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add_power_ci Add confidence intervals for power estimates

Description

Calculates and adds confidence intervals for power estimates to objects returned by power(). The
confidence interval quantifies uncertainty about the true power parameter.

Usage

add_power_ci(x, ci_level = 0.95, method = c("wilson", "exact"))

Arguments

x (data.frame)
A data frame returned by power(), containing columns power and nsims.

ci_level (Scalar numeric: 0.95; (0,1))
The confidence interval level.

method (Scalar character: "wilson"; c("wilson", "exact"))
Method for computing confidence intervals. One of "wilson" (default) or "exact".
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Details

Power estimation via simulation is a binomial proportion problem. The confidence interval answers:
"What is the plausible range of true power values given my simulation results?"

Let π denote the true power value, π̂ = x/n denote the observed power value, n denote the number
of simulations, and x = round(π̂ · n) denote the number of rejections. Two methods are available.

Wilson Score Interval:
The Wilson score interval is derived from inverting the score test. Starting with the inequality∣∣∣∣∣ π̂ − π√

π(1− π)/n

∣∣∣∣∣ ≤ z1−α/2,

and solving the resulting quadratic for π yields

π̂ + z2

2n ± z
√

π̂(1−π̂)
n + z2

4n2

1 + z2

n

,

with z = z1−α/2 and π̂ = x/n.

Clopper-Pearson Interval:
The Clopper-Pearson exact interval inverts the binomial test via Beta quantiles. The bounds
(πL, πU ) satisfy:

P (X ≥ x | π = πL) = α/2

P (X ≤ x | π = πU ) = α/2

With x successes in n trials,

πL = B−1
(α
2
;x, n− x+ 1

)
πU = B−1

(
1− α

2
;x+ 1, n− x

)
where B−1(q; a, b) is the q-th quantile of Beta(a, b).
This method guarantees at least nominal coverage but is conservative (intervals are wider than
necessary).

Approximate parametric tests:
When power is computed using approximate parametric tests (see simulated()), the power es-
timate and confidence/prediction intervals apply to the Monte Carlo test power µK = P (p̂ ≤ α)
rather than the exact test power π = P (p ≤ α). These quantities converge as the number of
datasets simulated under the null hypothesis K increases. The minimum observable p-value is
1/(K + 1), so K > 1/α − 1 is required to observe any rejections. For practical accuracy, we
recommend choosing max(5000,K ≫ 1/α − 1) for most scenarios. For example, if α = 0.05,
use simulated(nsims = 5000).
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Value

The input data frame with additional columns:

Name Description
power_ci_lower Lower bound of confidence interval.
power_ci_upper Upper bound of confidence interval.

and added attribute "ci_info" containing the method description, method name and confidence
level.

References

Newcombe RG (1998). “Two-sided confidence intervals for the single proportion: comparison of
seven methods.” Statistics in Medicine, 17(8), 857–872. ISSN 0277-6715, 1097-0258, doi:10.1002/
(SICI)10970258(19980430)17:8<857::AIDSIM777>3.0.CO;2E.,

Wilson EB (1927). “Probable Inference, the Law of Succession, and Statistical Inference.” Jour-
nal of the American Statistical Association, 22(158), 209–212. ISSN 0162-1459, 1537-274X,
doi:10.1080/01621459.1927.10502953.,

Clopper CJ, Pearson ES (1934). “THE USE OF CONFIDENCE OR FIDUCIAL LIMITS ILLUS-
TRATED IN THE CASE OF THE BINOMIAL.” Biometrika, 26(4), 404–413. ISSN 0006-3444,
1464-3510, doi:10.1093/biomet/26.4.404.

See Also

power(), eval_power_ci(), add_power_pi()

Examples

#----------------------------------------------------------------------------
# add_power_ci() examples
#----------------------------------------------------------------------------
library(depower)

set.seed(1234)
x <- sim_nb(

n1 = 10,
mean1 = 10,
ratio = c(1.4, 1.6),
dispersion1 = 2,
nsims = 200

) |>
power(wald_test_nb())

# Compare methods
add_power_ci(x, method = "wilson")
add_power_ci(x, method = "exact")

# 99% confidence interval
add_power_ci(x, ci_level = 0.99)

https://doi.org/10.1002/%28SICI%291097-0258%2819980430%2917%3A8%3C857%3A%3AAID-SIM777%3E3.0.CO%3B2-E
https://doi.org/10.1002/%28SICI%291097-0258%2819980430%2917%3A8%3C857%3A%3AAID-SIM777%3E3.0.CO%3B2-E
https://doi.org/10.1080/01621459.1927.10502953
https://doi.org/10.1093/biomet/26.4.404
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# Plot with shaded region for confidence interval of the power estimate.
add_power_ci(x) |>

plot()

add_power_pi Add Bayesian posterior predictive intervals for power estimates

Description

Calculates and adds Bayesian posterior predictive intervals for power estimates in objects returned
by power(). The posterior predictive interval quantifies the expected range of power estimates from
a future simulation study.

Usage

add_power_pi(x, future_nsims = NULL, pi_level = 0.95, prior = c(1, 1))

Arguments

x (data.frame)
A data frame returned by power(), containing columns power and nsims.

future_nsims (Scalar integer or NULL: NULL; [2, Inf))
Number of simulated data sets in the future power estimate study. If NULL (de-
fault), uses the same number as the original study (nsims).

pi_level (Scalar numeric: 0.95; (0,1))
The posterior predictive interval level.

prior (Numeric vector of length 2: c(1, 1); each (0, Inf))
Parameters (α, β) for the Beta prior on true power. Default c(1, 1) is the uni-
form prior. Use c(0.5, 0.5) for the Jeffreys prior.

Details

Power estimation via simulation is a binomial proportion problem. The posterior predictive interval
answers: "If I run a new simulation study with m simulations, what range of power estimates might
I observe?"

Let π denote the true power value, π̂ = x/n denote the observed power value, n denote the number
of simulations, and x = round(π̂ · n) denote the number of rejections. With a Beta(α, β) prior on
the true power π, the posterior after observing x successes in n trials is:

π | X = x ∼ Beta(α+ x, β + n− x).

The posterior predictive distribution for Y , the number of successes in a future study with m trials,
is Beta-Binomial:

Y | X = x ∼ BetaBinomial(m,α+ x, β + n− x).
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The posterior predictive interval is constructed from quantiles of this distribution, expressed as
proportions Y/m.

The posterior predictive mean and variance of π̂new = Y/m are:

E[π̂new | X = x] =
α+ x

α+ β + n

Var[π̂new | X = x] =
(α+ x)(β + n− x)(α+ β + n+m)

m(α+ β + n)2(α+ β + n+ 1)
.

Argument future_nsims:
The argument future_nsims allows you to estimate prediction interval bounds for a hypothetical
future study with different number of simulations. Note that a small initial number for nsims
results in substantial uncertainty about the true power. A correspondingly large number of future
simulations future_nsims will more precisely estimate the true power, but the past large uncer-
tainty is still carried forward. Therefore you still need an adequate number of simulations nsims
in the original study, not just more in the replication future_nsims, to ensure narrow prediction
intervals.

Approximate parametric tests:
When power is computed using approximate parametric tests (see simulated()), the power es-
timate and confidence/prediction intervals apply to the Monte Carlo test power µK = P (p̂ ≤ α)
rather than the exact test power π = P (p ≤ α). These quantities converge as the number of
datasets simulated under the null hypothesis K increases. The minimum observable p-value is
1/(K + 1), so K > 1/α − 1 is required to observe any rejections. For practical accuracy, we
recommend choosing max(5000,K ≫ 1/α − 1) for most scenarios. For example, if α = 0.05,
use simulated(nsims = 5000).

Value

The input data frame with additional columns:

Name Description
power_pi_mean Predictive mean of future power estimate.
power_pi_lower Lower bound of posterior predictive interval.
power_pi_upper Upper bound of posterior predictive interval.

and added attribute "pi_info" containing the method description, method name, level, prior values,
and future simulation count.

References

Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB (2013). Bayesian data analysis,
Texts in statistical science series, Third edition edition. CRC Press, Taylor & Francis Group. ISBN
9781439840955.

See Also

power(), eval_power_pi(), add_power_ci()
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Examples

#----------------------------------------------------------------------------
# add_power_pi() examples
#----------------------------------------------------------------------------
library(depower)

set.seed(1234)
x <- sim_nb(

n1 = 10,
mean1 = 10,
ratio = c(1.4, 1.6),
dispersion1 = 2,
nsims = 200

) |>
power(wald_test_nb())

# Add posterior predictive intervals
# default: predict for same number of simulations
add_power_pi(x)

# Compare posterior predictive interval width across different future
# study sizes
add_power_pi(x, future_nsims = 100) # wider
add_power_pi(x, future_nsims = 1000) # narrower

# Use Jeffreys prior instead of uniform
add_power_pi(x, prior = c(0.5, 0.5))

# Plot with shaded region for prediction interval of the power estimate.
add_power_pi(x) |>

plot()

distribution Test statistic distribution under the null

Description

Constructs a list which defines the test statistic reference distribution under the null hypothesis.

Usage

asymptotic()

simulated(method = "approximate", nsims = 1000L, ncores = 1L, ...)
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Arguments

method (Scalar string: "approximate")
The method used to derive the distribution of the test statistic under the null
hypothesis. Must be one of "approximate" (default) or "exact". See ’Details’
for additional information.

nsims (Scalar integer: 1000L; [2, Inf))
The number of resamples for method = "approximate". Not used for method =
"exact", except for the case when the number of exact resamples exceeds ap-
proximately 1e6 and then method = "approximate" will be used as a fallback.
In the power() context, nsims defines the number of simulated datasets under
the null hypothesis. For this case you would typically set nsims as greater than
or equal to the number of simulated datasets in the design row of the power
analysis. See ’Details’ for additional information.

ncores (Scalar integer: 1L; [1, Inf))
The number of cores (number of worker processes) to use. Do not set greater
than the value returned by parallel::detectCores().

... Optional arguments for internal use.

Details

The default asymptotic test is performed for distribution = asymptotic().

When setting argument distribution = simulated(method = "exact"), the exact randomization
test is defined by:

• Independent two-sample tests

1. Calculate the observed test statistic.
2. Check if length(combn(x=n1+n2, m=n1))<1e6

(a) If TRUE continue with the exact randomization test.
(b) If FALSE revert to the approximate randomization test.

3. For all combn(x=n1+n2, m=n1) permutations:
(a) Assign corresponding group labels.
(b) Calculate the test statistic.

4. Calculate the exact randomization test p-value as the mean of the logical vector resampled_test_stats
>= observed_test_stat.

• Dependent two-sample tests

1. Calculate the observed test statistic.
2. Check if npairs < 21 (maximum 2^20 resamples)

(a) If TRUE continue with the exact randomization test.
(b) If FALSE revert to the approximate randomization test.

3. For all 2^npairs permutations:
(a) Assign corresponding pair labels.
(b) Calculate the test statistic.

4. Calculate the exact randomization test p-value as the mean of the logical vector resampled_test_stats
>= observed_test_stat.



distribution 9

For argument distribution = simulated(method = "approximate"), the approximate random-
ization test is defined by:

• Independent two-sample tests
1. Calculate the observed test statistic.
2. For nsims iterations:

(a) Randomly assign group labels.
(b) Calculate the test statistic.

3. Insert the observed test statistic to the vector of resampled test statistics.
4. Calculate the approximate randomization test p-value as the mean of the logical vector

resampled_test_stats >= observed_test_stat.
• Dependent two-sample tests

1. Calculate the observed test statistic.
2. For nsims iterations:

(a) Randomly assign pair labels.
(b) Calculate the test statistic.

3. Insert the observed test statistic to the vector of resampled test statistics.
4. Calculate the approximate randomization test p-value as the mean of the logical vector

resampled_test_stats >= observed_test_stat.

In the power analysis setting, power(), we can simulate data for groups 1 and 2 using their known
distributions under the assumptions of the null hypothesis. Unlike above where nonparametric
randomization tests are performed, in this setting approximate parametric tests are performed.

For example, power(wald_test_nb(distribution = simulated())) would result in an approxi-
mate parametric Wald test defined by:

1. For each relevant design row in data:
(a) For simulated(nsims=integer()) iterations:

i. Simulate new data for group 1 and group 2 under the null hypothesis.
ii. Calculate the Wald test statistic, χ2

null.
(b) Collect all χ2

null into a vector.
(c) For each of the sim_nb(nsims=integer()) simulated datasets:

i. Calculate the Wald test statistic, χ2
obs.

ii. Calculate the p-value based on the empirical null distribution of test statistics, χ2
null.

(the mean of the logical vector null_test_stats >= observed_test_stat)
(d) Collect all p-values into a vector.
(e) Calculate power as sum(p <= alpha) / nsims.

2. Return all results from power().

Randomization tests use the positive-biased p-value estimate in the style of Davison and Hinkley
(1997) (see also Phipson and Smyth (2010)):

p̂ =
1 +

∑B
i=1 I{χ2

i ≥ χ2
obs}

B + 1
.

The number of resamples defines the minimum observable p-value (e.g. nsims=1000L results in
min(p-value)=1/1001). It’s recommended to set nsims ≫ 1

α .
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Value

list

References

Davison AC, Hinkley DV (1997). Bootstrap Methods and their Application, 1 edition. Cambridge
University Press. ISBN 9780521574716, doi:10.1017/CBO9780511802843.

Phipson B, Smyth GK (2010). “Permutation P-values Should Never Be Zero: Calculating Ex-
act P-values When Permutations Are Randomly Drawn.” Statistical Applications in Genetics and
Molecular Biology, 9(1). ISSN 1544-6115, doi:10.48550/arXiv.1603.05766.

Examples

#----------------------------------------------------------------------------
# asymptotic() examples
#----------------------------------------------------------------------------
library(depower)

set.seed(1234)
data <- sim_nb(

n1 = 60,
n2 = 40,
mean1 = 10,
ratio = 1.5,
dispersion1 = 2,
dispersion2 = 8

)

data |>
wald_test_nb(distribution = asymptotic())

#----------------------------------------------------------------------------
# simulated() examples
#----------------------------------------------------------------------------
data |>

wald_test_nb(distribution = simulated(nsims = 200L))

eval_power_ci Evaluate confidence intervals for power estimates

Description

Calculates the confidence interval for a power estimate from a simulation study. The confidence
interval quantifies uncertainty about the true power parameter.

When the number of simulations used to calculate a test’s power is too small, the power estimate will
have high uncertainty (wide confidence/prediction intervals). When the number of simulations used
to calculate a test’s power is too large, computational time may be prohibitive. This function allows

https://doi.org/10.1017/CBO9780511802843
https://doi.org/10.48550/arXiv.1603.05766
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you to determine the appropriate number of simulated datasets to reach your desired precision for
power before spending computational time on simulations.

Usage

eval_power_ci(power, nsims, ci_level = 0.95, method = c("wilson", "exact"))

Arguments

power (numeric: (0, 1))
Hypothetical observed power value(s).

nsims (integer: [2, Inf))
Number of simulations.

ci_level (Scalar numeric: 0.95; (0,1))
The confidence level.

method (Scalar character: "wilson"; c("wilson", "exact"))
Method for computing confidence intervals. One of "wilson" (default) or "exact".
See ’Details’ for more information.

Details

Power estimation via simulation is a binomial proportion problem. The confidence interval answers:
"What is the plausible range of true power values given my simulation results?"

Let π denote the hypothetical true power value, π̂ = x/n denote the hypothetical observed power
value, n denote the number of simulations, and x = round(π̂ · n) denote the number of rejections.
Two methods are available.

Wilson Score Interval:
The Wilson score interval is derived from inverting the score test. Starting with the inequality∣∣∣∣∣ π̂ − π√

π(1− π)/n

∣∣∣∣∣ ≤ z1−α/2,

and solving the resulting quadratic for π yields

π̂ + z2

2n ± z
√

π̂(1−π̂)
n + z2

4n2

1 + z2

n

,

with z = z1−α/2 and π̂ = x/n.

Clopper-Pearson Interval:
The Clopper-Pearson exact interval inverts the binomial test via Beta quantiles. The bounds
(πL, πU ) satisfy:

P (X ≥ x | π = πL) = α/2

P (X ≤ x | π = πU ) = α/2

With x successes in n trials,
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πL = B−1
(α
2
;x, n− x+ 1

)
πU = B−1

(
1− α

2
;x+ 1, n− x

)
where B−1(q; a, b) is the q-th quantile of Beta(a, b).
This method guarantees at least nominal coverage but is conservative (intervals are wider than
necessary).

Approximate parametric tests:
When power is computed using approximate parametric tests (see simulated()), the power es-
timate and confidence/prediction intervals apply to the Monte Carlo test power µK = P (p̂ ≤ α)
rather than the exact test power π = P (p ≤ α). These quantities converge as the number of
datasets simulated under the null hypothesis K increases. The minimum observable p-value is
1/(K + 1), so K > 1/α − 1 is required to observe any rejections. For practical accuracy, we
recommend choosing max(5000,K ≫ 1/α − 1) for most scenarios. For example, if α = 0.05,
use simulated(nsims = 5000).

Value

A list with elements:

Name Description
lower Lower bound of confidence interval.
upper Upper bound of confidence interval.

References

Newcombe RG (1998). “Two-sided confidence intervals for the single proportion: comparison of
seven methods.” Statistics in Medicine, 17(8), 857–872. ISSN 0277-6715, 1097-0258, doi:10.1002/
(SICI)10970258(19980430)17:8<857::AIDSIM777>3.0.CO;2E.,

Wilson EB (1927). “Probable Inference, the Law of Succession, and Statistical Inference.” Jour-
nal of the American Statistical Association, 22(158), 209–212. ISSN 0162-1459, 1537-274X,
doi:10.1080/01621459.1927.10502953.,

Clopper CJ, Pearson ES (1934). “THE USE OF CONFIDENCE OR FIDUCIAL LIMITS ILLUS-
TRATED IN THE CASE OF THE BINOMIAL.” Biometrika, 26(4), 404–413. ISSN 0006-3444,
1464-3510, doi:10.1093/biomet/26.4.404.

See Also

add_power_ci(), eval_power_pi()

Examples

#----------------------------------------------------------------------------
# eval_power_ci() examples
#----------------------------------------------------------------------------
library(depower)

https://doi.org/10.1002/%28SICI%291097-0258%2819980430%2917%3A8%3C857%3A%3AAID-SIM777%3E3.0.CO%3B2-E
https://doi.org/10.1002/%28SICI%291097-0258%2819980430%2917%3A8%3C857%3A%3AAID-SIM777%3E3.0.CO%3B2-E
https://doi.org/10.1080/01621459.1927.10502953
https://doi.org/10.1093/biomet/26.4.404
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# Expected CI for 80% power with 1000 simulations
eval_power_ci(power = 0.80, nsims = 1000)

# Compare precision across different simulation counts
eval_power_ci(power = 0.80, nsims = c(100, 500, 1000, 5000))

# Compare Wilson vs exact method
eval_power_ci(power = 0.80, nsims = 1000, method = "wilson")
eval_power_ci(power = 0.80, nsims = 1000, method = "exact")

# Vectorized over power values
eval_power_ci(power = c(0.70, 0.80, 0.90), nsims = 1000)

# 99% confidence interval
eval_power_ci(power = 0.80, nsims = 1000, ci_level = 0.99)

eval_power_pi Evaluate Bayesian posterior predictive intervals for power estimates

Description

Calculates the Bayesian posterior predictive interval for a power estimate from a simulation study.
The posterior predictive interval quantifies the expected range of power estimates from a future
simulation study.

When the number of simulations used to calculate a test’s power is too small, the power estimate will
have high uncertainty (wide confidence/prediction intervals). When the number of simulations used
to calculate a test’s power is too large, computational time may be prohibitive. This function allows
you to determine the appropriate number of simulated datasets to reach your desired precision for
power before spending computational time on simulations.

Usage

eval_power_pi(
power,
nsims,
future_nsims = NULL,
pi_level = 0.95,
prior = c(1, 1)

)

Arguments

power (numeric: (0, 1))
Hypothetical power value(s).

nsims (integer: [2, Inf))
Number of simulations.
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future_nsims (integer or NULL: NULL; [2, Inf))
Number of simulations in the future study. If NULL (default), uses the same
number as nsims.

pi_level (Scalar numeric: 0.95; (0,1))
The posterior predictive interval level.

prior (numeric vector of length 2: c(1, 1); each (0, Inf))
Parameters (α, β) for the Beta prior on true power. Default c(1, 1) is the uni-
form prior. Use c(0.5, 0.5) for the Jeffreys prior.

Details

Power estimation via simulation is a binomial proportion problem. The posterior predictive interval
answers: "If I run a new simulation study with m simulations, what range of power estimates might
I observe?"

Let π denote the hypothetical true power value, π̂ = x/n denote the hypothetical observed power
value, n denote the number of simulations, and x = round(π̂ · n) denote the number of rejections.
With a Beta(α, β) prior on the true power π, the posterior after observing x successes in n trials is:

π | X = x ∼ Beta(α+ x, β + n− x).

The posterior predictive distribution for Y , the number of successes in a future study with m trials,
is Beta-Binomial:

Y | X = x ∼ BetaBinomial(m,α+ x, β + n− x).

The posterior predictive interval is constructed from quantiles of this distribution, expressed as
proportions Y/m.

The posterior predictive mean and variance of π̂new = Y/m are:

E[π̂new | X = x] =
α+ x

α+ β + n

Var[π̂new | X = x] =
(α+ x)(β + n− x)(α+ β + n+m)

m(α+ β + n)2(α+ β + n+ 1)
.

Argument future_nsims:
The argument future_nsims allows you to estimate prediction interval bounds for a hypothetical
future study with different number of simulations. Note that a small initial number for nsims
results in substantial uncertainty about the true power. A correspondingly large number of future
simulations future_nsims will more precisely estimate the true power, but the past large uncer-
tainty is still carried forward. Therefore you still need an adequate number of simulations nsims
in the original study, not just more in the replication future_nsims, to ensure narrow prediction
intervals.

Approximate parametric tests:
When power is computed using approximate parametric tests (see simulated()), the power es-
timate and confidence/prediction intervals apply to the Monte Carlo test power µK = P (p̂ ≤ α)
rather than the exact test power π = P (p ≤ α). These quantities converge as the number of



eval_power_pi 15

datasets simulated under the null hypothesis K increases. The minimum observable p-value is
1/(K + 1), so K > 1/α − 1 is required to observe any rejections. For practical accuracy, we
recommend choosing max(5000,K ≫ 1/α − 1) for most scenarios. For example, if α = 0.05,
use simulated(nsims = 5000).

Value

A list with elements:

Name Description
mean Predictive mean of future power estimate.
lower Lower bound of posterior predictive interval.
upper Upper bound of posterior predictive interval.

References

Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB (2013). Bayesian data analysis,
Texts in statistical science series, Third edition edition. CRC Press, Taylor & Francis Group. ISBN
9781439840955.

See Also

add_power_pi(), eval_power_ci()

Examples

#----------------------------------------------------------------------------
# eval_power_pi() examples
#----------------------------------------------------------------------------
library(depower)

# Expected PI for 80% power with 1000 simulations
eval_power_pi(power = 0.80, nsims = 1000)

# Compare precision across different simulation counts
eval_power_pi(power = 0.80, nsims = c(100, 500, 1000, 5000))

# Predict for a larger future study (narrower interval)
eval_power_pi(power = 0.80, nsims = 1000, future_nsims = 5000)

# Predict for a smaller future study (wider interval)
eval_power_pi(power = 0.80, nsims = 1000, future_nsims = 100)

# Vectorized over power values
eval_power_pi(power = c(0.70, 0.80, 0.90), nsims = 1000)

# Use Jeffreys prior instead of uniform
eval_power_pi(power = 0.80, nsims = 1000, prior = c(0.5, 0.5))

# 99% predictive interval
eval_power_pi(power = 0.80, nsims = 1000, pi_level = 0.99)
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glmm_bnb GLMM for BNB ratio of means

Description

Generalized linear mixed model for bivariate negative binomial outcomes.

Usage

glmm_bnb(data, test = "wald", ci_level = NULL, ...)

Arguments

data (list)
A list whose first element is the vector of negative binomial values from sample
1 and the second element is the vector of negative binomial values from sample
2. Each vector must be sorted by the subject/item index and must be the same
sample size. NAs are silently excluded. The default output from sim_bnb().

test (String: "wald"; c("wald", "lrt"))
The statistical method used for the test results. test = "wald" performs a Wald
test and optionally the Wald confidence intervals. test = "lrt" performs a like-
lihood ratio test and optionally the profile likelihood confidence intervals (means
and ratio). The Wald confidence interval is always used for the limits of the mean
of sample 2, dispersion, and standard deviation of the item (subject) random in-
tercept.

ci_level (Scalar numeric: NULL; (0, 1))
If NULL, confidence intervals are set as NA. If in (0, 1), confidence intervals are
calculated at the specified level. Profile likelihood intervals are computationally
intensive, so intervals from test = "lrt" may be slow.

... Optional arguments passed to glmmTMB::glmmTMB().

Details

Uses glmmTMB::glmmTMB() in the form

glmmTMB(
formula = value ~ condition + (1 | item),
data = data,
dispformula = ~ 1,
family = nbinom2

)

to model dependent negative binomial outcomes X1, X2 ∼ BNB(µ, r, θ) where µ is the mean of
sample 1, r is the ratio of the means of sample 2 with respect to sample 1, and θ is the dispersion
parameter.

The hypotheses for the LRT and Wald test of r are
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Hnull : log(r) = 0

Halt : log(r) ̸= 0

where r = X̄2

X̄1
is the population ratio of arithmetic means for sample 2 with respect to sample 1 and

log(rnull) = 0 assumes the population means are identical.

When simulating data from sim_bnb(), the mean is a function of the item (subject) random effect
which in turn is a function of the dispersion parameter. Thus, glmm_bnb() has biased mean and
dispersion estimates. The bias increases as the dispersion parameter gets smaller and decreases as
the dispersion parameter gets larger. However, estimates of the ratio and standard deviation of the
random intercept tend to be accurate. The p-value for glmm_bnb() is generally overconservative
compared to glmm_poisson(), wald_test_bnb() and lrt_bnb(). In summary, the negative bino-
mial mixed-effects model fit by glmm_bnb() is not recommended for the BNB data simulated by
sim_bnb(). Instead, wald_test_bnb() or lrt_bnb() should typically be used instead.

Value

A list with the following elements:

Slot Subslot Name Description
1 chisq χ2 test statistic for the ratio of means.
2 df Degrees of freedom.
3 p p-value.
4 ratio Estimated ratio of means (sample 2 / sample 1).
4 1 estimate Point estimate.
4 2 lower Confidence interval lower bound.
4 3 upper Confidence interval upper bound.
5 mean1 Estimated mean of sample 1.
5 1 estimate Point estimate.
5 2 lower Confidence interval lower bound.
5 3 upper Confidence interval upper bound.
6 mean2 Estimated mean of sample 2.
6 1 estimate Point estimate.
6 2 lower Wald confidence interval lower bound.
6 3 upper Wald confidence interval upper bound.
7 dispersion Estimated dispersion.
7 1 estimate Point estimate.
7 2 lower Confidence interval lower bound.
7 3 upper Confidence interval upper bound.
8 item_sd Estimated standard deviation of the item (subject) random intercept.
8 1 estimate Point estimate.
8 2 lower Confidence interval lower bound.
8 3 upper Confidence interval upper bound.
9 n1 Sample size of sample 1.
10 n2 Sample size of sample 2.
11 method Method used for the results.
12 test Type of hypothesis test.
13 alternative The alternative hypothesis.
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14 ci_level Confidence level of the interval.
15 hessian Information about the Hessian matrix.
16 convergence Information about convergence.

References

Hilbe JM (2011). Negative Binomial Regression, 2 edition. Cambridge University Press. ISBN
9780521198158 9780511973420, doi:10.1017/CBO9780511973420.

Hilbe JM (2014). Modeling count data. Cambridge University Press, New York, NY. ISBN
9781107028333 9781107611252, doi:10.1017/CBO9781139236065.

See Also

wald_test_bnb(), lrt_bnb(), glmm_poisson()

Examples

#----------------------------------------------------------------------------
# glmm_bnb() examples
#----------------------------------------------------------------------------
library(depower)

set.seed(1234)
d <- sim_bnb(

n = 40,
mean1 = 10,
ratio = 1.2,
dispersion = 2

)

lrt <- glmm_bnb(d, test = "lrt")
lrt

wald <- glmm_bnb(d, test = "wald", ci_level = 0.95)
wald

#----------------------------------------------------------------------------
# Compare results to manual calculation of chi-square statistic
#----------------------------------------------------------------------------
# Use the same data, but as a data frame instead of list
set.seed(1234)
d <- sim_bnb(

n = 40,
mean1 = 10,
ratio = 1.2,
dispersion = 2,
return_type = "data.frame"

)

mod_alt <- glmmTMB::glmmTMB(
formula = value ~ condition + (1 | item),
data = d,

https://doi.org/10.1017/CBO9780511973420
https://doi.org/10.1017/CBO9781139236065
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dispformula = ~ 1,
family = glmmTMB::nbinom2

)
mod_null <- glmmTMB::glmmTMB(

formula = value ~ 1 + (1 | item),
data = d,
dispformula = ~ 1,
family = glmmTMB::nbinom2

)

lrt_chisq <- as.numeric(-2 * (logLik(mod_null) - logLik(mod_alt)))
lrt_chisq
wald_chisq <- summary(mod_alt)$coefficients$cond["condition2", "z value"]^2
wald_chisq

anova(mod_null, mod_alt)

glmm_poisson GLMM for Poisson ratio of means

Description

Generalized linear mixed model for two dependent Poisson outcomes.

Usage

glmm_poisson(data, test = "wald", ci_level = NULL, ...)

Arguments

data (list)
A list whose first element is the vector of Poisson values from sample 1 and the
second element is the vector of Poisson values from sample 2. Each vector must
be sorted by the subject/item index and must be the same sample size. NAs are
silently excluded. The default output from sim_bnb().

test (String: "wald"; c("wald", "lrt"))
The statistical method used for the test results. test = "wald" performs a Wald
test and optionally the Wald confidence intervals. test = "lrt" performs a like-
lihood ratio test and optionally the profile likelihood confidence intervals (means
and ratio). The Wald confidence interval is always used for the limits of the mean
of sample 2 and standard deviation of the item (subject) random intercept.

ci_level (Scalar numeric: NULL; (0, 1))
If NULL, confidence intervals are set as NA. If in (0, 1), confidence intervals are
calculated at the specified level. Profile likelihood intervals are computationally
intensive, so intervals from test = "lrt" may be slow.

... Optional arguments passed to glmmTMB::glmmTMB().
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Details

Uses glmmTMB::glmmTMB() in the form

glmmTMB(
formula = value ~ condition + (1 | item),
data = data,
family = stats::poisson

)

to model dependent Poisson outcomes X1 ∼ Poisson(µ) and X2 ∼ Poisson(rµ) where µ is the
mean of sample 1 and r is the ratio of the means of sample 2 with respect to sample 1.

The hypotheses for the LRT and Wald test of r are

Hnull : log(r) = 0

Halt : log(r) ̸= 0

where r = X̄2

X̄1
is the population ratio of arithmetic means for sample 2 with respect to sample 1 and

log(rnull) = 0 assumes the population means are identical.

When simulating data from sim_bnb(), the mean is a function of the item (subject) random effect
which in turn is a function of the dispersion parameter. Thus, glmm_poisson() has biased mean
estimates. The bias increases as the dispersion parameter gets smaller and decreases as the disper-
sion parameter gets larger. However, estimates of the ratio and standard deviation of the random
intercept tend to be accurate. In summary, the Poisson mixed-effects model fit by glmm_poisson()
is not recommended for the BNB data simulated by sim_bnb(). Instead, wald_test_bnb() or
lrt_bnb() should typically be used instead.

Value

A list with the following elements:

Slot Subslot Name Description
1 chisq χ2 test statistic for the ratio of means.
2 df Degrees of freedom.
3 p p-value.
4 ratio Estimated ratio of means (sample 2 / sample 1).
4 1 estimate Point estimate.
4 2 lower Confidence interval lower bound.
4 3 upper Confidence interval upper bound.
5 mean1 Estimated mean of sample 1.
5 1 estimate Point estimate.
5 2 lower Confidence interval lower bound.
5 3 upper Confidence interval upper bound.
6 mean2 Estimated mean of sample 2.
6 1 estimate Point estimate.
6 2 lower Wald confidence interval lower bound.
6 3 upper Wald confidence interval upper bound.
7 item_sd Estimated standard deviation of the item (subject) random intercept.
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7 1 estimate Point estimate.
7 2 lower Confidence interval lower bound.
7 3 upper Confidence interval upper bound.
8 n1 Sample size of sample 1.
9 n2 Sample size of sample 2.
10 method Method used for the results.
11 test Type of hypothesis test.
12 alternative The alternative hypothesis.
13 ci_level Confidence level of the interval.
14 hessian Information about the Hessian matrix.
15 convergence Information about convergence.

References

Hilbe JM (2011). Negative Binomial Regression, 2 edition. Cambridge University Press. ISBN
9780521198158 9780511973420, doi:10.1017/CBO9780511973420.

Hilbe JM (2014). Modeling count data. Cambridge University Press, New York, NY. ISBN
9781107028333 9781107611252, doi:10.1017/CBO9781139236065.

See Also

wald_test_bnb(), lrt_bnb(), glmm_bnb()

Examples

#----------------------------------------------------------------------------
# glmm_poisson() examples
#----------------------------------------------------------------------------
library(depower)

set.seed(1234)
d <- sim_bnb(

n = 40,
mean1 = 10,
ratio = 1.2,
dispersion = 2

)

lrt <- glmm_poisson(d, test = "lrt")
lrt

wald <- glmm_poisson(d, test = "wald", ci_level = 0.95)
wald

#----------------------------------------------------------------------------
# Compare results to manual calculation of chi-square statistic
#----------------------------------------------------------------------------
# Use the same data, but as a data frame instead of list
set.seed(1234)
d <- sim_bnb(

n = 40,

https://doi.org/10.1017/CBO9780511973420
https://doi.org/10.1017/CBO9781139236065
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mean1 = 10,
ratio = 1.2,
dispersion = 2,
return_type = "data.frame"

)

mod_alt <- glmmTMB::glmmTMB(
formula = value ~ condition + (1 | item),
data = d,
family = stats::poisson

)
mod_null <- glmmTMB::glmmTMB(

formula = value ~ 1 + (1 | item),
data = d,
family = stats::poisson

)

lrt_chisq <- as.numeric(-2 * (logLik(mod_null) - logLik(mod_alt)))
lrt_chisq
wald_chisq <- summary(mod_alt)$coefficients$cond["condition2", "z value"]^2
wald_chisq

anova(mod_null, mod_alt)

glm_nb GLM for NB ratio of means

Description

Generalized linear model for two independent negative binomial outcomes.

Usage

glm_nb(data, equal_dispersion = FALSE, test = "wald", ci_level = NULL, ...)

Arguments

data (list)
A list whose first element is the vector of negative binomial values from group
1 and the second element is the vector of negative binomial values from group
2. NAs are silently excluded. The default output from sim_nb().

equal_dispersion

(Scalar logical: FALSE)
If TRUE, the model is fit assuming both groups have the same population disper-
sion parameter. If FALSE (default), the model is fit assuming different disper-
sions.
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test (String: "wald"; "c("wald", "lrt"))
The statistical method used for the test results. test = "wald" performs a Wald
test and optionally the Wald confidence intervals. test = "lrt" performs a like-
lihood ratio test and optionally the profile likelihood confidence intervals. Wald
confidence intervals are always returned for the limits of the mean of sample 2
and, when equal_dispersion=FALSE, for the limits of the dispersion of sample
2.

ci_level (Scalar numeric: NULL; (0, 1))
If NULL, confidence intervals are set as NA. If in (0, 1), confidence intervals are
calculated at the specified level. Profile likelihood intervals are computationally
intensive, so intervals from test = "lrt" may be slow.

... Optional arguments passed to glmmTMB::glmmTMB().

Details

Uses glmmTMB::glmmTMB() in the form

glmmTMB(
formula = value ~ condition,
data = data,
dispformula = ~ condition,
family = nbinom2

)

to model independent negative binomial outcomes X1 ∼ NB(µ, θ1) and X2 ∼ NB(rµ, θ2) where
µ is the mean of group 1, r is the ratio of the means of group 2 with respect to group 1, θ1 is the
dispersion parameter of group 1, and θ2 is the dispersion parameter of group 2.

The hypotheses for the LRT and Wald test of r are

Hnull : log(r) = 0

Halt : log(r) ̸= 0

where r = X̄2

X̄1
is the population ratio of arithmetic means for group 2 with respect to group 1 and

log(rnull) = 0 assumes the population means are identical.

Value

A list with the following elements:

Slot Subslot Name Description
1 chisq χ2 test statistic for the ratio of means.
2 df Degrees of freedom.
3 p p-value.
4 ratio Estimated ratio of means (group 2 / group 1).
4 1 estimate Point estimate.
4 2 lower Confidence interval lower bound.
4 3 upper Confidence interval upper bound.
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5 mean1 Estimated mean of group 1.
5 1 estimate Point estimate.
5 2 lower Confidence interval lower bound.
5 3 upper Confidence interval upper bound.
6 mean2 Estimated mean of group 2.
6 1 estimate Point estimate.
6 2 lower Wald confidence interval lower bound.
6 3 upper Wald confidence interval upper bound.
7 dispersion1 Estimated dispersion of group 1.
7 1 estimate Point estimate.
7 2 lower Confidence interval lower bound.
7 3 upper Confidence interval upper bound.
8 dispersion2 Estimated dispersion of group 2.
8 1 estimate Point estimate.
8 2 lower Wald confidence interval lower bound.
8 3 upper Wald confidence interval upper bound.
9 n1 Sample size of group 1.
10 n2 Sample size of group 2.
11 method Method used for the results.
12 test Type of hypothesis test.
13 alternative The alternative hypothesis.
14 equal_dispersion Whether or not equal dispersions were assumed.
15 ci_level Confidence level of the intervals.
16 hessian Information about the Hessian matrix.
17 convergence Information about convergence.

References

Hilbe JM (2011). Negative Binomial Regression, 2 edition. Cambridge University Press. ISBN
9780521198158 9780511973420, doi:10.1017/CBO9780511973420.

Hilbe JM (2014). Modeling count data. Cambridge University Press, New York, NY. ISBN
9781107028333 9781107611252, doi:10.1017/CBO9781139236065.

See Also

wald_test_nb(), lrt_nb()

Examples

#----------------------------------------------------------------------------
# glm_nb() examples
#----------------------------------------------------------------------------
library(depower)

set.seed(1234)
d <- sim_nb(

n1 = 60,
n2 = 40,
mean1 = 10,
ratio = 1.5,

https://doi.org/10.1017/CBO9780511973420
https://doi.org/10.1017/CBO9781139236065
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dispersion1 = 2,
dispersion2 = 8

)

lrt <- glm_nb(d, equal_dispersion = FALSE, test = "lrt", ci_level = 0.95)
lrt

wald <- glm_nb(d, equal_dispersion = FALSE, test = "wald", ci_level = 0.95)
wald

#----------------------------------------------------------------------------
# Compare results to manual calculation of chi-square statistic
#----------------------------------------------------------------------------
# Use the same data, but as a data frame instead of list
set.seed(1234)
df <- sim_nb(

n1 = 60,
n2 = 40,
mean1 = 10,
ratio = 1.5,
dispersion1 = 2,
dispersion2 = 8,
return_type = "data.frame"

)

mod_alt <- glmmTMB::glmmTMB(
formula = value ~ condition,
data = df,
dispformula = ~ condition,
family = glmmTMB::nbinom2

)
mod_null <- glmmTMB::glmmTMB(

formula = value ~ 1,
data = df,
dispformula = ~ condition,
family = glmmTMB::nbinom2

)

lrt_chisq <- as.numeric(-2 * (logLik(mod_null) - logLik(mod_alt)))
lrt_chisq
wald_chisq <- summary(mod_alt)$coefficients$cond["condition2", "z value"]^2
wald_chisq

anova(mod_null, mod_alt)

#----------------------------------------------------------------------------
# Compare results to wald_test_nb()
#----------------------------------------------------------------------------
wald2 <- wald_test_nb(d, equal_dispersion = FALSE, ci_level = 0.95)
all.equal(wald$chisq, wald2$chisq, tolerance = 0.01)
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lrt_bnb Likelihood ratio test for BNB ratio of means

Description

Likelihood ratio test for the ratio of means from bivariate negative binomial outcomes.

Usage

lrt_bnb(data, ratio_null = 1, distribution = asymptotic(), ...)

Arguments

data (list)
A list whose first element is the vector of negative binomial values from sample
1 and the second element is the vector of negative binomial values from sample
2. Each vector must be sorted by the subject/item index and must be the same
sample size. NAs are silently excluded. The default output from sim_bnb().

ratio_null (Scalar numeric: 1; (0, Inf))
The ratio of means assumed under the null hypothesis (sample 2 / sample 1).
Typically, ratio_null = 1 (no difference). See ’Details’ for additional infor-
mation.

distribution (function: asymptotic() or simulated())
The method used to define the distribution of the χ2 likelihood ratio test statistic
under the null hypothesis. See ’Details’ and asymptotic() or simulated() for
additional information.

... Optional arguments passed to the MLE function mle_bnb().

Details

This function is primarily designed for speed in simulation. Missing values are silently excluded.

Suppose X1 | G = g ∼ Poisson(µg) and X2 | G = g ∼ Poisson(rµg) where G ∼ Gamma(θ, θ−1)
is the random item (subject) effect. Then X1, X2 ∼ BNB(µ, r, θ) is the joint distribution where X1

and X2 are dependent (though conditionally independent), X1 is the count outcome for sample
1 of the items (subjects), X2 is the count outcome for sample 2 of the items (subjects), µ is the
conditional mean of sample 1, r is the ratio of the conditional means of sample 2 with respect to
sample 1, and θ is the gamma distribution shape parameter which controls the dispersion and the
correlation between sample 1 and 2.

The hypotheses for the LRT of r are

Hnull : r = rnull

Halt : r ̸= rnull

where r = X̄2

X̄1
is the population ratio of arithmetic means for sample 2 with respect to sample 1 and

rnull is a constant for the assumed null population ratio of means (typically rnull = 1).
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The LRT statistic is

λ = −2 ln
supΘnull

L(r, µ, θ)

supΘL(r, µ, θ)

= −2
[
ln supΘnull

L(r, µ, θ)− ln supΘL(r, µ, θ)
]

= −2(l(rnull, µ̃, θ̃)− l(r̂, µ̂, θ̂))

Under Hnull, the LRT test statistic is asymptotically distributed as χ2
1. The approximate level α test

rejects Hnull if λ ≥ χ2
1(1 − α). However, the asymptotic critical value is known to underestimate

the exact critical value and the nominal significance level may not be achieved for small sample
sizes. Argument distribution allows control of the distribution of the χ2

1 test statistic under the
null hypothesis by use of functions asymptotic() and simulated().

Value

A list with the following elements:

Slot Subslot Name Description
1 chisq χ2 test statistic for the ratio of means.
2 df Degrees of freedom.
3 p p-value.
4 ratio Estimated ratio of means (sample 2 / sample 1).
5 alternative Point estimates under the alternative hypothesis.
5 1 mean1 Estimated mean of sample 1.
5 2 mean2 Estimated mean of sample 2.
5 3 dispersion Estimated dispersion.
6 null Point estimates under the null hypothesis.
6 1 mean1 Estimated mean of sample 1.
6 2 mean2 Estimated mean of sample 2.
6 3 dispersion Estimated dispersion.
7 n1 The sample size of sample 1.
8 n2 The sample size of sample 2.
9 method Method used for the results.
10 ratio_null Assumed population ratio of means.
11 mle_code Integer indicating why the optimization process terminated.
12 mle_message Information from the optimizer.

References

Rettiganti M, Nagaraja HN (2012). “Power Analyses for Negative Binomial Models with Applica-
tion to Multiple Sclerosis Clinical Trials.” Journal of Biopharmaceutical Statistics, 22(2), 237–259.
ISSN 1054-3406, 1520-5711, doi:10.1080/10543406.2010.528105.

Aban IB, Cutter GR, Mavinga N (2009). “Inferences and power analysis concerning two negative
binomial distributions with an application to MRI lesion counts data.” Computational Statistics &
Data Analysis, 53(3), 820–833. ISSN 01679473, doi:10.1016/j.csda.2008.07.034.

See Also

wald_test_bnb()

https://doi.org/10.1080/10543406.2010.528105
https://doi.org/10.1016/j.csda.2008.07.034
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Examples

#----------------------------------------------------------------------------
# lrt_bnb() examples
#----------------------------------------------------------------------------
library(depower)

set.seed(1234)
sim_bnb(

n = 40,
mean1 = 10,
ratio = 1.2,
dispersion = 2

) |>
lrt_bnb()

lrt_nb Likelihood ratio test for NB ratio of means

Description

Likelihood ratio test for the ratio of means from two independent negative binomial outcomes.

Usage

lrt_nb(
data,
equal_dispersion = FALSE,
ratio_null = 1,
distribution = asymptotic(),
...

)

Arguments

data (list)
A list whose first element is the vector of negative binomial values from group
1 and the second element is the vector of negative binomial values from group
2. NAs are silently excluded. The default output from sim_nb().

equal_dispersion

(Scalar logical: FALSE)
If TRUE, the LRT is calculated assuming both groups have the same population
dispersion parameter. If FALSE (default), the LRT is calculated assuming differ-
ent dispersions.

ratio_null (Scalar numeric: 1; (0, Inf))
The ratio of means assumed under the null hypothesis (group 2 / group 1). Typ-
ically ratio_null = 1 (no difference). See ’Details’ for additional information.
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distribution (function: asymptotic() or simulated())
The method used to define the distribution of the χ2 likelihood ratio test statistic
under the null hypothesis. See ’Details’ and asymptotic() or simulated() for
additional information.

... Optional arguments passed to the MLE function mle_nb().

Details

This function is primarily designed for speed in simulation. Missing values are silently excluded.

Suppose X1 ∼ NB(µ, θ1) and X2 ∼ NB(rµ, θ2) where X1 and X2 are independent, X1 is the
count outcome for items in group 1, X2 is the count outcome for items in group 2, µ is the arithmetic
mean count in group 1, r is the ratio of arithmetic means for group 2 with respect to group 1, θ1 is
the dispersion parameter of group 1, and θ2 is the dispersion parameter of group 2.

The hypotheses for the LRT of r are

Hnull : r = rnull

Halt : r ̸= rnull

where r = X̄2

X̄1
is the population ratio of arithmetic means for group 2 with respect to group 1 and

rnull is a constant for the assumed null population ratio of means (typically rnull = 1).

The LRT statistic is

λ = −2 ln
supΘnull

L(r, µ, θ1, θ2)

supΘL(r, µ, θ1, θ2)

= −2
[
ln supΘnull

L(r, µ, θ1, θ2)− ln supΘL(r, µ, θ1, θ2)
]

= −2(l(rnull, µ̃, θ̃1, θ̃2)− l(r̂, µ̂, θ̂1, θ̂2))

Under Hnull, the LRT test statistic is asymptotically distributed as χ2
1. The approximate level α test

rejects Hnull if λ ≥ χ2
1(1 − α). However, the asymptotic critical value is known to underestimate

the exact critical value and the nominal significance level may not be achieved for small sample
sizes. Argument distribution allows control of the distribution of the χ2

1 test statistic under the
null hypothesis by use of functions asymptotic() and simulated().

Note that standalone use of this function with equal_dispersion = FALSE and distribution =
simulated(), e.g.

data |>
lrt_nb(
equal_dispersion = FALSE,
distribution = simulated()

)

results in a nonparametric randomization test based on label permutation. This violates the assump-
tion of exchangeability for the randomization test because the labels are not exchangeable when the
null hypothesis assumes unequal dispersions. However, used inside power(), e.g.
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data |>
power(
lrt_nb(
equal_dispersion = FALSE,
distribution = simulated()

)
)

results in parametric resampling and no label permutation is performed. Thus, setting equal_dispersion
= FALSE and distribution = simulated() is only recommended when lrt_nb() is used inside
of power(). See also, simulated().

Value

A list with the following elements:

Slot Subslot Name Description
1 chisq χ2 test statistic for the ratio of means.
2 df Degrees of freedom.
3 p p-value.
4 ratio Estimated ratio of means (group 2 / group 1).
5 alternative Point estimates under the alternative hypothesis.
5 1 mean1 Estimated mean of group 1.
5 2 mean2 Estimated mean of group 2.
5 3 dispersion1 Estimated dispersion of group 1.
5 4 dispersion2 Estimated dispersion of group 2.
6 null Point estimates under the null hypothesis.
6 1 mean1 Estimated mean of group 1.
6 2 mean2 Estimated mean of group 2.
6 3 dispersion1 Estimated dispersion of group 1.
6 4 dispersion2 Estimated dispersion of group 2.
7 n1 Sample size of group 1.
8 n2 Sample size of group 2.
9 method Method used for the results.
10 equal_dispersion Whether or not equal dispersions were assumed.
11 ratio_null Assumed population ratio of means.
12 mle_code Integer indicating why the optimization process terminated.
13 mle_message Information from the optimizer.

References

Rettiganti M, Nagaraja HN (2012). “Power Analyses for Negative Binomial Models with Applica-
tion to Multiple Sclerosis Clinical Trials.” Journal of Biopharmaceutical Statistics, 22(2), 237–259.
ISSN 1054-3406, 1520-5711, doi:10.1080/10543406.2010.528105.

Aban IB, Cutter GR, Mavinga N (2009). “Inferences and power analysis concerning two negative
binomial distributions with an application to MRI lesion counts data.” Computational Statistics &
Data Analysis, 53(3), 820–833. ISSN 01679473, doi:10.1016/j.csda.2008.07.034.

https://doi.org/10.1080/10543406.2010.528105
https://doi.org/10.1016/j.csda.2008.07.034
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See Also

wald_test_nb()

Examples

#----------------------------------------------------------------------------
# lrt_nb() examples
#----------------------------------------------------------------------------
library(depower)

set.seed(1234)
sim_nb(

n1 = 60,
n2 = 40,
mean1 = 10,
ratio = 1.5,
dispersion1 = 2,
dispersion2 = 8

) |>
lrt_nb()

mle_bnb MLE for BNB

Description

Maximum likelihood estimates (MLE) for bivariate negative binomial outcomes.

Usage

mle_bnb_null(data, ratio_null = 1, method = "nlm_constrained", ...)

mle_bnb_alt(data, method = "nlm_constrained", ...)

Arguments

data (list)
A list whose first element is the vector of negative binomial values from sample
1 and the second element is the vector of negative binomial values from sample
2. Each vector must be sorted by the subject/item index and must be the same
sample size. NAs are silently excluded. The default output from sim_bnb().

ratio_null (Scalar numeric: 1; (0, Inf))
The ratio of means assumed under the null hypothesis (sample 2 / sample 1).
Typically ratio_null = 1 (no difference).

method (string: "nlm_constrained")
The optimization method. Must choose one of "nlm", "nlm_constrained",
"optim", or "optim_constrained". The default bounds for constrained opti-
mization are [1e-03, 1e06].
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... Optional arguments passed to the optimization method.

Details

These functions are primarily designed for speed in simulation. Missing values are silently ex-
cluded.

Suppose X1 | G = g ∼ Poisson(µg) and X2 | G = g ∼ Poisson(rµg) where G ∼ Gamma(θ, θ−1)
is the random item (subject) effect. Then X1, X2 ∼ BNB(µ, r, θ) is the joint distribution where X1

and X2 are dependent (though conditionally independent), X1 is the count outcome for sample
1 of the items (subjects), X2 is the count outcome for sample 2 of the items (subjects), µ is the
conditional mean of sample 1, r is the ratio of the conditional means of sample 2 with respect to
sample 1, and θ is the gamma distribution shape parameter which controls the dispersion and the
correlation between sample 1 and 2.

The MLEs of r and µ are r̂ = x̄2

x̄1
and µ̂ = x̄1. The MLE of θ is found by maximizing the profile

log-likelihood l(r̂, µ̂, θ) with respect to θ. When r = rnull is known, the MLE of µ is µ̃ = x̄1+x̄2

1+rnull

and θ̃ is obtained by maximizing the profile log-likelihood l(rnull, µ̃, θ) with respect to θ.

The backend method for numerical optimization is controlled by argument method which refers to
stats::nlm(), stats::nlminb(), or stats::optim(). If you would like to see warnings from
the optimizer, include argument warnings = TRUE.

Value

• For mle_bnb_alt, a list with the following elements:

Slot Name Description
1 mean1 MLE for mean of sample 1.
2 mean2 MLE for mean of sample 2.
3 ratio MLE for ratio of means.
4 dispersion MLE for BNB dispersion.
5 nll Minimum of negative log-likelihood.
6 nparams Number of estimated parameters.
7 n1 Sample size of sample 1.
8 n2 Sample size of sample 2.
9 method Method used for the results.
10 mle_method Method used for optimization.
11 mle_code Integer indicating why the optimization process terminated.
12 mle_message Additional information from the optimizer.

• For mle_bnb_null, a list with the following elements:

Slot Name Description
1 mean1 MLE for mean of sample 1.
2 mean2 MLE for mean of sample 2.
3 ratio_null Population ratio of means assumed for null hypothesis. mean2 = mean1 * ratio_null.
4 dispersion MLE for BNB dispersion.
5 nll Minimum of negative log-likelihood.
6 nparams Number of estimated parameters.
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7 n1 Sample size of sample 1.
8 n2 Sample size of sample 2.
9 method Method used for the results.
10 mle_method Method used for optimization.
11 mle_code Integer indicating why the optimization process terminated.
12 mle_message Additional information from the optimizer.

References

Rettiganti M, Nagaraja HN (2012). “Power Analyses for Negative Binomial Models with Applica-
tion to Multiple Sclerosis Clinical Trials.” Journal of Biopharmaceutical Statistics, 22(2), 237–259.
ISSN 1054-3406, 1520-5711, doi:10.1080/10543406.2010.528105.

Aban IB, Cutter GR, Mavinga N (2009). “Inferences and power analysis concerning two negative
binomial distributions with an application to MRI lesion counts data.” Computational Statistics &
Data Analysis, 53(3), 820–833. ISSN 01679473, doi:10.1016/j.csda.2008.07.034.

See Also

sim_bnb(), nll_bnb

Examples

#----------------------------------------------------------------------------
# mle_bnb() examples
#----------------------------------------------------------------------------
library(depower)

set.seed(1234)
d <- sim_bnb(
n = 40,
mean1 = 10,
ratio = 1.2,
dispersion = 2

)

mle_alt <- d |>
mle_bnb_alt()

mle_null <- d |>
mle_bnb_null()

mle_alt
mle_null

https://doi.org/10.1080/10543406.2010.528105
https://doi.org/10.1016/j.csda.2008.07.034
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mle_nb MLE for NB

Description

Maximum likelihood estimates (MLE) for two independent negative binomial outcomes.

Usage

mle_nb_null(
data,
equal_dispersion = FALSE,
ratio_null = 1,
method = "nlm_constrained",
...

)

mle_nb_alt(data, equal_dispersion = FALSE, method = "nlm_constrained", ...)

Arguments

data (list)
A list whose first element is the vector of negative binomial values from group
1 and the second element is the vector of negative binomial values from group
2. NAs are silently excluded. The default output from sim_nb().

equal_dispersion

(Scalar logical: FALSE)
If TRUE, the MLEs are calculated assuming both groups have the same popula-
tion dispersion parameter. If FALSE (default), the MLEs are calculated assuming
different dispersions.

ratio_null (Scalar numeric: 1; (0, Inf))
The ratio of means assumed under the null hypothesis (group 2 / group 1). Typ-
ically ratio_null = 1 (no difference).

method (string: "nlm_constrained")
The optimization method. Must choose one of "nlm", "nlm_constrained",
"optim", or "optim_constrained". The default bounds for constrained opti-
mization are [1e-03, 1e06].

... Optional arguments passed to the optimization method.

Details

These functions are primarily designed for speed in simulation. Missing values are silently ex-
cluded.

Suppose X1 ∼ NB(µ, θ1) and X2 ∼ NB(rµ, θ2), where X1 and X2 are independent, X1 is the
count outcome for items in group 1, X2 is the count outcome for items in group 2, µ is the arithmetic
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mean count in group 1, r is the ratio of arithmetic means for group 2 with respect to group 1, θ1 is
the dispersion parameter of group 1, and θ2 is the dispersion parameter of group 2.

The MLEs of r and µ are r̂ = x̄2

x̄1
and µ̂ = x̄1. The MLEs of θ1 and θ2 are found by maximizing

the profile log-likelihood l(r̂, µ̂, θ1, θ2) with respect to θ1 and θ2. When r = rnull is known, the
MLE of µ is µ̃ = n1x̄1+n2x̄2

n1+n2
and θ̃1 and θ̃2 are obtained by maximizing the profile log-likelihood

l(rnull, µ̃, θ1, θ2).

The backend method for numerical optimization is controlled by argument method which refers to
stats::nlm(), stats::nlminb(), or stats::optim(). If you would like to see warnings from
the optimizer, include argument warnings = TRUE.

Value

• For mle_nb_alt(), a list with the following elements:

Slot Name Description
1 mean1 MLE for mean of group 1.
2 mean2 MLE for mean of group 2.
3 ratio MLE for ratio of means.
4 dispersion1 MLE for dispersion of group 1.
5 dispersion2 MLE for dispersion of group 2.
6 equal_dispersion Were equal dispersions assumed.
7 n1 Sample size of group 1.
8 n2 Sample size of group 2.
9 nll Minimum of negative log-likelihood.
10 nparams Number of estimated parameters.
11 method Method used for the results.
12 mle_method Method used for optimization.
13 mle_code Integer indicating why the optimization process terminated.
14 mle_message Additional information from the optimizer.

• For mle_nb_null(), a list with the following elements:

Slot Name Description
1 mean1 MLE for mean of group 1.
2 mean2 MLE for mean of group 2.
3 ratio_null Population ratio of means assumed for null hypothesis. mean2 = mean1 * ratio_null.
4 dispersion1 MLE for dispersion of group 1.
5 dispersion2 MLE for dispersion of group 2.
6 equal_dispersion Were equal dispersions assumed.
7 n1 Sample size of group 1.
8 n2 Sample size of group 2.
9 nll Minimum of negative log-likelihood.
10 nparams Number of estimated parameters.
11 method Method used for the results.
12 mle_method Method used for optimization.
13 mle_code Integer indicating why the optimization process terminated.
14 mle_message Additional information from the optimizer.
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References

Rettiganti M, Nagaraja HN (2012). “Power Analyses for Negative Binomial Models with Applica-
tion to Multiple Sclerosis Clinical Trials.” Journal of Biopharmaceutical Statistics, 22(2), 237–259.
ISSN 1054-3406, 1520-5711, doi:10.1080/10543406.2010.528105.

Aban IB, Cutter GR, Mavinga N (2009). “Inferences and power analysis concerning two negative
binomial distributions with an application to MRI lesion counts data.” Computational Statistics &
Data Analysis, 53(3), 820–833. ISSN 01679473, doi:10.1016/j.csda.2008.07.034.

See Also

sim_nb(), nll_nb

Examples

#----------------------------------------------------------------------------
# mle_nb() examples
#----------------------------------------------------------------------------
library(depower)

d <- sim_nb(
n1 = 60,
n2 = 40,
mean1 = 10,
ratio = 1.5,
dispersion1 = 2,
dispersion2 = 8

)

mle_alt <- d |>
mle_nb_alt()

mle_null <- d |>
mle_nb_null()

mle_alt
mle_null

nll_bnb Negative log-likelihood for BNB

Description

The negative log-likelihood for bivariate negative binomial outcomes.

Usage

nll_bnb_null(param, value1, value2, ratio_null)

nll_bnb_alt(param, value1, value2)

https://doi.org/10.1080/10543406.2010.528105
https://doi.org/10.1016/j.csda.2008.07.034
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Arguments

param (numeric: (0, Inf))
A vector of BNB parameters. Must be in the following order for each scenario:

• Null: c(mean, dispersion)

• Alternative: c(mean1, mean2, dispersion)

for samples 1 and 2.

value1 (integer: (0, Inf))
The vector of BNB values from sample 1. Must be sorted by the subject/item
index. Must not contain NAs.

value2 (integer: (0, Inf))
The vector of BNB values from sample 2. Must be sorted by the subject/item
index. Must not contain NAs.

ratio_null (Scalar numeric: (0, Inf))
The ratio of means assumed under the null hypothesis (sample 2 / sample 1).
Typically ratio_null = 1 (no difference).

Details

These functions are primarily designed for speed in simulation. Limited argument validation is
performed.

Suppose X1 | G = g ∼ Poisson(µg) and X2 | G = g ∼ Poisson(rµg) where G ∼ Gamma(θ, θ−1)
is the random item (subject) effect. Then X1, X2 ∼ BNB(µ, r, θ) is the joint distribution where X1

and X2 are dependent (though conditionally independent), X1 is the count outcome for sample
1 of the items (subjects), X2 is the count outcome for sample 2 of the items (subjects), µ is the
conditional mean of sample 1, r is the ratio of the conditional means of sample 2 with respect to
sample 1, and θ is the gamma distribution shape parameter which controls the dispersion and the
correlation between sample 1 and 2.

The likelihood is

L(r, µ, θ | X1, X2) =

(
θθ

Γ(θ)

)n

×

µ
∑

x1i+
∑

x2i∏n
i=1 x1i!

r
∑

x2i∏n
i=1 x2i!

×∏n
i=1 Γ(x1i + x2i + θ)

(µ+ rµ+ θ)
∑

(x1i+x2i+θ)

and the parameter space is Θ = {(r, µ, θ) : r, µ, θ > 0}. The log-likelihood is
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l(r, µ, θ) = n [θ ln θ − ln Γ(θ)] +

n(x̄1 + x̄2) ln(µ) + nx̄2 ln r+
n∑

i=1

ln Γ(x1i + x2i + θ)−

n(x̄1 + x̄2 + θ) ln(µ+ rµ+ θ)−
n∑

i=1

lnx1i!−
n∑

i=1

lnx2i!

Value

Scalar numeric negative log-likelihood.

References

Rettiganti M, Nagaraja HN (2012). “Power Analyses for Negative Binomial Models with Applica-
tion to Multiple Sclerosis Clinical Trials.” Journal of Biopharmaceutical Statistics, 22(2), 237–259.
ISSN 1054-3406, 1520-5711, doi:10.1080/10543406.2010.528105.

Aban IB, Cutter GR, Mavinga N (2009). “Inferences and power analysis concerning two negative
binomial distributions with an application to MRI lesion counts data.” Computational Statistics &
Data Analysis, 53(3), 820–833. ISSN 01679473, doi:10.1016/j.csda.2008.07.034.

See Also

mle_bnb

Examples

#----------------------------------------------------------------------------
# nll_bnb*() examples
#----------------------------------------------------------------------------
library(depower)

set.seed(1234)
d <- sim_bnb(
n = 40,
mean1 = 10,
ratio = 1.2,
dispersion = 2

)

nll_bnb_alt(
param = c(mean1 = 10, mean2 = 12, dispersion = 2),
value1 = d[[1L]],
value2 = d[[2L]]

)

nll_bnb_null(
param = c(mean = 10, dispersion = 2),

https://doi.org/10.1080/10543406.2010.528105
https://doi.org/10.1016/j.csda.2008.07.034
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value1 = d[[1L]],
value2 = d[[2L]],
ratio_null = 1

)

nll_nb Negative log-likelihood for NB

Description

The negative log-likelihood for two independent samples of negative binomial distributions.

Usage

nll_nb_null(param, value1, value2, equal_dispersion, ratio_null)

nll_nb_alt(param, value1, value2, equal_dispersion)

Arguments

param (numeric: (0, Inf))
A vector of NB parameters. Must be in the following order for each scenario:

• Null and unequal dispersion: c(mean, dispersion1, dispersion2)

• Alternative and unequal dispersion: c(mean1, mean2, dispersion1, dispersion2)

• Null and equal dispersion: c(mean, dispersion)

• Alternative and equal dispersion: c(mean1, mean2, dispersion)

for groups 1 and 2.

value1 (integer: (0, Inf))
The vector of NB values from group 1. Must not contain NAs.

value2 (integer: (0, Inf))
The vector of NB values from group 2. Must not contain NAs.

equal_dispersion

(Scalar logical)
If TRUE, the log-likelihood is calculated assuming both groups have the same
population dispersion parameter. If FALSE (default), the log-likelihood is calcu-
lated assuming different dispersions.

ratio_null (Scalar numeric: (0, Inf))
The ratio of means assumed under the null hypothesis (group 2 / group 1). Typ-
ically ratio_null = 1 (no difference).
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Details

These functions are primarily designed for speed in simulation. Limited argument validation is
performed.

Suppose X1 ∼ NB(µ, θ1) and X2 ∼ NB(rµ, θ2) where X1 and X2 are independent, X1 is the count
outcome for items in group 1, X2 is the count outcome for items in group 2, µ is the arithmetic mean
count in group 1, r is the ratio of arithmetic means for group 2 with respect to group 1, θ1 is the
dispersion parameter of group 1, and θ2 is the dispersion parameter of group 2.

Unequal dispersion parameters:
When the dispersion parameters are not equal, the likelihood is

L(r, µ, θ1, θ2 | X1, X2) =

(
θθ11

Γ(θ1)

)n1

µ
∑

x1i

(µ+ θ1)
∑

x1i+n1θ1
×(

θθ22
Γ(θ2)

)n2

(rµ)
∑

x2j

(rµ+ θ2)
∑

x2j+n2θ2
×

n1∏
i=1

Γ(x1i + θ1)

x1i!

n2∏
j=1

Γ(x2j + θ2)

x2j !

and the parameter space is Θ = {(r, µ, θ1, θ2) : r, µ, θ1, θ2 > 0}. The log-likelihood is

l(r, µ, θ1, θ2) = n1 [θ1 ln θ1 − ln Γ(θ1)] +

n2 [θ2 ln θ2 − ln Γ(θ2)] +

(n1x̄1 + n2x̄2) ln(µ)− n1(x̄1 + θ1) ln(µ+ θ1)+

n2x̄2 ln(r)− n2(x̄2 + θ2) ln(rµ+ θ2)+
n1∑
i=1

(ln Γ(x1i + θ1)− ln(x1i!))+

n2∑
j=1

(ln Γ(x2j + θ2)− ln(x2j !))

Equal dispersion parameters:
When the dispersion parameters are equal, the likelihood is

L(r, µ, θ | X1, X2) =

(
θθ

Γ(θ)

)n1+n2

×

µ
∑

x1i

(µ+ θ)
∑

x1i+n1θ

(rµ)
∑

x2j

(rµ+ θ)
∑

x2j+n2θ
×

n1∏
i=1

Γ(x1i + θ)

x1i!

n2∏
j=1

Γ(x2j + θ)

x2j !

and the parameter space is Θ = {(r, µ, θ) : r, µ, θ > 0}. The log-likelihood is
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l(r, µ, θ) = (n1 + n2) [θ ln θ − ln Γ(θ)] +

(n1x̄1 + n2x̄2) ln(µ)− n1(x̄1 + θ) ln(µ+ θ)+

n2x̄2 ln(r)− n2(x̄2 + θ) ln(rµ+ θ)+
n1∑
i=1

(ln Γ(x1i + θ)− ln(x1i!))+

n2∑
j=1

(ln Γ(x2j + θ)− ln(x2j !))

Value

Scalar numeric negative log-likelihood.

References

Rettiganti M, Nagaraja HN (2012). “Power Analyses for Negative Binomial Models with Applica-
tion to Multiple Sclerosis Clinical Trials.” Journal of Biopharmaceutical Statistics, 22(2), 237–259.
ISSN 1054-3406, 1520-5711, doi:10.1080/10543406.2010.528105.

Aban IB, Cutter GR, Mavinga N (2009). “Inferences and power analysis concerning two negative
binomial distributions with an application to MRI lesion counts data.” Computational Statistics &
Data Analysis, 53(3), 820–833. ISSN 01679473, doi:10.1016/j.csda.2008.07.034.

See Also

mle_nb

Examples

#----------------------------------------------------------------------------
# nll_nb_*() examples
#----------------------------------------------------------------------------
library(depower)

set.seed(1234)
d <- sim_nb(
n1 = 60,
n2 = 40,
mean1 = 10,
ratio = 1.5,
dispersion1 = 2,
dispersion2 = 8

)

nll_nb_alt(
param = c(mean1 = 10, mean2 = 15, dispersion1 = 2, dispersion2 = 8),
value1 = d[[1L]],
value2 = d[[2L]],
equal_dispersion = FALSE

)

https://doi.org/10.1080/10543406.2010.528105
https://doi.org/10.1016/j.csda.2008.07.034
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nll_nb_null(
param = c(mean = 10, dispersion1 = 2, dispersion2 = 8),
value1 = d[[1L]],
value2 = d[[2L]],
equal_dispersion = FALSE,
ratio_null = 1

)

plot.depower Plot power objects

Description

An automatic plot method for objects returned by power().

Usage

## S3 method for class 'depower'
plot(
x,
x_axis = NULL,
y_axis = NULL,
color = NULL,
facet_row = NULL,
facet_col = NULL,
hline = NULL,
caption = TRUE,
caption_width = 70L,
...

)

Arguments

x (depower)
The data frame returned by power().

x_axis (string: NULL; names(x))
The name of the column to be used for the x-axis. Automatically chosen if NULL.

y_axis (string: NULL; names(x))
The name of the column to be used for the y-axis. Automatically chosen if NULL.
Generally, "power" (default) should be used for the y-axis.

color (string: NULL; names(x))
The name of the column to be used for the ggplot2::aes() color aesthetic.
Automatically chosen if NULL. Use NA to turn off.
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facet_row (string: NULL; names(x))
The name of the column to be used for the ggplot2::facet_grid() row. Au-
tomatically chosen if NULL. Use NA to turn off.

facet_col (string: NULL; names(x))
The name of the column to be used for the ggplot2::facet_grid() column.
Automatically chosen if NULL. Use NA to turn off.

hline (numeric: NULL; (0, 1))
The y-intercept at which to draw a horizontal line.

caption (Scalar logical: TRUE)
If TRUE (default), a caption is added to the plot. The caption includes information
on parameter values that were conditioned on to generate the plot. If FALSE, the
caption is not included.

caption_width (Scalar integer: 70L)
The target column number for wrapping the caption text.

... Unused additional arguments.

Details

If you are limited by the output from plot.depower(), keep in mind that the object returned by
power() is a standard data frame. This allows you to easily plot all results with standard plotting
functions. In addition, because plot.depower() uses ggplot2, you can modify the plot as you
normally would. For example:

set.seed(1234)
sim_log_lognormal(
n1 = c(10, 15),
n2 = c(10, 15),
ratio = c(1.3, 1.5),
cv1 = c(0.3),
cv2 = c(0.3, 0.5),
nsims = 1000

) |>
power(alpha = 0.05) |>
plot(hline = 0.8, caption_width = 60) +
ggplot2::theme_bw() +
ggplot2::theme(plot.caption = ggplot2::element_text(hjust = 0)) +
ggplot2::labs(title = "Power for the ratio of geometric means")
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Value

A ggplot2::ggplot() object.

See Also

power()

Examples

#----------------------------------------------------------------------------
# plot() examples
#----------------------------------------------------------------------------
library(depower)

# Power for independent two-sample t-test
# Includes shaded region for Bayesian poster predictive interval which
# summarizes the plausible range of power estimates for a future simulation
# study based on 500 data simulations.
set.seed(1234)
sim_log_lognormal(

n1 = c(10, 15),
n2 = c(10, 15),
ratio = c(1.3, 1.5),
cv1 = c(0.3),
cv2 = c(0.3, 0.5),
nsims = 500

) |>
power(alpha = 0.05) |>
add_power_pi() |>
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plot()

# Power for dependent two-sample t-test
set.seed(1234)
sim_log_lognormal(

n1 = c(10, 15),
n2 = c(10, 15),
ratio = c(1.3, 1.5),
cv1 = c(0.3, 0.5),
cv2 = c(0.3, 0.5),
cor = c(0.3),
nsims = 500

) |>
power(alpha = 0.01) |>
plot()

# Power for two-sample independent AND two-sample dependent t-test
set.seed(1234)
sim_log_lognormal(

n1 = c(10, 15),
n2 = c(10, 15),
ratio = c(1.3, 1.5),
cv1 = c(0.3),
cv2 = c(0.3),
cor = c(0, 0.3, 0.6),
nsims = 500

) |>
power(alpha = c(0.05, 0.01)) |>
plot(facet_row = "cor", color = "test")

# Power for one-sample t-test
set.seed(1234)
sim_log_lognormal(

n1 = c(10, 15),
ratio = c(1.2, 1.4),
cv1 = c(0.3, 0.5),
nsims = 500

) |>
power(alpha = c(0.05, 0.01)) |>
plot()

# Power for independent two-sample NB test
set.seed(1234)
sim_nb(

n1 = c(10, 15),
mean1 = 10,
ratio = c(1.8, 2),
dispersion1 = 10,
dispersion2 = 3,
nsims = 100

) |>
power(alpha = 0.01) |>
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plot()

# Power for BNB test
set.seed(1234)
sim_bnb(

n = c(10, 12),
mean1 = 10,
ratio = c(1.3, 1.5),
dispersion = 5,
nsims = 100

) |>
power(alpha = 0.01) |>
plot()

power Simulated power

Description

A method to calculate power for objects returned by sim_log_lognormal(), sim_nb(), and sim_bnb().

Usage

power(data, ..., alpha = 0.05, list_column = FALSE, ncores = 1L)

Arguments

data (depower)
The simulated data returned by sim_log_lognormal(), sim_nb(), or sim_bnb().
In each, argument return_type must be the default "list".

... (functions)
The function(s) used to perform the test. If empty, a default test function will
be selected based on class(data). Names are used for labeling and should
be unique. If names are empty, the call coerced to character will be used for
name-value pairs. See ’Details’.

alpha (numeric: 0.05; (0,1))
The expected probability of rejecting a single null hypothesis when it is actually
true. See ’Details’.

list_column (Scalar logical: FALSE)
If TRUE, the data and result list-columns are included in the returned data
frame. If FALSE (default), the data and result list-columns are not included in
the returned data frame.

ncores (Scalar integer: 1L; [1,Inf))
The number of cores (number of worker processes) to use. Do not set greater
than the value returned by parallel::detectCores(). May be helpful when
the number of parameter combinations is large and nsims is large.
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Details

Power is calculated as the proportion of hypothesis tests which result in a p-value less than or equal
to alpha. e.g.

sum(p <= alpha) / nsims

Power is defined as the expected probability of rejecting the null hypothesis for a chosen value of
the unknown effect. In a multiple comparisons scenario, power is defined as the marginal power,
which is the expected power of the test for each individual null hypothesis assumed to be false.

Other forms of power under the multiple comparisons scenario include disjunctive or conjunctive
power. Disjunctive power is defined as the expected probability of correctly rejecting one or more
null hypotheses. Conjunctive power is defined as the expected probability of correctly rejecting all
null hypotheses. In the simplest case, and where all hypotheses are independent, if the marginal
power is defined as π and m is the number of null hypotheses assumed to be false, then disjunctive
power may be calculated as 1−(1−π)m and conjunctive power may be calculated as πm. Disjunc-
tive power tends to decrease with increasingly correlated hypotheses and conjunctive power tends
to increase with increasingly correlated hypotheses.

Argument ...:
... are the name-value pairs for the functions used to perform the tests. If not named, the func-
tions coerced to character will be used for the name-value pairs. Typical in non-standard eval-
uation, ... accepts bare functions and converts them to a list of expressions. Each element in
this list will be validated as a call and then evaluated on the simulated data. A base::call() is
simply an unevaluated function. Below are some examples of specifying ... in power().

# Examples of specifying ... in power()
data <- sim_nb(
n1 = 10,
mean1 = 10,
ratio = c(1.6, 2),
dispersion1 = 2,
dispersion2 = 2,
nsims = 200

)

# ... is empty, so an appropriate default function will be provided
power(data)

# This is equivalent to leaving ... empty
power(data, "NB Wald test" = wald_test_nb())

# If not named, "wald_test_nb()" will be used to label the function
power(data, wald_test_nb())

# You can specify any parameters in the call. The data argument
# will automatically be inserted or overwritten.
data |>
power("NB Wald test" = wald_test_nb(equal_dispersion=TRUE, link="log"))
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# Multiple functions may be used.
data |>
power(
wald_test_nb(link='log'),
wald_test_nb(link='sqrt'),
wald_test_nb(link='squared'),
wald_test_nb(link='identity')

)

# Just like functions in a pipe, the parentheses are required.
# This will error because wald_test_nb is missing parentheses.
try(power(data, wald_test_nb))

In most cases*, any user created test function may be utilized in ... if the following conditions
are satisfied:

1. The function contains argument data which is defined as a list with the first and second
elements for simulated data.

2. The return object is a list with element p for the p-value of the hypothesis test.

Validate with test cases beforehand.
*Simulated data of class log_lognormal_mixed_two_sample has both independent and depen-
dent data. To ensure the appropriate test function is used, power.log_lognormal_mixed_two_sample()
allows only t_test_welch() and t_test_paired() in .... Each will be evaluated on the sim-
ulated data according to column data$cor. If one or both of these functions are not included in
..., the corresponding default function will be used automatically. If any other test function is
included, an error will be returned.

Argument alpha:
α is known as the type I assertion probability and is defined as the expected probability of rejecting
a null hypothesis when it was actually true. α is compared with the p-value and used as the
decision boundary for rejecting or not rejecting the null hypothesis.
The family-wise error rate is the expected probability of making one or more type I assertions
among a family of hypotheses. Using Bonferroni’s method, α is chosen for the family of hy-
potheses then divided by the number of tests performed (m). Each individual hypothesis is tested
at α

m . For example, if you plan to conduct 30 hypothesis tests and want to control the family-wise
error rate to no greater than α = 0.05, you would set alpha = 0.05/30.
The per-family error rate is the expected number of type I assertions among a family of hypothe-
ses. If you calculate power for the scenario where you perform 1,000 hypotheses and want to
control the per-family error rate to no greater than 10 type I assertions, you would choose alpha
= 10/1000. This implicitly assumes all 1,000 hypotheses are truly null. Alternatively, if you as-
sume 800 of these hypotheses are truly null and 200 are not, alpha = 10/1000 would control the
per-family error rate to no greater than 8 type I assertions. If it is acceptable to keep the per-family
error rate as 10, setting alpha = 10/800 would provide greater marginal power than the previous
scenario.
These two methods assume that the distribution of p-values for the truly null hypotheses are
uniform(0,1), but remain valid under various other testing scenarios (such as dependent tests).
Other multiple comparison methods, such as FDR control, are common in practice but don’t
directly fit into this power simulation framework.
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Column nsims:
The final number of valid simulations per unique set of simulation parameters may be less than
the original number requested. This may occur when the test results in a missing p-value. For
wald_test_bnb(), pathological MLE estimates, generally from small sample sizes and very
small dispersions, may result in a negative estimated standard deviation of the ratio. Thus the
test statistic and p-value would not be calculated. Note that simulated data from sim_nb() and
sim_bnb() may also reduce nsims during the data simulation phase.
nsims denotes the effective number of simulated datasets under the alternative hypothesis, result-
ing in the equivalent number of hypothesis tests performed used to calculate power. If nsims is
too small, the power estimate will have high uncertainty (wide confidence/prediction intervals).
If nsims is too large, computation time may be prohibitive. To aid in choosing an appropriate
nsims, functions eval_power_ci() and eval_power_pi() are helpful to understand the preci-
sion of the interval for power, before simulation takes place. Their counterparts, add_power_ci()
and add_power_pi() add intervals for power to the object returned by power(). Functions
eval_power_ci() and add_power_ci() quantify uncertainty in the true power parameter, and
answer the question, "What is the plausible range of true power values given my simulation re-
sults?" Functions eval_power_pi() and add_power_pi() quantify the expected range of power
estimates from a future simulation study, and answer the question, "If I run a new simulation study
with m simulations, what range of power estimates might I observe?" which is particularly useful
for deciding the optimal nsims. When the prediction intervals from eval_power_pi() are too
wide, consider choosing a larger nsims before running a power simulation.

Value

A data frame with the following columns appended to the data object:

Name Description
alpha Type I assertion probability.
test Name-value pair of the function and statistical test: c(as.character(...) = names(...).
data List-column of simulated data.
result List-column of test results.
power Power of the test for corresponding parameters.

For power(list_column = FALSE), columns data, and result are excluded from the data frame.
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See Also

plot.depower(), add_power_ci(), add_power_pi(), eval_power_ci(), eval_power_pi()

Examples

#----------------------------------------------------------------------------
# power() examples
#----------------------------------------------------------------------------
library(depower)

# Power for independent two-sample t-test
set.seed(1234)
data <- sim_log_lognormal(

n1 = 20,
n2 = 20,
ratio = c(1.2, 1.4),
cv1 = 0.4,
cv2 = 0.4,
cor = 0,
nsims = 1000

)

# Welch's t-test is used by default
power(data)

# But you can specify anything else that is needed
power(

data = data,
"Welch's t-Test" = t_test_welch(alternative = "greater"),
alpha = 0.01

)

# The 95% posterior predictive interval for power based on 1000 simulations
power(data) |>

add_power_pi()

# Power for dependent two-sample t-test
set.seed(1234)
sim_log_lognormal(

n1 = 20,
n2 = 20,
ratio = c(1.2, 1.4),
cv1 = 0.4,
cv2 = 0.4,
cor = 0.5,

https://doi.org/10.1002/sim.1783
https://doi.org/10.1186/s12874-019-0754-4
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nsims = 1000
) |>

power()

# Power for mixed-type two-sample t-test
set.seed(1234)
sim_log_lognormal(

n1 = 20,
n2 = 20,
ratio = c(1.2, 1.4),
cv1 = 0.4,
cv2 = 0.4,
cor = c(0, 0.5),
nsims = 1000

) |>
power()

# Power for one-sample t-test
set.seed(1234)
sim_log_lognormal(

n1 = 20,
ratio = c(1.2, 1.4),
cv1 = 0.4,
nsims = 1000

) |>
power()

# Power for independent two-sample NB test
set.seed(1234)
sim_nb(

n1 = 10,
mean1 = 10,
ratio = c(1.6, 2),
dispersion1 = 2,
dispersion2 = 2,
nsims = 200

) |>
power()

# Power for BNB test
set.seed(1234)
sim_bnb(

n = 10,
mean1 = 10,
ratio = c(1.4, 1.6),
dispersion = 10,
nsims = 200

) |>
power()
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sim_bnb Simulate BNB data

Description

Simulate data from the bivariate negative binomial (BNB) distribution. The BNB distribution is
used to simulate count data where the event counts are jointly dependent (correlated). For indepen-
dent data, see sim_nb().

Usage

sim_bnb(
n,
mean1,
mean2,
ratio,
dispersion,
nsims = 1L,
return_type = "list",
max_zeros = 0.99

)

Arguments

n (integer: [2, Inf))
The number(s) of paired observations.

mean1 (numeric: (0, Inf))
The mean(s) of sample 1 (µ1).

mean2, ratio (numeric: (0, Inf))
Only specify one of these arguments.

• mean2: The mean(s) of sample 2 (µ2).

• ratio: The ratio(s) of means for sample 2 with respect to sample 1
(
r = µ2

µ1

)
.

mean2 = ratio * mean1

dispersion (numeric: (0, Inf))
The gamma distribution shape parameter(s) (θ) which control the dispersion and
the correlation between sample 1 and 2. See ’Details’ and ’Examples’.

nsims (Scalar integer: 1L; [1, Inf))
The expected number of simulated data sets. If nsims > 1, the data is returned
in a list-column of a depower simulation data frame. nsims may be reduced
depending on max_zeros.

return_type (string: "list"; c("list", "data.frame"))
The data structure of the simulated data. If "list" (default), a list object is
returned. If "data.frame" a data frame in tall format is returned. The list
object provides computational efficiency and the data frame object is convenient
for formulas. See ’Value’.
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max_zeros (Scalar numeric: 0.99; [0, 1])
The maximum proportion of zeros each group in a simulated dataset is allowed
to have. If the proportion of zeros is greater than this value, the corresponding
data is excluded from the set of simulations. This is most likely to occur when
the sample size is small and the dispersion parameter is small.

Details

The negative binomial distribution may be defined using a gamma-Poisson mixture distribution.
In this case, the Poisson parameter λ is a random variable with gamma distribution. Equivalence
between different parameterizations are demonstrated below:

# Define constants and their relationships
n <- 10000
dispersion <- 8
mu <- 4
p <- dispersion / (dispersion + mu)
q <- mu / (mu + dispersion)
variance <- mu + (mu^2 / dispersion)
rate <- p / (1 - p)
scale <- (1 - p) / p

# alternative formula for mu
mu_alt <- (dispersion * (1 - p)) / p
stopifnot(isTRUE(all.equal(mu, mu_alt)))

set.seed(20240321)

# Using built-in rnbinom with dispersion and mean
w <- rnbinom(n = n, size = dispersion, mu = mu)

# Using gamma-Poisson mixture with gamma rate parameter
x <- rpois(
n = n,
lambda = rgamma(n = n, shape = dispersion, rate = rate)

)

# Using gamma-Poisson mixture with gamma scale parameter
y <- rpois(
n = n,
lambda = rgamma(n = n, shape = dispersion, scale = scale)

)

# Using gamma-Poisson mixture with multiplicative mean and
# gamma scale parameter
z <- rpois(
n = n,
lambda = mu * rgamma(n = n, shape = dispersion, scale = 1/dispersion)

)
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# Compare CDFs
par(mar=c(4,4,1,1))
plot(
x = sort(w),
y = (1:n)/n,
xlim = range(c(w,x,y,z)),
ylim = c(0,1),
col = 'green',
lwd = 4,
type = 'l',
main = 'CDF'

)
lines(x = sort(x), y = (1:n)/n, col = 'red', lwd = 2)
lines(x = sort(y), y = (1:n)/n, col = 'yellow', lwd = 1.5)
lines(x = sort(z), y = (1:n)/n, col = 'black')

The BNB distribution is implemented by compounding two conditionally independent Poisson ran-
dom variables X1 | G = g ∼ Poisson(µg) and X2 | G = g ∼ Poisson(rµg) with a gamma random
variable G ∼ Gamma(θ, θ−1). The probability mass function for the joint distribution of X1, X2 is

P (X1 = x1, X2 = x2) =
Γ(x1 + x2 + θ)

(µ+ rµ+ θ)x1+x2+θ

µx1

x1!

(rµ)x2

x2!

θθ

Γ(θ)

where x1, x2 ∈ N≥0 are specific values of the count outcomes, θ ∈ R>0 is the dispersion pa-
rameter which controls the dispersion and level of correlation between the two samples (otherwise
known as the shape parameter of the gamma distribution), µ ∈ R>0 is the mean parameter, and
r = µ2

µ1
∈ R>0 is the ratio parameter representing the multiplicative change in the mean of the

second sample relative to the first sample. G denotes the random subject effect and the gamma
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distribution scale parameter is assumed to be the inverse of the dispersion parameter (θ−1) for iden-
tifiability.

Correlation decreases from 1 to 0 as the dispersion parameter increases from 0 to infinity. For a
given dispersion, increasing means also increases the correlation. See ’Examples’ for a demonstra-
tion.

See ’Details’ in sim_nb() for additional information on the negative binomial distribution.

Value

If nsims = 1 and the number of unique parameter combinations is one, the following objects are
returned:

• If return_type = "list", a list:

Slot Name Description
1 Simulated counts from sample 1.
2 Simulated counts from sample 2.

• If return_type = "data.frame", a data frame:

Column Name Description
1 item Subject/item indicator.
2 condition Sample/condition indicator.
3 value Simulated counts.

If nsims > 1 or the number of unique parameter combinations is greater than one, each object de-
scribed above is returned in a list-column named data in a depower simulation data frame:

Column Name Description
1 n1 Sample size of sample 1.
2 n2 Sample size of sample 2.
3 mean1 Mean for sample 1.
4 mean2 Mean for sample 2.
5 ratio Ratio of means (sample 2 / sample 1).
6 dispersion Gamma distribution shape parameter (dispersion).
7 nsims Number of valid simulation iterations.
8 distribution Distribution sampled from.
9 data List-column of simulated data.
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See Also

sim_nb()

Examples

#----------------------------------------------------------------------------
# sim_bnb() examples
#----------------------------------------------------------------------------
library(depower)

# Paired two-sample data returned in a data frame
sim_bnb(

n = 10,
mean1 = 10,
ratio = 1.6,
dispersion = 3,
nsims = 1,
return_type = "data.frame"

)

# Paired two-sample data returned in a list
sim_bnb(

n = 10,
mean1 = 10,
ratio = 1.6,
dispersion = 3,
nsims = 1,
return_type = "list"

)

# Two simulations of paired two-sample data
# returned as a list of data frames
sim_bnb(

n = 10,
mean1 = 10,
ratio = 1.6,
dispersion = 3,
nsims = 2,
return_type = "data.frame"

)

# Two simulations of Paired two-sample data
# returned as a list of lists
sim_bnb(

n = 10,
mean1 = 10,
ratio = 1.6,
dispersion = 3,
nsims = 2,
return_type = "list"

)
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#----------------------------------------------------------------------------
# Visualization of the BNB distribution as dispersion varies.
# The first figure shows the marginal distribution for each group.
# The second figure shows the joint distribution for each group.
#----------------------------------------------------------------------------
set.seed(1234)
data <- lapply(

X = c(1, 10, 100, 1000),
FUN = function(x) {
d <- sim_bnb(

n = 1000,
mean1 = 10,
ratio = 1.5,
dispersion = x,
nsims = 1,
return_type = "data.frame"

)
cor <- cor(

x = d[d$condition == "1", ]$value,
y = d[d$condition == "2", ]$value

)
cbind(dispersion = x, correlation = cor, d)

}
)

data <- do.call(what = "rbind", args = data)

# Density plot of marginal distributions
ggplot2::ggplot(

data = data,
mapping = ggplot2::aes(x = value, fill = condition)

) +
ggplot2::facet_wrap(

facets = ggplot2::vars(.data$dispersion),
ncol = 2,
labeller = ggplot2::labeller(.rows = ggplot2::label_both)

) +
ggplot2::geom_density(alpha = 0.3) +
ggplot2::coord_cartesian(xlim = c(0, 60)) +
ggplot2::geom_text(

mapping = ggplot2::aes(
x = 30,
y = 0.12,
label = paste0("r = ", round(correlation, 2))

),
check_overlap = TRUE

) +
ggplot2::labs(

x = "Value",
y = "Density",
fill = "Condition",
caption = "Mean1=10, Mean2=15, Ratio=1.5\nr=Pearson correlation"

)
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# Reshape to wide format for scatterplot
data_wide <- data.frame(

dispersion = data[data$condition == "1", ]$dispersion,
correlation = data[data$condition == "1", ]$correlation,
value1 = data[data$condition == "1", ]$value,
value2 = data[data$condition == "2", ]$value

)

# Scatterplot of joint distribution
ggplot2::ggplot(

data = data_wide,
mapping = ggplot2::aes(x = value1, y = value2)

) +
ggplot2::facet_wrap(
facets = ggplot2::vars(.data$dispersion),
ncol = 2,
labeller = ggplot2::labeller(.rows = ggplot2::label_both)

) +
ggplot2::geom_point(alpha = 0.3) +
ggplot2::geom_smooth(

method = "lm",
se = FALSE,
color = "forestgreen"

) +
ggplot2::geom_text(

data = unique(data_wide[c("dispersion", "correlation")]),
mapping = ggplot2::aes(

x = 5,
y = 55,
label = paste0("r = ", round(correlation, 2))

),
hjust = 0

) +
ggplot2::coord_cartesian(xlim = c(0, 60), ylim = c(0, 60)) +
ggplot2::labs(

x = "Condition 1",
y = "Condition 2",
caption = paste0(

"Mean1=10, Mean2=15, Ratio=1.5",
"\nr=Pearson correlation",
"\nSolid green line: linear regression"

)
)

sim_log_lognormal Simulate log-transformed lognormal data
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Description

Simulate data from the log-transformed lognormal distribution (i.e. a normal distribution) for three
scenarios:

1. One-sample data

2. Dependent two-sample data

3. Independent two-sample data

Usage

sim_log_lognormal(
n1,
n2 = NULL,
ratio,
cv1,
cv2 = NULL,
cor = 0,
nsims = 1L,
return_type = "list",
messages = TRUE

)

Arguments

n1 (integer: [2, Inf))
The sample size(s) of sample 1.

n2 (integer: NULL; [2, Inf))
The sample size(s) of sample 2. Set as NULL if you want to simulate for the
one-sample case.

ratio (numeric: (0, Inf))
The assumed population fold change(s) of sample 2 with respect to sample 1.

• For one-sample data, ratio is defined as the geometric mean (GM) of the
original lognormal population distribution.

• For dependent two-sample data, ratio is defined by GM(sample 2 / sample
1) of the original lognormal population distributions.

– e.g. ratio = 2 assumes that the geometric mean of all paired ratios
(sample 2 / sample 1) is 2.

• For independent two-sample data, the ratio is defined by GM(group 2) /
GM(group 1) of the original lognormal population distributions.

– e.g. ratio = 2 assumes that the geometric mean of sample 2 is 2 times
larger than the geometric mean of sample 1.

See ’Details’ for additional information.

cv1 (numeric: (0, Inf))
The coefficient of variation(s) of sample 1 in the original lognormal data.
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cv2 (numeric: NULL; (0, Inf))
The coefficient of variation(s) of sample 2 in the original lognormal data. Set as
NULL if you want to simulate for the one-sample case.

cor (numeric: 0; [-1, 1])
The correlation(s) between sample 1 and sample 2 in the original lognormal
data. Not used for the one-sample case. See ’Details’ for constraints based on
cv1 and cv2.

nsims (Scalar integer: 1L; [1,Inf))
The number of simulated data sets. If nsims > 1, the data is returned in a list-
column of a depower simulation data frame.

return_type (string: "list"; c("list", "data.frame"))
The data structure of the simulated data. If "list" (default), a list object is
returned. If "data.frame" a data frame in tall format is returned. The list
object provides computational efficiency and the data frame object is convenient
for formulas. See ’Value’.

messages (Scalar logical: TRUE)
Whether or not to display messages for pathological simulation cases.

Details

Based on assumed characteristics of the original lognormal distribution, data is simulated from the
corresponding log-transformed (normal) distribution. This simulated data is suitable for assess-
ing power of a hypothesis for the geometric mean or ratio of geometric means from the original
lognormal data.

This method can also be useful for other population distributions which are positive and where
it makes sense to describe the ratio of geometric means. However, the lognormal distribution is
theoretically correct in the sense that you can log-transform to a normal distribution, compute the
summary statistic, then apply the inverse transformation to summarize on the original lognormal
scale.

Notation:

Symbol Definition
GM(·) Geometric mean
AM(·) Arithmetic mean
CV (·) Coefficient of variation
σ2 Variance
ρ Correlation
ln Natural Log
Xi Lognormal random variable for group i
Yi Log-transformed lognormal random variable for group i

Fold Change and the Ratio Parameter:
The ratio parameter (fold change) is defined as follows for each scenario:

• One-sample: ratio = GM(X)

• Dependent two-sample: ratio = GM
(

X2

X1

)
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• Independent two-sample: ratio = GM(X2)
GM(X1)

For equal sample sizes of X1 and X2, these definitions are connected by the identity

GM(X2)

GM(X1)
= GM

(
X2

X1

)
= eAM(Y2)−AM(Y1)

= eAM(Y2−Y1).

Coefficient of Variation:
The coefficient of variation (CV) for a random variable X is defined as

CV (X) =
σX

AM(X)
.

Relationships Between Original and Log Scales:
The following relationships allow conversion between scales.
From log scale to original lognormal scale:

AM(X) = eAM(Y )+σ2
Y /2

GM(X) = eAM(Y )

σ2
X = AM(X)2

(
eσ

2
Y − 1

)
CV (X) =

√
AM(X)2

(
eσ

2
Y − 1

)
AM(X)

=
√
eσ

2
Y − 1.

From original lognormal scale to log scale:

AM(Y ) = ln

(
AM(X)√
CV (X)2 + 1

)
σ2
Y = ln(CV (X)2 + 1)

ρY1,Y2 =
ln (ρX1,X2CV (X1)CV (X2) + 1)√

ln(CV (X1)2 + 1)
√
ln(CV (X2)2 + 1)

=
ln (ρX1,X2

CV (X1)CV (X2) + 1)

σY1
σY2

.

Dependent Samples:
Correlation Constraints:
Not all combinations of cor, cv1, and cv2 yield a valid correlation on the log scale. Two
constraints must be satisfied.
First, the logarithm argument must be positive:

ρX1,X2 · CV (X1) · CV (X2) + 1 > 0

which implies
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ρX1,X2
>

−1

CV (X1) · CV (X2)
.

Second, the log-scale correlation must be in (−1, 1):

e−σY1
σY2 − 1

CV (X1) · CV (X2)
< ρX1,X2

<
eσY1

σY2 − 1

CV (X1) · CV (X2)
.

The lower bound of the second constraint is always more restrictive than the first constraint, so
the second constraint is sufficient.
When CV (X1) = CV (X2) = CV , the second constraint simplifies to:

−1

CV 2 + 1
< ρX1,X2

< 1

For equal CVs, only negative correlations are constrained. For example, with CV = 0.5, the
valid range for cor is approximately (−0.80, 1).
When CV (X1) ̸= CV (X2), both bounds may be constrained. The upper bound is strictly
less than 1, meaning even positive correlations near 1 can be infeasible. For example, with
CV (X1) = 0.1 and CV (X2) = 1, the valid range for cor is approximately (−0.80, 0.87).

Equivalent One-Sample Representation:
Two-sample dependent data can be represented as an equivalent paired one-sample problem.
First, consider the properties of variance and covariance. The variance of the difference between
two dependent samples on the log scale (normal distribution) is:

σ2
Y2−Y1

= σ2
Y1

+ σ2
Y2

− 2Cov(Y1, Y2)

= σ2
Y1

+ σ2
Y2

− 2ρY1,Y2σY1σY2

Positive correlation reduces the variance of differences, while negative correlation increases it.
For the special case where the two samples are uncorrelated and have equal variance: σ2

Y2−Y1
=

2σ2.
Second, substitute ρ and σ2 with their alternative forms:

σ2
Y2−Y1

= σ2
Y1

+ σ2
Y2

− 2ρY1,Y2
σY1

σY2

= ln(CV (X1)
2 + 1) + ln(CV (X2)

2 + 1)− 2 ln(ρX1,X2CV (X1)CV (X2) + 1)

= ln

(
(CV (X1)

2 + 1)(CV (X2)
2 + 1)

(ρX1,X2CV (X1)CV (X2) + 1)2

)
.

Finally, denote log-transformed one-sample paired difference as Ydiff. It follows that σ2
Ydiff

=
ln(CV (Xdiff)

2+1). We need to solve for CV (Xdiff) so that the variance of the log-transformed
one-sample values match the variance of the log-transformed two-sample differences. This
results in

CV (Xdiff) =

√
(CV (X1)2 + 1)(CV (X2)2 + 1)

(ρX1,X2CV (X1)CV (X2) + 1)2
− 1

When CV (X1) = CV (X2) = CV , this simplifies to

CV (Xdiff) =

√(
CV 2 + 1

ρX1,X2
CV 2 + 1

)2

− 1
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This equivalence allows dependent two-sample data to be simulated (with lognormal scale ar-
guments cv1, cv2, and cor) using a one-sample simulation (with lognormal scale argument
cv1).

Value

If nsims = 1 and the number of unique parameter combinations is one, the following objects are
returned:

• If one-sample data with return_type = "list", a list:

Slot Name Description
1 One sample of simulated normal values.

• If one-sample data with return_type = "data.frame", a data frame:

Column Name Description
1 item Pair/subject/item indicator.
2 value Simulated normal values.

• If two-sample data with return_type = "list", a list:

Slot Name Description
1 Simulated normal values from sample 1.
2 Simulated normal values from sample 2.

• If two-sample data with return_type = "data.frame", a data frame:

Column Name Description
1 item Pair/subject/item indicator.
2 condition Time/group/condition indicator.
3 value Simulated normal values.

If nsims > 1 or the number of unique parameter combinations is greater than one, each object de-
scribed above is returned in data frame, located in a list-column named data.

• If one-sample data, a data frame:

Column Name Description
1 n1 The sample size.
2 ratio Geometric mean [GM(sample 1)].
3 cv1 Coefficient of variation for sample 1.
4 nsims Number of data simulations.
5 distribution Distribution sampled from.
6 data List-column of simulated data.

• If two-sample data, a data frame:
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Column Name Description
1 n1 Sample size of sample 1.
2 n2 Sample size of sample 2.
3 ratio Ratio of geometric means [GM(sample 2) / GM(sample 1)] or geometric mean ratio [GM(sample 2 / sample 1)].
4 cv1 Coefficient of variation for sample 1.
5 cv2 Coefficient of variation for sample 2.
6 cor Correlation between samples.
7 nsims Number of data simulations.
8 distribution Distribution sampled from.
9 data List-column of simulated data.

References
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Hauschke D, Steinijans VW, Diletti E, Burke M (1992). “Sample size determination for bioequiv-
alence assessment using a multiplicative model.” Journal of Pharmacokinetics and Biopharmaceu-
tics, 20(5), 557–561. ISSN 0090-466X, doi:10.1007/BF01061471.

Johnson NL, Kotz S, Balakrishnan N (1994). Continuous univariate distributions, Wiley series in
probability and mathematical statistics, 2nd ed edition. Wiley, New York. ISBN 9780471584957
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Examples

#----------------------------------------------------------------------------
# sim_log_lognormal() examples
#----------------------------------------------------------------------------
library(depower)

# Independent two-sample data returned in a data frame
sim_log_lognormal(

n1 = 10,
n2 = 10,
ratio = 1.3,
cv1 = 0.35,
cv2 = 0.35,
cor = 0,
nsims = 1,
return_type = "data.frame"

)

# Independent two-sample data returned in a list
sim_log_lognormal(

n1 = 10,
n2 = 10,
ratio = 1.3,
cv1 = 0.35,
cv2 = 0.35,
cor = 0,
nsims = 1,

https://doi.org/10.1002/sim.1783
https://doi.org/10.1007/BF01061471


sim_log_lognormal 65

return_type = "list"
)

# Dependent two-sample data returned in a data frame
sim_log_lognormal(

n1 = 10,
n2 = 10,
ratio = 1.3,
cv1 = 0.35,
cv2 = 0.35,
cor = 0.4,
nsims = 1,
return_type = "data.frame"

)

# Dependent two-sample data returned in a list
sim_log_lognormal(

n1 = 10,
n2 = 10,
ratio = 1.3,
cv1 = 0.35,
cv2 = 0.35,
cor = 0.4,
nsims = 1,
return_type = "list"

)

# One-sample data returned in a data frame
sim_log_lognormal(

n1 = 10,
ratio = 1.3,
cv1 = 0.35,
nsims = 1,
return_type = "data.frame"

)

# One-sample data returned in a list
sim_log_lognormal(

n1 = 10,
ratio = 1.3,
cv1 = 0.35,
nsims = 1,
return_type = "list"

)

# Independent two-sample data: two simulations for four parameter combinations.
# Returned as a list-column of lists within a data frame
sim_log_lognormal(

n1 = c(10, 20),
n2 = c(10, 20),
ratio = 1.3,
cv1 = 0.35,
cv2 = 0.35,
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cor = 0,
nsims = 2,
return_type = "list"

)

# Dependent two-sample data: two simulations for two parameter combinations.
# Returned as a list-column of lists within a data frame
sim_log_lognormal(

n1 = c(10, 20),
n2 = c(10, 20),
ratio = 1.3,
cv1 = 0.35,
cv2 = 0.35,
cor = 0.4,
nsims = 2,
return_type = "list"

)

# One-sample data: two simulations for two parameter combinations
# Returned as a list-column of lists within a data frame
sim_log_lognormal(

n1 = c(10, 20),
ratio = 1.3,
cv1 = 0.35,
nsims = 2,
return_type = "list"

)

#----------------------------------------------------------------------------
# Visualization of independent two-sample data from a log-transformed
# lognormal distribution with varying coefficient of variation.
#----------------------------------------------------------------------------
cv <- expand.grid(c(0.1, 0.5, 1), c(0.1, 0.5, 1))
set.seed(1234)
data <- mapply(

FUN = function(cv1, cv2) {
d <- sim_log_lognormal(

n1 = 10000,
n2 = 10000,
ratio = 1.5,
cv1 = cv1,
cv2 = cv2,
cor = 0,
nsims = 1,
return_type = "data.frame"

)
cbind(cv1 = cv1, cv2 = cv2, d)

},
cv1 = cv[[1]],
cv2 = cv[[2]],
SIMPLIFY = FALSE

)
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data <- do.call(what = "rbind", args = data)

ggplot2::ggplot(
data = data,
mapping = ggplot2::aes(x = value, fill = condition)

) +
ggplot2::facet_grid(
rows = ggplot2::vars(.data$cv2),
cols = ggplot2::vars(.data$cv1),
labeller = ggplot2::labeller(

.rows = ggplot2::label_both,

.cols = ggplot2::label_both
)

) +
ggplot2::geom_density(alpha = 0.3) +
ggplot2::coord_cartesian(xlim = c(-3, 3)) +
ggplot2::labs(

x = "Value",
y = "Density",
fill = "Condition",
caption = "cor=0 and ratio=1.5"

)

#----------------------------------------------------------------------------
# Visualization of dependent two-sample data from a log-transformed lognormal
# distribution with varying correlation.
# The first figure shows the marginal distribution for each group.
# The second figure shows the joint distribution for each group.
# The third figure shows the distribution of differences.
#----------------------------------------------------------------------------
set.seed(1234)
data <- lapply(

X = c(-0.7, -0.4, 0, 0.4, 0.7),
FUN = function(x) {

d <- sim_log_lognormal(
n1 = 1000,
n2 = 1000,
cv1 = 0.5,
cv2 = 0.5,
ratio = 1.5,
cor = x,
nsims = 1,
return_type = "data.frame"

)
cor <- cor(

x = d[d$condition == 1, ]$value,
y = d[d$condition == 2, ]$value

)
cbind(cor = x, r = cor, d)

}
)

data <- do.call(what = "rbind", args = data)
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# Density plot of marginal distributions
ggplot2::ggplot(

data = data,
mapping = ggplot2::aes(x = value, fill = condition)

) +
ggplot2::facet_wrap(
facets = ggplot2::vars(.data$cor),
ncol = 2,
labeller = ggplot2::labeller(.rows = ggplot2::label_both)

) +
ggplot2::geom_density(alpha = 0.3) +
ggplot2::coord_cartesian(xlim = c(-3, 3)) +
ggplot2::geom_text(

mapping = ggplot2::aes(
x = -2,
y = 0.8,
label = paste0("r = ", round(r, 2))

),
check_overlap = TRUE

) +
ggplot2::labs(

x = "Value",
y = "Density",
fill = "Condition",
caption = "cv1=0.5, cv2=0.5, ratio=1.5\nr=log-scale Pearson correlation"

)

# Reshape to wide format for scatterplot
data_wide <- data.frame(

cor = data[data$condition == "1", ]$cor,
r = data[data$condition == "1", ]$r,
value1 = data[data$condition == "1", ]$value,
value2 = data[data$condition == "2", ]$value

)

# Scatterplot of joint distribution
ggplot2::ggplot(

data = data_wide,
mapping = ggplot2::aes(x = value1, y = value2)

) +
ggplot2::facet_wrap(

facets = ggplot2::vars(.data$cor),
ncol = 2,
labeller = ggplot2::labeller(.rows = ggplot2::label_both)

) +
ggplot2::geom_point(alpha = 0.3) +
ggplot2::geom_smooth(

method = "lm",
se = FALSE,
color = "forestgreen"

) +
ggplot2::geom_text(
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data = unique(data_wide[c("cor", "r")]),
mapping = ggplot2::aes(

x = -2.5,
y = 2.5,
label = paste0("r = ", round(r, 2))

),
hjust = 0

) +
ggplot2::coord_cartesian(xlim = c(-3, 3), ylim = c(-3, 3)) +
ggplot2::labs(

x = "Condition 1",
y = "Condition 2",
caption = paste0(

"cv1=0.5, cv2=0.5, ratio=1.5",
"\nr=log-scale Pearson correlation",
"\nSolid green line: linear regression"

)
)

# Density plot of differences
# Paired differences have decreasing variance as correlation increases.
data_wide$difference <- data_wide$value2 - data_wide$value1

ggplot2::ggplot(
data = data_wide,
mapping = ggplot2::aes(x = difference)

) +
ggplot2::facet_wrap(

facets = ggplot2::vars(.data$cor),
ncol = 2,
labeller = ggplot2::labeller(.rows = ggplot2::label_both)

) +
ggplot2::geom_density(alpha = 0.3, fill = "#F8766D") +
ggplot2::coord_cartesian(xlim = c(-3, 3)) +
ggplot2::labs(

x = "Difference (Condition 2 - Condition 1)",
y = "Density",
caption = "cv1=0.5, cv2=0.5, ratio=1.5"

)

sim_nb Simulate NB data

Description

Simulate data from two independent negative binomial (NB) distributions. For paired data, see
sim_bnb().
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Usage

sim_nb(
n1,
n2 = n1,
mean1,
mean2,
ratio,
dispersion1,
dispersion2 = dispersion1,
nsims = 1L,
return_type = "list",
max_zeros = 0.99

)

Arguments

n1 (integer: [2, Inf))
The sample size(s) of group 1.

n2 (integer: n1; [2, Inf))
The sample size(s) of group 2.

mean1 (numeric: (0, Inf))
The mean(s) of group 1 (µ1).

mean2, ratio (numeric: (0, Inf))
Only specify one of these arguments.

• mean2: The mean(s) of group 2 (µ2).

• ratio: The ratio(s) of means for group 2 with respect to group 1
(
r = µ2

µ1

)
.

mean2 = ratio * mean1

dispersion1 (numeric: (0, Inf))
The dispersion parameter(s) of group 1 (θ1). See ’Details’ and ’Examples’.

dispersion2 (numeric: dispersion1; (0, Inf))
The dispersion parameter(s) of group 2 (θ2). See ’Details’ and ’Examples’.

nsims (Scalar integer: 1L; [1,Inf))
The expected number of simulated data sets. If nsims > 1, the data is returned
in a list-column of a depower simulation data frame. nsims may be reduced
depending on max_zeros.

return_type (string: "list"; c("list", "data.frame"))
The data structure of the simulated data. If "list" (default), a list object is
returned. If "data.frame" a data frame in tall format is returned. The list
object provides computational efficiency and the data frame object is convenient
for formulas. See ’Value’.

max_zeros (Scalar numeric: 0.99; [0, 1])
The maximum proportion of zeros each group in a simulated dataset is allowed
to have. If the proportion of zeros is greater than this value, the corresponding
data is excluded from the set of simulations. This is most likely to occur when
the sample size is small and the dispersion parameter is small.
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Details

The negative binomial distribution has many parameterizations. In the regression modeling context,
it is common to specify the distribution in terms of its mean and dispersion. We use the following
probability mass function:

P (X = x) =

(
x+ θ − 1

x

)(
θ

θ + µ

)θ (
µ

µ+ θ

)x

=
Γ(x+ θ)

x!Γ(θ)

(
θ

θ + µ

)θ (
µ

µ+ θ

)x

=
Γ(x+ θ)

(θ + µ)θ+x

θθ

Γ(θ)

µx

x!

where x ∈ N≥0, θ ∈ R>0 is the dispersion parameter, and µ ∈ R>0 is the mean. This is analogous
to the typical formulation where X is counting x failures given θ successes and p = θ

θ+µ is the

probability of success on each trial. It follows that E(X) = µ and V ar(X) = µ + µ2

θ . The θ
parameter describes the ’dispersion’ among observations. Smaller values of θ lead to overdispersion
and larger values of θ decrease the overdispersion, eventually converging to the Poisson distribution.

Described above is the ’indirect quadratic parameterization’ of the negative binomial distribution,
which is commonly found in the R ecosystem. However, it is somewhat counterintuitive because
the smaller θ gets, the larger the overdispersion. The ’direct quadratic parameterization’ of the
negative binomial distribution may be found in some R packages and other languages such as SAS
and Stata. The direct parameterization is defined by substituting α = 1

θ (α > 0) which results in
V ar(X) = µ + αµ2. In this case, the larger α gets the larger the overdispersion, and the Poisson
distribution is a special case of the negative binomial distribution where α = 0.

A general class of negative binomial models may be defined with mean µ and variance µ + αµp.
The ’linear parameterization’ is then found by setting p = 1, resulting in V ar(X) = µ + αµ. It’s
common to label the linear parameterization as ’NB1’ and the direct quadratic parameterization as
’NB2’.

See ’Details’ in sim_bnb() for additional information on the gamma-Poisson mixture formulation
of the negative binomial distribution.

Value

If nsims = 1 and the number of unique parameter combinations is one, the following objects are
returned:

• If return_type = "list", a list:

Slot Name Description
1 value1 Simulated counts from group 1.
2 value2 Simulated counts from group 2.

• If return_type = "data.frame", a data frame:

Column Name Description
1 item Subject/item indicator.
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2 condition Group/condition indicator.
3 value Simulated counts.

If nsims > 1 or the number of unique parameter combinations is greater than one, each object de-
scribed above is returned in a list-column named data in a depower simulation data frame:

Column Name Description
1 n1 Sample size of group 1.
2 n2 Sample size of group 2.
3 mean1 Mean for group 1.
4 mean2 Mean for group 2.
5 ratio Ratio of means (group 2 / group 1).
6 dispersion1 Dispersion parameter for group 1.
7 dispersion2 Dispersion parameter for group 2.
8 nsims Number of valid simulation iterations.
9 distribution Distribution sampled from.
10 data List-column of simulated data.
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See Also

sim_bnb()

Examples

#----------------------------------------------------------------------------
# sim_nb() examples
#----------------------------------------------------------------------------
library(depower)

# Independent two-sample NB data returned in a data frame
sim_nb(

https://doi.org/10.1186/s12859-017-1648-2
https://doi.org/10.1080/10543406.2010.528105
https://doi.org/10.1016/j.csda.2008.07.034
https://doi.org/10.1017/CBO9780511973420
https://doi.org/10.1017/CBO9781139236065
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n1 = 10,
mean1 = 5,
ratio = 1.6,
dispersion1 = 0.5,
dispersion2 = 0.5,
nsims = 1,
return_type = "data.frame"

)

# Independent two-sample NB data returned in a list
sim_nb(

n1 = 10,
mean1 = 5,
ratio = 1.6,
dispersion1 = 0.5,
dispersion2 = 0.5,
nsims = 1,
return_type = "list"

)

# Two simulations of independent two-sample data
# returned as a list of data frames
sim_nb(

n1 = 10,
mean1 = 5,
ratio = 1.6,
dispersion1 = 0.5,
dispersion2 = 0.5,
nsims = 2,
return_type = "data.frame"

)

# Two simulations of independent two-sample data
# returned as a list of lists
sim_nb(

n1 = 10,
mean1 = 5,
ratio = 1.6,
dispersion1 = 0.5,
dispersion2 = 0.5,
nsims = 2,
return_type = "list"

)

#----------------------------------------------------------------------------
# Visualization of the NB distribution as dispersion varies between groups.
# Small dispersion values result in higher variance (overdispersed) and
# large dispersion values result in lower variance (converges to Poisson).
#----------------------------------------------------------------------------
disp <- expand.grid(c(1, 10, 100), c(1, 10, 100))
set.seed(1234)
data <- mapply(

FUN = function(disp1, disp2) {
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d <- sim_nb(
n1 = 1000,
mean1 = 10,
ratio = 1.5,
dispersion1 = disp1,
dispersion2 = disp2,
nsims = 1,
return_type = "data.frame"

)
cbind(dispersion1 = disp1, dispersion2 = disp2, d)

},
disp1 = disp[[1]],
disp2 = disp[[2]],
SIMPLIFY = FALSE

)

data <- do.call(what = "rbind", args = data)

ggplot2::ggplot(
data = data,
mapping = ggplot2::aes(x = value, fill = condition)

) +
ggplot2::facet_grid(

rows = ggplot2::vars(.data$dispersion2),
cols = ggplot2::vars(.data$dispersion1),
labeller = ggplot2::labeller(

.rows = ggplot2::label_both,

.cols = ggplot2::label_both
)

) +
ggplot2::geom_density(alpha = 0.3) +
ggplot2::coord_cartesian(xlim = c(0, 50)) +
ggplot2::labs(

x = "Value",
y = "Density",
fill = "Condition",
caption = "Mean1=10, Mean2=15, ratio=1.5"

)

t_test_paired Paired and one-sample t-Tests

Description

Performs paired and one-sample t-Tests.

Usage

t_test_paired(data, alternative = "two.sided", ci_level = NULL, mean_null = 0)
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Arguments

data (list)
A list whose first element is the vector of normal values from sample 1 and the
second element is the vector of normal values from sample 2. Both vectors must
be the same sample size and sorted by the subject/item index. If length(data)
== 1L, the one-sample test is used. NAs are silently excluded. The default output
from sim_log_lognormal().

alternative (string: "two.sided")
The alternative hypothesis. Must be one of "two.sided", "greater", or "less".
See ’Details’ for additional information.

ci_level (Scalar numeric: NULL; (0, 1))
If NULL, confidence intervals are set as NA. If in (0, 1), confidence intervals are
calculated at the specified level.

mean_null (Scalar numeric: 0; (-Inf, Inf))
The mean or mean difference assumed under the null hypothesis. See ’Details’
for additional information.

Details

This function is primarily designed for speed in simulation. Missing values are silently excluded.

The one-sample test is used for both the true one-sample scenario and for the paired differences
from a dependent two-sample scenario. Below we use paired difference language as that is the most
common case. The hypotheses for the paired t-test are

Hnull : µdiff = µnull

Halt :


µdiff ̸= µnull two-sided
µdiff > µnull greater than
µdiff < µnull less than

where µdiff = AM(X2 −X1) is the arithmetic mean of the paired differences (sample 2 - sample
1) and µnull is a constant for the assumed population mean difference (usually µnull = 0).

The test statistic is

T =
x̄diff − µnull√

s2

n

where x̄diff is the sample mean of the differences, µnull is the population mean difference assumed
under the null hypothesis, n is the sample size of the differences, and s2 is the sample variance.

The critical value of the test statistic has degrees of freedom

df = n− 1

and the p-value is calculated as
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p =


2min{P (T ≥ tn−1 | Hnull), P (T ≤ tn−1 | Hnull)} two-sided
P (T ≥ tn−1 | Hnull) greater than
P (T ≤ tn−1 | Hnull) less than

Let GM(·) be the geometric mean and AM(·) be the arithmetic mean. For dependent lognormal
samples X1 and X2 it follows that lnX1 and lnX2 are dependent normally distributed variables.
Setting µdiff = AM(lnX2 − lnX1) we have

eµdiff = GM

(
X2

X1

)
This forms the basis for making inference about the geometric mean ratio of the original lognormal
data using the mean difference of the log transformed normal data.

Value

A list with the following elements:

Slot Subslot Name Description
1 t Value of the t-statistic.
2 df Degrees of freedom for the t-statistic.
3 p p-value.
4 mean_diff Estimated mean or mean of the differences (sample 2 – sample 1).
4 1 estimate Point estimate.
4 2 lower Confidence interval lower bound.
4 3 upper Confidence interval upper bound.
5 n Number of paired observations.
6 method Method used for the results.
7 alternative The alternative hypothesis.
8 ci_level The confidence level.
9 mean_null Assumed population mean of the differences under the null hypothesis.
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See Also

t_test_welch()

https://doi.org/10.1002/sim.1783
https://doi.org/10.1007/BF01061471
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Examples

#----------------------------------------------------------------------------
# t_test_paired() examples
#----------------------------------------------------------------------------
library(depower)

# One-sample t-test
set.seed(1234)
t_test1 <- sim_log_lognormal(

n1 = 40,
ratio = 1.5,
cv1 = 0.4

) |>
t_test_paired(ci_level = 0.95)

t_test1

# Paired t-test using two dependent samples
set.seed(1234)
t_test2 <- sim_log_lognormal(

n1 = 40,
n2 = 40,
ratio = 1.5,
cv1 = 0.4,
cv2 = 0.2,
cor = 0.3

) |>
t_test_paired(ci_level = 0.95)

t_test2

t_test_welch Welch’s t-Test

Description

Performs Welch’s independent two-sample t-test.

Usage

t_test_welch(data, alternative = "two.sided", ci_level = NULL, mean_null = 0)

Arguments

data (list)
A list whose first element is the vector of normal values from group 1 and the
second element is the vector of normal values from group 2. NAs are silently
excluded. The default output from sim_log_lognormal().
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alternative (string: "two.sided")
The alternative hypothesis. Must be one of "two.sided", "greater", or "less".
See ’Details’ for additional information.

ci_level (Scalar numeric: NULL; (0, 1))
If NULL, confidence intervals are set as NA. If in (0, 1), confidence intervals are
calculated at the specified level.

mean_null (Scalar numeric: 0; (-Inf, Inf))
The difference of means assumed under the null hypothesis. See ’Details’ for
additional information.

Details

This function is primarily designed for speed in simulation. Missing values are silently excluded.

The hypotheses for Welch’s independent two-sample t-test are

Hnull : µ2 − µ1 = µnull

Halt :


µ2 − µ1 ̸= µnull two-sided
µ2 − µ1 > µnull greater than
µ2 − µ1 < µnull less than

where µ1 is the population mean of group 1, µ2 is the population mean of group 2, and µnull is a
constant for the assumed difference of population means (usually µnull = 0).

The test statistic is

T =
(x̄2 − x̄1)− µnull√

s21
n1

+
s22
n2

where x̄1 and x̄2 are the sample means, µnull is the difference of population means assumed under
the null hypothesis, n1 and n2 are the sample sizes, and s21 and s22 are the sample variances.

The critical value of the test statistic uses the Welch–Satterthwaite degrees of freedom

v =

(
s21
n1

+
s22
n2

)2
(N1 − 1)−1

(
s21
n1

)2
+ (N2 − 1)−1

(
s22
n2

)2
and the p-value is calculated as

p =


2min{P (T ≥ tv | Hnull), P (T ≤ tv | Hnull)} two-sided
P (T ≥ tv | Hnull) greater than
P (T ≤ tv | Hnull) less than

Let GM(·) be the geometric mean and AM(·) be the arithmetic mean. For independent lognormal
variables X1 and X2 it follows that lnX1 and lnX2 are independent normally distributed variables.
Defining µX2

− µX1
= AM(lnX2)−AM(lnX1) we have
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eµX2
−µX1 =

GM(X2)

GM(X1)

This forms the basis for making inference about the ratio of geometric means of the original log-
normal data using the difference of means of the log transformed normal data.

Value

A list with the following elements:

Slot Subslot Name Description
1 t Value of the t-statistic.
2 df Degrees of freedom for the t-statistic.
3 p p-value.
4 diff_mean Estimated difference of means (group 2 – group 1).
4 1 estimate Point estimate.
4 2 lower Confidence interval lower bound.
4 3 upper Confidence interval upper bound.
5 mean1 Estimated mean of group 1.
6 mean2 Estimated mean of group 2.
7 n1 Sample size of group 1.
8 n2 Sample size of group 2.
9 method Method used for the results.
10 alternative The alternative hypothesis.
11 ci_level The confidence level.
12 mean_null Assumed population difference of the means under the null hypothesis.

References

Julious SA (2004). “Sample sizes for clinical trials with Normal data.” Statistics in Medicine,
23(12), 1921–1986. doi:10.1002/sim.1783.

Hauschke D, Steinijans VW, Diletti E, Burke M (1992). “Sample size determination for bioequiv-
alence assessment using a multiplicative model.” Journal of Pharmacokinetics and Biopharmaceu-
tics, 20(5), 557–561. ISSN 0090-466X, doi:10.1007/BF01061471.

Johnson NL, Kotz S, Balakrishnan N (1994). Continuous univariate distributions, Wiley series in
probability and mathematical statistics, 2nd ed edition. Wiley, New York. ISBN 9780471584957
9780471584940.

See Also

t_test_paired()

Examples

#----------------------------------------------------------------------------
# t_test_welch() examples
#----------------------------------------------------------------------------
library(depower)

https://doi.org/10.1002/sim.1783
https://doi.org/10.1007/BF01061471
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# Welch's t-test
set.seed(1234)
sim_log_lognormal(

n1 = 40,
n2 = 40,
ratio = 1.5,
cv1 = 0.4,
cv2 = 0.4

) |>
t_test_welch(ci_level = 0.95)

wald_test_bnb Wald test for BNB ratio of means

Description

Wald test for the ratio of means from bivariate negative binomial outcomes.

Usage

wald_test_bnb(
data,
ci_level = NULL,
link = "log",
ratio_null = 1,
distribution = asymptotic(),
...

)

Arguments

data (list)
A list whose first element is the vector of negative binomial values from sample
1 and the second element is the vector of negative binomial values from sample
2. Each vector must be sorted by the subject/item index and must be the same
sample size. NAs are silently excluded. The default output from sim_bnb().

ci_level (Scalar numeric: NULL; (0, 1))
If NULL, confidence intervals are set as NA. If in (0, 1), confidence intervals are
calculated at the specified level.

link (Scalar string: "log")
The one-to-one link function for transformation of the ratio in the test hypothe-
ses. Must be one of "log" (default), "sqrt", "squared", or "identity". See
’Details’ for additional information.

ratio_null (Scalar numeric: 1; (0, Inf))
The (pre-transformation) ratio of means assumed under the null hypothesis (sam-
ple 2 / sample 1). Typically ratio_null = 1 (no difference). See ’Details’ for
additional information.
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distribution (function: asymptotic() or simulated())
The method used to define the distribution of the χ2 Wald test statistic under the
null hypothesis. See ’Details’ and asymptotic() or simulated() for additional
information.

... Optional arguments passed to the MLE function mle_bnb().

Details

This function is primarily designed for speed in simulation. Missing values are silently excluded.

Suppose X1 | G = g ∼ Poisson(µg) and X2 | G = g ∼ Poisson(rµg) where G ∼ Gamma(θ, θ−1)
is the random item (subject) effect. Then X1, X2 ∼ BNB(µ, r, θ) is the joint distribution where X1

and X2 are dependent (though conditionally independent), X1 is the count outcome for sample
1 of the items (subjects), X2 is the count outcome for sample 2 of the items (subjects), µ is the
conditional mean of sample 1, r is the ratio of the conditional means of sample 2 with respect to
sample 1, and θ is the gamma distribution shape parameter which controls the dispersion and the
correlation between sample 1 and 2.

The hypotheses for the Wald test of r are

Hnull : f(r) = f(rnull)

Halt : f(r) ̸= f(rnull)

where f(·) is a one-to-one link function with nonzero derivative, r = X̄2

X̄1
is the population ratio of

arithmetic means for sample 2 with respect to sample 1, and rnull is a constant for the assumed null
population ratio of means (typically rnull = 1).

Rettiganti and Nagaraja (2012) found that f(r) = r2, f(r) = r, and f(r) = r0.5 had greatest
power when r < 1. However, when r > 1, f(r) = ln r, the likelihood ratio test, and f(r) = r0.5

had greatest power. f(r) = r2 was biased when r > 1. Both f(r) = ln r and f(r) = r0.5 produced
acceptable results for any r value. These results depend on the use of asymptotic vs. exact critical
values.

The Wald test statistic is

W (f(r̂)) =

f
(

x̄2

x̄1

)
− f(rnull)

f ′(r̂)σ̂r̂

2

where

σ̂2
r̂ =

r̂(1 + r̂)(µ̂+ r̂µ̂+ θ̂)

n
[
µ̂(1 + r̂)(µ̂+ θ̂)− θ̂r̂

]
Under Hnull, the Wald test statistic is asymptotically distributed as χ2

1. The approximate level α
test rejects Hnull if W (f(r̂)) ≥ χ2

1(1 − α). However, the asymptotic critical value is known to
underestimate the exact critical value and the nominal significance level may not be achieved for
small sample sizes. The level of significance inflation also depends on f(·) and is most severe for
f(r) = r2 where only the exact critical value should be used. Argument distribution allows
control of the distribution of the χ2

1 test statistic under the null hypothesis by use of functions
asymptotic() and simulated().
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Value

A list with the following elements:

Slot Subslot Name Description
1 chisq χ2 test statistic for the ratio of means.
2 df Degrees of freedom.
3 p p-value.
4 ratio Estimated ratio of means (group 2 / group 1).
4 1 estimate Point estimate.
4 2 lower Confidence interval lower bound.
4 3 upper Confidence interval upper bound.
5 mean1 Estimated mean of sample 1.
6 mean2 Estimated mean of sample 2.
7 dispersion Estimated dispersion.
8 n1 The sample size of sample 1.
9 n2 The sample size of sample 2.
10 method Method used for the results.
11 ci_level The confidence level.
12 link Link function used to transform the ratio of means in the test hypotheses.
13 ratio_null Assumed ratio of means under the null hypothesis.
14 mle_code Integer indicating why the optimization process terminated.
15 mle_message Information from the optimizer.

References

Rettiganti M, Nagaraja HN (2012). “Power Analyses for Negative Binomial Models with Applica-
tion to Multiple Sclerosis Clinical Trials.” Journal of Biopharmaceutical Statistics, 22(2), 237–259.
ISSN 1054-3406, 1520-5711, doi:10.1080/10543406.2010.528105.

Aban IB, Cutter GR, Mavinga N (2009). “Inferences and power analysis concerning two negative
binomial distributions with an application to MRI lesion counts data.” Computational Statistics &
Data Analysis, 53(3), 820–833. ISSN 01679473, doi:10.1016/j.csda.2008.07.034.

See Also

lrt_bnb()

Examples

#----------------------------------------------------------------------------
# wald_test_bnb() examples
#----------------------------------------------------------------------------
library(depower)

set.seed(1234)
sim_bnb(

n = 40,
mean1 = 10,
ratio = 1.2,
dispersion = 2

https://doi.org/10.1080/10543406.2010.528105
https://doi.org/10.1016/j.csda.2008.07.034
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) |>
wald_test_bnb()

wald_test_nb Wald test for NB ratio of means

Description

Wald test for the ratio of means from two independent negative binomial outcomes.

Usage

wald_test_nb(
data,
equal_dispersion = FALSE,
ci_level = NULL,
link = "log",
ratio_null = 1,
distribution = asymptotic(),
...

)

Arguments

data (list)
A list whose first element is the vector of negative binomial values from group
1 and the second element is the vector of negative binomial values from group
2. NAs are silently excluded. The default output from sim_nb().

equal_dispersion

(Scalar logical: FALSE)
If TRUE, the Wald test is calculated assuming both groups have the same popula-
tion dispersion parameter. If FALSE (default), the Wald test is calculated assum-
ing different dispersions.

ci_level (Scalar numeric: NULL; (0, 1))
If NULL, confidence intervals are set as NA. If in (0, 1), confidence intervals are
calculated at the specified level.

link (Scalar string: "log")
The one-to-one link function for transformation of the ratio in the test hypothe-
ses. Must be one of "log" (default), "sqrt", "squared", or "identity". See
’Details’ for additional information.

ratio_null (Scalar numeric: 1; (0, Inf))
The (pre-transformation) ratio of means assumed under the null hypothesis (group
2 / group 1). Typically ratio_null = 1 (no difference). See ’Details’ for addi-
tional information.
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distribution (function: asymptotic() or simulated())
The method used to define the distribution of the χ2 Wald test statistic under the
null hypothesis. See ’Details’ and asymptotic() or simulated() for additional
information.

... Optional arguments passed to the MLE function mle_nb().

Details

This function is primarily designed for speed in simulation. Missing values are silently excluded.

Suppose X1 ∼ NB(µ, θ1) and X2 ∼ NB(rµ, θ2) where X1 and X2 are independent, X1 is the
count outcome for items in group 1, X2 is the count outcome for items in group 2, µ is the arithmetic
mean count in group 1, r is the ratio of arithmetic means for group 2 with respect to group 1, θ1 is
the dispersion parameter of group 1, and θ2 is the dispersion parameter of group 2.

The hypotheses for the Wald test of r are

Hnull : f(r) = f(rnull)

Halt : f(r) ̸= f(rnull)

where f(·) is a one-to-one link function with nonzero derivative, r = X̄2

X̄1
is the population ratio of

arithmetic means for group 2 with respect to group 1, and rnull is a constant for the assumed null
population ratio of means (typically rnull = 1).

Rettiganti and Nagaraja (2012) found that f(r) = r2 and f(r) = r had greatest power when r < 1.
However, when r > 1, f(r) = ln r, the likelihood ratio test, and the Rao score test have greatest
power. Note that f(r) = ln r, LRT, and RST were unbiased tests while the f(r) = r and f(r) = r2

tests were biased when r > 1. The f(r) = ln r, LRT, and RST produced acceptable results for any
r value. These results depend on the use of asymptotic vs. exact critical values.

The Wald test statistic is

W (f(r̂)) =

f
(

x̄2

x̄1

)
− f(rnull)

f ′(r̂)σ̂r̂

2

where

σ̂2
r̂ =

r̂
[
n1θ̂1(r̂µ̂+ θ̂2) + n2θ̂2r̂(µ̂+ θ̂1)

]
n1n2θ̂1θ̂2µ̂

Under Hnull, the Wald test statistic is asymptotically distributed as χ2
1. The approximate level α

test rejects Hnull if W (f(r̂)) ≥ χ2
1(1 − α). However, the asymptotic critical value is known to

underestimate the exact critical value and the nominal significance level may not be achieved for
small sample sizes. The level of significance inflation also depends on f(·) and is most severe for
f(r) = r2 where only the exact critical value should be used. Argument distribution allows
control of the distribution of the χ2

1 test statistic under the null hypothesis by use of functions
asymptotic() and simulated().

Note that standalone use of this function with equal_dispersion = FALSE and distribution =
simulated(), e.g.
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data |>
wald_test_nb(
equal_dispersion = FALSE,
distribution = simulated()

)

results in a nonparametric randomization test based on label permutation. This violates the assump-
tion of exchangeability for the randomization test because the labels are not exchangeable when the
null hypothesis assumes unequal dispersions. However, used inside power(), e.g.

data |>
power(
wald_test_nb(
equal_dispersion = FALSE,
distribution = simulated()

)
)

results in parametric resampling and no label permutation in performed. Thus, setting equal_dispersion
= FALSE and distribution = simulated() is only recommended when wald_test_nb() is used
inside of power(). See also, simulated().

Value

A list with the following elements:

Slot Subslot Name Description
1 chisq χ2 test statistic for the ratio of means.
2 df Degrees of freedom.
3 p p-value.
4 ratio Estimated ratio of means (group 2 / group 1).
4 1 estimate Point estimate.
4 2 lower Confidence interval lower bound.
4 3 upper Confidence interval upper bound.
5 mean1 Estimated mean of group 1.
6 mean2 Estimated mean of group 2.
7 dispersion1 Estimated dispersion of group 1.
8 dispersion2 Estimated dispersion of group 2.
9 n1 Sample size of group 1.
10 n2 Sample size of group 2.
11 method Method used for the results.
12 ci_level The confidence level.
13 equal_dispersion Whether or not equal dispersions were assumed.
14 link Link function used to transform the ratio of means in the test hypotheses.
15 ratio_null Assumed ratio of means under the null hypothesis.
16 mle_code Integer indicating why the optimization process terminated.
17 mle_message Information from the optimizer.
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See Also

lrt_nb()

Examples

#----------------------------------------------------------------------------
# wald_test_nb() examples
#----------------------------------------------------------------------------
library(depower)

set.seed(1234)
sim_nb(

n1 = 60,
n2 = 40,
mean1 = 10,
ratio = 1.5,
dispersion1 = 2,
dispersion2 = 8

) |>
wald_test_nb()

https://doi.org/10.1080/10543406.2010.528105
https://doi.org/10.1016/j.csda.2008.07.034
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