
Package ‘drf’
January 21, 2026

Title Distributional Random Forests

Version 1.3.0

BugReports https://github.com/lorismichel/drf/issues

Description An implementation of distributional random forests as introduced in Ce-
vid & Michel & Naf & Meinshausen & Buhlmann (2022) <doi:10.48550/arXiv.2005.14458>.

License GPL-3

LinkingTo Rcpp, RcppEigen

Depends R (>= 3.4.4)

Imports stats, fastDummies, Matrix, methods, Rcpp (>= 0.12.15),
transport

RoxygenNote 7.3.3

Suggests DiagrammeR

SystemRequirements GNU make

URL https://github.com/lorismichel/drf

NeedsCompilation yes

Author Jeffrey Naf [cre],
Loris Michel [aut],
Domagoj Cevid [aut]

Maintainer Jeffrey Naf <jeffrey.naf@unige.ch>

Repository CRAN

Date/Publication 2026-01-21 08:00:14 UTC

Contents
drf . 2
get_sample_weights . 5
get_tree . 7
leaf_stats.default . 8
leaf_stats.drf . 8
medianHeuristic . 9

1

https://github.com/lorismichel/drf/issues
https://doi.org/10.48550/arXiv.2005.14458
https://github.com/lorismichel/drf

2 drf

plot.drf_tree . 9
predict.drf . 10
print.drf . 14
print.drf_tree . 15
split_frequencies . 15
variableImportance . 16
variable_importance . 17
weighted.quantile . 17

Index 19

drf Distributional Random Forests

Description

Trains a Distributional Random Forest which estimates the full conditional distribution P (Y |X)
for possibly multivariate response Y and predictors X. The conditional distribution estimate is rep-
resented as a weighted distribution of the training data. The weights can be conveniently used in
the downstream analysis to estimate any quantity of interest τ(P (Y |X)).

Usage

drf(
X,
Y,
num.trees = 3000,
splitting.rule = "FourierMMD",
num.features = 10,
bandwidth = NULL,
response.scaling = TRUE,
node.scaling = FALSE,
sample.weights = NULL,
sample.fraction = 0.5,
mtry = min(ceiling(sqrt(ncol(X)) + 20), ncol(X)),
min.node.size = 15,
honesty = TRUE,
honesty.fraction = 0.5,
honesty.prune.leaves = TRUE,
alpha = 0.05,
imbalance.penalty = 0,
compute.oob.predictions = FALSE,
num.threads = NULL,
seed = stats::runif(1, 0, .Machine$integer.max),
compute.variable.importance = FALSE,
ci.group.size = as.integer(num.trees/30)

)

drf 3

Arguments

X The covariates used in the regression. Can be either a numeric matrix or a
data.frame with numeric, factor, or character columns, where the last two will
be one-hot-encoded.

Y The (multivariate) outcome variable. Needs to be a matrix or a data frame con-
sisting of numeric values.

num.trees Number of trees grown in the forest. Default is 3000.

splitting.rule A character value. The type of the splitting rule used, can be either "Fourier-
MMD" (MMD splitting criterion with FastMMD approximation for speed) or
"CART" (sum of standard CART criteria over the components of Y).

num.features A numeric value, in case of "FourierMMD", the number of random features to
sample.

bandwidth A numeric value, the bandwidth of the Gaussian kernel used in case of "Fouri-
erMMD", the value is set to NULL by default and the square root of the median
heuristic is used.

response.scaling

A boolean value, should the responses be standardized before fitting the forest.
Default is TRUE.

node.scaling A boolean value, should the responses be standardized in every node of every
tree. Default is FALSE.

sample.weights (experimental) Weights given to an observation in estimation. If NULL, each
observation is given the same weight. Default is NULL.

sample.fraction

Fraction of the data used to build each tree. Note: If honesty = TRUE, these
subsamples will further be cut by a factor of honesty.fraction. Default is 0.5.

mtry Number of variables tried for each split. Default is
√
p + 20, where p is the

number of predictors.

min.node.size A target for the minimum number of observations in each tree leaf. Note that
nodes with size smaller than min.node.size can occur, as in the original random-
Forest package. Default is 5.

honesty Whether to use honest splitting (i.e., sub-sample splitting). Default is TRUE.
For a detailed description of honesty, honesty.fraction, honesty.prune.leaves, and
recommendations for parameter tuning, see the GRF reference for more infor-
mation (the original source).

honesty.fraction

The fraction of data that will be used for determining splits if honesty = TRUE.
Default is 0.5 (i.e. half of the data is used for determining splits and the other
half for populating the nodes of the tree).

honesty.prune.leaves

If TRUE, prunes the estimation sample tree such that no leaves are empty. If
FALSE, keeps the same tree as determined in the splits sample (if an empty
leave is encountered, that tree is skipped and does not contribute to the estimate).
Setting this to FALSE may improve performance on small/marginally powered
data, but requires more trees (note: tuning does not adjust the number of trees).
Only applies if honesty is enabled. Default is TRUE.

https://grf-labs.github.io/grf/REFERENCE.html#honesty-honesty-fraction-honesty-prune-leaves

4 drf

alpha A tuning parameter that controls the maximum imbalance of a split. Default is
0.05, meaning a child node will contain at most 5% of observations in the parent
node.

imbalance.penalty

A tuning parameter that controls how harshly imbalanced splits are penalized.
Default is 0.

compute.oob.predictions

Whether OOB predictions on training set should be precomputed.

num.threads Number of threads used in training. By default, the number of threads is set to
the maximum hardware concurrency.

seed The seed of the C++ random number generator.
compute.variable.importance

boolean, should the variable importance be computed in the object.

ci.group.size The forest will grow ci.group.size trees on each subsample. In order to provide
confidence intervals, ci.group.size must be at least 2. Defaults to num.trees/30
which yields 30 CI groups.

Value

A trained Distributional Random Forest object.

See Also

See predict.drf for how to make predictions, including uncertainty weights.

Examples

library(drf)

n = 1000
p = 20
d = 3

Generate training data
X = matrix(rnorm(n * p), nrow=n)
Y = matrix(rnorm(n * d), nrow=n)
Y[, 1] = Y[, 1] + X[, 1]
Y[, 2] = Y[, 2] * X[, 2]
Y[, 3] = Y[, 3] * X[, 1] + X[, 2]

Fit DRF object
drf.forest = drf(X, Y)

Generate test data
X_test = matrix(rnorm(10 * p), nrow=10)

out = predict(drf.forest, newdata=X_test)
Compute E[Y_1 | X] for all data in X_test directly from
the weights representing the estimated distribution
out$weights %*% out$y[,1]

get_sample_weights 5

out = predict(drf.forest, newdata=X_test,
functional='mean')

Compute E[Y_1 | X] for all data in X_test using built-in functionality
out[,1]

out = predict(drf.forest, newdata=X_test,
functional='quantile',
quantiles=c(0.25, 0.75),
transformation=function(y){y[1] * y[2] * y[3]})

Compute 25% and 75% quantiles of Y_1*Y_2*Y_3, conditionally on X = X_test[1,]
out[1,,]

out = predict(drf.forest, newdata=X_test,
functional='cov',
transformation=function(y){matrix(1:6, nrow=2) %*% y})

Compute 2x2 covariance matrix for (1*Y_1 + 3*Y_2 + 5*Y_3, 2*Y_1 + 4*Y_2 + 6*Y_3),
conditionally on X = X_test[1,]
out[1,,]

out = predict(drf.forest, newdata=X_test,
functional='custom',
custom.functional=function(y, w){c(sum(y[, 1] * w), sum(y[, 2] * w))})

Compute E[Y_1, Y_2 | X] for all data in X_test by providing custom functional that
computes it from the weights
out

get_sample_weights Given a trained forest and test data, compute the training sample
weights for each test point.

Description

During normal prediction, these weights are computed as an intermediate step towards producing
estimates. This function allows for examining the weights directly, so they could be potentially be
used as the input to a different analysis.

Usage

get_sample_weights(
forest,
newdata = NULL,
estimate.uncertainty = FALSE,
num.threads = NULL

)

6 get_sample_weights

Arguments

forest The trained forest.

newdata Points at which predictions should be made. If NULL, makes out-of-bag predic-
tions on the training set instead (i.e., provides predictions at Xi using only trees
that did not use the i-th training example).

estimate.uncertainty

Whether to return a single weight for each sample or return B weight vectors
calculated on B CI groups for each sample. See Details and return value docu.

num.threads Number of threads used in training. If set to NULL, the software automatically
selects an appropriate amount.

Details

To estimate the uncertainty, a set of B=(num.trees)/(ci.group.size) weights is produced for
each sample when estimate.uncertainty=TRUE. These B weights arise from B subforests (CI
groups) inside the estimation routine and may be seen as bootstrap approximation to the estima-
tion uncertainty of the DRF estimator. As such, they can be used to build confidence intervals for
functionals. For instance, for univariate functionals, one may calculate one functional per weight to
obtain B estimates, with which the variance can be calculated. Then the usual normal approxima-
tion can be used to construct confidence intervals for said functional. Uncertainty weights are not
available OOB.

Value
estimate.uncertainty=FALSE

A sparse matrix where each row represents a test sample, and each column is a
sample in the training data. The value at (i, j) gives the weight of training sample
j for test sample i.

estimate.uncertainty=TRUE

A list of length nrow(test sample) where each item is a B x w sparse matrix,
where B is the number of CI groups and w=nrow(Y). This matrix essentially
contains B separate weight vectors, one in each row.

Examples

Not run:
p <- 10
n <- 100
X <- matrix(2 * runif(n * p) - 1, n, p)
Y <- (X[, 1] > 0) + 2 * rnorm(n)
rrf <- drf(X, matrix(Y,ncol=1), mtry = p)
sample.weights.oob <- get_sample_weights(rrf)

n.test <- 15
X.test <- matrix(2 * runif(n.test * p) - 1, n.test, p)
sample.weights <- get_sample_weights(rrf, X.test)

End(Not run)

get_tree 7

get_tree Retrieve a single tree from a trained forest object.

Description

Retrieve a single tree from a trained forest object.

Usage

get_tree(forest, index)

Arguments

forest The trained forest.

index The index of the tree to retrieve.

Value

A DRF tree object containing the below attributes. drawn_samples: a list of examples that were
used in training the tree. This includes examples that were used in choosing splits, as well as the
examples that populate the leaf nodes. Put another way, if honesty is enabled, this list includes both
subsamples from the split (J1 and J2 in the notation of the paper). num_samples: the number of
examples used in training the tree. nodes: a list of objects representing the nodes in the tree, starting
with the root node. Each node will contain an ’is_leaf’ attribute, which indicates whether it is an
interior or leaf node. Interior nodes contain the attributes ’left_child’ and ’right_child’, which give
the indices of their children in the list, as well as ’split_variable’, and ’split_value’, which describe
the split that was chosen. Leaf nodes only have the attribute ’samples’, which is a list of the training
examples that the leaf contains. Note that if honesty is enabled, this list will only contain examples
from the second subsample that was used to ’repopulate’ the tree (J2 in the notation of the paper).

Examples

Not run:
Train a quantile forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
q.forest <- quantile_forest(X, Y, quantiles = c(0.1, 0.5, 0.9))

Examine a particular tree.
q.tree <- get_tree(q.forest, 3)
q.tree$nodes

End(Not run)

8 leaf_stats.drf

leaf_stats.default A default leaf_stats for forests classes without a leaf_stats method that
always returns NULL.

Description

A default leaf_stats for forests classes without a leaf_stats method that always returns NULL.

Usage

Default S3 method:
leaf_stats(forest, samples, ...)

Arguments

forest Any forest

samples The samples to include in the calculations.

... Additional arguments (currently ignored).

leaf_stats.drf Calculate summary stats given a set of samples for regression forests.

Description

Calculate summary stats given a set of samples for regression forests.

Usage

S3 method for class 'drf'
leaf_stats(forest, samples, ...)

Arguments

forest The GRF forest

samples The samples to include in the calculations.

... Additional arguments (currently ignored).

Value

A named vector containing summary stats

medianHeuristic 9

medianHeuristic Compute the median heuristic for the MMD bandwidth choice

Description

Compute the median heuristic for the MMD bandwidth choice

Usage

medianHeuristic(Y)

Arguments

Y the response matrix

Value

the median heuristic

plot.drf_tree Plot a DRF tree object.

Description

Plot a DRF tree object.

Usage

S3 method for class 'drf_tree'
plot(x, ...)

Arguments

x The tree to plot

... Additional arguments (currently ignored).

10 predict.drf

predict.drf Predict from Distributional Random Forests object

Description

Obtain predictions from a DRF forest object. For any point x in the predictor space, it returns the es-
timate of the conditional distribution P (Y |X = x) represented as a weighted distribution

∑
i wiyi

of the training observations yi. Additionally, this function also provides support to directly obtain
estimates of certain target quantities τ(P (Y |X)), such as e.g. conditional quantiles, variances or
correlations.

Usage

S3 method for class 'drf'
predict(
object,
newdata = NULL,
functional = NULL,
transformation = NULL,
custom.functional = NULL,
num.threads = NULL,
estimate.uncertainty = FALSE,
...

)

Arguments

object Trained DRF forest object.

newdata Points at which predictions should be made. If NULL, returns out-of-bag pre-
dictions on the training set (i.e., for every training point Xi, provides predictions
using only trees which did not use this point for tree construction). Can be ei-
ther a data frame, matrix or a vector. Each row represents a data point of interest
and the number and ordering of columns is assumed the be the same as in the
training set.

functional Optional. String indicating the statistical functional that we want to compute
from the weights. One option between:

"mean" - Conditional mean, the returned value is a matrix mean of dimension
n x f, where n denotes the number of observations in newdata and f the
dimension of the transformation.

"sd" - Conditional standard deviation for each component of the (transformed)
response, the returned value is a matrix of dimension n x f, where n de-
notes the number of observations in newdata and f the dimension of the
transformation.

"quantile" - Conditional quantiles. It requires additional parameter quantiles
containing the list of quantile levels we want to compute. The returned
value is an array of dimension n x f x q, where n denotes the number of

predict.drf 11

observations in newdata, f the dimension of the transformation and q
the number of desired quantiles.

"cor" - Conditional correlation matrix, the returned value is an array of dimen-
sion n x f x f, where n denotes the number of observations in newdata and
f the dimension of the transformation.

"cov" - Conditional covariance matrix, the returned value is an array of dimen-
sion n x f x f, where n denotes the number of observations in newdata, f
the dimension of the transformation.

"custom" - A custom function provided by the user, the returned value is a
matrix of dimension n x f, where n denotes the number of observations in
newdata and f the dimension of the output of the function custom.functional
provided by the user.

transformation An optional transformation function that is applied to the responses before com-
puting the target functional. It helps to extend the functionality to a much wider
range of targets. The responses are not transformed by default, i.e. the identity
function f(y) = y is used.

custom.functional

A user-defined function when functional is set to "custom". This should be
a function f(y,w) which for a single test point takes the n x f matrix y and
the corresponding n-dimensional vector of weights w and returns the quantity of
interest given as a list of values. n denotes the number of training observations
and f the dimension of the transformation.

num.threads Number of threads used for computing. If set to NULL, the software automati-
cally selects an appropriate amount.

estimate.uncertainty

Whether to additionally return B weight vectors calculated on B CI groups for
each sample. See Details and return value docu.

... additional parameters.

Details

To estimate the uncertainty, a set of B=(num.trees)/(ci.group.size) weights is produced for
each sample when estimate.uncertainty=TRUE. These B weights arise from B subforests (CI
groups) inside the estimation routine and may be seen as bootstrap approximation to the estima-
tion uncertainty of the DRF estimator. As such, they can be used to build confidence intervals for
functionals. For instance, for univariate functionals, one may calculate one functional per weight to
obtain B estimates, with which the variance can be calculated. Then the usual normal approxima-
tion can be used to construct confidence intervals for said functional. Uncertainty weights are not
available OOB.

Value

If functional is NULL, returns a list containing

y the matrix of training responses

weights the matrix of weights, whose number of rows corresponds the number of rows
of newdata and the number of columns corresponds to the number of training
data points.

12 predict.drf

If estimate.uncertainty=TRUE, additionally

weights.uncertainty

a list of length nrow(newdata) where each item is a B x w sparse matrix, where
B is the number of CI groups and w=nrow(Y). This matrix essentially contains B
separate weight vectors, one in each row.

If functional is specified, the desired quantity is returned, in the format described above.

Examples

library(drf)

n = 10000
p = 20
d = 3

Generate training data
X = matrix(rnorm(n * p), nrow=n)
Y = matrix(rnorm(n * d), nrow=n)
Y[, 1] = Y[, 1] + X[, 1]
Y[, 2] = Y[, 2] * X[, 2]
Y[, 3] = Y[, 3] * X[, 1] + X[, 2]

Fit DRF object
drf.forest = drf(X, Y)

Generate test data
X_test = matrix(rnorm(10 * p), nrow=10)

out = predict(drf.forest, newdata=X_test)
Compute E[Y_1 | X] for all data in X_test directly from
the weights representing the estimated distribution
out$weights %*% out$y[,1]

out = predict(drf.forest, newdata=X_test,
functional='mean')

Compute E[Y_1 | X] for all data in X_test using built-in functionality
out[,1]

out = predict(drf.forest, newdata=X_test,
functional='quantile',
quantiles=c(0.25, 0.75),
transformation=function(y){y[1] * y[2] * y[3]})

Compute 25% and 75% quantiles of Y_1*Y_2*Y_3, conditionally on X = X_test[1,]
out[1,,]

out = predict(drf.forest, newdata=X_test,
functional='cov',
transformation=function(y){matrix(1:6, nrow=2) %*% y})

Compute 2x2 covariance matrix for (1*Y_1 + 3*Y_2 + 5*Y_3, 2*Y_1 + 4*Y_2 + 6*Y_3),
conditionally on X = X_test[1,]
out[1,,]

predict.drf 13

out = predict(drf.forest, newdata=X_test,
functional='custom',
custom.functional=function(y, w){c(sum(y[, 1] * w), sum(y[, 2] * w))})

Compute E[Y_1, Y_2 | X] for all data in X_test by providing custom functional that
computes it from the weights
out

UNCERTAINTY WEIGHTS

Simulate Data that experiences both a mean as well as sd shift
set.seed(10)
n<-1000

Simulate from X
x1 <- runif(n,-1,1)
x2 <- runif(n,-1,1)
x3 <- x1+ runif(n,-1,1)
X0 <- matrix(runif(7*n,-1,1), nrow=n, ncol=7)
X <- cbind(x1,x2, x3, X0)
colnames(X)<-NULL

Simulate dependent variable Y
Y <- as.matrix(rnorm(n,mean = 0.8*(x1 > 0), sd = 1 + 1*(x2 > 0)))

Fit DRF with 50 CI groups, each 20 trees large. This results in 50 uncertainty weights
DRF <- drf(X=X, Y=Y,num.trees=1000, min.node.size = 5, ci.group.size=1000/50)

Obtain Test point
x<-matrix(c(0.2, 0.4, runif(8,-1,1)), nrow=1, ncol=10)
DRFpred<-predict(DRF, newdata=x, estimate.uncertainty=TRUE)

Sample from P_{Y| X=x}
Yxs<-Y[sample(1:n, size=n, replace = T, DRFpred$weights[1,])]

Calculate quantile prediction as weighted quantiles from Y
qx <- quantile(Yxs, probs = c(0.05,0.95))

Calculate conditional mean prediction
mux <- mean(Yxs)

True quantiles
q1<-qnorm(0.05, mean=0.8 * (x[1] > 0), sd=(1+(x[2] > 0)))
q2<-qnorm(0.95, mean=0.8 * (x[1] > 0), sd=(1+(x[2] > 0)))
mu<-0.8 * (x[1] > 0)

Calculate uncertainty
alpha<-0.05
B<-nrow(DRFpred$weights.uncertainty[[1]])
qxb<-matrix(NaN, nrow=B, ncol=2)
muxb<-matrix(NaN, nrow=B, ncol=1)
for (b in 1:B){

Yxsb<-Y[sample(1:n, size=n, replace = T, DRFpred$weights.uncertainty[[1]][b,])]

14 print.drf

qxb[b,] <- quantile(Yxsb, probs = c(0.05,0.95))
muxb[b] <- mean(Yxsb)

}

CI.lower.q1 <- qx[1] - qnorm(1-alpha/2)*sqrt(var(qxb[,1]))
CI.upper.q1 <- qx[1] + qnorm(1-alpha/2)*sqrt(var(qxb[,1]))

CI.lower.q2 <- qx[2] - qnorm(1-alpha/2)*sqrt(var(qxb[,2]))
CI.upper.q2 <- qx[2] + qnorm(1-alpha/2)*sqrt(var(qxb[,2]))

CI.lower.mu <- mux - qnorm(1-alpha/2)*sqrt(var(muxb))
CI.upper.mu <- mux + qnorm(1-alpha/2)*sqrt(var(muxb))

hist(Yxs, prob=T)
z<-seq(-6,7,by=0.01)
d<-dnorm(z, mean=0.8 * (x[1] > 0), sd=(1+(x[2] > 0)))
lines(z,d, col="darkred")
abline(v=q1,col="darkred")
abline(v=q2, col="darkred")
abline(v=qx[1], col="darkblue")
abline(v=qx[2], col="darkblue")
abline(v=mu, col="darkred")
abline(v=mux, col="darkblue")
abline(v=CI.lower.q1, col="darkblue", lty=2)
abline(v=CI.upper.q1, col="darkblue", lty=2)
abline(v=CI.lower.q2, col="darkblue", lty=2)
abline(v=CI.upper.q2, col="darkblue", lty=2)
abline(v=CI.lower.mu, col="darkblue", lty=2)
abline(v=CI.upper.mu, col="darkblue", lty=2)

print.drf Print a DRF forest object.

Description

Print a DRF forest object.

Usage

S3 method for class 'drf'
print(x, decay.exponent = 2, max.depth = 4, ...)

Arguments

x The tree to print.

decay.exponent A tuning parameter that controls the importance of split depth.

print.drf_tree 15

max.depth The maximum depth of splits to consider.

... Additional arguments (currently ignored).

print.drf_tree Print a DRF tree object.

Description

Print a DRF tree object.

Usage

S3 method for class 'drf_tree'
print(x, ...)

Arguments

x The tree to print.

... Additional arguments (currently ignored).

split_frequencies Calculate which features the forest split on at each depth.

Description

Calculate which features the forest split on at each depth.

Usage

split_frequencies(forest, max.depth = 4)

Arguments

forest The trained forest.

max.depth Maximum depth of splits to consider.

Value

A matrix of split depth by feature index, where each value is the number of times the feature was
split on at that depth.

16 variableImportance

Examples

Not run:
Train a quantile forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
q.forest <- quantile_forest(X, Y, quantiles = c(0.1, 0.5, 0.9))

Calculate the split frequencies for this forest.
split_frequencies(q.forest)

End(Not run)

variableImportance Variable importance based on MMD

Description

compute an mmd-based variable importance for the drf fit.

Usage

variableImportance(
object,
h = NULL,
response.scaling = TRUE,
type = "difference"

)

Arguments

object an S3 object of class drf.

h the bandwidth parameter, default to NULL using then the median heuristic.
response.scaling

a boolean value indicating if the responses should be scaled globally beforehand.

type the type of importance, could be either "raw", the plain MMD values, "rela-
tive", the ratios to the observed MMD or "difference", the excess to the observed
MMD

Value

a vector of variable importance values.

variable_importance 17

variable_importance Calculate a simple measure of ’importance’ for each feature.

Description

A simple weighted sum of how many times feature i was split on at each depth in the forest.

Usage

variable_importance(forest, decay.exponent = 2, max.depth = 4)

Arguments

forest The trained forest.

decay.exponent A tuning parameter that controls the importance of split depth.

max.depth Maximum depth of splits to consider.

Value

A list specifying an ’importance value’ for each feature.

Examples

Not run:
Train a quantile forest.
n <- 50
p <- 10
X <- matrix(rnorm(n * p), n, p)
Y <- X[, 1] * rnorm(n)
q.forest <- quantile_forest(X, Y, quantiles = c(0.1, 0.5, 0.9))

Calculate the 'importance' of each feature.
variable_importance(q.forest)

End(Not run)

weighted.quantile Weighted quantiles

Description

Weighted quantiles

Usage

weighted.quantile(x, w, probs = seq(0, 1, 0.25), na.rm = TRUE)

18 weighted.quantile

Arguments

x a vector of observations

w a vector of weights

probs the given probabilities for which we want to get quantiles

na.rm should we remove missing values.

Index

drf, 2

get_sample_weights, 5
get_tree, 7

leaf_stats.default, 8
leaf_stats.drf, 8

medianHeuristic, 9

plot.drf_tree, 9
predict.drf, 4, 10
print.drf, 14
print.drf_tree, 15

split_frequencies, 15

variable_importance, 17
variableImportance, 16

weighted.quantile, 17

19

	drf
	get_sample_weights
	get_tree
	leaf_stats.default
	leaf_stats.drf
	medianHeuristic
	plot.drf_tree
	predict.drf
	print.drf
	print.drf_tree
	split_frequencies
	variableImportance
	variable_importance
	weighted.quantile
	Index

