
Package ‘eatRep’
February 1, 2026

Type Package

Title Educational Assessment Tools for Replication Methods

Version 0.15.3

Depends R (>= 4.1), survey (>= 4.1-1), BIFIEsurvey, progress, lavaan
(>= 0.6-7), parallel

Imports Hmisc, fmsb, mice (>= 2.46), boot, car, reshape2, plyr,
combinat, miceadds, tidyr, EffectLiteR, estimatr, eatTools (>=
0.7.9), eatGADS (>= 0.20.0), janitor, msm, utils, methods,
checkmate, lifecycle, dplyr (>= 1.0.0), future, reformulas,
stringr

Description
Replication methods to compute some basic statistic operations (means, standard deviations,
frequency tables, percentiles, mean comparisons using weighted effect coding, generalized lin-
ear models,
and linear multilevel models) in complex survey designs comprising multiple im-
puted or nested imputed
variables and/or a clustered sampling structure which both deserve special procedures at least in
estimating standard errors. See the package documentation for a more detailed descrip-
tion along with references.

License GPL (>= 2)

Encoding UTF-8

URL https://github.com/weirichs/eatRep,

https://weirichs.github.io/eatRep/

LazyLoad yes

LazyData yes

NeedsCompilation no

Suggests weights, testthat, knitr, rmarkdown, zoo

VignetteBuilder knitr

Author Sebastian Weirich [aut, cre],
Martin Hecht [aut],
Karoline Sachse [aut],

1

https://github.com/weirichs/eatRep
https://weirichs.github.io/eatRep/

2 eatRep-package

Benjamin Becker [aut],
Edna Grewers [ctb]

Maintainer Sebastian Weirich <sebastian.weirich@iqb.hu-berlin.de>

Repository CRAN

Date/Publication 2026-02-01 21:10:02 UTC

Contents
eatRep-package . 2
checkLEs . 5
generateRandomJk1Zones . 6
lsa . 7
pool.R2 . 8
repGlm . 9
repLmer . 13
repMean . 16
report . 24
repQuantile . 26
repTable . 30

Index 36

eatRep-package Statistical analyses in complex survey designs with multiple imputed
data and trend estimation.

Description

The package provide functions to computes some basic statistic operations—(adjusted) means, stan-
dard deviations, frequency tables, percentiles and generalized linear models—in complex survey
designs comprising multiple imputed variables and/or a clustered sampling structure which both
deserve special procedures at least in estimating standard errors. In large-scale assessments, stan-
dard errors are comprised of three components: the measurement error, the sampling error, and (if
trend estimation of at least two times of measurement are involved) the linking error.

Measurement error: In complex surveys or large-scale assessments, measurement errors are taken
into account by the mean of multiple imputed variables. The computation of standard errors for
the mean of a multiple imputed variable (e.g. plausible values) involves the formulas provided by
Rubin (1987). Computing standard errors for the mean of a nested imputed variable involves the
formulas provided by Rubin (2003). Both methods are implemented in the package. The estimation
of R2 and adjusted R2 in linear and generalized linear regression models with multiple imputed
data sets is realized using the methods provided in Harel (2009).

Sampling error: Computation of sampling errors of variables which stem from a clustered design
may involve replication methods like balanced repeated replicate (BRR), bootstrap or Jackknife
methods. See Westat (2000), Foy, Galia & Li (2008), Rust and Rao (1996), and Wolter (1985) for
details. To date, the Jackknife-1 (JK1), Jackknife-2 (JK2) and the Balanced Repeated Replicates
(BRR; optionally with Fay’s method) procedures are supported.

eatRep-package 3

Linking error: Lastly, standard errors for trend estimates may involve incorporating linking er-
rors to account for potential differential item functioning or item parameter drift. eatRep allows
to account for linking error when computing standard errors for trend estimates. Standard error
estimation is conducted according to the operational practice in PISA, see equation 5 in Sachse &
Haag (2017).

The package eatRep is designed to combine one or several error types which is necessary, for
example, if (nested) multiple imputed data are used in clustered designs. Considering the structure
is relevant especially for the estimation of standard errors. The estimation of national trends requires
a sequential analysis for both measurements and a comparison of estimates between them.

Technically, eatRep is a wrapper for the survey package (Lumley, 2004). Each function in eatRep
corresponds to a specific function in survey which is called repeatedly during the analysis. Hence,
a nested loop is used. We use “trend replicates” in the outer loop, “imputation replicates” in the
middle loop to account for multiple imputed data, and “cluster replicates” in the inner loop to
account for the clustered sampling structure. While the functional principle of survey is based on
replication of standard analyses, eatRep is based on replication of survey analyses to take multiple
imputed data into account. More recent versions of the package additionally allow estimations
using the BIFIEsurvey package instead of survey which provide substantial advantages in terms
of speed.

For each imputed data set in each measurement, i.e. in the inner loop, the eatRep function first
creates replicate weights based on the primary sampling unit (PSU) variable and the replication
indicator variable. In the jackknife procedure, the first one is often referred to as “jackknife zone”,
whereas the second one is often referred to as “jackknife replicate”. The number of distinct units
in the PSU variable defines the number of replications which are necessary due to the clustered
structure. A design object is created and the appropriate survey function is called. The process is
repeated for each imputed dataset and the results of the analyses are pooled. The pooling procedure
varies in relation to the type of variable to be pooled. For examples, means or regression coefficients
are pooled according to Rubin (1987) or Rubin (2003). R2 is pooled according to Harel (2009),
using a Fisher z-transformation. Chi-square distributed values are pooled according to Thomas
and Rao (1990) for clustered data and according to Enders (2010) and Allison (2002) for multiple
imputed data. For trend analyses, the whole process is repeated two times (according to the two
measurements) and the difference of the estimates are computed along with their pooled standard
errors.

Without trend estimation, the outer loop has only one cycle (instead of two). Without multiple
imputations, the middle loop has only one cycle. Without a clustered sampling structure (i.e, in a
random sample), the inner loop has only one cycle. Without trend, imputation and clustered struc-
ture, no replication is performed at all. To compute simple mean estimates, for example, eatRep
then simply calls mean instead of svymean from the survey package. A special case occurs with
nested multiple imputation. We then have four loops in a nested structure. Hence, the corresponding
analyses may take considerably computational effort.

Important note: Starting with version 0.10.0, several methods for the standard error estimation of
cross level differences are implemented. Prior to version 0.10.0, the standard error for the difference
between one single group (e.g., Belgium) and the total population (which is comprised of several
states including Belgium) was estimated as if both groups would have been independent from each
other. The standard errors, however, are biased then. Two new methods are now applicable using the
argument crossDiffSE in repMean and provide unbiased standard errors—weighted effect coding
(wec) and replication methods (rep); see, for example te Grotenhuis et al. (2017) and Weirich et
al. (2021). The old method is still available by using crossDiffSE = "old". Note that the default

4 eatRep-package

method now is weighted effect coding.

Second important note: Starting with version 0.13.0, function names have been changed due to
inconsistent former denomination: Function jk2.mean now goes under the name of repMean,
jk2.table was renamed to repTable, jk2.quantile was renamed to repQuantile, and jk2.glm
now goes under the name of repGlm. The old functions are deprecated and will be removed in fur-
ther package publications. Renaming was driven by the fact that the corresponding functions now
have broader range of methods than only jackknife-2.

Third important note: Starting with version 0.15.0, the reporting function report was deprecated
due to inefficient and error-prone programming. The new reporting function report2 has a new
output format which provides an interface for the eatPlot package. Old functionality was roughly
supplied using report, but if the 1:1 output of former version is requested, please use version
0.14.7.

Details

Package: eatRep
Type: Package
Version: 0.15.3
Date: 2026-02-01
License: GPL(>=2)

Author(s)

Authors: Sebastian Weirich <sebastian.weirich@iqb.hu-berlin.de>, Martin Hecht <martin.hecht@hu-
berlin.de>, Benjamin Becker <b.becker@iqb.hu-berlin.de>

References

Allison, P. D. (2002). Missing data. Newbury Park, CA: Sage.

Enders, C. K. (2010). Applied missing data analysis. Guilford Press.

Foy, P., Galia , J. & Li, I. (2008). Scaling the data from the TIMSS 2007 mathematics and science
assessment. In J. F. Olson, M. O. Martin & I. V. S. Mullis (ed.), TIMSS 2007 Technical Report
(S. 225–280). Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Lynch School of
Education, Boston College.

Harel, O. (2009): The estimation of R2 and adjusted R2 in incomplete data sets using multiple
imputation. Journal of Applied Statistics. 36, 10, 1109–1118.

Lumley, T. (2004). Analysis of complex survey samples. Journal of Statistical Software 9(1): 1–19

Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York: Wiley.

Rubin, D.B. (2003): Nested multiple imputation of NMES via partially incompatible MCMC. Sta-
tistica Neerlandica 57, 1, 3–18.

Rust, K., & Rao, JNK. (1996): Variance estimation for complex surveys using replication tech-
niques. Statistical Methods in Medical Research 5, 283–310.

checkLEs 5

Sachse, K. A. & Haag, N. (2017). Standard errors for national trends in international large-scale
assessments in the case of cross-national differential item functioning. Applied Measurement in
Education, 30, (2), 102-116. http://dx.doi.org/10.1080/08957347.2017.1283315

Satorra, A., & Bentler, P. M. (1994). Corrections to test statistics and standard errors in covariance
structure analysis.

te Grotenhuis, M., Pelzer, B., Eisinga, R., Nieuwenhuis, R., Schmidt-Catran, A., & Konig, R.
(2017). When size matters: advantages of weighted effect coding in observational studies. Interna-
tional Journal of Public Health. 62, 163–167.

Thomas, D. R. & Rao, JNK (1990): Small-sample comparison of level and power for simple
goodness-of- fit statistics under cluster sampling. JASA 82:630-636

Weirich, S., Hecht, M., Becker, B. et al. (2021). Comparing group means with the total mean in ran-
dom samples, surveys, and large-scale assessments: A tutorial and software illustration. Behavior
Research Methods. https://doi.org/10.3758/s13428-021-01553-1

Westat (2000). WesVar. Rockville, MD: Westat.

Wolter, K. M. (1985). Introduction to variance estimation. New York: Springer.

checkLEs Checks compatibility of linking errors with GADS data bases.

Description

This function checks if a linking error data.frame is compatible with multiple trend eatGADS data
bases.

Usage

checkLEs(filePaths, leDF)

Arguments

filePaths Character vectors with at least two paths to the eatGADS db files.

leDF Linking error data.frame.

Details

This function inspects whether all linking error variables correspond to variables in the eatGADS
data base and if the key variables also correspond to existing variables in the trend eatGADS data
bases.

Value

Returns a report list.

6 generateRandomJk1Zones

Examples

trenddat1 <- system.file("extdata", "trend_gads_2010.db", package = "eatGADS")
trenddat2 <- system.file("extdata", "trend_gads_2015.db", package = "eatGADS")
trenddat3 <- system.file("extdata", "trend_gads_2020.db", package = "eatGADS")
load(system.file("extdata", "linking_error.rda", package = "eatRep"))
check1 <- checkLEs(c(trenddat1, trenddat2, trenddat3), lErr)
check2 <- checkLEs(c(trenddat1, trenddat2, trenddat3), lErr[1:14,])

generateRandomJk1Zones

Generates random jackknife-1 zones based on sampling units in the
data set.

Description

Function adds randomly generated jackknife-1 zones to the data.

Usage

generateRandomJk1Zones (datL, unit, nZones, name = "randomCluster")

Arguments

datL Data frame containing at least the primary sampling unit variable

unit Variable name or column number of the primary sampling unit (i.e. student or
class identifier)

nZones integer: number of jackknife zones. Note: The umber of jackknife zones must
not exceed the number of distinct sampling units

name New name of the jackknife-zone variable in the data set

Value

The original data with an additional column of the jackknife-zone variable

Examples

data(lsa)

We only consider year 2010
lsa10<- lsa[which(lsa[,"year"] == 2010),]
lsa10<- generateRandomJk1Zones(datL = lsa10, unit="idclass", nZones = 50)

lsa 7

lsa Achievement data from two large-scale assessments of 2010 and 2015.

Description

This example data set contains fictional achievement scores of 11637 students from three countries
and two times of measurement in two domains (reading and listening comprehension) in the long
format. The data set contains nested multiple imputed plausible values of achievement scores as
well as some demographic variables. Illustrating trend analyses, data from two fictional time points
(2010 and 2015) are included.

The data set can be used for several illustration purposes. For example, if only multiple imputation
should be considered (without nesting), simply use only cases from the first nest (by subsetting).
If only one time of measurement should be considered (i.e., without any trend analyses), simply
choose only cases from 2010 or 2015. If only reading or listening should be considered, choose the
desired domain by subsetting according to the domain column.

Usage

data(lsa)

Format

’data.frame’: 77322 obs. of 25 variables

year Year of evaluation

idstud individual student identification

idclass class identifier

wgt Total case weight

L2wgt School weight (level 2 weight)

L1wgt Student weight (level 1 weight)

jkzone jackknifing zone (jk2)

jkrep jackknife replicate

imp Number of imputation

nest Number of nest (for nested imputation only)

country The country an examinee stems from

sex student’s sex

ses student’s socio-economical status

mig student’s migration background

domain The domain the corresponding score belongs to

score student’s achievement score (corresponding to the domain reading or listening, and to the
imputation 1, 2, or 3)

comp student’s competence level

8 pool.R2

failMin dichotomous indicator whether the student fails to fulfill the minimal standard

passReg dichotomous indicator whether the student fulfills at least the regular standard

passOpt dichotomous indicator whether the student fulfills the optimal standard

leSore linking error of each student’s achievement score

leComp linking error of each student’s competence level

leFailMin linking error of each student’s indicator of failing to fulfill the minimal standard

lePassReg linking error of each student’s indicator of fulfilling the regular standard

lePassOpt linking error of each student’s indicator of fulfilling the optimal standard

Source

Simulated data

pool.R2 Compute Rˆ2 in multiple imputed and nested multiple imputed data

Description

With (nested) multiple imputations, the determination coefficient R2 has to be computed for each
imputed data set and pooled afterwards. pool.R2 provide pooling routines according to Harel
(2009). The function requires that the R2 coefficients from the multiple imputed analyses are al-
ready available.

Usage

pool.R2 (r2, N, verbose = TRUE)

Arguments

r2 For multiple imputed data, a numeric vector of R2 values. For nested multiple
imputed data, a list of numeric vectors of R2 values. The number of list elements
must correspond to the number of nests. The number of R2 values within each
list element must be equal and must correspond to the number of imputations
within each nest.

N Optional: the sample size of each imputed data set. Only necessary if the stan-
dard error for the pooled R2 should be computed. The structure of the N object
must correspond to the structure of the r2 object. See examples for further de-
tails.

verbose Optional: Print additional messages to console?

Value

Returns a data.frame with one or two columns which contains the pooled R2 value and optionally
it’s standard error.

repGlm 9

References

Harel, O. (2009): The estimation of R2 and adjusted R2 in incomplete data sets using multiple
imputation. Journal of Applied Statistics. 36, 10, 1109–1118.

Examples

multiple imputation, assume that the regression analysis was fitted for five imputed data sets,
resulting in five R^2 values. Assume sample sizes of 340
r2 <- c(0.12395, 0.15261, 0.16125, 0.11029, 0.1871)
Ns <- rep(340,5)
pool.R2 (r2=r2, N=Ns)
without standard error
pool.R2 (r2=r2)
nested multiple imputation
r2 <- list(nest1 = c(0.12395, 0.15261, 0.16125, 0.11029, 0.1871),

nest2 = c(0.10603, 0.08876, 0.09248, 0.13331, 0.1114),
nest3 = c(0.17228, 0.25203, 0.13132, 0.23331, 0.10069))

Ns <- lapply(1:3, FUN = function (x) {rep(290, 5)})
pool.R2 (r2=r2, N=Ns)
without standard error
pool.R2 (r2=r2)

repGlm Replication methods (JK1, JK2 and BRR) for linear regression models
and trend estimation.

Description

Compute generalized linear models for complex cluster designs with multiple imputed variables
based on the Jackknife (JK1, JK2) or balanced repeated replicates (BRR) procedure. Conceptually,
the function combines replication methods and methods for multiple imputed data. Technically, this
is a wrapper for the svyglm function of the survey package.

Usage

repGlm(datL, ID, wgt = NULL, type = c("none", "JK2", "JK1", "BRR", "Fay"), PSU = NULL,
repInd = NULL, repWgt = NULL, nest=NULL, imp=NULL, groups = NULL,
group.splits = length(groups), group.delimiter = "_",
cross.differences = FALSE, trend = NULL, linkErr = NULL, formula,
family=gaussian, forceSingularityTreatment = FALSE,
glmTransformation = c("none", "sdY"), doCheck = TRUE, na.rm = FALSE,
poolMethod = c("mice", "scalar"), useWec = FALSE,
scale = 1, rscales = 1, mse=TRUE, rho=NULL, hetero=TRUE,
se_type = c("HC3", "HC0", "HC1", "HC2", "CR0", "CR2"),
clusters = NULL, crossDiffSE.engine= c("lavaan", "lm"),
stochasticGroupSizes = FALSE, verbose = TRUE, progress = TRUE,
nCores=NULL)

10 repGlm

Arguments

datL Data frame in the long format (i.e. each line represents one ID unit in one
imputation of one nest) containing all variables for analysis.

ID Variable name or column number of student identifier (ID) variable. ID variable
must not contain any missing values.

wgt Optional: Variable name or column number of weighting variable. If no weight-
ing variable is specified, all cases will be equally weighted.

type Defines the replication method for cluster replicates which is to be applied.
Depending on type, additional arguments must be specified (e.g., PSU and/or
repInd or repWgt).

PSU Variable name or column number of variable indicating the primary sampling
unit (PSU). When a jackknife procedure is applied, the PSU is the jackknife
zone variable. If NULL, no cluster structure is assumed and standard errors are
computed according to a random sample.

repInd Variable name or column number of variable indicating replicate ID. In a jack-
knife procedure, this is the jackknife replicate variable. If NULL, no cluster struc-
ture is assumed and standard errors are computed according to a random sample.

repWgt Normally, replicate weights are created by repGlm directly from PSU and repInd
variables. Alternatively, if replicate weights are included in the data.frame, spec-
ify the variable names or column number in the repWgt argument.

nest Optional: name or column number of the nesting variable. Only applies in
nested multiple imputed data sets.

imp Optional: name or column number of the imputation variable. Only applies in
multiple imputed data sets.

groups Optional: vector of names or column numbers of one or more grouping vari-
ables.

group.splits Optional: If groups are defined, group.splits optionally specifies whether
analysis should be done also in the whole group or overlying groups. See exam-
ples for more details.

group.delimiter

Character string which separates the group names in the output frame.
cross.differences

Either a list of vectors, specifying the pairs of levels for which cross-level differ-
ences should be computed. Alternatively, if TRUE, cross-level differences for all
pairs of levels are computed. If FALSE, no cross-level differences are computed.
(see examples 2a, 3, and 4 in the help file of the repMean function)

trend Optional: name or column number of the trend variable which contains the mea-
surement time of the survey. Note: Levels of all grouping variables and predic-
tors must be equal in all ’sub populations’ partitioned by the discrete trend vari-
able. repGlm computes differences for all pairwise contrasts defined by trend
variable levels. or three measurement occasions, i.e. 2010, 2015, and 2020,
contrasts (i.e. trends) are computed for 2010 vs. 2015, 2010 vs. 2020, and 2015
vs. 2020.

repGlm 11

linkErr Optional: name or column number of the linking error variable. If NULL, a
linking error of 0 will be assumed in trend estimation.

formula Model formula, see help page of glm for details.

family A description of the error distribution and link function to be used in the model.
See help page of glm for details.

forceSingularityTreatment

Logical: Forces the function to use the workaround to handle singularities in
regression models.

glmTransformation

Optional: Allows for transformation of parameters from linear regression and
logistic regression before pooling. Useful to compare parameters from dif-
ferent glm models, see Mood (2010). Note: This argument applies only if
forceSingularityTreatment is set to ’TRUE’.

doCheck Logical: Check the data for consistency before analysis? If TRUE groups with in-
sufficient data are excluded from analysis to prevent subsequent functions from
crashing.

na.rm Logical: Should cases with missing values be dropped?

poolMethod Which pooling method should be used? The “mice” method is recommended.

useWec Logical: use weighted effect coding?

scale scaling constant for variance, for details, see help page of svrepdesign from
the survey package

rscales scaling constant for variance, for details, see help page of svrepdesign from
the survey package

mse Logical: If TRUE, compute variances based on sum of squares around the point
estimate, rather than the mean of the replicates. See help page of svrepdesign
from the survey package for further details.

rho Shrinkage factor for weights in Fay’s method. See help page of svrepdesign
from the survey package for further details.

hetero Logical: Assume heteroscedastic variance for weighted effect coding? Only
applies for random samples, i.e. if no replication analyses are executed.

se_type The sort of standard error sought for cross level differences. Only applies if
crossDiffSE == "wec" and hetero == TRUE and crossDiffSE.engine == "lm".
See the help page of lm_robust from the estimatr package for further details.

clusters Optional: Variable name or column number of cluster variable. Only necessary
if weighted effecting coding should be performed using heteroscedastic vari-
ances. See the help page of lm_robust from the estimatr package for further
details.

crossDiffSE.engine

Optional: Sort of estimator which should be used for standard error estimation
in weighted effect coding regression. Only applies if useWec == TRUE. To date,
only lavaan allows for stochastic group sizes.

stochasticGroupSizes

Logical: Assume stochastic group sizes for using weighted effect coding regres-
sion with categorical predictors? Note: To date, only lavaan allows for stochastic

12 repGlm

group sizes. Stochastic group sizes cannot be assumed if any replication method
(jackknife, BRR) is applied.

verbose Logical: Show analysis information on console?

progress Logical: Show progress bar on console?

nCores integer (default: NULL), number of cores to use for parallel processing, if
engine = "survey". If NULL, single core processing is used.

Details

Function first creates replicate weights based on PSU and repInd variables according to JK2 or BRR
procedure. According to multiple imputed data sets, a workbook with several analyses is created.
The function afterwards serves as a wrapper for svyglm implemented in the survey package. The
results of the several analyses are then pooled according to Rubin’s rule, which is adapted for nested
imputations if the nest argument implies a nested structure.

Value

A list of data frames in the long format. The output can be summarized using the report function.
The first element of the list is a list with either one (no trend analyses) or two (trend analyses) data
frames with at least six columns each. For each subpopulation denoted by the groups statement,
each dependent variable, each parameter and each coefficient the corresponding value is given.

group Denotes the group an analysis belongs to. If no groups were specified and/or
analysis for the whole sample were requested, the value of ‘group’ is ‘whole-
Group’.

depVar Denotes the name of the dependent variable in the analysis.

modus Denotes the mode of the analysis. For example, if a JK2 analysis without sam-
pling weights was conducted, ‘modus’ takes the value ‘jk2.unweighted’. If
a analysis without any replicates but with sampling weights was conducted,
‘modus’ takes the value ‘weighted’.

parameter Denotes the parameter of the regression model for which the corresponding
value is given further. Amongst others, the ‘parameter’ column takes the val-
ues ‘(Intercept)’ and ‘gendermale’ if ‘gender’ was the dependent variable, for
instance. See example 1 for further details.

coefficient Denotes the coefficient for which the corresponding value is given further. Takes
the values ‘est’ (estimate) and ‘se’ (standard error of the estimate).

value The value of the parameter estimate in the corresponding group.

If groups were specified, further columns which are denoted by the group names are added to the
data frame.

References

te Grotenhuis, M., Pelzer, B., Eisinga, R., Nieuwenhuis, R., Schmidt-Catran, A., & Konig, R.
(2017). When size matters: advantages of weighted effect coding in observational studies. Interna-
tional Journal of Public Health. 62, 163–167.

repLmer 13

Examples

load example data (long format)
data(lsa)
use only the first nest
bt <- lsa[which(lsa[,"nest"] == 1),]
use only data from 2010
bt2010 <- bt[which(bt[,"year"] == 2010),]
use only reading data
bt2010read <- bt2010[which(bt2010[,"domain"] == "reading"),]

Example 1: Computes linear regression from reading score on gender separately
for each country. Assume no nested structure.
mod1 <- repGlm(datL = bt2010read, ID = "idstud", wgt = "wgt", type = "jk2",

PSU = "jkzone", repInd = "jkrep", imp = "imp", groups = "country",
formula = score~sex, family ="gaussian")

res1 <- report(mod1, printGlm = TRUE)

Example 2: Computes log linear regression from pass/fail on ses and gender
separately for each country in a nested structure. Assuming equally weighted
cases by omitting "wgt" argument
dat <- lsa[intersect(which(lsa[,"year"] == 2010), which(lsa[,"domain"] == "reading")),]
mod2 <- repGlm(datL = dat, ID = "idstud", type = "JK2", PSU = "jkzone",

repInd = "jkrep", imp = "imp", nest="nest", groups = "country",
formula = passReg~sex*ses, family = quasibinomial(link="logit"))

res2 <- report(mod2, printGlm = TRUE)

Example 3: Like example 1, but without any replication methods
trend estimation (without linking error) and nested imputation
dat <- lsa[which(lsa[,"domain"] == "reading"),]
mod3 <- repGlm(datL = dat, ID = "idstud", wgt = "wgt", imp = "imp", nest = "nest",

groups = "country", formula = score~sex, trend = "year")
res3 <- report(mod3, printGlm = TRUE)

repLmer Replication methods (JK1 and JK2) for multilevel linear regression
models and trend estimation.

Description

Compute multilevel linear models for complex cluster designs with multiple imputed variables
based on the Jackknife (JK1, JK2) procedure. Conceptually, the function combines replication
methods and methods for multiple imputed data. Technically, this is a wrapper for the BIFIE.twolevelreg
function of the BIFIEsurvey package. repLmer only adds functionality for trend estimation. Please
note that the function is not suitable for logistic logit/probit models.

Usage

repLmer(datL, ID, wgt = NULL, L1wgt=NULL, L2wgt=NULL, type = c("JK2", "JK1"),

14 repLmer

PSU = NULL, repInd = NULL, jkfac = NULL, rho = NULL, imp=NULL,
group = NULL, trend = NULL, dependent, formula.fixed, formula.random,
doCheck = TRUE, na.rm = FALSE, clusters, verbose = TRUE)

Arguments

datL Data frame in the long format (i.e. each line represents one ID unit in one
imputation of one nest) containing all variables for analysis.

ID Variable name or column number of student identifier (ID) variable. ID variable
must not contain any missing values.

wgt Optional: Variable name or column number of case weighting variable. If no
weighting variable is specified, all cases will be equally weighted.

L1wgt Name of Level 1 weight variable. This is optional. If it is not provided, L1wgt
is calculated from the total weight (i.e., wgt) and L2wgt.

L2wgt Name of Level 2 weight variable

type Defines the replication method for cluster replicates which is to be applied.
Depending on type, additional arguments must be specified (e.g., PSU and/or
repInd or repWgt).

PSU Variable name or column number of variable indicating the primary sampling
unit (PSU). When a jackknife procedure is applied, the PSU is the jackknife
zone variable. If NULL, no cluster structure is assumed and standard errors are
computed according to a random sample.

repInd Variable name or column number of variable indicating replicate ID. In a jack-
knife procedure, this is the jackknife replicate variable. If NULL, no cluster struc-
ture is assumed and standard errors are computed according to a random sample.

jkfac Argument is passed to BIFIE.data.jack and specifies the factor for multiply-
ing jackknife replicate weights.

rho Fay factor for statistical inference. The argument is passed to the fayfac argu-
ment of the BIFIE.data.jack function from the BIFIEsurvey package. See the
corresponding help page for further details. For convenience, if rho = NULL (the
default) and type = "JK1", BIFIE.data.jack is called with jktype="JK_GROUP"
and fayfac = rho, where ρ = (Ncluster − 1)×N−1

cluster

imp Name or column number of the imputation variable.

group Optional: column number or name of one grouping variable. Note: in contrast
to repMean, only one grouping variable can be specified.

trend Optional: name or column number of the trend variable which contains the mea-
surement time of the survey. repLmer computes differences for all pairwise
contrasts defined by trend variable levels. or three measurement occasions, i.e.
2010, 2015, and 2020, contrasts (i.e. trends) are computed for 2010 vs. 2015,
2010 vs. 2020, and 2015 vs. 2020.

dependent Name or column number of the dependent variable

formula.fixed An R formula for fixed effects

formula.random An R formula for random effects

repLmer 15

doCheck Logical: Check the data for consistency before analysis? If TRUE groups with in-
sufficient data are excluded from analysis to prevent subsequent functions from
crashing.

na.rm Logical: Should cases with missing values be dropped?

clusters Variable name or column number of cluster variable.

verbose Logical: Show analysis information on console?

Value

A list of data frames in the long format. The output can be summarized using the report function.
The first element of the list is a list with either one (no trend analyses) or two (trend analyses) data
frames with at least six columns each. For each subpopulation denoted by the groups statement,
each dependent variable, each parameter and each coefficient the corresponding value is given.

group Denotes the group an analysis belongs to. If no groups were specified and/or
analysis for the whole sample were requested, the value of ‘group’ is ‘whole-
Group’.

depVar Denotes the name of the dependent variable in the analysis.

modus Denotes the mode of the analysis. For example, if a JK2 analysis without sam-
pling weights was conducted, ‘modus’ takes the value ‘jk2.unweighted’. If
a analysis without any replicates but with sampling weights was conducted,
‘modus’ takes the value ‘weighted’.

parameter Denotes the parameter of the regression model for which the corresponding
value is given further. Amongst others, the ‘parameter’ column takes the val-
ues ‘(Intercept)’ and ‘gendermale’ if ‘gender’ was the dependent variable, for
instance. See example 1 for further details.

coefficient Denotes the coefficient for which the corresponding value is given further. Takes
the values ‘est’ (estimate) and ‘se’ (standard error of the estimate).

value The value of the parameter estimate in the corresponding group.

If groups were specified, further columns which are denoted by the group names are added to the
data frame.

Examples

load example data (long format)
data(lsa)
use only the first nest, use only reading
btRead <- subset(lsa, nest==1 & domain=="reading")

random intercept model with groups
mod1 <- repLmer(datL = btRead, ID = "idstud", wgt = "wgt", L1wgt="L1wgt", L2wgt="L2wgt",

type = "jk2", PSU = "jkzone", repInd = "jkrep", imp = "imp",trend="year",
group="country", dependent="score", formula.fixed = ~as.factor(sex)+mig,
formula.random=~1, clusters="idclass")

res1 <- report(mod1)

16 repMean

random slope without groups and without trend
mod2 <- repLmer(datL = subset(btRead, country=="countryA" & year== 2010),

ID = "idstud", wgt = "wgt", L1wgt="L1wgt", L2wgt="L2wgt", type = "jk2",
PSU = "jkzone", repInd = "jkrep", imp = "imp", dependent="score",
formula.fixed = ~as.factor(sex)*mig, formula.random=~mig, clusters="idclass")

res2 <- report(mod2)

repMean Replication methods (JK1, JK2 and BRR) for descriptive statistics.

Description

Compute totals, means, adjusted means, mean differences, variances and standard deviations with
standard errors in random or clustered or complex samples. Variance estimation in complex cluster
designs based on Jackknife (JK1, JK2) or Balanced Repeated Replicates (BRR) procedure. More-
over, analyses can be customized for multiple or nested imputed variables, applying the combination
rules of Rubin (1987) for imputed data and Rubin (2003) for nested imputed data. Conceptually, the
function combines replication methods and methods for multiple imputed data. Trend estimation as
usual in large-scale assessments is supported as well. Technically, this is a wrapper for the svymean
and svyvar functions of the survey package.

Usage

repMean (datL, ID, wgt = NULL, type = c("none", "JK2", "JK1", "BRR", "Fay"), PSU = NULL,
repInd = NULL, jkfac=NULL, repWgt = NULL, nest=NULL, imp=NULL, groups = NULL,

group.splits = length(groups), group.differences.by = NULL,
cross.differences = FALSE, crossDiffSE = c("wec", "rep","old"),

adjust = NULL, useEffectLiteR = FALSE, nBoot = 100, group.delimiter = "_",
trend = NULL, linkErr = NULL, dependent, na.rm = FALSE, doCheck = TRUE,
engine = c("survey", "BIFIEsurvey"), scale = 1, rscales = 1, mse=TRUE,

rho=NULL, hetero=TRUE, se_type = c("HC3", "HC0", "HC1", "HC2", "CR0", "CR2"),
clusters = NULL, crossDiffSE.engine= c("lavaan", "lm"),

stochasticGroupSizes = FALSE, verbose = TRUE, progress = TRUE, nCores=NULL)

Arguments

datL Data frame in the long format (i.e. each line represents one ID unit in one
imputation of one nest) containing all variables for analysis.

ID Variable name or column number of student identifier (ID) variable. ID variable
must not contain any missing values.

wgt Optional: Variable name or column number of weighting variable. If no weight-
ing variable is specified, all cases will be equally weighted.

type Defines the replication method for cluster replicates which is to be applied.
Depending on type, additional arguments must be specified (e.g., PSU and/or
repInd or repWgt).

repMean 17

PSU Variable name or column number of variable indicating the primary sampling
unit (PSU). When a jackknife procedure is applied, the PSU is the jackknife
zone variable. If NULL, no cluster structure is assumed and standard errors are
computed according to a random sample.

repInd Variable name or column number of variable indicating replicate ID. In a jack-
knife procedure, this is the jackknife replicate variable. If NULL, no cluster struc-
ture is assumed and standard errors are computed according to a random sample.

jkfac Only applies if engine = "BIFIEsurvey". Argument is passed to BIFIE.data.jack
and specifies the factor for multiplying jackknife replicate weights.

repWgt Normally, replicate weights are created by repMean directly from PSU and repInd
variables. Alternatively, if replicate weights are included in the data.frame, spec-
ify the variable names or column number in the repWgt argument.

nest Optional: name or column number of the nesting variable. Only applies in
nested multiple imputed data sets.

imp Optional: name or column number of the imputation variable. Only applies in
multiple imputed data sets.

groups Optional: vector of names or column numbers of one or more grouping vari-
ables.

group.splits Optional: If groups are defined, group.splits optionally specifies whether
analysis should be done also in the whole group or overlying groups. See exam-
ples for more details.

group.differences.by

Optional: Single variable name group differences should be computed for. The
corresponding variable must be included in the groups statement.

cross.differences

Either a list of vectors, specifying the pairs of levels for which cross-level differ-
ences should be computed. Alternatively, if TRUE, cross-level differences for all
pairs of levels are computed. If FALSE, no cross-level differences are computed.
(see example 2a, 3, and 4)

crossDiffSE Method for standard error estimation for cross level differences, where groups
are dependent. wec uses weighted effect coding, rep uses replication methods
(bootstrap or jackknife) to estimate the standard error between the total mean
and group-specific means. old does not account for dependent groups and treat
the groups as if they were independent from each other.

adjust Variable name or column number of variable(s) for which adjusted means should
be computed. Non-numeric variables (factors) will be converted to 0/1 dichoto-
mous variables.

useEffectLiteR Logical: use the lavaan-wrapper EffectLiteR to compute adjusted means? Al-
ternatively, adjusted means are computed by applying a simple linear regression
model in each group, using the variables in adjust as independent variables.
Afterwards, the coefficients are weighted with the (weighted) means of the inde-
pendent variables. Standard errors for this procedure are received using the delta
method by applying an augmented variance-covariance matrix which assumes
zero covariances between independent variable means and regression coeffi-
cients. We recommend to set useEffectLiteR = TRUE if no replication meth-
ods are applied. When replication methods are used (jackknife-1, jackknife-2,

18 repMean

BRR), we recommend to set useEffectLiteR = FALSE, because otherwise the
estimation is very slow.

nBoot Without replicates (i.e., for completely random samples), the rep method for
standard error estimation for cross level differences needs a bootstrap. nBoot
therefore specifies the number of bootstrap samples. This argument is only nec-
essary, if crossDiffSE = "rep" and none of the replicate methods (JK1, JK2,
or BRR) is applied. Otherwise, nBoot will be ignored.

group.delimiter

Character string which separates the group names in the output frame.

trend Optional: name or column number of the trend variable which contains the mea-
surement time of the survey. Note: Levels of all grouping variables must be
equal in all ’sub populations’ partitioned by the discrete trend variable. repMean
computes differences for all pairwise contrasts defined by trend variable lev-
els. or three measurement occasions, i.e. 2010, 2015, and 2020, contrasts (i.e.
trends) are computed for 2010 vs. 2015, 2010 vs. 2020, and 2015 vs. 2020.

linkErr Optional: Either the name or column number of the linking error variable. If
NULL, a linking error of 0 will be assumed in trend estimation. Alternatively,
linking errors may be given as data.frame with following specifications: Two
columns, named trendLevel1 and trendLevel2 which contain the levels of
the trend variable. The contrasts between both values indicates which trend is
meant. For only two measurement occasions, i.e. 2010 and 2015, trendLevel1
should be 2010, and trendLevel2 should be 2015. For three measurement
occasions, i.e. 2010, 2015, and 2020, additional lines are necessary where
trendLevel1 should be 2010, and trendLevel2 should be 2020, to mark the
contrast between 2010 and 2020, and further additional lines are necessary
where trendLevel1 should be 2015, and trendLevel2 should be 2020. The
column depVar must include the name of the dependent variable. This string
must correspond to the name of the dependent variable in the data. The col-
umn parameter indicates the parameter the linking error belongs to. Column
linkingError includes the linking error value. Providing linking error in a
data.frame is necessary for more than two measurement occasions. See the ex-
ample 3a for further details.

dependent Variable name or column number of the dependent variable.

na.rm Logical: Should cases with missing values be dropped?

doCheck Logical: Check the data for consistency before analysis? If TRUE groups with in-
sufficient data are excluded from analysis to prevent subsequent functions from
crashing.

engine Which package should be used for estimation?

scale scaling constant for variance, for details, see help page of svrepdesign from
the survey package

rscales scaling constant for variance, for details, see help page of svrepdesign from
the survey package

mse Logical: If TRUE, compute variances based on sum of squares around the point
estimate, rather than the mean of the replicates. See help page of svrepdesign
from the survey package for further details.

repMean 19

rho Shrinkage factor for weights in Fay’s method. If engine = "survey", argument
is passed to the rho argument of the svrepdesign function from the survey
package. See the corresponding help page for further details. If engine =
"BIFIEsurvey", argument is passed to the fayfac argument of the BIFIE.data.jack
function from the BIFIEsurvey package. See the corresponding help page
for further details. For convenience, if rho = NULL (the default) and engine =
"BIFIEsurvey" and type = "JK1", BIFIE.data.jack is called with jktype="JK_GROUP"
and fayfac = rho, where ρ = (Ncluster − 1)×N−1

cluster

hetero Logical: Assume heteroscedastic variance for weighted effect coding?

se_type The sort of standard error sought for cross level differences. Only applies if
crossDiffSE == "wec" and hetero == TRUE and crossDiffSE.engine == "lm".
See the help page of lm_robust from the estimatr package for further details.

clusters Optional: Variable name or column number of cluster variable. Only necessary
if weighted effecting coding should be performed using heteroscedastic vari-
ances. See the help page of lm_robust from the estimatr package for further
details.

crossDiffSE.engine

Software implementation used for estimating cross-level differences. Choices
are either "lavaan" (required if stochasticGroupSites == "TRUE") or R func-
tion lm. "lavaan" is the default.

stochasticGroupSizes

Logical: Assume stochastic group sizes for using weighted effect coding in
cross-level differences? Note: To date, only crossDiffSE.engine = "lavaan"
allows for stochastic group sizes. Stochastic group sizes are not yet implemented
for any replication method (jackknife, BRR).

verbose Logical: Show analysis information on console?

progress Logical: Show progress bar on console?

nCores integer (default: NULL), number of cores to use for parallel processing, if
engine = "survey". If NULL, single core processing is used.

Details

Function first creates replicate weights based on PSU and repInd variables (if defined) according
to JK2 or BRR procedure as implemented in WesVar. According to multiple imputed data sets, a
workbook with several analyses is created. The function afterwards serves as a wrapper for svymean
called by svyby implemented in the ‘survey’ package. The results of the several analyses are then
pooled according to Rubin’s rule.

Value

A list of data frames in the long format. The output can be summarized using the report function.
The first element of the list is a list with either one (no trend analyses) or two (trend analyses) data
frames with at least six columns each. For each subpopulation denoted by the groups statement,
each parameter (i.e., mean, variance, or group differences) and each coefficient (i.e., the estimate
and the corresponding standard error) the corresponding value is given.

20 repMean

group Denotes the group an analysis belongs to. If no groups were specified and/or
analysis for the whole sample were requested, the value of ‘group’ is ‘whole-
Group’.

depVar Denotes the name of the dependent variable in the analysis.

modus Denotes the mode of the analysis. For example, if a JK2 analysis without sam-
pling weights was conducted, ‘modus’ takes the value ‘jk2.unweighted’. If
a analysis without any replicates but with sampling weights was conducted,
‘modus’ takes the value ‘weighted’.

parameter Denotes the parameter of the regression model for which the corresponding
value is given further. Amongst others, the ‘parameter’ column takes the values
‘mean’, ‘sd’, ‘var’ and ‘meanGroupDiff’ if group differences were requested.

coefficient Denotes the coefficient for which the corresponding value is given further. Takes
the values ‘est’ (estimate) and ‘se’ (standard error of the estimate).

value The value of the parameter estimate in the corresponding group.

If groups were specified, further columns which are denoted by the group names are added to the
data frame.

References

te Grotenhuis, M., Pelzer, B., Eisinga, R., Nieuwenhuis, R., Schmidt-Catran, A., & Konig, R.
(2017). When size matters: advantages of weighted effect coding in observational studies. Interna-
tional Journal of Public Health. 62, 163–167.

Sachse, K. A. & Haag, N. (2017). Standard errors for national trends in international large-scale
assessments in the case of cross-national differential item functioning. Applied Measurement in
Education, 30, (2), 102-116. http://dx.doi.org/10.1080/08957347.2017.1283315

Weirich, S., Hecht, M., Becker, B. et al. Comparing group means with the total mean in random
samples, surveys, and large-scale assessments: A tutorial and software illustration. Behav Res
(2021). https://doi.org/10.3758/s13428-021-01553-1

Examples

data(lsa)

Example 1: only means, SD and variances for each country
We only consider domain 'reading'
rd <- lsa[which(lsa[,"domain"] == "reading"),]

We only consider the first "nest".
rdN1 <- rd[which(rd[,"nest"] == 1),]

First, we only consider year 2010
rdN1y10<- rdN1[which(rdN1[,"year"] == 2010),]

mean estimation
means1 <- repMean(datL = rdN1y10, ID="idstud", wgt="wgt", type = "JK2", PSU = "jkzone",

repInd = "jkrep", imp="imp", groups = "country", dependent = "score",
na.rm=FALSE, doCheck=TRUE, engine = "BIFIEsurvey")

repMean 21

reporting function: the function does not know which content domain is being considered,
so the user may add new columns in the output using the 'add' argument
res1 <- report(means1, add = list(domain = "reading"))

Example 1a: Additionally to example 1, we decide to estimate whether
each country's mean differ significantly from the overall mean as well
as from the individual means of the other contries
means1a<- repMean(datL = rdN1y10, ID="idstud", wgt="wgt", type = "JK2", PSU = "jkzone",

repInd = "jkrep", imp="imp", groups = "country", group.splits = 0:1,
group.differences.by = "country", cross.differences = TRUE,
dependent = "score", na.rm=FALSE, doCheck=TRUE, hetero=FALSE)

res1a <- report(means1a, add = list(domain = "reading"))

See that the means of all countries significantly differ from the overall mean.
print(res1a[intersect(which(res1a[,"comparison"] == "crossDiff"),

which(res1a[,"parameter"] == "mean")),], digits = 3)

Example 2: Sex differences by country. Assume equally weighted cases by omitting
'wgt' argument.
means2 <- repMean(datL = rdN1y10, ID="idstud", type = "JK2", PSU = "jkzone",

repInd = "jkrep", imp="imp", groups = c("country", "sex"), group.splits = 0:2,
group.differences.by="sex", dependent = "score", na.rm=FALSE, doCheck=TRUE,
cross.differences =TRUE, crossDiffSE.engine= "lm")

res2 <- report(means2,add = list(domain = "reading"))

Example 2a: Additionally to example 2, we decide to estimate whether
each country's mean differ significantly from the overall mean. (Note: by default,
such cross level differences are estimated using 'weighted effect coding'. Use the
'crossDiffSE' argument to choose alternative methods.) Moreover, we estimate whether
each country's sex difference differ significantly from the sex difference in the
whole population.
means2a<- repMean(datL = rdN1y10, ID="idstud", wgt="wgt", type = "JK2", PSU = "jkzone",

repInd = "jkrep", imp="imp", groups = c("country", "sex"), group.splits = 0:2,
group.differences.by="sex", cross.differences = list(c(0,1), c(0,2)),
dependent = "score", na.rm=FALSE, doCheck=TRUE,
crossDiffSE.engine= "lm", clusters = "idclass")

res2a <- report(means2a,add = list(domain = "reading"))

Third example: like example 2a, but using nested imputations of dependent variable,
and additionally estimating trend: use 'rd' instead of 'rdN1y10'
assume equally weighted cases by omitting 'wgt' argument
ignoring jackknife by omitting 'type', 'PSU' and 'repInd' argument
means3T<- repMean(datL = rd, ID="idstud", imp="imp", nest="nest",

groups = c("country", "sex"), group.splits = 0:2, group.differences.by="sex",
cross.differences = list(c(0,1), c(0,2)), dependent = "score", na.rm=FALSE,
doCheck=TRUE, trend = "year", linkErr = "leScore",
crossDiffSE = "wec", crossDiffSE.engine= "lavaan")

res3T <- report(means3T, add = list(domain = "reading"))

Example 3a: like example 3, but providing linking errors in an additional data.frame
This is optional for two measurement occasions but mandatory if the analysis contains
more than two measurement occasions
linkErr<- data.frame (trendLevel1 = 2010, trendLevel2 = 2015, depVar = "score",

22 repMean

parameter = "mean", unique(lsa[,c("domain", "leScore")]),
stringsAsFactors = FALSE)

colnames(linkErr) <- car::recode(colnames(linkErr), "'leScore'='linkingError'")
note that the linking errors for the specified domain have to be chosen via
subsetting
means3a<- repMean(datL = rd, ID="idstud", imp="imp", nest="nest",

groups = c("country", "sex"),
group.splits = 0:2, group.differences.by="sex",
cross.differences = list(c(0,1), c(0,2)),
dependent = "score", na.rm=FALSE, doCheck=TRUE, trend = "year",
linkErr = linkErr[which(linkErr[,"domain"] == "reading"),],
crossDiffSE = "wec", crossDiffSE.engine= "lavaan")

res3a <- report(means3a, add = list(domain = "reading"))

Fourth example: using a loop do analyse 'reading' and 'listening' comprehension
in one function call. Again with group and cross differences and trends, and
trend differences
we use weights but omit jackknife analysis by omitting 'type', 'PSU' and 'repInd'
argument
means4T<- by (data = lsa, INDICES = lsa[,"domain"], FUN = function (sub.dat) {

repMean(datL = sub.dat, ID="idstud", wgt="wgt", imp="imp", nest="nest",
groups = c("country", "sex"), group.splits = 0:2,
group.differences.by="sex",
cross.differences = list(c(0,1), c(0,2)), dependent = "score",
na.rm=FALSE, doCheck=TRUE,
trend = "year", linkErr = "leScore", crossDiffSE.engine= "lm") })

ret4T <- do.call("rbind", lapply(names(means4T), FUN = function (domain) {
report(means4T[[domain]], add = list(domain = domain))}))

Fifth example: compute adjusted means, also with trend estimation
Note: all covariates must be numeric or 0/1 dichotomous
rdN1[,"mignum"] <- as.numeric(rdN1[,"mig"])
rdN1[,"sexnum"] <- car::recode(rdN1[,"sex"], "'male'=0; 'female'=1", as.numeric=TRUE,

as.factor=FALSE)
means5 <- repMean(datL = rdN1, ID="idstud", wgt="wgt", type = "JK2", PSU = "jkzone",

repInd = "jkrep", imp="imp", groups = "country",
adjust = c("sexnum", "ses", "mignum"), useEffectLiteR = FALSE,
dependent = "score", na.rm=FALSE, doCheck=TRUE, trend = "year",
linkErr = "leScore")

res5 <- report(means5, add = list(domain = "reading"))

Not run:
##
Example 6: R code for running the PISA 2015 science example to compare group means
with the total mean using weighted effect coding
##

Warning: large PISA data set requires at least 16 GB free working memory (RAM):

define necessary directories (note: writing permissions required)
folder <- tempdir()

download PISA 2015 zipped student questionnaire data (420 MB) to a folder with

repMean 23

writing permissions
download.file(url = "https://webfs.oecd.org/pisa/PUF_SPSS_COMBINED_CMB_STU_QQQ.zip",

destfile = file.path(folder, "pisa2015.zip"))

unzip PISA 2015 student questionnaire data (1.5 GB) to temporary folder
zip::unzip(zipfile = file.path(folder, "pisa2015.zip"), files= "CY6_MS_CMB_STU_QQQ.sav",

exdir=folder)

read data
pisa <- foreign::read.spss(file.path (folder, "CY6_MS_CMB_STU_QQQ.sav"),

to.data.frame=TRUE, use.value.labels = FALSE, use.missings = TRUE)

dependent variables
measure.vars <- paste0("PV", 1:10, "SCIE")

choose desired variables and reshape into the long format
'CNTSTUID' = individual student identifier
'CNT' = country identifier
'SENWT' = senate weight (assume a population of 5000 in each country)
'W_FSTUWT' = final student weight
'OECD' = dummy variable indicating which country is part of the OECD
'W_FSTURWT' (1 to 80) = balanced repeated replicate weights
'PV1SCIE' to 'PV10SCIE' = 10 plausible values of (latent) science performance
pisaLong <- reshape2::melt(pisa, id.vars = c("CNTSTUID", "CNT", "SENWT", "W_FSTUWT",

"OECD", paste0("W_FSTURWT", 1:80)),
measure.vars = measure.vars, value.name = "value", variable.name="imp",
na.rm=TRUE)

choose OECD countries
oecd <- pisaLong[which(pisaLong[,"OECD"] == 1),]

analyze data
analysis takes approximately 30 minutes on an Intel i5-6500 machine with 32 GB RAM
means <- repMean(datL = oecd, # data.frame in the long format

ID = "CNTSTUID", # student identifier
dependent = "value", # the dependent variable in the data
groups = "CNT", # the grouping variable
wgt = "SENWT", # (optional) weighting variable. We use senate

weights (assume a population of 5000 in each
country)

type = "Fay", # type of replication method. Corresponding to
the PISA sampling method, we use "Fay"

rho = 0.5, # shrinkage factor for weights in Fay's method
scale = NULL, # scaling constant for variance, set to NULL

according to PISA's sampling method
rscales = NULL, # scaling constant for variance, set to NULL

according to PISA's sampling method
repWgt = paste0("W_FSTURWT", 1:80), # the replicate weights,

provided by the OECD
imp = "imp", # the imputation variable
mse = FALSE, # if TRUE, compute variances based on sum of

squares around the point estimate, rather
than the mean of the replicates.

24 report

group.splits = 0:1, # defining the 'levels' for which means should
be computed. 0:1 implies that means for the
whole sample (level 0) as well as for groups
(level 1) are computed

cross.differences = TRUE, # defines whether (and which) cross level mean
differences should be computed. TRUE means
that all cross level mean differences are
computed

crossDiffSE = "wec", # method for standard errors of mean
differences

crossDiffSE.engine = "lm", # software implementation for standard
errors of mean differences

hetero = TRUE, # assume heteroscedastic group variances
stochasticGroupSizes = FALSE # assume fixed group sizes

)

call a reporting function to generate user-friendly output
results <- report(means, exclude = c("Ncases", "NcasesValid", "var", "sd"))

End(Not run)

report Reporting functions for repMean, repTable, repQuantile, and
repGlm

Description

Summarizes the output of the four main functions repMean, repTable, repQuantile, and repGlm,
and provides a single data.frame with all results.

Usage

report(repFunOut, trendDiffs = deprecated(), add=list(),
exclude = c("NcasesValid", "var"),
printGlm = FALSE, round = TRUE, digits = 3, printDeviance = FALSE,
printSE_correction = FALSE)

report2(repFunOut, add=list(), exclude = c("NcasesValid", "var"), printGlm = FALSE,
round = TRUE, digits = 3, printDeviance = FALSE, printSE_correction = FALSE)

Arguments

repFunOut output of one of the four eatRep-functions.

trendDiffs deprecated. In earlier versions of the package, this argument was used to deter-
mine differences in trends. As differences in trends are equivalent to the trend of
differences (no matter whether group or cross-level differences), the argument
was deprecated. If the user specifies group or cross-level difference along with
trends, trends of differences are computed as well.

add Optional: additional columns for output. See examples of the jk2-functions

report 25

exclude Which parameters should be excluded from reporting?

printGlm Only relevant for repGlm: print summary on console?

round Logical: should the results be rounded to a limited number of digits?

digits How many digits should be used for rounding?

printDeviance Only relevant for repGlm when other than the identical function is used as link
function, and if printGlm is TRUE. Should the deviance information printed
additionally? Note: To print deviance information, the argument poolMethod
of the repGlm function must be set to "scalar".

printSE_correction

Logical: Print the differences of original SEs of cross differences (method "old")
and SEs obtained by the "wec" or "rep" method.

Value

report and report2 differ in the output which is returned. The output of report2 is optimized for
further processing, i.e. drawing plots by means of the eatPlot package. For report, the output is
a data frame with at least nine columns.

group Denotes the group an analysis belongs to. If no groups were specified and/or
analysis for the whole sample were requested, the value of ‘group’ is ‘whole-
Group’.

depVar Denotes the name of the dependent variable in the analysis.

modus Denotes the mode of the analysis. For example, if a JK2 regression analysis was
conducted, ‘modus’ takes the value ‘JK2.glm’. If a mean analysis without any
replicates was conducted, ‘modus’ takes the value ‘CONV.mean’.

comparison Denotes whether group mean comparisons or cross-level comparisons were con-
ducted. Without any comparisons, ‘comparison’ takes the value ‘NA’

parameter Denotes the parameter of the corresponding analysis. If regression analysis was
applied, the regression parameter is given. Amongst others, the ‘parameter’
column takes the values ‘(Intercept)’ and ‘gendermale’ if ‘gender’ was the in-
dependent variable, for instance. If mean analysis was applied, the ‘parameter’
column takes the values ‘mean’, ‘sd’, ‘var’, or ‘Nvalid’. See the examples of
repMean,repTable, repQuantile, or repGlm for further details.

depVar Denotes the name of the dependent variable (only if repGlm was called before)

est Denotes the estimate of the corresponding analysis.

se Denotes the standard error of the corresponding estimate.

p Denotes the p value of the estimate.

For report2, the output is a list with four data.frames. The first data.frame plain summarizes
the results in human-readable form. The data.frames 2 to 4 (comparisons, group, estimate) are
redundant to plain and contain the results in a technical presentation suitable for further processing
in eatPlot.

plain The complete results in human-readable form.

comparison An allocation table that indicates which comparison (group comparison or cross-
level comparison) relates to which groups.

26 repQuantile

group A table that assigns an ID to each analysis unit. This makes it easier later on
to read from the output which comparison relates to which groups. This sim-
plifies the assignment, especially when comparing comparisons (i.e., cross-level
differences of group differences).

estimate The results of the analyses, assigned to their IDs.

Author(s)

Benjamin Becker, Sebastian Weirich

Examples

see examples of the eatRep main functions.

repQuantile Replication methods (JK1, JK2 and BRR) for quantiles and trend esti-
mation.

Description

Compute quantiles with standard errors for complex cluster designs with multiple imputed variables
(e.g. plausible values) based on Jackknife (JK1, JK2) or balanced repeated replicates (BRR) proce-
dure. Conceptually, the function combines replication methods and methods for multiple imputed
data. Technically, this is a wrapper for the svyquantile() function of the survey package.

Usage

repQuantile(datL, ID, wgt = NULL, type = c("none", "JK2", "JK1", "BRR", "Fay"),
PSU = NULL, repInd = NULL, repWgt = NULL, nest=NULL, imp=NULL,

groups = NULL, group.splits = length(groups), cross.differences = FALSE,
group.delimiter = "_", trend = NULL, linkErr = NULL, dependent,
probs = c(0.25, 0.50, 0.75), na.rm = FALSE, nBoot = NULL,
bootMethod = c("wSampling","wQuantiles") , doCheck = TRUE,
scale = 1, rscales = 1, mse=TRUE,
rho=NULL, verbose = TRUE, progress = TRUE)

Arguments

datL Data frame in the long format (i.e. each line represents one ID unit in one
imputation of one nest) containing all variables for analysis.

ID Variable name or column number of student identifier (ID) variable. ID variable
must not contain any missing values.

wgt Optional: Variable name or column number of weighting variable. If no weight-
ing variable is specified, all cases will be equally weighted.

type Defines the replication method for cluster replicates which is to be applied.
Depending on type, additional arguments must be specified (e.g., PSU and/or
repInd or repWgt).

repQuantile 27

PSU Variable name or column number of variable indicating the primary sampling
unit (PSU). When a jackknife procedure is applied, the PSU is the jackknife
zone variable. If NULL, no cluster structure is assumed and standard errors are
computed according to a random sample.

repInd Variable name or column number of variable indicating replicate ID. In a jack-
knife procedure, this is the jackknife replicate variable. If NULL, no cluster struc-
ture is assumed and standard errors are computed according to a random sample.

repWgt Normally, replicate weights are created by repQuantile directly from PSU and
repInd variables. Alternatively, if replicate weights are included in the data.frame,
specify the variable names or column number in the repWgt argument.

nest Optional: name or column number of the nesting variable. Only applies in
nested multiple imputed data sets.

imp Optional: name or column number of the imputation variable. Only applies in
multiple imputed data sets.

groups Optional: vector of names or column numbers of one or more grouping vari-
ables.

group.splits Optional: If groups are defined, group.splits optionally specifies whether
analysis should be done also in the whole group or overlying groups. See exam-
ples for more details.

cross.differences

Either a list of vectors, specifying the pairs of levels for which cross-level dif-
ferences should be computed. Alternatively, if TRUE, cross-level differences
for all pairs of levels are computed. If FALSE, no cross-level differences are
computed. (see examples 2a, 3, and 4 in the help file of the repMean function)

group.delimiter

Character string which separates the group names in the output frame.

trend Optional: name or column number of the trend variable which contains the mea-
surement time of the survey. Note: Levels of all grouping variables must be
equal in all ’sub populations’ partitioned by the discrete trend variable. repQuantile
computes differences for all pairwise contrasts defined by trend variable lev-
els. or three measurement occasions, i.e. 2010, 2015, and 2020, contrasts (i.e.
trends) are computed for 2010 vs. 2015, 2010 vs. 2020, and 2015 vs. 2020.

linkErr Optional: Either the name or column number of the linking error variable. If
NULL, a linking error of 0 will be assumed in trend estimation. Alternatively,
linking errors may be given as data.frame with following specifications: Two
columns, named trendLevel1 and trendLevel2 which contain the levels of
the trend variable. The contrasts between both values indicates which trend is
meant. For only two measurement occasions, i.e. 2010 and 2015, trendLevel1
should be 2010, and trendLevel2 should be 2015. For three measurement
occasions, i.e. 2010, 2015, and 2020, additional lines are necessary where
trendLevel1 should be 2010, and trendLevel2 should be 2020, to mark the
contrast between 2010 and 2020, and further additional lines are necessary
where trendLevel1 should be 2015, and trendLevel2 should be 2020. The
column depVar must include the name of the dependent variable. This string
must correspond to the name of the dependent variable in the data. The col-
umn parameter indicates the parameter the linking error belongs to. Column

28 repQuantile

linkingError includes the linking error value. Providing linking error in a
data.frame is necessary for more than two measurement occasions.

dependent Variable name or column number of the dependent variable.
probs Numeric vector with probabilities for which to compute quantiles.
na.rm Logical: Should cases with missing values be dropped?
nBoot Optional: Without replicates, standard error cannot be computed in a weighted

sample. Alternatively, standard errors may be computed using the boot package.
nBoot therefore specifies the number of bootstrap samples. If not specified,
no standard errors will be given. In analyses containing replicates or samples
without specifying person weights, nBoot will be ignored.

bootMethod Optional: If standard error are computed in a bootstrap, two possible meth-
ods may be applied. wSampling requests the function to draw nBoot weighted
bootstrap samples for which unweighted quantiles are computed. wQuantiles
requests the function to draw nBoot unweighted bootstrap samples for which
weighted quantiles are computed.

doCheck Logical: Check the data for consistency before analysis? If TRUE groups with in-
sufficient data are excluded from analysis to prevent subsequent functions from
crashing.

scale scaling constant for variance, for details, see help page of svrepdesign from
the survey package

rscales scaling constant for variance, for details, see help page of svrepdesign from
the survey package

mse Logical: If TRUE, compute variances based on sum of squares around the point
estimate, rather than the mean of the replicates. See help page of svrepdesign
from the survey package for further details.

rho Shrinkage factor for weights in Fay’s method. See help page of svrepdesign
from the survey package for further details.

verbose Logical: Show analysis information on console?
progress Logical: Show progress bar on console?

Details

Function first creates replicate weights based on PSU and repInd variables according to JK2 or
BRR procedure implemented in WesVar. According to multiple imputed data sets, a workbook
with several analyses is created. The function afterwards serves as a wrapper for svyquantile
called by svyby implemented in the survey package. The results of the several analyses are then
pooled according to Rubins rule, which is adapted for nested imputations if the dependent argument
implies a nested structure.

Value

A list of data frames in the long format. The output can be summarized using the report function.
The first element of the list is a list with either one (no trend analyses) or two (trend analyses) data
frames with at least six columns each. For each subpopulation denoted by the groups statement,
each dependent variable, each parameter (i.e., the values of the corresponding categories of the
dependent variable) and each coefficient (i.e., the estimate and the corresponding standard error)
the corresponding value is given.

repQuantile 29

group Denotes the group an analysis belongs to. If no groups were specified and/or
analysis for the whole sample were requested, the value of ‘group’ is ‘whole-
Group’.

depVar Denotes the name of the dependent variable in the analysis.

modus Denotes the mode of the analysis. For example, if a JK2 analysis without sam-
pling weights was conducted, ‘modus’ takes the value ‘jk2.unweighted’. If
a analysis without any replicates but with sampling weights was conducted,
‘modus’ takes the value ‘weighted’.

parameter Denotes the parameter of the regression model for which the corresponding
value is given further. For frequency tables, this is the value of the category
of the dependent variable which relative frequency is given further.

coefficient Denotes the coefficient for which the corresponding value is given further. Takes
the values ‘est’ (estimate) and ‘se’ (standard error of the estimate).

value The value of the parameter, i.e. the relative frequency or its standard error.

If groups were specified, further columns which are denoted by the group names are added to the
data frame.

Examples

data(lsa)
Example 1: only means, SD and variances for each country
We only consider domain 'reading'
rd <- lsa[which(lsa[,"domain"] == "reading"),]

We only consider the first "nest".
rdN1 <- rd[which(rd[,"nest"] == 1),]

First, we only consider year 2010
rdN1y10<- rdN1[which(rdN1[,"year"] == 2010),]

First example: Computes percentile in a nested data structure for reading
scores conditionally on country and for the whole group
perzent <- repQuantile(datL = rd, ID = "idstud", wgt = "wgt", type = "JK2",

PSU = "jkzone", repInd = "jkrep", imp = "imp", nest="nest",
groups = "country", group.splits = c(0:1), dependent = "score",
probs = seq(0.1,0.9,0.2))

res <- report(perzent, add = list(domain = "reading"))

Second example: Computes percentile for reading scores conditionally on country,
use 100 bootstrap samples, assume no nested structure
perzent2 <- repQuantile(datL = rdN1y10, ID = "idstud", wgt = "wgt",

imp = "imp", groups = "country", dependent = "score",
probs = seq(0.1,0.9,0.2), nBoot = 100)

res2 <- report(perzent, add = list(domain = "reading"))

30 repTable

repTable JK1, JK2 and BRR for frequency tables and trend estimation.

Description

Compute frequency tables for categorical variables (e.g. factors: dichotomous or polytomous) in
complex cluster designs. Estimation of standard errors optionally takes the clustered structure and
multiple imputed variables into account. To date, Jackknife-1 (JK1), Jackknife-2 (JK2) and Bal-
anced repeated replicate (BRR) methods are implemented to account for clustered designs. Proce-
dures of Rubin (1987) and Rubin (2003) are implemented to account for multiple imputed data and
nested imputed data, if necessary. Conceptually, the function combines replication and imputation
methods. Technically, this is a wrapper for the svymean function of the survey package.

Usage

repTable(datL, ID, wgt = NULL, type = c("none", "JK2", "JK1", "BRR", "Fay"), PSU = NULL,
repInd = NULL, jkfac=NULL, repWgt = NULL, nest=NULL, imp=NULL, groups = NULL,

group.splits = length(groups), group.differences.by = NULL,
cross.differences = FALSE, crossDiffSE = c("wec", "rep","old"),
nBoot = 100, chiSquare = FALSE, correct = TRUE, group.delimiter = "_",

trend = NULL, linkErr = NULL, dependent, separate.missing.indicator = FALSE,
na.rm=FALSE, expected.values = NULL, doCheck = TRUE, forceTable = FALSE,
engine = c("survey", "BIFIEsurvey"), scale = 1, rscales = 1, mse=TRUE,
rho=NULL, verbose = TRUE, progress = TRUE, nCores=NULL)

Arguments

datL Data frame in the long format (i.e. each line represents one ID unit in one
imputation of one nest) containing all variables for analysis.

ID Variable name or column number of student identifier (ID) variable. ID variable
must not contain any missing values.

wgt Optional: Variable name or column number of weighting variable. If no weight-
ing variable is specified, all cases will be equally weighted.

type Defines the replication method for cluster replicates which is to be applied.
Depending on type, additional arguments must be specified (e.g., PSU and/or
repInd or repWgt).

PSU Variable name or column number of variable indicating the primary sampling
unit (PSU). When a jackknife procedure is applied, the PSU is the jackknife
zone variable. If NULL, no cluster structure is assumed and standard errors are
computed according to a random sample.

repInd Variable name or column number of variable indicating replicate ID. In a jack-
knife procedure, this is the jackknife replicate variable. If NULL, no cluster struc-
ture is assumed and standard errors are computed according to a random sample.

jkfac Only applies if engine = "BIFIEsurvey". Argument is passed to BIFIE.data.jack
and specifies the factor for multiplying jackknife replicate weights.

repTable 31

repWgt Normally, replicate weights are created by repTable directly from PSU and
repInd variables. Alternatively, if replicate weights are included in the data.frame,
specify the variable names or column number in the repWgt argument.

nest Optional: name or column number of the nesting variable. Only applies in
nested multiple imputed data sets.

imp Optional: name or column number of the imputation variable. Only applies in
multiple imputed data sets.

groups Optional: vector of names or column numbers of one or more grouping vari-
ables.

group.splits Optional: If groups are defined, group.splits optionally specifies whether
analysis should be done also in the whole group or overlying groups. See exam-
ples for more details.

group.differences.by

Optional: Specifies one grouping variable for which a chi-square test should be
applied. The corresponding variable must be included in the groups statement.
If specified, the distribution of the dependent variable is compared between the
groups. See examples for further details.

cross.differences

Either a list of vectors, specifying the pairs of levels for which cross-level dif-
ferences should be computed. Alternatively, if TRUE, cross-level differences
for all pairs of levels are computed. If FALSE, no cross-level differences are
computed. (see examples 2a, 3, and 4 in the help file of the repMean function)

crossDiffSE Method for standard error estimation for cross level differences, where groups
are dependent. wec uses weighted effect coding, rep uses replication methods
(bootstrap or jackknife) to estimate the standard error between the total mean
and group-specific means. old does not account for dependent groups and treat
the groups as if they were independent from each other.

nBoot Without replicates (i.e., for completely random samples), the rep method for
standard error estimation for cross level differences needs a bootstrap. nBoot
therefore specifies the number of bootstrap samples. This argument is only nec-
essary, if crossDiffSE = "rep" and none of the replicate methods (JK1, JK2,
or BRR) is applied. Otherwise, nBoot will be ignored.

chiSquare Logical. Applies only if group.differences.by was specified. Defines whether
group differences should be represented in a chi square test or in (mean) differ-
ences of each group’s relative frequency. Note: To date, chi square test is not
available for engine = "BIFIEsurvey".

correct Logical. Applies only if ’group.differences.by’ is requested without cluster
replicates. A logical indicating whether to apply continuity correction when
computing the test statistic for 2 by 2 tables. See help page of ’chisq.test’ for
further details.

group.delimiter

Character string which separates the group names in the output frame.

trend Optional: name or column number of the trend variable which contains the mea-
surement time of the survey. Note: Levels of all grouping variables must be
equal in all ’sub populations’ partitioned by the discrete trend variable. repTable

32 repTable

computes differences for all pairwise contrasts defined by trend variable lev-
els. or three measurement occasions, i.e. 2010, 2015, and 2020, contrasts (i.e.
trends) are computed for 2010 vs. 2015, 2010 vs. 2020, and 2015 vs. 2020.

linkErr Optional: Either the name or column number of the linking error variable.
If NULL, a linking error of 0 will be assumed in trend estimation. Alterna-
tively, linking errors may be given as data.frame with following specifications:
Two columns, named trendLevel1 and trendLevel2 which contain the lev-
els of the trend variable. The contrasts between both values indicates which
trend is meant. For only two measurement occasions, i.e. 2010 and 2015,
trendLevel1 should be 2010, and trendLevel2 should be 2015. For three
measurement occasions, i.e. 2010, 2015, and 2020, additional lines are neces-
sary where trendLevel1 should be 2010, and trendLevel2 should be 2020, to
mark the contrast between 2010 and 2020, and further additional lines are nec-
essary where trendLevel1 should be 2015, and trendLevel2 should be 2020.
The column depVar must include the name of the dependent variable. This
string must correspond to the name of the dependent variable in the data. The
column parameter indicates the parameter the linking error belongs to. Col-
umn linkingError includes the linking error value. Providing linking error in
a data.frame is necessary for more than two measurement occasions. See the
fourth example below for further details.

dependent Variable name or column number of the dependent variable.
separate.missing.indicator

Logical. Should frequencies of missings in dependent variable be integrated?
Note: That is only useful if missing occur as NA. If the dependent variable is
coded as character, for example 'male', 'female', 'missing', separate miss-
ing indicator is not necessary.

na.rm Logical: Should cases with missing values be dropped?
expected.values

Optional. A vector of values expected in dependent variable. Recommend to
left this argument empty.

doCheck Logical: Check the data for consistency before analysis? If TRUE groups with in-
sufficient data are excluded from analysis to prevent subsequent functions from
crashing.

forceTable Logical: Function decides internally whether the table or the mean function of
survey is called. If the mean function is called, the polytomous dependent vari-
able is converted to dichotomous indicator variables. If mean is called, group
differences for each category of the polytomous dependent variable can be com-
puted. If table is called, a chi square statistic may be computed. The argument
allows to force the function either to call mean or table.

engine Which package should be used for estimation?
scale scaling constant for variance, for details, see help page of svrepdesign from

the survey package
rscales scaling constant for variance, for details, see help page of svrepdesign from

the survey package
mse Logical: If TRUE, compute variances based on sum of squares around the point

estimate, rather than the mean of the replicates. See help page of svrepdesign
from the survey package for further details.

repTable 33

rho Shrinkage factor for weights in Fay’s method. If engine = "survey", argument
is passed to the rho argument of the svrepdesign function from the survey
package. See the corresponding help page for further details. If engine =
"BIFIEsurvey", argument is passed to the fayfac argument of the BIFIE.data.jack
function from the BIFIEsurvey package. See the corresponding help page
for further details. For convenience, if rho = NULL (the default) and engine =
"BIFIEsurvey" and type = "JK1", BIFIE.data.jack is called with jktype="JK_GROUP"
and fayfac = rho, where ρ = (Ncluster − 1)×N−1

cluster

verbose Logical: Show analysis information on console?
progress Logical: Show progress bar on console?
nCores integer (default: NULL), number of cores to use for parallel processing, if

engine = "survey". If NULL, single core processing is used.

Details

Function first creates replicate weights based on PSU and repInd variables according to JK2 pro-
cedure implemented in WesVar. According to multiple imputed data sets, a workbook with several
analyses is created. The function afterwards serves as a wrapper for svymean called by svyby im-
plemented in the survey package. Relative frequencies of the categories of the dependent variable
are computed by the means of the dichotomous indicators (e.g. dummy variables) of each category.
The results of the several analyses are then pooled according to Rubin’s rule, which is adapted for
nested imputations if the dependent argument implies a nested structure.

Value

A list of data frames in the long format. The output can be summarized using the report function.
The first element of the list is a list with either one (no trend analyses) or two (trend analyses) data
frames with at least six columns each. For each subpopulation denoted by the groups statement,
each dependent variable, each parameter (i.e., the values of the corresponding categories of the
dependent variable) and each coefficient (i.e., the estimate and the corresponding standard error)
the corresponding value is given.

group Denotes the group an analysis belongs to. If no groups were specified and/or
analysis for the whole sample were requested, the value of ‘group’ is ‘whole-
Group’.

depVar Denotes the name of the dependent variable in the analysis.
modus Denotes the mode of the analysis. For example, if a JK2 analysis without sam-

pling weights was conducted, ‘modus’ takes the value ‘jk2.unweighted’. If
a analysis without any replicates but with sampling weights was conducted,
‘modus’ takes the value ‘weighted’.

parameter Denotes the parameter of the regression model for which the corresponding
value is given further. For frequency tables, this is the value of the category
of the dependent variable which relative frequency is given further.

coefficient Denotes the coefficient for which the corresponding value is given further. Takes
the values ‘est’ (estimate) and ‘se’ (standard error of the estimate).

value The value of the parameter, i.e. the relative frequency or its standard error.

If groups were specified, further columns which are denoted by the group names are added to the
data frame.

34 repTable

References

Rubin, D.B. (2003): Nested multiple imputation of NMES via partially incompatible MCMC. Sta-
tistica Neerlandica 57, 1, 3–18.

Examples

data(lsa)

Example 1: only means, SD and variances for each country
subsetting: We only consider domain 'reading'
rd <- lsa[which(lsa[,"domain"] == "reading"),]

We only consider the first "nest".
rdN1 <- rd[which(rd[,"nest"] == 1),]

First, we only consider year 2010
rdN1y10<- rdN1[which(rdN1[,"year"] == 2010),]

First example: Computes frequencies of polytomous competence levels (1, 2, 3, 4, 5)
conditionally on country, using a chi-square test to decide whether the distribution
varies between countries (it's an overall test, i.e. with three groups, df1=8).
freq.tab1 <- repTable(datL = rdN1y10, ID = "idstud", wgt = "wgt", imp="imp",

type = "JK2", PSU = "jkzone", repInd = "jkrep", groups = "country",
group.differences.by = "country", dependent = "comp", chiSquare = TRUE)

res1 <- report(freq.tab1, add = list (domain = "reading"))

Second example: Computes frequencies of polytomous competence levels (1, 2, 3, 4, 5)
conditionally on country. Now we test whether the frequency of each single category
differs between pairs of countries (it's not an overall test ... repTable now
calls repMean internally, using dummy variables)
freq.tab2 <- repTable(datL = rdN1y10, ID = "idstud", wgt = "wgt", imp="imp",

type = "JK2", PSU = "jkzone", repInd = "jkrep", groups = "country",
group.differences.by = "country", dependent = "comp", chiSquare = FALSE)

res2 <- report(freq.tab2, add = list (domain = "reading"))

Third example: trend estimation and nested imputation and 'by' loop
(to date, only crossDiffSE = "old" works)
freq.tab3 <- by (data = lsa, INDICES = lsa[,"domain"], FUN = function (subdat) {

repTable(datL = subdat, ID = "idstud", wgt = "wgt", imp="imp",
nest = "nest", type = "JK2", PSU = "jkzone", repInd = "jkrep",
groups = "country", group.differences.by = "country",
group.splits = 0:1, cross.differences = TRUE, crossDiffSE = "old",
dependent = "comp", chiSquare = FALSE, trend = "year",
linkErr = "leComp") })

res3 <- do.call("rbind", lapply(names(freq.tab3), FUN = function (domain) {
report(freq.tab3[[domain]], add = list (domain = domain)) }))

Fourth example: similar to example 3. trend estimation using a linking
error data.frame
linkErrs <- data.frame (trendLevel1 = 2010, trendLevel2 = 2015, depVar = "comp",

unique(lsa[,c("domain", "comp", "leComp")]), stringsAsFactors = FALSE)

repTable 35

colnames(linkErrs) <- car::recode(colnames(linkErrs),
"'comp'='parameter'; 'leComp'='linkingError'")

freq.tab4 <- by (data = lsa, INDICES = lsa[,"domain"], FUN = function (subdat) {
repTable(datL = subdat, ID = "idstud", wgt = "wgt", type="none",

imp="imp", nest = "nest", groups = "country",
group.differences.by = "country", group.splits = 0:1,
cross.differences = FALSE, dependent = "comp", chiSquare = FALSE,
trend = "year",
linkErr = linkErrs[which(linkErrs[,"domain"] == subdat[1,"domain"]),])

})
res4 <- do.call("rbind", lapply(names(freq.tab4), FUN = function (domain) {

report(freq.tab4[[domain]], add = list (domain = domain)) }))

Fifth example: minimal example for three measurement occasions
borrow data from the eatGADS package
trenddat1 <- system.file("extdata", "trend_gads_2010.db", package = "eatGADS")
trenddat2 <- system.file("extdata", "trend_gads_2015.db", package = "eatGADS")
trenddat3 <- system.file("extdata", "trend_gads_2020.db", package = "eatGADS")
trenddat <- eatGADS::getTrendGADS(filePaths = c(trenddat1, trenddat2, trenddat3),

years = c(2010, 2015, 2020), fast=FALSE)
dat <- eatGADS::extractData(trenddat)
use template linking Error Object
load(system.file("extdata", "linking_error.rda", package = "eatRep"))
check consistency of data and linking error object
check1 <- checkLEs(c(trenddat1, trenddat2, trenddat3), lErr)
Analysis for reading comprehension
freq.tab5 <- repTable(datL = dat[which(dat[,"dimension"] == "reading"),],

ID = "idstud", type="none", imp="imp", dependent = "traitLevel",
chiSquare = FALSE, trend = "year",
linkErr = lErr[which(lErr[,"domain"] == "reading"),])

res5 <- report(freq.tab5, add = list (domain = "reading"))
res5A <- report2(freq.tab5, add = list (domain = "reading"))

Index

∗ datasets
lsa, 7

∗ package
eatRep-package, 2

BIFIE.data.jack, 14, 17, 19, 30, 33
BIFIE.twolevelreg, 13

checkLEs, 5

eatRep-package, 2

generateRandomJk1Zones, 6

jk2.glm (repGlm), 9
jk2.mean (repMean), 16
jk2.quantile (repQuantile), 26
jk2.table (repTable), 30

lm, 19
lm_robust, 11, 19
lsa, 7

pool.R2, 8

repGlm, 4, 9, 24, 25
repLmer, 13
repMean, 3, 4, 16, 24, 25, 27
report, 4, 24
report2, 4
report2 (report), 24
repQuantile, 4, 24, 25, 26
repTable, 4, 24, 25, 30

svrepdesign, 11, 18, 19, 28, 32, 33
svyby, 19, 28, 33
svyglm, 9, 12
svymean, 16, 19, 30, 33
svyquantile, 28
svyvar, 16

36

	eatRep-package
	checkLEs
	generateRandomJk1Zones
	lsa
	pool.R2
	repGlm
	repLmer
	repMean
	report
	repQuantile
	repTable
	Index

