Package ‘elastic’
January 25, 2026

Title Database Interface to 'Elasticsearch' and 'OpenSearch’

Description Connect to 'Elasticsearch' and 'OpenSearch’, NoSQL' databases
built on the 'Java' Virtual Machine and using the 'Apache' Lucene' library.
Interacts with the 'Elasticsearch' 'HTTP' API'
(<https://www.elastic.co/elasticsearch/>) and the
'OpenSearch' ' HTTP' 'API' (<https://opensearch.org/>).

Includes functions for setting connection details to 'Elasticsearch' and
'OpenSearch' instances, loading bulk data, searching for documents with
both 'HTTP' query variables and 'JSON' based body requests.

In addition, 'elastic' provides functions for interacting with APIs

for 'indices', documents, nodes, clusters, an interface to the cat API,

and more.

Version 1.2.2
License MIT + file LICENSE

URL https://rfhb.github.io/elastic/,
https://www.elastic.co/docs/solutions/search

BugReports https://github.com/rfhb/elastic/issues
Encoding UTF-8

Language en-US

Imports utils, curl (>= 2.2), crul (>=0.9.0), jsonlite, R6
Suggests testthat

RoxygenNote 7.3.3

X-schema.org-applicationCategory Databases

X-schema.org-keywords database, Elasticsearch, OpenSearch, Lucene,
HTTP, API, search, NoSQL, Java, JSON, documents

NeedsCompilation no

Author Ralf Herold [cre] (ORCID: <https://orcid.org/0000-0002-8148-6748>),
Scott Chamberlain [aut] (ORCID:
<https://orcid.org/0000-0003-1444-9135>)

Maintainer Ralf Herold <ralf.herold@mailbox.org>
Repository CRAN
Date/Publication 2026-01-25 21:50:13 UTC

https://www.elastic.co/elasticsearch/
https://opensearch.org/
https://rfhb.github.io/elastic/
https://www.elastic.co/docs/solutions/search
https://github.com/rfhb/elastic/issues
https://orcid.org/0000-0002-8148-6748
https://orcid.org/0000-0003-1444-9135

2 Contents

Contents
alias L e e e 3
CAL . ot e e e e 5
cluster e e e 10
COMNECE . . . v v v i it e e e e e e e e e e e e e e e e e e e 14
COUNL . . v v o e o e e e e e e e e e e e e e e e e e e 16
docs_bulko e 18
docs_bulk_create e e e 23
docs_bulk_delete e 25
docs_bulk index 27
docs_bulk_prep 29
docs_bulk_update 32
dOCS_Create o e e e e 34
docs_delete e 36
docs_delete_by_query e 37
docs_geto e e e 40
docs_mgeto e e 42
docs_update 44
docs_update_by_query 46
documents L. e e e e e e e e e e e 48
elastic e e e e e 49
elastic-defunct e e e e 51
explain. e 51
fielddata e 53
field_caps 54
fleld_stats e 55
index_template 57
INdiCES e e e e e e e e e 59
INZESE . . o v e e e e e e e e e e 67
MAPPING .« « o o vt e e e e e e e e e e e e 70
msearch e e 73
MEEIMVECIOIS v v o e v o e 74
nodes e e e 77
percolate 79
PINE . o e e e 85
preference L. L e e e 86
TeINAEX e e e e e e e e e e 86
scroll . . L e e e 88
Search e e e 92
searchapis 112
search_shards e e 113
Search_template e e 114
Search_uri e e e 117
tasks . . .o e e e e 122
EIMVECIOTS . . . o v v o o e 123
toKeniZer Set e e e e e 125

EYPE_TEMOVET v o v vttt et e e e e e e e e e e e e e e e 127

alias 3

units-distance e e e e 128
UNIES-IME o o o e e e e e e e e 128
validate e e e 129
Index 131
alias Elasticsearch alias APIs
Description

Elasticsearch alias APIs

Usage
alias_get(conn, index = NULL, alias = NULL, ignore_unavailable = FALSE, ...)
aliases_get(conn, index = NULL, alias = NULL, ignore_unavailable = FALSE, ...)
alias_exists(conn, index = NULL, alias = NULL, ...)

alias_create(

conn,

index,

alias,

filter = NULL,

routing = NULL,
search_routing = NULL,
index_routing = NULL,

)
alias_rename(conn, index, alias, alias_new, ...)
alias_delete(conn, index = NULL, alias, ...)

Arguments
conn an Elasticsearch connection object, see connect ()
index (character) An index name
alias (character) An alias name

ignore_unavailable
(logical) What to do if an specified index name doesn’t exist. If set to TRUE then
those indices are ignored.

Curl args passed on to crul::verb-POST, crul::verb-GET, crul::verb-HEAD, or
crul::verb-DELETE

4 alias

filter (named list) provides an easy way to create different "views" of the same index.
Defined using Query DSL and is applied to all Search, Count, Delete By Query
and More Like This operations with this alias. See examples

routing, search_routing, index_routing
(character) Associate a routing value with an alias

alias_new (character) A new alias name, used in rename only

Details

Note that you can also create aliases when you create indices by putting the directive in the request
body. See the Elasticsearch docs link

Author(s)

Scott Chamberlain myrmecocystus @ gmail.com

References

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-indices-update-aliases

Examples

Not run:
connection setup
(x <= connect())

if (lindex_exists(x, "plos")) {

plosdat <- system.file("examples”, "plos_data.json", package = "elastic")
invisible(docs_bulk(x, plosdat))

3

if (!lindex_exists(x, "shakespeare")) {
shake <- system.file("examples”, "shakespeare_data_.json”, package = "elastic")
invisible(docs_bulk(x, shake))

3

Create/update an alias

alias_create(x, index = "plos”, alias = "candles")

more than one alias

alias_create(x, index = "plos”, alias = c("tables”, "chairs"))

associate an alias with two multiple different indices
alias_create(x, index = c("plos"”, "shakespeare"), alias = "stools")

Retrieve a specified alias
alias_get(x, index="plos")
alias_get(x, alias="tables")
alias_get(x, alias="stools")
aliases_get(x)

rename an alias
aliases_get(x, "plos")

mailto:myrmecocystus@gmail.com
https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-indices-update-aliases

cat

alias_rename(x, index = 'plos', alias = "stools”, alias_new = "plates"”)
aliases_get(x, "plos")

filtered aliases
alias_create(x, index = "plos"”, alias = "candles”,
filter = list(wildcard = list(title = "cell"”)))
a search with the alias should give titles with cell in them
(titles <- Search(x, "candles"”, asdf = TRUE)$hits$hits$ _source.title™)
grepl(”cell”, titles, ignore.case = TRUE)

routing
alias_create(x, index = "plos"”, alias = "candles”,

routing = "1")

Check for alias existence

alias_exists(x, index = "plos”)
alias_exists(x, alias = "tables")
alias_exists(x, alias = "adsfasdf")

Delete an alias
alias_delete(x, index = "plos”, alias = "tables")
alias_exists(x, alias = "tables")

Curl options
alias_create(x, index = "plos”, alias = "tables")

aliases_get(x, alias = "tables”, verbose = TRUE)

End(Not run)

cat Use the cat Elasticsearch api.

Description

Use the cat Elasticsearch api.

Usage

cat_(conn, parse = FALSE, ...)

cat_aliases(
conn,
verbose = FALSE,
index = NULL,
h = NULL,
help = FALSE,
bytes = FALSE,
parse = FALSE,
expand_wildcards = "all",

)

cat_allocation(

)

conn,
verbose = FALSE,
h = NULL,

help = FALSE,
bytes = FALSE,
parse = FALSE,

cat_count(

)

conn,
verbose = FALSE,
index = NULL,

h = NULL,

help = FALSE,
bytes = FALSE,
parse = FALSE,

cat_segments(

)

conn,
verbose = FALSE,
index = NULL,

h = NULL,

help = FALSE,
bytes = FALSE,
parse = FALSE,

cat_health(

)

conn,
verbose = FALSE,
h = NULL,

help = FALSE,
bytes = FALSE,
parse = FALSE,

cat_indices(

conn,
verbose = FALSE,

cat

cat

)

index = NULL,
h = NULL,

help = FALSE,
bytes = FALSE,
parse = FALSE,

cat_master(

)

conn,
verbose = FALSE,
index = NULL,

h = NULL,

help = FALSE,
bytes = FALSE,
parse = FALSE,

cat_nodes(

)

conn,
verbose = FALSE,
h = NULL,

help = FALSE,
bytes = FALSE,
parse = FALSE,

cat_nodeattrs(

)

conn,
verbose = FALSE,
h = NULL,

help = FALSE,
bytes = FALSE,
parse = FALSE,

cat_pending_tasks(

conn,
verbose = FALSE,
h = NULL,

help = FALSE,
bytes = FALSE,
parse = FALSE,

cat_plugins(

)

conn,
verbose = FALSE,
h = NULL,

help = FALSE,
bytes = FALSE,
parse = FALSE,

cat_recovery(

)

conn,
verbose = FALSE,
index = NULL,

h = NULL,

help = FALSE,
bytes = FALSE,
parse = FALSE,

cat_thread_pool(

)

conn,
verbose = FALSE,
index = NULL,

h = NULL,

help = FALSE,
bytes = FALSE,
parse = FALSE,

cat_shards(

)

conn,
verbose = FALSE,
index = NULL,

h = NULL,

help = FALSE,
bytes = FALSE,
parse = FALSE,

cat_fielddata(

conn,
verbose = FALSE,
index = NULL,

cat

cat 9

fields = NULL,

h = NULL,

help = FALSE,

bytes = FALSE,

parse = FALSE,
)

Arguments
conn an Elasticsearch connection object, see connect ()
parse (logical) Parse to a data.frame or not. Default: FALSE
Curl args passed on to crul::HttpClient

verbose (logical) If TRUE (default) the url call used printed to console
index (character) Index name
h (character) Fields to return
help (logical) Output available columns, and their meanings
bytes (logical) Give numbers back machine friendly. Default: FALSE

expand_wildcards
(character) Whether to expand wildcard expression to concrete indices that are
open, closed or both. Valid choices: ’open’, ’closed’, *hidden’, 'none’, ’all’.
default: ’all’. Available in ES >=v7.7

fields (character) Fields to return, only used with fielddata

Details

See https://www.elastic.co/docs/api/doc/elasticsearch/group/endpoint-cat for the cat
API documentation.

Note how cat_() has an underscore at the end to avoid conflict with the function base: :cat() in
base R.

Examples

Not run:
connection setup
(x <= connect())

list Elasticsearch cat endpoints
cat_(x)

Do other cat operations

cat_aliases(x)

alias_create(x, index = "plos”, alias = c("tables”, "chairs"))
cat_aliases(x, expand_wildcards='open')

cat_aliases(x, expand_wildcards='all")

cat_allocation(x)

cat_allocation(x, verbose=TRUE)

https://www.elastic.co/docs/api/doc/elasticsearch/group/endpoint-cat

cluster

cat_count(x)

cat_count(x, index='plos')
cat_count(x, index='gbif')
cat_segments(x)

cat_segments(x, index='gbif')
cat_health(x)

cat_indices(x)

cat_master(x)

cat_nodes(x)

cat_nodeattrs(x) # not available in older ES versions
cat_pending_tasks(x)
cat_plugins(x)

cat_recovery(x, verbose=TRUE)
cat_recovery(x, index='gbif')
cat_thread_pool(x)
cat_thread_pool(x, verbose=TRUE)
cat_shards(x)

cat_fielddata(x)
cat_fielddata(x, fields='body')

capture cat data into a data.frame

cat_(x, parse = TRUE)

cat_indices(x, parse = TRUE)

cat_indices(x, parse = TRUE, verbose = TRUE)
cat_count(x, parse = TRUE)

cat_count(x, parse = TRUE, verbose = TRUE)
cat_health(x, parse = TRUE)

cat_health(x, parse = TRUE, verbose = TRUE)

Get help - what does each column mean
head(cat_indices(x, help = TRUE, parse = TRUE))
cat_health(x, help = TRUE, parse = TRUE)
head(cat_nodes(x, help = TRUE, parse = TRUE))

Get back only certain fields

cat_nodes(x)

cat_nodes(x, h = c('ip', 'port', "heapPercent', 'name'))

cat_nodes(x, h = c('id', 'ip', 'port', 'v', 'm'))

cat_indices(x, verbose = TRUE)

cat_indices(x, verbose = TRUE, h = c('index', 'docs.count', 'store.size'))

Get back machine friendly numbers instead of the normal human friendly
cat_indices(x, verbose = TRUE, bytes = TRUE)

Curl options
cat_count(x, timeout_ms = 1)

End(Not run)

cluster Elasticsearch cluster endpoints

cluster

Description

Elasticsearch cluster endpoints

Usage

cluster_settings(
conn,
index = NULL,
raw = FALSE,
callopts = list(),
verbose = TRUE,

)
cluster_health(
conn,
index = NULL,
level = NULL,

wait_for_status = NULL,
wait_for_relocating_shards = NULL,
wait_for_active_shards = NULL,
wait_for_nodes = NULL,

timeout = NULL,

raw = FALSE,

callopts = list(),

verbose = TRUE,

)

cluster_state(
conn,
index = NULL,
metrics = NULL,
raw = FALSE,
callopts = list(),
verbose = TRUE,

)

cluster_stats(
conn,
index = NULL,
raw = FALSE,
callopts = 1list(),
verbose = TRUE,

12

cluster_reroute(conn, body, raw = FALSE, callopts = list(),

cluster

.2

cluster_pending_tasks(

conn,
index = NULL,
raw = FALSE,

callopts = 1list(),

verbose

Arguments

conn
index
raw
callopts

verbose

level

wait_for_status

TRUE,

an Elasticsearch connection object, see connect ()

Index

If TRUE (default), data is parsed to list. If FALSE, then raw JSON.
Curl args passed on to crul::verb-POST

If TRUE (default) the url call used printed to console.

Further args passed on to elastic search HTTP API as parameters.

Can be one of cluster, indices or shards. Controls the details level of the health
information returned. Defaults to cluster.

One of green, yellow or red. Will wait (until the timeout provided) until the
status of the cluster changes to the one provided or better, i.e. green > yellow >
red. By default, will not wait for any status.

wait_for_relocating_shards

A number controlling to how many relocating shards to wait for. Usually will
be 0 to indicate to wait till all relocations have happened. Defaults to not wait.

wait_for_active_shards

wait_for_nodes

timeout

metrics

body

Details

A number controlling to how many active shards to wait for. Defaults to not
wait.

The request waits until the specified number N of nodes is available. It also
accepts >=N, <=N, >N and <N. Alternatively, it is possible to use ge(N), le(N),
gt(N) and 1t(N) notation.

A time based parameter controlling how long to wait if one of the wait_for_ XXX
are provided. Defaults to 30s.

One or more of version, master_node, nodes, routing_table, metadata, and blocks.
See Details.

Query, either a list or json.

metrics param options:

¢ version Shows the cluster state version.

* master_node Shows the elected master_node part of the response

cluster 13

* nodes Shows the nodes part of the response

* routing_table Shows the routing_table part of the response. If you supply a comma separated
list of indices, the returned output will only contain the indices listed.

* metadata Shows the metadata part of the response. If you supply a comma separated list of
indices, the returned output will only contain the indices listed.

* blocks Shows the blocks part of the response
Additional parameters that can be passed in:

* metric A comma-separated list of metrics to display. Possible values: ’_all’, ’completion’,
"docs’, ’fielddata’, ’filter_cache’, *flush’, ’get’, ’id_cache’, ’indexing’, *merge’, ’percolate’,
‘refresh’, “search’, ’segments’, ’store’, "warmer’

» completion_fields A comma-separated list of fields for completion metric (supports wildcards)
* fielddata_fields A comma-separated list of fields for fielddata metric (supports wildcards)

* fields A comma-separated list of fields for fielddata and completion metric (supports wild-
cards)

* groups A comma-separated list of search groups for search statistics

* allow_no_indices Whether to ignore if a wildcard indices expression resolves into no concrete
indices. (This includes _all string or when no indices have been specified)

» expand_wildcards Whether to expand wildcard expression to concrete indices that are open,
closed or both.

* ignore_indices When performed on multiple indices, allows to ignore missing ones (default:
none)

* ignore_unavailable Whether specified concrete indices should be ignored when unavailable
(missing or closed)

* human Whether to return time and byte values in human-readable format.

* level Return stats aggregated at cluster, index or shard level. (’cluster’, ’indices’ or ’shards’,
default: ’indices’)

* types A comma-separated list of document types for the indexing index metric

Examples

Not run:
connection setup
(x <= connect())

cluster_settings(x)
cluster_health(x)

cluster_state(x)

cluster_state(x, metrics = "version"”)

cluster_state(x, metrics = "nodes")

cluster_state(x, metrics = c("version”, "nodes"))
cluster_state(x, metrics = c("version”, "nodes”, 'blocks'))
cluster_state(x, "shakespeare”, metrics = "metadata”)

cluster_state(x, c("shakespeare”, "flights"”), metrics = "metadata”)

14

cluster_stats(x)
cluster_pending_tasks(x)

connect

body <- '{
"commands”: [
{
"move”: {
"index" : "test”, "shard” : 0,
"from_node” : "nodel”, "to_node” : "node2"
}
3
{
"allocate_replica” : {
"index" : "test”, "shard” : 1, "node” : "node3”
}
}
]
3
cluster_reroute(x, body = body)
cluster_health(x)
cluster_health(x, wait_for_status = "yellow”, timeout = "3s")

End(Not run)

connect

Set connection details to an Elasticsearch engine.

Description

Set connection details to an Elasticsearch engine.

Usage
connect(

host = "127.0.0.1",

port = 9200,

path = NULL,
transport_schema = "http”,
user = NULL,

pwd = NULL,

headers = NULL,

cainfo = NULL,

force = FALSE,

errors = "simple”,

warn = TRUE,
ignore_version = FALSE,

connect 15

Arguments
host (character) The base host, defaults to 127.0.0.1
port (character) port to connect to, defaults to 9200 (optional)
path (character) context path that is appended to the end of the url. Default: NULL,

ignored
transport_schema
(character) http or https. Default: http

user (character) User name, if required for the connection. You can specify, but ig-
nored for now.

pwd (character) Password, if required for the connection. You can specify, but ig-
nored for now.

headers named list of headers. These headers are used in all requests

cainfo (character) path to a crt bundle, passed to curl option cainfo

force (logical) Force re-load of connection details. Default: FALSE

errors (character) One of simple (Default) or complete. Simple gives http code and er-

ror message on an error, while complete gives both http code and error message,
and stack trace, if available.

warn (logical) whether to throw warnings from the Elasticsearch server when pro-
vided. Pulls warnings from response headers when given. default: TRUE. To turn
these off, you can set warn=FALSE or wrap function calls in suppressWarnings().
You can also see warnings in headers by using curl verbose.

ignore_version (logical) ignore Elasticsearch version checks? default: FALSE. Setting this to
TRUE may cause some problems, it has not been fully tested yet. You may want
to set this to TRUE if it’s not possible to ping the root route of the Elasticsearch in-
stance, which has the Elasticsearch version. We use the version to do alter what
request is sent as different Elasticsearch versions allow different parameters.

additional curl options to be passed in ALL http requests

Details

The default configuration is set up for localhost access on port 9200, with no username or password.
Running this connection method doesn’t ping the ES server, but only prints your connection details.

All connection details are stored within the returned object. We used to store them in various env
vars, but are now contained within the object so you can have any number of connection objects
and they shouldn’t conflict with one another.

What is the connection object?

Creating a connection object with connect () does not create a DBI-like connection object. DBI-
like objects have externalptr, etc., while connect() simply holds details about your Elasticsearch
instance (host, port, authentication, etc.) that is used by other methods in this package to interact
with your instances’ ES API. connect () is more or less a fancy list.

You can connect to different Elasticsearch intances within the same R session by creating a separate
connection object for each instance; then pass the appropriate connection object to each elastic
method.

16 count

Examples

Not run:

the default is set to 127.0.0.1 (i.e., localhost) and port 9200
(x <= connect())

x$make_url()

x$ping ()

pass connection object to function calls
Search(x, q = "*x:%"

set username/password (hidden in print method)
connect(user = "me"”, pwd = "stuff")

set a different host
connect(host = '162.243.152.53")
=> http://162.243.152.53:9200

set a different port
connect(port = 8000)
=> http://localhost:8000

H+

set a different context path
connect(path = 'foo_bar"')
=> http://localhost:9200/foo_bar

set to https
connect(transport_schema = 'https')

=> https://localhost:9200

set headers
connect (headers = list(a = 'foobar'))

set cainfo path (hidden in print method)
connect(cainfo = '/some/path/bundle.crt"')

End(Not run)

count Get counts of the number of records per index.

Description

Get counts of the number of records per index.

Usage

count(conn, index = NULL, type = NULL, callopts = list(), verbose = TRUE, ...)

count 17

Arguments

conn an Elasticsearch connection object, see connect ()

index Index, defaults to all indices

type Document type, optional

callopts Curl args passed on to crul::verb-GET

verbose If TRUE (default) the url call used printed to console.

Further args passed on to elastic search HTTP API as parameters.

Details

See docs for the count APl here https://www.elastic.co/docs/api/doc/elasticsearch/operation/
operation-count

You can also get a count of documents using Search() or Search_uri() and setting size = @

Examples

Not run:
connection setup
(x <= connect())

if (lindex_exists(x, "plos")) {
plosdat <- system.file("examples”, "plos_data.json",
package = "elastic")
plosdat <- type_remover(plosdat)
invisible(docs_bulk(x, plosdat))

3
if (!index_exists(x, "shakespeare”)) {
shake <- system.file("examples”, "shakespeare_data_.json",
package = "elastic")
invisible(docs_bulk(x, shake))
3
count(x)

count(x, index='plos')

count(x, index='shakespeare')

count(x, index=c('plos', 'shakespeare'), g="ax")
count(x, index=c('plos', 'shakespeare'), qg="z*")

Curl options
count(x, callopts = list(verbose = TRUE))

End(Not run)

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-count
https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-count

18

docs_bulk

docs_bulk

Use the bulk API to create, index, update, or delete documents.

Description

Use the bulk API to create, index, update, or delete documents.

Usage

docs_bulk(
conn,
X,
index = NULL,
type = NULL,

chunk_size = 1000,
doc_ids = NULL,
es_ids = TRUE,

raw = FALSE,

quiet = FALSE,
query = list(),

digits = NA,
sf = NULL,

Arguments

conn
X

index

type

chunk_size

doc_ids

es_ids

an Elasticsearch connection object, see connect ()
A list, data.frame, or character path to a file. required.

(character) The index name to use. Required for data.frame input, but optional
for file inputs.

(character) The type. default: NULL. Note that type is deprecated in Elastic-
search v7 and greater, and removed in Elasticsearch v8

(integer) Size of each chunk. If your data.frame is smaller thank chunk_size,
this parameter is essentially ignored. We write in chunks because at some point,
depending on size of each document, and Elasticsearch setup, writing a very
large number of documents in one go becomes slow, so chunking can help. This
parameter is ignored if you pass a file name. Default: 1000

An optional vector (character or numeric/integer) of document ids to use. This
vector has to equal the size of the documents you are passing in, and will error
if not. If you pass a factor we convert to character. Default: not passed

(boolean) Let Elasticsearch assign document IDs as UUIDs. These are sequen-
tial, so there is order to the IDs they assign. If TRUE, doc_ids is ignored. De-
fault: TRUE

docs_bulk 19

raw (logical) Get raw JSON back or not. If TRUE you get JSON; if FALSE you get a
list. Default: FALSE

quiet (logical) Suppress progress bar. Default: FALSE

query (list) a named list of query parameters. optional. options include: pipeline, re-

fresh, routing, _source, _source_excludes, _source_includes, timeout, wait_for_active_shards.
See the docs bulk ES page for details

digits digits used by the parameter of the same name by jsonlite::toJSON() to con-
vert data to JSON before being submitted to your ES instance. default: NA

sf used by jsonlite::toJSON() to convert sf objects. Set to "features" for con-
version to GeoJSON. default: "dataframe"

Pass on curl options to crul::HttpClient

Details

More on the Bulk API: https://www.elastic.co/docs/api/doc/elasticsearch/operation/
operation-bulk

This function dispatches on data.frame or character input. Character input has to be a file name or
the function stops with an error message.

If you pass a data.frame to this function, we by default do an index operation, that is, create the
record in the index given by those parameters to the function. Down the road perhaps we will try
to support other operations on the bulk API. if you pass a file, of course in that file, you can specify
any operations you want.

Row names are dropped from data.frame, and top level names for a list are dropped as well.

A progress bar gives the progress for data.frames and lists - the progress bar is based around a for
loop, where progress indicates progress along the iterations of the for loop, where each iteration
is a chunk of data that’s converted to bulk format, then pushed into Elasticsearch. The character
method has no for loop, so no progress bar.

Value

A list

Document IDs

Document IDs can be passed in via the doc_ids paramater when passing in data.frame or list, but
not with files. If ids are not passed to doc_ids, we assign document IDs from 1 to length of the
object (rows of a data.frame, or length of a list). In the future we may allow the user to select
whether they want to assign sequential numeric IDs or to allow Elasticsearch to assign IDs, which
are UUIDs that are actually sequential, so you still can determine an order of your documents.

Document IDs and Factors

If you pass in ids that are of class factor, we coerce them to character with as.character. This
applies to both data.frame and list inputs, but not to file inputs.

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-bulk
https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-bulk

20 docs_bulk

Large numbers for document IDs

Until recently, if you had very large integers for document IDs, docs_bulk failed. It should be fixed
now. Let us know if not.

Missing data

As of elastic version @.7.8.9515 we convert NA to null before loading into Elasticsearch. Previ-
ously, fields that had an NA were dropped - but when you read data back from Elasticsearch into R,
you retain those missing values as jsonlite fills those in for you. Now, fields with NA’s are made into
null, and are not dropped in Elasticsearch.

Note also that null values can not be indexed or searched https://www.elastic.co/docs/reference/
elasticsearch/mapping-reference/null-value

Tips

This function returns the response from Elasticsearch, but you’ll likely not be that interested in the
response. If not, wrap your call to docs_bulkin invisible(), like so: invisible(docs_bulk(...))

Connections/Files

We create temporary files, and connections to those files, when data.frame’s and lists are passed in
to docs_bulk() (not when a file is passed in since we don’t need to create a file). After inserting
data into your Elasticsearch instance, we close the connections and delete the temporary files.

There are some exceptions though. When you pass in your own file, whether a tempfile or not, we
don’t delete those files after using them - in case you need those files again. Your own tempfile’s
will be cleaned up/delete when the R session ends. Non-tempfile’s won’t be cleaned up/deleted
after the R session ends.

Elasticsearch versions that don’t support type

See the type_remover () function.

See Also

Other bulk-functions: docs_bulk_create(), docs_bulk_delete(), docs_bulk_index(), docs_bulk_prep(),
docs_bulk_update()

Examples

Not run:
connection setup
(x <= connect())

From a file already in newline delimited JSON format

plosdat <- system.file("examples”, "plos_data.json”, package = "elastic")
docs_bulk(x, plosdat)

aliases_get(x)

index_delete(x, index='plos')

aliases_get(x)

https://www.elastic.co/docs/reference/elasticsearch/mapping-reference/null-value
https://www.elastic.co/docs/reference/elasticsearch/mapping-reference/null-value

docs_bulk

From a data.frame

docs_bulk(x, mtcars, index = "hello")
field names cannot contain dots
names(iris) <- gsub("\\.", "_", names(iris))

docs_bulk(x, iris, "iris")

type can be missing, but index can not

docs_bulk(x, iris, "flowers")

big data.frame, 53K rows, load ggplot2 package first
res <- docs_bulk(x, diamonds, "diam")

Search(x, "diam")$hits$total

From a list

docs_bulk(x, apply(iris, 1, as.list), index="iris")
docs_bulk(x, apply(USArrests, 1, as.list), index="arrests")
dim_list <- apply(diamonds, 1, as.list)

out <- docs_bulk(x, dim_list, index="diamfromlist")

When using in a loop

We internally get last _id counter to know where to start on next bulk
insert but you need to sleep in between docs_bulk calls, longer the

bigger the data is

files <- c(system.file("examples”, "testl.csv"”, package = "elastic"),
system.file("examples”, "test2.csv”, package = "elastic"),
system.file("examples”, "test3.csv”", package = "elastic"))

for (i in seg_along(files)) {
d <- read.csv(files[[i]])
docs_bulk(x, d, index = "testes")
Sys.sleep(1)

3

count(x, "testes")

index_delete(x, "testes")

You can include your own document id numbers
Either pass in as an argument
index_create(x, "testes")

files <- c(system.file("examples”, "testl.csv", package = "elastic"),
system.file("examples”, "test2.csv", package = "elastic"),
system.file("examples”, "test3.csv”, package = "elastic"))

tt <- vapply(files, function(z) NROW(read.csv(z)), numeric(1))
ids <- list(1:tt[1],
(tt[1] + 1):(tt[1] + tt[2]),
(tt[1] + tt[2] + 1):sum(tt))
for (i in seqg_along(files)) {
d <- read.csv(files[[i]])
docs_bulk(x, d, index = "testes", doc_ids = ids[[i]],
es_ids = FALSE)
3
count(x, "testes")
index_delete(x, "testes")

or include in the input data
from data.frame's

22

index_create(x, "testes")

files <- c(system.file("examples”, "testl_id.csv"”, package
system.file("examples”, "test2_id.csv”, package
system.file("examples”, "test3_id.csv", package

readLines(files[[11])
for (i in seqg_along(files)) {
d <- read.csv(files[[i]])
docs_bulk(x, d, index = "testes")
3
count(x, "testes")
index_delete(x, "testes")

from lists via file inputs
index_create(x, "testes")
for (i in seq_along(files)) {
d <- read.csv(files[[i]])
d <- apply(d, 1, as.list)
docs_bulk(x, d, index = "testes")
}
count(x, "testes")
index_delete(x, "testes")

data.frame's with a single column

this didn't use to work, but now should work
db <- paste@(sample(letters, 10), collapse = "")
index_create(x, db)

res <- data.frame(foo = 1:10)

out <- docs_bulk(x, res, index = db)

count(x, db)

index_delete(x, db)

data.frame with a mix of actions

= "elastic"),
= "elastic"),
= "elastic"))

make sure you use a column named 'es_action' or this won't work
if you need to delete or update you need document IDs
if (index_exists(x, "baz")) index_delete(x, "baz")

df <- data.frame(a = 1:5, b = 6:10, ¢ = letters[1:5], stringsAsFactors

invisible(docs_bulk(x, df, "baz"))

Sys.sleep(3)

(res <- Search(x, 'baz', asdf=TRUE)$hits$hits)
dff1, "a"] <- 99

dff1, "c"] <- "aa"

df[3, "c"] <- 33

df[3, "c"] <~ "cc”

df$es_action <- c('update', 'delete', 'update',
df$id <- res$ _id"

df

'delete’,

invisible(docs_bulk(x, df, "baz", es_ids = FALSE))

or es_ids = FALSE and pass in document ids to doc_ids

invisible(docs_bulk(df, "baz", es_ids = FALSE,
Search(x, 'baz', asdf=TRUE)$hits$hits

doc_ids

‘delete')

df$id))

docs_bulk

FALSE)

docs_bulk_create 23

Curl options

plosdat <- system.file("examples”, "plos_data.json",
package = "elastic")

plosdat <- type_remover(plosdat)

invisible(docs_bulk(x, plosdat, verbose = TRUE))

suppress progress bar
invisible(docs_bulk(x, mtcars, index = "hello"”, quiet = TRUE))

vs.
invisible(docs_bulk(x, mtcars, index = "hello”, quiet = FALSE))
End(Not run)
docs_bulk_create Use the bulk API to create documents
Description
Use the bulk API to create documents
Usage
docs_bulk_create(
conn,
X y
index = NULL,
type = NULL,
chunk_size = 1000,
doc_ids = NULL,
es_ids = TRUE,
raw = FALSE,
quiet = FALSE,
query = list(),
)
Arguments
conn an Elasticsearch connection object, see connect ()
X A list, data.frame, or character path to a file. required.
index (character) The index name to use. Required for data.frame input, but optional
for file inputs.
type (character) The type. default: NULL. Note that type is deprecated in Elastic-

search v7 and greater, and removed in Elasticsearch v8

24 docs_bulk_create

chunk_size (integer) Size of each chunk. If your data.frame is smaller thank chunk_size,
this parameter is essentially ignored. We write in chunks because at some point,
depending on size of each document, and Elasticsearch setup, writing a very
large number of documents in one go becomes slow, so chunking can help. This
parameter is ignored if you pass a file name. Default: 1000

doc_ids An optional vector (character or numeric/integer) of document ids to use. This
vector has to equal the size of the documents you are passing in, and will error
if not. If you pass a factor we convert to character. Default: not passed

es_ids (boolean) Let Elasticsearch assign document IDs as UUIDs. These are sequen-
tial, so there is order to the IDs they assign. If TRUE, doc_ids is ignored. De-
fault: TRUE

raw (logical) Get raw JSON back or not. If TRUE you get JSON; if FALSE you get a
list. Default: FALSE

quiet (logical) Suppress progress bar. Default: FALSE

query (list) a named list of query parameters. optional. options include: pipeline, re-

fresh, routing, _source, _source_excludes, _source_includes, timeout, wait_for_active_shards.
See the docs bulk ES page for details

Pass on curl options to crul::HttpClient

Details

For doing create with a file already prepared for the bulk API, see docs_bulk()

Only data.frame’s are supported for now.

References

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-bulk

See Also

Other bulk-functions: docs_bulk(), docs_bulk_delete(), docs_bulk_index(), docs_bulk_prep(),
docs_bulk_update()

Examples

Not run:
x <- connect()
if (index_exists(x, "foobar")) index_delete(x, "foobar")

df <- data.frame(name = letters[1:3], size = 1:3, id = 100:102)
docs_bulk_create(x, df, 'foobar', es_ids = FALSE)
Search(x, "foobar"”, asdf = TRUE)$hits$hits

more examples

docs_bulk_create(x, mtcars, index = "hello")
field names cannot contain dots
names(iris) <- gsub("\\.", "_", names(iris))

docs_bulk_create(x, iris, "iris")

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-bulk

docs_bulk_delete

25

type can be missing, but index can not
docs_bulk_create(x, iris, "flowers")

big data.frame, 53K rows, load ggplot2 package first
res <- docs_bulk_create(x, diamonds, "diam")

Search(x, "diam")$hits$total$value

End(Not run)

docs_bulk_delete

Use the bulk API to delete documents

Description

Use the bulk API to delete documents

Usage
docs_bulk_delete(
conn,
X,
index = NULL,
type = NULL,

chunk_size = 1000,
doc_ids = NULL,

raw = FALSE,

quiet = FALSE,
query = list(),

digits = NA,
sf = NULL,

Arguments

conn
X

index

type

chunk_size

an Elasticsearch connection object, see connect ()
A list, data.frame, or character path to a file. required.

(character) The index name to use. Required for data.frame input, but optional
for file inputs.

(character) The type. default: NULL. Note that type is deprecated in Elastic-
search v7 and greater, and removed in Elasticsearch v8

(integer) Size of each chunk. If your data.frame is smaller thank chunk_size,
this parameter is essentially ignored. We write in chunks because at some point,
depending on size of each document, and Elasticsearch setup, writing a very
large number of documents in one go becomes slow, so chunking can help. This
parameter is ignored if you pass a file name. Default: 1000

26 docs_bulk_delete

doc_ids An optional vector (character or numeric/integer) of document ids to use. This
vector has to equal the size of the documents you are passing in, and will error
if not. If you pass a factor we convert to character. Default: not passed

raw (logical) Get raw JSON back or not. If TRUE you get JSON; if FALSE you get a
list. Default: FALSE

quiet (logical) Suppress progress bar. Default: FALSE

query (list) a named list of query parameters. optional. options include: pipeline, re-
fresh, routing, _source, _source_excludes, _source_includes, timeout, wait_for_active_shards.
See the docs bulk ES page for details

digits, sf ignored, used in other docs bulk functions but not used here

Pass on curl options to crul::HttpClient

Details

For doing deletes with a file already prepared for the bulk API, see docs_bulk()

Only data.frame’s are supported for now.

References

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-bulk

See Also

Other bulk-functions: docs_bulk(), docs_bulk_create(), docs_bulk_index(), docs_bulk_prep(),
docs_bulk_update()

Examples

Not run:
x <- connect()
if (index_exists(x, "foobar")) index_delete(x, "foobar")

df <- data.frame(name = letters[1:3], size = 1:3, id = 100:102)
invisible(docs_bulk(x, df, 'foobar', es_ids = FALSE))
Search(x, "foobar”, asdf = TRUE)$hits$hits

delete using doc ids from the data.frame you used to create
invisible(docs_bulk_delete(x, df, index = 'foobar'))
Search(x, "foobar”, asdf = TRUE)$hits$total$value

delete by passing in doc ids

recreate data first

if (index_exists(x, "foobar")) index_delete(x, "foobar")

df <- data.frame(name = letters[1:3], size = 1:3, id = 100:102)
invisible(docs_bulk(x, df, 'foobar', es_ids = FALSE))
docs_bulk_delete(x, df, index = 'foobar', doc_ids = df$id)
Search(x, "foobar"”, asdf = TRUE)$hits$total$value

End(Not run)

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-bulk

docs_bulk_index

27

docs_bulk_index

Use the bulk API to index documents

Description

Use the bulk API to index documents

Usage
docs_bulk_index(
conn,
X y
index = NULL,
type = NULL,
chunk_size = 1000,
doc_ids = NULL,
es_ids = TRUE,
raw = FALSE,
quiet = FALSE,
query = list(),
digits = NA,
sf = NULL,
)
Arguments
conn an Elasticsearch connection object, see connect ()
X A list, data.frame, or character path to a file. required.
index (character) The index name to use. Required for data.frame input, but optional
for file inputs.
type (character) The type. default: NULL. Note that type is deprecated in Elastic-

chunk_size

doc_ids

es_ids

search v7 and greater, and removed in Elasticsearch v8

(integer) Size of each chunk. If your data.frame is smaller thank chunk_size,
this parameter is essentially ignored. We write in chunks because at some point,
depending on size of each document, and Elasticsearch setup, writing a very
large number of documents in one go becomes slow, so chunking can help. This
parameter is ignored if you pass a file name. Default: 1000

An optional vector (character or numeric/integer) of document ids to use. This
vector has to equal the size of the documents you are passing in, and will error
if not. If you pass a factor we convert to character. Default: not passed

(boolean) Let Elasticsearch assign document IDs as UUIDs. These are sequen-
tial, so there is order to the IDs they assign. If TRUE, doc_ids is ignored. De-
fault: TRUE

28 docs_bulk_index

raw (logical) Get raw JSON back or not. If TRUE you get JSON; if FALSE you get a
list. Default: FALSE

quiet (logical) Suppress progress bar. Default: FALSE

query (list) a named list of query parameters. optional. options include: pipeline, re-

fresh, routing, _source, _source_excludes, _source_includes, timeout, wait_for_active_shards.
See the docs bulk ES page for details

digits digits used by the parameter of the same name by jsonlite::toJSON() to con-
vert data to JSON before being submitted to your ES instance. default: NA

sf used by jsonlite::toJSON() to convert sf objects. Set to "features" for con-
version to GeoJSON. default: "dataframe"

Pass on curl options to crul::HttpClient

Details

For doing index with a file already prepared for the bulk API, see docs_bulk()

Only data.frame’s are supported for now.

References

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-bulk

See Also

Other bulk-functions: docs_bulk(), docs_bulk_create(), docs_bulk_delete(), docs_bulk_prep(),
docs_bulk_update()

Examples

Not run:
x <- connect()
if (index_exists(x, "foobar")) index_delete(x, "foobar")

df <- data.frame(name = letters[1:3], size = 1:3, id = 100:102)
docs_bulk_index(x, df, 'foobar')

docs_bulk_index(x, df, 'foobar', es_ids = FALSE)

Search(x, "foobar"”, asdf = TRUE)$hits$hits

more examples

docs_bulk_index(x, mtcars, index = "hello")

field names cannot contain dots

names(iris) <- gsub("\\."”, "_", names(iris))
docs_bulk_index(x, iris, "iris")

type can be missing, but index can not
docs_bulk_index(x, iris, "flowers")

big data.frame, 53K rows, load ggplot2 package first
res <- docs_bulk_index(x, diamonds, "diam")

Search(x, "diam”)$hits$total$value

-

End(Not run)

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-bulk

docs_bulk_prep

29

docs_bulk_prep

Use the bulk API to prepare bulk format data

Description

Use the bulk API to prepare bulk format data

Usage
docs_bulk_prep(
X}
index,
path,
type = NU

LL,

chunk_size = 1000,
NULL,
quiet = FALSE,

doc_ids =
digits =
sf = NULL

Arguments

X
index
path

type

chunk_size

doc_ids
quiet
digits

sf

Value

NA,

A data.frame or a list. required.
(character) The index name. required.

(character) Path to the file. If data is broken into chunks, we’ll use this path as
the prefix, and suffix each file path with a number. required.

(character) The type. default: NULL. Note that type is deprecated in Elastic-
search v7 and greater, and removed in Elasticsearch v8

(integer) Size of each chunk. If your data.frame is smaller thank chunk_size,
this parameter is essentially ignored. We write in chunks because at some point,
depending on size of each document, and Elasticsearch setup, writing a very
large number of documents in one go becomes slow, so chunking can help. This
parameter is ignored if you pass a file name. Default: 1000

An optional vector (character or numeric/integer) of document ids to use. This
vector has to equal the size of the documents you are passing in, and will error
if not. If you pass a factor we convert to character. Default: not passed

(logical) Suppress progress bar. Default: FALSE

digits used by the parameter of the same name by jsonlite::toJSON() to con-
vert data to JSON before being submitted to your ES instance. default: NA

used by jsonlite::toJSON() to convert sf objects. Set to "features" for con-
version to GeoJSON. default: "dataframe"

File path(s). By default we use temporary files; these are cleaned up at the end of a session

30 docs_bulk_prep

Tempfiles

In docs_bulk we create temporary files in some cases, and delete those before the function exits.
However, we don’t clean up those files in this function because the point of the function is to create
the newline delimited JSON files that you need. Tempfiles are cleaned up when you R session ends
though - be aware of that. If you want to keep the files make sure to move them outside of the temp
directory.

See Also

Other bulk-functions: docs_bulk(), docs_bulk_create(), docs_bulk_delete(), docs_bulk_index(),
docs_bulk_update()

Examples

Not run:

From a data.frame

ff <- tempfile(fileext = ".json")
docs_bulk_prep(mtcars, index = "hello”, path = ff)
readLines(ff)

field names cannot contain dots
names(iris) <- gsub("\\."”, "_", names(iris))
docs_bulk_prep(iris, "iris", path = tempfile(fileext = ".json"))

type can be missing, but index can not
docs_bulk_prep(iris, "flowers”, path = tempfile(fileext = ".json"))

From a list
docs_bulk_prep(apply(iris, 1, as.list), index="iris",

path = tempfile(fileext = ".json"))
docs_bulk_prep(apply(USArrests, 1, as.list), index="arrests”,
path = tempfile(fileext = ".json"))

when chunking

multiple files created, one for each chunk

bigiris <- do.call("rbind”, replicate(30, iris, FALSE))
docs_bulk_prep(bigiris, index = "big", path = tempfile(fileext = ".json"))

When using in a loop

We internally get last _id counter to know where to start on next bulk
insert but you need to sleep in between docs_bulk_prep calls, longer the
bigger the data is

files <- c(system.file("examples"”, "testl.csv", package = "elastic"),
system.file("examples”, "test2.csv", package = "elastic"),
system.file("examples”, "test3.csv", package = "elastic"))

paths <- vector("list”, length = length(files))
for (i in seq_along(files)) {
d <- read.csv(files[[i]l])
paths[i] <- docs_bulk_prep(d, index = "stuff",
path = tempfile(fileext = ".json"))

docs_bulk_prep

unlist(paths)

You can include your own document id numbers
Either pass in as an argument

files <- c(system.file("examples”, "testl.csv", package = "elastic"),
system.file("examples”, "test2.csv", package = "elastic"),
system.file("examples”, "test3.csv”, package = "elastic"))

tt <- vapply(files, function(z) NROW(read.csv(z)), numeric(1))
ids <- list(1:tt[1],
(tt[11 + 1):(tt[1] + tt[2]),
(tt[1] + tt[2] + 1):sum(tt))
paths <- vector("list”, length = length(files))
for (i in seq_along(files)) {
d <- read.csv(files[[i]])
paths[i] <- docs_bulk_prep(d, index = "testes"”,
doc_ids = ids[[i]], path = tempfile(fileext = ".json"))
3
unlist(paths)

or include in the input data
from data.frame's

files <- c(system.file("examples”, "testl_id.csv", package = "elastic"),
system.file("examples”, "test2_id.csv”, package = "elastic"),
system.file("examples”, "test3_id.csv", package = "elastic"))

paths <- vector("list”, length = length(files))
for (i in seg_along(files)) {
d <- read.csv(files[[i]])
paths[i] <- docs_bulk_prep(d, index = "testes”,
path = tempfile(fileext = ".json"))
3
unlist(paths)

from lists via file inputs
paths <- vector("list”, length = length(files))
for (i in seqg_along(files)) {
d <- read.csv(files[[i]])
d <- apply(d, 1, as.list)
paths[i] <- docs_bulk_prep(d, index = "testes"”,
path = tempfile(fileext = ".json"))
3
unlist(paths)

A mix of actions

make sure you use a column named 'es_action' or this won't work

if you need to delete or update you need document IDs

if (index_exists(x, "baz")) index_delete(x, "baz")

df <- data.frame(a = 1:5, b = 6:10, ¢ = letters[1:5], stringsAsFactors = FALSE)
f <- tempfile(fileext = ".json")

invisible(docs_bulk_prep(df, "baz", f))

cat(readLines(f), sep = "\n")

docs_bulk(x, f)

Sys.sleep(2)

31

32

(res <- Search(x, 'baz', asdf=TRUE)$hits$hits)

dfl1, "a"] <- 99
df‘[‘], IICII] <_ Ilaa)l
df[3, "c"] <- 33

df[3, "c"] <- "cc”

df$es_action <- c('update', 'delete', 'update', 'delete', 'delete')
df$id <- res$ _id"

df

f <- tempfile(fileext = ".json")

invisible(docs_bulk_prep(df, "baz", path = f, doc_ids = df$id))
cat(readLines(f), sep = "\n")
docs_bulk(x, f)

suppress progress bar

docs_bulk_prep(mtcars, index = "hello”,

path = tempfile(fileext = ".json"), quiet = TRUE)
vs.
docs_bulk_prep(mtcars, index = "hello”,

path = tempfile(fileext = ".json"), quiet = FALSE)

End(Not run)

docs_bulk_update

docs_bulk_update Use the bulk API to update documents

Description

Use the bulk API to update documents

Usage

docs_bulk_update(
conn,
X,
index = NULL,
type = NULL,

chunk_size = 1000,
doc_ids = NULL,
raw = FALSE,

quiet = FALSE,
query = list(),
digits = NA,

sf = NULL,

docs_bulk_update 33

Arguments

conn an Elasticsearch connection object, see connect ()

X A list, data.frame, or character path to a file. required.

index (character) The index name to use. Required for data.frame input, but optional
for file inputs.

type (character) The type. default: NULL. Note that type is deprecated in Elastic-
search v7 and greater, and removed in Elasticsearch v8

chunk_size (integer) Size of each chunk. If your data.frame is smaller thank chunk_size,
this parameter is essentially ignored. We write in chunks because at some point,
depending on size of each document, and Elasticsearch setup, writing a very
large number of documents in one go becomes slow, so chunking can help. This
parameter is ignored if you pass a file name. Default: 1000

doc_ids An optional vector (character or numeric/integer) of document ids to use. This
vector has to equal the size of the documents you are passing in, and will error
if not. If you pass a factor we convert to character. Default: not passed

raw (logical) Get raw JSON back or not. If TRUE you get JSON; if FALSE you get a
list. Default: FALSE

quiet (logical) Suppress progress bar. Default: FALSE

query (list) a named list of query parameters. optional. options include: pipeline, re-
fresh, routing, _source, _source_excludes, _source_includes, timeout, wait_for_active_shards.
See the docs bulk ES page for details

digits digits used by the parameter of the same name by jsonlite: :toJSON() to con-
vert data to JSON before being submitted to your ES instance. default: NA

sf used by jsonlite::toJSON() to convert sf objects. Set to "features" for con-
version to GeoJSON. default: "dataframe"
Pass on curl options to crul::HttpClient

Details

e doc_as_upsert - is set to TRUE for all records
For doing updates with a file already prepared for the bulk API, see docs_bulk()

Only data.frame’s are supported for now.

References

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-bulk

See Also

Other bulk-functions: docs_bulk(), docs_bulk_create(), docs_bulk_delete(), docs_bulk_index(),
docs_bulk_prep()

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-bulk

34

Examples

Not run:
x <- connect()

if (index_exists(x, "foobar")) index_delete(x, "foobar")

df <- data.frame(name =

letters[1:3], size =

invisible(docs_bulk(x, df,

add new rows in existing fields

(df2 <- data.frame(size
(df2 <- data.frame(size
df2$_id™ <- 100:101
df2

'foobar', es_ids = FALSE))
c(45, 56), id = 100:101))
c(45, 56)))

Search(x, "foobar"”, asdf = TRUE)$hits$hits
invisible(docs_bulk_update(x, df2, index = 'foobar'))
Search(x, "foobar"”, asdf = TRUE)$hits$hits

add new fields (and new rows by extension)

(df3 <- data.frame(color
Search(x, "foobar”, asdf

c("blue”, "red", "green"), id
TRUE)$hits$hits

invisible(docs_bulk_update(x, df3, index = 'foobar'))
Sys.sleep(2) # wait for a few sec to make sure you see changes reflected
Search(x, "foobar"”, asdf = TRUE)$hits$hits

End(Not run)

1:3, id = 100:102)

= 100:102))

docs_create

docs_create

Create a document

Description

Create a document

Usage
docs_create(
conn,
index,
body,
type = NULL,
id = NULL,

version = NULL,
version_type =
op_type = NULL,
routing = NULL,
parent = NULL,
timestamp = NULL,
ttl = NULL,
refresh = NULL,

NULL,

docs_create 35

timeout = NULL,
callopts = list(),

version_type

)
Arguments
conn an Elasticsearch connection object, see connect ()
index (character) The name of the index. Required
body The document
type (character) The type of the document. optional
id (numeric/character) The document ID. Can be numeric or character. Optional.
if not provided, Elasticsearch creates the ID for you as a UUID.
version (character) Explicit version number for concurrency control

(character) Specific version type. One of internal, external, external_gte, or
force

op_type (character) Operation type. One of create, or ...

routing (character) Specific routing value

parent (numeric) A parent document ID

timestamp (date) Explicit timestamp for the document

ttl (aka “time to live”’) Expiration time for the document. Expired documents will
be expunged automatically. The expiration date that will be set for a document
with a provided ttl is relative to the timestamp of the document, meaning it can
be based on the time of indexing or on any time provided. The provided ttl must
be strictly positive and can be a number (in milliseconds) or any valid time value
(e.g, 86400000, 1d).

refresh (logical) Refresh the index after performing the operation

timeout (character) Explicit operation timeout, e.g,. Sm (for 5 minutes)

callopts Curl options passed on to crul::HttpClient
Further args to query DSL

References

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-create

Examples

Not run:

(x <= connect())

if (!index_exists(x, 'plos')) {
plosdat <- system.file("examples”, "plos_data.json",
package = "elastic")
plosdat <- type_remover(plosdat)
invisible(docs_bulk(x, plosdat))

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-create

36 docs_delete

}

give a document id

z <- docs_create(x, index = 'plos', id = 1002,
body = list(id = "12345", title = "New title"))

z

and the document is there now

docs_get(x, index = 'plos', id = 1002)

let Elasticsearch create the document id for you

z <- docs_create(x, index='plos', body=list(id="6789", title="Some title"))
z

and the document is there now

docs_get(x, index='plos', id=z$ _id")

End(Not run)

docs_delete Delete a document

Description

Delete a document

Usage

docs_delete(
conn,
index,
id,
type = NULL,
refresh = NULL,
routing = NULL,
timeout = NULL,
version = NULL,
version_type = NULL,
callopts = 1list(),

)
Arguments
conn an Elasticsearch connection object, see connect ()
index (character) The name of the index. Required
id (numeric/character) The document ID. Can be numeric or character. Required
type (character) The type of the document. optional

refresh (logical) Refresh the index after performing the operation

docs_delete_by_query 37

routing (character) Specific routing value
timeout (character) Explicit operation timeout, e.g,. Sm (for 5 minutes)
version (character) Explicit version number for concurrency control

version_type (character) Specific version type. One of internal or external
callopts Curl args passed on to crul::HttpClient

Further args to query DSL

References

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-delete-by-query

Examples

Not run:
(x <= connect())
x$ping)

if (lindex_exists(x, "plos")) {

plosdat <- system.file("examples”, "plos_data.json",
package = "elastic")

plosdat <- type_remover(plosdat)

docs_bulk(x, plosdat)

3

delete a document
if (!docs_get(x, index='plos', id=36, exists=TRUE)) {
docs_create(x, index='plos', id=36,
body = list(id="12345", title="New title")
)
3
docs_get(x, index='plos', id=36)
docs_delete(x, index='plos', id=36)
docs_get(x, index='plos', id=36) # and the document is gone

End(Not run)

docs_delete_by_query Delete documents by query

Description

delete documents by query via a POST request

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-delete-by-query

38

Usage

docs_delete_by_query

docs_delete_by_query(

conn,
index,
body,

type = NULL,

conflicts = NULL,
routing = NULL,

scroll_size

NULL,

refresh = NULL,
wait_for_completion = NULL,
wait_for_active_shards = NULL,
timeout = NULL,

scroll = NULL,
requests_per_second = NULL,

Arguments

conn
index
body
type

conflicts

routing

scroll_size

refresh

an Elasticsearch connection object, see connect ()
(character) The name of the index. Required
(character/json) query to be passed on to POST request body
(character) The type of the document. optional

(character) If you’d like to count version conflicts rather than cause them to abort
then set conflicts=proceed

(character) Specific routing value

(integer) By default uses scroll batches of 1000. Change batch size with this
parameter.

(logical) Refresh the index after performing the operation

wait_for_completion

(logical) If wait_for_completion=FALSE then Elasticsearch will perform some
preflight checks, launch the request, and then return a task which can be used
with Tasks APIs to cancel or get the status of the task. Elasticsearch will also
create a record of this task as a document at . tasks/task/${taskId}. This is
yours to keep or remove as you see fit. When you are done with it, delete it so
Elasticsearch can reclaim the space it uses. Default: TRUE

wait_for_active_shards

timeout

scroll

(logical) controls how many copies of a shard must be active before proceeding
with the request.

(character) Explicit operation timeout, e.g,. Sm (for 5 minutes)

(integer) control how long the "search context" is kept alive, eg scroll="10m’,
by default it’s 5 minutes (5m)

docs_delete_by_query 39

requests_per_second
(integer) any positive decimal number (1.4, 6, 1000, etc); throttles rate at which
_delete_by_query issues batches of delete operations by padding each batch
with a wait time. The throttling can be disabled by setting requests_per_second=-1

Curl args passed on to crul::verb-POST

References

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-delete-by-query

See Also

docs_update_by_query()

Examples
Not run:
(x <= connect())
x$ping ()
plosdat <- system.file("examples”, "plos_data.json",
package = "elastic")

plosdat <- type_remover(plosdat)
if (!index_exists(x, "plos"”)) invisible(docs_bulk(x, plosdat))

delete with fuzzy matching
body <- '{
"query”: {
"match”: {
"title": {
"query": "cells”,
"fuzziness": 1

}
3
3
docs_delete_by_query(x, index='plos', body = body)

delete with no fuzziness
if (index_exists(x, "plos”)) index_delete(x, 'plos')
invisible(docs_bulk(x, plosdat))
count(x, "plos")
body <- '{
"query": {
"match”: {
"title": {
"query": "cells",
"fuzziness": @

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-delete-by-query

40 docs_get

docs_delete_by_query(x, index='plos', body = body)

delete all docs with match_all query
if (index_exists(x, "plos”)) index_delete(x, 'plos')
invisible(docs_bulk(x, plosdat))
body <- '{

"query": {

"match_all”: {}

}
3
docs_delete_by_query(x, index='plos', body = body)
put plos back in
if (index_exists(x, "plos")) index_delete(x, 'plos')

invisible(docs_bulk(x, plosdat))

delete docs from more than one index

foo <- system.file("examples/foo.json", package = "elastic")
if (lindex_exists(x, "foo")) invisible(docs_bulk(x, foo0))
bar <- system.file("examples/bar.json", package = "elastic")

if (!index_exists(x, "bar")) invisible(docs_bulk(x, bar))

body <- '{
"query”: {
"match_all”: {}
}
3
docs_delete_by_query(x, index=c('foo', 'bar'),
body = body, verbose = TRUE)

End(Not run)

docs_get Get documents

Description

Get documents

Usage

docs_get(
conn,
index,
id,
type = NULL,
source = NULL,
fields = NULL,
source_includes = NULL,

docs_get 41

source_excludes = NULL,
exists = FALSE,

raw = FALSE,

callopts = list(),
verbose = TRUE,

)
Arguments

conn an Elasticsearch connection object, see connect ()

index (character) The name of the index. Required

id (numeric/character) The document ID. Can be numeric or character. Required

type (character) The type of the document. optional

source (logical) If TRUE (default), return source. note that it is actually set to NULL in
the function definition, but within Elasticsearch, it returns the source by default.
alternatively, you can pass a vector of field names to return.

fields Fields to return from the response object.

source_includes, source_excludes
(character) fields to include in the returned document, or to exclude. a character

vector
exists (logical) Only return a logical as to whether the document exists or not.
raw If TRUE (default), data is parsed to list. If FALSE, then raw JSON.
callopts Curl args passed on to crul::HttpClient
verbose If TRUE (default) the url call used printed to console.

Further args passed on to elastic search HTTP API as parameters.

References

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-get

Examples

Not run:
(x <= connect())

if (!index_exists(x, "shakespeare”)) {
shakespeare <- system.file("examples”, "shakespeare_data_.json",
package = "elastic")
shakespeare <- type_remover(shakespeare)
invisible(docs_bulk(x, shakespeare))

3

docs_get(x, index='shakespeare', id=10)
docs_get(x, index='shakespeare', id=12)
docs_get(x, index='shakespeare', id=12, source=TRUE)

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-get

42

Get certain fields
if (x$es_ver() < 500) {

#i## ES < v5

docs_get(x, index='shakespeare', id=10, fields='play_name')

docs_get(x, index='shakespeare', id=10, fields=c('play_name', 'speaker'))
} else {

ES > vb

docs_get(x, index='shakespeare', id=10, source='play_name')

docs_get(x, index='shakespeare', id=10, source=c('play_name', 'speaker'))

}

Just test for existence of the document
docs_get(x, index='plos', id=1, exists=TRUE)
docs_get(x, index='plos', id=123456, exists=TRUE)

source includes / excludes
docs_get(x, index='shakespeare', id=10, source_includes = "play_name")
docs_get(x, index='shakespeare', id=10, source_excludes = "play_name")

End(Not run)

docs_mget

docs_mget Get multiple documents via the multiple get API

Description

Get multiple documents via the multiple get API

Usage

docs_mget(
conn,
index = NULL,
type = NULL,
ids = NULL,
type_id = NULL,
index_type_id = NULL,
source = NULL,
fields = NULL,
raw = FALSE,
callopts = 1list(),
verbose = TRUE,

Arguments

conn an Elasticsearch connection object, see connect ()

index Index. Required

docs_mget

type

ids

type_id
index_type_id
source

fields

raw

callopts

verbose

Details

43

Document type. Required.

More than one document id, see examples.

List of vectors of length 2, each with an element for type and id.

List of vectors of length 3, each with an element for index, type, and id.
(logical) If TRUE, return source.

Fields to return from the response object.

If TRUE (default), data is parsed to list. If FALSE, then raw JSON.
Curl args passed on to HttpClient

If TRUE (default) the url call used printed to console.

Further args passed on to elastic search HTTP API as parameters.

You can pass in one of three combinations of parameters:

* Pass in something for index, type, and id. This is the simplest, allowing retrieval from the
same index, same type, and many ids.

* Pass in only index and type_id - this allows you to get multiple documents from the same
index, but from different types.

* Pass in only index_type_id - this is so that you can get multiple documents from different
indexes and different types.

References

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-mget

Examples

Not run:

(x <= connect())

if (lindex_exists(x, 'plos')) {
plosdat <- system.file("examples”, "plos_data.json",
package = "elastic")
plosdat <- type_remover(plosdat)
invisible(docs_bulk(x, plosdat))

3

same index, many ids
docs_mget(x, index="plos”, ids=c(9,10))

Same index and type
docs_mget(x, index="plos”, type="_doc", ids=c(9,10))

tmp <- docs_mget(x, index="plos"”, ids=c(9, 10), raw=TRUE)

es_parse(tmp)

docs_mget(x, index="plos"”, ids=c(9, 10), source='title')
docs_mget(x, index="plos"”, ids=c(14, 19), source=TRUE)

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-mget

44 docs_update

curl options
docs_mget(x, index="plos"”, ids=1:2, callopts=list(verbose=TRUE))

Same index, but different types

if (index_exists(x, 'shakespeare')) index_delete(x, 'shakespeare')

shakedat <- system.file("”examples”, "shakespeare_data.json",
package = "elastic")

invisible(docs_bulk(x, shakedat))

docs_mget(x, index="shakespeare”, type_id=list(c("scene”,1), c("line",20)))
docs_mget(x, index="shakespeare”, type_id=list(c("scene”,1), c("line”,20)),
source="'play_name')

Different indices and different types pass in separately
docs_mget(x, index_type_id = list(

c("shakespeare”, "line", 20),

c("plos”, "article", 1)

)
)

End(Not run)

docs_update Update a document

Description

Update a document

Usage

docs_update(
conn,
index,
id,
body,
type = NULL,
fields = NULL,
source = NULL,
version = NULL,
version_type = NULL,
routing = NULL,
parent = NULL,
timestamp = NULL,
ttl = NULL,
refresh = NULL,
timeout = NULL,
retry_on_conflict = NULL,

docs_update

45

wait_for_active_shards = NULL,
detect_noop = NULL,
callopts = list(),

Arguments

conn
index
id
body
type
fields

source

version

version_type

routing

parent

timestamp

ttl

refresh

timeout

an Elasticsearch connection object, see connect ()

(character) The name of the index. Required

(numeric/character) The document ID. Can be numeric or character. Required
The document, either a list or json

(character) The type of the document. optional

A comma-separated list of fields to return in the response

Allows to control if and how the updated source should be returned in the re-
sponse. By default the updated source is not returned.

(character) Explicit version number for concurrency control

(character) Specific version type. One of internal, external, external_gte, or
force

(character) Specific routing value

ID of the parent document. Is is only used for routing and when for the upsert
request

(date) Explicit timestamp for the document

(aka “time to live”) Expiration time for the document. Expired documents will
be expunged automatically. The expiration date that will be set for a document
with a provided ttl is relative to the timestamp of the document, meaning it can
be based on the time of indexing or on any time provided. The provided ttl must
be strictly positive and can be a number (in milliseconds) or any valid time value
(e.g, 86400000, 1d).

Refresh the index after performing the operation.

(character) Explicit operation timeout, e.g,. Sm (for 5 minutes)

retry_on_conflict

Specify how many times should the operation be retried when a conflict occurs
(default: 0)

wait_for_active_shards

detect_noop

callopts

The number of shard copies required to be active before proceeding with the
update operation.

(logical) Specifying TRUE will cause Elasticsearch to check if there are changes
and, if there aren’t, turn the update request into a noop.

Curl options passed on to crul::HttpClient

Further args to query DSL

46 docs_update_by_query

Examples

Not run:

(x <= connect())

if (lindex_exists(x, 'plos')) {
plosdat <- system.file("examples”, "plos_data.json",

package = "elastic")

plosdat <- type_remover(plosdat)
invisible(docs_bulk(x, plosdat))

3

docs_create(x, index='plos', id=1002,
body=1list(id="12345", title="New title"))
and the document is there now
docs_get(x, index='plos', id=1002)
update the document
docs_update(x, index='plos', id=1002,
body = list(doc = list(title = "Even newer title again”)))
get it again, notice changes
docs_get(x, index='plos', id=1002)

if (!index_exists(x, 'stuffthings')) {
index_create(x, "stuffthings")
3
docs_create(x, index='stuffthings', id=1,
body=1list(name = "foo", what = "bar"))
docs_update(x, index='stuffthings', id=1,
body = list(doc = list(name = "hello"”, what = "bar")),
source = 'name')

End(Not run)

docs_update_by_query Update documents by query

Description

update documents by query via a POST request

Usage
docs_update_by_query(
conn,
index,
body = NULL,
type = NULL,

conflicts = NULL,
routing = NULL,
scroll_size = NULL,
refresh = NULL,

docs_update_by_query 47

wait_for_completion = NULL,
wait_for_active_shards = NULL,
timeout = NULL,

scroll = NULL,
requests_per_second = NULL,
pipeline = NULL,

Arguments
conn an Elasticsearch connection object, see connect ()
index (character) The name of the index. Required
body (character/json) query to be passed on to POST request body
type (character) The type of the document. optional
conflicts (character) If you’d like to count version conflicts rather than cause them to abort
then set conflicts=proceed
routing (character) Specific routing value

scroll_size (integer) By default uses scroll batches of 1000. Change batch size with this
parameter.

refresh (logical) Refresh the index after performing the operation
wait_for_completion
(logical) If wait_for_completion=FALSE then Elasticsearch will perform some
preflight checks, launch the request, and then return a task which can be used
with Tasks APIs to cancel or get the status of the task. Elasticsearch will also
create a record of this task as a document at . tasks/task/${taskId}. This is
yours to keep or remove as you see fit. When you are done with it, delete it so
Elasticsearch can reclaim the space it uses. Default: TRUE
wait_for_active_shards
(logical) controls how many copies of a shard must be active before proceeding
with the request.

timeout (character) Explicit operation timeout, e.g,. Sm (for 5 minutes)

scroll (integer) control how long the "search context" is kept alive, eg scroll="10m’,
by default it’s 5 minutes (5m)

requests_per_second
(integer) any positive decimal number (1.4, 6, 1000, etc); throttles rate at which
_delete_by_query issues batches of delete operations by padding each batch
with a wait time. The throttling can be disabled by setting requests_per_second=-1

pipeline (character) a pipeline name

Curl args passed on to crul::verb-POST

References

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-update-by-query

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-update-by-query

48 documents

See Also

docs_delete_by_query()

Examples

Not run:
(x <= connect())
x$ping()

omdb <- system.file("examples”, "omdb.json", package = "elastic")
omdb <- type_remover (omdb)
if (!index_exists(x, "omdb")) invisible(docs_bulk(x, omdb))

can be sent without a body
docs_update_by_query(x, index='omdb')

update

note this works with imdbRating, a float, but didn't seem to work
with Metascore, a long

See link above for Painless API reference

body <- '{

"script”: {
"source”: "ctx._source.imdbRating++",
"lang": "painless”

}Y

"query”: {

"match": {
"Rated”: "R"
3
3
3

Search(x, "omdb”, g = "Rated:\"R\"", asdf=TRUE,

source = c("Title", "Rated”, "imdbRating"))$hits$hits
docs_update_by_query(x, index='omdb', body = body)
Search(x, "omdb”, g = "Rated:\"R\"", asdf=TRUE,

source = c("Title", "Rated”, "imdbRating"))$hits$hits

End(Not run)

documents Elasticsearch documents functions.

Description

Elasticsearch documents functions.

Details

There are five functions to work directly with documents.

elastic 49

e docs_get()
e docs_mget()
* docs_create()
e docs_delete()
docs_bulk()

Examples

Not run:
Get a document
docs_get(index='plos', type='article', id=1)

Get multiple documents
docs_mget(index="shakespeare”, type="line"”, id=c(9,10))

Create a document
docs_create(index="'plos', type='article', id=35, body=1list(id="12345", title="New title"))

Delete a document
docs_delete(index="'plos', type='article', id=35)

Bulk load documents
plosdat <- system.file("examples”, "plos_data.json"”, package = "elastic"”)

docs_bulk(plosdat)

End(Not run)

elastic elastic

Description

An Elasticsearch R client.

About

This package gives you access to local or remote Elasticsearch databases.

Quick start

If you’re connecting to a Elasticsearch server already running, skip ahead to Search
Install Elasticsearch (on OSX)
» Download zip or tar file from Elasticsearch see here for download: https://www.elastic.
co/downloads/elasticsearch
e Unzip it: untar elasticsearch-2.3.5.tar.gz

* Move it: sudo mv elasticsearch-2.3.5 /usr/local (replace version with your version)

https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch

50 elastic

* Navigate to /ust/local: cd /usr/local
* Add shortcut: sudo 1n -s elasticsearch-2.3.5 elasticsearch (replace version with
your version)
For help on other platforms, see https: //www.elastic.co/docs/deploy-manage/deploy/self-managed/
installing-elasticsearch

Start Elasticsearch

* Navigate to elasticsearch: cd /usr/local/elasticsearch

e Start elasticsearch: bin/elasticsearch

Initialization

The function connect() is used before doing anything else to set the connection details to your
remote or local elasticsearch store. The details created by connect() are written to your options
for the current session, and are used by elastic functions.

Search
The main way to search Elasticsearch is via the Search() function. E.g.:

Search()

Security

Elasticsearch is insecure out of the box! If you are running Elasticsearch locally on your own
machine without exposing a port to the outside world, no worries, but if you install on a server with
a public IP address, take the necessary precautions. There are a few options:

* Shield - A paid product - so probably only applicable to enterprise users

* DIY security - there are a variety of techniques for securing your Elasticsearch. I collected a
number of resources in a blog postat https://recology.info/2015/02/secure-elasticsearch/

Elasticsearch changes

As of Elasticsearch v2:

* You can no longer create fields with dots in the name.

* Type names may not start with a dot (other than the special .percolator type)
* Type names may not be longer than 255 characters

* Types may no longer be deleted

* Queries and filters have been merged - all filter clauses are now query clauses. Instead, query
clauses can now be used in query context or in filter context. See examples in Search() or
Search_uri()

index names

The following are illegal characters, and can not be used in index names or types: \\, /, x, ?, <, >,
|, , (comma). double quote and whitespace are also illegal.

https://www.elastic.co/docs/deploy-manage/deploy/self-managed/installing-elasticsearch
https://www.elastic.co/docs/deploy-manage/deploy/self-managed/installing-elasticsearch
https://recology.info/2015/02/secure-elasticsearch/

elastic-defunct 51

Author(s)

Scott Chamberlain

See Also
Useful links:

* https://rfhb.github.io/elastic/
* https://www.elastic.co/docs/solutions/search

* Report bugs at https://github.com/rfhb/elastic/issues

elastic-defunct Defunct functions in elastic

Description

* mlt(): The MLT API has been removed, use More Like This Query via Search()

* nodes_shutdown(): The _shutdown API has been removed. Instead, setup Elasticsearch to
run as a service (see Running as a Service on Linux (https://www.elastic.co/guide/en/
elasticsearch/reference/2.0/setup-service.html) or Running as a Service on Win-
dows (https://www.elastic.co/guide/en/elasticsearch/reference/2.0/setup-service-win.
html)) or use the -p command line option to write the PID to a file.

e index_status(): _status route for the index API has been removed. Replaced with the
Indices Stats and Indices Recovery APIs.

* mapping_delete(): Elasticsearch dropped this route in their API. Instead of deleting a map-
ping, delete the index and recreate with a new mapping.

explain Explain a search query.

Description

Explain a search query.

Usage

explain(
conn,
index,
id,
type = NULL,
source2 = NULL,
fields = NULL,
routing = NULL,

https://rfhb.github.io/elastic/
https://www.elastic.co/docs/solutions/search
https://github.com/rfhb/elastic/issues
https://www.elastic.co/guide/en/elasticsearch/reference/2.0/setup-service.html
https://www.elastic.co/guide/en/elasticsearch/reference/2.0/setup-service.html
https://www.elastic.co/guide/en/elasticsearch/reference/2.0/setup-service-win.html
https://www.elastic.co/guide/en/elasticsearch/reference/2.0/setup-service-win.html

52

explain

parent = NULL,
preference = NULL,
source = NULL,

g = NULL,
df = NULL,

analyzer = NULL,
analyze_wildcard = NULL,
lowercase_expanded_terms = NULL,
lenient = NULL,

default_operator = NULL,
source_exclude = NULL,
source_include = NULL,

body = NULL,
raw = FALSE,

Arguments

conn
index
id

type
source2

fields
routing
parent
preference
source

q
df

analyzer

an Elasticsearch connection object, see connect ()
Only one index. Required

Document id, only one. Required

Only one document type, optional

(logical) Set to TRUE to retrieve the _source of the document explained. You
can also retrieve part of the document by using source_include & source_exclude
(see Get API for more details). This matches the _source term, but we want to
avoid the leading underscore.

Allows to control which stored fields to return as part of the document explained.
Controls the routing in the case the routing was used during indexing.

Same effect as setting the routing parameter.

Controls on which shard the explain is executed.

Allows the data of the request to be put in the query string of the url.

The query string (maps to the query_string query).

The default field to use when no field prefix is defined within the query. Defaults
to _all field.

The analyzer name to be used when analyzing the query string. Defaults to the
analyzer of the _all field.

analyze_wildcard

(logical) Should wildcard and prefix queries be analyzed or not. Default: FALSE

lowercase_expanded_terms

lenient

Should terms be automatically lowercased or not. Default: TRUE

If set to true will cause format based failures (like providing text to a numeric
field) to be ignored. Default: FALSE

default_operator

The default operator to be used, can be AND or OR. Defaults to OR.

fielddata 53

source_exclude A vector of fields to exclude from the returned source?2 field

source_include A vector of fields to extract and return from the source2 field

body The query definition using the Query DSL. This is passed in the body of the
request.
raw If TRUE (default), data is parsed to list. If FALSE, then raw JSON.

Curl args passed on to crul::HttpClient

References

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-explain

Examples

Not run:
(x <= connect())

explain(x, index = "plos"”, id = 14, g = "title:Germ")

body <- '{
"query": {
"match”: { "title": "Germ" }
3
3
explain(x, index = "plos"”, id = 14, body=body)

End(Not run)

fielddata fielddata

Description

Deep dive on fielddata details

Details

Most fields are indexed by default, which makes them searchable. Sorting, aggregations, and ac-
cessing field values in scripts, however, requires a different access pattern from search.

Text fields use a query-time in-memory data structure called fielddata. This data structure is built on
demand the first time that a field is used for aggregations, sorting, or in a script. It is built by reading
the entire inverted index for each segment from disk, inverting the term-document relationship, and
storing the result in memory, in the JVM heap.

fielddata is disabled on text fields by default. Fielddata can consume a lot of heap space, especially
when loading high cardinality text fields. Once fielddata has been loaded into the heap, it remains
there for the lifetime of the segment. Also, loading fielddata is an expensive process which can
cause users to experience latency hits. This is why fielddata is disabled by default. If you try to sort,
aggregate, or access values from a script on a text field, you will see this exception:

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-explain

54 field_caps

"Fielddata is disabled on text fields by default. Set fielddata=true on your_field_name in order
to load fielddata in memory by uninverting the inverted index. Note that this can however use
significant memory."

To enable fielddata on a text field use the PUT mapping API, for example mapping_create("shakespeare”,
body = '{ "properties”: { "speaker"”: { "type": "text", "fielddata”: true } } }')

You may get an error about update_all_types, in which case set update_all_types=TRUE in
mapping_create, e.g.,

mapping_create("shakespeare”, update_all_types=TRUE, body = '{ "properties”: { "speaker":
{ "type": "text", "fielddata”: true } } }')

See https://www.elastic.co/docs/reference/elasticsearch/mapping-reference/text#enable-fielddata-tex:
for more information.

field_caps Field capabilities

Description

The field capabilities API allows to retrieve the capabilities of fields among multiple indices.

Usage
field_caps(conn, fields, index = NULL, ...)
Arguments
conn an Elasticsearch connection object, see connect ()
fields A list of fields to compute stats for. required
index Index name, one or more
Curl args passed on to crul::verb-GET
References

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-field-caps

See Also

field_stats()

https://www.elastic.co/docs/reference/elasticsearch/mapping-reference/text#enable-fielddata-text-fields
https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-field-caps

field_stats 55

Examples

Not run:
x <- connect()
x$ping ()

if (x$es_ver() >= 540) {

field_caps(x, fields = "speaker”, index = "shakespeare")

}

End(Not run)

field_stats Search field statistics

Description

Search field statistics

Usage
field_stats(
conn,
fields = NULL,
index = NULL,
level = "cluster”,
body = 1list(),
raw = FALSE,
asdf = FALSE,
)
Arguments
conn an Elasticsearch connection object, see connect ()
fields A list of fields to compute stats for. optional
index Index name, one or more
level Defines if field stats should be returned on a per index level or on a cluster wide
level. Valid values are ’indices’ and ’cluster’ (default)
body Query, either a list or json
raw (logical) Get raw JSON back or not
asdf (logical) If TRUE, use fromJSON to parse JSON directly to a data.frame. If FALSE

(Default), list output is given.
Curl args passed on to crul::HttpClient

56 field_stats

Details

The field stats api allows you to get statistical properties of a field without executing a search, but
looking up measurements that are natively available in the Lucene index. This can be useful to
explore a dataset which you don’t know much about. For example, this allows creating a histogram
aggregation with meaningful intervals based on the min/max range of values.

The field stats api by defaults executes on all indices, but can execute on specific indices too.

Note

Deprecated in Elasticsearch versions equal to/greater than 5.4.0

References

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-indices-field-usage-stats

See Also

field_caps()

Examples

Not run:
x <- connect()

if (x$es_ver() < 500) {

field_stats(x, body = '{ "fields"”: ["speaker”] }', index = "shakespeare")

ff <- c("scientificName”, "continent”, "decimallLatitude”, "play_name”,
"speech_number")

field_stats(x, "play_name")

field_stats(x, "play_name”, level = "cluster")

field_stats(x, ff, level = "indices")

field_stats(x, ff)

field_stats(x, ff, index = c("gbif", "shakespeare"))

can also pass a body, just as with Search()
field_stats(x, body = list(fields = "rating”)) # doesn't work
field_stats(x, body = '{ "fields": ["scientificName"”] }', index = "gbif")

body <- '{
"fields"” : ["scientificName”, "decimallLatitude"]
3!
field_stats(x, body = body, level = "indices"”, index = "gbif")

}

End(Not run)

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-indices-field-usage-stats

index_template 57

index_template Index templates

Description

Index templates allow you to define templates that will automatically be applied when new indices
are created

Usage
index_template_put(
conn,
name,
body = NULL,

create = NULL,
flat_settings = NULL,
master_timeout = NULL,
order = NULL,

timeout = NULL,

)
index_template_get(conn, name = NULL, filter_path = NULL, ...)
index_template_exists(conn, name, ...)
index_template_delete(conn, name, ...)
Arguments
conn an Elasticsearch connection object, see connect ()
name (character) The name of the template
body (character/list) The template definition
create (logical) Whether the index template should only be added if new or can also

replace an existing one. Default: FALSE
flat_settings (logical) Return settings in flat format. Default: FALSE
master_timeout (integer) Specify timeout for connection to master

order (integer) The order for this template when merging multiple matching ones
(higher numbers are merged later, overriding the lower numbers)

timeout (integer) Explicit operation timeout
Curl options. Orin percolate_list function, further args passed on to Search()

filter_path (character) a regex for filtering output path, see example

58 index_template

References

https://www.elastic.co/docs/manage-data/data-store/templates

Examples

Not run:
(x <= connect())

body <- '{
"template”: "tex",
"settings"”: {
"number_of_shards”: 1
1
"mappings”: {
"typel”: {
"_source”: {
"enabled”: false
1
"properties”: {
"host_name”: {
"type": "keyword”
3
"created_at": {
"type": "date",
"format”: "EEE MMM dd HH:mm:ss Z YYYY"
}
3
}
}
3

index_template_put(x, "template_1", body = body)

get templates

index_template_get(x)

index_template_get(x, "template_1")

index_template_get(x, c("template_1", "template_2"))
index_template_get(x, "template_x")

filter path

index_template_get(x, "template_1", filter_path = "*.template")

template exists
index_template_exists(x, "template_1")
index_template_exists(x, "foobar")

delete a template
index_template_delete(x, "template_1")

index_template_exists(x, "template_1")

End(Not run)

https://www.elastic.co/docs/manage-data/data-store/templates

indices 59

indices Index API operations

Description

Index API operations

Usage

index_get(
conn,
index = NULL,
features = NULL,
raw = FALSE,
verbose = TRUE,

)

index_exists(conn, index, ...)

index_delete(conn, index, raw = FALSE, verbose = TRUE, ...)

index_create(conn, index = NULL, body = NULL, raw = FALSE, verbose = TRUE, ...)

index_recreate(

conn,

index = NULL,
body = NULL,
raw = FALSE,

verbose = TRUE,

)
index_close(conn, index, ...)
index_open(conn, index, ...)

index_stats(
conn,
index = NULL,
metric = NULL,
completion_fields = NULL,
fielddata_fields = NULL,
fields = NULL,
groups = NULL,
level = "indices",

60

)

index_settings(conn, index =

index_settings_update(conn,
index_segments(conn, index
index_recovery(conn, index
index_optimize(

conn,

index = NULL,
max_num_segments = NULL,

"_all”, ...)
index = NULL, body, ...)
NULL, ...)

NULL, detailed = FALSE, active_only = FALSE,

only_expunge_deletes = FALSE,

flush = TRUE,
wait_for_merge = TRUE,

)
index_forcemerge(
conn,
index = NULL,

max_num_segments = NULL,

only_expunge_deletes = FALSE,

flush = TRUE,

)

index_upgrade(conn, index =

index_analyze(

conn,
text = NULL,
field = NULL,
index = NULL,

analyzer = NULL,
tokenizer = NULL,
filters = NULL,
char_filters = NULL,
body = list(),

)

index_flush(
conn,
index = NULL,
force = FALSE,

NULL, wait_for_completion = FALSE, ...)

indices

)

indices 61

full = FALSE,
wait_if_ongoing = FALSE,

)...

index_clear_cache(
conn,
index = NULL,

filter = FALSE,
filter_keys = NULL,
fielddata = FALSE,
query_cache = FALSE,
id_cache = FALSE,

)...

index_shrink(conn, index, index_new, body = NULL, ...)
Arguments
conn an Elasticsearch connection object, see connect ()
index (character) A character vector of index names
features (character) A single feature. One of settings, mappings, or aliases
raw If TRUE (default), data is parsed to list. If FALSE, then raw JSON.
verbose If TRUE (default) the url call used printed to console.
Curl args passed on to crul::HttpClient
body Query, either a list or json.
metric (character) A character vector of metrics to display. Possible values: "_all",

"non nong

"completion"”, "docs", "fielddata", "filter_cache", "flush", "get", "id_cache", "in-
dexing", "merge", "percolate", "refresh”, "search", "segments", "store", "warmer".
completion_fields
(character) A character vector of fields for completion metric (supports wild-
cards)
fielddata_fields

(character) A character vector of fields for fielddata metric (supports wildcards)

fields (character) Fields to add.

groups (character) A character vector of search groups for search statistics.

level (character) Return stats aggregated on "cluster”, "indices" (default) or "shards"

detailed (logical) Whether to display detailed information about shard recovery. Default:
FALSE

active_only (logical) Display only those recoveries that are currently on-going. Default:
FALSE

max_num_segments
(character) The number of segments the index should be merged into. Default:
"dynamic"

62 indices

only_expunge_deletes
(logical) Specify whether the operation should only expunge deleted documents

flush (logical) Specify whether the index should be flushed after performing the oper-
ation. Default: TRUE

wait_for_merge (logical) Specify whether the request should block until the merge process is
finished. Default: TRUE
wait_for_completion

(logical) Should the request wait for the upgrade to complete. Default: FALSE

text The text on which the analysis should be performed (when request body is not
used)

field Use the analyzer configured for this field (instead of passing the analyzer name)

analyzer The name of the analyzer to use

tokenizer The name of the tokenizer to use for the analysis

filters A character vector of filters to use for the analysis

char_filters A character vector of character filters to use for the analysis

force (logical) Whether a flush should be forced even if it is not necessarily needed ie.
if no changes will be committed to the index.

full (logical) If set to TRUE a new index writer is created and settings that have been
changed related to the index writer will be refreshed.

wait_if_ongoing
If TRUE, the flush operation will block until the flush can be executed if an-

other flush operation is already executing. The default is false and will cause an
exception to be thrown on the shard level if another flush operation is already

running.

filter (logical) Clear filter caches

filter_keys (character) A vector of keys to clear when using the filter_cache parameter
(default: all)

fielddata (logical) Clear field data

query_cache (logical) Clear query caches

id_cache (logical) Clear ID caches for parent/child

index_new (character) an index name, required. only applies to index_shrink method

Details

index_analyze: https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-indices-analyze
This method can accept a string of text in the body, but this function passes it as a parameter in a
GET request to simplify.

index_flush: https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-indices-flush
From the ES website: The flush process of an index basically frees memory from the index by flush-

ing data to the index storage and clearing the internal transaction log. By default, Elasticsearch uses

memory heuristics in order to automatically trigger flush operations as required in order to clear

memory.

index_status: The API endpoint for this function was deprecated in Elasticsearch v1.2.0, and will
likely be removed soon. Use index_recovery() instead.

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-indices-analyze
https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-indices-flush

indices 63

index_settings_update: There are a lot of options you can change with this function. See https://
www.elastic.co/docs/api/doc/elasticsearch/operation/operation-indices-put-settings
for all the options.

index settings: See https://www.elastic.co/docs/reference/elasticsearch/index-settings/
index-modules for the static and dynamic settings you can set on indices.

Mappings

The "keyword" type is not supported in Elasticsearch < v5. If you do use a mapping with "keyword"
type in Elasticsearch < v5 index_create() should fail.

Author(s)

Scott Chamberlain myrmecocystus @ gmail.com

References

https://www.elastic.co/docs/api/doc/elasticsearch/group/endpoint-indices

Examples

Not run:
connection setup
(x <= connect())

get information on an index

index_get(x, index='shakespeare')

this one is the same as running index_settings('shakespeare')
index_get(x, index='shakespeare', features='settings')
index_get(x, index='shakespeare', features='mappings')
index_get(x, index='shakespeare', features='alias')

check for index existence
index_exists(x, index='shakespeare')
index_exists(x, index='plos"')

create an index

if (index_exists(x, 'twitter')) index_delete(x, 'twitter')
index_create(x, index='twitter')

if (index_exists(x, 'things')) index_delete(x, 'things')
index_create(x, index='things")

if (index_exists(x, 'plos')) index_delete(x, 'plos')
index_create(x, index='plos')

re-create an index
index_recreate(x, "deer™)

index_recreate(x, "deer", verbose = FALSE)

delete an index
if (index_exists(x, 'plos')) index_delete(x, index='plos')

with a body

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-indices-put-settings
https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-indices-put-settings
https://www.elastic.co/docs/reference/elasticsearch/index-settings/index-modules
https://www.elastic.co/docs/reference/elasticsearch/index-settings/index-modules
mailto:myrmecocystus@gmail.com
https://www.elastic.co/docs/api/doc/elasticsearch/group/endpoint-indices

64

indices

body <- '{
"settings"” : {
"index" : {
"number_of_shards"” : 3,
"number_of_replicas” : 2
}
}
3
if (index_exists(x, 'alsothat')) index_delete(x, 'alsothat')
index_create(x, index='alsothat', body = body)
with read only
body <- '{
"settings” : {
"index" : {
"blocks" : {
"read_only"” : true

}
}
3
index_create(x, index='myindex', body = body)
then this delete call should fail with something like:
> Error: 403 - blocked by: [FORBIDDEN/5/index read-only (api)]
index_delete(x, index='myindex')

with mappings
body <- '{
"mappings": {
"properties”: {
"location” : {"type” : "geo_point"}
3
3
3
if (!lindex_exists(x, 'gbifnewgeo')) index_create(x, index='gbifnewgeo', body=body)
ghifgeo <- system.file("examples”, "gbif_geosmall.json", package = "elastic")
docs_bulk(x, gbifgeo)

close an index
index_create(x, 'plos')
index_close(x, 'plos')

open an index
index_open(x, 'plos')

Get stats on an index

index_stats(x, 'plos')

index_stats(x, c('plos', 'ghif'))

index_stats(x, c('plos', 'gbif'), metric='refresh')

index_stats(x, metric = "indexing")

index_stats(x, 'shakespeare', metric='completion')

index_stats(x, 'shakespeare', metric='completion', completion_fields = "completion")
index_stats(x, 'shakespeare', metric='fielddata')

index_stats(x, 'shakespeare', metric='fielddata', fielddata_fields = "evictions")

indices

index_stats(x, 'plos', level="indices")

index_stats(x, 'plos', level="cluster")
index_stats(x, 'plos', level="shards")

Get segments information that a Lucene index (shard level) is built with
index_segments(x)

index_segments(x, 'plos')

index_segments(x, c('plos', 'gbif'))

Get recovery information that provides insight into on-going index shard recoveries
index_recovery(x)

index_recovery(x, 'plos')

index_recovery(x, c('plos', 'ghif"'))

index_recovery(x, "plos”, detailed = TRUE)

index_recovery(x, "plos”, active_only = TRUE)

Optimize an index, or many indices

if (x$es_ver() < 500) {
ES < vb - use optimize
index_optimize(x, 'plos')
index_optimize(x, c('plos', 'gbif'))
index_optimize(x, 'plos')

} else {
ES > v5 - use forcemerge
index_forcemerge(x, 'plos')

}

Upgrade one or more indices to the latest format. The upgrade process converts any
segments written with previous formats.
if (x$es_ver() < 500) {
index_upgrade(x, 'plos')
index_upgrade(x, c('plos', 'gbif'))
3

Performs the analysis process on a text and return the tokens breakdown
of the text

index_analyze(x, text = 'this is a test', analyzer='standard')

index_analyze(x, text = 'this is a test', analyzer='whitespace')

index_analyze(x, text = 'this is a test', analyzer='stop')

index_analyze(x, text = 'this is a test', tokenizer='keyword',
filters='lowercase')

index_analyze(x, text = 'this is a test', tokenizer='keyword',
filters='lowercase', char_filters="'html_strip')

index_analyze(x, text = 'this is a test', index = 'plos',
analyzer="standard")

index_analyze(x, text = 'this is a test', index = 'shakespeare',

analyzer="standard")

NGram tokenizer
body <- '{
"settings"” : {
"analysis” : {
"analyzer"” : {

66

"my_ngram_analyzer” : {
"tokenizer” : "my_ngram_tokenizer”
}
+
"tokenizer"” : {
"my_ngram_tokenizer” : {
"type" : "nGram”,
"min_gram” : "2",
"max_gram” : "3",
"token_chars”: ["letter”, "digit" 1]
}
}
}
}
3
if (index_exists(x, "shakespeare2")) index_delete(x, "shakespeare2")
tokenizer_set(x, index = "shakespeare2”, body=body)
index_analyze(x, text = "art thouh”, index = "shakespeare2”,

analyzer="'my_ngram_analyzer')

Explicitly flush one or more indices.

index_flush(x, index = "plos")

index_flush(x, index = "shakespeare")

index_flush(x, index = c("plos”,"shakespeare”))
index_flush(x, index = "plos”, wait_if_ongoing = TRUE)

index_flush(x, index = "plos", verbose = TRUE)

indices

Clear either all caches or specific cached associated with one ore more indices.

index_clear_cache(x)

index_clear_cache(x, index = "plos")

index_clear_cache(x, index = "shakespeare")
" on

index_clear_cache(x, index = c("plos"”,"shakespeare"))
index_clear_cache(x, filter = TRUE)

Index settings

get settings

index_settings(x)

index_settings(x, "_all")

index_settings(x, 'gbif')

index_settings(x, c('gbif"', 'plos'))

index_settings(x, 'xs')

update settings

if (index_exists(x, 'foobar')) index_delete(x, 'foobar')
index_create(x, "foobar™)

settings <- list(index = list(number_of_replicas = 4))
index_settings_update(x, "foobar”, body = settings)
index_get(x, "foobar")$foobar$settings

Shrink index - Can only shrink an index if it has >1 shard

index must be read only, a copy of every shard in the index must
reside on the same node, and the cluster health status must be green

index_settings_update call to change these
settings <- list(

ingest 67

index.routing.allocation.require._name = "shrink_node_name",
index.blocks.write = "true"
)
if (index_exists(x, 'barbarbar')) index_delete(x, 'barbarbar')
index_create(x, "barbarbar")
index_settings_update(x, "barbarbar”, body = settings)
cat_recovery(x, index='barbarbar')
index_shrink(x, "barbarbar", "barfoobbar")

End(Not run)

ingest Ingest API operations

Description

Ingest API operations

Usage
pipeline_create(conn, id, body, ...)
pipeline_attachment(conn, index, id, pipeline, body, type = NULL, ...)
pipeline_get(conn, id, filter_path = NULL, ...)
pipeline_delete(conn, id, body, ...)
pipeline_simulate(conn, body, id = NULL, ...)
Arguments
conn an Elasticsearch connection object, see connect ()
id (character) one or more pipeline id’s. with delete, you can use a wildcard match
body body describing pipeline, see examples and Elasticsearch docs
Curl args passed on to crul::verb-POST, crul::verb-GET, crul::verb-PUT, or
crul::verb-DELETE
index (character) an index. only used in pipeline_attachment
pipeline (character) a pipeline name. only used in pipeline_attachment
type (character) a type. only used in pipeline_attachment. by default this is set to
NULL - optional in ES <= v6.3; not allowed in ES >= v6.4
filter_path (character) fields to return. deafults to all if not given
Details

ingest/pipeline functions available in Elasticsearch v5 and greater

68 ingest

Value

a named list

Attachments

See https://www.elastic.co/docs/reference/enrich-processor/attachment You need to
install the attachment processor plugin to be able to use attachments in pipelines

References

https://www.elastic.co/docs/api/doc/elasticsearch/group/endpoint-ingest, https://
www.elastic.co/docs/reference/enrich-processor/attachment

Examples

Not run:
connection setup
(x <= connect())

create
body1 <- '{
"description” : "do a thing”,
"version" : 123,
"processors” : [
{
"set” : {
"field": "foo",
"value": "bar"
}
3
]
3
body2 <- '{
"description” : "do another thing",
"processors” : [
{
"set"” : {
"field": "stuff",
"value"”: "things"
}
3
]
3

pipeline_create(x, id 'foo', body = body1)
pipeline_create(x, id = 'bar', body = body2)

get

pipeline_get(x, id = 'foo')

pipeline_get(x, id = 'bar')

pipeline_get(x, id = 'foo', filter_path = "*.version")
pipeline_get(x, id = c('foo', 'bar')) # get >1

https://www.elastic.co/docs/reference/enrich-processor/attachment
https://www.elastic.co/docs/api/doc/elasticsearch/group/endpoint-ingest
https://www.elastic.co/docs/reference/enrich-processor/attachment
https://www.elastic.co/docs/reference/enrich-processor/attachment

ingest

delete
pipeline_delete(x, id = 'foo')

simulate
with pipeline included
body <- '{
"pipeline” : {
"description” : "do another thing",
"processors” : [
{
"set” : {
"field": "stuff",
"value": "things"
}
}
]
1
"docs” : [
{ "_source”": {"foo": "bar"} },
{ "_source": {"foo": "world"} }
]
3

pipeline_simulate(x, body)

referencing existing pipeline

body <- '{
"docs” : [
{ "_source”": {"foo": "bar"} 3},
{ "_source": {"foo": "world"} }
]
}I

pipeline_simulate(x, body, id = "foo")

attchments - Note: you need the attachment plugin for this, see above
body1 <- '{

"description” : "do a thing”,

"version” : 123,

"processors” : [

{
"attachment” : {
"field"” : "data"

}

]
3
pipeline_create(x, "baz", body1)
body_attach <- '{

"data": "elxydGYxXGFuc2kNCkxvcmVtIGlwc3VtIGRvbGIyIHNpdCBhbWV@ODQpccGFyIHO="
3
if (!index_exists(x, "boomarang"”)) index_create(x, "boomarang")
docs_create(x, 'boomarang', id = 1, body = list(title = "New title"))
pipeline_attachment(x, "boomarang”, "1", "baz", body_attach)
pipeline_get(x, id = 'baz')

69

70

mapping
End(Not run)
mapping Mapping management
Description
Mapping management
Usage
mapping_create(
conn,
index,
body,
type = NULL,
update_all_types = FALSE,
include_type_name = NULL,
)
mapping_get(conn, index = NULL, type = NULL, include_type_name = NULL, ...)

field_mapping_get(

conn,
index = NULL,
type = NULL,
field,

include_defaults = FALSE,
include_type_name = NULL,

)...

type_exists(conn, index, type, ...)

Arguments
conn an Elasticsearch connection object, see connect ()
index (character) An index
body (list) Either a list or json, representing the query.
type (character) A document type

update_all_types

(logical) update all types. default: FALSE. This parameter is deprecated in ES
v6.3.0 and higher, see https://github.com/elastic/elasticsearch/pull/28284

mapping 71

include_type_name
(logical) If set to TRUE, you can include a type name, if not an error will occur.
default: not set. See Details.

Curl options passed on to crul::verb-PUT, crul::verb-GET, or crul::verb-HEAD

field (character) One or more field names
include_defaults
(logical) Whether to return default values

Details
Find documentation for each function at:
* mapping_create-https://www.elastic.co/docs/api/doc/elasticsearch/operation/
operation-indices-put-mapping
* type_exists-https://www.elastic.co/docs/manage-data/data-store/mapping/removal-of-mapping-type

* mapping_delete - FUNCTION DEFUNCT - instead of deleting mapping, delete index and
recreate index with new mapping

* mapping_get-https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-indices-get-
e field_mapping_get-https://www.elastic.co/docs/api/doc/elasticsearch/operation/

operation-indices-get-mapping

See https://www.elastic.co/docs/manage-data/data-store/mapping/removal-of-mapping-types
for information on type removal

Examples

Not run:
connection setup
(x <= connect())

Used to check if a type/types exists in an index/indices

type_exists(x, index = "plos"”, type = "article")
type_exists(x, index = "plos"”, type = "articles")
type_exists(x, index = "shakespeare”, type = "line")

The put mapping API allows to register specific mapping definition for a specific type.

a good mapping body

body <- list(properties = list(

journal = list(type="text"),

year = list(type="long")

))

if (lindex_exists(x, "plos")) index_create(x, "plos")

mapping_create(x, index = "plos"”, type = "citation”, body=body)

OR if above fails, try

mapping_create(x, index = "plos"”, type = "citation”, body=body,
include_type_name=TRUE)

ES >= 7, no type

mapping_create(x, index = "plos"”, body=body)

or as json

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-indices-put-mapping
https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-indices-put-mapping
https://www.elastic.co/docs/manage-data/data-store/mapping/removal-of-mapping-types
https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-indices-get-mapping
https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-indices-get-mapping
https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-indices-get-mapping
https://www.elastic.co/docs/manage-data/data-store/mapping/removal-of-mapping-types

mapping

body <- '{
"properties”: {
"journal”: { "type"”: "text" 3},
"year": { "type": "long" }
2
mapping_create(x, index = "plos”, type = "citation”, body=body)
mapping_get(x, "plos", "citation”)

A bad mapping body
body <- list(things = list(properties = list(
journal = list("text")
)
mapping_create(x, index = "plos”, type = "things"”, body=body)

Get mappings

mapping_get(x, '_all')

mapping_get(x, index = "plos")

mapping_get(x, index = c("shakespeare”,"plos”))

mapping_get(x, index = "shakespeare”, type = "act")

mapping_get(x, index = "shakespeare"”, type = c("act”,"line"))

Get field mappings
plosdat <- system.file("examples”, "plos_data.json",
package = "elastic")
plosdat <- type_remover(plosdat)
invisible(docs_bulk(x, plosdat))
field_mapping_get(x, index = "_all”, field = "text")
field_mapping_get(x, index = "plos”, field = "title")
field_mapping_get(x, index = "plos”, field = "x"
field_mapping_get(x, index = "plos”, field = "title”, include_defaults = TRUE)
field_mapping_get(x, type = c("article”,"record"”), field = c("title","class"))
field_mapping_get(x, type = "ax", field = "tx")

Create geospatial mapping
if (index_exists(x, "gbifgeopoint”)) index_delete(x, "gbifgeopoint")
file <- system.file("examples”, "gbif_geopoint.json”,
package = "elastic")
file <- type_remover(file)
index_create(x, "gbifgeopoint")

body <- '{
"properties” : {
"location” : { "type" : "geo_point"” }
}
3

mapping_create(x, "gbifgeopoint”, body = body)
invisible(docs_bulk(x, file))

update_all_fields, see also ?fielddata
if (x$es_ver() < 603) {
mapping_create(x, "shakespeare"”, "record”, update_all_types=TRUE, body = '{
"properties”: {
"speaker": {
"type": "text",

msearch 73

"fielddata": true

}
}
1))
} else {
index_create(x, 'brownchair')
mapping_create(x, 'brownchair', body = '{
"properties”: {
"foo": {
"type": "text",
"fielddata": true
}
}
i)

End(Not run)

msearch Multi-search

Description

Performs multiple searches, defined in a file

Usage
msearch(conn, x, raw = FALSE, asdf = FALSE, ...)
Arguments
conn an Elasticsearch connection object, see connect ()
X (character) A file path
raw (logical) Get raw JSON back or not.
asdf (logical) If TRUE, use jsonlite: :fromJSON() to parse JSON directly to a data.frame.
If FALSE (Default), list output is given.
Curl args passed on to crul::verb-POST
Details

This function behaves similarly to docs_bulk() - performs searches based on queries defined in a
file.

See Also

Search_uri() Search()

74 mtermvectors
Examples

Not run:

x <= connect()

msearchl <- system.file("examples"”, "msearch_egl.json", package = "elastic")

readLines(msearch1)
msearch(x, msearchl)

tf <- tempfile(fileext = ".json")

cat('{"index" : "shakespeare”}', file = tf, sep = "\n")

cat('{"query” : {"match_all” : {3}}, "from” : @,
file = tf, append = TRUE)

readLines(tf)

msearch(x, tf)

End(Not run)

: 5},

sep = "\n",

mtermvectors Multi Termvectors

Description

Multi Termvectors

Usage

mtermvectors(
conn,
index = NULL,
type = NULL,
ids = NULL,
body = list(),
pretty = TRUE,
field_statistics = TRUE,
fields = NULL,
offsets = TRUE,
parent = NULL,
payloads = TRUE,
positions = TRUE,
preference = "random”,
realtime = TRUE,
routing = NULL,
term_statistics = FALSE,
version = NULL,
version_type = NULL,

mtermvectors 75

Arguments
conn an Elasticsearch connection object, see connect ()
index (character) The index in which the document resides.
type (character) The type of the document.
ids (character) One or more document ids
body (character) Define parameters and or supply a document to get termvectors for
pretty (logical) pretty print. Default: TRUE

field_statistics
(character) Specifies if document count, sum of document frequencies and sum
of total term frequencies should be returned. Default: TRUE

fields (character) A comma-separated list of fields to return.

offsets (character) Specifies if term offsets should be returned. Default: TRUE

parent (character) Parent id of documents.

payloads (character) Specifies if term payloads should be returned. Default: TRUE
positions (character) Specifies if term positions should be returned. Default: TRUE
preference (character) Specify the node or shard the operation should be performed on (De-

fault: random).

realtime (character) Specifies if request is real-time as opposed to near-real-time (De-
fault: TRUE).

routing (character) Specific routing value.

term_statistics
(character) Specifies if total term frequency and document frequency should be
returned. Default: FALSE

version (character) Explicit version number for concurrency control

version_type (character) Specific version type, valid choices are: ’internal’, ’external’, *exter-
nal_gte’, *force’

Curl args passed on to crul::verb-POST

Details

Multi termvectors API allows to get multiple termvectors based on an index, type and id.

References

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-mtermvectors

See Also

termvectors()

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-mtermvectors

76 mtermvectors

Examples

Not run:
x <- connect()

if (index_exists(x, 'omdb')) index_delete(x, "omdb")

omdb <- system.file("examples”, "omdb.json", package = "elastic")
omdb <- type_remover (omdb)

invisible(docs_bulk(x, omdb))

out <- Search(x, "omdb", size = 2)$hits$hits

ids <- vapply(out, "[CL[", "", "_id")

no index

body <- '{
"docs": [

{
"_index": "omdb"”,
"_id": "%s",
"term_statistics”: true

h

{
"_index": "omdb",
"_id": "%s",
"fields": [

"Plot”

]

3

3
mtermvectors(x, body = sprintf(body, ids[1], ids[2]))

index given

body <- '{
"docs": [
{
"_id": "%s",
"fields": [
"Plot”
1,
"term_statistics”: true
h
{
"_id": "%s",
"fields": [
"Title”
]
}

}I
mtermvectors(x, 'omdb', body = sprintf(body, ids[1], ids[2]))

parameters same for both documents, so can simplify
body <- '{

nodes
"ids" ["%s", "%s"]
"parameters”: {
"fields": [
"Plot”
1,
"term_statistics”:
3
3
mtermvectors(x, 'omdb',

’

n

true

body = sprintf(body, ids[1], ids[2]))

you can give user provided documents via the 'docs' parameter

though you have to gi
instance

ve index and type that exist in your Elasticsearch

body <- '{
"docs": [
{
"_index": "omdb",
"doc” : {
"Director” : "John Doe"”,
"Plot"” : "twitter test test test”
}
3
{
"_index": "omdb",
"doc" : {
"Director” : "Jane Doe”,
"Plot” : "Another twitter test ...”"
3
3
]
3

mtermvectors(x, body = body)

End(Not run)

77

nodes

Elasticsearch nodes endpoints.

Description

Elasticsearch nodes endpoints.

Usage

nodes_stats(conn, nod
nodes_info(conn, node

nodes_hot_threads(
conn,

e = NULL, metric = NULL, raw = FALSE, fields

= NULL, metric = NULL, raw = FALSE, ...)

= NULL,

78 nodes

node = NULL,
metric = NULL,
threads = 3,
interval = "500ms",
type = NULL,
raw = FALSE,
)
Arguments
conn an Elasticsearch connection object, see connect ()
node The node
metric A metric to get. See Details.
raw If TRUE (default), data is parsed to list. If FALSE, then raw JSON.
fields You can get information about field data memory usage on node level or on
index level
Curl args passed on to crul::verb-GET
threads (character) Number of hot threads to provide. Default: 3
interval (character) The interval to do the second sampling of threads. Default: 500ms
type (character) The type to sample, defaults to cpu, but supports wait and block to
see hot threads that are in wait or block state.
Details

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-nodes-stats

By default, all stats are returned. You can limit this by combining any of indices, os, process, jvm,
network, transport, http, fs, breaker and thread_pool. With the metric parameter you can select zero
or more of:

* indices Indices stats about size, document count, indexing and deletion times, search times,
field cache size, merges and flushes

* os retrieve information that concern the operating system

« fs File system information, data path, free disk space, read/write stats

* http HTTP connection information

* jvm JVM stats, memory pool information, garbage collection, buffer pools

* network TCP information

* os Operating system stats, load average, cpu, mem, swap

* process Process statistics, memory consumption, cpu usage, open file descriptors

» thread_pool Statistics about each thread pool, including current size, queue and rejected tasks

* transport Transport statistics about sent and received bytes in cluster communication

¢ breaker Statistics about the field data circuit breaker

nodes_hot_threads() returns plain text, so base: :cat() is used to print to the console.

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-nodes-stats

percolate 79

Examples

Not run:
connection setup
(x <= connect())

(out <- nodes_stats(x))

nodes_stats(x, node = names(out$nodes))
nodes_stats(x, metric='get')
nodes_stats(x, metric='jvm')
nodes_stats(x, metric=c('os', 'process'))
nodes_info(x)

nodes_info(x, metric='process')
nodes_info(x, metric='jvm')
nodes_info(x, metric='http')
nodes_info(x, metric='network"')

End(Not run)

percolate Percolater

Description

Store queries into an index then, via the percolate API, define documents to retrieve these queries.

Usage
percolate_register(
conn,
index,
id,
type = NULL,
body = list(),

routing = NULL,

preference = NULL,
ignore_unavailable = NULL,
percolate_format = NULL,
refresh = NULL,

)
percolate_match(
conn,
index,
type = NULL,
body,

routing = NULL,
preference = NULL,

80 percolate

ignore_unavailable = NULL,
percolate_format = NULL,

)

percolate_list(conn, index, ...)

percolate_count(conn, index, type, body, ...)

percolate_delete(conn, index, id, ...)

Arguments

conn an Elasticsearch connection object, see connect ()

index Index name. Required

id A precolator id. Required

type Document type. Required

body Body json, or R list.

routing (character) In case the percolate queries are partitioned by a custom routing
value, that routing option makes sure that the percolate request only gets exe-
cuted on the shard where the routing value is partitioned to. This means that the
percolate request only gets executed on one shard instead of all shards. Multiple
values can be specified as a comma separated string, in that case the request can
be be executed on more than one shard.

preference (character) Controls which shard replicas are preferred to execute the request

on. Works the same as in the search API.

ignore_unavailable
(logical) Controls if missing concrete indices should silently be ignored. Same
as is in the search API.

percolate_format
(character) If ids is specified then the matches array in the percolate response
will contain a string array of the matching ids instead of an array of objects.
This can be useful to reduce the amount of data being send back to the client.
Obviously if there are two percolator queries with same id from different indices
there is no way to find out which percolator query belongs to what index. Any
other value to percolate_format will be ignored.

refresh If TRUE then refresh the affected shards to make this operation visible to search,
if "wait_for" then wait for a refresh to make this operation visible to search, if
FALSE (default) then do nothing with refreshes. Valid choices: TRUE, FALSE,
"wait_for"

Curl options. Orin percolate_list function, further args passed on to Search()

Details

Additional body options, pass those in the body. These aren’t query string parameters:

percolate 81

« filter - Reduces the number queries to execute during percolating. Only the percolator queries
that match with the filter will be included in the percolate execution. The filter option works in
near realtime, so a refresh needs to have occurred for the filter to included the latest percolate
queries.

* query - Same as the filter option, but also the score is computed. The computed scores can
then be used by the track_scores and sort option.

* size - Defines to maximum number of matches (percolate queries) to be returned. Defaults to
unlimited.

* track_scores - Whether the _score is included for each match. The _score is based on the query
and represents how the query matched the percolate query’s metadata, not how the document
(that is being percolated) matched the query. The query option is required for this option.
Defaults to false.

* sort - Define a sort specification like in the search API. Currently only sorting _score reverse
(default relevancy) is supported. Other sort fields will throw an exception. The size and
query option are required for this setting. Like track_score the score is based on the query and
represents how the query matched to the percolate query’s metadata and not how the document
being percolated matched to the query.

* aggs - Allows aggregation definitions to be included. The aggregations are based on the match-
ing percolator queries, look at the aggregation documentation on how to define aggregations.

* highlight - Allows highlight definitions to be included. The document being percolated is be-
ing highlight for each matching query. This allows you to see how each match is highlighting
the document being percolated. See highlight documentation on how to define highlights. The
size option is required for highlighting, the performance of highlighting in the percolate API
depends of how many matches are being highlighted.

The Elasticsearch v5 split

In Elasticsearch < v5, there’s a certain set of percolate APIs available, while in Elasticsearch >= v5,
there’s a different set of APIs available.

Internally within these percolate functions we detect your Elasticsearch version, then use the appro-
priate APIs

References

https://www.elastic.co/docs/reference/query-languages/query-dsl/query-dsl-percolate-query

Examples

Not run:
x <- connect(errors = "complete")

Elasticsearch < vb
if (x$es_ver() < 500) {
typical usage
create an index first
if (index_exists(x, "myindex")) index_delete(x, "myindex")
mapping <- '{
"mappings”: {

https://www.elastic.co/docs/reference/query-languages/query-dsl/query-dsl-percolate-query

82

"mytype": {
"properties”: {
"message"”: {

thpeH: UteXt”
}Y
"query": {

"type": "percolator”
}

index_create(x, "myindex”, body = mapping)

register a percolator
perc_body = '{

"query"” : {
"match” : {
"message” : "bonsai tree”
3
3
3
percolate_register(x, index = "myindex”, type = "mytype”,

id = 1, body = perc_body)

register another
perc_body2 <- '{

"query"” : {
"match” : {
"message” : "jane doe”
3
}
3
percolate_register(x, index = "myindex", type = "mytype",

id = 2, body = perc_body2)

match a document to a percolator
doc <- '{
"query"”: {
"percolate”: {
"field": "query",
"document”: {
"message” : "A new bonsai tree in the office”
}
3
3
3
percolate_match(x, index = "myindex"”, type = "mytype"”, body = doc)

List percolators - for an index, no type, can't do across indices
percolate_list(x, index = "myindex"”)$hits$hits

Percolate counter

percolate

percolate

percolate_count(x, index = "myindex", type = "mytype", body = doc)$total

delete a percolator
percolate_delete(x, index = "myindex", id = 2)
} # end ES<5

Elasticsearch >= v5
if (x$es_ver() >= 500 && x$es_ver() <= 700) {
if (index_exists(x, "myindex")) index_delete(x, "myindex")

body <- '{
"mappings”: {
"mytype”: {

"properties”: {
"message”: {

"type": "text"

1

"query": {
"type": "percolator”

}

}
}
}
3

create the index with mapping
index_create(x, "myindex"”, body = body)

register a percolator

z <- Y{
"query"” : {
"match” : {
"message” : "bonsai tree”
}
}
3

percolate_register(x, index = "myindex”, type = "mytype”, id = 1, body = z)

register another

x2 <= '{
"query"” : {
"match” : {
"message” : "the office”
3
}
3

percolate_register(x, index = "myindex”, type = "mytype”, id = 2, body = x2)

match a document to a percolator
query <= '{
"query"” : {
"percolate” : {

84

"field": "query",
"document”: {
"message”: "A new bonsai tree in the office’
}
}

}
3
percolate_match(x, index = "myindex”, body = query)
} # end ES >= 5

Elasticsearch >= v7
if (x$es_ver() >= 700) {
if (index_exists(x, "myindex")) index_delete(x, "myindex")

body <- '{
"mappings"”: {
"properties”: {
"message”: {

"type": "text"

h

"query": {
"type": "percolator”

}

3
3
3

create the index with mapping
index_create(x, "myindex", body = body)

register a percolator

z <- Y{
"query"” : {
"match” : {
"message” : "bonsai tree”
}
}
3
percolate_register(x, index = "myindex”, id = 1, body = z)

register another

x2 <- '{
"query"” : {
"match” : {
"message” : "the office”
}
}
3

percolate_register(x, index = "myindex"”, id = 2, body = x2)

percolate

ping 85

match a document to a percolator

query <- '{
"query"” : {
"percolate” : {

"field": "query"”,
"document”: {
"message”: "A new bonsai tree in the office”
}
}
}
3
percolate_match(x, index = "myindex", body = query)
} # end ES >= 7

End(Not run)

ping Ping an Elasticsearch server.

Description

Ping an Elasticsearch server.

Usage

ping(conn, ...)

Arguments

conn an Elasticsearch connection object, see connect ()

Curl args passed on to crul::verb-GET

See Also

connect()

Examples

Not run:

x <- connect()

ping(x)

ideally call ping on the connetion object itself
x$ping()

End(Not run)

86

reindex

preference Preferences.

Description

Preferences.

Details

» _primary The operation will go and be executed only on the primary shards.

o _primary_first The operation will go and be executed on the primary shard, and if not available

(failover), will execute on other shards.

* _local The operation will prefer to be executed on a local allocated shard if possible.

* _only_node:xyz Restricts the search to execute only on a node with the provided node id (xyz

in this case).

o _prefer_node:xyz Prefers execution on the node with the provided node id (xyz in this case)

if applicable.

» _shards:2,3 Restricts the operation to the specified shards. (2 and 3 in this case). This prefer-
ence can be combined with other preferences but it has to appear first: _shards:2,3;_primary

* Custom (string) value A custom value will be used to guarantee that the same shards will be
used for the same custom value. This can help with "jumping values" when hitting different
shards in different refresh states. A sample value can be something like the web session id, or

the user name.

reindex Reindex

Description

Usage

Reindex all documents from one index to another.

reindex(

conn,
body,

refresh = NULL,
requests_per_second = NULL,
slices = NULL,

timeout = NULL,
wait_for_active_shards = NULL,
wait_for_completion = NULL,

reindex

Arguments

conn

body

refresh

87

an Elasticsearch connection object, see connect ()

(list/character/json) The search definition using the Query DSL and the proto-
type for the index request.

(logical) Should the effected indexes be refreshed?

requests_per_second

slices

timeout

(integer) The throttle to set on this request in sub-requests per second. - 1 means
no throttle. Default: 0

(integer) The number of slices this task should be divided into. Defaults to 1
meaning the task isn’t sliced into subtasks. Default: 1

(character) Time each individual bulk request should wait for shards that are
unavailable. Default: *1m’

wait_for_active_shards

(integer) Sets the number of shard copies that must be active before proceeding
with the reindex operation. Defaults to 1, meaning the primary shard only. Set
to all for all shard copies, otherwise set to any non-negative value less than or
equal to the total number of copies for the shard (number of replicas + 1)

wait_for_completion

References

(logical) Should the request block until the reindex is complete? Default: TRUE

Curl options, passed on to crul::verb-POST

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-reindex

Examples

Not run:
x <- connect()

if (!index_exists(x, "twitter"”)) index_create(x, "twitter")
if (!index_exists(x, "new_twitter”)) index_create(x, "new_twitter")

body <- '{
"source": {
"index": "twitter”
i
"dest": {
"index": "new_twitter”
}
3

reindex(x, body = body)

End(Not run)

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-reindex

88

scroll

scroll

Scroll search function

Description

Scroll search function

Usage
scroll(
conn,
X,
time_scroll = "1m",
raw = FALSE,
asdf = FALSE
stream_opts = list(),
)
scroll_clear(conn, x = NULL, all = FALSE, ...)
Arguments
conn an Elasticsearch connection object, see connect ()
X (character) For scroll, a single scroll id; for scroll_clear, one or more scroll

time_scroll

raw

asdf

stream_opts

all

Value

id’s

(character) Specify how long a consistent view of the index should be main-
tained for scrolled search, e.g., "30s", "1m". See units-time.

(logical) If FALSE (default), data is parsed to list. If TRUE, then raw JSON.

(logical) If TRUE, use jsonlite: : fromJSON() to parse JSON directly to a data.frame.
If FALSE (Default), list output is given.

(list) A list of options passed to jsonlite::stream_out() - Except that you
can’t pass x as that’s the data that’s streamed out, and pass a file path sinstead
of a connection to con. pagesize param doesn’t do much as that’s more or less
controlled by paging with ES.

Curl args passed on to crul::verb-POST

(logical) If TRUE (default) then all search contexts cleared. If FALSE, scroll id’s
must be passed to x

scroll() returns a list, identical to what Search () returns. With attribute scroll that is the scroll
value set via the time_scroll parameter

scroll_clear() returns a boolean (TRUE on success)

scroll 89

Scores

Scores will be the same for all documents that are returned from a scroll request. Dems da rules.

Inputs
Inputs to scroll() can be one of:
* list - This usually will be the output of Search(), but you could in theory make a list yourself
with the appropriate elements
* character - A scroll ID - this is typically the scroll id output from a call to Search(), accessed
like res$” _scroll_id"
All other classes passed to scroll() will fail with message
Lists passed to scroll() without a _scroll_id element will trigger an error.

From lists output form Search() there should be an attribute ("scroll") that is the scroll value
set in the Search() request - if that attribute is missing from the list, we’ll attempt to use the
time_scroll parameter value set in the scroll() function call

The output of scroll() has the scroll time value as an attribute so the output can be passed back
into scroll() to continue.
Clear scroll

Search context are automatically removed when the scroll timeout has been exceeded. Keeping
scrolls open has a cost, so scrolls should be explicitly cleared as soon as the scroll is not being used
anymore using scroll_clear

Sliced scrolling

For scroll queries that return a lot of documents it is possible to split the scroll in multiple slices
which can be consumed independently.

See the example in this man file.

Aggregations
If the request specifies aggregations, only the initial search response will contain the aggregations
results.

See Also

Search()

Examples

Not run:
connection setup
(con <- connect())

Basic usage - can use across all indices
res <- Search(con, time_scroll="1m")

scroll

scroll(con, res)$ _scroll_id"

use on a specific index - and specify a query
res <- Search(con, index = 'shakespeare', q="a*", time_scroll="1m")
res$>_scroll_id"

Setting "sort=_doc” to turn off sorting of results - faster

res <- Search(con, index = 'shakespeare', g="ax", time_scroll="1m",
body = '"{"sort": ["_doc"1}")

res$>_scroll_id"

Pass scroll_id to scroll function
scroll(con, res$ _scroll_id")

Get all results - one approach is to use a while loop
res <- Search(con, index = 'shakespeare', qg="a*", time_scroll="5m",
body = '"{"sort": ["_doc"1}")
out <- res$hits$hits
hits <- 1
while(hits != 0){
res <- scroll(con, res$ _scroll_id", time_scroll="5m")
hits <- length(res$hits$hits)
if(hits > 0)
out <- c(out, res$hitss$hits)
3
length(out)
res$hits$total
out[[1]]

clear scroll

individual scroll id

res <- Search(con, index = 'shakespeare', g="ax", time_scroll="5m",
body = '{"sort": ["_doc"1}"')

scroll_clear(con, res$ _scroll_id>)

many scroll ids

resl <- Search(con, index = 'shakespeare',6 qg="cx", time_scroll="5m",
body = '"{"sort": ["_doc"1}")
res2 <- Search(con, index = 'shakespeare',6 qg="dx", time_scroll="5m",
body = '{"sort": ["_doc"]}")
nodes_stats(con, metric = "indices")$nodes[[1]]$indices$search$open_contexts
scroll_clear(con, c(res1$ _scroll_id™, res2$ _scroll_id"))
nodes_stats(con, metric = "indices")$nodes[[1]]$indices$search$open_contexts

all scroll ids

resl <- Search(con, index = 'shakespeare',6 q="fx", time_scroll="1m",
body = '"{"sort": ["_doc"1}")

res2 <- Search(con, index = 'shakespeare',6 qg="gx", time_scroll="1m",
body = '{"sort": ["_doc"]}")

res3 <- Search(con, index = 'shakespeare',6 q="kx", time_scroll="1m",

body = '{"sort": ["_doc"]}"')
scroll_clear(con, all = TRUE)

scroll

sliced scrolling

bodyl <- '{
"slice”: {
"id": o,
"max": 2
1
"query”: {
"match” : {
"text_entry” : "ax"
}
}
3
body2 <- '{
"slice”: {
"id": 1,
"max": 2
1
"query”: {
"match” : {
"text_entry” : "ax"
}
}
3
resl <- Search(con, index = 'shakespeare', time_scroll="1m", body
res2 <- Search(con, index = 'shakespeare', time_scroll="1m", body

scroll(con, res1$ _scroll_id™)
scroll(con, res2$”_scroll_id")

outl <- list()
hits <- 1
while(hits != 0){
tmp1 <- scroll(con, res1$ _scroll_id")
hits <- length(tmpl$hits$hits)
if(hits > @)
outl <- c(outl, tmpl1$hits$hits)
3

out2 <- list()
hits <- 1
while(hits != 0){
tmp2 <- scroll(con, res2$ _scroll_id")
hits <- length(tmp2$hits$hits)
if(hits > @)
out2 <- c(out2, tmp2$hits$hits)

3

c(

lapply(outl, "[[", "_source"),
lapply(out2, "[[", "_source")

)

body1)
body?2)

91

92 Search

using jsonlite::stream_out
res <- Search(con, time_scroll = "1m")
file <- tempfile()
scroll(con,
X = res$ _scroll_id",
stream_opts = list(file = file)

)
jsonlite::stream_in(file(file))
unlink(file)

stream_out and while loop
(file <- tempfile())
res <- Search(con, index = "shakespeare”, time_scroll = "5m",
size = 1000, stream_opts = list(file = file))
while(!inherits(res, "warning”)) {
res <- tryCatch(scroll(

conn = con,
X = res$ _scroll_id",
time_scroll = "5m",

stream_opts = list(file = file)
), warning = function(w) w)
3
NROW(df <- jsonlite::stream_in(file(file)))
head(df)

End(Not run)

Search Full text search of Elasticsearch

Description

Full text search of Elasticsearch

Usage
Search(
conn,
index = NULL,
type = NULL,
g = NULL,
df = NULL,

analyzer = NULL,
default_operator = NULL,
explain = NULL,

source = NULL,

fields = NULL,

sort = NULL,

Search 93

track_scores = NULL,
timeout = NULL,
terminate_after = NULL,
from = NULL,

size = NULL,

search_type = NULL,
lowercase_expanded_terms = NULL,
analyze_wildcard = NULL,
version = NULL,

lenient = NULL,

body = list(),

raw = FALSE,

asdf = FALSE,
track_total_hits = TRUE,
time_scroll = NULL,
search_path = "_search”,
stream_opts = list(),
ignore_unavailable = FALSE,

)
Arguments

conn an Elasticsearch connection object, see connect

index Index name, one or more

type Document type. Note that type is deprecated in Elasticsearch v7 and greater,
and removed in Elasticsearch v8. We will strive to support types for folks using
older ES versions

q The query string (maps to the query_string query, see Query String Query for
more details). See https://www.elastic.co/guide/en/elasticsearch/reference/current/query-
dsl-query-string-query.html for documentation and examples.

df (character) The default field to use when no field prefix is defined within the
query.

analyzer (character) The analyzer name to be used when analyzing the query string.

default_operator
(character) The default operator to be used, can be AND or OR. Default: OR

explain (logical) For each hit, contain an explanation of how scoring of the hits was
computed. Default: FALSE
source (logical) Set to FALSE to disable retrieval of the _source field. You can also

retrieve part of the document by using _source_include & _source_exclude
(see the body documentation for more details). You can also include a comma-
delimited string of fields from the source document that you want back. See also
the fields parameter

fields (character) The selective stored fields of the document to return for each hit. Not
specifying any value will cause no fields to return. Note that in Elasticsearch v5
and greater, fields parameter has changed to stored_fields, which is not on by
default. You can however, pass fields to source parameter

94

Search

sort (character) Sorting to perform. Can either be in the form of fieldName, or
fieldName:asc/fieldName:desc. The fieldName can either be an actual field
within the document, or the special _score name to indicate sorting based on
scores. There can be several sort parameters (order is important).

track_scores (logical) When sorting, set to TRUE in order to still track scores and return them
as part of each hit.

timeout (numeric) A search timeout, bounding the search request to be executed within
the specified time value and bail with the hits accumulated up to that point when
expired. Default: no timeout.

terminate_after
(numeric) The maximum number of documents to collect for each shard, upon
reaching which the query execution will terminate early. If set, the response will
have a boolean field terminated_early to indicate whether the query execution
has actually terminated_early. Default: no terminate_after

from (character) The starting from index of the hits to return. Pass in as a character
string to avoid problems with large number conversion to scientific notation.
Default: 0

size (character) The number of hits to return. Pass in as a character string to avoid

problems with large number conversion to scientific notation. Default: 10. The
default maximum is 10,000 - however, you can change this default maximum by
changing the index.max_result_window index level parameter.

search_type (character) The type of the search operation to perform. Can be query_then_fetch
(default) or dfs_query_then_fetch. Types scan and count are deprecated.
See Elasticsearch docs for more details on the different types of search that can
be performed.
lowercase_expanded_terms
(logical) Should terms be automatically lowercased or not. Default: TRUE.
analyze_wildcard
(logical) Should wildcard and prefix queries be analyzed or not. Default: FALSE.

version (logical) Print the document version with each document.

lenient (logical) If TRUE will cause format based failures (like providing text to a nu-
meric field) to be ignored. Default: NULL

body Query, either a list or json.

raw (logical) If FALSE (default), data is parsed to list. If TRUE, then raw JSON re-
turned

asdf (logical) If TRUE, use fromJSON to parse JSON directly to a data.frame. If FALSE

(Default), list output is given.

track_total_hits
(logical, numeric) If TRUE will always track the number of hits that match the
query accurately. If FALSE will count documents accurately up to 10000 docu-
ments. If is.integer will count documents accurately up to the number. De-
fault: TRUE

time_scroll (character) Specify how long a consistent view of the index should be main-
tained for scrolled search, e.g., "30s", "1m". See units-time

Search 95

search_path (character) The path to use for searching. Default to _search, but in some cases
you may already have that in the base url set using connect(), in which case
you can set this to NULL

stream_opts (list) A list of options passed to stream_out - Except that you can’t pass x as
that’s the data that’s streamed out, and pass a file path instead of a connection
to con. pagesize param doesn’t do much as that’s more or less controlled by
paging with ES.

ignore_unavailable
(logical) What to do if an specified index name doesn’t exist. If set to TRUE then
those indices are ignored.

Curl args passed on to verb-POST

Details

This function name has the "S" capitalized to avoid conflict with the function base: : search. I hate
mixing cases, as I think it confuses users, but in this case it seems neccessary.

profile

The Profile API provides detailed timing information about the execution of individual components
in a search request. See https://www.elastic.co/guide/en/elasticsearch/reference/current/search-profile.html
for more information

In a body query, you can set to profile: true to enable profiling results. e.g.

{
"profile”: true,
"query"” : {
"match” : { "message"” : "some number” }
3
3
References

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-searchhttps:
//www.elastic.co/docs/explore-analyze/query-filter/languages/querydsl

See Also

Search_uri() Search_template() scroll() count() validate() fielddata()

Examples

Not run:
make connection object
(x <= connect())

load some data
if (!index_exists(x, "shakespeare”)) {
shakespeare <- system.file("examples”, "shakespeare_data.json",

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-search
https://www.elastic.co/docs/explore-analyze/query-filter/languages/querydsl
https://www.elastic.co/docs/explore-analyze/query-filter/languages/querydsl

96

Search

package = "elastic")
shakespeare <- type_remover(shakespeare)
invisible(docs_bulk(x, shakespeare))
3
if (lindex_exists(x, "gbif")) {
ghif <- system.file("examples”, "gbif_data.json"”,
package = "elastic")
gbif <- type_remover(gbif)
invisible(docs_bulk(x, gbif))
3
if (!index_exists(x, "plos")) {
plos <- system.file("examples”, "plos_data.json",
package = "elastic")
plos <- type_remover(plos)
invisible(docs_bulk(x, plos))
3

URI string queries
Search(x, index="shakespeare")
if you're using an older ES version, you may have types
if (x$es_ver() < 700) {
Search(x, index="shakespeare"”, type="act")
Search(x, index="shakespeare”, type="scene")
Search(x, index="shakespeare”, type="line")

}

Return certain fields
if (x$es_ver() < 500) {

ES < v5

Search(x, index="shakespeare”, fields=c('play_name', 'speaker'))
} else {

ES > v5

Search(x, index="shakespeare”, body = '{

"_source”": ["play_name"”, "speaker"]

1)

}

Search multiple indices

Search(x, index = "gbif")$hits$total$value

Search(x, index = "shakespeare")$hits$total$value

Search(x, index = c("gbif"”, "shakespeare"”))$hits$total$value

search_type

Search(x, index="shakespeare"”, search_type = "query_then_fetch")
Search(x, index="shakespeare"”, search_type = "dfs_query_then_fetch")
search type "scan” is gone - use time_scroll instead

Search(x, index="shakespeare"”, time_scroll = "2m")

search type "count” is gone - use size=@ instead
Search(x, index="shakespeare"”, size = 0)$hits$total$value

search exists check
use size set to @ and terminate_after set to 1

Search

#i## if there are > @ hits, then there are matching documents
Search(x, index="shakespeare"”, size = 0, terminate_after = 1)

sorting
if ES >5, we need to make sure fielddata is turned on for a field
before using it for sort
if (x$es_ver() >= 500) {
if (index_exists(x, "shakespeare”)) index_delete(x, "shakespeare"”)
index_create(x, "shakespeare")
mapping_create(x, "shakespeare”, body = '{
"properties”: {
"speaker”: {
"type": "text",
"fielddata": true

}
}
3!
)
shakespeare <- system.file("examples”, "shakespeare_data.json”,
package = "elastic”)

shakespeare <- type_remover (shakespeare)
invisible(docs_bulk(x, shakespeare))

z <- Search(x, index="shakespeare", sort="speaker"”, size = 30)
vapply(z$hits$hits, function(w) w$ _source” $speaker, "")

}

if (x$es_ver() < 500) {
Search(x, index="shakespeare”, type="line", sort
fields="speaker')
Search(x, index="shakespeare”, type="line",

"o

sort=c("speaker:desc”,"play_name:asc"”), fields=c('speaker', 'play_name'))

—_n

speaker:desc”,

pagination
Search(x, index="shakespeare"”, size=1)$hits$hits
Search(x, index="shakespeare"”, size=1, from=1)$hits$hits

queries
Search in all fields
Search(x, index="shakespeare"”, g="york")

Searchin specific fields
Search(x, index="shakespeare”, q="speaker:KING HENRY IV")$hits$total$value

Exact phrase search by wrapping in quotes
Search(x, index="shakespeare"”, q='speaker:"KING HENRY IV"')$hits$total$value

can specify operators between multiple words parenthetically
Search(x, index="shakespeare"”, q="speaker:(HENRY OR ARCHBISHOP)")$hits$total$value

where the field line_number has no value (or is missing)
Search(x, index="shakespeare”, q="_missing_:line_number")$hits$total$value

97

98

where the field line_number has any non-null value
Search(x, index="shakespeare”, q="_exists_:1line_number”)$hits$total$value

wildcards, either x or ?
Search(x, index="shakespeare”, g="xay")$hits$total$value
Search(x, index="shakespeare”, g="m?y")$hits$total$value

regular expressions, wrapped in forward slashes
Search(x, index="shakespeare"”, q="text_entry:/[a-z]/")$hits$total$value

fuzziness

Search(x, index="shakespeare”, q="text_entry:ma~")$hits$total$value
Search(x, index="shakespeare"”, g="text_entry:the~2")$hits$total$value
Search(x, index="shakespeare"”, g="text_entry:the~1")$hits$total$value

Proximity searches
Search(x, index="shakespeare"”, g='text_entry:"as hath"~5"')$hits$total$value
Search(x, index="shakespeare"”, g='text_entry:"as hath"~10')$hits$total$value

Ranges, here where line_id value is between 10 and 20
Search(x, index="shakespeare"”, q="line_id:[10 TO 20]")$hits$total$value

Grouping
Search(x, index="shakespeare”, qg="(hath OR as) AND the"”)$hits$total$value

Limit number of hits returned with the size parameter
Search(x, index="shakespeare"”, size=1)

Give explanation of search in result
Search(x, index="shakespeare"”, size=1, explain=TRUE)

terminate query after x documents found

setting to 1 gives back one document for each shard
Search(x, index="shakespeare"”, terminate_after=1)

or set to other number

Search(x, index="shakespeare”, terminate_after=2)

Get version number for each document
Search(x, index="shakespeare"”, version=TRUE, size=2)

Get raw data
Search(x, index="shakespeare"”, raw = TRUE)

Curl options

verbose
out <- Search(x, index="shakespeare", verbose = TRUE)

Query DSL searches - queries sent in the body of the request
Pass in as an R list

if ES >5, we need to make sure fielddata is turned on for a field

Search

Search 99

#i## before using it for aggregations
if (x$es_ver() >= 500) {
mapping_create(x, "shakespeare”, update_all_types = TRUE, body = '{
"properties”: {
"text_entry”: {
"type": "text",
"fielddata": true
}
}
1))
aggs <- list(aggs = list(stats = list(terms = list(field = "text_entry"))))
Search(x, index="shakespeare”, body=aggs)

}

if ES >5, you don't need to worry about fielddata

if (x$es_ver() < 500) {
aggs <- list(aggs = list(stats = list(terms = list(field = "text_entry"))))
Search(x, index="shakespeare"”, body=aggs)

3
or pass in as json query with newlines, easy to read
aggs <- '{
"aggs": {
"stats” : {
"terms” : {
"field" : "speaker”
}
3
3
3

Search(x, index="shakespeare"”, body=aggs, asdf=TRUE, size = 0)

or pass in collapsed json string
aggs <- '{"aggs":{"stats":{"terms"”:{"field":"text_entry"}}3}}'
Search(x, index="shakespeare"”, body=aggs)

Aggregations
Histograms

aggs <- '{
"aggs": {
"latbuckets” : {
"histogram” : {
"field” : "decimallatitude”,
"interval” : 5
3
}
3
3

Search(x, index="gbif", body=aggs, size=0)

Histograms w/ more options
aggs <- '{

100 Search

Ilaggs”: {
"latbuckets” : {
"histogram” : {

"field” : "decimallLatitude”,
"interval” : 5,
"min_doc_count” : 0,
"extended_bounds” : {

"min" : -90,

"max" : 90
3

3
Search(x, index="gbif"”, body=aggs, size=0)
Ordering the buckets by their doc_count - ascending:
aggs <- '{
"aggs": {
"latbuckets” : {
"histogram” : {

"field"” : "decimallLatitude”,
"interval” : 5,
"min_doc_count” : 0,
"extended_bounds” : {

"min" : -90,

"max" : 90
1
"order” : {

"_count” : "desc”
3

}
3
out <- Search(x, index="gbif", body=aggs, size=0)
lapply(out$aggregations$latbuckets$buckets, data.frame)

By default, the buckets are returned as an ordered array. It is also possible to
request the response as a hash instead keyed by the buckets keys:
aggs <- '{
"aggs": {
"latbuckets” : {
"histogram” : {

"field” : "decimallLatitude”,

"interval” : 10,

"keyed"” : true

3
3
Search(x, index="gbif", body=aggs, size=0)

Search 101

match query
match <- '{"query”: {"match” : {"text_entry” : "Two Gentlemen"}}}'
Search(x, index="shakespeare"”, body=match)

multi-match (multiple fields that is) query
mmatch <- "{"query”: {"multi_match” : {"query” : "henry”, "fields"”: ["text_entry”,"play_name”]1}}}'
Search(x, index="shakespeare"”, body=mmatch)

bool query
mmatch <- '{
"query": {
"bool” : {
"must_not" : {
"range"” : {
"speech_number” : {
"from" : 1, "to": 5
3

Search(x, index="shakespeare"”, body=mmatch)

Boosting query
boost <- '{
"query"” : {
"boosting” : {
"positive” : {
"term” : {
"play_name” : "henry"
3
h
"negative” : {
"term” : {
"text_entry” : "thou"
3
3,

"negative_boost” : 0.8

}
}l

Search(x, index="shakespeare"”, body=boost)

Fuzzy query

fuzzy query on numerics

fuzzy <- list(query = list(fuzzy = list(text_entry = "arms")))

Search(x, index="shakespeare"”, body=fuzzy)$hits$total$value

fuzzy <- list(query = list(fuzzy = list(text_entry = list(value = "arms"”, fuzziness = 4))))
Search(x, index="shakespeare"”, body=fuzzy)$hits$total$value

geoshape query
not working yets
geo <- list(query = list(geo_shape = list(location = list(shape = list(type = "envelope”,
coordinates = "[[2,10],[10,2011")))))
geo <- '{
"query": {
"geo_shape”: {

102 Search

"location”: {

"point"”: {
"type"”: "envelope”,
"coordinates”: [[2,0],[2.93,100]]
3
}
3

3
3
Search(x, index="gbifnewgeo"”, body=geo)

range query

with numeric

body <- list(query=list(range=list(decimallLongitude=1list(gte=1, 1te=3))))
Search(x, 'gbif', body=body)$hits$total$value

body <- list(query=list(range=list(decimallLongitude=list(gte=2.9, 1te=10))))
Search(x, 'gbif', body=body)$hits$total$value

with dates
body <- list(query=list(range=list(eventDate=1list(gte="2012-01-01", lte="now"))))
Search(x, 'gbif', body=body)$hits$total$value

body <- list(query=list(range=list(eventDate=list(gte="2014-01-01", lte="now"))))
Search(x, 'gbif', body=body)$hits$total$value

more like this query (more_like_this can be shortened to mlt)
body <- '{
"query"”: {
"more_like_this": {
"fields": ["title"],
"like": "and then",
"min_term_freq"”: 1,
"max_query_terms"”: 12
}
}
3
Search(x, 'plos', body=body)$hits$total$value

body <- '{
"query": {
"more_like_this": {
"fields": ["abstract”,”title"],
"like": "cell”,
"min_term_freq"”: 1,
"max_query_terms"”: 12
}
3
3
Search(x, 'plos', body=body)$hits$total$value

Highlighting
body <- '{

Search 103

"query": {
"query_string”: {
"query"” : "cell”
3
3,
"highlight": {
"fields": {
"title": {"number_of_fragments”: 2}
}
3
3
out <- Search(x, 'plos', body=body)
out$hits$total$value

sapply(out$hits$hits, function(x) x$ _source $title[[1]]1)

Common terms query

body <- '{
"query” : {
"match”: {
"text_entry”: {
"query"”: "this is”
3
}
3
3

Search(x, 'shakespeare', body=body)

Scrolling search - instead of paging
res <- Search(x, index = 'shakespeare', qg="a*", time_scroll="1m")
scroll(x, res$ _scroll_id")

res <- Search(x, index = 'shakespeare', qg="a*", time_scroll="5m")
out <- list()
hits <- 1

while(hits != 0){
res <- scroll(x, res$ _scroll_id")
hits <- length(res$hits$hits)
if(hits > @)
out <- c(out, res$hitss$hits)

Sliced scrolling
For scroll queries that return a lot of documents it is possible to
#i### split the scroll in multiple slices which can be consumed independently

body1 <- '{

"slice": {
"id": o,
"max": 2

1

"query”: {
"match” : {

"text_entry” : "a%"

3

104 Search

}
3
body2 <- '{
"slice": {
"id": 1,
"max": 2
1
"query": {
"match” : {
"text_entry” : "ax"
}
}
3
res1l <- Search(x, index = 'shakespeare', time_scroll="1m", body = body1)
res2 <- Search(x, index = 'shakespeare', time_scroll="1m", body = body2)

scroll(x, resl1$ _scroll_id~)
scroll(x, res2$ _scroll_id")

outl <- list()

hits <- 1

while(hits != 0){
tmp1 <- scroll(x, res1$ _scroll_id")
hits <- length(tmp1$hits$hits)
if(hits > @)

outl <- c(outl, tmpl$hits$hits)
}

out2 <- list()
hits <- 1
while(hits !'= @) {
tmp2 <- scroll(x, res2$ _scroll_id")
hits <- length(tmp2$hits$hits)
if(hits > @)
out2 <- c(out2, tmp2$hits$hits)

3
c(
lapply(outl, "[[", "_source"),
lapply(out2, "[[", "_source")
)

Using filters
A bool filter
body <- '{
"query":{
"bool"”: {
"must_not" : {
"range” : {
"year” : { "from” : 2011, "to" : 2012 }

Search

Search(x, 'gbif', body = body)$hits$total$value

Geo filters - fun!

Note that filers have many geospatial filter options, but queries

have fewer, andrequire a geo_shape mapping

body <- '{
"mappings": {
"properties”: {
"location” : {"type" : "geo_point"}

}
3
index_recreate(x, index='gbifgeopoint', body=body)
path <- system.file("examples”, "gbif_geopoint.json”,
package = "elastic")
path <- type_remover(path)
invisible(docs_bulk(x, path))

Points within a bounding box

body <- '{
"query”:{
"bool"” : {
"must” : {
"match_all” : {}
3
"filter":{
"geo_bounding_box" : {
"location” : {
"top_left"” : {
"lat” : 60,
"lon" : 1
h
"bottom_right” : {
"lat"” : 40,
"lon" : 14
3
3
3
3
}
3
3
out <- Search(x, 'gbifgeopoint', body = body, size =
out$hits$total$value

do.call(rbind, lapply(out$hits$hits, function(x) x$_source™$location))

Points within distance of a point

105

106 Search

body <- '{
"query": {
"bool” : {
"must” : {
"match_all” : {}
1,
"filter" : {
"geo_distance” : {
"distance” : "200km",
"location” : {
"lon”" : 4,
"lat” : 50

}
Y
out <- Search(x, 'gbifgeopoint', body = body)
out$hits$total$value
do.call(rbind, lapply(out$hits$hits, function(x) x$_source™$location))

Points within distance range of a point

body <- '{
"aggs":{
"points_within_dist” : {
"geo_distance” : {
"field”: "location”,
"origin” : "4, 50",
"ranges": [
{"from" : 200},
{"to" : 4003}
1
}
}
3
3
out <- Search(x, 'gbifgeopoint', body = body)
out$hits$total$value

do.call(rbind, lapply(out$hits$hits, function(x) x$ _source-$location))

Points within a polygon

body <- '{
"query”:{
"bool" : {
"must” : {
"match_all” : {}
1

"filter":{

"geo_polygon" : {

"location” : {

"points” : [

[80.0, -20.0], [-80.0, -20.0], [-80.0, 60.0], [40.0, 60.0], [80.0, -20.0]

]

b

Search 107

}
}
}
}
3
out <- Search(x, 'gbifgeopoint', body = body)
out$hits$total$value

do.call(rbind, lapply(out$hits$hits, function(x) x$_source-$location))

Geoshape filters using queries instead of filters
Get data with geojson type location data loaded first
body <- '{
"mappings": {
"properties”: {
"location” : {"type" : "geo_shape"}

}

3

index_recreate(x, index='geoshape', body=body)

path <- system.file("examples”, "gbif_geoshape.json",
package = "elastic")

path <- type_remover(path)

invisible(docs_bulk(x, path))

#i### Get data with a square envelope, w/ point defining upper left and the other
defining the lower right

body <- '{
"query":{
"geo_shape” : {
"location” : {
"shape” : {
"type": "envelope”,
"coordinates”: [[-30, 50]1,[30, 01]
3
3
}
3
3
out <- Search(x, 'geoshape', body = body)
out$hits$total$value

#it## Get data with a circle, w/ point defining center, and radius

body <- '{
"query”:{
"geo_shape” : {
"location” : {
"shape"” : {
"type": "circle”,
"coordinates”: [-10, 45],
"radius”: "2000km"
}
3

108 Search

}
}I
out <- Search(x, 'geoshape', body = body)
out$hits$total$value

Use a polygon, w/ point defining center, and radius
body <- '{
"query”:{
"geo_shape” : {
"location” : {
"shape” : {
"type"”: "polygon”,
"coordinates”: [
[[80.0, -20.0], [-80.0, -20.0], [-80.0, 60.0], [40.0, 60.0], [80.0, -20.0]]

out <- Search(x, 'geoshape', body = body)
out$hits$total$value

Geofilter with WKT
format follows "BBOX (minlon, maxlon, maxlat, minlat)"

body <- '{
"query": {
"bool” : {
"must” : {
"match_all” : {}
h
"filter" : {
"geo_bounding_box" : {
"location” : {
"wkt"” : "BBOX (1, 14, 60, 40)"
3
3
}
}
3
3
out <- Search(x, 'gbifgeopoint', body = body)
out$hits$total$value

Missing filter
if (x$es_ver() < 500) {

ES < vb
body <- '{
"query":{

"constant_score” : {

Search

"filter” : {
"missing” : { "field” : "play_name"” }
3
}
}
3
Search(x, "shakespeare"”, body = body)
} else {
ES => v5
body <- '{
"query”:{
"bool” : {
"must_not" : {
"exists" : {
"field” : "play_name"

3
3
3!
Search(x, "shakespeare”, body = body)
3

prefix filter
body <- '{
"query": {
"bool”: {
"must”: {
"prefix” : {
"speaker"” :

n n

we

}

}
}
3
z <- Search(x, "shakespeare”, body = body)
z$hits$total$value
vapply(z$hits$hits, "[[", "", c("_source”, "speaker"))

ids filter
if (x$es_ver() < 500) {
ES < vb
body <- '{
"query":{
"bool”: {
"must”: {
"ids" : {
"values”": ["1","2","10","2000"]

109

110

} 1
z <- Search(x, "shakespeare", body = body)
z$hits$total$value

identical(
c("1”,"2" ,"10","2000"),
vapply(z$hits$hits, "[[", "", "_id")
)
} else {
body <- '{
"query":{
"ids" : {
"values”: ["1","2","10","2000"]
3
3
3

z <- Search(x, "shakespeare", body = body)
z$hits$total$value

identical(

c(II‘I H’ N2II’I1‘I®I1’ 112000")’
vapply(z$hits$hits, "[[", "", "_id")
)

}

combined prefix and ids filters

if (x$es_ver() < 500) {
ES < v5
body <- '{
"query":{
"bool” : {
"should” : {
"or": [{
"ids" : {

"values”: [,,.l n , non , ngn , "19" , 1120001:]

3
hA
"prefix" : {
"speaker” :

" "

we

3!
z <- Search(x, "shakespeare”, body = body)
z$hits$total$value

} else {

#i## ES => v5
body <- '{
"query”:{
"bool” : {
"should” : [
{

Search

Search

"ids" : {
"values”: ["1","2","3","10","2000"]
}
h
{
"prefix"” : {
"speaker” : "we"
}
}
]
}
}
3!
z <- Search(x, "shakespeare", body = body)
z$hits$total$value
}
Suggestions
sugg <= '{
"query” : {
"match” : {
"text_entry” : "late"
}
+
"suggest” : {
"sugg” : {
"text"” : "late",
"term" : {
"field"” : "text_entry”
}
}
}
3
Search(x, index = "shakespeare"”, body = sugg,

asdf = TRUE, size = 0)$suggest$suggoptions

stream data out using jsonlite::stream_out

file <- tempfile()

res <- Search(x, "shakespeare"”, size = 1000, stream_opts = list(file = file))
head(df <- jsonlite::stream_in(file(file)))

NROW(df)

unlink(file)

get profile data
body <- '{
"profile”: true,
"query"” : {
"match” : { "text_entry’

. on

war"” }

112 searchapis

res <- Search(x, "shakespeare"”, body = body)

res$profile

time in nanoseconds across each of the shards

vapply(res$profile$shards, function(w) {
w$searches[[1]1]1$query[[1]]1$time_in_nanos

BD)

End(Not run)

searchapis Overview of search functions

Description

Overview of search functions

Details

Elasticsearch search APIs include the following functions:

* Search() - Search using the Query DSL via the body of the request.

e Search_uri() - Search using the URI search API only. This may be needed for servers that
block POST requests for security, or maybe you don’t need complicated requests, in which
case URI only requests are suffice.

* msearch() - Multi Search - execute several search requests defined in a file passed to msearch
e search_shards() - Search shards.
e count() - Get counts for various searches.

* explain() - Computes a score explanation for a query and a specific document. This can give
useful feedback whether a document matches or didn’t match a specific query.

e validate() - Validate a search
» field_stats() - Search field statistics

* percolate() - Store queries into an index then, via the percolate API, define documents to
retrieve these queries.

More will be added soon.

References

https://www.elastic.co/docs/api/doc/elasticsearch/group/endpoint-search

https://www.elastic.co/docs/api/doc/elasticsearch/group/endpoint-search

search_shards 113

search_shards Search shards

Description

Search shards

Usage
search_shards(
conn,
index = NULL,
raw = FALSE,

routing = NULL,
preference = NULL,

local = NULL,
)
Arguments
conn an Elasticsearch connection object, see connect ()
index One or more indeces
raw If TRUE (default), data is parsed to list. If FALSE, then raw JSON
routing A character vector of routing values to take into account when determining
which shards a request would be executed against.
preference Controls a preference of which shard replicas to execute the search request on.
By default, the operation is randomized between the shard replicas. See prefer-
ence for a list of all acceptable values.
local (logical) Whether to read the cluster state locally in order to determine where
shards are allocated instead of using the Master node’s cluster state.
Curl args passed on to crul::verb-GET
References

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-search-shards

Examples

Not run:
connection setup
(x <= connect())

search_shards(x, index = "plos")
search_shards(x, index = c("plos”,"gbif"))
search_shards(x, index = "plos”, preference='_primary")

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-search-shards

114 Search_template

search_shards(x, index = "plos", preference='_shards:2')

curl options
search_shards(x, index = "plos", verbose = TRUE)

End(Not run)

Search_template Search or validate templates

Description

Search or validate templates

Usage
Search_template(conn, body = list(), raw = FALSE, ...)
Search_template_register(conn, template, body = list(), raw = FALSE, ...)
Search_template_get(conn, template, ...)
Search_template_delete(conn, template, ...)
Search_template_render(conn, body = list(), raw = FALSE, ...)
Arguments
conn an Elasticsearch connection object, see connect ()
body Query, either a list or json.
raw (logical) If FALSE (default), data is parsed to list. If TRUE, then raw JSON re-
turned
Curl args passed on to crul::verb-POST
template (character) a template name

Template search

With Search_template you can search with a template, using mustache templating. Added in
Elasticsearch v1.1

Template render

With Search_template_render you validate a template without conducting the search. Added in
Elasticsearch v2.0

Search_template 115

Pre-registered templates

Register a template with Search_template_register. You can get the template with Search_template_get
and delete the template with Search_template_delete

You can also pre-register search templates by storing them in the config/scripts directory, in a
file using the .mustache extension. In order to execute the stored template, reference it by it’s name
under the template key, like "file”: "templateName",

References

https://www.elastic.co/docs/solutions/search/search-templates

See Also

Search(), Search_uri()

Examples

Not run:
connection setup
(x <= connect())

if (lindex_exists(x, "iris")) {
invisible(docs_bulk(x, iris, "iris"))

}

body1 <- '{
"inline"” : {
"query”: { "match” : { "{{my_field}}" : "{{my_value}}" } 3},
"size" : "{{my_size}}"
h
"params” : {
"my_field"” : "Species”,
"my_value” : "setosa",
"my_size" : 3
}
3
Search_template(x, body = body1)

body2 <- '{
"inline": {
"query": {
"match”: {
"Species”: "{{query_string}}"
}
}
1,
"params”: {
"query_string”: "versicolor”
3
3
Search_template(x, body = body2)

https://www.elastic.co/docs/solutions/search/search-templates

116 Search_template

pass in a list

mylist <- list(
inline = list(query = list(match = list("{{my_field}}" = "{{my_value}}"))),
params = list(my_field = "Species”, my_value = "setosa”, my_size = 3L)

)

Search_template(x, body = mylist)

Validating templates w/ Search_template_render()
Search_template_render(x, body = body1)
Search_template_render(x, body = body2)

pre-registered templates
register a template
if (x$es_ver() <= 520) {
body3 <- '{
"template”: {
"query": {
"match”: {
"Species”: "{{query_string}}"

3
}
3
Search_template_register(x, 'foobar', body = body3)
} else {
body3 <- '{
"script”: {
"lang": "mustache”,
"source": {
"query": {
"match”: {
"Species”: "{{query_string}}"
3
}
3
}
3!
Search_template_register(x, 'foobar', body = body3)
3

get template
Search_template_get(x, 'foobar')

use the template
body4 <- '{

"id": "foobar",

"params”: {
"query_string"”: "setosa”

}
3
Search_template(x, body = body4)

Search_uri 117

#i## delete the template
Search_template_delete(x, 'foobar')

End(Not run)

Search_uri Full text search of Elasticsearch with URI search

Description

Full text search of Elasticsearch with URI search

Usage

Search_uri(
conn,
index = NULL,
type = NULL,
g = NULL,
df = NULL,
analyzer = NULL,
default_operator = NULL,
explain = NULL,
source = NULL,
fields = NULL,
sort = NULL,
track_scores = NULL,
timeout = NULL,
terminate_after = NULL,
from = NULL,
size = NULL,
search_type = NULL,
lowercase_expanded_terms = NULL,
analyze_wildcard = NULL,
version = NULL,
lenient = NULL,

raw = FALSE,
asdf = FALSE,
track_total_hits = TRUE,
search_path = "_search”,

stream_opts = list(),
ignore_unavailable = FALSE,

118 Search_uri

Arguments

conn an Elasticsearch connection object, see connect

index Index name, one or more

type Document type. Note that type is deprecated in Elasticsearch v7 and greater,
and removed in Elasticsearch v8. We will strive to support types for folks using
older ES versions

q The query string (maps to the query_string query, see Query String Query for
more details). See https://www.elastic.co/guide/en/elasticsearch/reference/current/query-
dsl-query-string-query.html for documentation and examples.

df (character) The default field to use when no field prefix is defined within the
query.

analyzer (character) The analyzer name to be used when analyzing the query string.

default_operator
(character) The default operator to be used, can be AND or OR. Default: OR

explain (logical) For each hit, contain an explanation of how scoring of the hits was
computed. Default: FALSE

source (logical) Set to FALSE to disable retrieval of the _source field. You can also
retrieve part of the document by using _source_include & _source_exclude
(see the body documentation for more details). You can also include a comma-
delimited string of fields from the source document that you want back. See also
the fields parameter

fields (character) The selective stored fields of the document to return for each hit. Not
specifying any value will cause no fields to return. Note that in Elasticsearch v5
and greater, fields parameter has changed to stored_fields, which is not on by
default. You can however, pass fields to source parameter

sort (character) Sorting to perform. Can either be in the form of fieldName, or
fieldName:asc/fieldName:desc. The fieldName can either be an actual field
within the document, or the special _score name to indicate sorting based on
scores. There can be several sort parameters (order is important).

track_scores (logical) When sorting, set to TRUE in order to still track scores and return them
as part of each hit.

timeout (numeric) A search timeout, bounding the search request to be executed within
the specified time value and bail with the hits accumulated up to that point when
expired. Default: no timeout.

terminate_after
(numeric) The maximum number of documents to collect for each shard, upon
reaching which the query execution will terminate early. If set, the response will
have a boolean field terminated_early to indicate whether the query execution
has actually terminated_early. Default: no terminate_after

from (character) The starting from index of the hits to return. Pass in as a character
string to avoid problems with large number conversion to scientific notation.
Default: 0

Search_uri 119

size (character) The number of hits to return. Pass in as a character string to avoid
problems with large number conversion to scientific notation. Default: 10. The
default maximum is 10,000 - however, you can change this default maximum by
changing the index.max_result_window index level parameter.

search_type (character) The type of the search operation to perform. Can be query_then_fetch
(default) or dfs_query_then_fetch. Types scan and count are deprecated.
See Elasticsearch docs for more details on the different types of search that can
be performed.
lowercase_expanded_terms
(logical) Should terms be automatically lowercased or not. Default: TRUE.
analyze_wildcard
(logical) Should wildcard and prefix queries be analyzed or not. Default: FALSE.

version (logical) Print the document version with each document.

lenient (logical) If TRUE will cause format based failures (like providing text to a nu-
meric field) to be ignored. Default: NULL

raw (logical) If FALSE (default), data is parsed to list. If TRUE, then raw JSON re-
turned

asdf (logical) If TRUE, use fromJSON to parse JSON directly to a data.frame. If FALSE

(Default), list output is given.

track_total_hits
(logical, numeric) If TRUE will always track the number of hits that match the
query accurately. If FALSE will count documents accurately up to 10000 docu-
ments. If is.integer will count documents accurately up to the number. De-
fault: TRUE

search_path (character) The path to use for searching. Default to _search, but in some cases
you may already have that in the base url set using connect(), in which case
you can set this to NULL

stream_opts (list) A list of options passed to stream_out - Except that you can’t pass x as
that’s the data that’s streamed out, and pass a file path instead of a connection
to con. pagesize param doesn’t do much as that’s more or less controlled by
paging with ES.

ignore_unavailable
(logical) What to do if an specified index name doesn’t exist. If set to TRUE then
those indices are ignored.

Curl args passed on to verb-POST

See Also

fielddata()
Search() Search_template() count() fielddata()

Examples

Not run:
connection setup
(x <= connect())

120 Search_uri

URI string queries

Search_uri(x, index="shakespeare")

if you're using an older ES version, you may have types
if (x$es_ver() < 700) {

Search_uri(x, index="shakespeare"”, type="act")
Search_uri(x, index="shakespeare", type="scene")
Search_uri(x, index="shakespeare", type="line")

3
Return certain fields
if (gsub("\\.", "", ping()$version$number) < 500) {
ES < vb
Search_uri(x, index="shakespeare”, fields=c('play_name', 'speaker'))
} else {
ES > vb

Search_uri(x, index="shakespeare”, source=c('play_name', 'speaker'))

}

Search many indices

Search_uri(x, index = "gbif")$hits$total$value

Search_uri(x, index = "shakespeare"”)$hits$total$value
Search_uri(x, index = c("gbif", "shakespeare"))$hits$total$value

search_type
NOTE: If you're in ES V5 or greater, see \code{?fielddata}

Search_uri(x, index="shakespeare", search_type = "query_then_fetch")
Search_uri(x, index="shakespeare"”, search_type = "dfs_query_then_fetch")

Search_uri(x, index="shakespeare”, search_type = "scan") # only when scrolling
sorting

Search_uri(x, index="shakespeare"”, sort="text_entry")
if (x$es_ver() < 500) {
Search_uri(x, index="shakespeare"”, sort="speaker:desc”, fields='speaker")
Search_uri(x, index="shakespeare”, sort=c("speaker:desc”,"play_name:asc"),
fields=c('speaker', 'play_name'))

—_n

pagination
Search_uri(x, index="shakespeare"”, size=1)$hits$hits
Search_uri(x, index="shakespeare”, size=1, from=1)$hits$hits

queries
Search in all fields

Search_uri(x, index="shakespeare"”, g="york")

Searchin specific fields
Search_uri(x, index="shakespeare", g="speaker:KING HENRY IV")$hits$total$value

Exact phrase search by wrapping in quotes
Search_uri(x, index="shakespeare"”, g='speaker:"KING HENRY IV"')$hits$total$value

can specify operators between multiple words parenthetically

Search_uri 121

Search_uri(x, index="shakespeare", g="speaker:(HENRY OR ARCHBISHOP)")$hits$total$value

where the field line_number has no value (or is missing)
Search_uri(x, index="shakespeare", g="_missing_:line_number”)$hits$total$value

where the field line_number has any non-null value
Search_uri(x, index="shakespeare", g="_exists_:line_number")$hits$total$value

wildcards, either x or ?
Search_uri(x, index="shakespeare", g="*ay")$hits$total$value
Search_uri(x, index="shakespeare”, g="m?y")$hits$total$value

regular expressions, wrapped in forward slashes
Search_uri(x, index="shakespeare", g="text_entry:/[a-z]/")$hits$total$value

fuzziness

Search_uri(x, index="shakespeare”, g="text_entry:ma~")$hits$total$value
Search_uri(x, index="shakespeare”, g="text_entry:the~2")$hits$total$value
Search_uri(x, index="shakespeare", g="text_entry:the~1")$hits$total$value

Proximity searches
Search_uri(x, index="shakespeare", g='text_entry:"as hath"~5')$hits$total$value
Search_uri(x, index="shakespeare”, g='text_entry:"as hath”"~10')$hits$total$value

Ranges, here where line_id value is between 10 and 20
Search_uri(x, index="shakespeare"”, g="line_id:[10 TO 20]")$hits$total$value

Grouping
Search_uri(x, index="shakespeare”, g="(hath OR as) AND the")$hits$total$value

Limit number of hits returned with the size parameter
Search_uri(x, index="shakespeare”, size=1)

Give explanation of search in result
Search_uri(x, index="shakespeare"”, size=1, explain=TRUE)

terminate query after x documents found

setting to 1 gives back one document for each shard
Search_uri(x, index="shakespeare", terminate_after=1)
or set to other number

Search_uri(x, index="shakespeare"”, terminate_after=2)

Get version number for each document
Search_uri(x, index="shakespeare"”, version=TRUE, size=2)

Get raw data
Search_uri(x, index="shakespeare"”, raw=TRUE)

Curl options
verbose

out <- Search_uri(x, index="shakespeare"”, verbose = TRUE)

End(Not run)

122 tasks

tasks Elasticsearch tasks endpoints

Description

Elasticsearch tasks endpoints

Usage
tasks(
conn,
task_id = NULL,
nodes = NULL,

actions = NULL,
parent_task_id = NULL,
detailed = FALSE,

group_by = NULL,
wait_for_completion = FALSE,
timeout = NULL,

raw = FALSE,

)

tasks_cancel(
conn,
node_id = NULL,
task_id = NULL,
nodes = NULL,
actions = NULL,
parent_task_id = NULL,
detailed = FALSE,
group_by = NULL,
wait_for_completion = FALSE,
timeout = NULL,

raw = FALSE,
)
Arguments
conn an Elasticsearch connection object, see connect ()
task_id atask id
nodes (character) The nodes
actions (character) Actions

parent_task_id (character) A parent task ID

termvectors 123

detailed (character) get detailed results. Default: FALSE

group_by (character) "nodes" (default, i.e., NULL) or "parents"
wait_for_completion
(logical) wait for completion. Default: FALSE

timeout (integer) timeout time
raw If TRUE (default), data is parsed to list. If FALSE, then raw JSON.
Curl args passed on to crul::verb-GET or crul::verb-POST
node_id anode id
References

https://www.elastic.co/docs/api/doc/elasticsearch/group/endpoint-tasks

Examples

Not run:
x <- connect()

tasks(x)
tasks(x, parent_task_id = "1234")

delete a task
tasks_cancel(x)

End(Not run)

termvectors Termvectors

Description

Termvectors

Usage

termvectors(
conn,
index,
type = NULL,
id = NULL,
body = 1list(),
pretty = TRUE,
field_statistics = TRUE,
fields = NULL,
offsets = TRUE,
parent = NULL,
payloads = TRUE,

https://www.elastic.co/docs/api/doc/elasticsearch/group/endpoint-tasks

124

termvectors

positions = TRUE,
realtime = TRUE,
preference = "random”,
routing = NULL,
term_statistics = FALSE,
version = NULL,
version_type = NULL,

)
Arguments
conn an Elasticsearch connection object, see connect ()
index (character) The index in which the document resides.
type (character) The type of the document. optional
id (character) The id of the document, when not specified a doc param should be
supplied.
body (character) Define parameters and or supply a document to get termvectors for
pretty (logical) pretty print. Default: TRUE
field_statistics

(character) Specifies if document count, sum of document frequencies and sum
of total term frequencies should be returned. Default: TRUE

fields (character) A comma-separated list of fields to return.

offsets (character) Specifies if term offsets should be returned. Default: TRUE

parent (character) Parent id of documents.

payloads (character) Specifies if term payloads should be returned. Default: TRUE

positions (character) Specifies if term positions should be returned. Default: TRUE

realtime (character) Specifies if request is real-time as opposed to near-real-time (De-
fault: TRUE).

preference (character) Specify the node or shard the operation should be performed on (De-
fault: random).

routing (character) Specific routing value.

term_statistics

ve

ve

(character) Specifies if total term frequency and document frequency should be
returned. Default: FALSE

rsion (character) Explicit version number for concurrency control

rsion_type (character) Specific version type, valid choices are: ’internal’, ’external’, ’exter-
nal_gte’, ’force’

Curl args passed on to crul::verb-POST

Details

Returns information and statistics on terms in the fields of a particular document. The document
could be stored in the index or artificially provided by the user (Added in 1.4). Note that for
documents stored in the index, this is a near realtime API as the term vectors are not available until
the next refresh.

tokenizer set 125

References

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-termvectors

See Also

mtermvectors()

Examples

Not run:
x <- connect()

if (lindex_exists(x, 'plos')) {
plosdat <- system.file("examples”, "plos_data.json",
package = "elastic")
plosdat <- type_remover(plosdat)
invisible(docs_bulk(x, plosdat))
3
if (!index_exists(x, 'omdb')) {
omdb <- system.file("examples”, "omdb.json"”, package = "elastic")
omdb <- type_remover (omdb)
invisible(docs_bulk(x, omdb))

3
body <- '{
"fields" : ["title"],
"offsets” : true,
"positions” : true,
"term_statistics” : true,
"field_statistics” : true
3
termvectors(x, 'plos', id = 29, body = body)
body <- '{
"fields" : ["Plot"],
"offsets” : true,
"positions” : true,
"term_statistics” : true,
"field_statistics” : true
3

termvectors(x, 'omdb', id = Search(x, "omdb"”, size=1)$hits$hits[[1]1]$ _id"~,
body = body)

End(Not run)

tokenizer_set Tokenizer operations

https://www.elastic.co/docs/api/doc/elasticsearch/operation/operation-termvectors

126 tokenizer_set

Description

Tokenizer operations

Usage
tokenizer_set(conn, index, body, ...)
Arguments
conn an Elasticsearch connection object, see connect ()
index (character) A character vector of index names
body Query, either a list or json.
Curl options passed on to crul::HttpClient
Author(s)

Scott Chamberlain myrmecocystus @ gmail.com

References

https://www.elastic.co/docs/reference/text-analysis/tokenizer-reference

Examples

Not run:
connection setup
(x <= connect())

set tokenizer

NGram tokenizer

body <- '{
"settings"” : {
"analysis"” : {
"analyzer"” : {
"my_ngram_analyzer"” : {
"tokenizer"” : "my_ngram_tokenizer"”
}
1,
"tokenizer" : {
"my_ngram_tokenizer” : {
"type" : "nGram"”,
"min_gram” : "2",
"max_gram” : "3",
"token_chars”: ["letter”, "digit"]
}
}
}
}

mailto:myrmecocystus@gmail.com
https://www.elastic.co/docs/reference/text-analysis/tokenizer-reference

type_remover 127

if (index_exists('test1')) index_delete('test1')

tokenizer_set(index = "test1”, body=body)

index_analyze(text = "hello world”, index = "test1",
analyzer='my_ngram_analyzer')

End(Not run)

type_remover Utility function to remove 'type’ from bulk load files

Description

Types are being removed from Elasticsearch. This little function aims to help remove "_type" fields
from bulk newline-delimited JSON files. See Details.

Usage

type_remover(file)

Arguments

file (character) a file path, required

Details

Looks for any lines that have an "index" key, then drops any "_type" keys in the hash given by the
"index" key.

You can of course manually modify these files as an alternative, in a text editor or with command
line tools like sed, etc.

Value

a file path for a temporary file with the types removed

Examples

Not run:

z <- system.file("examples/omdb.json"”, package = "elastic”)
readLines(z, 6)

ff <- type_remover(z)

readLines(ff, 6)

unlink(ff)

End(Not run)

128 units-time

units-distance Distance units

Description

Wherever distances need to be specified, such as the distance parameter in the Geo Distance Filter),
the default unit if none is specified is the meter. Distances can be specified in other units, such as
"1km" or "2mi" (2 miles).

Details
mi or miles Mile
yd or yards Yard
ft or feet Feet
in or inch Inch
km or kilometers Kilometer
m or meters Meter
cm or centimeters Centimeter
mm or millimeters Millimeter

NM, nmi or nauticalmiles Nautical mile

The precision parameter in the Geohash Cell Filter accepts distances with the above units, but if no
unit is specified, then the precision is interpreted as the length of the geohash.

See Also

units-time

units-time Time units

Description

Whenever durations need to be specified, eg for a timeout parameter, the duration can be specified
as a whole number representing time in milliseconds, or as a time value like 2d for 2 days. The
supported units are:

validate 129

Details
y Year
M Month
w Week
d Day
h Hour
m Minute
S Second
See Also
units-distance
validate Validate a search
Description
Validate a search
Usage
validate(conn, index, type = NULL, ...)
Arguments
conn an Elasticsearch connection object, see connect ()
index Index name. Required.
type Document type. Optional.
Additional args passed on to Search()
See Also

Search()

130

Examples

Not run:
x <- connect()

if (lindex_exists(x, "twitter")) index_create(x, "twitter")
docs_create(x, 'twitter', id=1, body = list(

"user” = "foobar”,

"post_date” = "2014-01-03",

"message” = "trying out Elasticsearch”
)
)

validate(x, "twitter"”, g='user:foobar')
validate(x, "twitter", g='user:foobar')

body <- '{
"query"” : {
"bool” : {
"must” : {
"query_string” : {
"query"” : "x:x"
}
h
"filter" : {
"term” : { "user” : "kimchy" }
}
}
3
3

validate(x, "twitter"”, body = body)

End(Not run)

validate

Index

x bulk-functions
docs_bulk, 18
docs_bulk_create, 23
docs_bulk_delete, 25
docs_bulk_index, 27
docs_bulk_prep, 29
docs_bulk_update, 32

alias, 3

alias_create (alias), 3
alias_delete (alias), 3
alias_exists (alias), 3
alias_get (alias), 3
alias_rename (alias), 3
aliases_get (alias), 3

base::cat(), 9,78

cat, 5

cat_(cat), 5

cat_Q), 9

cat_aliases (cat), 5
cat_allocation (cat), 5
cat_count (cat), 5
cat_fielddata (cat), 5
cat_health (cat), 5
cat_indices (cat), 5
cat_master (cat), 5
cat_nodeattrs(cat), 5
cat_nodes (cat), 5
cat_pending_tasks (cat), 5
cat_plugins (cat), 5
cat_recovery (cat), 5
cat_segments (cat), 5
cat_shards (cat), 5
cat_thread_pool (cat), 5
cluster, 10

cluster_health (cluster), 10
cluster_pending_tasks (cluster), 10
cluster_reroute (cluster), 10

cluster_settings (cluster), 10

cluster_state (cluster), 10

cluster_stats (cluster), 10

connect, 14, 93, 118

connect(), 3,9, 12,17, 18, 23, 25,27, 33,35
36, 38,41, 42, 45,47, 50, 52, 54, 55,
57,61,67,70,73,75,78, 80, 85, 87
88,95,113, 114,119, 122,124, 126,
129

count, 16

count(), 95,112,119

crul::HttpClient, 9, 19, 24, 26, 28, 33, 35,
37,41,45, 53, 55,61, 126

crul: :verb-DELETE, 3, 67

crul::verb-GET, 3, 17, 54, 67,71, 78, 85,
113,123

crul: :verb-HEAD, 3, 71

crul::verb-POST, 3, 12, 39, 47,67, 73, 75,
87,88, 114, 123, 124

crul: :verb-PUT, 67, 71

docs_bulk, 18, 24, 26, 28, 30, 33
docs_bulk(), 24, 26, 28, 33,49, 73
docs_bulk_create, 20, 23, 26, 28, 30, 33
docs_bulk_delete, 20, 24, 25, 28, 30, 33
docs_bulk_index, 20, 24, 26, 27, 30, 33
docs_bulk_prep, 20, 24, 26, 28, 29, 33
docs_bulk_update, 20, 24, 26, 28, 30, 32
docs_create, 34

docs_create(), 49

docs_delete, 36

docs_delete(), 49
docs_delete_by_query, 37
docs_delete_by_query(), 48
docs_get, 40

docs_get(), 49

docs_mget, 42

docs_mget(), 49

docs_update, 44
docs_update_by_query, 46

132

docs_update_by_query(), 39
documents, 48

elastic, 49
elastic-defunct, 51
elastic-package (elastic), 49
explain, 51

explain(), 112

field_caps, 54
field_caps(), 56
field_mapping_get (mapping), 70
field_stats, 55

field_stats(), 54,112
fielddata, 53
fielddata(), 95, 119
fromJSON, 55, 94, 119

HttpClient, 43

index_analyze (indices), 59
index_clear_cache (indices), 59
index_close (indices), 59
index_create (indices), 59
index_create(), 63
index_delete (indices), 59
index_exists (indices), 59
index_flush (indices), 59
index_forcemerge (indices), 59
index_get (indices), 59
index_open (indices), 59
index_optimize (indices), 59
index_recovery (indices), 59
index_recovery(), 62
index_recreate (indices), 59
index_segments (indices), 59
index_settings (indices), 59

index_settings_update (indices), 59

index_shrink (indices), 59
index_stats (indices), 59
index_status(), 51
index_template, 57

index_template_delete (index_template),

57

index_template_exists (index_template),

57

index_template_get (index_template), 57
index_template_put (index_template), 57

index_upgrade (indices), 59

indices, 59
ingest, 67
invisible(), 20

jsonlite::fromJSON(), 73, 88
jsonlite::stream_out(), 88
jsonlite::toJSONQ), 19, 28, 29, 33

mapping, 70

mapping_create (mapping), 70
mapping_delete(), 51
mapping_get (mapping), 70

mlt(), 51
msearch, 73
msearch(), 112
mtermvectors, 74
mtermvectors(), 125

nodes, 77

nodes_hot_threads (nodes), 77
nodes_hot_threads(), 78
nodes_info (nodes), 77
nodes_shutdown(), 5/
nodes_stats (nodes), 77

percolate, 79

percolate(), 112
percolate_count (percolate), 79
percolate_delete (percolate), 79
percolate_list (percolate), 79
percolate_match (percolate), 79

INDEX

percolate_register (percolate), 79

ping, 85

pipeline_attachment (ingest), 67
pipeline_create (ingest), 67
pipeline_delete (ingest), 67
pipeline_get (ingest), 67
pipeline_simulate (ingest), 67
preference, 86, 113

reindex, 86

scroll, 88

scroll(), 95
scroll_clear (scroll), 88
Search, 92

Search(), 17, 50, 51, 57,73, 80, 88, 89, 112,

115,119,129
search_shards, 113
search_shards(), 112

INDEX

Search_template, 114
Search_template(), 95, 119
Search_template_delete
(Search_template), 114
Search_template_get (Search_template),
114
Search_template_register
(Search_template), 114
Search_template_render
(Search_template), 114
Search_uri, 117
Search_uri(), 17,50,73,95, 112,115
searchapis, 112
stream_out, 95, 119
suppressWarnings(), 15

tasks, 122

tasks_cancel (tasks), 122
termvectors, 123
termvectors(), 75
tokenizer_set, 125
type_exists (mapping), 70
type_remover, 127
type_remover(), 20

units-distance, 128, 129
units-time, 88, 94, 128, 128

validate, 129
validate(), 95,112

133

	alias
	cat
	cluster
	connect
	count
	docs_bulk
	docs_bulk_create
	docs_bulk_delete
	docs_bulk_index
	docs_bulk_prep
	docs_bulk_update
	docs_create
	docs_delete
	docs_delete_by_query
	docs_get
	docs_mget
	docs_update
	docs_update_by_query
	documents
	elastic
	elastic-defunct
	explain
	fielddata
	field_caps
	field_stats
	index_template
	indices
	ingest
	mapping
	msearch
	mtermvectors
	nodes
	percolate
	ping
	preference
	reindex
	scroll
	Search
	searchapis
	search_shards
	Search_template
	Search_uri
	tasks
	termvectors
	tokenizer_set
	type_remover
	units-distance
	units-time
	validate
	Index

