
The crs Package

Jeffrey S. Racine
McMaster University

Abstract

This vignette outlines the implementation of the regression spline method contained in the
R crs package, and also presents a few illustrative examples.
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Introduction

The crs package implements a framework for nonparametric regression splines that admits both
continuous and categorical predictors. The categorical predictors can be handled in two ways, (i)
using kernel weighting where the kernel functions are tailored to the discrete support of the cate-
gorical predictors (Racine and Li 2004), and (ii) using indicator basis functions. The fundamental
difference between these two approaches is that the use of indicator basis functions consume degrees
of freedom via the number of columns in the spline basis matrix, while kernel weighting does not.

This package implements the approaches described in Ma, Racine, and Yang under revision and
Ma and Racine 2013 when the option kernel=TRUE is selected as described below. As well, this
package implements a range of related methods and has options that (hopefully) make it appealing
for applied projects, research, and pedagogical purposes alike.

Data-driven methods can be used for selecting the spline degree, number of segments/knots, and
bandwidths (leave-out-out cross-validation (cv.func = "cv.ls") Stone 1974, Stone 1977, gener-
alized cross-validation (cv.func="cv.gcv") Craven and Wahba 1979, and the information-based
criterion (cv.func="cv.aic") proposed by Hurvich, Simonoff, and Tsai 1998). Details of the im-
plementation are as follows:

(i) the degree of the spline and number of segments (i.e. knots minus one) for each continu-
ous predictor can be set manually as can the bandwidths for each categorical predictor (if
appropriate)

(ii) alternatively, any of the data-driven criteria (i.e. cv.func=) could be used to select either
the degree of the spline (holding the number of segments/knots minus one fixed at any user-
set value) and bandwidths for the categorical predictors (if appropriate), or the number of
segments (holding the degree of the spline fixed at any user-set value) and bandwidths for the
categorical predictors (if appropriate), or the number of segments and the degree of the spline
for each continuous predictor and bandwidths for each categorical predictor (if appropriate)
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(iii) when indicator basis functions are used instead of kernel smoothing, whether to include each
categorical predictor or not can be specified manually or chosen via any cv.func method

(iv) we allow the degree of the spline for each continuous predictor to include zero, the inclusion
indicator for each categorical predictor to equal zero, and the bandwidth for each categorical
predictor to equal one, and when the degree/inclusion indicator is zero or the bandwidth is
one, the variable is thereby removed from the regression: in this manner, irrelevant predictors
can be automatically removed by any cv.func method negating the need for pre-testing (Hall,
Racine, and Li 2004, Hall, Li, and Racine 2007)

The design philosophy of the crs package aims to closely mimic the behavior of the lm function.
Indeed, the implementation relies on lm for computation of the spline coefficients, obtaining fitted
values, prediction and the like. 95% confidence bounds for the fit and derivatives are constructed
from asymptotic formulae and automatically generated. Below we describe in more detail the
specifics of the implementation for the interested reader.

Implementation

Kernel-based methods such as local constant (i.e. the Nadaraya 1965 Watson 1964 estimator) and
local polynomial regression (Fan and Gijbels 1996) are based on the concept of ‘local’ weighted
averaging. Regression spline methods, on the other hand, are ‘global’ in nature since a single
least square procedure leads to the ultimate function estimate over the entire data range (Stone
1994). This ‘global nature’ implies that constructing regression splines will be less computationally
burdensome that their kernel-based counterparts leading to their practical appeal relative to kernel-
based approaches.

However, while kernel-based regression methods admit a rich array of predictor types, spline regres-
sion methods can be limited in their potential applicability as they are predicated on continuous

predictors only. In applied settings we often encounter categorical predictors such as strength of
preference (“strongly prefer”, “weakly prefer”, “indifferent” etc.) and so forth. When confronted
with categorical predictors, researchers typically break their data into subsets governed by the val-
ues of the categorical predictors (i.e. they break their data into ‘cells’) and then conduct regression
using only the response and continuous predictors lying in each cell. Though consistent, this ‘fre-
quency’ approach can be inefficient. Recent developments in the kernel smoothing of categorical
data (Li and Racine 2007) suggest more efficient estimation approaches in such settings. The crs

package considers two complementary approaches that seamlessly handle the mix of continuous
and categorical predictors often encountered in applied settings.

The Underlying Model

We presume the reader wishes to model the unknown conditional mean in the following location-
scale model,

Y = g (X, Z) + σ (X, Z) ε,

where g(·) is an unknown function, X = (X1, . . . , Xq)T is a q-dimensional vector of continuous

predictors, and Z = (Z1, . . . , Zr)T is an r-dimensional vector of categorical predictors. Letting
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z = (zs)r
s=1, we assume that zs takes cs different values in Ds ≡ {0, 1, . . . , cs − 1}, s = 1, . . . , r, and

let cs be a finite positive constant.

For the continuous predictors the regression spline model employs the B-spline routines in the
GNU Scientific Library (https://www.gnu.org/software/gsl/). The B-spline function is the
maximally differentiable interpolative basis function (B-spline stands for ‘basis-spline’), and a B-
spline with no internal knots is a Bézier curve.

Heuristically, we conduct linear (in parameter) regression using the R function lm. However, we
replace the continuous predictors with B-splines of potentially differing order for every continuous
predictor. For the tensor product bases we set intercept=TRUE for each univariate spline basis,
while for the additive spline bases we adopt the intercept=FALSE variants (the B-splines will
therefore not sum to one, i.e., an order m B-spline with one segment (two knots/breakpoints) has
m + 1 columns and we drop the first as is often done, though see (Zhou and Wolfe 2000) for an
alternative approach based upon shrinkage methods) and include instead an intercept in the model.
This allows multiple bases to coexist when there is more than one continuous predictor without
introducing singularities. The tensor product basis is given by

B1 ⊗ B2 ⊗ · · · ⊗ Bp,

where ⊗ is the Kronecker product where the products operate column-wise and Bj is the basis
matrix for predictor j as outlined above. We also support a ‘generalized’ polynomial B-spline basis
that consists of a varying-order polynomial with appropriate interactions. A general pth order
local polynomial estimator for the multivariate predictor case is more cumbersome notationally
speaking (we let q denote the number of continuous predictors). The general multivariate case
is considered by Masry 1996 who develops some carefully considered notation and establishes the
uniform almost sure convergence rate and the pointwise asymptotic normality result for the local
polynomial estimator of g(x) and its derivatives up to order p. Borrowing from Masry 1996, we
introduce the following notation:

r = (r1, . . . , rq), r! = r1! × · · · × rq!, r̄ =
q∑

j=1

rj ,

xr = xr1

1 × · · · × xrq
q ,

∑

0≤r̄≤p

=
p∑

j=0

j∑

r1=0

· · ·
j∑

rq=0

,

(with r̄ ≡ r1 + · · · + rq = j) (1)

and

(Drg)(x) =
∂rg(x)

∂xr1

1 . . . ∂x
rq
q

.

Using this notation, and assuming that g(x) has derivatives of total order p + 1 at a point x, we
can approximate g(z) locally using a multivariate polynomial of total order p given by

g(z)
∼
=

∑

0≤r̄≤p

1

r!
(Dr)g(v)|v=x(z − x)r.

https://www.gnu.org/software/gsl/
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The generalized (varying-order) involves using the following expression rather than (1) above,

∑

0≤r̄≤max{p1,...,pq}

=

max{p1,...,pq}∑

j=0

j≤p1∑

r1=0

· · ·

j≤pq∑

rq=0

.

When additive B-spline bases are employed we have a semiparametric ‘additive’ spline model (no
interaction among variables), otherwise when the tensor product is employed we have a fully non-
parametric model (interaction among all variables). Whether to use the additive or tensor product
or generalized polynomial bases can be automatically determined via any cv.func method (see the
options for basis= in ?crs).

We offer the option to use categorical kernel weighting (lm(...,weights=L)) to handle the presence
of categorical predictors (see below for a description of L). We also offer the option of using indicator
basis functions for the categorical predictors (again taking care to remove one column to avoid
singularity given the presence of the intercept term in the model). These bases are then treated
similar to the bases Bj for continuous predictors described above.

Example: A B-spline and its First Derivative.

The figure below presents an example of a B-spline and its first derivative (the spline derivatives
are required in order to compute derivatives from the spline regression model).
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Above we plot a degree-5 B-spline (left) with one segment (two knots) and its 1st-order derivative
(right).

Least-Squares Estimation of the Underlying Model

We estimate β (z) by minimizing the following weighted least squares criterion,

β̂ (z) = arg min
β(z)∈RKn

n∑

i=1

{
Yi − B (Xi)

T β (z)
}2

L (Zi, z, λ) .
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Placement of Knots

The user can determine where knots are to be placed using one of two methods:

(i) knots can be placed at equally spaced quantiles whereby an equal number of observations lie
in each segment (‘quantile knots’)

(ii) knots can be placed at equally spaced intervals (‘uniform knots’)

Kernel Weighting

Let Zi be an r-dimensional vector of categorical/discrete predictors. We use zs to denote the s-th

component of z, we assume that zs takes cs different values in Ds
def
= {0, 1, . . . , cs −1}, s = 1, . . . , r,

and let cs ≥ 2 be a finite positive constant. For expositional simplicity we will consider the case in
which the components of z are unordered.

For an unordered categorical predictor, we use a variant of the kernel function outlined in (Aitchison
and Aitken 1976) defined as

l(Zis, zs, λs) =

{
1, when Zis = zs,
λs, otherwise.

(2)

Let 1(A) denote the usual indicator function, which assumes the value one if A holds true, zero
otherwise. Using (2), we can construct a product kernel function given by

L(Zi, z, λ) =
r∏

s=1

l(Zis, zs, λs) =
r∏

s=1

λ1(Zis ̸=zs)
s ,

while for an ordered categorical we use the function defined by

l̃(Zis, zs, λs) = λ|Zis−zs|
s

and modify the product kernel function appropriately. When Z contains a mix of ordered and
unordered variables we select the appropriate kernel for each variable’s type when constructing the
product kernel.

Note that when λs = 1 all observations are ‘pooled’ hence the variable zs is removed from the
resulting estimate, while when λs = 0 only observations lying in a given cell are used to form the
estimate.

Estimation Details

Estimating the model requires construction of the spline bases and their tensor product (if specified)
along with the categorical kernel weighting function. Then, for a given degree and number of
segments for each continuous predictor and bandwidth for each categorical predictor (or indicator
bases if kernel=FALSE), the model is fit via least-squares.

All smoothing parameters can be set manually by the user if so desired. You must use the option
cv="none" otherwise the values specified manually will become the starting points for search when
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cv="nomad" (‘nonsmooth mesh adaptive direct search’, see (Abramson, Audet, Couture, Dennis
Jr., and Le Digabel 2011) and (Le Digabel 2011) and the references therein).

The degree and bandwidth vector can be jointly determined via any cv.func method by setting
the option cv="nomad" or cv="exhaustive" (exhaustive search).

Setting the option cv="nomad" computes NOMAD-based cross-validation directed search while set-
ting cv="exhaustive" computes exhaustive cross-validation directed search for each unique com-
bination of the degree and segment vector for each continuous predictor from degree=degree.min

through degree=degree.max (default 0 and 10, respectively) and from segments=segments.min

through segments=segments.max (default 1 and 10, respectively).

When kernel=TRUE setting the option cv="exhaustive" computes bandwidths (∈ [0, 1]) obtained
via numerical minimization (see optim) for each unique combination of the degree and segment
vectors (restarting can be conducted via restarts=). When conducting cv="nomad" the number
of multiple starts can be controlled by nmulti=. The model possessing the lowest criterion function
value is then selected as the final model.

Note that cv="exhaustive" is often unfeasible (this combinatoric problem can become impossibly
large to compute in finite time) hence cv="nomad" is the default. However, with cv="nomad" one
should set nmulti= to some sensible value greater than zero (say, 10 or larger) to strive to avoid
becoming trapped in local minima.

Data-Driven Smoothing Parameter Criteria

We incorporate three popular approaches for setting the smoothing parameters of the regres-
sion spline model, namely least-squares cross-validation, generalized cross-validation, and an AIC
method corrected for use in nonparametric settings.

Let the fitted value from the spline regression model be denoted Ŷi = Bm(Xi)
T β̂(Zi). Letting

ε̂i = Yi − Ŷi denote the ith residual from the categorical regression spline model, the least-squares
cross-validation function is given by

CV =
1

n

n∑

i=1

ε̂2
i

(1 − hii)2

and this computation can be done with effectively one pass through the data set, where hii denotes
the ith diagonal element of the spline basis projection matrix (see below for details). Since hii

is computed routinely for robust diagnostics by many statistics programs, this can be computed
along with (and hence as cheaply as) the vector of spline coefficients themselves. Thus least-squares
cross-validation is computationally appealing, particularly for large data sets.

Let H denote the n × n weighting matrix such that Ŷ = HY with its ith diagonal element given
by Hii where tr(H) means the trace of H which is equal to

∑n
i=1 hii. The matrix H is often called

the ‘hat matrix’ or ‘smoother matrix’ and depends on X but not on Y . The ‘generalized’ cross-
validation function is obtained by replacing hii in the above formula with its average value denoted
tr(H)/n (Craven and Wahba 1979).

The information-based criterion proposed by (Hurvich et al. 1998) is given by

AICc = ln(σ̂2) +
1 + tr(H)/n

1 − {tr(H) + 2}/n
,
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where

σ̂2 =
1

n

n∑

i=1

ε̂2
i = Y ′(I − H)′(I − H)Y/n.

Each of these criterion functions can be minimized with respect to the unknown smoothing param-
eters either by numerical optimization procedures or by exhaustive search.

Though each of the above criteria are asymptotically equivalent in terms of the bandwidths they
deliver (tr(H)/n → 0 as n → ∞), they may differ in finite-sample settings for a small smoothing
parameter (large tr(H)/n) with the AICc criterion penalizing more heavily when undersmooth-
ing than either the least-squares cross-validation or generalized cross-validation criteria (the AICc

criterion effectively applies an infinite penalty for tr(H)/n ≥ 1/2).

Pruning

Once a model has been selected via cross-validation (i.e. degree, segments, include or lambda

have been selected), there is the opportunity to (potentially) further refine the model by adding
the option prune=TRUE to the crs function call. Pruning is accomplished by conducting stepwise
cross-validated variable selection using a modified version of the stepAIC function in the R MASS

package where the function extractAIC is replaced with the function extractCV with additional
modifications where necessary. Pruning of potentially superfluous bases is undertaken, however, the
pruned model (potentially containing a subset of the bases) is returned only if its cross-validation

score is lower than the model being pruned. When this is not the case a warning is issued to this
effect. A final pruning stage is commonplace in the spline framework and may positively impact
on the finite-sample efficiency of the resulting estimator depending on the rank of the model being
pruned. Note that this option can only be applied when kernel=FALSE.

Illustrative Examples

Next we provide a few illustrative examples that may be of interest to the reader.

Example: One Categorical/One Continuous Predictor

By way of illustration we consider a simple example involving one continuous and one discrete
predictor.

R> set.seed(42)

R> n <- 1000

R> x <- runif(n)

R> z <- rbinom(n,1,.5)

R> y <- cos(2*pi*x) + z + rnorm(n,sd=0.25)

R> z <- factor(z)

R> model <- crs(y~x+z)

R> summary(model)

Call:

crs.formula(formula = y ~ x + z)
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Kernel Weighting/B-spline Bases Regression Spline

There is 1 continuous predictor

There is 1 categorical predictor

Spline degree/number of segments for x: 3/2

Bandwidth for z: 2.22e-16

Model complexity proxy: degree-knots

Knot type: quantiles

Training observations: 1000

Rank of model frame: 5

Trace of smoother matrix: 10

Residual standard error: 0.2457 on 995 degrees of freedom

Multiple R-squared: 0.9266, Adjusted R-squared: 0.9263

F-statistic: 1388 on 9 and 990 DF, p-value: < 2.2e-16

Cross-validation score: 0.061313977

Number of multistarts: 5

Estimation time: 0.4 seconds

The function crs called in this example returns a crs object. The generic functions fitted

and residuals extract (or generate) estimated values and residuals. Furthermore, the functions
summary, predict, and plot (options mean=FALSE, deriv=FALSE, ci=FALSE, plot.behavior =
c("plot", "plot-data", "data")) support objects of this type. The figure below presents sum-
mary output in the form of partial regression surfaces (predictors not appearing on the axes are
held constant at their medians/modes). Note that for this simple example we used the option
plot(model,mean=TRUE).
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Example: Regression Discontinuity Design

By way of illustration we consider a simple example involving two continuous predictors and one
categorical predictor. In this example there is a ‘discontinuity’ in the regression surface potentially
demarcated by the discrete predictor.

R> set.seed(1234)

R> n <- 1000

R> x1 <- runif(n)

R> x2 <- runif(n)

R> z <- ifelse(x1>.5,1,0)

R> dgp <- cos(2*pi*x1)+sin(2*pi*x2)+2*z

R> z <- factor(z)

R> y <- dgp + rnorm(n,sd=1)

R> model <- crs(y~x1+x2+z)

R> summary(model)

Call:
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crs.formula(formula = y ~ x1 + x2 + z)

Kernel Weighting/B-spline Bases Regression Spline

There are 2 continuous predictors

There is 1 categorical predictor

Spline degree/number of segments for x1: 3/1

Spline degree/number of segments for x2: 3/1

Bandwidth for z: 2.22e-16

Model complexity proxy: degree-knots

Knot type: quantiles

Basis type: additive

Training observations: 1000

Rank of model frame: 7

Trace of smoother matrix: 14

Residual standard error: 0.9776 on 993 degrees of freedom

Multiple R-squared: 0.6723, Adjusted R-squared: 0.6703

F-statistic: 155.6 on 13 and 986 DF, p-value: < 2.2e-16

Cross-validation score: 0.97651001

Number of multistarts: 5

Estimation time: 13.9 seconds

The figure below plots the resulting estimate. The discontinuity occurs when x1 > 0.5 but the
nature of the discontinuity is unknown as is the functional form on either side of the potential
discontinuity. The categorical regression spline is able to detect this ‘break’.

On a related note, testing for a significant break could be accomplished with an (asymptotic) F-
test (to do so we must set kernel=FALSE however) as the following illustrates (note the argument
include=0 says to drop the one categorical predictor or, say, c(1,1,...,0,1...,1) for multivariate
categorical predictors).

R> ## When kernel=FALSE, we could use the anova() function

R> ## and set model.return=TRUE.

R> ## Unrestricted model:

R> model <- crs(y~x1+x2+z,cv="none",

+ degree=model$degree,

+ segments=model$segments,

+ basis=model$basis,

+ kernel=FALSE,

+ include=1,

+ model.return=TRUE)

R> ## Restricted model:

R> model.res <- crs(y~x1+x2+z,cv="none",

+ degree=model$degree,
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+ segments=model$segments,

+ basis=model$basis,

+ kernel=FALSE,

+ include=0,

+ model.return=TRUE)

R> anova(model.res$model.lm,model$model.lm)

Analysis of Variance Table

Model 1: y ~ P

Model 2: y ~ P

Res.Df RSS Df Sum of Sq F Pr(>F)

1 993 1143

2 992 999 1 144 143 <2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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