
Package ‘dplyr’
February 3, 2026

Type Package

Title A Grammar of Data Manipulation

Version 1.2.0

Description A fast, consistent tool for working with data frame like
objects, both in memory and out of memory.

License MIT + file LICENSE

URL https://dplyr.tidyverse.org, https://github.com/tidyverse/dplyr

BugReports https://github.com/tidyverse/dplyr/issues

Depends R (>= 4.1.0)

Imports cli (>= 3.6.2), generics, glue (>= 1.3.2), lifecycle (>=
1.0.5), magrittr (>= 1.5), methods, pillar (>= 1.9.0), R6,
rlang (>= 1.1.7), tibble (>= 3.2.0), tidyselect (>= 1.2.0),
utils, vctrs (>= 0.7.1)

Suggests broom, covr, DBI, dbplyr (>= 2.2.1), ggplot2, knitr, Lahman,
lobstr, nycflights13, purrr, rmarkdown, RSQLite, stringi (>=
1.7.6), testthat (>= 3.1.5), tidyr (>= 1.3.0), withr

VignetteBuilder knitr

Config/build/compilation-database true

Config/Needs/website tidyverse/tidytemplate

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

NeedsCompilation yes

Author Hadley Wickham [aut, cre] (ORCID:
<https://orcid.org/0000-0003-4757-117X>),

Romain François [aut] (ORCID: <https://orcid.org/0000-0002-2444-4226>),
Lionel Henry [aut],
Kirill Müller [aut] (ORCID: <https://orcid.org/0000-0002-1416-3412>),
Davis Vaughan [aut] (ORCID: <https://orcid.org/0000-0003-4777-038X>),
Posit Software, PBC [cph, fnd]

1

https://dplyr.tidyverse.org
https://github.com/tidyverse/dplyr
https://github.com/tidyverse/dplyr/issues
https://orcid.org/0000-0003-4757-117X
https://orcid.org/0000-0002-2444-4226
https://orcid.org/0000-0002-1416-3412
https://orcid.org/0000-0003-4777-038X

2 Contents

Maintainer Hadley Wickham <hadley@posit.co>

Repository CRAN

Date/Publication 2026-02-03 08:50:47 UTC

Contents
across . 3
all_vars . 8
arrange . 9
auto_copy . 11
band_members . 11
between . 12
bind_cols . 13
bind_rows . 14
case-and-replace-when . 15
coalesce . 20
compute . 21
consecutive_id . 23
context . 23
copy_to . 25
count . 26
cross_join . 28
cumall . 29
c_across . 30
desc . 31
distinct . 31
dplyr_by . 33
explain . 37
filter . 38
filter-joins . 43
glimpse . 45
group_by . 45
group_cols . 48
group_map . 49
group_trim . 51
ident . 52
if_else . 53
join_by . 54
lead-lag . 58
mutate . 59
mutate-joins . 63
na_if . 69
near . 71
nest_join . 71
nth . 74
ntile . 76
n_distinct . 77

across 3

order_by . 78
percent_rank . 79
pick . 80
pull . 81
recode . 82
recode-and-replace-values . 86
reframe . 91
relocate . 94
rename . 95
rows . 97
rowwise . 100
row_number . 102
scoped . 103
select . 105
setops . 109
slice . 111
sql . 114
starwars . 115
storms . 116
summarise . 117
tbl . 119
vars . 120
when-any-all . 120

Index 124

across Apply a function (or functions) across multiple columns

Description

across() makes it easy to apply the same transformation to multiple columns, allowing you to
use select() semantics inside in "data-masking" functions like summarise() and mutate(). See
vignette("colwise") for more details.

if_any() and if_all() apply the same predicate function to a selection of columns and combine
the results into a single logical vector: if_any() is TRUE when the predicate is TRUE for any of the
selected columns, if_all() is TRUE when the predicate is TRUE for all selected columns.

If you just need to select columns without applying a transformation to each of them, then you
probably want to use pick() instead.

across() supersedes the family of "scoped variants" like summarise_at(), summarise_if(), and
summarise_all().

4 across

Usage

across(.cols, .fns, ..., .names = NULL, .unpack = FALSE)

if_any(.cols, .fns, ..., .names = NULL)

if_all(.cols, .fns, ..., .names = NULL)

Arguments

.cols <tidy-select> Columns to transform. You can’t select grouping columns be-
cause they are already automatically handled by the verb (i.e. summarise() or
mutate()).

.fns Functions to apply to each of the selected columns. Possible values are:

• A function, e.g. mean.

• A purrr-style lambda, e.g. ~ mean(.x, na.rm = TRUE)

• A named list of functions or lambdas, e.g. list(mean = mean, n_miss = ~ sum(is.na(.x)).
Each function is applied to each column, and the output is named by com-
bining the function name and the column name using the glue specification
in .names.

Within these functions you can use cur_column() and cur_group() to access
the current column and grouping keys respectively.

... [Deprecated]
Additional arguments for the function calls in .fns are no longer accepted in
... because it’s not clear when they should be evaluated: once per across() or
once per group? Instead supply additional arguments directly in .fns by using
a lambda. For example, instead of across(a:b, mean, na.rm = TRUE) write
across(a:b, ~ mean(.x, na.rm = TRUE)).

.names A glue specification that describes how to name the output columns. This can
use {.col} to stand for the selected column name, and {.fn} to stand for
the name of the function being applied. The default (NULL) is equivalent to
"{.col}" for the single function case and "{.col}_{.fn}" for the case where
a list is used for .fns.

.unpack [Experimental]
Optionally unpack data frames returned by functions in .fns, which expands
the df-columns out into individual columns, retaining the number of rows in the
data frame.

• If FALSE, the default, no unpacking is done.

• If TRUE, unpacking is done with a default glue specification of "{outer}_{inner}".

• Otherwise, a single glue specification can be supplied to describe how to
name the unpacked columns. This can use {outer} to refer to the name
originally generated by .names, and {inner} to refer to the names of the
data frame you are unpacking.

across 5

Details

When there are no selected columns:

• if_any() will return FALSE, consistent with the behavior of any() when called without inputs.

• if_all() will return TRUE, consistent with the behavior of all() when called without inputs.

Value

across() typically returns a tibble with one column for each column in .cols and each function
in .fns. If .unpack is used, more columns may be returned depending on how the results of .fns
are unpacked.

if_any() and if_all() return a logical vector.

Timing of evaluation

R code in dplyr verbs is generally evaluated once per group. Inside across() however, code is
evaluated once for each combination of columns and groups. If the evaluation timing is important,
for example if you’re generating random variables, think about when it should happen and place
your code in consequence.

gdf <-
tibble(g = c(1, 1, 2, 3), v1 = 10:13, v2 = 20:23) |>
group_by(g)

set.seed(1)

Outside: 1 normal variate
n <- rnorm(1)
gdf |> mutate(across(v1:v2, ~ .x + n))
#> # A tibble: 4 x 3
#> # Groups: g [3]
#> g v1 v2
#> <dbl> <dbl> <dbl>
#> 1 1 9.37 19.4
#> 2 1 10.4 20.4
#> 3 2 11.4 21.4
#> 4 3 12.4 22.4

Inside a verb: 3 normal variates (ngroup)
gdf |> mutate(n = rnorm(1), across(v1:v2, ~ .x + n))
#> # A tibble: 4 x 4
#> # Groups: g [3]
#> g v1 v2 n
#> <dbl> <dbl> <dbl> <dbl>
#> 1 1 10.2 20.2 0.184
#> 2 1 11.2 21.2 0.184
#> 3 2 11.2 21.2 -0.836
#> 4 3 14.6 24.6 1.60

6 across

Inside `across()`: 6 normal variates (ncol * ngroup)
gdf |> mutate(across(v1:v2, ~ .x + rnorm(1)))
#> # A tibble: 4 x 3
#> # Groups: g [3]
#> g v1 v2
#> <dbl> <dbl> <dbl>
#> 1 1 10.3 20.7
#> 2 1 11.3 21.7
#> 3 2 11.2 22.6
#> 4 3 13.5 22.7

See Also

c_across() for a function that returns a vector

Examples

For better printing
iris <- as_tibble(iris)

across() ---
Using everything() to apply the same function to all columns
iris |>

mutate(across(everything(), as.character))

Different ways to select the same set of columns
See <https://tidyselect.r-lib.org/articles/syntax.html> for details
iris |>

mutate(across(c(Sepal.Length, Sepal.Width), round))
iris |>

mutate(across(c(1, 2), round))
iris |>

mutate(across(1:Sepal.Width, round))
iris |>

mutate(across(where(is.double) & !c(Petal.Length, Petal.Width), round))

Using an external vector of names
cols <- c("Sepal.Length", "Petal.Width")
iris |>

mutate(across(all_of(cols), round))

If the external vector is named, the output columns will be named according
to those names
names(cols) <- tolower(cols)
iris |>

mutate(across(all_of(cols), round))

A purrr-style formula
iris |>

group_by(Species) |>
summarise(across(starts_with("Sepal"), ~ mean(.x, na.rm = TRUE)))

across 7

A named list of functions
iris |>

group_by(Species) |>
summarise(across(starts_with("Sepal"), list(mean = mean, sd = sd)))

Use the .names argument to control the output names
iris |>

group_by(Species) |>
summarise(across(starts_with("Sepal"), mean, .names = "mean_{.col}"))

iris |>
group_by(Species) |>
summarise(
across(

starts_with("Sepal"),
list(mean = mean, sd = sd),
.names = "{.col}.{.fn}"

)
)

If a named external vector is used for column selection, .names will use
those names when constructing the output names
iris |>

group_by(Species) |>
summarise(across(all_of(cols), mean, .names = "mean_{.col}"))

When the list is not named, .fn is replaced by the function's position
iris |>

group_by(Species) |>
summarise(
across(starts_with("Sepal"), list(mean, sd), .names = "{.col}.fn{.fn}")

)

When the functions in .fns return a data frame, you typically get a
"packed" data frame back
quantile_df <- function(x, probs = c(0.25, 0.5, 0.75)) {

tibble(quantile = probs, value = quantile(x, probs))
}

iris |>
reframe(across(starts_with("Sepal"), quantile_df))

Use .unpack to automatically expand these packed data frames into their
individual columns
iris |>

reframe(across(starts_with("Sepal"), quantile_df, .unpack = TRUE))

.unpack can utilize a glue specification if you don't like the defaults
iris |>

reframe(
across(starts_with("Sepal"), quantile_df, .unpack = "{outer}.{inner}")

)

8 all_vars

This is also useful inside mutate(), for example, with a multi-lag helper
multilag <- function(x, lags = 1:3) {

names(lags) <- as.character(lags)
purrr::map_dfr(lags, lag, x = x)

}

iris |>
group_by(Species) |>
mutate(across(starts_with("Sepal"), multilag, .unpack = TRUE)) |>
select(Species, starts_with("Sepal"))

if_any() and if_all() --
iris |>

filter(if_any(ends_with("Width"), ~ . > 4))
iris |>

filter_out(if_any(ends_with("Width"), ~ . > 4))

iris |>
filter(if_all(ends_with("Width"), ~ . > 2))

iris |>
filter_out(if_all(ends_with("Width"), ~ . > 2))

all_vars Apply predicate to all variables

Description

[Superseded]

all_vars() and any_vars() were only needed for the scoped verbs, which have been superseded
by the use of across() in an existing verb. See vignette("colwise") for details.

These quoting functions signal to scoped filtering verbs (e.g. filter_if() or filter_all()) that
a predicate expression should be applied to all relevant variables. The all_vars() variant takes the
intersection of the predicate expressions with & while the any_vars() variant takes the union with
|.

Usage

all_vars(expr)

any_vars(expr)

Arguments

expr <data-masking> An expression that returns a logical vector, using . to refer to
the "current" variable.

arrange 9

See Also

vars() for other quoting functions that you can use with scoped verbs.

arrange Order rows using column values

Description

arrange() orders the rows of a data frame by the values of selected columns.

Unlike other dplyr verbs, arrange() largely ignores grouping; you need to explicitly mention
grouping variables (or use .by_group = TRUE) in order to group by them, and functions of vari-
ables are evaluated once per data frame, not once per group.

Usage

arrange(.data, ..., .by_group = FALSE)

S3 method for class 'data.frame'
arrange(.data, ..., .by_group = FALSE, .locale = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Variables, or functions of variables. Use desc() to sort a
variable in descending order.

.by_group If TRUE, will sort first by grouping variable. Applies to grouped data frames
only.

.locale The locale to sort character vectors in.

• If NULL, the default, uses the "C" locale unless the deprecated dplyr.legacy_locale
global option escape hatch is active. See the dplyr-locale help page for more
details.

• If a single string from stringi::stri_locale_list() is supplied, then
this will be used as the locale to sort with. For example, "en" will sort with
the American English locale. This requires the stringi package.

• If "C" is supplied, then character vectors will always be sorted in the C
locale. This does not require stringi and is often much faster than supplying
a locale identifier.

The C locale is not the same as English locales, such as "en", particularly when
it comes to data containing a mix of upper and lower case letters. This is ex-
plained in more detail on the locale help page under the Default locale sec-
tion.

10 arrange

Details

Missing values:
Unlike base sorting with sort(), NA are:

• always sorted to the end for local data, even when wrapped with desc().
• treated differently for remote data, depending on the backend.

Value

An object of the same type as .data. The output has the following properties:

• All rows appear in the output, but (usually) in a different place.

• Columns are not modified.

• Groups are not modified.

• Data frame attributes are preserved.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

See Also

Other single table verbs: filter(), mutate(), reframe(), rename(), select(), slice(), summarise()

Examples

arrange(mtcars, cyl, disp)
arrange(mtcars, desc(disp))

grouped arrange ignores groups
by_cyl <- mtcars |> group_by(cyl)
by_cyl |> arrange(desc(wt))
Unless you specifically ask:
by_cyl |> arrange(desc(wt), .by_group = TRUE)

use embracing when wrapping in a function;
see ?rlang::args_data_masking for more details
tidy_eval_arrange <- function(.data, var) {

.data |>
arrange({{ var }})

}
tidy_eval_arrange(mtcars, mpg)

Use `across()` or `pick()` to select columns with tidy-select
iris |> arrange(pick(starts_with("Sepal")))
iris |> arrange(across(starts_with("Sepal"), desc))

auto_copy 11

auto_copy Copy tables to same source, if necessary

Description

Copy tables to same source, if necessary

Usage

auto_copy(x, y, copy = FALSE, ...)

Arguments

x, y y will be copied to x, if necessary.

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

... Other arguments passed on to methods.

band_members Band membership

Description

These data sets describe band members of the Beatles and Rolling Stones. They are toy data sets
that can be displayed in their entirety on a slide (e.g. to demonstrate a join).

Usage

band_members

band_instruments

band_instruments2

Format

Each is a tibble with two variables and three observations

Details

band_instruments and band_instruments2 contain the same data but use different column names
for the first column of the data set. band_instruments uses name, which matches the name of the
key column of band_members; band_instruments2 uses artist, which does not.

12 between

Examples

band_members
band_instruments
band_instruments2

between Detect where values fall in a specified range

Description

This is a shortcut for x >= left & x <= right, implemented for local vectors and translated to the
appropriate SQL for remote tables.

Usage

between(x, left, right, ..., ptype = NULL)

Arguments

x A vector

left, right Boundary values. Both left and right are recycled to the size of x.

... These dots are for future extensions and must be empty.

ptype An optional prototype giving the desired output type. The default is to compute
the common type of x, left, and right using vctrs::vec_cast_common().

Details

x, left, and right are all cast to their common type before the comparison is made. Use the ptype
argument to specify the type manually.

Value

A logical vector the same size as x with a type determined by ptype.

See Also

join_by() if you are looking for documentation for the between() overlap join helper.

Examples

between(1:12, 7, 9)

x <- rnorm(1e2)
x[between(x, -1, 1)]

On a tibble using `filter()`
filter(starwars, between(height, 100, 150))

bind_cols 13

Using the `ptype` argument with ordered factors, where otherwise everything
is cast to the common type of character before the comparison
x <- ordered(

c("low", "medium", "high", "medium"),
levels = c("low", "medium", "high")

)
between(x, "medium", "high")
between(x, "medium", "high", ptype = x)

bind_cols Bind multiple data frames by column

Description

Bind any number of data frames by column, making a wider result. This is similar to do.call(cbind,
dfs).

Where possible prefer using a join to combine multiple data frames. bind_cols() binds the rows
in order in which they appear so it is easy to create meaningless results without realising it.

Usage

bind_cols(
...,
.name_repair = c("unique", "universal", "check_unique", "minimal")

)

Arguments

... Data frames to combine. Each argument can either be a data frame, a list that
could be a data frame, or a list of data frames. Inputs are recycled to the same
length, then matched by position.

.name_repair One of "unique", "universal", or "check_unique". See vctrs::vec_as_names()
for the meaning of these options.

Value

A data frame the same type as the first element of

Examples

df1 <- tibble(x = 1:3)
df2 <- tibble(y = 3:1)
bind_cols(df1, df2)

Row sizes must be compatible when column-binding
try(bind_cols(tibble(x = 1:3), tibble(y = 1:2)))

14 bind_rows

bind_rows Bind multiple data frames by row

Description

Bind any number of data frames by row, making a longer result. This is similar to do.call(rbind,
dfs), but the output will contain all columns that appear in any of the inputs.

Usage

bind_rows(..., .id = NULL)

Arguments

... Data frames to combine. Each argument can either be a data frame, a list that
could be a data frame, or a list of data frames. Columns are matched by name,
and any missing columns will be filled with NA.

.id The name of an optional identifier column. Provide a string to create an out-
put column that identifies each input. The column will use names if available,
otherwise it will use positions.

Value

A data frame the same type as the first element of

Examples

df1 <- tibble(x = 1:2, y = letters[1:2])
df2 <- tibble(x = 4:5, z = 1:2)

You can supply individual data frames as arguments:
bind_rows(df1, df2)

Or a list of data frames:
bind_rows(list(df1, df2))

When you supply a column name with the `.id` argument, a new
column is created to link each row to its original data frame
bind_rows(list(df1, df2), .id = "id")
bind_rows(list(a = df1, b = df2), .id = "id")

case-and-replace-when 15

case-and-replace-when A general vectorised if-else

Description

case_when() and replace_when() are two forms of vectorized if_else(). They work by evaluat-
ing each case sequentially and using the first match for each element to determine the corresponding
value in the output vector.

• Use case_when() when creating an entirely new vector.

• Use replace_when() when partially updating an existing vector.

If you are just replacing a few values within an existing vector, then replace_when() is always a
better choice because it is type stable, size stable, pipes better, and better expresses intent.

A major difference between the two functions is what happens when no cases match:

• case_when() falls through to a .default as a final "else" statement.

• replace_when() retains the original values from x.

See vignette("recoding-replacing") for more examples.

Usage

case_when(
...,
.default = NULL,
.unmatched = "default",
.ptype = NULL,
.size = NULL

)

replace_when(x, ...)

Arguments

... <dynamic-dots> A sequence of two-sided formulas. The left hand side (LHS)
determines which values match this case. The right hand side (RHS) provides
the replacement value.
For case_when():

• The LHS inputs must be logical vectors. For backwards compatibility,
scalars are recycled, but we no longer recommend supplying scalars.

• The RHS inputs will be cast to their common type, and will be recycled to
the common size of the LHS inputs.

For replace_when():

• The LHS inputs must be logical vectors the same size as x.
• The RHS inputs will be cast to the type of x and recycled to the size of x.

16 case-and-replace-when

NULL inputs are ignored.

.default The value used when all of the LHS inputs return either FALSE or NA.

• If NULL, the default, a missing value will be used.
• If provided, .default will follow the same type and size rules as the RHS

inputs.

NA values in the LHS conditions are treated like FALSE, meaning that the result at
those locations will be assigned the .default value. To handle missing values in
the conditions differently, you must explicitly catch them with another condition
before they fall through to the .default. This typically involves some variation
of is.na(x) ~ value tailored to your usage of case_when().

.unmatched Handling of unmatched locations.
One of:

• "default" to use .default in unmatched locations.
• "error" to error when there are unmatched locations.

.ptype An optional prototype declaring the desired output type. If supplied, this over-
rides the common type of the RHS inputs.

.size An optional size declaring the desired output size. If supplied, this overrides the
common size computed from the LHS inputs.

x A vector.

Value

For case_when(), a new vector where the size is the common size of the LHS inputs, the type is
the common type of the RHS inputs, and the names correspond to the names of the RHS elements
used in the result.

For replace_when(), an updated version of x, with the same size, type, and names as x.

See Also

recode_values(), vctrs::vec_case_when()

Examples

x <- 1:70
case_when(
x %% 35 == 0 ~ "fizz buzz",
x %% 5 == 0 ~ "fizz",
x %% 7 == 0 ~ "buzz",
.default = as.character(x)

)

Like an if statement, the arguments are evaluated in order, so you must
proceed from the most specific to the most general. This won't work:
case_when(

x %% 5 == 0 ~ "fizz",
x %% 7 == 0 ~ "buzz",
x %% 35 == 0 ~ "fizz buzz",

case-and-replace-when 17

.default = as.character(x)
)

If none of the cases match and no `.default` is supplied, NA is used:
case_when(

x %% 35 == 0 ~ "fizz buzz",
x %% 5 == 0 ~ "fizz",
x %% 7 == 0 ~ "buzz"

)

Note that `NA` values on the LHS are treated like `FALSE` and will be
assigned the `.default` value. You must handle them explicitly if you
want to use a different value. The exact way to handle missing values is
dependent on the set of LHS conditions you use.
x[2:4] <- NA_real_
case_when(

x %% 35 == 0 ~ "fizz buzz",
x %% 5 == 0 ~ "fizz",
x %% 7 == 0 ~ "buzz",
is.na(x) ~ "nope",
.default = as.character(x)

)

`case_when()` is not a replacement for basic if/else control flow. When
you have a single scalar condition, using if/else is faster, simpler to
reason about, and is lazy on the branch that isn't run. For example, this
seems to work:
x <- "value"
case_when(is.character(x) ~ x, .default = "not-a-character")

Until `x` is a non-character type
x <- 1
try(case_when(is.character(x) ~ x, .default = "not-a-character"))

Instead, you should use if/else
if (is.character(x)) {

y <- x
} else {

y <- "not-a-character"
}
y

If you believe that you've covered every possible case, then set
`.unmatched = "error"` rather than supplying a `.default`. This adds an
extra layer of safety to `case_when()` and is particularly useful when you
have a series of complex expressions!
set.seed(123)
x <- sample(50)

Oops, we forgot to handle `50`
try(case_when(

x < 10 ~ "ten",
x < 20 ~ "twenty",

18 case-and-replace-when

x < 30 ~ "thirty",
x < 40 ~ "forty",
x < 50 ~ "fifty",
.unmatched = "error"

))

case_when(
x < 10 ~ "ten",
x < 20 ~ "twenty",
x < 30 ~ "thirty",
x < 40 ~ "forty",
x <= 50 ~ "fifty",
.unmatched = "error"

)

Note that `NA` is considered unmatched and must be handled with its own
explicit case, even if that case just propagates the missing value!
x[c(2, 5)] <- NA

case_when(
x < 10 ~ "ten",
x < 20 ~ "twenty",
x < 30 ~ "thirty",
x < 40 ~ "forty",
x <= 50 ~ "fifty",
is.na(x) ~ NA,
.unmatched = "error"

)

`replace_when()` is useful when you're updating an existing vector,
rather than creating an entirely new one. Note the so-far unused "puppy"
factor level:
pets <- tibble(

name = c("Max", "Bella", "Chuck", "Luna", "Cooper"),
type = factor(
c("dog", "dog", "cat", "dog", "cat"),
levels = c("dog", "cat", "puppy")

),
age = c(1, 3, 5, 2, 4)

)

We can replace some values with `"puppy"` based on arbitrary conditions.
Even though we are using a character `"puppy"` value, `replace_when()` will
automatically cast it to the factor type of `type` for us.
pets |>

mutate(
type = replace_when(type, type == "dog" & age <= 2 ~ "puppy")

)

Compare that with this `case_when()` call, which loses the factor class.
It's always better to use `replace_when()` when updating a few values in
an existing vector!
pets |>

case-and-replace-when 19

mutate(
type = case_when(type == "dog" & age <= 2 ~ "puppy", .default = type)

)

`case_when()` and `replace_when()` evaluate all RHS expressions, and then
construct their result by extracting the selected (via the LHS expressions)
parts. For example, `NaN`s are produced here because `sqrt(y)` is evaluated
on all of `y`, not just where `y >= 0`.
y <- seq(-2, 2, by = .5)
replace_when(y, y >= 0 ~ sqrt(y))

These functions are particularly useful inside `mutate()` when you want to
create a new variable that relies on a complex combination of existing
variables
starwars |>

select(name:mass, gender, species) |>
mutate(
type = case_when(

height > 200 | mass > 200 ~ "large",
species == "Droid" ~ "robot",
.default = "other"

)
)

`case_when()` is not a tidy eval function. If you'd like to reuse
the same patterns, extract the `case_when()` call into a normal
function:
case_character_type <- function(height, mass, species) {

case_when(
height > 200 | mass > 200 ~ "large",
species == "Droid" ~ "robot",
.default = "other"

)
}

case_character_type(150, 250, "Droid")
case_character_type(150, 150, "Droid")

Such functions can be used inside `mutate()` as well:
starwars |>

mutate(type = case_character_type(height, mass, species)) |>
pull(type)

`case_when()` ignores `NULL` inputs. This is useful when you'd
like to use a pattern only under certain conditions. Here we'll
take advantage of the fact that `if` returns `NULL` when there is
no `else` clause:
case_character_type <- function(height, mass, species, robots = TRUE) {

case_when(
height > 200 | mass > 200 ~ "large",
if (robots) species == "Droid" ~ "robot",
.default = "other"

)

20 coalesce

}

starwars |>
mutate(type = case_character_type(height, mass, species, robots = FALSE)) |>
pull(type)

`replace_when()` can also be used in combination with `pick()` to
conditionally mutate rows within multiple columns using a single condition.
Here `replace_when()` returns a data frame with new `species` and `name`
columns, which `mutate()` then automatically unpacks.
starwars |>

select(homeworld, species, name) |>
mutate(replace_when(
pick(species, name),
homeworld == "Tatooine" ~ tibble(

species = "Tatooinese",
name = paste(name, "(Tatooine)")

)
))

coalesce Find the first non-missing element

Description

Given a set of vectors, coalesce() finds the first non-missing value at each position. It’s inspired
by the SQL COALESCE function which does the same thing for SQL NULLs.

Usage

coalesce(..., .ptype = NULL, .size = NULL)

Arguments

... <dynamic-dots>
One or more vectors. These will be recycled against each other, and will be cast
to their common type.

.ptype An optional prototype declaring the desired output type. If supplied, this over-
rides the common type of the vectors in

.size An optional size declaring the desired output size. If supplied, this overrides the
common size of the vectors in

Value

A vector with the same type and size as the common type and common size of the vectors in

compute 21

See Also

• na_if() to replace a specified value with NA.

• replace_values() for making arbitrary replacements by value.

• replace_when() for making arbitrary replacements using logical conditions.

Examples

Replace missing values with a single value
x <- sample(c(1:5, NA, NA, NA))
coalesce(x, 0L)

Or replace missing values with the corresponding non-missing value in
another vector
x <- c(1, 2, NA, NA, 5, NA)
y <- c(NA, NA, 3, 4, 5, NA)
coalesce(x, y)

For cases like these where your replacement is a single value or a single
vector, `replace_values()` works just as well
replace_values(x, NA ~ 0)
coalesce(x, 0)

replace_values(x, NA ~ y)
coalesce(x, y)

`coalesce()` really shines when you have >2 vectors to coalesce with
z <- c(NA, 2, 3, 4, 5, 6)
coalesce(x, y, z)

If you're looking to replace values with `NA`, rather than replacing `NA`
with a value, then use `replace_values()`
x <- c(0, -1, 5, -99, 8)
replace_values(x, c(-1, -99) ~ NA)

The equivalent to a missing value in a list is `NULL`
coalesce(list(1, 2, NULL, NA), list(0))

Supply lists of vectors by splicing them into dots
vecs <- list(

c(1, 2, NA, NA, 5),
c(NA, NA, 3, 4, 5)

)
coalesce(!!!vecs)

compute Force computation of a database query

22 compute

Description

compute() stores results in a remote temporary table. collect() retrieves data into a local tibble.
collapse() is slightly different: it doesn’t force computation, but instead forces generation of the
SQL query. This is sometimes needed to work around bugs in dplyr’s SQL generation.

All functions preserve grouping and ordering.

Usage

compute(x, ...)

collect(x, ...)

collapse(x, ...)

Arguments

x A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... Arguments passed on to methods

Methods

These functions are generics, which means that packages can provide implementations (methods)
for other classes. See the documentation of individual methods for extra arguments and differences
in behaviour.

Methods available in currently loaded packages:

• compute(): no methods found

• collect(): no methods found

• collapse(): no methods found

See Also

copy_to(), the opposite of collect(): it takes a local data frame and uploads it to the remote
source.

Examples

mtcars2 <- dbplyr::src_memdb() |>
copy_to(mtcars, name = "mtcars2-cc", overwrite = TRUE)

remote <- mtcars2 |>
filter(cyl == 8) |>
select(mpg:drat)

Compute query and save in remote table
compute(remote)

Compute query bring back to this session

consecutive_id 23

collect(remote)

Creates a fresh query based on the generated SQL
collapse(remote)

consecutive_id Generate a unique identifier for consecutive combinations

Description

consecutive_id() generates a unique identifier that increments every time a variable (or combi-
nation of variables) changes. Inspired by data.table::rleid().

Usage

consecutive_id(...)

Arguments

... Unnamed vectors. If multiple vectors are supplied, then they should have the
same length.

Value

A numeric vector the same length as the longest element of

Examples

consecutive_id(c(TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, NA, NA))
consecutive_id(c(1, 1, 1, 2, 1, 1, 2, 2))

df <- data.frame(x = c(0, 0, 1, 0), y = c(2, 2, 2, 2))
df |> group_by(x, y) |> summarise(n = n())
df |> group_by(id = consecutive_id(x, y), x, y) |> summarise(n = n())

context Information about the "current" group or variable

24 context

Description

These functions return information about the "current" group or "current" variable, so only work
inside specific contexts like summarise() and mutate().

• n() gives the current group size.

• cur_group() gives the group keys, a tibble with one row and one column for each grouping
variable.

• cur_group_id() gives a unique numeric identifier for the current group.

• cur_group_rows() gives the row indices for the current group.

• cur_column() gives the name of the current column (in across() only).

See group_data() for equivalent functions that return values for all groups.

See pick() for a way to select a subset of columns using tidyselect syntax while inside summarise()
or mutate().

Usage

n()

cur_group()

cur_group_id()

cur_group_rows()

cur_column()

data.table

If you’re familiar with data.table:

• cur_group_id() <-> .GRP

• cur_group() <-> .BY

• cur_group_rows() <-> .I

See pick() for an equivalent to .SD.

Examples

df <- tibble(
g = sample(rep(letters[1:3], 1:3)),
x = runif(6),
y = runif(6)

)
gf <- df |> group_by(g)

gf |> summarise(n = n())

gf |> mutate(id = cur_group_id())

copy_to 25

gf |> reframe(row = cur_group_rows())
gf |> summarise(data = list(cur_group()))

gf |> mutate(across(everything(), ~ paste(cur_column(), round(.x, 2))))

copy_to Copy a local data frame to a remote src

Description

This function uploads a local data frame into a remote data source, creating the table definition as
needed. Wherever possible, the new object will be temporary, limited to the current connection to
the source.

Usage

copy_to(dest, df, name = deparse(substitute(df)), overwrite = FALSE, ...)

Arguments

dest remote data source
df local data frame
name name for new remote table.
overwrite If TRUE, will overwrite an existing table with name name. If FALSE, will throw

an error if name already exists.
... other parameters passed to methods.

Value

a tbl object in the remote source

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

See Also

collect() for the opposite action; downloading remote data into a local dbl.

Examples

Not run:
iris2 <- dbplyr::src_memdb() |> copy_to(iris, overwrite = TRUE)
iris2

End(Not run)

26 count

count Count the observations in each group

Description

count() lets you quickly count the unique values of one or more variables: df |> count(a, b)
is roughly equivalent to df |> group_by(a, b) |> summarise(n = n()). count() is paired with
tally(), a lower-level helper that is equivalent to df |> summarise(n = n()). Supply wt to per-
form weighted counts, switching the summary from n = n() to n = sum(wt).

add_count() and add_tally() are equivalents to count() and tally() but use mutate() instead
of summarise() so that they add a new column with group-wise counts.

Usage

count(x, ..., wt = NULL, sort = FALSE, name = NULL)

S3 method for class 'data.frame'
count(
x,
...,
wt = NULL,
sort = FALSE,
name = NULL,
.drop = group_by_drop_default(x)

)

tally(x, wt = NULL, sort = FALSE, name = NULL)

add_count(x, ..., wt = NULL, sort = FALSE, name = NULL, .drop = deprecated())

add_tally(x, wt = NULL, sort = FALSE, name = NULL)

Arguments

x A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr).

... <data-masking> Variables to group by.

wt <data-masking> Frequency weights. Can be NULL or a variable:

• If NULL (the default), counts the number of rows in each group.
• If a variable, computes sum(wt) for each group.

sort If TRUE, will show the largest groups at the top.

name The name of the new column in the output.
If omitted, it will default to n. If there’s already a column called n, it will use
nn. If there’s a column called n and nn, it’ll use nnn, and so on, adding ns until
it gets a new name.

count 27

.drop Handling of factor levels that don’t appear in the data, passed on to group_by().
For count(): if FALSE will include counts for empty groups (i.e. for levels of
factors that don’t exist in the data).
[Defunct] For add_count(): defunct since it can’t actually affect the output.

Value

An object of the same type as .data. count() and add_count() group transiently, so the output
has the same groups as the input.

Examples

count() is a convenient way to get a sense of the distribution of
values in a dataset
starwars |> count(species)
starwars |> count(species, sort = TRUE)
starwars |> count(sex, gender, sort = TRUE)
starwars |> count(birth_decade = round(birth_year, -1))

use the `wt` argument to perform a weighted count. This is useful
when the data has already been aggregated once
df <- tribble(

~name, ~gender, ~runs,
"Max", "male", 10,
"Sandra", "female", 1,
"Susan", "female", 4

)
counts rows:
df |> count(gender)
counts runs:
df |> count(gender, wt = runs)

When factors are involved, `.drop = FALSE` can be used to retain factor
levels that don't appear in the data
df2 <- tibble(

id = 1:5,
type = factor(c("a", "c", "a", NA, "a"), levels = c("a", "b", "c"))

)
df2 |> count(type)
df2 |> count(type, .drop = FALSE)

Or, using `group_by()`:
df2 |> group_by(type, .drop = FALSE) |> count()

tally() is a lower-level function that assumes you've done the grouping
starwars |> tally()
starwars |> group_by(species) |> tally()

both count() and tally() have add_ variants that work like
mutate() instead of summarise
df |> add_count(gender, wt = runs)
df |> add_tally(wt = runs)

28 cross_join

cross_join Cross join

Description

Cross joins match each row in x to every row in y, resulting in a data frame with nrow(x) * nrow(y)
rows.

Since cross joins result in all possible matches between x and y, they technically serve as the basis
for all mutating joins, which can generally be thought of as cross joins followed by a filter. In
practice, a more specialized procedure is used for better performance.

Usage

cross_join(x, y, ..., copy = FALSE, suffix = c(".x", ".y"))

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

... Other parameters passed onto methods.

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

Value

An object of the same type as x (including the same groups). The output has the following proper-
ties:

• There are nrow(x) * nrow(y) rows returned.

• Output columns include all columns from both x and y. Column name collisions are resolved
using suffix.

• The order of the rows and columns of x is preserved as much as possible.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

See Also

Other joins: filter-joins, mutate-joins, nest_join()

cumall 29

Examples

Cross joins match each row in `x` to every row in `y`.
Data within the columns is not used in the matching process.
cross_join(band_instruments, band_members)

Control the suffix added to variables duplicated in
`x` and `y` with `suffix`.
cross_join(band_instruments, band_members, suffix = c("", "_y"))

cumall Cumulative versions of any, all, and mean

Description

dplyr provides cumall(), cumany(), and cummean() to complete R’s set of cumulative functions.

Usage

cumall(x)

cumany(x)

cummean(x)

Arguments

x For cumall() and cumany(), a logical vector; for cummean() an integer or nu-
meric vector.

Value

A vector the same length as x.

Cumulative logical functions

These are particularly useful in conjunction with filter():

• cumall(x): all cases until the first FALSE.

• cumall(!x): all cases until the first TRUE.

• cumany(x): all cases after the first TRUE.

• cumany(!x): all cases after the first FALSE.

30 c_across

Examples

`cummean()` returns a numeric/integer vector of the same length
as the input vector.
x <- c(1, 3, 5, 2, 2)
cummean(x)
cumsum(x) / seq_along(x)

`cumall()` and `cumany()` return logicals
cumall(x < 5)
cumany(x == 3)

`cumall()` vs. `cumany()`
df <- data.frame(

date = as.Date("2020-01-01") + 0:6,
balance = c(100, 50, 25, -25, -50, 30, 120)

)
all rows after first overdraft
df |> filter(cumany(balance < 0))
all rows until first overdraft
df |> filter(cumall(!(balance < 0)))

c_across Combine values from multiple columns

Description

c_across() is designed to work with rowwise() to make it easy to perform row-wise aggregations.
It has two differences from c():

• It uses tidy select semantics so you can easily select multiple variables. See vignette("rowwise")
for more details.

• It uses vctrs::vec_c() in order to give safer outputs.

Usage

c_across(cols)

Arguments

cols <tidy-select> Columns to transform. You can’t select grouping columns be-
cause they are already automatically handled by the verb (i.e. summarise() or
mutate()).

See Also

across() for a function that returns a tibble.

desc 31

Examples

df <- tibble(id = 1:4, w = runif(4), x = runif(4), y = runif(4), z = runif(4))
df |>

rowwise() |>
mutate(
sum = sum(c_across(w:z)),
sd = sd(c_across(w:z))

)

desc Descending order

Description

Transform a vector into a format that will be sorted in descending order. This is useful within
arrange().

Usage

desc(x)

Arguments

x vector to transform

Examples

desc(1:10)
desc(factor(letters))

first_day <- seq(as.Date("1910/1/1"), as.Date("1920/1/1"), "years")
desc(first_day)

starwars |> arrange(desc(mass))

distinct Keep distinct/unique rows

Description

Keep only unique/distinct rows from a data frame. This is similar to unique.data.frame() but
considerably faster.

Usage

distinct(.data, ..., .keep_all = FALSE)

32 distinct

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Optional variables to use when determining uniqueness. If
there are multiple rows for a given combination of inputs, only the first row will
be preserved. If omitted, will use all variables in the data frame.

.keep_all If TRUE, keep all variables in .data. If a combination of ... is not distinct, this
keeps the first row of values.

Value

An object of the same type as .data. The output has the following properties:

• Rows are a subset of the input but appear in the same order.

• Columns are not modified if ... is empty or .keep_all is TRUE. Otherwise, distinct() first
calls mutate() to create new columns.

• Groups are not modified.

• Data frame attributes are preserved.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

Examples

df <- tibble(
x = sample(10, 100, rep = TRUE),
y = sample(10, 100, rep = TRUE)

)
nrow(df)
nrow(distinct(df))
nrow(distinct(df, x, y))

distinct(df, x)
distinct(df, y)

You can choose to keep all other variables as well
distinct(df, x, .keep_all = TRUE)
distinct(df, y, .keep_all = TRUE)

You can also use distinct on computed variables
distinct(df, diff = abs(x - y))

Use `pick()` to select columns with tidy-select
distinct(starwars, pick(contains("color")))

dplyr_by 33

Grouping ---

df <- tibble(
g = c(1, 1, 2, 2, 2),
x = c(1, 1, 2, 1, 2),
y = c(3, 2, 1, 3, 1)

)
df <- df |> group_by(g)

With grouped data frames, distinctness is computed within each group
df |> distinct(x)

When `...` are omitted, `distinct()` still computes distinctness using
all variables in the data frame
df |> distinct()

dplyr_by Per-operation grouping with .by/by

Description

There are two ways to group in dplyr:

• Persistent grouping with group_by()

• Per-operation grouping with .by/by

This help page is dedicated to explaining where and why you might want to use the latter.

Depending on the dplyr verb, the per-operation grouping argument may be named .by or by. The
Supported verbs section below outlines this on a case-by-case basis. The remainder of this page
will refer to .by for simplicity.

Grouping radically affects the computation of the dplyr verb you use it with, and one of the goals
of .by is to allow you to place that grouping specification alongside the code that actually uses it.
As an added benefit, with .by you no longer need to remember to ungroup() after summarise(),
and summarise() won’t ever message you about how it’s handling the groups!

This idea comes from data.table, which allows you to specify by alongside modifications in j, like:
dt[, .(x = mean(x)), by = g].

Supported verbs:
• mutate(.by =)

• summarise(.by =)

• reframe(.by =)

• filter(.by =)

• filter_out(.by =)

• slice(.by =)

• slice_head(by =) and slice_tail(by =)

• slice_min(by =) and slice_max(by =)

https://CRAN.R-project.org/package=data.table

34 dplyr_by

• slice_sample(by =)

Note that some dplyr verbs use by while others use .by. This is a purely technical difference.

Differences between .by and group_by():

.by group_by()
Grouping only affects a single verb Grouping is persistent across multiple verbs
Selects variables with tidy-select Computes expressions with data-masking
Summaries use existing order of group keys Summaries sort group keys in ascending order

Using .by:
Let’s take a look at the two grouping approaches using this expenses data set, which tracks costs
accumulated across various ids and regions:

expenses <- tibble(
id = c(1, 2, 1, 3, 1, 2, 3),
region = c("A", "A", "A", "B", "B", "A", "A"),
cost = c(25, 20, 19, 12, 9, 6, 6)

)
expenses
#> # A tibble: 7 x 3
#> id region cost
#> <dbl> <chr> <dbl>
#> 1 1 A 25
#> 2 2 A 20
#> 3 1 A 19
#> 4 3 B 12
#> 5 1 B 9
#> 6 2 A 6
#> 7 3 A 6

Imagine that you wanted to compute the average cost per region. You’d probably write something
like this:

expenses |>
group_by(region) |>
summarise(cost = mean(cost))

#> # A tibble: 2 x 2
#> region cost
#> <chr> <dbl>
#> 1 A 15.2
#> 2 B 10.5

Instead, you can now specify the grouping inline within the verb:

expenses |>
summarise(cost = mean(cost), .by = region)

#> # A tibble: 2 x 2
#> region cost

dplyr_by 35

#> <chr> <dbl>
#> 1 A 15.2
#> 2 B 10.5

.by applies to a single operation, meaning that since expenses was an ungrouped data frame, the
result after applying .by will also always be an ungrouped data frame, regardless of the number
of grouping columns.

expenses |>
summarise(cost = mean(cost), .by = c(id, region))

#> # A tibble: 5 x 3
#> id region cost
#> <dbl> <chr> <dbl>
#> 1 1 A 22
#> 2 2 A 13
#> 3 3 B 12
#> 4 1 B 9
#> 5 3 A 6

Compare that with group_by() |> summarise(), where summarise() generally peels off 1 layer
of grouping by default, typically with a message that it is doing so:

expenses |>
group_by(id, region) |>
summarise(cost = mean(cost))

#> `summarise()` has regrouped the output.
#> i Summaries were computed grouped by id and region.
#> i Output is grouped by id.
#> i Use `summarise(.groups = "drop_last")` to silence this message.
#> i Use `summarise(.by = c(id, region))` for per-operation grouping
#> (`?dplyr::dplyr_by`) instead.
#> # A tibble: 5 x 3
#> # Groups: id [3]
#> id region cost
#> <dbl> <chr> <dbl>
#> 1 1 A 22
#> 2 1 B 9
#> 3 2 A 13
#> 4 3 A 6
#> 5 3 B 12

Because .by grouping applies to a single operation, you don’t need to worry about ungrouping,
and it never needs to emit a message to remind you what it is doing with the groups.
Note that with .by we specified multiple columns to group by using the tidy-select syntax c(id,
region). If you have a character vector of column names you’d like to group by, you can do so
with .by = all_of(my_cols). It will group by the columns in the order they were provided.
To prevent surprising results, you can’t use .by on an existing grouped data frame:

expenses |>
group_by(id) |>

36 dplyr_by

summarise(cost = mean(cost), .by = c(id, region))
#> Error in `summarise()`:
#> ! Can't supply `.by` when `.data` is a grouped data frame.

So far we’ve focused on the usage of .by with summarise(), but .by works with a number of
other dplyr verbs. For example, you could append the mean cost per region onto the original data
frame as a new column rather than computing a summary:

expenses |>
mutate(cost_by_region = mean(cost), .by = region)

#> # A tibble: 7 x 4
#> id region cost cost_by_region
#> <dbl> <chr> <dbl> <dbl>
#> 1 1 A 25 15.2
#> 2 2 A 20 15.2
#> 3 1 A 19 15.2
#> 4 3 B 12 10.5
#> 5 1 B 9 10.5
#> 6 2 A 6 15.2
#> 7 3 A 6 15.2

Or you could slice out the maximum cost per combination of id and region:

Note that the argument is named `by` in `slice_max()`
expenses |>
slice_max(cost, n = 1, by = c(id, region))

#> # A tibble: 5 x 3
#> id region cost
#> <dbl> <chr> <dbl>
#> 1 1 A 25
#> 2 2 A 20
#> 3 3 B 12
#> 4 1 B 9
#> 5 3 A 6

Result ordering:
When used with .by, summarise(), reframe(), and slice() all maintain the ordering of the
existing data. This is different from group_by(), which has always sorted the group keys in
ascending order.

df <- tibble(
month = c("jan", "jan", "feb", "feb", "mar"),
temp = c(20, 25, 18, 20, 40)

)

Uses ordering by "first appearance" in the original data
df |>
summarise(average_temp = mean(temp), .by = month)

#> # A tibble: 3 x 2
#> month average_temp

explain 37

#> <chr> <dbl>
#> 1 jan 22.5
#> 2 feb 19
#> 3 mar 40

Sorts in ascending order
df |>
group_by(month) |>
summarise(average_temp = mean(temp))

#> # A tibble: 3 x 2
#> month average_temp
#> <chr> <dbl>
#> 1 feb 19
#> 2 jan 22.5
#> 3 mar 40

If you need sorted group keys, we recommend that you explicitly use arrange() either before or
after the call to summarise(), reframe(), or slice(). This also gives you full access to all of
arrange()’s features, such as desc() and the .locale argument.

Verbs without .by support:
If a dplyr verb doesn’t support .by, then that typically means that the verb isn’t inherently affected
by grouping. For example, pull() and rename() don’t support .by, because specifying columns
to group by would not affect their implementations.
That said, there are a few exceptions to this where sometimes a dplyr verb doesn’t support .by,
but does have special support for grouped data frames created by group_by(). This is typically
because the verbs are required to retain the grouping columns, for example:

• select() always retains grouping columns, with a message if any aren’t specified in the
select() call.

• distinct() and count() place unspecified grouping columns at the front of the data frame
before computing their results.

• arrange() has a .by_group argument to optionally order by grouping columns first.
If group_by() didn’t exist, then these verbs would not have special support for grouped data
frames.

explain Explain details of a tbl

Description

This is a generic function which gives more details about an object than print(), and is more
focused on human readable output than str().

Usage

explain(x, ...)

show_query(x, ...)

38 filter

Arguments

x An object to explain

... Other parameters possibly used by generic

Value

The first argument, invisibly.

Databases

Explaining a tbl_sql will run the SQL EXPLAIN command which will describe the query plan. This
requires a little bit of knowledge about how EXPLAIN works for your database, but is very useful for
diagnosing performance problems.

Examples

lahman_s <- dbplyr::lahman_sqlite()
batting <- tbl(lahman_s, "Batting")
batting |> show_query()
batting |> explain()

The batting database has indices on all ID variables:
SQLite automatically picks the most restrictive index
batting |> filter(lgID == "NL" & yearID == 2000L) |> explain()

OR's will use multiple indexes
batting |> filter(lgID == "NL" | yearID == 2000) |> explain()

Joins will use indexes in both tables
teams <- tbl(lahman_s, "Teams")
batting |> left_join(teams, c("yearID", "teamID")) |> explain()

filter Keep or drop rows that match a condition

Description

These functions are used to subset a data frame, applying the expressions in ... to determine which
rows should be kept (for filter()) or dropped (for filter_out()).

Multiple conditions can be supplied separated by a comma. These will be combined with the &
operator. To combine comma separated conditions using | instead, wrap them in when_any().

Both filter() and filter_out() treat NA like FALSE. This subtle behavior can impact how you
write your conditions when missing values are involved. See the section on Missing values for
important details and examples.

filter 39

Usage

filter(.data, ..., .by = NULL, .preserve = FALSE)

filter_out(.data, ..., .by = NULL, .preserve = FALSE)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Expressions that return a logical vector, defined in terms of
the variables in .data. If multiple expressions are included, they are combined
with the & operator. To combine expressions using | instead, wrap them in
when_any(). Only rows for which all expressions evaluate to TRUE are kept (for
filter()) or dropped (for filter_out()).

.by <tidy-select> Optionally, a selection of columns to group by for just this op-
eration, functioning as an alternative to group_by(). For details and examples,
see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE (the default),
the grouping structure is recalculated based on the resulting data, otherwise the
grouping is kept as is.

Value

An object of the same type as .data. The output has the following properties:

• Rows are a subset of the input, but appear in the same order.

• Columns are not modified.

• The number of groups may be reduced (if .preserve is not TRUE).

• Data frame attributes are preserved.

Missing values

Both filter() and filter_out() treat NA like FALSE. This results in the following behavior:

• filter() drops both NA and FALSE.

• filter_out() keeps both NA and FALSE.

This means that filter(data, <conditions>) + filter_out(data, <conditions>) captures
every row within data exactly once.

The NA handling of these functions has been designed to match your intent. When your intent is to
keep rows, use filter(). When your intent is to drop rows, use filter_out().

For example, if your goal with this cars data is to "drop rows where the class is suv", then you
might write this in one of two ways:

cars <- tibble(class = c("suv", NA, "coupe"))
cars
#> # A tibble: 3 x 1

40 filter

#> class
#> <chr>
#> 1 suv
#> 2 <NA>
#> 3 coupe

cars |> filter(class != "suv")
#> # A tibble: 1 x 1
#> class
#> <chr>
#> 1 coupe

cars |> filter_out(class == "suv")
#> # A tibble: 2 x 1
#> class
#> <chr>
#> 1 <NA>
#> 2 coupe

Note how filter() drops the NA rows even though our goal was only to drop "suv" rows, but
filter_out() matches our intuition.

To generate the correct result with filter(), you’d need to use:

cars |> filter(class != "suv" | is.na(class))
#> # A tibble: 2 x 1
#> class
#> <chr>
#> 1 <NA>
#> 2 coupe

This quickly gets unwieldy when multiple conditions are involved.

In general, if you find yourself:

• Using "negative" operators like != or !
• Adding in NA handling like | is.na(col) or & !is.na(col)

then you should consider if swapping to the other filtering variant would make your conditions
simpler.

Comparison to base subsetting:
Base subsetting with [doesn’t treat NA like TRUE or FALSE. Instead, it generates a fully missing
row, which is different from how both filter() and filter_out() work.

cars <- tibble(class = c("suv", NA, "coupe"), mpg = c(10, 12, 14))
cars
#> # A tibble: 3 x 2
#> class mpg
#> <chr> <dbl>
#> 1 suv 10
#> 2 <NA> 12
#> 3 coupe 14

filter 41

cars[cars$class == "suv",]
#> # A tibble: 2 x 2
#> class mpg
#> <chr> <dbl>
#> 1 suv 10
#> 2 <NA> NA

cars |> filter(class == "suv")
#> # A tibble: 1 x 2
#> class mpg
#> <chr> <dbl>
#> 1 suv 10

Useful filter functions

There are many functions and operators that are useful when constructing the expressions used to
filter the data:

• ==, >, >= etc

• &, |, !, xor()

• is.na()

• between(), near()

• when_any(), when_all()

Grouped tibbles

Because filtering expressions are computed within groups, they may yield different results on
grouped tibbles. This will be the case as soon as an aggregating, lagging, or ranking function is
involved. Compare this ungrouped filtering:

starwars |> filter(mass > mean(mass, na.rm = TRUE))

With the grouped equivalent:

starwars |> filter(mass > mean(mass, na.rm = TRUE), .by = gender)

In the ungrouped version, filter() compares the value of mass in each row to the global average
(taken over the whole data set), keeping only the rows with mass greater than this global average.
In contrast, the grouped version calculates the average mass separately for each gender group, and
keeps rows with mass greater than the relevant within-gender average.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

42 filter

See Also

Other single table verbs: arrange(), mutate(), reframe(), rename(), select(), slice(), summarise()

Examples

Filtering for one criterion
filter(starwars, species == "Human")

Filtering for multiple criteria within a single logical expression
filter(starwars, hair_color == "none" & eye_color == "black")
filter(starwars, hair_color == "none" | eye_color == "black")

Multiple comma separated expressions are combined using `&`
starwars |> filter(hair_color == "none", eye_color == "black")

To combine comma separated expressions using `|` instead, use `when_any()`
starwars |> filter(when_any(hair_color == "none", eye_color == "black"))

Filtering out to drop rows
filter_out(starwars, hair_color == "none")

When filtering out, it can be useful to first interactively filter for the
rows you want to drop, just to double check that you've written the
conditions correctly. Then, just change `filter()` to `filter_out()`.
filter(starwars, mass > 1000, eye_color == "orange")
filter_out(starwars, mass > 1000, eye_color == "orange")

The filtering operation may yield different results on grouped
tibbles because the expressions are computed within groups.
#
The following keeps rows where `mass` is greater than the
global average:
starwars |> filter(mass > mean(mass, na.rm = TRUE))

Whereas this keeps rows with `mass` greater than the per `gender`
average:
starwars |> filter(mass > mean(mass, na.rm = TRUE), .by = gender)

If you find yourself trying to use a `filter()` to drop rows, then
you should consider if switching to `filter_out()` can simplify your
conditions. For example, to drop blond individuals, you might try:
starwars |> filter(hair_color != "blond")

But this also drops rows with an `NA` hair color! To retain those:
starwars |> filter(hair_color != "blond" | is.na(hair_color))

But explicit `NA` handling like this can quickly get unwieldy, especially
with multiple conditions. Since your intent was to specify rows to drop
rather than rows to keep, use `filter_out()`. This also removes the need
for any explicit `NA` handling.
starwars |> filter_out(hair_color == "blond")

filter-joins 43

To refer to column names that are stored as strings, use the `.data`
pronoun:
vars <- c("mass", "height")
cond <- c(80, 150)
starwars |>

filter(
.data[[vars[[1]]]] > cond[[1]],
.data[[vars[[2]]]] > cond[[2]]

)
Learn more in ?rlang::args_data_masking

filter-joins Filtering joins

Description

Filtering joins filter rows from x based on the presence or absence of matches in y:

• semi_join() returns all rows from x with a match in y.

• anti_join() returns all rows from x without a match in y.

Usage

semi_join(x, y, by = NULL, copy = FALSE, ...)

S3 method for class 'data.frame'
semi_join(x, y, by = NULL, copy = FALSE, ..., na_matches = c("na", "never"))

anti_join(x, y, by = NULL, copy = FALSE, ...)

S3 method for class 'data.frame'
anti_join(x, y, by = NULL, copy = FALSE, ..., na_matches = c("na", "never"))

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

by A join specification created with join_by(), or a character vector of variables
to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specification.
For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple ex-
pressions. For example, join_by(a == b, c == d) will match x$a to y$b and

44 filter-joins

x$c to y$d. If the column names are the same between x and y, you can shorten
this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap joins.
See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector of
variable names to join by. For example, by = c("a", "b") joins x$a to y$a and
x$b to y$b. If variable names differ between x and y, use a named character
vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

... Other parameters passed onto methods.

na_matches Should two NA or two NaN values match?

• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never match
them together or to any other values. This is similar to joins for database
sources and to base::merge(incomparables = NA).

Value

An object of the same type as x. The output has the following properties:

• Rows are a subset of the input, but appear in the same order.

• Columns are not modified.

• Data frame attributes are preserved.

• Groups are taken from x. The number of groups may be reduced.

Methods

These function are generics, which means that packages can provide implementations (methods)
for other classes. See the documentation of individual methods for extra arguments and differences
in behaviour.

Methods available in currently loaded packages:

• semi_join(): no methods found.

• anti_join(): no methods found.

See Also

Other joins: cross_join(), mutate-joins, nest_join()

glimpse 45

Examples

"Filtering" joins keep cases from the LHS
band_members |> semi_join(band_instruments)
band_members |> anti_join(band_instruments)

To suppress the message about joining variables, supply `by`
band_members |> semi_join(band_instruments, by = join_by(name))
This is good practice in production code

glimpse Get a glimpse of your data

Description

glimpse() is like a transposed version of print(): columns run down the page, and data runs
across. This makes it possible to see every column in a data frame. It’s a little like str() applied to
a data frame but it tries to show you as much data as possible. (And it always shows the underlying
data, even when applied to a remote data source.)

glimpse() is provided by the pillar package, and re-exported by dplyr. See pillar::glimpse()
for more details.

Value

x original x is (invisibly) returned, allowing glimpse() to be used within a data pipeline.

Examples

glimpse(mtcars)

Note that original x is (invisibly) returned, allowing `glimpse()` to be
used within a pipeline.
mtcars |>

glimpse() |>
select(1:3)

glimpse(starwars)

group_by Group by one or more variables

Description

Most data operations are done on groups defined by variables. group_by() takes an existing tbl
and converts it into a grouped tbl where operations are performed "by group". ungroup() removes
grouping.

46 group_by

Usage

group_by(.data, ..., .add = FALSE, .drop = group_by_drop_default(.data))

ungroup(x, ...)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> In group_by(), variables or computations to group by. Com-
putations are always done on the ungrouped data frame. To perform compu-
tations on the grouped data, you need to use a separate mutate() step before
the group_by(). Computations are not allowed in nest_by(). In ungroup(),
variables to remove from the grouping.

.add When FALSE, the default, group_by() will override existing groups. To add to
the existing groups, use .add = TRUE.

.drop Drop groups formed by factor levels that don’t appear in the data? The default
is TRUE except when .data has been previously grouped with .drop = FALSE.
See group_by_drop_default() for details.

x A tbl()

Value

A grouped data frame with class grouped_df, unless the combination of ... and add yields a empty
set of grouping columns, in which case a tibble will be returned.

Methods

These function are generics, which means that packages can provide implementations (methods)
for other classes. See the documentation of individual methods for extra arguments and differences
in behaviour.

Methods available in currently loaded packages:

• group_by(): no methods found.

• ungroup(): no methods found.

Ordering

Currently, group_by() internally orders the groups in ascending order. This results in ordered
output from functions that aggregate groups, such as summarise().

When used as grouping columns, character vectors are ordered in the C locale for performance
and reproducibility across R sessions. If the resulting ordering of your grouped operation matters
and is dependent on the locale, you should follow up the grouped operation with an explicit call to
arrange() and set the .locale argument. For example:

group_by 47

data |>
group_by(chr) |>
summarise(avg = mean(x)) |>
arrange(chr, .locale = "en")

This is often useful as a preliminary step before generating content intended for humans, such as an
HTML table.

Legacy behavior:
[Deprecated]
Prior to dplyr 1.1.0, character vector grouping columns were ordered in the system locale. Set-
ting the global option dplyr.legacy_locale to TRUE retains this legacy behavior, but this has
been deprecated. Update existing code to explicitly call arrange(.locale =) instead. Run
Sys.getlocale("LC_COLLATE") to determine your system locale, and compare that against the
list in stringi::stri_locale_list() to find an appropriate value for .locale, i.e. for Ameri-
can English, "en_US".

See Also

Other grouping functions: group_map(), group_nest(), group_split(), group_trim()

Examples

by_cyl <- mtcars |> group_by(cyl)

grouping doesn't change how the data looks (apart from listing
how it's grouped):
by_cyl

It changes how it acts with the other dplyr verbs:
by_cyl |> summarise(

disp = mean(disp),
hp = mean(hp)

)
by_cyl |> filter(disp == max(disp))

Each call to summarise() removes a layer of grouping
by_vs_am <- mtcars |> group_by(vs, am)
by_vs <- by_vs_am |> summarise(n = n())
by_vs
by_vs |> summarise(n = sum(n))

To removing grouping, use ungroup
by_vs |>

ungroup() |>
summarise(n = sum(n))

By default, group_by() overrides existing grouping
by_cyl |>

group_by(vs, am) |>
group_vars()

48 group_cols

Use add = TRUE to instead append
by_cyl |>

group_by(vs, am, .add = TRUE) |>
group_vars()

You can group by expressions: this is a short-hand
for a mutate() followed by a group_by()
mtcars |>

group_by(vsam = vs + am)

The implicit mutate() step is always performed on the
ungrouped data. Here we get 3 groups:
mtcars |>

group_by(vs) |>
group_by(hp_cut = cut(hp, 3))

If you want it to be performed by groups,
you have to use an explicit mutate() call.
Here we get 3 groups per value of vs
mtcars |>

group_by(vs) |>
mutate(hp_cut = cut(hp, 3)) |>
group_by(hp_cut)

when factors are involved and .drop = FALSE, groups can be empty
tbl <- tibble(

x = 1:10,
y = factor(rep(c("a", "c"), each = 5), levels = c("a", "b", "c"))

)
tbl |>

group_by(y, .drop = FALSE) |>
group_rows()

group_cols Select grouping variables

Description

This selection helpers matches grouping variables. It can be used in select() or vars() selections.

Usage

group_cols(vars = NULL, data = NULL)

Arguments

vars [Defunct]
data For advanced use only. The default NULL automatically finds the "current" data

frames.

group_map 49

See Also

groups() and group_vars() for retrieving the grouping variables outside selection contexts.

Examples

gdf <- iris |> group_by(Species)
gdf |> select(group_cols())

Remove the grouping variables from mutate selections:
gdf |> mutate_at(vars(-group_cols()), `/`, 100)
-> No longer necessary with across()
gdf |> mutate(across(everything(), ~ . / 100))

group_map Apply a function to each group

Description

[Experimental]

group_map(), group_modify() and group_walk() are purrr-style functions that can be used to
iterate on grouped tibbles.

Usage

group_map(.data, .f, ..., .keep = FALSE)

group_modify(.data, .f, ..., .keep = FALSE)

group_walk(.data, .f, ..., .keep = FALSE)

Arguments

.data A grouped tibble

.f A function or formula to apply to each group.
If a function, it is used as is. It should have at least 2 formal arguments.
If a formula, e.g. ~ head(.x), it is converted to a function.
In the formula, you can use

• . or .x to refer to the subset of rows of .tbl for the given group
• .y to refer to the key, a one row tibble with one column per grouping vari-

able that identifies the group

... Additional arguments passed on to .f

.keep are the grouping variables kept in .x

50 group_map

Details

Use group_modify() when summarize() is too limited, in terms of what you need to do and return
for each group. group_modify() is good for "data frame in, data frame out". If that is too limited,
you need to use a nested or split workflow. group_modify() is an evolution of do(), if you have
used that before.

Each conceptual group of the data frame is exposed to the function .f with two pieces of informa-
tion:

• The subset of the data for the group, exposed as .x.

• The key, a tibble with exactly one row and columns for each grouping variable, exposed as .y.

For completeness, group_modify(), group_map and group_walk() also work on ungrouped data
frames, in that case the function is applied to the entire data frame (exposed as .x), and .y is a one
row tibble with no column, consistently with group_keys().

Value

• group_modify() returns a grouped tibble. In that case .f must return a data frame.

• group_map() returns a list of results from calling .f on each group.

• group_walk() calls .f for side effects and returns the input .tbl, invisibly.

See Also

Other grouping functions: group_by(), group_nest(), group_split(), group_trim()

Examples

return a list
mtcars |>

group_by(cyl) |>
group_map(~ head(.x, 2L))

return a tibble grouped by `cyl` with 2 rows per group
the grouping data is recalculated
mtcars |>

group_by(cyl) |>
group_modify(~ head(.x, 2L))

a list of tibbles
iris |>

group_by(Species) |>
group_map(~ broom::tidy(lm(Petal.Length ~ Sepal.Length, data = .x)))

a restructured grouped tibble
iris |>

group_by(Species) |>
group_modify(~ broom::tidy(lm(Petal.Length ~ Sepal.Length, data = .x)))

group_trim 51

a list of vectors
iris |>

group_by(Species) |>
group_map(~ quantile(.x$Petal.Length, probs = c(0.25, 0.5, 0.75)))

to use group_modify() the lambda must return a data frame
iris |>

group_by(Species) |>
group_modify(~ {

quantile(.x$Petal.Length, probs = c(0.25, 0.5, 0.75)) |>
tibble::enframe(name = "prob", value = "quantile")

})

iris |>
group_by(Species) |>
group_modify(~ {
.x |>

purrr::map_dfc(fivenum) |>
mutate(nms = c("min", "Q1", "median", "Q3", "max"))

})

group_walk() is for side effects
dir.create(temp <- tempfile())
iris |>

group_by(Species) |>
group_walk(~ write.csv(.x, file = file.path(temp, paste0(.y$Species, ".csv"))))

list.files(temp, pattern = "csv$")
unlink(temp, recursive = TRUE)

group_modify() and ungrouped data frames
mtcars |>

group_modify(~ head(.x, 2L))

group_trim Trim grouping structure

Description

[Experimental] Drop unused levels of all factors that are used as grouping variables, then recalcu-
lates the grouping structure.

group_trim() is particularly useful after a filter() that is intended to select a subset of groups.

Usage

group_trim(.tbl, .drop = group_by_drop_default(.tbl))

Arguments

.tbl A grouped data frame

.drop See group_by()

52 ident

Value

A grouped data frame

See Also

Other grouping functions: group_by(), group_map(), group_nest(), group_split()

Examples

iris |>
group_by(Species) |>
filter(Species == "setosa", .preserve = TRUE) |>
group_trim()

ident Flag a character vector as SQL identifiers

Description

ident() takes strings and turns them as database identifiers (e.g. table or column names) quoting
them using the identifer rules for your database. ident_q() does the same, but assumes the names
have already been quoted, preventing them from being quoted again.

These are generally for internal use only; if you need to supply an table name that is qualified with
schema or catalog, or has already been quoted for some other reason, use I().

Usage

ident(...)

Arguments

... A character vector, or name-value pairs.

Examples

Identifiers are escaped with "

ident("x")

if_else 53

if_else Vectorised if-else

Description

if_else() is a vectorized if-else. Compared to the base R equivalent, ifelse(), this function
allows you to handle missing values in the condition with missing and always takes true, false,
and missing into account when determining what the output type should be.

Usage

if_else(
condition,
true,
false,
missing = NULL,
...,
ptype = NULL,
size = deprecated()

)

Arguments

condition A logical vector

true, false Vectors to use for TRUE and FALSE values of condition.
Both true and false will be recycled to the size of condition.
true, false, and missing (if used) will be cast to their common type.

missing If not NULL, will be used as the value for NA values of condition. Follows the
same size and type rules as true and false.

... These dots are for future extensions and must be empty.

ptype An optional prototype declaring the desired output type. If supplied, this over-
rides the common type of true, false, and missing.

size [Deprecated]
Output size is always taken from condition.

Value

A vector with the same size as condition and the same type as the common type of true, false,
and missing.

Where condition is TRUE, the matching values from true, where it is FALSE, the matching values
from false, and where it is NA, the matching values from missing, if provided, otherwise a missing
value will be used.

See Also

vctrs::vec_if_else()

54 join_by

Examples

x <- c(-5:5, NA)
if_else(x < 0, NA, x)

Explicitly handle `NA` values in the `condition` with `missing`
if_else(x < 0, "negative", "positive", missing = "missing")

Unlike `ifelse()`, `if_else()` preserves types
x <- factor(sample(letters[1:5], 10, replace = TRUE))
ifelse(x %in% c("a", "b", "c"), x, NA)
if_else(x %in% c("a", "b", "c"), x, NA)

`if_else()` is often useful for creating new columns inside of `mutate()`
starwars |>

mutate(category = if_else(height < 100, "short", "tall"), .keep = "used")

join_by Join specifications

Description

join_by() constructs a specification that describes how to join two tables using a small domain
specific language. The result can be supplied as the by argument to any of the join functions (such
as left_join()).

Usage

join_by(...)

Arguments

... Expressions specifying the join.
Each expression should consist of one of the following:

• Equality condition: ==
• Inequality conditions: >=, >, <=, or <
• Rolling helper: closest()
• Overlap helpers: between(), within(), or overlaps()

Other expressions are not supported. If you need to perform a join on a com-
puted variable, e.g. join_by(sales_date - 40 >= promo_date), you’ll need to
precompute and store it in a separate column.
Column names should be specified as quoted or unquoted names. By default,
the name on the left-hand side of a join condition refers to the left-hand table,
unless overridden by explicitly prefixing the column name with either x$ or y$.
If a single column name is provided without any join conditions, it is interpreted
as if that column name was duplicated on each side of ==, i.e. x is interpreted as
x == x.

join_by 55

Join types

The following types of joins are supported by dplyr:

• Equality joins

• Inequality joins

• Rolling joins

• Overlap joins

• Cross joins

Equality, inequality, rolling, and overlap joins are discussed in more detail below. Cross joins are
implemented through cross_join().

Equality joins:
Equality joins require keys to be equal between one or more pairs of columns, and are the most
common type of join. To construct an equality join using join_by(), supply two column names
to join with separated by ==. Alternatively, supplying a single name will be interpreted as an
equality join between two columns of the same name. For example, join_by(x) is equivalent to
join_by(x == x).

Inequality joins:
Inequality joins match on an inequality, such as >, >=, <, or <=, and are common in time series
analysis and genomics. To construct an inequality join using join_by(), supply two column
names separated by one of the above mentioned inequalities.
Note that inequality joins will match a single row in x to a potentially large number of rows in y.
Be extra careful when constructing inequality join specifications!

Rolling joins:
Rolling joins are a variant of inequality joins that limit the results returned from an inequality join
condition. They are useful for "rolling" the closest match forward/backwards when there isn’t an
exact match. To construct a rolling join, wrap an inequality with closest().

• closest(expr)
expr must be an inequality involving one of: >, >=, <, or <=.
For example, closest(x >= y) is interpreted as: For each value in x, find the closest value
in y that is less than or equal to that x value.

closest() will always use the left-hand table (x) as the primary table, and the right-hand table (y)
as the one to find the closest match in, regardless of how the inequality is specified. For example,
closest(y$a >= x$b) will always be interpreted as closest(x$b <= y$a).

Overlap joins:
Overlap joins are a special case of inequality joins involving one or two columns from the left-
hand table overlapping a range defined by two columns from the right-hand table. There are three
helpers that join_by() recognizes to assist with constructing overlap joins, all of which can be
constructed from simpler inequalities.

• between(x, y_lower, y_upper, ..., bounds = "[]")
For each value in x, this finds everywhere that value falls between [y_lower, y_upper].
Equivalent to x >= y_lower, x <= y_upper by default.

56 join_by

bounds can be one of "[]", "[)", "(]", or "()" to alter the inclusiveness of the lower and
upper bounds. This changes whether >= or > and <= or < are used to build the inequalities
shown above.
Dots are for future extensions and must be empty.

• within(x_lower, x_upper, y_lower, y_upper)
For each range in [x_lower, x_upper], this finds everywhere that range falls completely
within [y_lower, y_upper]. Equivalent to x_lower >= y_lower, x_upper <= y_upper.
The inequalities used to build within() are the same regardless of the inclusiveness of the
supplied ranges.

• overlaps(x_lower, x_upper, y_lower, y_upper, ..., bounds = "[]")
For each range in [x_lower, x_upper], this finds everywhere that range overlaps [y_lower, y_upper]
in any capacity. Equivalent to x_lower <= y_upper, x_upper >= y_lower by default.
bounds can be one of "[]", "[)", "(]", or "()" to alter the inclusiveness of the lower and
upper bounds. "[]" uses <= and >=, but the 3 other options use < and > and generate the exact
same inequalities.
Dots are for future extensions and must be empty.

These conditions assume that the ranges are well-formed and non-empty, i.e. x_lower <= x_upper
when bounds are treated as "[]", and x_lower < x_upper otherwise.

Column referencing

When specifying join conditions, join_by() assumes that column names on the left-hand side of
the condition refer to the left-hand table (x), and names on the right-hand side of the condition refer
to the right-hand table (y). Occasionally, it is clearer to be able to specify a right-hand table name on
the left-hand side of the condition, and vice versa. To support this, column names can be prefixed
by x$ or y$ to explicitly specify which table they come from.

Examples

sales <- tibble(
id = c(1L, 1L, 1L, 2L, 2L),
sale_date = as.Date(c("2018-12-31", "2019-01-02", "2019-01-05", "2019-01-04", "2019-01-01"))

)
sales

promos <- tibble(
id = c(1L, 1L, 2L),
promo_date = as.Date(c("2019-01-01", "2019-01-05", "2019-01-02"))

)
promos

Match `id` to `id`, and `sale_date` to `promo_date`
by <- join_by(id, sale_date == promo_date)
left_join(sales, promos, by)

For each `sale_date` within a particular `id`,
find all `promo_date`s that occurred before that particular sale
by <- join_by(id, sale_date >= promo_date)
left_join(sales, promos, by)

join_by 57

For each `sale_date` within a particular `id`,
find only the closest `promo_date` that occurred before that sale
by <- join_by(id, closest(sale_date >= promo_date))
left_join(sales, promos, by)

If you want to disallow exact matching in rolling joins, use `>` rather
than `>=`. Note that the promo on `2019-01-05` is no longer considered the
closest match for the sale on the same date.
by <- join_by(id, closest(sale_date > promo_date))
left_join(sales, promos, by)

Same as before, but also require that the promo had to occur at most 1
day before the sale was made. We'll use a full join to see that id 2's
promo on `2019-01-02` is no longer matched to the sale on `2019-01-04`.
sales <- mutate(sales, sale_date_lower = sale_date - 1)
by <- join_by(id, closest(sale_date >= promo_date), sale_date_lower <= promo_date)
full_join(sales, promos, by)

segments <- tibble(
segment_id = 1:4,
chromosome = c("chr1", "chr2", "chr2", "chr1"),
start = c(140, 210, 380, 230),
end = c(150, 240, 415, 280)

)
segments

reference <- tibble(
reference_id = 1:4,
chromosome = c("chr1", "chr1", "chr2", "chr2"),
start = c(100, 200, 300, 415),
end = c(150, 250, 399, 450)

)
reference

Find every time a segment `start` falls between the reference
`[start, end]` range.
by <- join_by(chromosome, between(start, start, end))
full_join(segments, reference, by)

If you wanted the reference columns first, supply `reference` as `x`
and `segments` as `y`, then explicitly refer to their columns using `x$`
and `y$`.
by <- join_by(chromosome, between(y$start, x$start, x$end))
full_join(reference, segments, by)

Find every time a segment falls completely within a reference.
Sometimes using `x$` and `y$` makes your intentions clearer, even if they
match the default behavior.
by <- join_by(chromosome, within(x$start, x$end, y$start, y$end))
inner_join(segments, reference, by)

58 lead-lag

Find every time a segment overlaps a reference in any way.
by <- join_by(chromosome, overlaps(x$start, x$end, y$start, y$end))
full_join(segments, reference, by)

It is common to have right-open ranges with bounds like `[)`, which would
mean an end value of `415` would no longer overlap a start value of `415`.
Setting `bounds` allows you to compute overlaps with those kinds of ranges.
by <- join_by(chromosome, overlaps(x$start, x$end, y$start, y$end, bounds = "[)"))
full_join(segments, reference, by)

lead-lag Compute lagged or leading values

Description

Find the "previous" (lag()) or "next" (lead()) values in a vector. Useful for comparing values
behind of or ahead of the current values.

Usage

lag(x, n = 1L, default = NULL, order_by = NULL, ...)

lead(x, n = 1L, default = NULL, order_by = NULL, ...)

Arguments

x A vector

n Positive integer of length 1, giving the number of positions to lag or lead by

default The value used to pad x back to its original size after the lag or lead has been
applied. The default, NULL, pads with a missing value. If supplied, this must be
a vector with size 1, which will be cast to the type of x.

order_by An optional secondary vector that defines the ordering to use when applying the
lag or lead to x. If supplied, this must be the same size as x.

... Not used.

Value

A vector with the same type and size as x.

Examples

lag(1:5)
lead(1:5)

x <- 1:5
tibble(behind = lag(x), x, ahead = lead(x))

If you want to look more rows behind or ahead, use `n`

mutate 59

lag(1:5, n = 1)
lag(1:5, n = 2)

lead(1:5, n = 1)
lead(1:5, n = 2)

If you want to define a value to pad with, use `default`
lag(1:5)
lag(1:5, default = 0)

lead(1:5)
lead(1:5, default = 6)

If the data are not already ordered, use `order_by`
scrambled <- slice_sample(

tibble(year = 2000:2005, value = (0:5) ^ 2),
prop = 1

)

wrong <- mutate(scrambled, previous_year_value = lag(value))
arrange(wrong, year)

right <- mutate(scrambled, previous_year_value = lag(value, order_by = year))
arrange(right, year)

mutate Create, modify, and delete columns

Description

mutate() creates new columns that are functions of existing variables. It can also modify (if the
name is the same as an existing column) and delete columns (by setting their value to NULL).

Usage

mutate(.data, ...)

S3 method for class 'data.frame'
mutate(
.data,
...,
.by = NULL,
.keep = c("all", "used", "unused", "none"),
.before = NULL,
.after = NULL

)

60 mutate

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs. The name gives the name of the column in
the output.
The value can be:

• A vector of length 1, which will be recycled to the correct length.
• A vector the same length as the current group (or the whole data frame if

ungrouped).
• NULL, to remove the column.
• A data frame or tibble, to create multiple columns in the output.

.by <tidy-select> Optionally, a selection of columns to group by for just this op-
eration, functioning as an alternative to group_by(). For details and examples,
see ?dplyr_by.

.keep Control which columns from .data are retained in the output. Grouping columns
and columns created by ... are always kept.

• "all" retains all columns from .data. This is the default.
• "used" retains only the columns used in ... to create new columns. This

is useful for checking your work, as it displays inputs and outputs side-by-
side.

• "unused" retains only the columns not used in ... to create new columns.
This is useful if you generate new columns, but no longer need the columns
used to generate them.

• "none" doesn’t retain any extra columns from .data. Only the grouping
variables and columns created by ... are kept.

.before, .after <tidy-select> Optionally, control where new columns should appear (the de-
fault is to add to the right hand side). See relocate() for more details.

Value

An object of the same type as .data. The output has the following properties:

• Columns from .data will be preserved according to the .keep argument.

• Existing columns that are modified by ... will always be returned in their original location.

• New columns created through ... will be placed according to the .before and .after argu-
ments.

• The number of rows is not affected.

• Columns given the value NULL will be removed.

• Groups will be recomputed if a grouping variable is mutated.

• Data frame attributes are preserved.

mutate 61

Useful mutate functions

• +, -, log(), etc., for their usual mathematical meanings

• lead(), lag()

• dense_rank(), min_rank(), percent_rank(), row_number(), cume_dist(), ntile()

• cumsum(), cummean(), cummin(), cummax(), cumany(), cumall()

• na_if(), coalesce()

• if_else(), recode(), case_when()

Grouped tibbles

Because mutating expressions are computed within groups, they may yield different results on
grouped tibbles. This will be the case as soon as an aggregating, lagging, or ranking function is
involved. Compare this ungrouped mutate:

starwars |>
select(name, mass, species) |>
mutate(mass_norm = mass / mean(mass, na.rm = TRUE))

With the grouped equivalent:

starwars |>
select(name, mass, species) |>
group_by(species) |>
mutate(mass_norm = mass / mean(mass, na.rm = TRUE))

The former normalises mass by the global average whereas the latter normalises by the averages
within species levels.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

Methods available in currently loaded packages: no methods found.

See Also

Other single table verbs: arrange(), filter(), reframe(), rename(), select(), slice(), summarise()

Examples

Newly created variables are available immediately
starwars |>

select(name, mass) |>
mutate(

mass2 = mass * 2,
mass2_squared = mass2 * mass2

62 mutate

)

As well as adding new variables, you can use mutate() to
remove variables and modify existing variables.
starwars |>

select(name, height, mass, homeworld) |>
mutate(

mass = NULL,
height = height * 0.0328084 # convert to feet

)

Use across() with mutate() to apply a transformation
to multiple columns in a tibble.
starwars |>

select(name, homeworld, species) |>
mutate(across(!name, as.factor))

see more in ?across

Window functions are useful for grouped mutates:
starwars |>

select(name, mass, homeworld) |>
group_by(homeworld) |>
mutate(rank = min_rank(desc(mass)))

see `vignette("window-functions")` for more details

By default, new columns are placed on the far right.
df <- tibble(x = 1, y = 2)
df |> mutate(z = x + y)
df |> mutate(z = x + y, .before = 1)
df |> mutate(z = x + y, .after = x)

By default, mutate() keeps all columns from the input data.
df <- tibble(x = 1, y = 2, a = "a", b = "b")
df |> mutate(z = x + y, .keep = "all") # the default
df |> mutate(z = x + y, .keep = "used")
df |> mutate(z = x + y, .keep = "unused")
df |> mutate(z = x + y, .keep = "none")

Grouping --
The mutate operation may yield different results on grouped
tibbles because the expressions are computed within groups.
The following normalises `mass` by the global average:
starwars |>

select(name, mass, species) |>
mutate(mass_norm = mass / mean(mass, na.rm = TRUE))

Whereas this normalises `mass` by the averages within species
levels:
starwars |>

select(name, mass, species) |>
group_by(species) |>
mutate(mass_norm = mass / mean(mass, na.rm = TRUE))

mutate-joins 63

Indirection --
Refer to column names stored as strings with the `.data` pronoun:
vars <- c("mass", "height")
mutate(starwars, prod = .data[[vars[[1]]]] * .data[[vars[[2]]]])
Learn more in ?rlang::args_data_masking

mutate-joins Mutating joins

Description

Mutating joins add columns from y to x, matching observations based on the keys. There are four
mutating joins: the inner join, and the three outer joins.

Inner join:
An inner_join() only keeps observations from x that have a matching key in y.
The most important property of an inner join is that unmatched rows in either input are not in-
cluded in the result. This means that generally inner joins are not appropriate in most analyses,
because it is too easy to lose observations.

Outer joins:
The three outer joins keep observations that appear in at least one of the data frames:

• A left_join() keeps all observations in x.
• A right_join() keeps all observations in y.
• A full_join() keeps all observations in x and y.

Usage

inner_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL

)

S3 method for class 'data.frame'
inner_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL,

64 mutate-joins

na_matches = c("na", "never"),
multiple = "all",
unmatched = "drop",
relationship = NULL

)

left_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL

)

S3 method for class 'data.frame'
left_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL,
na_matches = c("na", "never"),
multiple = "all",
unmatched = "drop",
relationship = NULL

)

right_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL

)

S3 method for class 'data.frame'
right_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),

mutate-joins 65

...,
keep = NULL,
na_matches = c("na", "never"),
multiple = "all",
unmatched = "drop",
relationship = NULL

)

full_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL

)

S3 method for class 'data.frame'
full_join(
x,
y,
by = NULL,
copy = FALSE,
suffix = c(".x", ".y"),
...,
keep = NULL,
na_matches = c("na", "never"),
multiple = "all",
relationship = NULL

)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

by A join specification created with join_by(), or a character vector of variables
to join by.

If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.

To join on different variables between x and y, use a join_by() specification.
For example, join_by(a == b) will match x$a to y$b.

To join by multiple variables, use a join_by() specification with multiple ex-
pressions. For example, join_by(a == b, c == d) will match x$a to y$b and
x$c to y$d. If the column names are the same between x and y, you can shorten
this by listing only the variable names, like join_by(a, c).

66 mutate-joins

join_by() can also be used to perform inequality, rolling, and overlap joins.
See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector of
variable names to join by. For example, by = c("a", "b") joins x$a to y$a and
x$b to y$b. If variable names differ between x and y, use a named character
vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

suffix If there are non-joined duplicate variables in x and y, these suffixes will be added
to the output to disambiguate them. Should be a character vector of length 2.

... Other parameters passed onto methods.

keep Should the join keys from both x and y be preserved in the output?

• If NULL, the default, joins on equality retain only the keys from x, while
joins on inequality retain the keys from both inputs.

• If TRUE, all keys from both inputs are retained.
• If FALSE, only keys from x are retained. For right and full joins, the data in

key columns corresponding to rows that only exist in y are merged into the
key columns from x. Can’t be used when joining on inequality conditions.

na_matches Should two NA or two NaN values match?

• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never match
them together or to any other values. This is similar to joins for database
sources and to base::merge(incomparables = NA).

multiple Handling of rows in x with multiple matches in y. For each row of x:

• "all", the default, returns every match detected in y. This is the same
behavior as SQL.

• "any" returns one match detected in y, with no guarantees on which match
will be returned. It is often faster than "first" and "last" if you just need
to detect if there is at least one match.

• "first" returns the first match detected in y.
• "last" returns the last match detected in y.

unmatched How should unmatched keys that would result in dropped rows be handled?

• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows during a
join. It only checks for unmatched keys in the input that could potentially drop
rows.

• For left joins, it checks y.
• For right joins, it checks x.

mutate-joins 67

• For inner joins, it checks both x and y. In this case, unmatched is also
allowed to be a character vector of length 2 to specify the behavior for x
and y independently.

relationship Handling of the expected relationship between the keys of x and y. If the expec-
tations chosen from the list below are invalidated, an error is thrown.

• NULL, the default, doesn’t expect there to be any relationship between x and
y. However, for equality joins it will check for a many-to-many relationship
(which is typically unexpected) and will warn if one occurs, encouraging
you to either take a closer look at your inputs or make this relationship
explicit by specifying "many-to-many".
See the Many-to-many relationships section for more details.

• "one-to-one" expects:
– Each row in x matches at most 1 row in y.
– Each row in y matches at most 1 row in x.

• "one-to-many" expects:
– Each row in y matches at most 1 row in x.

• "many-to-one" expects:
– Each row in x matches at most 1 row in y.

• "many-to-many" doesn’t perform any relationship checks, but is provided
to allow you to be explicit about this relationship if you know it exists.

relationship doesn’t handle cases where there are zero matches. For that, see
unmatched.

Value

An object of the same type as x (including the same groups). The order of the rows and columns of
x is preserved as much as possible. The output has the following properties:

• The rows are affect by the join type.

– inner_join() returns matched x rows.
– left_join() returns all x rows.
– right_join() returns matched of x rows, followed by unmatched y rows.
– full_join() returns all x rows, followed by unmatched y rows.

• Output columns include all columns from x and all non-key columns from y. If keep = TRUE,
the key columns from y are included as well.

• If non-key columns in x and y have the same name, suffixes are added to disambiguate.
If keep = TRUE and key columns in x and y have the same name, suffixes are added to
disambiguate these as well.

• If keep = FALSE, output columns included in by are coerced to their common type between x
and y.

Many-to-many relationships

By default, dplyr guards against many-to-many relationships in equality joins by throwing a warn-
ing. These occur when both of the following are true:

68 mutate-joins

• A row in x matches multiple rows in y.

• A row in y matches multiple rows in x.

This is typically surprising, as most joins involve a relationship of one-to-one, one-to-many, or
many-to-one, and is often the result of an improperly specified join. Many-to-many relationships
are particularly problematic because they can result in a Cartesian explosion of the number of rows
returned from the join.

If a many-to-many relationship is expected, silence this warning by explicitly setting relationship
= "many-to-many".

In production code, it is best to preemptively set relationship to whatever relationship you expect
to exist between the keys of x and y, as this forces an error to occur immediately if the data doesn’t
align with your expectations.

Inequality joins typically result in many-to-many relationships by nature, so they don’t warn on
them by default, but you should still take extra care when specifying an inequality join, because
they also have the capability to return a large number of rows.

Rolling joins don’t warn on many-to-many relationships either, but many rolling joins follow a
many-to-one relationship, so it is often useful to set relationship = "many-to-one" to enforce
this.

Note that in SQL, most database providers won’t let you specify a many-to-many relationship be-
tween two tables, instead requiring that you create a third junction table that results in two one-to-
many relationships instead.

Methods

These functions are generics, which means that packages can provide implementations (methods)
for other classes. See the documentation of individual methods for extra arguments and differences
in behaviour.

Methods available in currently loaded packages:

• inner_join(): no methods found.

• left_join(): no methods found.

• right_join(): no methods found.

• full_join(): no methods found.

See Also

Other joins: cross_join(), filter-joins, nest_join()

Examples

band_members |> inner_join(band_instruments)
band_members |> left_join(band_instruments)
band_members |> right_join(band_instruments)
band_members |> full_join(band_instruments)

To suppress the message about joining variables, supply `by`
band_members |> inner_join(band_instruments, by = join_by(name))

na_if 69

This is good practice in production code

Use an equality expression if the join variables have different names
band_members |> full_join(band_instruments2, by = join_by(name == artist))
By default, the join keys from `x` and `y` are coalesced in the output; use
`keep = TRUE` to keep the join keys from both `x` and `y`
band_members |>

full_join(band_instruments2, by = join_by(name == artist), keep = TRUE)

If a row in `x` matches multiple rows in `y`, all the rows in `y` will be
returned once for each matching row in `x`.
df1 <- tibble(x = 1:3)
df2 <- tibble(x = c(1, 1, 2), y = c("first", "second", "third"))
df1 |> left_join(df2)

If a row in `y` also matches multiple rows in `x`, this is known as a
many-to-many relationship, which is typically a result of an improperly
specified join or some kind of messy data. In this case, a warning is
thrown by default:
df3 <- tibble(x = c(1, 1, 1, 3))
df3 |> left_join(df2)

In the rare case where a many-to-many relationship is expected, set
`relationship = "many-to-many"` to silence this warning
df3 |> left_join(df2, relationship = "many-to-many")

Use `join_by()` with a condition other than `==` to perform an inequality
join. Here we match on every instance where `df1$x > df2$x`.
df1 |> left_join(df2, join_by(x > x))

By default, NAs match other NAs so that there are two
rows in the output of this join:
df1 <- data.frame(x = c(1, NA), y = 2)
df2 <- data.frame(x = c(1, NA), z = 3)
left_join(df1, df2)

You can optionally request that NAs don't match, giving a
a result that more closely resembles SQL joins
left_join(df1, df2, na_matches = "never")

na_if Convert values to NA

Description

This is a translation of the SQL command NULLIF. It is useful if you want to convert an annoying
value to NA.

Usage

na_if(x, y)

70 na_if

Arguments

x Vector to modify

y Value or vector to compare against. When x and y are equal, the value in x will
be replaced with NA.
y is cast to the type of x before comparison.
y is recycled to the size of x before comparison. This means that y can be a
vector with the same size as x, but most of the time this will be a single value.

Value

A modified version of x that replaces any values that are equal to y with NA.

See Also

• coalesce() to replace NAs with the first non-missing value.

• replace_values() for making arbitrary replacements by value.

• replace_when() for making arbitrary replacements using logical conditions.

Examples

`na_if()` is useful for replacing a single problematic value with `NA`
na_if(c(-99, 1, 4, 3, -99, 5), -99)
na_if(c("abc", "def", "", "ghi"), "")

You can use it to standardize `NaN`s to `NA`
na_if(c(1, NaN, NA, 2, NaN), NaN)

Because `na_if()` is an R translation of SQL's `NULLIF` command,
it compares `x` and `y` element by element. Where `x` and `y` are
equal, the value in `x` is replaced with an `NA`.
na_if(

x = c(1, 2, 5, 5, 6),
y = c(0, 2, 3, 5, 4)

)

If you have multiple problematic values that you'd like to replace with
`NA`, then `replace_values()` is a better choice than `na_if()`
x <- c(-99, 1, 4, 0, -99, 5, -1, 0, 5)
replace_values(x, c(0, -1, -99) ~ NA)

You'd have to nest `na_if()`s to achieve this
try(na_if(x, c(0, -1, -99)))
na_if(na_if(na_if(x, 0), -1), -99)

If you'd like to replace values that match a logical condition with `NA`,
use `replace_when()`
replace_when(x, x < 0 ~ NA)

If you'd like to replace `NA` with some other value, use `replace_values()`
x <- c(NA, 5, 2, NA, 0, 3)

near 71

replace_values(x, NA ~ 0)

`na_if()` is particularly useful inside `mutate()`
starwars |>

select(name, eye_color) |>
mutate(eye_color = na_if(eye_color, "unknown"))

`na_if()` can also be used with `mutate()` and `across()`
to alter multiple columns
starwars |>

mutate(across(where(is.character), ~na_if(., "unknown")))

near Compare two numeric vectors

Description

This is a safe way of comparing if two vectors of floating point numbers are (pairwise) equal. This
is safer than using ==, because it has a built in tolerance

Usage

near(x, y, tol = .Machine$double.eps^0.5)

Arguments

x, y Numeric vectors to compare

tol Tolerance of comparison.

Examples

sqrt(2) ^ 2 == 2
near(sqrt(2) ^ 2, 2)

nest_join Nest join

Description

A nest join leaves x almost unchanged, except that it adds a new list-column, where each element
contains the rows from y that match the corresponding row in x.

72 nest_join

Usage

nest_join(x, y, by = NULL, copy = FALSE, keep = NULL, name = NULL, ...)

S3 method for class 'data.frame'
nest_join(
x,
y,
by = NULL,
copy = FALSE,
keep = NULL,
name = NULL,
...,
na_matches = c("na", "never"),
unmatched = "drop"

)

Arguments

x, y A pair of data frames, data frame extensions (e.g. a tibble), or lazy data frames
(e.g. from dbplyr or dtplyr). See Methods, below, for more details.

by A join specification created with join_by(), or a character vector of variables
to join by.
If NULL, the default, *_join() will perform a natural join, using all variables
in common across x and y. A message lists the variables so that you can check
they’re correct; suppress the message by supplying by explicitly.
To join on different variables between x and y, use a join_by() specification.
For example, join_by(a == b) will match x$a to y$b.
To join by multiple variables, use a join_by() specification with multiple ex-
pressions. For example, join_by(a == b, c == d) will match x$a to y$b and
x$c to y$d. If the column names are the same between x and y, you can shorten
this by listing only the variable names, like join_by(a, c).
join_by() can also be used to perform inequality, rolling, and overlap joins.
See the documentation at ?join_by for details on these types of joins.
For simple equality joins, you can alternatively specify a character vector of
variable names to join by. For example, by = c("a", "b") joins x$a to y$a and
x$b to y$b. If variable names differ between x and y, use a named character
vector like by = c("x_a" = "y_a", "x_b" = "y_b").
To perform a cross-join, generating all combinations of x and y, see cross_join().

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

keep Should the new list-column contain join keys? The default will preserve the join
keys for inequality joins.

name The name of the list-column created by the join. If NULL, the default, the name
of y is used.

... Other parameters passed onto methods.

nest_join 73

na_matches Should two NA or two NaN values match?
• "na", the default, treats two NA or two NaN values as equal, like %in%,
match(), and merge().

• "never" treats two NA or two NaN values as different, and will never match
them together or to any other values. This is similar to joins for database
sources and to base::merge(incomparables = NA).

unmatched How should unmatched keys that would result in dropped rows be handled?
• "drop" drops unmatched keys from the result.
• "error" throws an error if unmatched keys are detected.

unmatched is intended to protect you from accidentally dropping rows during a
join. It only checks for unmatched keys in the input that could potentially drop
rows.

• For left joins, it checks y.
• For right joins, it checks x.
• For inner joins, it checks both x and y. In this case, unmatched is also

allowed to be a character vector of length 2 to specify the behavior for x
and y independently.

Value

The output:

• Is same type as x (including having the same groups).
• Has exactly the same number of rows as x.
• Contains all the columns of x in the same order with the same values. They are only modified

(slightly) if keep = FALSE, when columns listed in by will be coerced to their common type
across x and y.

• Gains one new column called {name} on the far right, a list column containing data frames
the same type as y.

Relationship to other joins

You can recreate many other joins from the result of a nest join:

• inner_join() is a nest_join() plus tidyr::unnest().
• left_join() is a nest_join() plus tidyr::unnest(keep_empty = TRUE).
• semi_join() is a nest_join() plus a filter() where you check that every element of data

has at least one row.
• anti_join() is a nest_join() plus a filter() where you check that every element has zero

rows.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

74 nth

See Also

Other joins: cross_join(), filter-joins, mutate-joins

Examples

df1 <- tibble(x = 1:3)
df2 <- tibble(x = c(2, 3, 3), y = c("a", "b", "c"))

out <- nest_join(df1, df2)
out
out$df2

nth Extract the first, last, or nth value from a vector

Description

These are useful helpers for extracting a single value from a vector. They are guaranteed to return
a meaningful value, even when the input is shorter than expected. You can also provide an optional
secondary vector that defines the ordering.

Usage

nth(x, n, order_by = NULL, default = NULL, na_rm = FALSE)

first(x, order_by = NULL, default = NULL, na_rm = FALSE)

last(x, order_by = NULL, default = NULL, na_rm = FALSE)

Arguments

x A vector
n For nth(), a single integer specifying the position. Negative integers index from

the end (i.e. -1L will return the last value in the vector).
order_by An optional vector the same size as x used to determine the order.
default A default value to use if the position does not exist in x.

If NULL, the default, a missing value is used.
If supplied, this must be a single value, which will be cast to the type of x.
When x is a list , default is allowed to be any value. There are no type or size
restrictions in this case.

na_rm Should missing values in x be removed before extracting the value?

Details

For most vector types, first(x), last(x), and nth(x, n) work like x[[1]], x[[length(x)], and
x[[n]], respectively. The primary exception is data frames, where they instead retrieve rows, i.e.
x[1,], x[nrow(x),], and x[n,]. This is consistent with the tidyverse/vctrs principle which treats
data frames as a vector of rows, rather than a vector of columns.

nth 75

Value

If x is a list, a single element from that list. Otherwise, a vector the same type as x with size 1.

Examples

x <- 1:10
y <- 10:1

first(x)
last(y)

nth(x, 1)
nth(x, 5)
nth(x, -2)

`first()` and `last()` are often useful in `summarise()`
df <- tibble(x = x, y = y)
df |>

summarise(
across(x:y, first, .names = "{col}_first"),
y_last = last(y)

)

Selecting a position that is out of bounds returns a default value
nth(x, 11)
nth(x, 0)

This out of bounds behavior also applies to empty vectors
first(integer())

You can customize the default value with `default`
nth(x, 11, default = -1L)
first(integer(), default = 0L)

`order_by` provides optional ordering
last(x)
last(x, order_by = y)

`na_rm` removes missing values before extracting the value
z <- c(NA, NA, 1, 3, NA, 5, NA)
first(z)
first(z, na_rm = TRUE)
last(z, na_rm = TRUE)
nth(z, 3, na_rm = TRUE)

For data frames, these select entire rows
df <- tibble(a = 1:5, b = 6:10)
first(df)
nth(df, 4)

76 ntile

ntile Bucket a numeric vector into n groups

Description

ntile() is a sort of very rough rank, which breaks the input vector into n buckets. If length(x)
is not an integer multiple of n, the size of the buckets will differ by up to one, with larger buckets
coming first.

Unlike other ranking functions, ntile() ignores ties: it will create evenly sized buckets even if the
same value of x ends up in different buckets.

Usage

ntile(x = row_number(), n)

Arguments

x A vector to rank

By default, the smallest values will get the smallest ranks. Use desc() to reverse
the direction so the largest values get the smallest ranks.

Missing values will be given rank NA. Use coalesce(x, Inf) or coalesce(x,
-Inf) if you want to treat them as the largest or smallest values respectively.

To rank by multiple columns at once, supply a data frame.

n Number of groups to bucket into

See Also

Other ranking functions: percent_rank(), row_number()

Examples

x <- c(5, 1, 3, 2, 2, NA)
ntile(x, 2)
ntile(x, 4)

If the bucket sizes are uneven, the larger buckets come first
ntile(1:8, 3)

Ties are ignored
ntile(rep(1, 8), 3)

n_distinct 77

n_distinct Count unique combinations

Description

n_distinct() counts the number of unique/distinct combinations in a set of one or more vectors.
It’s a faster and more concise equivalent to nrow(unique(data.frame(...))).

Usage

n_distinct(..., na.rm = FALSE)

Arguments

... Unnamed vectors. If multiple vectors are supplied, then they should have the
same length.

na.rm If TRUE, exclude missing observations from the count. If there are multiple vec-
tors in ..., an observation will be excluded if any of the values are missing.

Value

A single number.

Examples

x <- c(1, 1, 2, 2, 2)
n_distinct(x)

y <- c(3, 3, NA, 3, 3)
n_distinct(y)
n_distinct(y, na.rm = TRUE)

Pairs (1, 3), (2, 3), and (2, NA) are distinct
n_distinct(x, y)

(2, NA) is dropped, leaving 2 distinct combinations
n_distinct(x, y, na.rm = TRUE)

Also works with data frames
n_distinct(data.frame(x, y))

78 order_by

order_by A helper function for ordering window function output

Description

This function makes it possible to control the ordering of window functions in R that don’t have a
specific ordering parameter. When translated to SQL it will modify the order clause of the OVER
function.

Usage

order_by(order_by, call)

Arguments

order_by a vector to order_by

call a function call to a window function, where the first argument is the vector being
operated on

Details

This function works by changing the call to instead call with_order() with the appropriate argu-
ments.

Examples

order_by(10:1, cumsum(1:10))
x <- 10:1
y <- 1:10
order_by(x, cumsum(y))

df <- data.frame(year = 2000:2005, value = (0:5) ^ 2)
scrambled <- df[sample(nrow(df)),]

wrong <- mutate(scrambled, running = cumsum(value))
arrange(wrong, year)

right <- mutate(scrambled, running = order_by(year, cumsum(value)))
arrange(right, year)

percent_rank 79

percent_rank Proportional ranking functions

Description

These two ranking functions implement two slightly different ways to compute a percentile. For
each x_i in x:

• cume_dist(x) counts the total number of values less than or equal to x_i, and divides it by
the number of observations.

• percent_rank(x) counts the total number of values less than x_i, and divides it by the num-
ber of observations minus 1.

In both cases, missing values are ignored when counting the number of observations.

Usage

percent_rank(x)

cume_dist(x)

Arguments

x A vector to rank
By default, the smallest values will get the smallest ranks. Use desc() to reverse
the direction so the largest values get the smallest ranks.
Missing values will be given rank NA. Use coalesce(x, Inf) or coalesce(x,
-Inf) if you want to treat them as the largest or smallest values respectively.
To rank by multiple columns at once, supply a data frame.

Value

A numeric vector containing a proportion.

See Also

Other ranking functions: ntile(), row_number()

Examples

x <- c(5, 1, 3, 2, 2)

cume_dist(x)
percent_rank(x)

You can understand what's going on by computing it by hand
sapply(x, function(xi) sum(x <= xi) / length(x))
sapply(x, function(xi) sum(x < xi) / (length(x) - 1))

80 pick

The real computations are a little more complex in order to
correctly deal with missing values

pick Select a subset of columns

Description

pick() provides a way to easily select a subset of columns from your data using select() seman-
tics while inside a "data-masking" function like mutate() or summarise(). pick() returns a data
frame containing the selected columns for the current group.

pick() is complementary to across():

• With pick(), you typically apply a function to the full data frame.

• With across(), you typically apply a function to each column.

Usage

pick(...)

Arguments

... <tidy-select>
Columns to pick.
You can’t pick grouping columns because they are already automatically han-
dled by the verb (i.e. summarise() or mutate()).

Details

Theoretically, pick() is intended to be replaceable with an equivalent call to tibble(). For ex-
ample, pick(a, c) could be replaced with tibble(a = a, c = c), and pick(everything()) on a
data frame with cols a, b, and c could be replaced with tibble(a = a, b = b, c = c). pick() spe-
cially handles the case of an empty selection by returning a 1 row, 0 column tibble, so an exact
replacement is more like:

size <- vctrs::vec_size_common(..., .absent = 1L)
out <- vctrs::vec_recycle_common(..., .size = size)
tibble::new_tibble(out, nrow = size)

Value

A tibble containing the selected columns for the current group.

See Also

across()

pull 81

Examples

df <- tibble(
x = c(3, 2, 2, 2, 1),
y = c(0, 2, 1, 1, 4),
z1 = c("a", "a", "a", "b", "a"),
z2 = c("c", "d", "d", "a", "c")

)
df

`pick()` provides a way to select a subset of your columns using
tidyselect. It returns a data frame.
df |> mutate(cols = pick(x, y))

This is useful for functions that take data frames as inputs.
For example, you can compute a joint rank between `x` and `y`.
df |> mutate(rank = dense_rank(pick(x, y)))

`pick()` is also useful as a bridge between data-masking functions (like
`mutate()` or `group_by()`) and functions with tidy-select behavior (like
`select()`). For example, you can use `pick()` to create a wrapper around
`group_by()` that takes a tidy-selection of columns to group on. For more
bridge patterns, see
https://rlang.r-lib.org/reference/topic-data-mask-programming.html#bridge-patterns.
my_group_by <- function(data, cols) {

group_by(data, pick({{ cols }}))
}

df |> my_group_by(c(x, starts_with("z")))

Or you can use it to dynamically select columns to `count()` by
df |> count(pick(starts_with("z")))

pull Extract a single column

Description

pull() is similar to $. It’s mostly useful because it looks a little nicer in pipes, it also works with
remote data frames, and it can optionally name the output.

Usage

pull(.data, var = -1, name = NULL, ...)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

var A variable specified as:

82 recode

• a literal variable name

• a positive integer, giving the position counting from the left

• a negative integer, giving the position counting from the right.

The default returns the last column (on the assumption that’s the column you’ve
created most recently).

This argument is taken by expression and supports quasiquotation (you can un-
quote column names and column locations).

name An optional parameter that specifies the column to be used as names for a named
vector. Specified in a similar manner as var.

... For use by methods.

Value

A vector the same size as .data.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

Examples

mtcars |> pull(-1)
mtcars |> pull(1)
mtcars |> pull(cyl)

Also works for remote sources
df <- dbplyr::memdb_frame(x = 1:10, y = 10:1, .name = "pull-ex")
df |>

mutate(z = x * y) |>
pull()

Pull a named vector
starwars |> pull(height, name)

recode Recode values

recode 83

Description

[Superseded]
recode() is superseded in favor of recode_values() and replace_values(), which are more
general and have a much better interface. recode_factor() is also superseded, however, its direct
replacement is not currently available but will eventually live in forcats. For creating new variables
based on logical vectors, use if_else(). For even more complicated criteria, use case_when().

recode() is a vectorised version of switch(): you can replace numeric values based on their
position or their name, and character or factor values only by their name. This is an S3 generic:
dplyr provides methods for numeric, character, and factors. You can use recode() directly with
factors; it will preserve the existing order of levels while changing the values. Alternatively, you can
use recode_factor(), which will change the order of levels to match the order of replacements.

Usage

recode(.x, ..., .default = NULL, .missing = NULL)

recode_factor(.x, ..., .default = NULL, .missing = NULL, .ordered = FALSE)

Arguments

.x A vector to modify

... <dynamic-dots> Replacements. For character and factor .x, these should be
named and replacement is based only on their name. For numeric .x, these can
be named or not. If not named, the replacement is done based on position i.e.
.x represents positions to look for in replacements. See examples.
When named, the argument names should be the current values to be replaced,
and the argument values should be the new (replacement) values.
All replacements must be the same type, and must have either length one or the
same length as .x.

.default If supplied, all values not otherwise matched will be given this value. If not
supplied and if the replacements are the same type as the original values in .x,
unmatched values are not changed. If not supplied and if the replacements are
not compatible, unmatched values are replaced with NA.
.default must be either length 1 or the same length as .x.

.missing If supplied, any missing values in .x will be replaced by this value. Must be
either length 1 or the same length as .x.

.ordered If TRUE, recode_factor() creates an ordered factor.

Value

A vector the same length as .x, and the same type as the first of ..., .default, or .missing.
recode_factor() returns a factor whose levels are in the same order as in The levels in
.default and .missing come last.

See Also

recode_values()

https://forcats.tidyverse.org/

84 recode

Examples

set.seed(1234)

x <- sample(c("a", "b", "c"), 10, replace = TRUE)

`recode()` is superseded by `recode_values()` and `replace_values()`

If you are fully recoding a vector use `recode_values()`
recode(x, a = "Apple", b = "Banana", .default = NA_character_)
recode_values(x, "a" ~ "Apple", "b" ~ "Banana")

With a default
recode(x, a = "Apple", b = "Banana", .default = "unknown")
recode_values(x, "a" ~ "Apple", "b" ~ "Banana", default = "unknown")

If you are partially updating a vector and want to retain the original
vector's values in locations you don't make a replacement, use
`replace_values()`
recode(x, a = "Apple", b = "Banana")
replace_values(x, "a" ~ "Apple", "b" ~ "Banana")

`replace_values()` is easier to use with numeric vectors, because you don't
need to turn the numeric values into names
y <- c(1:4, NA)
recode(y, `2` = 20L, `4` = 40L)
replace_values(y, 2 ~ 20L, 4 ~ 40L)

`recode()` is particularly confusing because it tries to handle both
full recodings to new vector types and partial updating of an existing
vector. With the above example, using doubles (20) rather than integers
(20L) results in a warning from `recode()`, because it thinks you are
doing a full recode and missed a case. `replace_values()` is type stable
on `y` and will instead coerce the double values to integer.
recode(y, `2` = 20, `4` = 40)
replace_values(y, 2 ~ 20, 4 ~ 40)

This also makes `replace_values()` much safer. If you provide
incompatible types, it will error.
recode(y, `2` = "20", `4` = "40")
try(replace_values(y, 2 ~ "20", 4 ~ "40"))

If you were trying to fully recode the vector and want a different output
type, use `recode_values()`
recode_values(y, 2 ~ "20", 4 ~ "40")

And if you want to ensure you don't miss a case, use `unmatched`, which
errors rather than warns
try(recode_values(y, 2 ~ "20", 4 ~ "40", unmatched = "error"))

Lookup tables

recode 85

If you were splicing an external lookup vector into `recode()`, you can
instead use the `from` and `to` arguments of `recode_values()`
x <- c("a", "b", "a", "c", "d", "c")

lookup <- c(
"a" = "A",
"b" = "B",
"c" = "C",
"d" = "D"

)

recode(x, !!!lookup)
recode_values(x, from = names(lookup), to = unname(lookup))

`recode_values()` is much more flexible here because the lookup table
isn't restricted to just character values. We recommend using `tribble()`
to build your lookup tables.
lookup <- tribble(

~from, ~to,
"a", 1,
"b", 2,
"c", 3,
"d", 4

)

recode_values(x, from = lookup$from, to = lookup$to)

Factors

The factor method of `recode()` can generally be replaced with
`forcats::fct_recode()`
x <- factor(c("a", "b", "c"))
recode(x, a = "Apple")
forcats::fct_recode(x, "Apple" = "a")

`recode_factor()` does not currently have a direct replacement, but we
plan to add one to forcats. In the meantime, use a lookup table that
recodes every case, and then convert the `to` column to a factor. If you
define your lookup table in your preferred level order, then the conversion
to factor is straightforward!
y <- c(3, 4, 1, 2, 4, NA)

recode_factor(
y,
`1` = "a",
`2` = "b",
`3` = "c",
`4` = "d",
.missing = "M"

)

lookup <- tribble(

86 recode-and-replace-values

~from, ~to,
1, "a",
2, "b",
3, "c",
4, "d",
NA, "M"

)
`factor()` generates levels by sorting the unique values of `to`, which we
don't want, so we supply `levels = to` directly. Alternatively, use
`forcats::fct(to)`, which generates levels in order of appearance.
lookup <- mutate(lookup, to = factor(to, levels = to))

recode_values(y, from = lookup$from, to = lookup$to)

recode-and-replace-values

Recode and replace values

Description

recode_values() and replace_values() provide two ways to map old values to new values.
They work by matching values against x and using the first match to determine the corresponding
value in the output vector. You can also think of these functions as a way to use a lookup table to
recode a vector.

• Use recode_values() when creating an entirely new vector.

• Use replace_values() when partially updating an existing vector.

If you are just replacing a few values within an existing vector, then replace_values() is always
a better choice because it is type stable and better expresses intent.

A major difference between the two functions is what happens when no cases match:

• recode_values() falls through to a default.

• replace_values() retains the original values from x.

These functions have two mutually exclusive ways to use them:

• A formula-based approach, i.e. recode_values(x, from1 ~ to1, from2 ~ to2), similar to
case_when(), which is useful when you have a small number of cases.

• A vector-based approach, i.e. recode_values(x, from = from, to = to), which is useful
when you have a pre-built lookup table (which may come from an external source, like a CSV
file).

See vignette("recoding-replacing") for more examples.

recode-and-replace-values 87

Usage

recode_values(
x,
...,
from = NULL,
to = NULL,
default = NULL,
unmatched = "default",
ptype = NULL

)

replace_values(x, ..., from = NULL, to = NULL)

Arguments

x A vector.
... <dynamic-dots> A sequence of two-sided formulas. The left hand side (LHS)

determines which values match this case. The right hand side (RHS) provides
the replacement value.

• The LHS inputs can be any size, but will be cast to the type of x.
• The RHS inputs will be recycled to the same size as x. For recode_values()

they will be cast to their common type, and for replace_values() they
will be cast to the type of x.

NULL inputs are ignored.
Mutually exclusive with from and to.

from Values to look up in x and map to values in to.
Typically this is a single vector of any size that is cast to the type of x. For more
advanced usage, this can be a list of vectors of any size each of which are cast
to the type of x.
Mutually exclusive with

to Values that from map to.
Typically this is a single vector that is recycled to the size of from. For more
advanced usage, this can be a list of vectors each of which are recycled to the
size of x.
Mutually exclusive with

default Default value to use when there is a value present in x that is unmatched by a
value in from.
By default, a missing value is used as the default value.
If supplied, will be recycled to the size of x.
Can only be set when unmatched = "default".

unmatched Handling of unmatched locations.
One of:

• "default" to use default in unmatched locations.
• "error" to error when there are unmatched locations.

ptype An optional override for the output type, which is usually computed as the com-
mon type of to and default.

88 recode-and-replace-values

Value

A vector the same size as x.

• For recode_values(), the type of the output is computed as the common type of to and
default, unless overridden by ptype. The names of the output come from the names of to
and default.

• For replace_values(), the type of the output will have the same type as x. The names of the
output will be the same as the names of x.

See Also

case_when(), vctrs::vec_recode_values()

Examples

x <- c("NC", "NYC", "CA", NA, "NYC", "Unknown")

`recode_values()` is useful for fully recoding from one set of values to
another, creating an entirely new vector in the process. Note that any
unmatched values result in `NA`, or a `default` value.
recode_values(

x,
"NC" ~ "North Carolina",
"NYC" ~ "New York",
"CA" ~ "California"

)

recode_values(
x,
"NC" ~ "North Carolina",
"NYC" ~ "New York",
"CA" ~ "California",
default = "<not recorded>"

)

`replace_values()` is useful for updating an existing vector, tweaking a
few values along the way
replace_values(x, "NYC" ~ "NY")

`replace_values()` is particularly nice for replacing `NA`s with values...
replace_values(x, NA ~ "Unknown (NA)")
...or values with `NA`s
replace_values(x, "Unknown" ~ NA)

Multiple values can be grouped within a single left-hand side to normalize
all problematic values at once
replace_values(x, c(NA, "Unknown") ~ "<not recorded>")

Lookup tables

recode-and-replace-values 89

`recode_values()` works with more than just character vectors. Imagine you
have this series of Likert Scale scores, which is a scoring system that is
ordered from 1-5.
data <- tibble(

score = c(1, 2, 3, 4, 5, 2, 3, 1, 4)
)

To recode each `score` to its corresponding Likert Score label, you may
initially be inclined to reach for `case_when()`
data |>

mutate(
score = case_when(

score == 1 ~ "Strongly disagree",
score == 2 ~ "Disagree",
score == 3 ~ "Neutral",
score == 4 ~ "Agree",
score == 5 ~ "Strongly agree"

)
)

While this works, it can be written more efficiently using
`recode_values()`
data |>

mutate(
score = score |>

recode_values(
1 ~ "Strongly disagree",
2 ~ "Disagree",
3 ~ "Neutral",
4 ~ "Agree",
5 ~ "Strongly agree"

)
)

`recode_values()` actually has two mutually exclusive APIs. The formula API
used above, which is like `case_when()`, and a lookup style API that uses
`from` and `to` arguments. The lookup API is even better suited for this
problem, because we can move the mapping outside of the `mutate()` call
into a standalone lookup table. You could even imagine reading this
`likert` lookup table in from a separate CSV file.
likert <- tribble(

~from, ~to,
1, "Strongly disagree",
2, "Disagree",
3, "Neutral",
4, "Agree",
5, "Strongly agree"

)

data |>
mutate(score = recode_values(score, from = likert$from, to = likert$to))

You can utilize the same lookup table across multiple columns by using

90 recode-and-replace-values

`across()`
data_months <- tibble(

score_january = c(1, 2, 3, 4, 5, 2, 3, 1, 4),
score_february = c(4, 2, 1, 2, 1, 5, 2, 4, 4)

)

data_months |>
mutate(across(
starts_with("score"),
~ recode_values(.x, from = likert$from, to = likert$to)

))

The `unmatched` argument allows you to assert that you believe that you've
recoded all of the cases and will error if you've missed one, adding an
extra layer of safety
data_with_zero <- add_row(data, score = 0)

try({
recode_values(
data_with_zero$score,
from = likert$from,
to = likert$to,
unmatched = "error"

)
})

Note that missing values are considered unmatched. If you expect missing
values, you'll need to handle them explicitly in your lookup table.
data_with_missing <- add_row(data, score = NA)

try({
recode_values(
data_with_missing$score,
from = likert$from,
to = likert$to,
unmatched = "error"

)
})

likert <- add_row(likert, from = NA, to = NA)

recode_values(
data_with_missing$score,
from = likert$from,
to = likert$to,
unmatched = "error"

)

--
Lists of vectors

In some cases, your mapping may collapse multiple groups together into a
single value. For example, here we'd like to standardize the school names.

reframe 91

schools <- c(
"UNC",
"Chapel Hill",
NA,
"Duke",
"Duke University",
"UNC",
"NC State",
"ECU",
"East Carolina"

)

This `tribble()` is more complex than it may appear, it actually
creates a list column!
standardized <- tribble(

~from, ~to,
c("UNC", "Chapel Hill"), "UNC",
c("Duke", "Duke University"), "Duke",
c("NC State"), "NC State",
c("ECU", "East Carolina"), "ECU",
NA, NA

)

standardized
standardized$from

`recode_values()` treats a list `from` value as a list of vectors, where
any match within one of the vectors is mapped to its corresponding `to`
value
recode_values(

schools,
from = standardized$from,
to = standardized$to,
unmatched = "error"

)

This formula based approach is equivalent, but the lookup based approach is
nicer because the lookup table can be defined separately
recode_values(

schools,
c("UNC", "Chapel Hill") ~ "UNC",
c("Duke", "Duke University") ~ "Duke",
c("NC State") ~ "NC State",
c("ECU", "East Carolina") ~ "ECU",
NA ~ NA,
unmatched = "error"

)

reframe Transform each group to an arbitrary number of rows

92 reframe

Description

While summarise() requires that each argument returns a single value, and mutate() requires
that each argument returns the same number of rows as the input, reframe() is a more general
workhorse with no requirements on the number of rows returned per group.

reframe() creates a new data frame by applying functions to columns of an existing data frame. It
is most similar to summarise(), with two big differences:

• reframe() can return an arbitrary number of rows per group, while summarise() reduces
each group down to a single row.

• reframe() always returns an ungrouped data frame, while summarise() might return a grouped
or rowwise data frame, depending on the scenario.

We expect that you’ll use summarise() much more often than reframe(), but reframe() can be
particularly helpful when you need to apply a complex function that doesn’t return a single summary
value.

Usage

reframe(.data, ..., .by = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking>
Name-value pairs of functions. The name will be the name of the variable in the
result. The value can be a vector of any length.
Unnamed data frame values add multiple columns from a single expression.

.by <tidy-select> Optionally, a selection of columns to group by for just this op-
eration, functioning as an alternative to group_by(). For details and examples,
see ?dplyr_by.

Value

If .data is a tibble, a tibble. Otherwise, a data.frame.

• The rows originate from the underlying grouping keys.
• The columns are a combination of the grouping keys and the expressions that you provide.
• The output is always ungrouped.
• Data frame attributes are not preserved, because reframe() fundamentally creates a new data

frame.

Connection to tibble

reframe() is theoretically connected to two functions in tibble, tibble::enframe() and tibble::deframe():

• enframe(): vector -> data frame
• deframe(): data frame -> vector
• reframe(): data frame -> data frame

reframe 93

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

See Also

Other single table verbs: arrange(), filter(), mutate(), rename(), select(), slice(), summarise()

Examples

table <- c("a", "b", "d", "f")

df <- tibble(
g = c(1, 1, 1, 2, 2, 2, 2),
x = c("e", "a", "b", "c", "f", "d", "a")

)

`reframe()` allows you to apply functions that return
an arbitrary number of rows
df |>

reframe(x = intersect(x, table))

Functions are applied per group, and each group can return a
different number of rows.
df |>

reframe(x = intersect(x, table), .by = g)

The output is always ungrouped, even when using `group_by()`
df |>

group_by(g) |>
reframe(x = intersect(x, table))

You can add multiple columns at once using a single expression by returning
a data frame.
quantile_df <- function(x, probs = c(0.25, 0.5, 0.75)) {

tibble(
val = quantile(x, probs, na.rm = TRUE),
quant = probs

)
}

x <- c(10, 15, 18, 12)
quantile_df(x)

starwars |>
reframe(quantile_df(height))

starwars |>
reframe(quantile_df(height), .by = homeworld)

94 relocate

starwars |>
reframe(
across(c(height, mass), quantile_df, .unpack = TRUE),
.by = homeworld

)

relocate Change column order

Description

Use relocate() to change column positions, using the same syntax as select() to make it easy
to move blocks of columns at once.

Usage

relocate(.data, ..., .before = NULL, .after = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <tidy-select> Columns to move.

.before, .after <tidy-select> Destination of columns selected by Supplying neither will
move columns to the left-hand side; specifying both is an error.

Value

An object of the same type as .data. The output has the following properties:

• Rows are not affected.

• The same columns appear in the output, but (usually) in a different place and possibly re-
named.

• Data frame attributes are preserved.

• Groups are not affected.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

rename 95

Examples

df <- tibble(a = 1, b = 1, c = 1, d = "a", e = "a", f = "a")
df |> relocate(f)
df |> relocate(a, .after = c)
df |> relocate(f, .before = b)
df |> relocate(a, .after = last_col())

relocated columns can change name
df |> relocate(ff = f)

Can also select variables based on their type
df |> relocate(where(is.character))
df |> relocate(where(is.numeric), .after = last_col())
Or with any other select helper
df |> relocate(any_of(c("a", "e", "i", "o", "u")))

When .before or .after refers to multiple variables they will be
moved to be immediately before/after the selected variables.
df2 <- tibble(a = 1, b = "a", c = 1, d = "a")
df2 |> relocate(where(is.numeric), .after = where(is.character))
df2 |> relocate(where(is.numeric), .before = where(is.character))

rename Rename columns

Description

rename() changes the names of individual variables using new_name = old_name syntax; rename_with()
renames columns using a function.

Usage

rename(.data, ...)

rename_with(.data, .fn, .cols = everything(), ...)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For rename(): <tidy-select> Use new_name = old_name to rename selected
variables.
For rename_with(): additional arguments passed onto .fn.

.fn A function used to transform the selected .cols. Should return a character
vector the same length as the input.

.cols <tidy-select> Columns to rename; defaults to all columns.

96 rename

Value

An object of the same type as .data. The output has the following properties:

• Rows are not affected.

• Column names are changed; column order is preserved.

• Data frame attributes are preserved.

• Groups are updated to reflect new names.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

See Also

Other single table verbs: arrange(), filter(), mutate(), reframe(), select(), slice(), summarise()

Examples

iris <- as_tibble(iris) # so it prints a little nicer
rename(iris, petal_length = Petal.Length)

Rename using a named vector and `all_of()`
lookup <- c(pl = "Petal.Length", sl = "Sepal.Length")
rename(iris, all_of(lookup))

If your named vector might contain names that don't exist in the data,
use `any_of()` instead
lookup <- c(lookup, new = "unknown")
try(rename(iris, all_of(lookup)))
rename(iris, any_of(lookup))

rename_with(iris, toupper)
rename_with(iris, toupper, starts_with("Petal"))
rename_with(iris, ~ tolower(gsub(".", "_", .x, fixed = TRUE)))

If your renaming function uses `paste0()`, make sure to set
`recycle0 = TRUE` to ensure that empty selections are recycled correctly
try(rename_with(

iris,
~ paste0("prefix_", .x),
starts_with("nonexistent")

))

rename_with(
iris,
~ paste0("prefix_", .x, recycle0 = TRUE),

rows 97

starts_with("nonexistent")
)

rows Manipulate individual rows

Description

These functions provide a framework for modifying rows in a table using a second table of data.
The two tables are matched by a set of key variables whose values typically uniquely identify each
row. The functions are inspired by SQL’s INSERT, UPDATE, and DELETE, and can optionally modify
in_place for selected backends.

• rows_insert() adds new rows (like INSERT). By default, key values in y must not exist in x.

• rows_append() works like rows_insert() but ignores keys.

• rows_update() modifies existing rows (like UPDATE). Key values in y must be unique, and,
by default, key values in y must exist in x.

• rows_patch() works like rows_update() but only overwrites NA values.

• rows_upsert() inserts or updates depending on whether or not the key value in y already
exists in x. Key values in y must be unique.

• rows_delete() deletes rows (like DELETE). By default, key values in y must exist in x.

Usage

rows_insert(
x,
y,
by = NULL,
...,
conflict = c("error", "ignore"),
copy = FALSE,
in_place = FALSE

)

rows_append(x, y, ..., copy = FALSE, in_place = FALSE)

rows_update(
x,
y,
by = NULL,
...,
unmatched = c("error", "ignore"),
copy = FALSE,
in_place = FALSE

)

98 rows

rows_patch(
x,
y,
by = NULL,
...,
unmatched = c("error", "ignore"),
copy = FALSE,
in_place = FALSE

)

rows_upsert(x, y, by = NULL, ..., copy = FALSE, in_place = FALSE)

rows_delete(
x,
y,
by = NULL,
...,
unmatched = c("error", "ignore"),
copy = FALSE,
in_place = FALSE

)

Arguments

x, y A pair of data frames or data frame extensions (e.g. a tibble). y must have the
same columns of x or a subset.

by An unnamed character vector giving the key columns. The key columns must
exist in both x and y. Keys typically uniquely identify each row, but this is
only enforced for the key values of y when rows_update(), rows_patch(), or
rows_upsert() are used.
By default, we use the first column in y, since the first column is a reasonable
place to put an identifier variable.

... Other parameters passed onto methods.

conflict For rows_insert(), how should keys in y that conflict with keys in x be han-
dled? A conflict arises if there is a key in y that already exists in x.
One of:

• "error", the default, will error if there are any keys in y that conflict with
keys in x.

• "ignore" will ignore rows in y with keys that conflict with keys in x.

copy If x and y are not from the same data source, and copy is TRUE, then y will be
copied into the same src as x. This allows you to join tables across srcs, but it is
a potentially expensive operation so you must opt into it.

in_place Should x be modified in place? This argument is only relevant for mutable
backends (e.g. databases, data.tables).
When TRUE, a modified version of x is returned invisibly; when FALSE, a new
object representing the resulting changes is returned.

rows 99

unmatched For rows_update(), rows_patch(), and rows_delete(), how should keys in
y that are unmatched by the keys in x be handled?
One of:

• "error", the default, will error if there are any keys in y that are unmatched
by the keys in x.

• "ignore" will ignore rows in y with keys that are unmatched by the keys
in x.

Value

An object of the same type as x. The order of the rows and columns of x is preserved as much as
possible. The output has the following properties:

• rows_update() and rows_patch() preserve the number of rows; rows_insert(), rows_append(),
and rows_upsert() return all existing rows and potentially new rows; rows_delete() re-
turns a subset of the rows.

• Columns are not added, removed, or relocated, though the data may be updated.

• Groups are taken from x.

• Data frame attributes are taken from x.

If in_place = TRUE, the result will be returned invisibly.

Methods

These function are generics, which means that packages can provide implementations (methods)
for other classes. See the documentation of individual methods for extra arguments and differences
in behaviour.

Methods available in currently loaded packages:

• rows_insert(): no methods found.

• rows_append(): no methods found.

• rows_update(): no methods found.

• rows_patch(): no methods found.

• rows_upsert(): no methods found.

• rows_delete(): no methods found.

Examples

data <- tibble(a = 1:3, b = letters[c(1:2, NA)], c = 0.5 + 0:2)
data

Insert
rows_insert(data, tibble(a = 4, b = "z"))

By default, if a key in `y` matches a key in `x`, then it can't be inserted
and will throw an error. Alternatively, you can ignore rows in `y`
containing keys that conflict with keys in `x` with `conflict = "ignore"`,
or you can use `rows_append()` to ignore keys entirely.

100 rowwise

try(rows_insert(data, tibble(a = 3, b = "z")))
rows_insert(data, tibble(a = 3, b = "z"), conflict = "ignore")
rows_append(data, tibble(a = 3, b = "z"))

Update
rows_update(data, tibble(a = 2:3, b = "z"))
rows_update(data, tibble(b = "z", a = 2:3), by = "a")

Variants: patch and upsert
rows_patch(data, tibble(a = 2:3, b = "z"))
rows_upsert(data, tibble(a = 2:4, b = "z"))

Delete and truncate
rows_delete(data, tibble(a = 2:3))
rows_delete(data, tibble(a = 2:3, b = "b"))

By default, for update, patch, and delete it is an error if a key in `y`
doesn't exist in `x`. You can ignore rows in `y` that have unmatched keys
with `unmatched = "ignore"`.
y <- tibble(a = 3:4, b = "z")
try(rows_update(data, y, by = "a"))
rows_update(data, y, by = "a", unmatched = "ignore")
rows_patch(data, y, by = "a", unmatched = "ignore")
rows_delete(data, y, by = "a", unmatched = "ignore")

rowwise Group input by rows

Description

rowwise() allows you to compute on a data frame a row-at-a-time. This is most useful when a
vectorised function doesn’t exist.

Most dplyr verbs preserve row-wise grouping. The exception is summarise(), which return a
grouped_df. You can explicitly ungroup with ungroup() or as_tibble(), or convert to a grouped_df
with group_by().

Usage

rowwise(data, ...)

Arguments

data Input data frame.

... <tidy-select> Variables to be preserved when calling summarise(). This is
typically a set of variables whose combination uniquely identify each row.
NB: unlike group_by() you can not create new variables here but instead you
can select multiple variables with (e.g.) everything().

rowwise 101

Value

A row-wise data frame with class rowwise_df. Note that a rowwise_df is implicitly grouped by
row, but is not a grouped_df.

List-columns

Because a rowwise has exactly one row per group it offers a small convenience for working with
list-columns. Normally, summarise() and mutate() extract a groups worth of data with [. But
when you index a list in this way, you get back another list. When you’re working with a rowwise
tibble, then dplyr will use [[instead of [to make your life a little easier.

See Also

nest_by() for a convenient way of creating rowwise data frames with nested data.

Examples

df <- tibble(x = runif(6), y = runif(6), z = runif(6))
Compute the mean of x, y, z in each row
df |> rowwise() |> mutate(m = mean(c(x, y, z)))
use c_across() to more easily select many variables
df |> rowwise() |> mutate(m = mean(c_across(x:z)))

Compute the minimum of x and y in each row
df |> rowwise() |> mutate(m = min(c(x, y, z)))
In this case you can use an existing vectorised function:
df |> mutate(m = pmin(x, y, z))
Where these functions exist they'll be much faster than rowwise
so be on the lookout for them.

rowwise() is also useful when doing simulations
params <- tribble(
~sim, ~n, ~mean, ~sd,

1, 1, 1, 1,
2, 2, 2, 4,
3, 3, -1, 2

)
Here I supply variables to preserve after the computation
params |>

rowwise(sim) |>
reframe(z = rnorm(n, mean, sd))

If you want one row per simulation, put the results in a list()
params |>

rowwise(sim) |>
summarise(z = list(rnorm(n, mean, sd)), .groups = "keep")

102 row_number

row_number Integer ranking functions

Description

Three ranking functions inspired by SQL2003. They differ primarily in how they handle ties:

• row_number() gives every input a unique rank, so that c(10, 20, 20, 30) would get ranks
c(1, 2, 3, 4). It’s equivalent to rank(ties.method = "first").

• min_rank() gives every tie the same (smallest) value so that c(10, 20, 20, 30) gets ranks
c(1, 2, 2, 4). It’s the way that ranks are usually computed in sports and is equivalent to
rank(ties.method = "min").

• dense_rank() works like min_rank(), but doesn’t leave any gaps, so that c(10, 20, 20,
30) gets ranks c(1, 2, 2, 3).

Usage

row_number(x)

min_rank(x)

dense_rank(x)

Arguments

x A vector to rank
By default, the smallest values will get the smallest ranks. Use desc() to reverse
the direction so the largest values get the smallest ranks.
Missing values will be given rank NA. Use coalesce(x, Inf) or coalesce(x,
-Inf) if you want to treat them as the largest or smallest values respectively.
To rank by multiple columns at once, supply a data frame.

Value

An integer vector.

See Also

Other ranking functions: ntile(), percent_rank()

Examples

x <- c(5, 1, 3, 2, 2, NA)
row_number(x)
min_rank(x)
dense_rank(x)

scoped 103

Ranking functions can be used in `filter()` to select top/bottom rows
df <- data.frame(

grp = c(1, 1, 1, 2, 2, 2, 3, 3, 3),
x = c(3, 2, 1, 1, 2, 2, 1, 1, 1),
y = c(1, 3, 2, 3, 2, 2, 4, 1, 2),
id = 1:9

)
Always gives exactly 1 row per group
df |> group_by(grp) |> filter(row_number(x) == 1)
May give more than 1 row if ties
df |> group_by(grp) |> filter(min_rank(x) == 1)
Rank by multiple columns (to break ties) by selecting them with `pick()`
df |> group_by(grp) |> filter(min_rank(pick(x, y)) == 1)
See slice_min() and slice_max() for another way to tackle the same problem

You can use row_number() without an argument to refer to the "current"
row number.
df |> group_by(grp) |> filter(row_number() == 1)

It's easiest to see what this does with mutate():
df |> group_by(grp) |> mutate(grp_id = row_number())

scoped Operate on a selection of variables

Description

[Superseded]

Scoped verbs (_if, _at, _all) have been superseded by the use of pick() or across() in an
existing verb. See vignette("colwise") for details.

The variants suffixed with _if, _at or _all apply an expression (sometimes several) to all variables
within a specified subset. This subset can contain all variables (_all variants), a vars() selection
(_at variants), or variables selected with a predicate (_if variants).

The verbs with scoped variants are:

• mutate(), transmute() and summarise(). See summarise_all().

• filter(). See filter_all().

• group_by(). See group_by_all().

• rename() and select(). See select_all().

• arrange(). See arrange_all()

There are three kinds of scoped variants. They differ in the scope of the variable selection on which
operations are applied:

• Verbs suffixed with _all() apply an operation on all variables.

104 scoped

• Verbs suffixed with _at() apply an operation on a subset of variables specified with the quot-
ing function vars(). This quoting function accepts tidyselect::vars_select() helpers
like starts_with(). Instead of a vars() selection, you can also supply an integerish vector
of column positions or a character vector of column names.

• Verbs suffixed with _if() apply an operation on the subset of variables for which a predicate
function returns TRUE. Instead of a predicate function, you can also supply a logical vector.

Arguments

.tbl A tbl object.

.funs A function fun, a quosure style lambda ~ fun(.) or a list of either form.

.vars A list of columns generated by vars(), a character vector of column names, a
numeric vector of column positions, or NULL.

.predicate A predicate function to be applied to the columns or a logical vector. The vari-
ables for which .predicate is or returns TRUE are selected. This argument
is passed to rlang::as_function() and thus supports quosure-style lambda
functions and strings representing function names.

... Additional arguments for the function calls in .funs. These are evaluated only
once, with tidy dots support.

Grouping variables

Most of these operations also apply on the grouping variables when they are part of the selection.
This includes:

• arrange_all(), arrange_at(), and arrange_if()

• distinct_all(), distinct_at(), and distinct_if()

• filter_all(), filter_at(), and filter_if()

• group_by_all(), group_by_at(), and group_by_if()

• select_all(), select_at(), and select_if()

This is not the case for summarising and mutating variants where operations are not applied on
grouping variables. The behaviour depends on whether the selection is implicit (all and if
selections) or explicit (at selections). Grouping variables covered by explicit selections (with
summarise_at(), mutate_at(), and transmute_at()) are always an error. For implicit selec-
tions, the grouping variables are always ignored. In this case, the level of verbosity depends on the
kind of operation:

• Summarising operations (summarise_all() and summarise_if()) ignore grouping variables
silently because it is obvious that operations are not applied on grouping variables.

• On the other hand it isn’t as obvious in the case of mutating operations (mutate_all(),
mutate_if(), transmute_all(), and transmute_if()). For this reason, they issue a mes-
sage indicating which grouping variables are ignored.

select 105

select Keep or drop columns using their names and types

Description

Select (and optionally rename) variables in a data frame, using a concise mini-language that makes
it easy to refer to variables based on their name (e.g. a:f selects all columns from a on the left to f
on the right) or type (e.g. where(is.numeric) selects all numeric columns).

Overview of selection features:
Tidyverse selections implement a dialect of R where operators make it easy to select variables:

• : for selecting a range of consecutive variables.
• ! for taking the complement of a set of variables.
• & and | for selecting the intersection or the union of two sets of variables.
• c() for combining selections.

In addition, you can use selection helpers. Some helpers select specific columns:

• everything(): Matches all variables.
• last_col(): Select last variable, possibly with an offset.
• group_cols(): Select all grouping columns.

Other helpers select variables by matching patterns in their names:

• starts_with(): Starts with a prefix.
• ends_with(): Ends with a suffix.
• contains(): Contains a literal string.
• matches(): Matches a regular expression.
• num_range(): Matches a numerical range like x01, x02, x03.

Or from variables stored in a character vector:

• all_of(): Matches variable names in a character vector. All names must be present, other-
wise an out-of-bounds error is thrown.

• any_of(): Same as all_of(), except that no error is thrown for names that don’t exist.

Or using a predicate function:

• where(): Applies a function to all variables and selects those for which the function returns
TRUE.

Usage

select(.data, ...)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <tidy-select> One or more unquoted expressions separated by commas. Vari-
able names can be used as if they were positions in the data frame, so expressions
like x:y can be used to select a range of variables.

106 select

Value

An object of the same type as .data. The output has the following properties:

• Rows are not affected.

• Output columns are a subset of input columns, potentially with a different order. Columns
will be renamed if new_name = old_name form is used.

• Data frame attributes are preserved.

• Groups are maintained; you can’t select off grouping variables.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

Examples

Here we show the usage for the basic selection operators. See the specific help pages to learn about
helpers like starts_with().

The selection language can be used in functions like dplyr::select(). Let’s first attach the tidy-
verse:

library(tidyverse)

For better printing
iris <- as_tibble(iris)

Select variables by name:

starwars |> select(height)
#> # A tibble: 87 x 1
#> height
#> <int>
#> 1 172
#> 2 167
#> 3 96
#> 4 202
#> # i 83 more rows

iris |> select(Sepal.Length)
#> # A tibble: 150 x 1
#> Sepal.Length
#> <dbl>
#> 1 5.1
#> 2 4.9
#> 3 4.7

select 107

#> 4 4.6
#> # i 146 more rows

Select multiple variables by separating them with commas. Note how the order of columns is
determined by the order of inputs:

starwars |> select(homeworld, height, mass)
#> # A tibble: 87 x 3
#> homeworld height mass
#> <chr> <int> <dbl>
#> 1 Tatooine 172 77
#> 2 Tatooine 167 75
#> 3 Naboo 96 32
#> 4 Tatooine 202 136
#> # i 83 more rows

iris |> select(Sepal.Length, Petal.Length)
#> # A tibble: 150 x 2
#> Sepal.Length Petal.Length
#> <dbl> <dbl>
#> 1 5.1 1.4
#> 2 4.9 1.4
#> 3 4.7 1.3
#> 4 4.6 1.5
#> # i 146 more rows

If you use a named vector to select columns, the output will have its columns renamed:

selection <- c(
new_homeworld = "homeworld",
new_height = "height",
new_mass = "mass"

)
starwars |> select(all_of(selection))
#> # A tibble: 87 x 3
#> new_homeworld new_height new_mass
#> <chr> <int> <dbl>
#> 1 Tatooine 172 77
#> 2 Tatooine 167 75
#> 3 Naboo 96 32
#> 4 Tatooine 202 136
#> # i 83 more rows

Operators::
The : operator selects a range of consecutive variables:

starwars |> select(name:mass)
#> # A tibble: 87 x 3
#> name height mass

108 select

#> <chr> <int> <dbl>
#> 1 Luke Skywalker 172 77
#> 2 C-3PO 167 75
#> 3 R2-D2 96 32
#> 4 Darth Vader 202 136
#> # i 83 more rows

The ! operator negates a selection:

starwars |> select(!(name:mass))
#> # A tibble: 87 x 11
#> hair_color skin_color eye_color birth_year sex gender homeworld species
#> <chr> <chr> <chr> <dbl> <chr> <chr> <chr> <chr>
#> 1 blond fair blue 19 male masculine Tatooine Human
#> 2 <NA> gold yellow 112 none masculine Tatooine Droid
#> 3 <NA> white, blue red 33 none masculine Naboo Droid
#> 4 none white yellow 41.9 male masculine Tatooine Human
#> # i 83 more rows
#> # i 3 more variables: films <list>, vehicles <list>, starships <list>

iris |> select(!c(Sepal.Length, Petal.Length))
#> # A tibble: 150 x 3
#> Sepal.Width Petal.Width Species
#> <dbl> <dbl> <fct>
#> 1 3.5 0.2 setosa
#> 2 3 0.2 setosa
#> 3 3.2 0.2 setosa
#> 4 3.1 0.2 setosa
#> # i 146 more rows

iris |> select(!ends_with("Width"))
#> # A tibble: 150 x 3
#> Sepal.Length Petal.Length Species
#> <dbl> <dbl> <fct>
#> 1 5.1 1.4 setosa
#> 2 4.9 1.4 setosa
#> 3 4.7 1.3 setosa
#> 4 4.6 1.5 setosa
#> # i 146 more rows

& and | take the intersection or the union of two selections:

iris |> select(starts_with("Petal") & ends_with("Width"))
#> # A tibble: 150 x 1
#> Petal.Width
#> <dbl>
#> 1 0.2
#> 2 0.2
#> 3 0.2
#> 4 0.2

setops 109

#> # i 146 more rows

iris |> select(starts_with("Petal") | ends_with("Width"))
#> # A tibble: 150 x 3
#> Petal.Length Petal.Width Sepal.Width
#> <dbl> <dbl> <dbl>
#> 1 1.4 0.2 3.5
#> 2 1.4 0.2 3
#> 3 1.3 0.2 3.2
#> 4 1.5 0.2 3.1
#> # i 146 more rows

To take the difference between two selections, combine the & and ! operators:

iris |> select(starts_with("Petal") & !ends_with("Width"))
#> # A tibble: 150 x 1
#> Petal.Length
#> <dbl>
#> 1 1.4
#> 2 1.4
#> 3 1.3
#> 4 1.5
#> # i 146 more rows

See Also

Other single table verbs: arrange(), filter(), mutate(), reframe(), rename(), slice(), summarise()

setops Set operations

Description

Perform set operations using the rows of a data frame.

• intersect(x, y) finds all rows in both x and y.

• union(x, y) finds all rows in either x or y, excluding duplicates.

• union_all(x, y) finds all rows in either x or y, including duplicates.

• setdiff(x, y) finds all rows in x that aren’t in y.

• symdiff(x, y) computes the symmetric difference, i.e. all rows in x that aren’t in y and all
rows in y that aren’t in x.

• setequal(x, y) returns TRUE if x and y contain the same rows (ignoring order).

Note that intersect(), union(), setdiff(), and symdiff() remove duplicates in x and y.

110 setops

Usage

intersect(x, y, ...)

union(x, y, ...)

union_all(x, y, ...)

setdiff(x, y, ...)

setequal(x, y, ...)

symdiff(x, y, ...)

Arguments

x, y Pair of compatible data frames. A pair of data frames is compatible if they have
the same column names (possibly in different orders) and compatible types.

... These dots are for future extensions and must be empty.

Base functions

intersect(), union(), setdiff(), and setequal() override the base functions of the same name
in order to make them generic. The existing behaviour for vectors is preserved by providing default
methods that call the base functions.

Examples

df1 <- tibble(x = 1:3)
df2 <- tibble(x = 3:5)

intersect(df1, df2)
union(df1, df2)
union_all(df1, df2)
setdiff(df1, df2)
setdiff(df2, df1)
symdiff(df1, df2)

setequal(df1, df2)
setequal(df1, df1[3:1,])

Note that the following functions remove pre-existing duplicates:
df1 <- tibble(x = c(1:3, 3, 3))
df2 <- tibble(x = c(3:5, 5))

intersect(df1, df2)
union(df1, df2)
setdiff(df1, df2)
symdiff(df1, df2)

slice 111

slice Subset rows using their positions

Description

slice() lets you index rows by their (integer) locations. It allows you to select, remove, and
duplicate rows. It is accompanied by a number of helpers for common use cases:

• slice_head() and slice_tail() select the first or last rows.

• slice_sample() randomly selects rows.

• slice_min() and slice_max() select rows with the smallest or largest values of a variable.

If .data is a grouped_df, the operation will be performed on each group, so that (e.g.) slice_head(df,
n = 5) will select the first five rows in each group.

Usage

slice(.data, ..., .by = NULL, .preserve = FALSE)

slice_head(.data, ..., n, prop, by = NULL)

slice_tail(.data, ..., n, prop, by = NULL)

slice_min(
.data,
order_by,
...,
n,
prop,
by = NULL,
with_ties = TRUE,
na_rm = FALSE

)

slice_max(
.data,
order_by,
...,
n,
prop,
by = NULL,
with_ties = TRUE,
na_rm = FALSE

)

slice_sample(.data, ..., n, prop, by = NULL, weight_by = NULL, replace = FALSE)

112 slice

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... For slice(): <data-masking> Integer row values.
Provide either positive values to keep, or negative values to drop. The values
provided must be either all positive or all negative. Indices beyond the number
of rows in the input are silently ignored.
For slice_*(), these arguments are passed on to methods.

.by, by <tidy-select> Optionally, a selection of columns to group by for just this op-
eration, functioning as an alternative to group_by(). For details and examples,
see ?dplyr_by.

.preserve Relevant when the .data input is grouped. If .preserve = FALSE (the default),
the grouping structure is recalculated based on the resulting data, otherwise the
grouping is kept as is.

n, prop Provide either n, the number of rows, or prop, the proportion of rows to select.
If neither are supplied, n = 1 will be used. If n is greater than the number of rows
in the group (or prop > 1), the result will be silently truncated to the group size.
prop will be rounded towards zero to generate an integer number of rows.
A negative value of n or prop will be subtracted from the group size. For exam-
ple, n = -2 with a group of 5 rows will select 5 - 2 = 3 rows; prop = -0.25 with
8 rows will select 8 * (1 - 0.25) = 6 rows.

order_by <data-masking> Variable or function of variables to order by. To order by
multiple variables, wrap them in a data frame or tibble.

with_ties Should ties be kept together? The default, TRUE, may return more rows than you
request. Use FALSE to ignore ties, and return the first n rows.

na_rm Should missing values in order_by be removed from the result? If FALSE, NA
values are sorted to the end (like in arrange()), so they will only be included if
there are insufficient non-missing values to reach n/prop.

weight_by <data-masking> Sampling weights. This must evaluate to a vector of non-
negative numbers the same length as the input. Weights are automatically stan-
dardised to sum to 1. See the Details section for more technical details regard-
ing these weights.

replace Should sampling be performed with (TRUE) or without (FALSE, the default) re-
placement.

Details

Slice does not work with relational databases because they have no intrinsic notion of row order. If
you want to perform the equivalent operation, use filter() and row_number().

For slice_sample(), note that the weights provided in weight_by are passed through to the prob
argument of base::sample.int(). This means they cannot be used to reconstruct summary statis-
tics from the underlying population. See this discussion for more details.

https://stats.stackexchange.com/q/639211/

slice 113

Value

An object of the same type as .data. The output has the following properties:

• Each row may appear 0, 1, or many times in the output.

• Columns are not modified.

• Groups are not modified.

• Data frame attributes are preserved.

Methods

These function are generics, which means that packages can provide implementations (methods)
for other classes. See the documentation of individual methods for extra arguments and differences
in behaviour.

Methods available in currently loaded packages:

• slice(): no methods found.

• slice_head(): no methods found.

• slice_tail(): no methods found.

• slice_min(): no methods found.

• slice_max(): no methods found.

• slice_sample(): no methods found.

See Also

Other single table verbs: arrange(), filter(), mutate(), reframe(), rename(), select(),
summarise()

Examples

Similar to head(mtcars, 1):
mtcars |> slice(1L)
Similar to tail(mtcars, 1):
mtcars |> slice(n())
mtcars |> slice(5:n())
Rows can be dropped with negative indices:
slice(mtcars, -(1:4))

First and last rows based on existing order
mtcars |> slice_head(n = 5)
mtcars |> slice_tail(n = 5)

Rows with minimum and maximum values of a variable
mtcars |> slice_min(mpg, n = 5)
mtcars |> slice_max(mpg, n = 5)

slice_min() and slice_max() may return more rows than requested
in the presence of ties.
mtcars |> slice_min(cyl, n = 1)

114 sql

Use with_ties = FALSE to return exactly n matches
mtcars |> slice_min(cyl, n = 1, with_ties = FALSE)
Or use additional variables to break the tie:
mtcars |> slice_min(tibble(cyl, mpg), n = 1)

slice_sample() allows you to random select with or without replacement
mtcars |> slice_sample(n = 5)
mtcars |> slice_sample(n = 5, replace = TRUE)

slice_sample() can be used to shuffle rows with `prop = 1`
mtcars |> slice_sample(prop = 1)

You can optionally weight by a variable - this code weights by the
physical weight of the cars, so heavy cars are more likely to get
selected.
mtcars |> slice_sample(weight_by = wt, n = 5)

Group wise operation --
df <- tibble(

group = rep(c("a", "b", "c"), c(1, 2, 4)),
x = runif(7)

)

All slice helpers operate per group, silently truncating to the group
size, so the following code works without error
df |> group_by(group) |> slice_head(n = 2)

When specifying the proportion of rows to include non-integer sizes
are rounded down, so group a gets 0 rows
df |> group_by(group) |> slice_head(prop = 0.5)

Filter equivalents --
slice() expressions can often be written to use `filter()` and
`row_number()`, which can also be translated to SQL. For many databases,
you'll need to supply an explicit variable to use to compute the row number.
filter(mtcars, row_number() == 1L)
filter(mtcars, row_number() == n())
filter(mtcars, between(row_number(), 5, n()))

sql SQL escaping.

Description

These functions are critical when writing functions that translate R functions to sql functions. Typ-
ically a conversion function should escape all its inputs and return an sql object.

Usage

sql(...)

starwars 115

Arguments

... Character vectors that will be combined into a single SQL expression.

starwars Starwars characters

Description

The original data, from SWAPI, the Star Wars API, https://swapi.py4e.com/, has been revised
to reflect additional research into gender and sex determinations of characters.

Usage

starwars

Format

A tibble with 87 rows and 14 variables:

name Name of the character

height Height (cm)

mass Weight (kg)

hair_color,skin_color,eye_color Hair, skin, and eye colors

birth_year Year born (BBY = Before Battle of Yavin)

sex The biological sex of the character, namely male, female, hermaphroditic, or none (as in the
case for Droids).

gender The gender role or gender identity of the character as determined by their personality or
the way they were programmed (as in the case for Droids).

homeworld Name of homeworld

species Name of species

films List of films the character appeared in

vehicles List of vehicles the character has piloted

starships List of starships the character has piloted

Examples

starwars

https://swapi.py4e.com/

116 storms

storms Storm tracks data

Description

This dataset is the NOAA Atlantic hurricane database best track data, https://www.nhc.noaa.
gov/data/#hurdat. The data includes the positions and attributes of storms from 1975-2024.
Storms from 1979 onward are measured every six hours during the lifetime of the storm. Storms in
earlier years have some missing data.

Usage

storms

Format

A tibble with 20,778 observations and 13 variables:

name Storm Name

year,month,day Date of report

hour Hour of report (in UTC)

lat,long Location of storm center

status Storm classification (Tropical Depression, Tropical Storm, or Hurricane)

category Saffir-Simpson hurricane category calculated from wind speed.

• NA: Not a hurricane
• 1: 64+ knots
• 2: 83+ knots
• 3: 96+ knots
• 4: 113+ knots
• 5: 137+ knots

wind storm’s maximum sustained wind speed (in knots)

pressure Air pressure at the storm’s center (in millibars)

tropicalstorm_force_diameter Diameter (in nautical miles) of the area experiencing tropical storm
strength winds (34 knots or above). Only available starting in 2004.

hurricane_force_diameter Diameter (in nautical miles) of the area experiencing hurricane strength
winds (64 knots or above). Only available starting in 2004.

See Also

The script to create the storms data set: https://github.com/tidyverse/dplyr/blob/main/
data-raw/storms.R

https://www.nhc.noaa.gov/data/#hurdat
https://www.nhc.noaa.gov/data/#hurdat
https://github.com/tidyverse/dplyr/blob/main/data-raw/storms.R
https://github.com/tidyverse/dplyr/blob/main/data-raw/storms.R

summarise 117

Examples

storms

Show a few recent storm paths
if (requireNamespace("ggplot2", quietly = TRUE)) {

library(ggplot2)
storms |>
filter(year >= 2000) |>
ggplot(aes(long, lat, color = paste(year, name))) +
geom_path(show.legend = FALSE) +
facet_wrap(~year)

}

storms

summarise Summarise each group down to one row

Description

summarise() creates a new data frame. It returns one row for each combination of grouping vari-
ables; if there are no grouping variables, the output will have a single row summarising all observa-
tions in the input. It will contain one column for each grouping variable and one column for each
of the summary statistics that you have specified.

summarise() and summarize() are synonyms.

Usage

summarise(.data, ..., .by = NULL, .groups = NULL)

summarize(.data, ..., .by = NULL, .groups = NULL)

Arguments

.data A data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g.
from dbplyr or dtplyr). See Methods, below, for more details.

... <data-masking> Name-value pairs of summary functions. The name will be
the name of the variable in the result.
The value can be:

• A vector of length 1, e.g. min(x), n(), or sum(is.na(y)).
• A data frame with 1 row, to add multiple columns from a single expression.

.by <tidy-select> Optionally, a selection of columns to group by for just this op-
eration, functioning as an alternative to group_by(). For details and examples,
see ?dplyr_by.

.groups [Experimental] Grouping structure of the result.

118 summarise

• "drop_last": drops the last level of grouping. This was the only supported
option before version 1.0.0.

• "drop": All levels of grouping are dropped.
• "keep": Same grouping structure as .data.
• "rowwise": Each row is its own group.

When .groups is not specified, it is set to "drop_last" for a grouped data
frame, and "keep" for a rowwise data frame. In addition, a message informs
you of how the result will be grouped unless the result is ungrouped, the option
"dplyr.summarise.inform" is set to FALSE, or when summarise() is called
from a function in a package.

Value

An object usually of the same type as .data.

• The rows come from the underlying group_keys().

• The columns are a combination of the grouping keys and the summary expressions that you
provide.

• The grouping structure is controlled by the .groups= argument, the output may be another
grouped_df, a tibble or a rowwise data frame.

• Data frame attributes are not preserved, because summarise() fundamentally creates a new
data frame.

Useful functions

• Center: mean(), median()

• Spread: sd(), IQR(), mad()

• Range: min(), max(),

• Position: first(), last(), nth(),

• Count: n(), n_distinct()

• Logical: any(), all()

Backend variations

The data frame backend supports creating a variable and using it in the same summary. This means
that previously created summary variables can be further transformed or combined within the sum-
mary, as in mutate(). However, it also means that summary variables with the same names as
previous variables overwrite them, making those variables unavailable to later summary variables.

This behaviour may not be supported in other backends. To avoid unexpected results, consider
using new names for your summary variables, especially when creating multiple summaries.

Methods

This function is a generic, which means that packages can provide implementations (methods) for
other classes. See the documentation of individual methods for extra arguments and differences in
behaviour.

The following methods are currently available in loaded packages: no methods found.

tbl 119

See Also

Other single table verbs: arrange(), filter(), mutate(), reframe(), rename(), select(),
slice()

Examples

A summary applied to ungrouped tbl returns a single row
mtcars |>

summarise(mean = mean(disp), n = n())

Usually, you'll want to group first
mtcars |>

group_by(cyl) |>
summarise(mean = mean(disp), n = n())

Each summary call removes one grouping level (since that group
is now just a single row)
mtcars |>

group_by(cyl, vs) |>
summarise(cyl_n = n()) |>
group_vars()

BEWARE: reusing variables may lead to unexpected results
mtcars |>

group_by(cyl) |>
summarise(disp = mean(disp), sd = sd(disp))

Refer to column names stored as strings with the `.data` pronoun:
var <- "mass"
summarise(starwars, avg = mean(.data[[var]], na.rm = TRUE))
Learn more in ?rlang::args_data_masking

tbl Create a table from a data source

Description

This is a generic method that dispatches based on the first argument.

Usage

tbl(src, ...)

is.tbl(x)

120 when-any-all

Arguments

src A data source

... Other arguments passed on to the individual methods

x Any object

vars Select variables

Description

[Superseded]
vars() is superseded because it is only needed for the scoped verbs (i.e. mutate_at(), summarise_at(),
and friends), which have been been superseded in favour of across(). See vignette("colwise")
for details.

This helper is intended to provide tidy-select semantics for scoped verbs like mutate_at() and
summarise_at(). Note that anywhere you can supply vars() specification, you can also supply a
numeric vector of column positions or a character vector of column names.

Usage

vars(...)

Arguments

... <tidy-select> Variables to operate on.

See Also

all_vars() and any_vars() for other quoting functions that you can use with scoped verbs.

when-any-all Elementwise any() and all()

Description

These functions are variants of any() and all() that work elementwise across multiple inputs. You
can also think of these functions as generalizing | and & to any number of inputs, rather than just
two, for example:

• when_any(x, y, z) is equivalent to x | y | z.

• when_all(x, y, z) is equivalent to x & y & z.

when_any() is particularly useful within filter() and filter_out() to specify comma separated
conditions combined with | rather than &.

when-any-all 121

Usage

when_any(..., na_rm = FALSE, size = NULL)

when_all(..., na_rm = FALSE, size = NULL)

Arguments

... Logical vectors of equal size.

na_rm Missing value handling:

• If FALSE, missing values are propagated according to the same rules as |
and &.

• If TRUE, missing values are removed from the elementwise computation.

size An optional output size. Only useful to specify if it is possible for ... to be
empty, with no inputs provided.

Details

when_any() and when_all() are "parallel" versions of any() and all() in the same way that
pmin() and pmax() are "parallel" versions of min() and max().

See Also

base::any(), base::all(), cumany(), cumall(), base::pmin(), base::pmax()

Examples

x <- c(TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, NA, NA, NA)
y <- c(TRUE, FALSE, NA, TRUE, FALSE, NA, TRUE, FALSE, NA)

`any()` and `all()` summarise down to 1 value
any(x, y)
all(x, y)

`when_any()` and `when_all()` work element by element across all inputs
at the same time. Their defaults are equivalent to calling `|` or `&`.
when_any(x, y)
x | y

when_all(x, y)
x & y

`na_rm = TRUE` is useful when you'd like to force these functions to
return only `TRUE` or `FALSE`. This argument does so by removing any `NA`
from the elementwise computation entirely.
tibble(

x = x,
y = y,
any_propagate = when_any(x, y),
any_remove = when_any(x, y, na_rm = TRUE),
all_propagate = when_all(x, y),

122 when-any-all

all_remove = when_all(x, y, na_rm = TRUE)
)

With `filter()` and `filter_out()`

`when_any()` is particularly useful inside of `filter()` and
`filter_out()` as a way to combine comma separated conditions with `|`
instead of with `&`.

countries <- tibble(
name = c("US", "CA", "PR", "RU", "US", NA, "CA", "PR", "RU"),
score = c(200, 100, 150, NA, 50, 100, 300, 250, 120)

)
countries

Find rows where any of the following are true:
- "US" and "CA" have a score between 200-300
- "PR" and "RU" have a score between 100-200
countries |>

filter(
(name %in% c("US", "CA") & between(score, 200, 300)) |

(name %in% c("PR", "RU") & between(score, 100, 200))
)

With `when_any()`, you drop the explicit `|`, the extra `()`, and your
conditions are all indented to the same level
countries |>

filter(when_any(
name %in% c("US", "CA") & between(score, 200, 300),
name %in% c("PR", "RU") & between(score, 100, 200)

))

To drop these rows instead, use `filter_out()`
countries |>

filter_out(when_any(
name %in% c("US", "CA") & between(score, 200, 300),
name %in% c("PR", "RU") & between(score, 100, 200)

))

Programming with `when_any()` and `when_all()`

The `size` argument is useful for making these functions size stable when
you aren't sure how many inputs you're going to receive
size <- length(x)

Two inputs
inputs <- list(x, y)
when_all(!!!inputs, size = size)

One input
inputs <- list(x)

when-any-all 123

when_all(!!!inputs, size = size)

Zero inputs (without `size`, this would return `logical()`)
inputs <- list()
when_all(!!!inputs, size = size)

When no inputs are provided, these functions are consistent with `any()`
and `all()`
any()
when_any(size = 1)

all()
when_all(size = 1)

Index

∗ datasets
band_members, 11
starwars, 115
storms, 116

∗ grouping functions
group_by, 45
group_map, 49
group_trim, 51

∗ joins
cross_join, 28
filter-joins, 43
mutate-joins, 63
nest_join, 71

∗ ranking functions
ntile, 76
percent_rank, 79
row_number, 102

∗ single table verbs
arrange, 9
filter, 38
mutate, 59
reframe, 91
rename, 95
select, 105
slice, 111
summarise, 117

+, 61
==, 41
>, 41
>=, 41
?dplyr_by, 39, 60, 92, 112, 117
?join_by, 44, 66, 72
&, 41, 120

across, 3
across(), 8, 24, 30, 80, 103, 120
add_count (count), 26
add_tally (count), 26
all(), 118, 120, 121
all_of(), 105

all_vars, 8
all_vars(), 120
anti_join (filter-joins), 43
anti_join(), 73
any(), 118, 120, 121
any_of(), 105
any_vars (all_vars), 8
any_vars(), 120
arrange, 9, 42, 61, 93, 96, 109, 113, 119
arrange(), 31, 37, 46, 103, 112
arrange_all(), 103, 104
arrange_at(), 104
arrange_if(), 104
as_tibble(), 100
auto_copy, 11

band_instruments (band_members), 11
band_instruments2 (band_members), 11
band_members, 11
base::all(), 121
base::any(), 121
base::pmax(), 121
base::pmin(), 121
base::sample.int(), 112
between, 12
between(), 41
bind (bind_rows), 14
bind_cols, 13
bind_rows, 14

c_across, 30
c_across(), 6
case-and-replace-when, 15
case_when (case-and-replace-when), 15
case_when(), 61, 83, 86, 88
cast, 15, 70, 87
closest (join_by), 54
coalesce, 20
coalesce(), 61, 70
collapse (compute), 21

124

INDEX 125

collect (compute), 21
collect(), 25
compute, 21
consecutive_id, 23
contains(), 105
context, 23
copy_to, 25
copy_to(), 22
count, 26
count(), 37
cross_join, 28, 44, 68, 74
cross_join(), 44, 55, 66, 72
cumall, 29
cumall(), 61, 121
cumany (cumall), 29
cumany(), 61, 121
cume_dist (percent_rank), 79
cume_dist(), 61
cummax(), 61
cummean (cumall), 29
cummean(), 61
cummin(), 61
cumsum(), 61
cur_column (context), 23
cur_column(), 4
cur_group (context), 23
cur_group(), 4
cur_group_id (context), 23
cur_group_rows (context), 23

data-masking, 34
dense_rank (row_number), 102
dense_rank(), 61
desc, 31
desc(), 9, 76, 79, 102
distinct, 31
distinct(), 37
distinct_all(), 104
distinct_at(), 104
distinct_if(), 104
do(), 50
dplyr-locale, 9
dplyr_by, 33

ends_with(), 105
everything(), 105
explain, 37

filter, 10, 38, 61, 93, 96, 109, 113, 119

filter(), 51, 103, 112, 120
filter-joins, 43
filter_all(), 8, 103, 104
filter_at(), 104
filter_if(), 8, 104
filter_out (filter), 38
filter_out(), 120
first (nth), 74
first(), 118
full_join (mutate-joins), 63

glimpse, 45
group_by, 45, 50, 52
group_by(), 27, 33, 37, 39, 51, 60, 92, 100,

103, 112, 117
group_by_all(), 103, 104
group_by_at(), 104
group_by_drop_default(), 46
group_by_if(), 104
group_cols, 48
group_cols(), 105
group_data(), 24
group_keys(), 50, 118
group_map, 47, 49, 52
group_modify (group_map), 49
group_nest, 47, 50, 52
group_split, 47, 50, 52
group_trim, 47, 50, 51
group_vars(), 49
group_walk (group_map), 49
grouped data frame, 51, 52
grouped_df, 46, 100, 111, 118
groups(), 49

ident, 52
if-else, 53
if_all (across), 3
if_any (across), 3
if_else, 53
if_else(), 15, 61, 83
ifelse(), 53
inner_join (mutate-joins), 63
inner_join(), 73
integerish, 104
intersect (setops), 109
IQR(), 118
is.na(), 41
is.tbl (tbl), 119

126 INDEX

join, 13
join (mutate-joins), 63
join_by, 54
join_by(), 12, 43, 44, 65, 66, 72

lag (lead-lag), 58
lag(), 61
last (nth), 74
last(), 118
last_col(), 105
lead (lead-lag), 58
lead(), 61
lead-lag, 58
left_join (mutate-joins), 63
left_join(), 54, 73
locale, 9
log(), 61

mad(), 118
match(), 44, 66, 73
matches(), 105
max(), 118, 121
mean(), 118
median(), 118
merge(), 44, 66, 73
min(), 118, 121
min_rank (row_number), 102
min_rank(), 61
mutate, 10, 42, 59, 93, 96, 109, 113, 119
mutate(), 3, 4, 24, 30, 80, 92, 103, 118
mutate-joins, 63
mutate_all(), 104
mutate_at(), 104, 120
mutate_if(), 104
mutating joins, 28

n (context), 23
n(), 118
n_distinct, 77
n_distinct(), 118
na_if, 69
na_if(), 21, 61
near, 71
near(), 41
nest_by(), 101
nest_join, 28, 44, 68, 71
nested, 50
nth, 74
nth(), 118

ntile, 76, 79, 102
ntile(), 61
num_range(), 105

order_by, 78
overlaps (join_by), 54

percent_rank, 76, 79, 102
percent_rank(), 61
pick, 80
pick(), 3, 24, 103
pillar::glimpse(), 45
pmax(), 121
pmin(), 121
print(), 37
pull, 81
pull(), 37

quasiquotation, 82

recode, 82
recode(), 61
recode-and-replace-values, 86
recode_factor (recode), 82
recode_values

(recode-and-replace-values), 86
recode_values(), 16, 83
recycled, 13, 15, 20, 53, 70, 87
reframe, 10, 42, 61, 91, 96, 109, 113, 119
relocate, 94
relocate(), 60
rename, 10, 42, 61, 93, 95, 109, 113, 119
rename(), 37, 103
rename_with (rename), 95
replace_values

(recode-and-replace-values), 86
replace_values(), 21, 70, 83
replace_when (case-and-replace-when), 15
replace_when(), 21, 70
right_join (mutate-joins), 63
rlang::as_function(), 104
row_number, 76, 79, 102
row_number(), 61, 112
rows, 97
rows_append (rows), 97
rows_delete (rows), 97
rows_insert (rows), 97
rows_patch (rows), 97
rows_update (rows), 97

INDEX 127

rows_upsert (rows), 97
rowwise, 100, 118
rowwise(), 30

scoped, 103
sd(), 118
select, 10, 42, 61, 93, 96, 105, 113, 119
select(), 3, 37, 48, 80, 103
select_all(), 103, 104
select_at(), 104
select_if(), 104
semi_join (filter-joins), 43
semi_join(), 73
setdiff (setops), 109
setequal (setops), 109
setops, 109
show_query (explain), 37
slice, 10, 42, 61, 93, 96, 109, 111, 119
slice_head (slice), 111
slice_max (slice), 111
slice_min (slice), 111
slice_sample (slice), 111
slice_tail (slice), 111
split, 50
sql, 114
starts_with(), 104–106
starwars, 115
storms, 116
str(), 37, 45
stringi::stri_locale_list(), 9, 47
summarise, 10, 42, 61, 93, 96, 109, 113, 117
summarise(), 3, 4, 24, 30, 33, 46, 80, 92, 100,

103
summarise_all(), 103, 104
summarise_at(), 104, 120
summarise_if(), 104
summarize (summarise), 117
switch(), 83
symdiff (setops), 109

tally (count), 26
tbl, 119
tbl(), 46
tibble, 118
tibble::deframe(), 92
tibble::enframe(), 92
tidy dots, 104
tidy-select, 34, 35
tidyr::unnest(), 73

tidyselect::vars_select(), 104
transmute(), 103
transmute_all(), 104
transmute_at(), 104
transmute_if(), 104

ungroup (group_by), 45
ungroup(), 33, 100
union (setops), 109
union_all (setops), 109
unique.data.frame(), 31
unpack, 4

vars, 120
vars(), 9, 48, 103, 104
vctrs::vec_as_names(), 13
vctrs::vec_c(), 30
vctrs::vec_case_when(), 16
vctrs::vec_cast_common(), 12
vctrs::vec_if_else(), 53
vctrs::vec_recode_values(), 88

when-any-all, 120
when_all (when-any-all), 120
when_all(), 41
when_any (when-any-all), 120
when_any(), 38, 39, 41
where(), 105
with_order(), 78
within (join_by), 54

xor(), 41

	across
	all_vars
	arrange
	auto_copy
	band_members
	between
	bind_cols
	bind_rows
	case-and-replace-when
	coalesce
	compute
	consecutive_id
	context
	copy_to
	count
	cross_join
	cumall
	c_across
	desc
	distinct
	dplyr_by
	explain
	filter
	filter-joins
	glimpse
	group_by
	group_cols
	group_map
	group_trim
	ident
	if_else
	join_by
	lead-lag
	mutate
	mutate-joins
	na_if
	near
	nest_join
	nth
	ntile
	n_distinct
	order_by
	percent_rank
	pick
	pull
	recode
	recode-and-replace-values
	reframe
	relocate
	rename
	rows
	rowwise
	row_number
	scoped
	select
	setops
	slice
	sql
	starwars
	storms
	summarise
	tbl
	vars
	when-any-all
	Index

