dose (v_opening), 498
v_opening_min_responses (v_opening), 498
v_pseudo_dual_flex_simulations

(v_pseudo_simulations), 499

v_pseudo_dual_simulations
(v_pseudo_simulations), 499

v_pseudo_simulations, 499
v_recruitment, 500
v_recruitment_ratio (v_recruitment), 500
v_rule_design (v_design), 490
v_rule_design_ordinal (v_design), 490
v_safety_window, 500
v_safety_window_const

(v_safety_window), 500
v_safety_window_size (v_safety_window),

500
v_samples (v_samples_objects), 501
v_samples_objects, 501
v_simulations (v_general_simulations),

491
v_stopping, 502
v_stopping_all (v_stopping), 502
v_stopping_cohorts_near_dose

(v_stopping), 502
v_stopping_list (v_stopping), 502
v_stopping_min_cohorts (v_stopping), 502
v_stopping_min_patients (v_stopping),

502
v_stopping_mtd_cv (v_stopping), 502
v_stopping_mtd_distribution

(v_stopping), 502
v_stopping_patients_near_dose

(v_stopping), 502
v_stopping_target_biomarker

(v_stopping), 502
v_stopping_target_prob (v_stopping), 502
v_stopping_tdci_ratio (v_stopping), 502
Validate, 487, 487
Validate(), 155, 156
vname, 17, 19–24, 26

windowLength, 503
windowLength,SafetyWindowConst-method

(windowLength), 503
windowLength,SafetyWindowSize-method

(windowLength), 503
windowLength-SafetyWindowConst

(windowLength), 503
windowLength-SafetyWindowSize

(windowLength), 503

	.DefaultCohortSize
	and,Opening,Opening-method
	approximate
	assertions
	Backfill-class
	biomarker
	check_equal
	check_format
	check_length
	check_probabilities
	check_probability
	check_probability_range
	check_range
	CohortSizeConst-class
	CohortSizeDLT-class
	CohortSizeMax-class
	CohortSizeMin-class
	CohortSizeOrdinal-class
	CohortSizeParts-class
	CohortSizeRandom-class
	CohortSizeRange-class
	crmPack
	CrmPackClass-class
	crmPackExample
	crmPackHelp
	DADesign-class
	DALogisticLogNormal-class
	dapply
	DASimulations-class
	Data-class
	DataDA-class
	DataDual-class
	DataGrouped-class
	DataMixture-class
	DataOrdinal-class
	DataParts-class
	Design-class
	DesignGrouped-class
	DesignOrdinal-class
	dose
	doseFunction
	dose_grid_range
	DualDesign-class
	DualEndpoint-class
	DualEndpointBeta-class
	DualEndpointEmax-class
	DualEndpointRW-class
	DualResponsesDesign-class
	DualResponsesSamplesDesign-class
	DualSimulations-class
	DualSimulationsSummary-class
	EffFlexi-class
	efficacy
	efficacyFunction
	Effloglog-class
	enable_logging
	examine
	fit
	fitGain
	fitPEM
	FractionalCRM-class
	gain
	GeneralData-class
	GeneralModel-class
	GeneralSimulations-class
	GeneralSimulationsSummary-class
	get,Samples,character-method
	getEff
	h_all_equivalent
	h_blind_plot_data
	h_calc_report_label_percentage
	h_check_fun_formals
	h_convert_ordinal_data
	h_convert_ordinal_model
	h_convert_ordinal_samples
	h_default_if_empty
	h_find_interval
	h_format_number
	h_info_theory_dist
	h_in_range
	h_is_positive_definite
	h_jags_add_dummy
	h_jags_extract_samples
	h_jags_get_data
	h_jags_get_model_inits
	h_jags_join_models
	h_jags_write_model
	h_model_dual_endpoint_beta
	h_model_dual_endpoint_rho
	h_model_dual_endpoint_sigma2betaw
	h_model_dual_endpoint_sigma2w
	h_next_best_eligible_doses
	h_next_best_mgsamples_plot
	h_next_best_mg_ci
	h_next_best_mg_doses_at_grid
	h_next_best_mg_plot
	h_next_best_ncrm_loss_plot
	h_next_best_tdsamples_plot
	h_next_best_td_plot
	h_null_if_na
	h_obtain_dose_grid_range
	h_plot_data_cohort_lines
	h_plot_data_dataordinal
	h_plot_data_df
	h_rapply
	h_slots
	h_summarize_add_stats
	h_test_named_numeric
	h_unpack_stopit
	h_validate_combine_results
	h_validate_common_data_slots
	Increments-class
	IncrementsDoseLevels-class
	IncrementsHSRBeta-class
	IncrementsMaxToxProb-class
	IncrementsMin-class
	IncrementsOrdinal-class
	IncrementsRelative-class
	IncrementsRelativeDLT-class
	IncrementsRelativeDLTCurrent-class
	IncrementsRelativeParts-class
	knit_print.Backfill
	LogisticIndepBeta-class
	LogisticKadane-class
	LogisticKadaneBetaGamma-class
	LogisticLogNormal-class
	LogisticLogNormalGrouped-class
	LogisticLogNormalMixture-class
	LogisticLogNormalOrdinal-class
	LogisticLogNormalSub-class
	LogisticNormal-class
	LogisticNormalFixedMixture-class
	LogisticNormalMixture-class
	logit
	match_within_tolerance
	maxDose
	maxRecruits
	maxSize
	mcmc
	McmcOptions-class
	MinimalInformative
	minSize
	ModelEff-class
	ModelLogNormal-class
	ModelParamsNormal-class
	ModelPseudo-class
	ModelTox-class
	names,Samples-method
	nextBest
	NextBest-class
	NextBestDualEndpoint-class
	NextBestEWOC-class
	NextBestInfTheory-class
	NextBestMaxGain-class
	NextBestMaxGainSamples-class
	NextBestMinDist-class
	NextBestMTD-class
	NextBestNCRM-class
	NextBestNCRMLoss-class
	NextBestOrdinal-class
	NextBestProbMTDLTE-class
	NextBestProbMTDMinDist-class
	NextBestTD-class
	NextBestTDsamples-class
	NextBestThreePlusThree-class
	ngrid
	OneParExpPrior-class
	OneParLogNormalPrior-class
	openCohort
	Opening-class
	OpeningAll-class
	OpeningAny-class
	OpeningList-class
	OpeningMinCohorts-class
	OpeningMinDose-class
	OpeningMinResponses-class
	OpeningNone-class
	or,Opening,Opening-method
	or-Stopping-Stopping
	or-Stopping-StoppingAny
	or-StoppingAny-Stopping
	plot,Data,ModelTox-method
	plot,DataDA,missing-method
	plot,DataDual,missing-method
	plot,DataDual,ModelEff-method
	plot,DualSimulations,missing-method
	plot,DualSimulationsSummary,missing-method
	plot,GeneralSimulations,missing-method
	plot,GeneralSimulationsSummary,missing-method
	plot,PseudoDualFlexiSimulations,missing-method
	plot,PseudoDualSimulations,missing-method
	plot,PseudoDualSimulationsSummary,missing-method
	plot,PseudoSimulationsSummary,missing-method
	plot,Samples,DALogisticLogNormal-method
	plot,Samples,DualEndpoint-method
	plot,Samples,GeneralModel-method
	plot,Samples,ModelEff-method
	plot,Samples,ModelTox-method
	plot,SimulationsSummary,missing-method
	plot.gtable
	plotDualResponses
	plotGain
	positive_number
	prob
	probFunction
	probit
	ProbitLogNormal-class
	ProbitLogNormalRel-class
	PseudoDualFlexiSimulations-class
	PseudoDualSimulations-class
	PseudoDualSimulationsSummary-class
	PseudoSimulations-class
	PseudoSimulationsSummary-class
	Quantiles2LogisticNormal
	Recruitment-class
	RecruitmentRatio-class
	RecruitmentUnlimited-class
	RuleDesign-class
	RuleDesignOrdinal-class
	SafetyWindow-class
	SafetyWindowConst-class
	SafetyWindowSize-class
	Samples-class
	saveSample
	set_seed
	show,DualSimulationsSummary-method
	show,GeneralSimulations-method
	show,GeneralSimulationsSummary-method
	show,PseudoDualSimulationsSummary-method
	show,PseudoSimulationsSummary-method
	show,SimulationsSummary-method
	simulate,DADesign-method
	simulate,Design-method
	simulate,DesignGrouped-method
	simulate,DualDesign-method
	simulate,DualResponsesDesign-method
	simulate,DualResponsesSamplesDesign-method
	simulate,RuleDesign-method
	simulate,TDDesign-method
	simulate,TDsamplesDesign-method
	Simulations-class
	SimulationsSummary-class
	size
	Stopping-class
	StoppingAll-class
	StoppingAny-class
	StoppingCohortsNearDose-class
	StoppingExternal-class
	StoppingHighestDose-class
	StoppingList-class
	StoppingLowestDoseHSRBeta-class
	StoppingMaxGainCIRatio-class
	StoppingMinCohorts-class
	StoppingMinPatients-class
	StoppingMissingDose-class
	StoppingMTDCV-class
	StoppingMTDdistribution-class
	StoppingOrdinal-class
	StoppingPatientsNearDose-class
	StoppingSpecificDose-class
	StoppingTargetBiomarker-class
	StoppingTargetProb-class
	StoppingTDCIRatio-class
	stopTrial
	subset-Data
	summary,DualSimulations-method
	summary,GeneralSimulations-method
	summary,PseudoDualFlexiSimulations-method
	summary,PseudoDualSimulations-method
	summary,PseudoSimulations-method
	summary,Simulations-method
	TDDesign-class
	TDsamplesDesign-class
	tidy
	TITELogisticLogNormal-class
	update,Data-method
	update,DataDA-method
	update,DataDual-method
	update,DataOrdinal-method
	update,DataParts-method
	update,ModelPseudo-method
	Validate
	v_backfill
	v_cohort_size
	v_data_objects
	v_design
	v_general_simulations
	v_increments
	v_mcmcoptions_objects
	v_model_objects
	v_model_params
	v_next_best
	v_opening
	v_pseudo_simulations
	v_recruitment
	v_safety_window
	v_samples_objects
	v_stopping
	windowLength
	&,Stopping,Stopping-method
	&,Stopping,StoppingAll-method
	&,StoppingAll,Stopping-method
	Index

