Package ‘flownet’

February 3, 2026
Type Package

Title Transport Modeling: Network Processing, Route Enumeration, and
Traffic Assignment

Version 0.1.2

Description High-performance tools for transport modeling - network processing, route
enumeration, and traffic assignment in R. The package implements the Path-Sized Logit
model for traffic assignment - Ben-Akiva and Bierlaire (1999) <doi:10.1007/978-1-4615-5203-
1 2>-
an efficient route enumeration algorithm, and provides powerful utility functions for (multimodal)
network generation, consolidation/contraction, and/or simplification. The user is expected to pro-
vide
a transport network (either a graph or collection of linestrings) and an origin-destination (OD)
matrix of trade/traffic flows. Maintained by transport consultants at CPCS (cpcs.ca).

URL https://sebkrantz.github.io/flownet/,

https://github.com/SebKrantz/flownet

BugReports https://github.com/SebKrantz/flownet/issues
License GPL-3

Encoding UTF-8

Depends R (>=4.1)

Imports collapse (>=2.1.5), kit (>=0.0.5), sf (>=1.0.0), igraph (>=
2.1.4), geodist (>= 0.1.1), leaderCluster (>= 1.5.0), mirai (>=
2.5.2), progress (>= 1.2.3)

Suggests fastverse (>= 0.3.4), mapview (>=2.11.2), tmap (>= 4.0),
testthat (>= 3.0.0), knitr, rmarkdown

LazyData true
NeedsCompilation yes
RoxygenNote 7.3.2
VignetteBuilder knitr

Author Sebastian Krantz [aut, cre],
Kamol Roy [ctb]

https://doi.org/10.1007/978-1-4615-5203-1_2
https://doi.org/10.1007/978-1-4615-5203-1_2
https://sebkrantz.github.io/flownet/
https://github.com/SebKrantz/flownet
https://github.com/SebKrantz/flownet/issues

flownet-package

Maintainer Sebastian Krantz <sebastian.krantz@graduateinstitute.ch>
Repository CRAN
Date/Publication 2026-02-03 09:20:10 UTC

Contents
flownet-package 2
africa_CIties_ports e e 4
africa_network e 5
africa_segments e e e e e 8
africa_trade L e 9
consolidate_graph 11
create_undirected_graph 13
distances_from_graph 15
linestrings_from_graph L 16
linestrings_to_graph L 17
melt_od_matriX e e e e 18
nodes_from_grapho 20
normalize_graph 21
TUN_ASSIZNMENT v v vt e it e e e e e e e e e e e e e e e e e e 23
simplify_network 28

Index 32

flownet-package Efficient Transport Modeling
Description

Sflownet provides efficient tools for transportation modeling in R, supporting network processing,
route enumeration, and traffic assignment tasks. It implements the path-sized logit (PSL) model for

traffic assignment and provides powerful utilities for network processing/preparation.
Network Processing

linestrings_to_graph() — Convert LINESTRING geometries to graph
create_undirected_graph() — Convert directed graph to undirected
consolidate_graph() — Consolidate graph, removing redundant nodes/edges
simplify_network() — Spatially simplify network graph

Traffic Assignment

run_assignment () — Run traffic assignment using path-sized logit model

Graph Utilities

normalize_graph() — Normalize node IDs to consecutive integers
nodes_from_graph() — Extract unique nodes from graph

flownet-package 3

linestrings_from_graph() — Convert graph to LINESTRING geometries
distances_from_graph() — Compute distance matrix from graph

OD Matrix Utilities

melt_od_matrix() — Convert origin-destination matrix to long format

Data

africa_trade — Average BACI HS96 2012-22 trade flows by section between 47 continental
African countries

africa_cities_ports — The 453 largest (port-)cities in continental Africa within a 70km radius
- from Krantz (2024), doi:10.1596/1813945010893

africa_network — African continental road network + extensions to optimally connect the 453
cities - from Krantz (2024), doi:10.1596/1813945010893

africa_segments — Primary segments derived from OpenStreetMap routes between the 453 cities
- from Krantz (2024), doi:10.1596/1813945010893

Replication materials: https://github.com/SebKrantz/OptimalAfricanRoads

Details

The package uses efficient C implementations for critical path operations and leverages:

¢ collapse - Fast data transformations
* geodist - Fast geodesic distance computations
* igraph - Graph operations and shortest path algorithms

* leaderCluster - Fast spatial clustering for network simplification

Author(s)

Sebastian Krantz <sebastian.krantz@graduateinstitute.ch>and Kamol Roy <kamol.roy@8@gmail.com>

References

Ben-Akiva, M., & Bierlaire, M. (1999). Discrete choice methods and their applications to short term
travel decisions. In R. W. Hall (Ed.), Handbook of Transportation Science (pp. 5-33). Springer US.
doi:10.1007/9781461552031_2

Cascetta, E. (2001). Transportation systems engineering: Theory and methods. Springer.

Ben-Akiva, M., & Lerman, S. R. (1985). Discrete choice analysis: Theory and application to travel
demand. The MIT Press.

Ramming, M. S. (2002). Network knowledge and route choice (Doctoral dissertation). Mas-
sachusetts Institute of Technology.

Prato, C. G. (2009). Route choice modeling: Past, present and future research directions. Journal
of Choice Modelling, 2(1), 65-100. doi:10.1016/S17555345(13)700058

AequilibiaE Python Documentation: https://www.aequilibrae.com/develop/python/route_choice/path_size_logit.html

https://doi.org/10.1596/1813-9450-10893
https://doi.org/10.1596/1813-9450-10893
https://doi.org/10.1596/1813-9450-10893
https://github.com/SebKrantz/OptimalAfricanRoads
https://doi.org/10.1007/978-1-4615-5203-1_2
https://doi.org/10.1016/S1755-5345%2813%2970005-8

4 africa_cities_ports

africa_cities_ports African Cities and International Ports

Description

A spatial dataset containing 453 major African cities (population > 100,000) and international ports.
Cities are deduplicated within 50-100km radii, with populations aggregated from nearby settle-
ments. Port cities include cargo flow data from the World Bank Global Ports dataset.

Usage

data(africa_cities_ports)

Format

A Simple feature collection (sf object, also inheriting from data.table) with 453 POINT features and
12 fields:

city_country Character. Unique city-country identifier (e.g., "Cairo - Egypt", "Lagos - Nigeria").
city Character. City name.

country Character. Country name.

is02 Character. ISO 3166-1 alpha-2 country code.

iso3 Character. ISO 3166-1 alpha-3 country code.

admin_name Character. Administrative region or province name.

capital Character. Capital status: "" (none), "admin" (administrative), "minor", or "primary" (na-

tional capital).
population Numeric. City population including nearby settlements within 30km.
port_locode Character. UN/LOCODE port identifier (empty string for non-port cities).
port_name Character. Official port name (empty string for non-port cities).
port_status Character. Port status code (empty string for non-port cities).

outflows Numeric. Outflows in TEU in Q1 of 2020 (NA for non-port cities). 51 cities have port
outflow data.

geometry POINT. Spatial geometry in WGS 84 (EPSG:4326) coordinate reference system.

Details
The dataset was constructed by:

. Selecting cities with population > 50,000 from Simplemaps World Cities database
. Weighting by administrative importance (capital status)

. Deduplicating within 50-100km radii, keeping largest weighted city

. Aggregating populations from settlements within 30km

. Matching with World Bank international ports within 30km

N A~ W N =

The bounding box spans from approximately 34S to 37N latitude and 17W to 49E longitude, cov-
ering continental Africa.

africa_network 5

Source

City data from Simplemaps World Cities Database (https://simplemaps.com/data/world-cities).
Port data from World Bank Global International Ports dataset (https://datacatalog.worldbank.
org/search/dataset/0038118).

Dataset constructed for: Krantz, S. (2024). Optimal Investments in Africa’s Road Network. Policy
Research Working Paper 10893. World Bank. doi:10.1596/1813945010893. Replication materials:
https://github.com/SebKrantz/OptimalAfricanRoads.

See Also

africa_network, africa_trade, flownet-package

Examples

library(sf)
data(africa_cities_ports)
head(africa_cities_ports)

View largest cities
largest <- africa_cities_ports[order(-africa_cities_ports$population),]
largest[1:10, c("city"”, "country”, "population")]

Filter port cities

ports <- africa_cities_ports[!is.na(africa_cities_ports$port_locode),]
nrow(ports) # 51 ports

plot(africa_cities_ports[”population”])

africa_network Trans-African Road Transport Network

Description

A spatial dataset representing a discretized road transport network connecting major African cities
and ports. The network combines existing road infrastructure (2,344 edges) with proposed new links
(481 edges) identified through network efficiency analysis. Each edge contains distance, travel time,
border crossing costs, terrain characteristics, and road upgrade cost estimates.

Usage

data(africa_network)

https://simplemaps.com/data/world-cities
https://datacatalog.worldbank.org/search/dataset/0038118
https://datacatalog.worldbank.org/search/dataset/0038118
https://doi.org/10.1596/1813-9450-10893
https://github.com/SebKrantz/OptimalAfricanRoads

6 africa_network

Format

A Simple feature collection (sf object) with 2,825 LINESTRING features and 28 fields:

from Integer. Origin node index (1 to 1,377).

to Integer. Destination node index (2 to 1,379).

from_ctry Character. Origin country ISO3 code (49 countries).

to_ctry Character. Destination country ISO3 code (49 countries).

FX Numeric. Origin node longitude.

FY Numeric. Origin node latitude.

TX Numeric. Destination node longitude.

TY Numeric. Destination node latitude.

sp_distance Numeric. Spherical (great-circle) distance in meters.

distance Numeric. Road distance in meters from OSRM routing.

duration Numeric. Travel duration in minutes from OSRM routing (NA for proposed links).
speed_kmh Numeric. Average speed in km/h (distance/duration) (NA for proposed links).

passes Numeric. Number of optimal inter-city routes passing through this edge (NA for proposed
links).

gravity Numeric. Sum of population gravity weights from routes using this edge (NA for proposed
links).

gravity_rd Numeric. Sum of road-distance-weighted gravity from routes (NA for proposed links).
border_dist Numeric. Additional distance for border crossing in meters (0 for domestic links).
total_dist Numeric. Total distance including border crossing penalty in meters.

border_time Numeric. Additional time for border crossing in minutes.

total_time Numeric. Total travel time including border crossing in minutes.
duration_100kmh Numeric. Hypothetical travel time at 100 km/h in minutes.
total_time_100kmh Numeric. Hypothetical total time at 100 km/h including border penalties.
rugg Numeric. Terrain ruggedness index along the edge.

pop_wpop Numeric. Population within corridor (WorldPop data).

pop_wpop_km2 Numeric. Population density per km2 along corridor.

cost_km Numeric. Estimated road construction/maintenance cost per km in USD.

upgrade_cat Character. Road upgrade category: "Nothing", "Asphalt Mix Resurfacing", "Mixed
Works", "Upgrade", or NA.

ug_cost_km Numeric. Upgrade cost per km in USD.
add Logical. TRUE for proposed new links, FALSE for existing road network edges.
geometry LINESTRING. Spatial geometry in WGS 84 (EPSG:4326) coordinate reference system.

africa_network 7

Details

The network was constructed through the following process:

. Computing optimal routes between all city pairs within 2,000km using OSRM

. Filtering routes using network efficiency criteria (alpha = 45 degrees, EU-grade efficiency)
. Intersecting and aggregating overlapping route segments

. Contracting the network to reduce complexity while preserving connectivity

. Identifying proposed new links that would improve network route efficiency

. Adding border crossing costs based on country pairs

~N O L AW =

. Computing terrain, population, and road cost attributes
The gravity and gravity_rd fields measure edge importance based on the population gravity
model: routes between larger, closer cities contribute more weight to edges they traverse.

The bounding box spans continental Africa from approximately 34S to 37N latitude and 17W to
49E longitude.

Source

Road network derived from OpenStreetMap via OSRM routing. Border crossing data from World
Bank estimates. Terrain data from SRTM elevation models. Population data from WorldPop.

Dataset constructed for: Krantz, S. (2024). Optimal Investments in Africa’s Road Network. Policy
Research Working Paper 10893. World Bank. doi:10.1596/1813945010893. Replication materials:
https://github.com/SebKrantz/OptimalAfricanRoads.

See Also

africa_cities_ports, africa_segments, africa_trade, flownet-package

Examples

library(sf)
data(africa_network)
head(africa_network)

Existing vs proposed links
table(africa_network$add)

Cross-border links
cross_border <- africa_network[africa_network$from_ctry != africa_network$to_ctry,]
nrow(cross_border)

Upgrade categories

table(africa_network$upgrade_cat, useNA = "ifany")

Plot by gravity
plot(africa_network["gravity_rd"])

https://doi.org/10.1596/1813-9450-10893
https://github.com/SebKrantz/OptimalAfricanRoads

8 africa_segments

Highlight proposed new links
plot(africa_network[africa_network$add, "geometry"”], col = "red”, add = TRUE)

africa_segments Raw Network Segments for Trans-African Transport Network

Description

A dataset containing 14,358 raw network segments representing intersected road routes between
African cities. Each segment is defined by start and end coordinates with aggregate importance met-
rics. This dataset is provided to demonstrate how package functions like consolidate_graph()
and simplify_network() can process messy segment data into clean analytical networks like
africa_network.

Usage

data(africa_segments)

Format
A data frame with 14,358 rows and 7 columns:

FX Numeric. Start point longitude (range: -17.4 to 49.2).
FY Numeric. Start point latitude (range: -34.2 to 37.2).
TX Numeric. End point longitude (range: -17.0 to 49.1).
TY Numeric. End point latitude (range: -34.2 to 37.2).

passes Integer. Number of optimal inter-city routes passing through this segment. Range: 1 to
1,615, median: 46.

gravity Numeric. Sum of population gravity weights from routes using this segment. Computed
as sum of (pop_origin * pop_destination / spherical_distance_km) / 1e9.

gravity_rd Numeric. Sum of road-distance-weighted gravity from routes. Computed as sum of
(pop_origin * pop_destination / road_distance_m) / 1e9.

Details

This dataset represents an intermediate stage in network construction, after routes have been inter-
sected but before network simplification. The segments have been simplified using linestrings_from_graph()
to retain only start and end coordinates.

The segments can be used to demonstrate the flownet network processing workflow:

1. Convert segments to an sf LINESTRING object using linestrings_from_graph()
2. Apply consolidate_graph() to merge nearby nodes
3. Apply simplify_network() to remove intermediate nodes
The passes field indicates how many optimal city-to-city routes use each segment, serving as a

measure of segment importance in the network. Higher values indicate segments that are critical
for efficient inter-city connectivity.

africa_trade 9

Source

Derived from OpenStreetMap routing data via OSRM, processed through route intersection and
aggregation.

Dataset constructed for: Krantz, S. (2024). Optimal Investments in Africa’s Road Network. Policy
Research Working Paper 10893. World Bank. doi:10.1596/1813945010893. Replication materials:
https://github.com/SebKrantz/OptimalAfricanRoads.

See Also

africa_network, consolidate_graph(), simplify_network(), linestrings_from_graph(),
flownet-package

Examples

data(africa_segments)
head(africa_segments)

Summary statistics
summary (africa_segments[, c("passes”, "gravity”, "gravity_rd")])

Segments with highest traffic
africa_segments[order(-africa_segments$passes), 1[1:10,]

Convert to sf and plot

library(sf)

segments_sf <- linestrings_from_graph(africa_segments)
plot(segments_sf["passes”])

africa_trade Intra-African Trade Flows by HS Section

Description

A dataset containing bilateral trade flows between 47 African countries, aggregated by HS (Har-
monized System) section. Values represent annual averages over 2012-2022 from the CEPII BACI
database (HS96 nomenclature).

Usage

data(africa_trade)

https://doi.org/10.1596/1813-9450-10893
https://github.com/SebKrantz/OptimalAfricanRoads

10 africa_trade

Format

A data.table with 27,721 rows and 8 columns:

iso3_o Factor. Exporter (origin) country ISO 3166-1 alpha-3 code (47 countries).
iso3_d Factor. Importer (destination) country ISO 3166-1 alpha-3 code (47 countries).
section_code Integer. HS section code (1 to 21).

section_name Factor. HS section description (21 categories, e.g., "Live animals and animal prod-
ucts", "Mineral products”, "Machinery and mechanical appliances...").

hs2_codes Factor. Comma-separated HS 2-digit codes within the section (e.g., "84, 85" for ma-
chinery).

value Numeric. Trade value in thousands of USD (current prices).
value_kd Numeric. Trade value in thousands of constant 2015 USD.

quantity Numeric. Trade quantity in metric tons.

Details

The dataset provides bilateral trade flows aggregated from HS 6-digit product codes (via HS 2-digit)
to 21 HS sections. Trade values and quantities are annual averages computed over the 2012-2022
period.

HS sections cover broad product categories:

* Sections 1-5: Animal and vegetable products

* Sections 6-7: Chemical and plastic products

* Sections 8-14: Raw materials and manufactured goods

* Sections 15-16: Base metals and machinery

 Sections 17-21: Transport, instruments, and miscellaneous

Note: Some country pairs may have sparse trade relationships. Very small values indicate limited
trade below typical reporting thresholds.

Source

CEPII BACI Database (HS96 nomenclature), Version 202401b, released 2024-04-09. Available at
https://www.cepii.fr/DATA_DOWNLOAD/baci/doc/baci_webpage.html.

Reference: Gaulier, G. and Zignago, S. (2010). BACI: International Trade Database at the Product-
Level. The 1994-2007 Version. CEPII Working Paper, N 2010-23.

See Also

africa_cities_ports, africa_network, flownet-package

https://www.cepii.fr/DATA_DOWNLOAD/baci/doc/baci_webpage.html

consolidate_graph 11

Examples

data(africa_trade)
head(africa_trade)

Number of trading pairs
length(unique(paste(africa_trade$iso3_o, africa_trade$iso3_d)))

Total trade by section
aggregate(value ~ section_name, data = africa_trade, FUN = sum)

Largest bilateral flows
africa_trade[order(-africa_trade$value), 1[1:10,]

Trade between specific countries

subset(africa_trade, iso3_o == "ZAF" & iso3_d == "NGA")
consolidate_graph Consolidate Graph
Description

Consolidate a graph by contracting/removing intermediate nodes (nodes that occur exactly twice)
and dropping loop, duplicate, and singleton edges (leading to dead ends). This simplifies the net-
work topology while preserving connectivity.

Usage

consolidate_graph(
graph_df,
directed = FALSE,
drop.edges = c("loop”, "duplicate”, "single"),
contract = TRUE,
by = NULL,
keep.nodes = NULL,

L

recursive = "full”,
verbose = TRUE
)
Arguments
graph_df A data frame representing a graph with columns: from and to (node IDs), and

optionally other columns to preserve. If coordinate columns (FX, FY, TX, TY)
are present, they will be preserved and updated based on the consolidated node
coordinates.

directed Logical (default: FALSE). Whether the graph is directed.

12

drop.edges

contract

by

keep.nodes

recursive

verbose

Details

consolidate_graph

Character vector (default: c("loop”, "duplicate”, "single”)). Types of
edges to drop: "loop"” removes self-loops (edges where from ==to), "duplicate”
removes duplicate edges (same from-to pair), "single"” removes edges leading
to singleton nodes (nodes that occur only once). Set to NULL to keep all edges.

Logical (default: TRUE). If TRUE, contracts the graph by removing interme-
diate nodes (nodes that occur exactly twice) and merging connecting edges. If
FALSE, only drops edges as specified in drop.edges.

Link characteristics to preserve/not contract across, passed as a one-sided for-
mula or character vector of column names. Typically this includes attributes like
mode, type, or capacity to ensure that only edges with the same characteristics
are contracted.

Numeric vector (optional). Node IDs to preserve during consolidation, even if
they occur exactly twice. Also used to preserve nodes when dropping singleton
edges.

Arguments passed to collap() for aggregation across contracted edges. The de-
faults are FUN = fmean for numeric columns and catFUN = fmode for categorical
columns. Select columns using cols or use argument custom = list(fmean =
cols1, fsum=cols2, fmode = cols3) to map different columns to specific ag-
gregation functions. It is highly recommended to weight the aggregation (using
w =~ weight_col) by the length/cost of the edges.

One of "none”/FALSE, "partial” (recurse on dropping single edges and con-
solidation but only aggregate once), or "full"”/TRUE (recursively contracts and
aggregates the graph until no further consolidation is possible). This ensures
that long chains of intermediate nodes are fully contracted in a single call.

Logical (default: TRUE). Whether to print messages about dropped edges and
consolidation progress.

This function consolidates/simplifies a graph by:

* Dropping edges: Optionally removes self-loops, duplicate edges, and edges leading to sin-
gleton nodes (nodes that appear only once in the graph)

* Contracting nodes: Removes intermediate nodes (nodes that occur exactly twice) by merging
the two edges connected through them into a single longer edge

* Aggregating attributes: When edges are merged, attributes/columns are aggregated using
collap(). The default aggregation is mean for numeric columns and mode for categorical

columns.

* Recursive consolidation: If recursive = TRUE, the function continues consolidating until no
more nodes can be dropped or contracted, ensuring complete consolidation

Consolidation is useful for simplifying network topology while preserving connectivity. For ex-
ample, if node B connects A->B and B->C, it will be removed and replaced with A->C. With
recursive = TRUE, long chains (A->B->C->D) are fully contracted to A->D in a single call.

For undirected graphs, the algorithm also handles cases where a node appears twice as either origin
or destination (circular cases).

If coordinate columns (FX, FY, TX, TY) are present in the input, they are preserved and updated based
on the consolidated node coordinates from the original graph.

create_undirected_graph 13

Value

A data frame representing the consolidated graph with:

* edge - Edge identifier (added as first column)

* All columns from graph_df (aggregated if consolidation occurred), excluding from, to, and
optionally FX, FY, TX, TY (which are re-added if present in original)

* from, to - Node IDs (updated after consolidation)
* Coordinate columns (FX, FY, TX, TY) if present in original
* Attribute "keep.edges” - Indices of original edges that were kept

* Attribute "gid" - Edge group IDs mapping contracted edges to original edges

See Also

create_undirected_graph simplify_network flownet-package

Examples

library(flownet)
library(sf)

Convert segments to undirected graph

graph <- africa_segments |>
linestrings_from_graph() |>
linestrings_to_graph() |>
create_undirected_graph(FUN = "fsum")

Get nodes to preserve (city/port locations)
nodes <- nodes_from_graph(graph, sf = TRUE)
nearest_nodes <- nodes$node[st_nearest_feature(africa_cities_ports, nodes)]

Consolidate graph, preserving city nodes
graph_cons <- consolidate_graph(graph, keep = nearest_nodes, w = ~ passes)

Consolidated graph has fewer edges
c(original = nrow(graph), consolidated = nrow(graph_cons))

create_undirected_graph
Create Undirected Graph

Description

Convert a directed graph to an undirected graph by normalizing edges and aggregating duplicate
connections.

14 create_undirected_graph
Usage
create_undirected_graph(graph_df, by = NULL, ...)
Arguments
graph_df A data frame representing a directed graph including columns: from, to, and
(optionally) edge, FX, FY, TX, TY.
by Link characteristics to preserve/not aggregate across, passed as a one-sided for-
mula or character vector of column names. Typically this includes attributes like
mode, type, or capacity to ensure that only edges with the same characteristics
are aggregated.
Arguments passed to collap() for aggregation across duplicated (diretional)
edges. The defaults are FUN = fmean for numeric columns and catFUN = fmode
for categorical columns. Select columns using cols or use argument custom =
list(fmean = cols1, fsum=cols2, fmode = cols3) to map different columns
to specific aggregation functions. You can weight the aggregation (using w = ~
weight_col).
Details

This function converts a directed graph to an undirected graph by:

* Normalizing edge directions so that from < to for all edges

* Collapsing duplicate edges (same from and to nodes)

* For spatial/identifier columns (edge, FX, FY, TX, TY), taking the first value from duplicates

* For aggregation columns, collap() will be applied.

Value

A data frame representing an undirected graph with:

* edge - Edge identifier (first value from duplicates)

* from - Starting node ID (normalized to be < to)

* to - Ending node ID (normalized to be > from)

* FX - Starting node X-coordinate (first value from duplicates)

* FY - Starting node Y-coordinate (first value from duplicates)

* TX - Ending node X-coordinate (first value from duplicates)

* TY - Ending node Y-coordinate (first value from duplicates)

* Aggregated columns

distances_from_graph 15

Examples

library(flownet)

Convert segments to graph and make undirected
graph <- africa_segments |>
linestrings_from_graph() |>
linestrings_to_graph()
graph_undir <- create_undirected_graph(graph, FUN = "fsum")

Fewer edges after removing directional duplicates
c(directed = nrow(graph), undirected = nrow(graph_undir))

distances_from_graph Compute Distance Matrix from Graph

Description

Compute a distance matrix for all node pairs in a graph using cppRouting.

Usage
distances_from_graph(graph_df, directed = FALSE, cost.column = "cost”, ...)
Arguments
graph_df A data frame representing a graph with columns: from, to, and cost.
directed Logical (default: FALSE). If TRUE, treats the graph as directed; if FALSE,
treats it as undirected.
cost.column Character string (optional). Name of the cost column in graph_df. Alterna-
tively, a numeric vector of edge costs with length equal to nrow(graph_df).
Additional arguments passed to distances(), such as v (from) and to to com-
pute paths between specific nodes.
Details

This function:

» Converts the graph data frame to a cppRouting graph object
 Contracts the graph for efficient distance computation

» Computes the distance matrix for all node pairs using the specified algorithm

Value

A matrix of distances between all node pairs, where rows and columns correspond to node IDs. The
matrix contains the shortest path distances (based on the cost column) between all pairs of nodes.

16 linestrings_from_graph

Examples

library(flownet)

Create a simple graph

graph <- data.frame(
from = c(1, 2, 2, 3),
to = c(2, 3, 4, 4),
cost = c(1, 2, 3, 1)

)

Compute distance matrix

dmat <- distances_from_graph(graph, cost.column = "cost")
dmat

linestrings_from_graph
Convert Graph to Linestrings

Description

Convert a graph data frame with node coordinates to an sf object with LINESTRING geometries.

Usage
linestrings_from_graph(graph_df, crs = 4326)

Arguments
graph_df A data frame representing a graph with columns: FX, FY, TX, TY (starting and
ending node coordinates), and optionally other columns to preserve.
crs Numeric or character (default: 4326). Coordinate reference system to assign to
the output sf object.
Details

This function is the inverse operation of linestrings_to_graph. It:

* Creates LINESTRING geometries from node coordinates (FX, FY, TX, TY)
* Removes the coordinate columns from the output
* Preserves all other columns from the input graph data frame

* Returns an sf object suitable for spatial operations and visualization

Value

An sf data frame with LINESTRING geometry, containing all columns from graph_df except FX,
FY, TX, and TY. Each row represents an edge as a LINESTRING connecting the from-node (FX, FY)
to the to-node (TX, TY).

linestrings_to_graph 17

See Also

linestrings_to_graph flownet-package

Examples

library(flownet)
library(sf)

Convert segments data frame to sf LINESTRING object
segments_sf <- linestrings_from_graph(africa_segments)
class(segments_sf)
head(segments_sf)

Plot segments colored by route importance
plot(segments_sf["passes”])

linestrings_to_graph Convert Linestring to Graph

Description

Convert Linestring to Graph

Usage

linestrings_to_graph(
lines,
digits = 6,
keep.cols = is.atomic,
compute.length = TRUE

)
Arguments
lines An sf data frame of LINESTRING geometries.
digits Numeric rounding applied to coordinates (to ensure that matching points across
different linestrings is not impaired by numeric precision issues). Set to NA/Inf/FALSE
to disable.
keep.cols Character vector of column names to keep from the input data frame.

compute.length Appliesst_length() to and saves it as an additional column named " . length”.

18 melt_od_matrix

Value

A data.frame representing the graph with columns:

* edge - Edge identifier

* from - Starting node ID

* FX - Starting node X-coordinate (longitude)
* FY - Starting node Y-coordinate (latitude)

* to - Ending node ID

* TX - Ending node X-coordinate (longitude)
* TY - Ending node Y-coordinate (latitude)

See Also

simplify_network flownet-package

Examples

library(flownet)
library(sf)

Load existing network edges (exclude proposed new links)
africa_net <- africa_network[!africa_network$add,]

Convert network LINESTRING geometries to graph
graph <- linestrings_to_graph(africa_net)
head(graph)

Graph contains edge, from/to nodes, and coordinates
names (graph)

melt_od_matrix Melt Origin-Destination Matrix to Long Format

Description

Convert an origin-destination (OD) matrix to a long-format data frame with columns from, to, and
flow.

Usage

melt_od_matrix(od_matrix, nodes = NULL, sort = TRUE)

melt_od_matrix 19

Arguments

od_matrix A numeric matrix with origin-destination flows. Rows represent origins, columns
represent destinations. The matrix should be square (same number of rows and
columns).

nodes (Optional) Numeric or integer vector of node IDs in the graph matching the
rows and columns of the matrix. If provided, must have length equal to both
nrow(od_matrix) and ncol(od_matrix). When nodes is provided, these IDs
are used directly, ignoring row and column names. This is particularly useful
when mapping zone-based OD matrices to graph node IDs (e.g., using st_nearest_feature
to find nearest graph nodes). If omitted, row and column names (if present) will
be used as node IDs, coerced to integer if possible. If names are not available or
cannot be coerced to integer, sequential integers will be used.

sort Sort long OD-matrix in ascending order of from and to columns. This can have
computational benefits, e.g., when multithreading with method = "AoN".

Details

This function converts a square OD matrix to long format, which is required by run_assignment ().
The behavior depends on whether nodes is provided:

When nodes is provided:

* The nodes vector is used directly as node IDs for both origins and destinations
* Row and column names are ignored (but must match if both are present)

* This is the recommended approach when working with zone-based OD matrices that need to
be mapped to graph nodes, as it ensures the node IDs match those in the graph

When nodes is omitted:

¢ Row and column names are extracted from the matrix (if available)

» Names are coerced to integer if possible; if coercion fails or names are missing, sequential
integers are used

 This approach works well when the matrix row/column names already correspond to graph
node IDs

In both cases, the function:

* Creates a long-format data frame with all origin-destination pairs

« Filters out non-finite and zero flow values

The function is useful for converting OD matrices to the long format required by run_assignment ().

Value
A data frame with columns:

* from - Origin node ID (integer)
* to - Destination node ID (integer)

e flow - Flow value (numeric)

Only rows with finite, positive flow values are included.

20 nodes_from_graph

See Also

africa_cities_ports, africa_network, nodes_from_graph(), run_assignment(), flownet-
package

Examples

library(flownet)
library(sf)

Load existing network and convert to graph
africa_net <- africa_network[!africa_network$add,]
graph <- linestrings_to_graph(africa_net)

nodes <- nodes_from_graph(graph, sf = TRUE)

Map cities/ports to nearest network nodes
nearest_nodes <- nodes$node[st_nearest_feature(africa_cities_ports, nodes)]

Example 1: Simple gravity-based OD matrix

od_mat <- outer(africa_cities_ports$population, africa_cities_ports$population) / 1e12
dimnames(od_mat) <- list(nearest_nodes, nearest_nodes)

od_long <- melt_od_matrix(od_mat)

head(od_long)

Example 2: Using nodes argument (when matrix has zone IDs, not node IDs)
Here zones are 1:n_cities, nodes argument maps them to graph nodes
dimnames(od_mat) <- NULL

od_long2 <- melt_od_matrix(od_mat, nodes = nearest_nodes)

head(od_long2)

nodes_from_graph Extract Nodes from Graph

Description

Extract unique nodes with their coordinates from a graph data frame.

Usage
nodes_from_graph(graph_df, sf = FALSE, crs = 4326)

Arguments
graph_df A data frame representing a graph with columns: from, to, FX, FY, TX, TY.
sf Logical. If TRUE, returns result as an sf POINT object. Default: FALSE.

crs Coordinate reference system for sf output; default is 4326.

normalize_graph 21

Details

This function extracts all unique nodes from both the from and to columns of the graph, along with
their corresponding coordinates. Duplicate nodes are removed, keeping only unique node IDs with
their coordinates.

Value

A data frame (or sf object if sf = TRUE) with unique nodes and coordinates:

* node - Node ID
* X - Node X-coordinate (typically longitude)
* Y - Node Y-coordinate (typically latitude)

Result is sorted by node ID.

Examples

library(flownet)
library(sf)

Load existing network edges and convert to graph
africa_net <- africa_network[!africa_network$add, 1]
graph <- linestrings_to_graph(africa_net)

Extract nodes from graph
nodes <- nodes_from_graph(graph)
head(nodes)

Get nodes as sf POINT object for spatial operations
nodes_sf <- nodes_from_graph(graph, sf = TRUE)
class(nodes_sf)

Find nearest network nodes to cities/ports

nearest_nodes <- nodes_sf$node[st_nearest_feature(africa_cities_ports, nodes_sf)]
head(nearest_nodes)

normalize_graph Normalize Graph Node IDs

Description

Normalize node IDs in a graph to be consecutive integers starting from 1. This is useful for ensuring
compatibility with graph algorithms that require sequential node IDs.

Usage
normalize_graph(graph_df)

22 normalize_graph

Arguments

graph_df A data frame representing a graph with columns: from and to (node IDs).

Details

This function:

* Extracts all unique node IDs from both from and to columns
* Sorts them in ascending order
* Remaps the original node IDs to sequential integers (1, 2, 3, ...)

* Updates both from and to columns with the normalized IDs
Normalization is useful when:

* Node IDs are non-consecutive (e.g., 1, 5, 10, 20)
* Node IDs are non-numeric or contain gaps
* Graph algorithms require sequential integer node IDs starting from 1

Note: This function only normalizes the node IDs; it does not modify the graph structure or any
other attributes. The mapping preserves the relative ordering of nodes.

Value

A data frame with the same structure as graph_df, but with from and to columns remapped to
consecutive integer IDs starting from 1. All other columns are preserved unchanged.

See Also

nodes_from_graph flownet-package

Examples

library(flownet)

Create graph with non-consecutive node IDs
graph <- data.frame(

from = c(10, 20, 20),

to = c(20, 30, 40),

cost = c(1, 2, 3)
)

Normalize to consecutive integers (1, 2, 3, 4)
graph_norm <- normalize_graph(graph)
graph_norm

run_assignment 23

run_assignment Run Traffic Assignment

Description

Assign traffic flows to network edges using either Path-Sized Logit (PSL) or All-or-Nothing (AoN)
assignment methods.

Usage

run_assignment(
graph_df,
od_matrix_long,
directed = FALSE,
cost.column = "cost”,
method = c("PSL", "AoN"),
beta = 1,
detour.max = 1.5,
angle.max = 90,
unique.cost = TRUE,
npaths.max = Inf,
dmat.max.size = 100002,
return.extra = NULL,
verbose = TRUE,
nthreads = 1L

)
S3 method for class 'flownet'
print(x, ...)
Arguments
graph_df A data.frame with columns from, to, and optionally a cost column. Represents

the network graph with edges between nodes.

od_matrix_long A data.frame with columns from, to, and flow. Represents the origin-destination
matrix in long format with flow values.

directed Logical (default: FALSE). Whether the graph is directed.

cost.column Character string (default: "cost") or numeric vector. Name of the cost column in
graph_df, or a numeric vector of edge costs with length equal to nrow(graph_df).
The cost values are used to compute shortest paths and determine route proba-
bilities.

method Character string (default: "PSL"). Assignment method:

e "PSL": Path-Sized Logit model considering multiple routes with overlap
correction

24 run_assignment

* "AoN": All-or-Nothing assignment, assigns all flow to the shortest path
(faster but no route alternatives)

beta Numeric (default: 1). Path-sized logit parameter (beta_PSL). Only used for PSL
method.

Additional arguments (currently ignored).

detour.max Numeric (default: 1.5). Maximum detour factor for alternative routes (applied
to shortest paths cost). Only used for PSL method. This is a key parameter
controlling the execution time of the algorithm: considering more routes (higher
detour.max) substantially increases computation time.

angle.max Numeric (default: 90). Maximum detour angle (in degrees, two sided). Only
used for PSL method. Ie., nodes not within this angle measured against a
straight line from origin to destination node will not be considered for detours.

unique.cost Logical (default: TRUE). Deduplicates paths based on the total cost prior to gen-
erating them. Only used for PSL method. Since multiple ’intermediate nodes’
may be on the same path, there is likely a significant number of duplicate paths
which this option removes.

npaths.max Integer (default: Inf). Maximum number of paths to compute per OD-pair. Only
used for PSL method. If the number of paths exceeds this number, a random
sample will be taken from all but the shortest path.

dmat.max.size Integer (default: 1e4”2). Maximum size of distance matrices (both shortest
paths and geodesic) to precompute. If smaller than n_nodes”2, then the full
matrix is precomputed. Otherwise, it is computed in chunks as needed, where
each chunk has dmat.max. size elements. Only used for PSL method.

return.extra Character vector specifying additional results to return. Use "all” to return all
available extras for the selected method.

Option PSL AoN Description
"graph” Yes Yes The igraph graph object
"paths” Yes Yes PSL:list of lists of edge indices (multiple routes per OD); AoN: list of edge index vectors (one p
"edges” Yes No List of edge indices used for each OD pair
"counts” Yes Yes PSL: list of edge visit counts per OD; AoN: integer vector of global edge traversal counts
"costs” Yes Yes PSL: list of path costs per OD; AoN: numeric vector of shortest path costs

"weights” Yes No List of path weights (probabilities) for each OD pair

verbose Logical (default: TRUE). Show progress bar and intermediate steps completion
status?
nthreads Integer (default: 1L). Number of threads (daemons) to use for parallel process-
ing with mirai. Should not exceed the number of logical processors.
X An object of class flownet, typically returned by run_assignment.
Details

This function performs traffic assignment using one of two methods: All-or-Nothing (AoN) is fast
but assigns all flow to a single shortest path; Path-Sized Logit (PSL) considers multiple routes with
overlap correction for more realistic flow distribution.

run_assignment 25

All-or-Nothing (AoN) Method: A simple assignment method that assigns all flow from each
OD pair to the single shortest path. This is much faster than PSL but does not consider route
alternatives or overlaps. Parameters detour.max, angle.max, unique.cost, npaths.max, beta,
and dmat.max.size are ignored for AoN.

Path-Sized Logit (PSL) Method: A more sophisticated assignment method that considers mul-
tiple alternative routes and accounts for route overlap when assigning flows. The PSL model
adjusts choice probabilities based on how much each route overlaps with other alternatives, pre-
venting overestimation of flow on shared segments. The beta parameter controls the sensitivity
to overlap.

PSL Model Formulation: The probability P, of choosing route k from the set of alternatives K

1S:

eVk

Py = =——~
ZjeK evs

where the utility V}, is defined as:
Vi = —Cy + Bpsr In(PSy)

Here C}, is the generalized cost of route k, Spsy, is the path-size parameter (the beta argument),
and PSS}, is the path-size factor.

The path-size factor quantifies route uniqueness:

1 ¢
PSi=— > =
Ck acl'y 6a

where I' is the set of edges in path k, ¢, is the cost of edge a, and §, is the number of alternative
routes using edge a.

If a path is unique (§, = 1 for all edges), then P.S;, = 1 and the model reduces to standard MNL.
For overlapping routes, PSy < 1 and In(PS)) < 0, so a positive beta penalizes overlap. Higher
beta values strengthen penalization; beta = @ gives standard MNL behavior.

For more information about the PSL model consult some of the references below.

Route Enumeration Algorithm: For each origin-destination pair, the algorithm identifies alter-
native routes as follows:

1. Compute the shortest path cost from origin to destination. If sqrt(dmat.max.size) <N.nodes,
the entire shortest-path-distance matrix is precomputed.

2. For each potential intermediate node, calculate the total cost of going origin -> intermediate
-> destination (also using the distance matrix).

3. Keep only routes where total cost is within detour.max times the shortest path cost.

4. If angle.max is specified, filter to intermediate nodes that lie roughly in the direction of the
destination (within the specified angle - see further details below). If sqrt(dmat.max.size)
< N.nodes a geodesic-distance-matrix is precomputed for speedy calculations using the tri-
angle equation.

5. If unique.cost = TRUE, remove duplicate routes based on total cost - as multiple intermedi-
ate nodes may yield exactly the same route.

6. (Optionally) use npaths.max to sample the remaining routes if still too many.

26 run_assignment

7. Compute the actual paths and filter out those with duplicate edges (where the intermediate
node is approached and departed via the same edge).

This pre-selection using distance matrices speeds up route enumeration considerably by avoiding
the computation of implausible paths.

Coordinate-Based Filtering: When angle.max is specified and graph_df contains coordinate
columns (FX, FY, TX, TY), the function uses geographic distance calculations to restrict detours.
Only intermediate nodes that are (a) closer to the origin than the destination is, and (b) within the
specified angle from the origin-destination line are considered. This improves both computational
efficiency and route realism by excluding geographically implausible detours.

Value
A list of class "flownet" containing:

* call - The function call
* final_flows - Numeric vector of assigned flows for each edge (same length as nrow(graph_df))
* od_pairs_used - Indices of OD pairs with valid flows
* Additional elements as specified in return.extra:
— graph - The igraph graph object

— paths - For PSL: list of lists of edge indices (multiple routes per OD pair); for AoN: list
of edge index vectors (one shortest path per OD pair)

— edges - List of edge indices used for each OD pair (PSL only)

— edge_counts - For PSL: list of edge visit counts per OD pair; for AoN: integer vector of
global edge traversal counts

— path_costs - For PSL: list of path costs per OD pair; for AoN: numeric vector of shortest
path costs
— path_weights - List of path weights (probabilities) for each OD pair (PSL only)

References

Ben-Akiva, M., & Bierlaire, M. (1999). Discrete choice methods and their applications to short term
travel decisions. In R. W. Hall (Ed.), Handbook of Transportation Science (pp. 5-33). Springer US.
doi:10.1007/9781461552031_2

Cascetta, E. (2001). Transportation systems engineering: Theory and methods. Springer.

Ben-Akiva, M., & Lerman, S. R. (1985). Discrete choice analysis: Theory and application to travel
demand. The MIT Press.

Ramming, M. S. (2002). Network knowledge and route choice (Doctoral dissertation). Mas-
sachusetts Institute of Technology.

Prato, C. G. (2009). Route choice modeling: Past, present and future research directions. Journal
of Choice Modelling, 2(1), 65-100. doi:10.1016/S17555345(13)700058

AequilibiaE Python Documentation: https://www.aequilibrae.com/develop/python/route_choice/path_size_logit.html

See Also

flownet-package

https://doi.org/10.1007/978-1-4615-5203-1_2
https://doi.org/10.1016/S1755-5345%2813%2970005-8

run_assignment 27

Examples

library(flownet)
library(collapse)
library(sf)

Load existing network edges (exclude proposed new links)
africa_net <- africa_network[!africa_network$add, 1]

Convert to graph (use atomic_elem to drop sf geometry, qDF for data.frame)
graph <- atomic_elem(africa_net) |> gDF()
nodes <- nodes_from_graph(graph, sf = TRUE)

Map cities/ports to nearest network nodes
nearest_nodes <- nodes$node[st_nearest_feature(africa_cities_ports, nodes)]

Simple gravity-based OD matrix

od_mat <- outer(africa_cities_ports$population, africa_cities_ports$population) / 1e12
dimnames(od_mat) <- list(nearest_nodes, nearest_nodes)

od_matrix_long <- melt_od_matrix(od_mat)

Run Traffic Assignment (All-or-Nothing method)

result_aon <- run_assignment(graph, od_matrix_long, cost.column = "duration”,
method = "AoN", return.extra = "all")

print(result_aon)

Run Traffic Assignment (Path-Sized Logit method)
Note: PSL is slower but produces more realistic flow distribution

result_psl <- run_assignment(graph, od_matrix_long, cost.column = "duration”,
method = "PSL", nthreads = 1L,
return.extra = c("edges”, "counts”, "costs”, "weights"))

print(result_psl)

Visualize AoN Results
africa_net$final_flows_logl@ <- logl@(result_psl$final_flows + 1)
plot(africa_net["final_flows_log10"], main = "PSL Assignment”)

--- Trade Flow Disaggregation Example ---
Disaggregate country-level trade to city-level using population shares

Compute each city's share of its country's population
city_pop <- africa_cities_ports |> atomic_elem() |> gDF() |>
fcompute(node = nearest_nodes,
city = gF(city_country),
pop_share = fsum(population, iso3, TRA = "/"),
keep = "iso03")

Aggregate trade to country-country level and disaggregate to cities
trade_agg <- africa_trade |> collap(quantity ~ iso3_o + iso3_d, fsum)
od_matrix_trade <- trade_agg |>

join(city_pop |> add_stub("”_o", FALSE), multiple = TRUE) |>

28 simplify_network

join(city_pop |> add_stub(”_d"”, FALSE), multiple = TRUE) |>
fmutate(flow = quantity * pop_share_o * pop_share_d) |>
frename(from = node_o, to = node_d) |>

fsubset(flow > @ & from != to)

Run AoN assignment with trade flows

result_trade_aon <- run_assignment(graph, od_matrix_trade, cost.column = "duration”,
method = "AoN", return.extra = "all")

print(result_trade_aon)

Visualize trade flow results
africa_net$trade_flows_logl1@ <- logl@(result_trade_aon$final_flows + 1)

plot(africa_net["trade_flows_log10"], main = "Trade Flow Assignment (AoN)")

Run PSL assignment with trade flows (nthreads can be increased for speed)

result_trade_psl <- run_assignment(graph, od_matrix_trade, cost.column = "duration”,
method = "PSL", nthreads = 1L,
return.extra = c("edges”, "counts"”, "costs"”, "weights"))

print(result_trade_psl)

Compare PSL vs AoN: PSL typically shows more distributed flows
africa_net$trade_flows_psl_logl@ <- logl@(result_trade_psl$final_flows + 1)
plot(africa_net["trade_flows_psl_logl10"], main = "Trade Flow Assignment (PSL)")

simplify_network Simplify Network

Description

Spatially simplify a network graph using shortest paths or node clustering methods. This further
simplifies the network topology but does not preserve full connectivity. It should ideally be called
after consolidate_graph() if the network is still too large/complex.

Usage
simplify_network(
graph_df,
nodes,

method = c("shortest-paths”, "cluster"”),
directed = FALSE,

cost.column = "cost”,

by = NULL,

radius_km = list(nodes = 7, cluster = 20),

simplify_network 29

Arguments

graph_df A data.frame with columns from and to representing the graph edges. For the
cluster method, the graph must also have columns FX, FY, TX, TY representing
node coordinates.

nodes For method = "shortest-paths”: either an atomic vector of node IDs, or a
data.frame with columns from and to specifying origin-destination pairs. For
method = "cluster”: an atomic vector of node IDs to preserve. These nodes
will be kept as cluster centroids, and nearby nodes (within radius_km$nodes)
will be assigned to their clusters. Remaining nodes are clustered using leaderCluster.

method Character string (default: "shortest-paths"). Method to use for simplification:
"shortest-paths” computes shortest paths between nodes and keeps only tra-
versed edges; "cluster” clusters nodes using the leaderCluster algorithm
and contracts the graph.

directed Logical (default: FALSE). Whether the graph is directed. For method = "shortest-paths":
controls path computation direction. For method = "cluster”: if TRUE, A->B
and B->A remain as separate edges after contraction; if FALSE, edges are nor-
malized so that from < to before grouping.

cost.column Character string (default: "cost"). Name of the cost column in graph_df. Alter-
natively, a numeric vector of edge costs with length equal to nrow(graph_df).
With method = "cluster”, a numeric vector of node weights matching nodes_from_graph(graph_df)
can be provided.

by Link characteristics to preserve/not simplify across, passed as a one-sided for-
mula or character vector of column names. Typically includes attributes like
mode, type, or capacity. For method = "shortest-paths”: paths are computed
separately for each group defined by by, with edges not in the current group
penalized (cost multiplied by 100) to compel mode-specific routes. For method
="cluster"”: edges are grouped by from, to, AND by columns, preventing
consolidation across different modes/types.

radius_km Named list with elements nodes (default: 7) and cluster (default: 20). Only
used for method = "cluster”. nodes: radius in kilometers around preserved
nodes. Graph nodes within this radius will be assigned to the nearest preserved
node’s cluster. cluster: radius in kilometers for clustering remaining nodes
using leaderCluster.

For method = "cluster"”: additional arguments passed to collap for edge at-
tribute aggregation.

Details

simplify_network() provides two methods to simplify large transport networks:
Method: '"shortest-paths"

 Validates that all origin and destination nodes exist in the network
» Computes shortest paths from each origin to all destinations using igraph
* Marks all edges that are traversed by at least one shortest path

» Returns only the subset of edges that were traversed

30 simplify_network

* If nodes is a data frame with from and to columns, paths are computed from each unique
origin to its specified destinations

Method: ''cluster"

* Requires the graph to have spatial coordinates (FX, FY, TX, TY)
 If nodes is provided, these nodes are preserved as cluster centroids
* Nearby nodes (within radius_km$nodes km) are assigned to the nearest preserved node

* Remaining nodes are clustered using leaderCluster with radius_km$cluster as the clus-
tering radius

* For each cluster, the node closest to the cluster centroid is selected as representative
* The graph is contracted by mapping all nodes to their cluster representatives
* Self-loops (edges where both endpoints map to the same cluster) are dropped

* For undirected graphs (directed = FALSE), edges are normalized so from < to, merging opposite-
direction edges; for directed graphs, A->B and B->A remain separate

» Edge attributes are aggregated using collap (default: mean for numeric, mode for categori-
cal); customize via . . .

Value
A data.frame containing the simplified graph with:

e For method = "shortest-paths”:
— All columns from the input graph_df (for edges that were kept)
— Attribute "edges”: integer vector of edge indices from the original graph

— Attribute "edge_counts”: integer vector indicating how many times each edge was tra-
versed

e For method = "cluster”:

— edge - New edge identifier
from, to - Cluster centroid node IDs

FX, FY, TX, TY - Coordinates of cluster centroid nodes

Aggregated edge attributes from the original graph

Attribute "group.id": mapping from original edges to simplified edges

Attribute "group.starts”: start indices of each group

Attribute "group.sizes": number of original edges per simplified edge

Examples

library(flownet)
library(sf)

Convert segments to undirected graph

graph <- africa_segments |>
linestrings_from_graph() |>
linestrings_to_graph() |>
create_undirected_graph(FUN = "fsum")

simplify_network

Get city/port nodes to preserve
nodes_df <- nodes_from_graph(graph, sf = TRUE)
nearest_nodes <- nodes_df$node[st_nearest_feature(africa_cities_ports, nodes_df)]

Initial consolidation
graph <- consolidate_graph(graph, keep = nearest_nodes, w = ~ passes)

Method 1: Shortest-paths simplification (keeps only traversed edges)
graph_simple <- simplify_network(graph, nearest_nodes,
method = "shortest-paths”,
cost.column = ".length")
nrow(graph_simple) # Reduced number of edges

Method 2: Cluster-based simplification (contracts graph spatially)
Compute node weights for clustering
node_weights <- collapse::rowbind(

collapse::fselect(graph, node = from, gravity_rd),

collapse: :fselect(graph, to, gravity_rd),

use.names = FALSE) [>

collapse::collap(~ node, "fsum")

graph_cluster <- simplify_network(graph, nearest_nodes,
method = "cluster”,
cost.column = node_weights$gravity_rd,
radius_km = list(nodes = 30, cluster = 27),
W = ~ passes)

nrow(graph_cluster)

31

Index

+ datasets
africa_cities_ports, 4
africa_network, 5
africa_segments, 8
africa_trade, 9

africa_cities_ports, 3,4, 7, 10, 20
africa_network, 3, 5, 5, 810, 20
africa_segments, 3,7, 8
africa_trade, 3,5,7,9

collap, 12, 14, 29, 30
consolidate_graph, 11, 28
consolidate_graph(), 2,8, 9
create_undirected_graph, 13, 13
create_undirected_graph(), 2

distances, 15
distances_from_graph, 15
distances_from_graph(), 3

flownet (flownet-package), 2
flownet-package, 2,5, 7,9, 10, 13, 17, 18,
20, 22, 26

leaderCluster, 29, 30
linestrings_from_graph, 16
linestrings_from_graph(), 3,8, 9
linestrings_to_graph, 16, 17, 17
linestrings_to_graph(), 2

melt_od_matrix, 18
melt_od_matrix(), 3
mirai, 24

nodes_from_graph, 20, 22
nodes_from_graph(), 2, 20

normalize_graph, 21
normalize_graph(), 2

print.flownet (run_assignment), 23

32

run_assignment, 23, 24
run_assignment(), 2, 19, 20

simplify_network, 13, 18, 28
simplify_network(), 2,8, 9
st_nearest_feature, /19

	flownet-package
	africa_cities_ports
	africa_network
	africa_segments
	africa_trade
	consolidate_graph
	create_undirected_graph
	distances_from_graph
	linestrings_from_graph
	linestrings_to_graph
	melt_od_matrix
	nodes_from_graph
	normalize_graph
	run_assignment
	simplify_network
	Index

