Package ‘gek’

January 30, 2026
Title Gradient-Enhanced Kriging
Version 1.2.0
Date 2026-01-10

Description
Gradient-Enhanced Kriging as an emulator for computer experiments based on Maximum-
Likelihood estimation.

Imports stats, graphics, dfoptim
License GPL (>=2)

Depends R (>=3.5.0)
LazyData true
NeedsCompilation yes

Author Carmen van Meegen [aut, cre] (ORCID:
<https://orcid.org/0000-0003-4125-5088>)

Maintainer Carmen van Meegen <vanmeegen@statistik.tu-dortmund.de>
Repository CRAN
Date/Publication 2026-01-3021:12:03 UTC

Contents

banana L e e e
blockChol e
blockCor e
borehole e
branin L e e
cameld e e
camelb e
CIZAT o o e
confint.gekm L e
COMS o v v v e e e e e e e e e e e e e e e e
derivModelMatriX e e e e e e
gekm ..o e
griewank L

https://orcid.org/0000-0003-4125-5088

2 banana
himmelblau e 30
loglik.gekm L 31
loglikFun e 32
logLikGrad e 34
100 . . o e e e 37
plot.gekm e e e 39
predict.gekmo 41
QINZ . o o e e 45
TAStigin L e e e e e e e 47
schwefel L 48
ShOTt . . . o e e e 50
sigma.gekmo L 51
simulate.gekm L L e 53
sphere L e e 56
Steel . . . 58
styblinski Lo 59
sulfur 61
summary.gekm Lo e 62
TANGENLS e e e e e 64
testfunctions e e e e e 65
vectorfield e e 67

Index 69

banana Rosenbrock’s Banana Function

Description

Rosenbrock’s banana function is defined by
d—1
Foanana (1, - wa) = Y _(100(z41 — 27)% + (2 — 1)?)
k=1
with x, € [-5,10] fork =1, ...,dand d > 2.
Usage
banana(x)
bananaGrad(x)
Arguments
X a numeric vector of length d or a numeric matrix with n rows and d columns,

where d must be greater than 1.

banana 3

Details

The gradient of Rosenbrock’s banana function is

—400($2 — £C1)2£L'1 + 2(1’1 —].)
200(xy — x1)% — 400x5 (23 — 23) + 2(29 — 1)
vfbanana(xla"'axd) = :

200(1‘(1,1 — $d72)2 — 400xd,1(gcd — 1’3_1) + 2(1'(1,1 — 1)
200(xq — xﬁ_l)

Rosenbrock’s banana function has one global minimum fpanana(z*) = 0atz* = (1,...,1).

Value

banana returns the function value of Rosenbrock’s banana function at x.

bananaGrad returns the gradient of Rosenbrock’s banana function at x.

Author(s)

Carmen van Meegen

References

Jamil, M. and Yang, X.-S. (2013). A Literature Survey of Benchmark Functions for Global Opti-
mization Problems. International Journal of Mathematical Modelling and Numerical Optimisation,
4(2):150--194. doi:10.1504/IJMMNO.2013.055204.

Rosenbrock, H. H. (1960). An Automatic Method for Finding the Greatest or least Value of a
Function. The Computer Journal, 3(3):175-184. doi:10.1093/comjnl/3.3.175.

Surjanovic, S. and Bingham, D. (2013). Virtual Library of Simulation Experiments: Test Functions
and Datasets. https://www.sfu.ca/~ssurjano/ (retrieved January 19, 2024).

See Also

testfunctions for further test functions.

Examples

Contour plot of Rosenbrock's banana function with gradient field

n.grid <- 50

x1 <- seq(-2, 2, length = n.grid)

x2 <- seq(-1, 3, length = n.grid)

y <- outer(x1, x2, function(x1, x2) banana(cbind(x1, x2)))

contour(x1, x2, y, xaxs = "i", yaxs = "i", nlevels = 25, xlab = "x1", ylab = "x2")

X <- expand.grid(seq(-2, 2, length = 25), seq(-1, 3, length = 25))
gradient <- bananaGrad(x)

vectorfield(x, gradient, col = 4, scale = 1)

vectorfield(x, gradient, col = 4, scale = 1, max.len = 0.2)

Perspective plot of Rosenbrock's banana function

https://doi.org/10.1504/IJMMNO.2013.055204
https://doi.org/10.1093/comjnl/3.3.175
https://www.sfu.ca/~ssurjano/

4 blockChol

col.pal <- colorRampPalette(c("#000QQ7F", "blue", "#@QQ7FFF", "cyan", "#7FFF7F", "yellow”,
"#FF7F0Q", "red”, "#7F0000"))

colors <- col.pal(100)

y.facet.center <- (y[-1, -1]1 + y[-1, -n.grid] + y[-n.grid, -1] + y[-n.grid, -n.grid])/4
y.facet.range <- cut(y.facet.center, 100)

persp(x1, x2, y, phi = 30, theta = -315, expand = 0.75, ticktype = "detailed”,

col = colors[y.facet.rangel)

blockChol Block Cholesky Decomposition

Description

blockChol calculates the block Cholesky decomposition of a partitioned matrix of the form
K RT
a5 .
Usage
blockChol(K, R = NULL, S = NULL, tol = NULL)

Arguments
K a real symmetric positive-definite square submatrix.
R an (optional) rectangular submatrix.
S an (optional) real symmetric positive-definite square submatrix.
tol an (optional) numeric tolerance, see ‘Details’.
Details

To obtain the block Cholesky decomposition

K RYN (LT 0 L Q
R S) \Q" M")\o M
the following steps are performed:

1. Calculate K = LT L with upper triangular matrix L.

2. Solve LTQ = R™ via forward substitution.

3. Compute N = S — QTQ the Schur complement of the block K of the matrix A.
4. Determine N = M ™M with upper triangular matrix M.

The upper triangular matrices L and M in step 1 and 4 are obtained by chol. Forward substitution
in step 2 is carried out with backsolve and the option transpose = TRUE.

blockChol 5

If tol is specified a regularization of the form A. = A + €[is conducted. Here, tol is the upper
bound for the logarithmic condition number of A.. Then

e e

is chosen as the minimal "nugget" that is added to the diagonal of A to ensure log(x(A.)) < tol.

Within gek this function is used to calculate the block Cholesky decomposition of the correlation
matrix with derivatives. Here K is the Kriging correlation matrix. R is the matrix containing the first
partial derivatives and S consists of the second partial derivatives of the correlation matrix K.

Value

blockChol returns a list with the following components:

the upper triangular factor of the Cholesky decomposition of K.
the solution of the triangular system t (L) %*% Q == t(R).
M the upper triangular factor of the Cholesky decomposition of the Schur comple-
ment N.
If R or S are not specified, Q and M are set to NULL, i.e. only the Cholesky decomposition of K is
calculated.

The attribute "eps” gives the minimum “nugget” that is added to the diagonal.

Warning

As in chol there is no check for symmetry.

Author(s)

Carmen van Meegen

References

Chen, J., Jin, Z., Shi, Q., Qiu, J., and Liu, W. (2013). Block Algorithm and Its Implementation for
Cholesky Factorization.

Gustavson, F. G. and Jonsson, I. (2000). Minimal-storage high-performance Cholesky factor-
ization via blocking and recursion. IBM Journal of Research and Development, 44(6):823-850.
doi:10.1147/rd.446.0823.

Ranjan, P, Haynes, R. and Karsten, R. (2011). A Computationally Stable Approach to Gaussian
Process Interpolation of Deterministic Computer Simulation Data. Technometrics, 53:366-378.
doi:10.1198/TECH.2011.09141.

See Also
chol for the Cholesky decomposition.
backsolve for backward substitution.

blockCor for computing a correlation matrix with derivatives.

https://doi.org/10.1147/rd.446.0823
https://doi.org/10.1198/TECH.2011.09141

6 blockCor

Examples

Construct correlation matrix

x <- matrix(seq(@, 1, length = 5), ncol = 1)

res <- blockCor(x, theta = 1, covtype = "gaussian”, derivatives = TRUE)
A <- cbind(rbind(resK, resR), rbind(t(res$R), ress$S))

Cholesky decomposition of correlation matix without derivatives
cholK <- blockChol(res$K)

cholK

cholK$L == chol(res$K)

Cholesky decomposition of correlation matix with derivatives

cholA <- blockChol(resK, resR, ress$S)

cholA <- cbind(rbind(cholA$L, matrix(@, ncol(cholA$Q), nrow(cholA$Q))),
rbind(cholA$Q, cholA$M))

cholA

cholA == chol(A)

Cholesky decomposition of correlation matix with derivatives with regularization
res <- blockCor(x, theta = 2, covtype = "gaussian”, derivatives = TRUE)

A <- cbind(rbind(resK, resR), rbind(t(res$R), ress$S))

try(blockChol(resK, resR, res$S))

blockChol(resK, resR, res$S, tol = 35)

blockCor Correlation Matrix without or with Derivatives

Description

Calculation of a correlation matrix with or without derivatives according to the specification of a
correlation structure.

Usage
blockCor(x, ...)

Default S3 method:

blockCor(x, theta, covtype = c("matern5_2", "matern3_2", "gaussian"),
derivatives = FALSE, ...)

S3 method for class 'gekm'

blockCor(x, ...)

Arguments
X a numeric matrix or an object of class gekm.
theta numeric vector of length d for the hyperparameters.
covtype character specifying the correlation function to be used. Must be one of

"matern5_2", "matern3_2" or "gaussian". See ‘Details’.

blockCor 7

derivatives logical, if TRUE the first and second partial derivatives of the correlation matrix
are calculated, otherwise not.

further arguments passed to or from other methods.

Details

The correlation matrix with derivatives is defined as a block matrix of the form
K RT
R S/

Three correlation functions are currently implemented in blockCor:

¢ Matérn 5/2 kernel with covtype = "matern5_2":

d
V5| — 2| Blag —) |? V5|2 — 2|
/. o | I k k _ k
qS(x,x 70) - <]— + 619 + 39}3 €xXp Hk

e Matérn 3/2 kernel with covtype = "matern3_2":

d .
o(z, x'; ;0) H (1 + |x;€ > exp <—\/§|x2 Lk)
= k

¢ Gaussian kernel with covtype = "gaussian”:
2
Tk — xk)
o(xz,2';0) H exp (292)

Value
blockCor returns a list with the following components:

K The correlation matrix without derivatives.

R If derivatives = TRUE, the correlation matrix with first partial derivatives, oth-
erwise NULL.

S If derivatives = TRUE, the correlation matrix with second partial derivatives,
otherwise NULL.

The components of the list can be combined in the following form to constructed the complete
correlation matrix with derivatives: cbind(rbind(K, R), rbind(t(R), S)).

Author(s)

Carmen van Meegen

8 blockCor

References

Koehler, J. and Owen, A. (1996). Computer Experiments. In Ghosh, S. and Rao, C. (eds.), Design
and Analysis of Experiments, volume 13 of Handbook of Statistics, pp. 261-308. Elsevier Science.
doi:10.1016/S01697161(96)13011X.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. The
MIT Press. https://gaussianprocess.org/gpml/.

Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer Series in
Statistics. Springer-Verlag. doi:10.1007/9781461214946.

See Also

blockChol for block Cholesky decomposition.

tangents for drawing tangent lines.

Examples

Some examples of correlation matrices:

x <- matrix(1:4, ncol = 1)

blockCor(x, theta = 1)

blockCor(x, theta = 1, covtype = "gaussian”)

blockCor(x, theta = 1, covtype = "gaussian”, derivatives = TRUE)
blockCor(x, theta = 1, covtype = "matern3_2", derivatives = TRUE)

res <- blockCor(x, theta = 2, covtype = "gaussian”, derivatives = TRUE)
cbind(rbind(resK, resR), rbind(t(res$R), ress$S))

Illustration of correlation functions and their derivatives:

x <- seq(@, 1, length = 100)

X <- matrix(x, ncol = 1)

gaussian <- blockCor(X, theta = 0.25, covtype = "gaussian”, derivatives = TRUE)
matern5_2 <- blockCor(X, theta = .25, covtype = "matern5_2", derivatives = TRUE)
matern3_2 <- blockCor(X, theta = 0.25, covtype = "matern3_2", derivatives = TRUE)

Correlation functions and first partial derivatives:
index <- c(10, 20, 40, 80)
par(mar = c(5.1, 5.1, 4.1, 2.1))

Matern 3/2

plot(x, matern3_2$K[1, 1, type = "1", xlab = expression(group(
ylab = expression(phi(x, x*minute, theta == 0.25)), lwd = 2)
tangents(x[index], matern3_2$K[index, 11, matern3_2%$R[index, 1],
length = 0.15, lwd = 2, col = 2)

points(x[index], matern3_2$K[index, 1], pch = 16)

nln
’

X = x*minute, "[")),

Matern 5/2
lines(x, matern5_2$K[1,], 1wd = 2, col = 3)
tangents(x[index], matern5_2$K[index, 1], matern5_2$R[index, 1],

https://doi.org/10.1016/S0169-7161%2896%2913011-X
https://gaussianprocess.org/gpml/
https://doi.org/10.1007/978-1-4612-1494-6

borehole

length = 0.15, lwd = 2, col = 2)
points(x[index], matern5_2$K[index, 11, pch = 16)

Gaussian

lines(x, gaussian$K[1, 1, lwd = 2, col = 4)

tangents(x[index], gaussian$K[index, 1], gaussian$R[index, 11,
length = 0.15, lwd = 2, col = 2)

points(x[index], gaussian$K[index, 1], pch = 16)

legend("topright”, 1ty = 1, lwd = 2, col = c(1, 3, 4), bty = "n",
legend = c("Matern 3/2", "Matern 5/2", "Gaussian"))

First and second partial derivatives of correlation functions:
index <- c(5, 10, 20, 40, 80)
par(mar = c(5.1, 6.1, 4.1, 2.1))

Gaussian

plot(x, matern3_2$R[1, 1, type = "1", xlab = expression(group(X = x*minute, "[")),
ylab = expression(frac(partialdiff * phi(x, x*minute, theta == 0.25),

partialdiff * x x minute)), lwd = 2)

tangents(x[index], matern3_2$R[1, index], matern3_2$S[index, 1],

length = 0.15, 1wd = 2, col = 2)

points(x[index], matern3_2$R[1, index], pch = 16)

nlu
’

Matern 5/2

lines(x, matern5_2$R[1, 1, 1lwd = 2, col = 3)

tangents(x[index], matern5_2$R[1, index], matern5_2$S[index, 1],
length = 0.15, 1wd = 2, col = 2)

points(x[index], matern5_2$R[1, index], pch = 16)

Matern 3/2

lines(x, gaussian$R[1, 1, lwd = 2, col = 4)

tangents(x[index], gaussian$R[1, index], gaussian$S[index, 117,
length = 0.15, 1wd = 2, col = 2)

points(x[index], gaussian$R[1, index], pch = 16)

legend("topright”, 1ty = 1, lwd = 2, col = c(1, 3, 4), bty = "n",
legend = c("Matern 3/2", "Matern 5/2", "Gaussian"))

borehole Borehole Function

Description
The borehole function is defined by
27T, (H, — Hy)
tos(r/ru) (14 gtz + 5

with x = (ry, 7, Ty, Hy, 11, H, L, K,).

frorehole (I) =

10 borehole

Usage
borehole(x)
boreholeGrad(x)
Arguments

X a numeric vector of length 8 or a numeric matrix with n rows and 8 columns.

Details

The borehole function calculates the water flow rate [m?3 /yr] through a borehole.

Input Domain Distribution Description

T [0.05,0.15] A(0.1,0.0161812) radius of borehole in m

T [100,50000] LAN(7.71,1.0056) radius of influence in m

T, [63070,115600] 2(63070,115600) transmissivity of upper aquifer in m? /yr
H, [990, 1100] U4(990,1110) potentiometric head of upper aquifer in m
T [63.1,116] U(63.1,116) transmissivity of lower aquifer in m? /yr
H, [700, 820] U(700,820) potentiometric head of lower aquifer in m
L [1120, 1680] 14(1120,1680) length of borehole in m

K, [9855, 12045) U(9855,12045) hydraulic conductivity of borehole in m/yr

Note, N (u, o) represents the normal distribution with expected value p and standard deviation o
and LN (u, o) is the log-normal distribution with mean 1 and standard deviation o of the logarithm.
Further, U (a, b) denotes the continuous uniform distribution over the interval [a, b].

Value

borehole returns the function value of borehole function at x.

boreholeGrad returns the gradient of borehole function at x.

Author(s)

Carmen van Meegen

References

Harper, W. V. and Gupta, S. K. (1983). Sensitivity/Uncertainty Analysis of a Borehole Scenario
Comparing Latin Hypercube Sampling and Deterministic Sensitivity Approaches. BMI/ONWI-
516, Office of Nuclear Waste Isolation, Battelle Memorial Institute, Columbus, OH.

Morris, M., Mitchell, T., and Ylvisaker, D. (1993). Bayesian Design and Analysis of Computer Ex-
periments: Use of Derivatives in Surface Prediction. Technometrics, 35(3):243-255. doi:10.1080/
00401706.1993.10485320.

See Also

gekm for another example.

testfunctions for further test functions.

https://doi.org/10.1080/00401706.1993.10485320
https://doi.org/10.1080/00401706.1993.10485320

branin 11

Examples

List of inputs with their distributions and their respective ranges

inputs <- list("r_w" = list(dist = "norm”, mean= 0.1, sd =0.0161812, min = 0.05, max = 0.15),
"r" = list(dist = "lnorm”, meanlog = 7.71, sdlog = 1.0056, min = 100, max = 50000),

"T_u" = list(dist = "unif”, min = 63070, max = 115600),

"H_u" = list(dist = "unif”, min = 990, max = 1110),

"T_1" = list(dist = "unif”, min = 63.1, max = 116),

"H_1" = list(dist = "unif”, min = 700, max = 820),

"L" = list(dist = "unif”, min = 1120, max = 1680),

for a more nonlinear, nonadditive function, see Morris et al. (1993)

"K_w" = list(dist = "unif”, min = 1500, max = 15000))

Function for Monte Carlo simulation
samples <- function(x, N = 10*5){

switch(x$dist,

"norm” = rnorm(N, x$mean, x$sd),
"Inorm” = rlnorm(N, x$meanlog, x$sdlog),
"unif” = runif(N, xmin, xmax))

3

Uncertainty distribution of the water flow rate

set.seed(1)

X <- sapply(inputs, samples)

y <- borehole(X)

hist(y, breaks = 50, xlab = expression(paste("Water flow rate ", group("[", m*3/yr, "1"))),

main = "", freq = FALSE)
branin Branin-Hoo Function
Description

The Branin-Hoo function is defined by

51 , 5 2 1
fbmnin(xl,:cQ) = | T2 — 477(_2$1 + ;Il — 6 + 10 1-— g COS(Z‘l) =+ 10

with z; € [-5,10] and z2 € [0, 15].

Usage

branin(x)
braninGrad(x)

Arguments

X a numeric vector of length 2 or a numeric matrix with n rows and 2 columns.

12 branin

Details

The gradient of the Branin-Hoo function is

2 (= Bt + 32) (10285 +)~ 10 (1 &) st
vfbranin(xlax2) = 5.1z 52
2(1‘2— 4:7r21 +Tl_6)

The Branin-Hoo function has three global minima fi,,anin(z*) = 0.397887 at 2* = (—m, 12.275),
a* = (m,2.275) and * = (9.42478,2.475).

Value

branin returns the function value of the Branin-Hoo function at x.

braninGrad returns the gradient of the Branin-Hoo function at x.

Author(s)

Carmen van Meegen

References

Branin, Jr., F. H. (1972). Widely Convergent Method of Finding Multiple Solutions of Simultaneous
Nonlinear Equations. IBM Journal of Research and Development, 16(5):504-522.

Surjanovic, S. and Bingham, D. (2013). Virtual Library of Simulation Experiments: Test Functions
and Datasets. https://www.sfu.ca/~ssurjano/ (retrieved January 19, 2024).

See Also

testfunctions for further test functions.

Examples

Contour plot of Branin-Hoo function
n.grid <- 21
x1 <- seq(-5, 10, length.out = n.grid)
x2 <- seq(@, 15, length.out = n.grid)
y <- outer(x1, x2, function(x1, x2) branin(cbind(x1, x2)))
contour(x1, x2, y, #asp = 1, #xaxs = "i", yaxs = "i",
nlevels = 25, xlab = "x1", ylab = "x2")#, xlim = c¢(-5.5, 10), ylim = c(-0.1, 15))

x <- expand.grid(seq(-5, 10, length = n.grid), seq(@, 15, length = n.grid))
gradients <- braninGrad(x)
vectorfield(x, gradients, col = 4)

Perspective plot of Branin-Hoo function

col.pal <- colorRampPalette(c("#000QQ7F", "blue", "#@QQ7FFF", "cyan", "#7FFF7F", "yellow”,
"#FF7F0Q", "red", "#7F0000"))

colors <- col.pal(100)

y.facet.center <- (y[-1, -1] + y[-1, -n.grid] + y[-n.grid, -1] + y[-n.grid, -n.grid])/4
y.facet.range <- cut(y.facet.center, 100)

https://www.sfu.ca/~ssurjano/

camel3 13

persp(x1, x2, y, phi = 30, theta = -315, expand = 0.75, ticktype = "detailed”,
col = colors[y.facet.rangel)

camel3 Three-Hump Camel Function

Description

The three-hump camel function is defined by

6
x
feamets(z1, 22) = 2:10% — 1.05:1:‘11 + El + 2129 + w%

with x1, 25 € [—5, 5]

Usage
camel3(x)
camel3Grad(x)
Arguments

X a numeric vector of length 2 or a numeric matrix with n rows and 2 columns.

Details

The gradient of the three-hump camel function is

1 + 229

4y — 4203 + 28 + o
vfcamelg(JChl‘g) = (1 1 1 2)

The three-hump camel function has one global minimum feame3(2z*) = 0 at 2* = (0, 0).

Value

camel3 returns the function value of the three-hump camel function at x.

camel3Grad returns the gradient of the three-hump camel function at x.

Author(s)

Carmen van Meegen

References

Jamil, M. and Yang, X.-S. (2013). A Literature Survey of Benchmark Functions for Global Opti-
mization Problems. International Journal of Mathematical Modelling and Numerical Optimisation,
4(2):150--194. doi:10.1504/IJMMNO.2013.055204.

Surjanovic, S. and Bingham, D. (2013). Virtual Library of Simulation Experiments: Test Functions
and Datasets. https://www.sfu.ca/~ssurjano/ (retrieved January 19, 2024).

https://doi.org/10.1504/IJMMNO.2013.055204
https://www.sfu.ca/~ssurjano/

14 camel6

See Also

testfunctions for further test functions.

Examples

Contour plot of three-hump camel function

n.grid <- 50

x1 <- x2 <- seq(-2, 2, length.out = n.grid)

y <- outer(x1, x2, function(x1, x2) camel3(cbind(x1, x2)))

nin nin

contour(x1, x2, y, xaxs = "i", yaxs = "i", nlevels = 25, xlab = "x1", ylab = "x2")

Perspective plot of three-hump camel function

col.pal <- colorRampPalette(c("#00QQQ7F", "blue", "#QQ7FFF", "cyan", "#7FFF7F", "yellow",
"#FF7F0Q", "red", "#7F0000"))

colors <- col.pal(100)

y.facet.center <- (y[-1, -1]1 + y[-1, -n.grid] + y[-n.grid, -1] + y[-n.grid, -n.grid]l)/4
y.facet.range <- cut(y.facet.center, 100)

persp(x1, x2, y, phi = 30, theta = -315, expand = 0.75, ticktype = "detailed”,

col = colors[y.facet.rangel)

camel6 Six-Hump Camel Function

Description

The six-hump camel function is defined by

) 22+ 2o + (—4 + dad)ad

4
fcamelﬁ(xlwrQ) = (4 - 2137% + %

with 21 € [-3,3] and 25 € [-2,2].

Usage
camel6(x)
camel6Grad(x)
Arguments

X a numeric vector of length 2 or a numeric matrix with n rows and 2 columns.

Details
The gradient of the six-hump camel function is

Vfcamel6(x1,ﬂf2) = (1 1 1 2

T, — 8xg + 16x§

The six-hump camel function has two global minima feamels(z*) = —1.031628 at 2* = (0.0898, —0.7126)
and z* = (—0.0898,0.7126).

cigar 15

Value

camel6 returns the function value of the six-hump camel function function at x.

camel6Grad returns the gradient of the six-hump camel function function at x.

Author(s)

Carmen van Meegen

References

Jamil, M. and Yang, X.-S. (2013). A Literature Survey of Benchmark Functions for Global Opti-
mization Problems. International Journal of Mathematical Modelling and Numerical Optimisation,

4(2):150--194. doi:10.1504/IJMMNO.2013.055204.

Surjanovic, S. and Bingham, D. (2013). Virtual Library of Simulation Experiments: Test Functions
and Datasets. https://www.sfu.ca/~ssurjano/ (retrieved January 19, 2024).

See Also

testfunctions for further test functions.

Examples

Contour plot of six-hump camel function

n.grid <- 50

x1 <- seq(-2, 2, length.out = n.grid)

x2 <- seq(-1, 1, length.out = n.grid)

y <- outer(x1, x2, function(x1, x2) camel6(cbind(x1, x2)))

nin nin

contour(x1, x2, y, xaxs = "i", yaxs = "i", nlevels = 25, xlab = "x1", ylab = "x2")

Perspective plot of six-hump camel function

col.pal <- colorRampPalette(c("#00QQQ7F", "blue", "#QQ7FFF", "cyan", "#7FFF7F", "yellow",
"#FF7F0Q", "red", "#7F0000"))

colors <- col.pal(100)

y.facet.center <- (y[-1, -1]1 + y[-1, -n.grid] + y[-n.grid, -1] + y[-n.grid, -n.grid]l)/4
y.facet.range <- cut(y.facet.center, 100)

persp(x1, x2, y, phi = 30, theta = -315, expand = 0.75, ticktype = "detailed”,

col = colors[y.facet.rangel)

cigar Bent Cigar Function

Description

The Bent cigar function is defined by

d
fcigar(ifl, ...,QL'd) = x% + 106 in
k=2

with zj, € [—100,100] for k = 1, ..., d.

https://doi.org/10.1504/IJMMNO.2013.055204
https://www.sfu.ca/~ssurjano/

16 cigar

Usage
cigar(x)
cigarGrad(x)
Arguments

X a numeric vector of length 2 or a numeric matrix with n rows and 2 columns.

Details

The gradient of the bent cigar function is

2.’E1
2061'2
Vfcigar(xlw'wxd) = :
206{1,‘d
The bent cigar function has one global minimum feigar (z*) = 0at z* = (1,...,1).

Value

cigar returns the function value of the bent cigar function at x.

cigarGrad returns the gradient of the bent cigar function at x.

Author(s)

Carmen van Meegen

References

Plevris, V. and Solorzano, G. (2022). A Collection of 30 Multidimensional Functions for Global
Optimization Benchmarking. Data, 7(4):46. doi:10.3390/data7040046.

See Also

testfunctions for further test functions.

tangents for drawing tangent lines.

Examples

1-dimensional Cigar function with tangents
curve(cigar(x), from = -5, to = 5, n = 200)

x <- seq(-4.5, 4.5, length = 5)

y <- cigar(x)

dy <- cigarGrad(x)

tangents(x, y, dy, length = 2, 1wd = 2, col = "red")
points(x, y, pch = 16)

Contour plot of Cigar function

https://doi.org/10.3390/data7040046

confint.gekm 17

n.grid <- 50
x1 <- x2 <- seq(-100, 100, length.out = n.grid)
y <- outer(x1, x2, function(x1, x2) cigar(cbind(x1, x2)))

nin nin

contour(x1, x2, y, xaxs = "i", yaxs = "i", nlevels = 25, xlab = "x1", ylab = "x2")

Perspective plot of Cigar function

col.pal <- colorRampPalette(c("#000QQ7F", "blue", "#@QQ7FFF", "cyan", "#7FFF7F", "yellow”,
"#FF7F00", "red”, "#7F0000"))

colors <- col.pal(100)

y.facet.center <- (y[-1, -1]1 + y[-1, -n.grid] + y[-n.grid, -1] + y[-n.grid, -n.grid])/4
y.facet.range <- cut(y.facet.center, 100)

persp(x1, x2, y, phi = 30, theta = -315, expand = 0.75, ticktype = "detailed”,

col = colors[y.facet.rangel)

confint.gekm Confint Method for a gekm Object

Description

Determines confidence intervals for the estimated regression coefficients.

Usage
S3 method for class 'gekm'
confint(object, parm, level = 0.95, scale = FALSE, ...)
Arguments
object an object of class "gekm".
parm a vector of numbers or names specifying the parameters for which the confi-

dence intervals are to be calculated. By default, all parameters are considered.
level confidence level for calculating confidence intervals. Default is 0. 95.

scale logical. Should the estimated process variance be scaled? Default is FALSE,
see sigma.gekm for details.

further arguments, currently not used.

Value

A matrix with the lower and upper bounds of the confidence intervals for each parameter.

Author(s)

Carmen van Meegen

18 cons

References

Koehler, J. and Owen, A. (1996). Computer Experiments. In Ghosh, S. and Rao, C. (eds.), Design
and Analysis of Experiments, volume 13 of Handbook of Statistics, pp. 261-308. Elsevier Science.
doi:10.1016/S01697161(96)13011X.

Santner, T. J., Williams, B. J., and Notz, W. 1. (2018). The Design and Analysis of Computer
Experiments. 2nd edition. Springer-Verlag.

See Also

gekm for fitting a (gradient-enhanced) Kriging model.
coef for extracting the (matrix of) coefficients.

vcov for calculating the covaraince matrix of the regression coefficients.

Examples

1-dimensional example: Oakley and O’Hagan (2002)

Define test function and its gradient
f <- function(x) 5 + x + cos(x)
fGrad <- function(x) 1 - sin(x)

Generate coordinates and calculate slopes
x <- seq(-5, 5, length = 5)

y <= £

dy <- fGrad(x)

dat <- data.frame(x, y)

deri <- data.frame(x = dy)

Fit gradient-enhanced Kriging model
gekm.1d <- gekm(y ~ ., data = dat, deriv = deri, covtype = "gaussian"”, theta = 1)

Determine confidence intervals
confint(gekm.1d)
confint(gekm.1d, scale = TRUE)

confint(gekm.1d, parm = "x", scale = TRUE)
confint(gekm.1d, parm = 1, scale = TRUE)

cons Consolidation Process in a Homogeneous Cohesive Soil Layer

Description
Computer experiments and variational sensitivities of a consolidation process in a homogeneous
cohesive soil layer with an inhomogeneous permeability distribution.

Usage

consTPM
consVSA

https://doi.org/10.1016/S0169-7161%2896%2913011-X

cons 19

Format

The data.frame consTPM contains 50 observations of 5 variables:

[,1] disp solid vertical displacement ugs in m
[,2] stiff oedometric stiffness Eyeq in MPa
[,3] poisson Poisson’s ratio v

[, 4] mass reference mass density p§§ in kg/m3
[,5] volume reference solid volume fraction ngs

The data.frame consVSA contains 50 observations of 4 variables:

[, 1T stiff sensitivity for oedometric stiffness Eqeq

[,2] poisson sensitivity for Poisson’s ratio v

[,3] mass sensitivity for reference mass density p(s)‘g

[,4] volume sensitivity for reference solid volume fraction ngs

Details

The data sets provided here contain computer experiments and variational sensitivities for a specific
example of a settlement calculation.

The data.frame consTMP consists of computer experiments obtained by a deterministic simulator
that models a consolidation process in a homogeneous cohesive soil layer as a result of the filling of
arailroad dam. Calculations are preformed using the finite element method, whereby the underlying
partial differential equations used to describe the soil characteristics are based on the theory of
porous media. The response analyzed here is the solid vertical displacement disp after 20 days in
the middle node at the top of the soil layer, which depends on four uncertain material parameters,
namely the oedometer stiffness stiff, Poisson’s ratio poisson, reference mass density mass, and
reference solid volume fraction volume. The inputs are based on a Latin hypercube sample that
has been transformed componentwise to the domains below. For uncertainty quantification, the
following distributions of the inputs can be assumed.

Input Domain Distribution
Eoed [20,30] LN(3.198,0.05211)
v [0.250.30] U(0.250.30)
P [2000,2500] LN(7.712,0.02868)
ngq [0.50,0.65] u(o 50,0.65)

Note, LA (p, o) is the log-normal distribution with mean 1 and standard deviation o of the loga-
rithm and U (a, b) denotes the continuous uniform distribution over the interval [a, b].

The data.frame consVSA contains the variational sensitivities, i.e. the partial derivatives of the
solid vertical displacement at the inputs in consTPM. These were determined using the variational
sensitivity analysis.

20 derivModelMatrix

Source

Both data sets were generated by Carla Henning as part of her dissertation. She has granted permis-
sion to publish the data.

References

Henning, C. (2025). Analytical Development of the Variational Sensitivity Analysis for the Theory
of Porous Media as Extension for a Gradient-Enhanced Gaussian Process Regression. Ph.D. thesis,
Institute of Structural Mechanics and Dynamics in Aerospace Engineering, University of Stuttgart.
doi:10.18419/0pus16260.

See Also

gekm for fitting (gradient-enhanced) Kriging models.

plot.gekm for plotting the results of a leave-one-out cross-validation.

Examples

Structure of the data frames
str(consTPM)
str(consVSA)

Summary of the data frames
summary (consTPM)
summary (consVSA)

Fit a gradient-enhanced Kriging model for the solid vertical displacement

with Matérn 3/2 correlation function and first-order polynomial trend.

Note that 'ncalls = 3' is set for illustrative purposes only.

In practice, it is advisable to choose a higher value for 'ncalls' or

to retain the default value.

mod <- gekm(disp ~ ., data = consTPM, deriv = consVSA, covtype = "matern3_2", ncalls = 3)

Model summary
summary (mod)

Plot leave-one-out cross-validation results
plot(mod, add.interval = TRUE, col = 4, pch = 16, panel.first = {grid(); abline(@, 1)})

derivModelMatrix Derivatives of Model Matrix

Description

Determine the derivatives of a model matrix.

https://doi.org/10.18419/opus-16260

derivModelMatrix 21

Usage

derivModelMatrix(object, ...)

Default S3 method:

derivModelMatrix(object, data, ...)
S3 method for class 'gekm'
derivModelMatrix(object, ...)
S3 method for class 'gekm'
model .matrix(object, ...)
Arguments
object an object of an appropriate class. For the default method, a formula defining

the regression functions.
data a data.frame with named columns.

further arguments, yet not used.

Details

derivModelMatrix makes use of the function deriv. Accordingly, the calculation of derivatives is
only possible for functions that are contained in the derivatives table of deriv.

Note, in contrast to model.matrix, factors are not supported.

Value

The derivatives of the model (or design) matrix.

As in model.matrix there is an attribute "assign".

Author(s)

Carmen van Meegen

See Also

deriv for more details on supported arithmetic operators and functions.

model.matrix for construction of a design (or model) matrix.

Examples

Several examples for the derivatives of a model matrix
dat <- data.frame(x1 = seq(-2, 2, length.out = 5))

model.matrix(~ 1, dat)
derivModelMatrix(~ 1, dat)

model.matrix(~ ., dat)
derivModelMatrix(~ ., dat)

22 gekm

model.matrix(~ . - 1, dat)
derivModelMatrix(~ . - 1, dat)

model.matrix(~ sin(x1) + I(x1*2), dat)
derivModelMatrix(~ sin(x1) + I(x1*2), dat)

dat <- cbind(dat, x2 = seq(1, 5, length.out = 5))

model.matrix(~ 1, dat)
derivModelMatrix(~ 1, dat)

model .matrix(~ .*2, dat)
derivModelMatrix(~ .*2, dat)

model .matrix(~ log(x2), dat)
derivModelMatrix(~ log(x2), dat)

model .matrix(~ x1:x2, dat)
derivModelMatrix(~ x1:x2, dat)

model .matrix(~ I(x1%2) * I(x2"3), dat)
derivModelMatrix(~ I(x1%2) * I(x2*3), dat)

model.matrix(~ sin(x1) + cos(x2) + atan(x1 * x2), dat)
derivModelMatrix(~ sin(x1) + cos(x2) + atan(x1 * x2), dat)

gekm Fitting (Gradient-Enhanced) Kriging Models

Description

Estimation of a Kriging model with or without derivatives.

Usage

gekm(formula, data, deriv, covtype = c("matern5_2", "matern3_2", "gaussian"),
theta = NULL, tol = NULL, optimizer = c("NMKB", "L-BFGS-B"),

lower = NULL, upper = NULL, start = NULL, ncalls = 20, control = NULL,

model = TRUE, x = FALSE, y = FALSE, dx = FALSE, dy = FALSE, ...)

S3 method for class 'gekm'

print(x, digits = 4L, scale = FALSE, ...)
Arguments
formula a formula that defines the regression functions. Note that only formula expres-

sions for which the derivations are contained in the derivatives table of deriv are

gekm

data

deriv

covtype

theta

tol

optimizer

lower
upper

start

ncalls

control
model

X

y
dx

dy

digits

scale

Details

23

supported in the gradient-enhanced Kriging model. In addition, formulas con-
taining I also work for the gradient-enhanced Kriging model, although this func-
tion is not included in the derivatives table of deriv. See derivModelMatrix
for some examples of the trend specification.

a data. frame with named columns of n training points of dimension d. Note,
all variables contained in data are used for the construction of the correlation
matrix without and with derivatives.

an optional data. frame with the derivatives, whose columns should be named
like those of data. If not specified, a Kriging model without derivatives is esti-
mated.

a character to specify the correlation structure to be used. One of matern5_2,
matern3_2 or gaussian. Default is matern5_2, see blockCor for details.

a numeric vector of length d for the hyperparameters (optional). If not given,
hyperparameters will be estimated via maximum likelihood.

a tolerance for the conditional number of the correlation matrix, see blockChol
for details. Default is NULL, i.e. no regularization is applied.

an optional character that characterizes the optimization algorithms to be used
for maximum likelihood estimation. See ‘Details’.

an optional lower bound for the optimization of the correlation parameters.
an optional upper bound for the optimization of the correlation parameters.

an optional vector of inital values for the optimization of the correlation pa-
rameters.

an optional integer that defines the number of randomly selected initial values
for the optimization.

a list of control parameters for the optimization routine. See optim or nmkb.
logical. Should the model frame be returned? Default is TRUE.

logical. Should the model matrix be returned? Default is FALSE.

logical. Should the response vector be returned? Default is FALSE.

logical. Should the derivative of the model matrix be returned? Default is
FALSE.

logical. Should the derivatives of the response be returned? Default is FALSE.
further arguments, currently not used.
number of digits to be used for the print method.

logical. Should the estimated process standard deviation be scaled? Default is
FALSE, see sigma.gekm for details.

Parameter estimation is performed via maximum likelihood. The optimizer argument can be used
to select one of the optimization algorithms "NMBK" or "L-BFGS-B". In the case of the "L-BFGS-B",
analytical gradients of the “concentrated” log-likelihood are used. For one-dimensional problems,
optimize is called and the algorithm selected via optimizer is ignored.

Value

gekm

gekm returns an object of class "gekm" whose underlying structure is a list containing the following

components:

coefficients

sigma
theta
covtype
chol

optimizer
convergence
message

loglLik

derivatives
data

deriv

nobs
call
terms
model
X

y

dx

dy

Author(s)

the estimated regression coefficients.

the estimated (unscaled) process standard deviation.
the (estimated) correlation parameters.

the name of the correlation function.

(the components of) the upper triangular matrix of the Cholesky decomposition
of the correlation matrix.

the optimization algorithm.
the convergence code.
information from the optimizer.

the value of the negative “concentrated” log-likelihood at the estimated param-
eters.

TRUE if a gradient-enhanced Kriging model was adapted, otherwise FALSE.
the data. frame that was specified via the data argument.

if derivatives = TRUE, the data. frame with the derivatives that was specified
via the deriv argument.

the number of observations used to fit the model.
the matched call.

the terms object used.

if requested (the default), the model frame used.

if requested, the model matrix.

if requested, the response vector.

if requested, the derivatives of the model matrix.

if requested, the vector of derivatives of the response.

Carmen van Meegen

References

Cressie, N. A. C. (1993). Statistics for Spartial Data. John Wiley & Sons. doi:10.1002/9781119115151.

Koehler, J. and Owen, A. (1996). Computer Experiments. In Ghosh, S. and Rao, C. (eds.), Design
and Analysis of Experiments, volume 13 of Handbook of Statistics, pp. 261-308. Elsevier Science.
doi:10.1016/S01697161(96)13011X.

Krige, D. G. (1951). A Statistical Approach to Some Basic Mine Valuation Problems on the Wit-
watersrand. Journal of the Southern African Institute of Mining and Metallurgy, 52(6):199-139.

https://doi.org/10.1002/9781119115151
https://doi.org/10.1016/S0169-7161%2896%2913011-X

gekm 25

Laurent, L., Le Riche, R., Soulier, B., and Boucard, PA. (2019). An Overview of Gradient-
Enhanced Metamodels with Applications. Archives of Computational Methods in Engineering,
26(1):61-106. doi:10.1007/s1183101792263.

Martin, J. D. and Simpson, T. W. (2005). Use of Kriging Models to Approximate Deterministic
Computer Models. AIAA Journal, 43(4):853-863. doi:10.2514/1.8650.

Morris, M., Mitchell, T., and Ylvisaker, D. (1993). Bayesian Design and Analysis of Computer Ex-
periments: Use of Derivatives in Surface Prediction. Technometrics, 35(3):243-255. doi:10.1080/
00401706.1993.10485320.

Oakley, J. and O’Hagan, A. (2002). Bayesian Inference for the Uncertainty Distribution of Com-
puter Model Outputs. Biometrika, 89(4):769—784. doi:10.1093/biomet/89.4.769.

O’Hagan, A., Kennedy, M. C., and Oakley, J. E. (1999). Uncertainty Analysis and Other Inference
Tools for Complex Computer Codes. In Bayesian Statistics 6, Ed. J. M. Bernardo, J. O. Berger, A.
P. Dawid and A .F. M. Smith, 503-524. Oxford University Press.

O’Hagan, A. (2006). Bayesian Analysis of Computer Code Outputs: A Tutorial. Reliability Engi-
neering & System Safet, 91(10):1290-1300. doi:10.1016/j.ress.2005.11.025.

Park, J.-S. and Beak, J. (2001). Efficient Computation of Maximum Likelihood Estimators in a
Spatial Linear Model with Power Exponential Covariogram. Computers & Geosciences, 27(1):1-7.
doi:10.1016/S00983004(00)000169.

Ranjan, P, Haynes, R. and Karsten, R. (2011). A Computationally Stable Approach to Gaussian
Process Interpolation of Deterministic Computer Simulation Data. Technometrics, 53:366-378.
doi:10.1198/TECH.2011.09141.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. The
MIT Press. https://gaussianprocess.org/gpml/.

Ripley, B. D. (1981). Spatial Statistics. John Wiley & Sons. doi:10.1002/0471725218.

Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). Design and Analysis of Computer
Experiments. Statistical Science, 4(4):409—423. doi:10.1214/ss/1177012413.

Santner, T. J., Williams, B. J., and Notz, W. 1. (2018). The Design and Analysis of Computer
Experiments. 2nd edition. Springer-Verlag.

Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer Series in
Statistics. Springer-Verlag. doi:10.1007/9781461214946.

Zimmermann, R. (2015). On the Condition Number Anomaly of Gaussian Correlation Matrices.
Linear Algebra and its Applications, 466:512--526. doi:10.1016/j.1aa.2014.10.038.

See Also

predict.gekm for prediction at new data points based on a model of class "gekm".
plot.gekm for the plot method of a model of class "gekm".
summary . gekm for a summary of a model of class "gekm".

simulate. gekm for simulation of process paths conditional on a model of class "gekm".

https://doi.org/10.1007/s11831-017-9226-3
https://doi.org/10.2514/1.8650
https://doi.org/10.1080/00401706.1993.10485320
https://doi.org/10.1080/00401706.1993.10485320
https://doi.org/10.1093/biomet/89.4.769
https://doi.org/10.1016/j.ress.2005.11.025
https://doi.org/10.1016/S0098-3004%2800%2900016-9
https://doi.org/10.1198/TECH.2011.09141
https://gaussianprocess.org/gpml/
https://doi.org/10.1002/0471725218
https://doi.org/10.1214/ss/1177012413
https://doi.org/10.1007/978-1-4612-1494-6
https://doi.org/10.1016/j.laa.2014.10.038

26 gekm

Examples

1-dimensional example: Oakley and O’Hagan (2002)

Define test function and its gradient
f <- function(x) 5 + x + cos(x)
fGrad <- function(x) 1 - sin(x)

Generate coordinates and calculate slopes
x <- seq(-5, 5, length = 5)

y <= f(x)

dy <- fGrad(x)

dat <- data.frame(x, y)

deri <- data.frame(x = dy)

Fit Kriging model
km.1d <- gekm(y ~ x, data = dat, covtype = "gaussian”, theta = 1)
km.1d

Fit Gradient-Enhanced Kriging model
gekm.1d <- gekm(y ~ x, data = dat, deriv = deri, covtype = "gaussian"”, theta = 1)
gekm. 1d

2-dimensional example: Morris et al. (1993)

List of inputs with their distributions and their respective ranges

inputs <- list("r_w" = list(dist = "norm”, mean= 0.1, sd =0.0161812, min = 0.05, max = 0.15),
"r" = list(dist = "lnorm”, meanlog = 7.71, sdlog = 1.0056, min = 100, max = 50000),

"T_u" = list(dist = "unif”, min = 63070, max = 115600),

"H_u" = list(dist = "unif”, min = 990, max = 1110),

"T_1" = list(dist = "unif”, min = 63.1, max = 116),

"H_1" = list(dist = "unif”, min = 700, max = 820),

"L" = list(dist = "unif"”, min = 1120, max = 1680),

for a more nonlinear, nonadditive function, see Morris et al. (1993)

"K_w" = list(dist = "unif”, min = 1500, max = 15000))

Generate design

design <- data.frame("r_w" = c(@, 0.268, 1),
"r" = rep(0, 3),

"T_u" = rep(0, 3),

"H_u" = rep(@, 3),

"T_1" = rep(0, 3),

"H_1" = rep(0, 3),

"L" = rep(Q, 3),

"K_w" = c(0, 1, 0.268))

Function to transform design onto input range

transform <- function(x, data){

for(p in names(data)){

datal , pl <= (x[[plI$max - x[[plIi$min) * datal , p]l + x[[plI$min
3

data

gekm 27

Function to transform derivatives

deriv.transform <- function(x, data){

for(p in colnames(data)){

datal , p] <- datal , pl * (x[[pll$max - x[[pl1$min)
3

data

}

Generate outcome and derivatives

design.trans <- transform(inputs, design)

design$y <- borehole(design.trans)

deri.trans <- boreholeGrad(design.trans)

deri <- data.frame(deriv.transform(inputs, deri.trans))

Design and data
cbind(design[, c("r_w”, "K_w", "y")1, deri[, c("r_w", "K_w")1)

Fit gradient-enhanced Kriging model with Gaussian correlation function
mod <- gekm(y ~ 1, data = design[, c("r_w", "K_w", "y")1,

deriv = deri[, c("r_w", "K_w")], covtype = "gaussian")

mod

Compare results with Morris et al. (1993):

Estimated correlation parameters

in Morris et al. (1993): 0.429 and 0.467

1/ (2 *x mod$theta”2)

Estimated intercept

in Morris et al. (1993): 69.15

coef (mod)

Estimated standard deviation

in Morris et al. (1993): 135.47

sigma(mod)

Predicted mean and standard deviation at (0.5, 0.5)
in Morris et al. (1993): 69.4 and 2.7
predict(mod, data.frame("r_w” = 0.5, "K_w" = 0.5))
Predicted mean and standard deviation at (1, 1)
in Morris et al. (1993): 230.0 and 19.2
predict(mod, data.frame("r_w" =1, "K_w" = 1))

Graphical comparison:

Generate a 21 x 21 grid for prediction

n_grid <- 21
x <- seq(@, 1, length.out = n_grid)
grid <- expand.grid("r_w" = x, "K_w" = x)

pred <- predict(mod, grid, sd.fit = FALSE)

Compute ground truth on (transformed) grid
newdata <- data.frame("r_w" = grid[, "r_w"],
"M =@, "T_u" =0, "H.u" = o,

28

griewank

"T_1" =0, "H_1" =90, "L" =0,

"K_w" = grid[, "K_w"])

newdata <- transform(inputs, newdata)
truth <- borehole(newdata)

Contour plots of predicted and actual output

par(mfrow = c(1, 2), oma = c(3.5, 3.5, @, 0.2), mar = c(@, 0, 1.5, 0))
contour(x, x, matrix(pred, nrow = n_grid, ncol = n_grid, byrow = TRUE),
levels = c(seq(10, 50, 10), seq(100, 250, 50)),

main = "Predicted output”)

points(design[, c("K_w", "r_w")], pch = 16)

contour(x, x, matrix(truth, nrow = n_grid, ncol = n_grid, byrow = TRUE),
levels = c(seq(10, 50, 10), seq(100, 250, 50)),

yaxt = "n", main = "Ground truth")

points(design[, c("K_w", "r_w")], pch = 16)

mtext(side = 1, outer = TRUE, line = 2.5, "Normalized hydraulic conductivity of borehole")
mtext(side = 2, outer = TRUE, line = 2.5, "Normalized radius of borehole")

griewank Griewank Function

Description

Griewank function is defined by

d 2
x x
fgriewank(fEl, ...,.’L‘d) = Z 4080 _ H COS (\/l;;) 1

with zj, € [—600,600] for k = 1, ..., d.

Usage

griewank(x)
griewankGrad(x)

Arguments

X a numeric vector or a numeric matrix with n rows and d columns. If a vector
is passed, the 1-dimensional version of the Griewank function is calculated.

Details

The gradient of Griewank function is

2000 T % sin (%) T1}_, cos (%)
Vfgriewank(xl, "'7Id) =
000 T % sin (%) Hz;i cos (L\/%)

Griewank function has one global minimum fgriewank(2*) = 0 at 2* = (0, ..., 0).

griewank 29

Value

griewank returns the function value of Griewank function at x.

griewankGrad returns the gradient of Griewank function at x.

Author(s)

Carmen van Meegen

References

Plevris, V. and Solorzano, G. (2022). A Collection of 30 Multidimensional Functions for Global
Optimization Benchmarking. Data, 7(4):46. doi:10.3390/data7040046.

Surjanovic, S. and Bingham, D. (2013). Virtual Library of Simulation Experiments: Test Functions
and Datasets. https://www.sfu.ca/~ssurjano/ (retrieved January 19, 2024).

See Also

testfunctions for further test functions.

tangents for drawing tangent lines.

Examples

1-dimensional Griewank function with tangents
curve(griewank(x), from = -5, to = 5, n = 200)

x <- seq(-5, 5, length = 5)

y <- griewank(x)

dy <- griewankGrad(x)

tangents(x, y, dy, length = 2, 1wd = 2, col = "red")
points(x, y, pch = 16)

Contour plot of Griewank function

n.grid <- 50

x1 <- x2 <- seq(-5, 5, length.out = n.grid)

y <- outer(x1, x2, function(x1, x2) griewank(cbind(x1, x2)))

nin nin

contour(x1, x2, y, xaxs = "i", yaxs = "i", nlevels = 25, xlab = "x1", ylab = "x2")

Perspective plot of Griewank function

col.pal <- colorRampPalette(c("#000QQ7F", "blue", "#@QQ7FFF", "cyan", "#7FFF7F", "yellow”,
"#FF7F00", "red”, "#7F0000"))

colors <- col.pal(100)

y.facet.center <- (y[-1, -1]1 + y[-1, -n.grid] + y[-n.grid, -1] + y[-n.grid, -n.grid])/4
y.facet.range <- cut(y.facet.center, 100)

persp(x1, x2, y, phi = 30, theta = -315, expand = 0.75, ticktype = "detailed”,

col = colors[y.facet.rangel)

https://doi.org/10.3390/data7040046
https://www.sfu.ca/~ssurjano/

30 himmelblau

himmelblau Himmelblau’s Function

Description

Himmelblau’s function is defined by
frimmetblau (21, ¥2) = (27 + 22 — 11)* + (21 + 23 — 7)*

with z1, 22 € [-5, 5].

Usage
himmelblau(x)
himmelblauGrad(x)
Arguments

X a numeric vector of length 2 or a numeric matrix with n rows and 2 columns.

Details

The gradient of Himmelblau’s function is

2 _ 5
vfhimmelblau(zl, 12) — <4$1(w1 + 2 1]-) + 2($1 + x5 7)) '

2(23 + w9 — 11) + dag(z1 + 23 = 7)

Himmelblau’s function has four global minima fhimmelblan(2*) = 0 atz* = (3,2), 2* = (—2.805118,3.131312),
a* = (—3.779310, —3.283186) and 2* = (3.584428, —1.848126).

Value

himmelblau returns the function value of Himmelblau’s function at x.

himmelblauGrad returns the gradient of Himmelblau’s function at x.

Author(s)

Carmen van Meegen

References

Himmelblau, D. (1972). Applied Nonlinear Programming. McGraw-Hill. ISBN 0-07-028921-2.

Jamil, M. and Yang, X.-S. (2013). A Literature Survey of Benchmark Functions for Global Opti-
mization Problems. International Journal of Mathematical Modelling and Numerical Optimisation,

4(2):150--194. doi:10.1504/IJMMNO.2013.055204.

Surjanovic, S. and Bingham, D. (2013). Virtual Library of Simulation Experiments: Test Functions
and Datasets. https://www.sfu.ca/~ssurjano/ (retrieved January 19, 2024).

https://doi.org/10.1504/IJMMNO.2013.055204
https://www.sfu.ca/~ssurjano/

logLik.gekm 31

See Also

testfunctions for further test functions.

Examples

Contour plot of Himmelblau's function

n.grid <- 50

x1 <- x2 <- seq(-5, 5, length.out = n.grid)

y <- outer(x1, x2, function(x1, x2) himmelblau(cbind(x1, x2)))

nin nin

contour(x1, x2, y, xaxs = "i", yaxs = "i", nlevels = 25, xlab = "x1", ylab = "x2")

Perspective plot of Himmelblau's function

col.pal <- colorRampPalette(c("#00QQQ7F", "blue", "#QQ7FFF", "cyan", "#7FFF7F", "yellow",
"#FF7F0Q", "red", "#7F0000"))

colors <- col.pal(100)

y.facet.center <- (y[-1, -1]1 + y[-1, -n.grid] + y[-n.grid, -1] + y[-n.grid, -n.grid]l)/4
y.facet.range <- cut(y.facet.center, 100)

persp(x1, x2, y, phi = 30, theta = -315, expand = 0.75, ticktype = "detailed”,

col = colors[y.facet.rangel)

loglik.gekm Log-Likelihood of a gekm Object

Description

Returns the log-likelihood of a gekm object.

Usage
S3 method for class 'gekm'
logLik(object, ...)
Arguments
object an object of class gekm.
not used.
Value

The log-likelihood value of the model evaluated at the estimated coefficients.

Author(s)

Carmen van Meegen

32 logLikFun

References

Oakley, J. and O’Hagan, A. (2002). Bayesian Inference for the Uncertainty Distribution of Com-
puter Model Outputs. Biometrika, 89(4):769-784. doi:10.1093/biomet/89.4.769.

Park, J.-S. and Beak, J. (2001). Efficient Computation of Maximum Likelihood Estimators in a
Spatial Linear Model with Power Exponential Covariogram. Computers & Geosciences, 27(1):1-7.
doi:10.1016/S00983004(00)000169.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. The
MIT Press. https://gaussianprocess.org/gpml/.

Santner, T. J., Williams, B. J., and Notz, W. 1. (2018). The Design and Analysis of Computer
Experiments. 2nd edition. Springer-Verlag.

Zimmermann, R. (2015). On the Condition Number Anomaly of Gaussian Correlation Matrices.
Linear Algebra and its Applications, 466:512-526. doi:10.1016/j.1aa.2014.10.038.

See Also

gekm for fitting a (gradient-enhanced) Kriging model.

Examples

1-dimensional example

Define test function and its gradient from Oakley and O’Hagan (2002)
f <- function(x) 5 + x + cos(x)
fGrad <- function(x) 1 - sin(x)

Generate coordinates and calculate slopes
x <- seq(-5, 5, length = 5)

y <= f(x0)

dy <- fGrad(x)

dat <- data.frame(x, y)

deri <- data.frame(x = dy)

Fit (gradient-enhanced) Kriging model
km.1d <- gekm(y ~ x, data = dat, covtype = "gaussian”, theta = 1)
gekm.1d <- gekm(y ~ x, data = dat, deriv = deri, covtype = "gaussian”, theta = 1)

Extract log-likelihood value
loglLik(km.1d)
loglLik(gekm.1d)

logLikFun Log-Likelihood Function

Description

Calculates the negative “concentrated” log-likelihood.

https://doi.org/10.1093/biomet/89.4.769
https://doi.org/10.1016/S0098-3004%2800%2900016-9
https://gaussianprocess.org/gpml/
https://doi.org/10.1016/j.laa.2014.10.038

logLikFun 33
Usage
logLikFun(param, object, ...)

Default S3 method:
logLikFun(param, object, x, y, dx = NULL, dy = NULL,

covtype = c("matern5_2", "matern3_2", "gaussian"),

tolerance = NULL, envir = NULL, ...)

S3 method for class 'gekm'

logLikFun(param, object, ...)

Arguments

param a numeric vector corresponding to the values of the correlation parameters at
which the negative “concentrated” log-likelihood is to be evaluated.

object a numeric matrix containing the or an object of class gekm.

X amodel.matrix.

y a vector of response values.

dx the derivatives of the model matrix x, see derivModelMatrix for details. De-
fault is NULL.

dy the vector of derivatives of the response y. Default is NULL.

covtype a character to specify the correlation structure to be used. One of matern5_2,

matern3_2 or gaussian. Default is matern5_2, see blockCor for details.

tolerance a tolerance for the conditional number of the correlation matrix, see blockChol
for details. Default is NULL, i.e. no regularization is applied.

envir an environment for storing auxiliary variables required for calculating gradients
with loglLikGrad. Default is NULL.

arguments to be passed to the default method.

Value

The value of the negative “concentrated” log-likelihood at param.

Author(s)

Carmen van Meegen

References

Park, J.-S. and Beak, J. (2001). Efficient Computation of Maximum Likelihood Estimators in a
Spatial Linear Model with Power Exponential Covariogram. Computers & Geosciences, 27(1):1-7.
doi:10.1016/S00983004(00)000169.

Rasmussen, C. E. and Williams, C. K. 1. (2006). Gaussian Processes for Machine Learning. The
MIT Press. https://gaussianprocess.org/gpml/.

Santner, T. J., Williams, B. J., and Notz, W. 1. (2018). The Design and Analysis of Computer
Experiments. 2nd edition. Springer-Verlag.

Zimmermann, R. (2015). On the Condition Number Anomaly of Gaussian Correlation Matrices.
Linear Algebra and its Applications, 466:512-526. doi:10.1016/j.1aa.2014.10.038.

https://doi.org/10.1016/S0098-3004%2800%2900016-9
https://gaussianprocess.org/gpml/
https://doi.org/10.1016/j.laa.2014.10.038

34 logLikGrad

See Also

loglikGrad for calculating gradients of the negative “concentrated” log-likelihood.

gekm for fitting a (gradient-enhanced) Kriging model.

Examples

2-dimensional example

Generate coordinates and calculate slopes
x1 <- seq(-1.75, 1.75, length = 3)

x2 <- seq(-0.75, 0.75, length = 3)

X <- expand.grid(x1 = x1, x2 = x2)

y <- camel6(X)

dy <- camel6Grad(X)

dat <- data.frame(X, y)

deri <- data.frame(dy)

Fit (gradient-enhanced) Kriging model
km.2d <- gekm(y ~ 1, data = dat, covtype = "gaussian"”, optimizer = "L-BFGS-B")
gekm.2d <- gekm(y ~ 1, data = dat, deriv = deri, covtype = "gaussian”, optimizer = "L-BFGS-B")

Compute negative 'concentrated' log-likelihood values

n.grid <- 30

thetal.grid <- seq(0@.5, 4, length = n.grid)

theta2.grid <- seq(@.5, 2, length = n.grid)

params <- expand.grid(thetal = thetal.grid, theta2 = theta2.grid)

loglLik.km.2d <- apply(params, 1, logLikFun, km.2d)
loglik.gekm.2d <- apply(params, 1, loglLikFun, gekm.2d)

Plot negative 'concentrated' log-likelihood

par(mfrow = c(1, 2), oma = c(3.6, 3.5, 1.5, 0.2), mar = c(0, @, 1.5, 9))
contour(thetal.grid, theta2.grid, matrix(loglLik.km.2d, nrow = n.grid, ncol = n.grid),
nlevels = 50, main = "Kriging")

points(km.2d$thetal1], km.2d$thetal[2], col = "red”, pch = 16)

contour(thetal.grid, theta2.grid, matrix(loglLik.gekm.2d, nrow = n.grid, ncol = n.grid),
nlevels = 50, main = "GEK", yaxt = "n")

points(gekm.2d$thetal1], gekm.2d$thetal[2], col = "red”, pch = 16)

title(main = "Negative 'concentrated' log-likelihood”, outer = TRUE)

mtext(side = 1, outer = TRUE, line = 2.5, expression(thetal[1]))
mtext(side = 2, outer = TRUE, line = 2.5, expression(thetal[2]))
logl ikGrad Log-Likelihood Function
Description

Calculates the gradient of the negative “concentrated” log-likelihood.

logLikGrad 35
Usage
logLikGrad(param, object, ...)

Default S3 method:
loglLikGrad(param, object, x, y, dx = NULL, dy = NULL,

covtype = c("matern5_2", "matern3_2", "gaussian"),

tolerance = NULL, envir, ...)

S3 method for class 'gekm'

loglLikGrad(param, object, ...)

Arguments

param a numeric vector corresponding to the values of the correlation parameters at
which the negative “concentrated” log-likelihood is to be evaluated.

object a numeric matrix containing the or an object of class gekm.

X amodel.matrix.

y a vector of response values.

dx the derivatives of the model matrix x, see derivModelMatrix for details. De-
fault is NULL.

dy the vector of derivatives of the response y. Default is NULL.

covtype a character to specify the correlation structure to be used. One of matern5_2,

matern3_2 or gaussian. Default is matern5_2, see blockCor for details.

tolerance a tolerance for the conditional number of the correlation matrix, see blockChol
for details. Default is NULL, i.e. no regularization is applied.

envir an environment with auxiliary variables obtained from a corresponding call
to logLikFun.

arguments to be passed to the default method.

Value

The value of the negative “concentrated” log-likelihood at param.

Author(s)

Carmen van Meegen

References

Park, J.-S. and Beak, J. (2001). Efficient Computation of Maximum Likelihood Estimators in a
Spatial Linear Model with Power Exponential Covariogram. Computers & Geosciences, 27(1):1-7.
doi:10.1016/S00983004(00)000169.

Rasmussen, C. E. and Williams, C. K. 1. (2006). Gaussian Processes for Machine Learning. The
MIT Press. https://gaussianprocess.org/gpml/.

Santner, T. J., Williams, B. J., and Notz, W. 1. (2018). The Design and Analysis of Computer
Experiments. 2nd edition. Springer-Verlag.

Zimmermann, R. (2015). On the Condition Number Anomaly of Gaussian Correlation Matrices.
Linear Algebra and its Applications, 466:512-526. doi:10.1016/j.1aa.2014.10.038.

https://doi.org/10.1016/S0098-3004%2800%2900016-9
https://gaussianprocess.org/gpml/
https://doi.org/10.1016/j.laa.2014.10.038

36 logLikGrad

See Also

loglLikFun for computing the value of the negative “concentrated” log-likelihood.

gekm for fitting a (gradient-enhanced) Kriging model.

Examples

2-dimensional example

Generate coordinates and calculate slopes
x1 <- seq(-1.75, 1.75, length = 3)

x2 <- seq(-0.75, 0.75, length = 3)

X <- expand.grid(x1 = x1, x2 = x2)

y <- camel6(X)

dy <- camel6Grad(X)

dat <- data.frame(X, y)

deri <- data.frame(dy)

Fit (gradient-enhanced) Kriging model
km.2d <- gekm(y ~ 1, data = dat, covtype = "gaussian”, optimizer = "L-BFGS-B")
gekm.2d <- gekm(y ~ 1, data = dat, deriv = deri, covtype = "gaussian”, optimizer = "L-BFGS-B")

Compute negative 'concentrated' log-likelihood values

n.grid <- 20

thetal.grid <- seq(@.5, 4, length = n.grid)

theta2.grid <- seq(@.5, 2, length = n.grid)

params <- expand.grid(thetal = thetal.grid, theta2 = theta2.grid)

loglik.km.2d <- apply(params, 1, logLikFun, km.2d)
loglik.gekm.2d <- apply(params, 1, logLikFun, gekm.2d)

loglikGrad.km.2d <- t(apply(params, 1, loglLikGrad, km.2d))
loglikGrad.gekm.2d <- t(apply(params, 1, loglLikGrad, gekm.2d))

Plot negative 'concentrated' log-likelihood

par(mfrow = c(1, 2), oma = c(3.6, 3.5, 1.5, 0.2), mar = c(@, 0, 1.5, 0))
contour(thetal.grid, theta2.grid, matrix(loglLik.km.2d, nrow = n.grid, ncol = n.grid),
nlevels = 50, main = "Kriging")

vectorfield(params, loglLikGrad.km.2d, col = 4, lwd = 2, length = 0.1)
points(km.2d$thetal1], km.2d$thetal[2], col = "red”, pch = 16)

contour(thetal.grid, theta2.grid, matrix(logLik.gekm.2d, nrow = n.grid, ncol = n.grid),
nlevels = 50, main = "GEK", yaxt = "n")

points(gekm.2d$thetal[1], gekm.2d$thetal[2], col = "red”, pch = 16)

vectorfield(params, loglLikGrad.gekm.2d, col = 4, lwd = 2, length = 0.1)

title(main "Negative 'concentrated' log-likelihood”, outer = TRUE)
mtext(side = 1, outer = TRUE, line = 2.5, expression(thetal[1]))
mtext(side = 2, outer = TRUE, line = 2.5, expression(thetal[2]))

loo 37

loo Leave-One-Out Cross-Validation

Description

Calculation of the leave-one-out prediction, standard deviation and confidence intervals of a gekm
object.

Usage

S3 method for class 'gekm'
loo(object, reestim = TRUE, sd.fit = TRUE, scale = FALSE,

df = NULL, interval = c("none"”, "confidence"), level = 0.95, ...)
Arguments

object an object of class "gekm".

reestim logical. Should the regression coefficients be re-estimated? Default is TRUE.

sd.fit logical. Should the standard deviation of the prediction, i.e., the root mean
squared error, be computed? Default is TRUE.

scale logical. Should the estimated process variance be scaled? Default is FALSE,
see sigma.gekm for details.

df degrees of freedom for the ¢ distribution. Default is NULL, see ‘Details’.

interval a character that specifies the type of interval calculation.

level confidence level for calculating confidence intervals. Default is 0. 95.

further arguments, currently not used.

Details

For reestim = TRUE (default), the formulas form Dubrule (1983) are used. These enable a faster
calculation of the leave-one-out prediction and the associated standard deviation, especially for a
large number of observations. However, with few observations, the re-estimated regression coeffi-
cients may differ considerably from those based on the entire data set. Note that the process variance
and correlation parameters are not re-estimated.

Value

The 1oo method of class "gekm” returns a vector of leave-one-out predictions, if sd.fit = FALSE

and interval = "none”. As with predict.gekm, setting sd.fit = FALSE and interval = "confidence’
generates a matrix with the leave-one-out predicted values and the lower and upper limits of the
confidence intervals. For sd.fit = TRUE, a 1ist with the following components is returned:

I

fit.loo either a vector or a matrix, as described above.

sd.loo leave-one-out predicted standard deviation.

38 loo

Author(s)

Carmen van Meegen

References

Bachoc, F. (2013). Cross Validation and Maximum Likelihood Estimations of Hyper-parameters
of Gaussian Processes with Model Misspecification. Computational Statistics and Data Analysis,
66:55-69. doi:10.1016/j.csda.2013.03.016.

Dubrule, O. (1983). Cross Validation of Kriging in a Unique Neighborhood. Mathematical Geol-
0gy, 15:687-699. doi:10.1007/BF01033232.

Martin, J. D. and Simpson, T. W. (2005). Use of Kriging Models to Approximate Deterministic
Computer Models. AIAA Journal, 43(4):853-863. doi:10.2514/1.8650.

See Also

gekm for fitting a (gradient-enhanced) Kriging model.
predict.gekm for prediction at new data points based on a model of class "gekm".

plot.gekm for plotting the results of a leave-one-out cross-validation.

Examples

1-dimensional example: Oakley and O’Hagan (2002)

Define test function and its gradient
f <- function(x) 5 + x + cos(x)
fGrad <- function(x) 1 - sin(x)

Generate coordinates and calculate slopes
x <- seq(-5, 5, length = 5)

y <= f(x)

dy <- fGrad(x)

dat <- data.frame(x, y)

deri <- data.frame(x = dy)

Fit gradient-enhanced Kriging model
gekm.1d <- gekm(y ~ x, data = dat, deriv = deri, covtype = "gaussian”, theta = 1)

Perform leave-one-out cross-validation

loo(gekm. 1d)

loo(gekm.1d, sd.fit = FALSE)

loo(gekm.1d, sd.fit = FALSE, reestim = FALSE)

loo(gekm.1d, sd.fit = TRUE, scale = TRUE)

loo(gekm.1d, sd.fit = TRUE, reestim = FALSE, scale = TRUE)
loo(gekm.1d, sd.fit = FALSE, interval = "confidence")
loo(gekm.1d, sd.fit = TRUE, interval = "confidence")

https://doi.org/10.1016/j.csda.2013.03.016
https://doi.org/10.1007/BF01033232
https://doi.org/10.2514/1.8650

plot.gekm

39

plot.gekm

Plot Method for a gekm Object

Description

Visualization of the leave-one-out cross-validation results of a gekm model.

Usage

S3 method for class 'gekm'
plot(x, y, main = "Leave-One-Out”, ylim = NULL, panel.first = abline(@, 1),
add = FALSE, reestim = TRUE, scale = FALSE, df = NULL, add.interval = FALSE,

level = .95, args.arrows = NULL, ...)
Arguments

X an object of class "gekm".

y not used.

main main title for the plot.

ylim limits for the y-axis.

panel.first
add

reestim

scale

df

add.interval
level

args.arrows

Details

an expression to be evaluated before the actual plot. Default is abline (@, 1).
logical. Should results be added to an already existing plot? Default is FALSE.

logical. Should the regression coefficients be re-estimated? Default is TRUE,
see loo. gekm for details.

logical. Should the estimated process variance be scaled? Default is FALSE,
see sigma.gekm for details.

degrees of freedom for the ¢ distribution. Default is NULL, see predict.gekm
for details.

logical. Should confidence intervals be added? Default is FALSE.
confidence level for calculating confidence intervals. Default is @. 95.

a list with further arguments to be passed to arrows. Only used if add. interval
= TRUE.

further arguments to be passed to plot.default or points.

For further details on the arguments scale see

Value

Returns the predicted values of the leave-one-out cross-validation invisibly. If add.interval =
TRUE, the lower and upper bounds of the confidence intervals are also returned.

40

Author(s)

Carmen van Meegen

References

plot.gekm

Bachoc, F. (2013). Cross Validation and Maximum Likelihood Estimations of Hyper-parameters
of Gaussian Processes with Model Misspecification. Computational Statistics and Data Analysis,

66:55-69. doi:10.1016/j.csda.2013.03.016.

Dubrule, O. (1983). Cross Validation of Kriging in a Unique Neighborhood. Mathematical Geol-

0gy, 15:687-699. doi:10.1007/BF01033232.

Martin, J. D. and Simpson, T. W. (2005). Use of Kriging Models to Approximate Deterministic

Computer Models. AIAA Journal, 43(4):853-863. doi:10.2514/1.8650.

See Also

gekm for fitting a (gradient-enhanced) Kriging model.
loo for leave-one-out cross-validation.
branin for the Branin-Hoo function.

arrows for drawing arrows.

Examples

2-dimensional example: Branin-Hoo function

Generate a grid for training

n <-4

x1 <- seq(-5, 10, length = n)

x2 <- seq(@, 15, length = n)

x <- expand.grid(x1 = x1, x2 = x2)
y <- branin(x)

dy <- braninGrad(x)

dat <- data.frame(x, y)

deri <- data.frame(dy)

Fit (gradient-enhanced) Kriging model
km.2d <- gekm(y ~ .72, data = dat)
gekm.2d <- gekm(y ~ .”2, data = dat, deriv = deri)

Plot leave-one-out cross-validation results
plot(km.2d)
plot(km.2d, panel.first = grid())

plot(km.2d, panel.first = {grid(); abline(@, 1, col = 8)3})

plot(km.2d, add.interval = TRUE)

plot(km.2d, add.interval = TRUE, pch = 16, col = 4)
plot(km.2d, add.interval = TRUE, pch = 16, col = 4,
panel.first = {grid(); abline(@, 1)},

args.arrows = list(col = 4, length = 0))

plot(km.2d, pch = 1, col = 4, cex = 1.2, 1lwd = 2)

https://doi.org/10.1016/j.csda.2013.03.016
https://doi.org/10.1007/BF01033232
https://doi.org/10.2514/1.8650

predict.gekm 41

plot(gekm.2d, pch = 4, col = 2, cex = 1.2, lwd = 2, add = TRUE)
legend("topleft”, legend = c("Kriging"”, "GEK"), col = c(4, 2), pch = c(1, 4), pt.lwd = 2)

par(mfrow = c(1, 2), oma = c(3.6, 3.5, 1.5, 0.2), mar = c(@, 0, 1.5, 0))

res <- plot(km.2d, col = 7, pch = 16, add.interval = TRUE, main = "Kriging",
scale = TRUE, panel.first = {grid(); abline(@, 1, col = 8)3})

res

plot(gekm.2d, col = 3, pch = 16, add.interval = TRUE, scale = TRUE, main = "GEK",
ylim = range(res), yaxt = "n", panel.first = {grid(); abline(@, 1, col = 8)3})
title(main = "Leave-One-Out”, outer = TRUE)

mtext(side = 1, outer = TRUE, line = 2.5, "response”)

mtext(side = 2, outer = TRUE, line = 2.5, "prediction")

predict.gekm Predict Method for a gekm Object

Description

Predicted values, standard deviations and confidence intervals based on a gekm object.

Usage

S3 method for class 'gekm'
predict(object, newdata, sd.fit = TRUE, scale = FALSE, df = NULL,

interval = c("none”, "confidence"”), level = 0.95, ...)
Arguments

object an object of class "gekm".

newdata a data. frame containing the points where to perform predictions.

sd.fit logical. Should the standard deviation of the prediction, i.e., the root mean
squared error, be computed? Default is TRUE.

scale logical. Should the estimated process variance be scaled? Default is FALSE,
see sigma.gekm for details.

df degrees of freedom of the ¢ distribution. Default is NULL, see ‘Details’.

interval a character that specifies the type of interval calculation. Default is "none".

level confidence level for calculating confidence intervals. Default is 0. 95.

further arguments, currently not used.

Details

Confidence intervals for the predicted values are constructed using the #—quantile of the ¢

distribution with df degrees of freedom. This is based on the assumption that the correlation
parameters are known. If estimated correlation parameters are used, confidence intervals can be
misleading.

42 predict.gekm

By default df = NULL, in which case the degrees of freedom are determined by nobs - p, where
nobs is the total number of observations used to fit the model and p is the number of regression
coefficients. Note for a Kriging model nobs = n, with n being the number of response values, while
for a gradient-enhanced Kriging model nobs = n + n x d, where d is the number of inputs.

In practice, the quantile of the standard normal distribution is often used instead of the quantile of
the ¢ distribution to calculate confidence intervals, even though the process variance o2 is estimated
and regardless of whether estimated correlation parameters are plugged in. This can be obtained by
setting df = Inf.

Value

The predict method of "gekm” returns a vector of predictions computed for the inputs in newdata,
if sd.fit = FALSE and interval = "none”. Setting sd.fit = FALSE and interval = "confidence”
generates a matrix with the predicted values and the lower and upper limits of the confidence in-
tervals. In case sd.fit = TRUE, a 1ist with the following components is returned:

fit either a vector or a matrix, as described above.
sd.fit predicted standard deviation of predicted means.
Author(s)

Carmen van Meegen

References

Cressie, N. A. C. (1993). Statistics for Spartial Data. John Wiley & Sons. doi:10.1002/9781119115151.

Koehler, J. and Owen, A. (1996). Computer Experiments. In Ghosh, S. and Rao, C. (eds.), Design
and Analysis of Experiments, volume 13 of Handbook of Statistics, pp. 261-308. Elsevier Science.
doi:10.1016/S01697161(96)13011X.

Krige, D. G. (1951). A Statistical Approach to Some Basic Mine Valuation Problems on the Wit-
watersrand. Journal of the Southern African Institute of Mining and Metallurgy, 52(6):199-139.

Laurent, L., Le Riche, R., Soulier, B., and Boucard, PA. (2019). An Overview of Gradient-
Enhanced Metamodels with Applications. Archives of Computational Methods in Engineering,
26(1):61-106. doi:10.1007/s1183101792263.

Martin, J. D. and Simpson, T. W. (2005). Use of Kriging Models to Approximate Deterministic
Computer Models. AIAA Journal, 43(4):853-863. doi:10.2514/1.8650.

Morris, M., Mitchell, T., and Ylvisaker, D. (1993). Bayesian Design and Analysis of Computer Ex-
periments: Use of Derivatives in Surface Prediction. Technometrics, 35(3):243-255. doi:10.1080/
00401706.1993.10485320.

Oakley, J. and O’Hagan, A. (2002). Bayesian Inference for the Uncertainty Distribution of Com-
puter Model Outputs. Biometrika, 89(4):769—784. doi:10.1093/biomet/89.4.769.

O’Hagan, A., Kennedy, M. C., and Oakley, J. E. (1999). Uncertainty Analysis and Other Inference
Tools for Complex Computer Codes. In Bayesian Statistics 6, Ed. J. M. Bernardo, J. O. Berger, A.
P. Dawid and A .F. M. Smith, 503-524. Oxford University Press.

O’Hagan, A. (2006). Bayesian Analysis of Computer Code Outputs: A Tutorial. Reliability Engi-
neering & System Safet, 91(10):1290-1300. doi:10.1016/j.ress.2005.11.025.

https://doi.org/10.1002/9781119115151
https://doi.org/10.1016/S0169-7161%2896%2913011-X
https://doi.org/10.1007/s11831-017-9226-3
https://doi.org/10.2514/1.8650
https://doi.org/10.1080/00401706.1993.10485320
https://doi.org/10.1080/00401706.1993.10485320
https://doi.org/10.1093/biomet/89.4.769
https://doi.org/10.1016/j.ress.2005.11.025

predict.gekm 43

Park, J.-S. and Beak, J. (2001). Efficient Computation of Maximum Likelihood Estimators in a
Spatial Linear Model with Power Exponential Covariogram. Computers & Geosciences, 27(1):1-7.
doi:10.1016/S00983004(00)000169.

Ranjan, P, Haynes, R. and Karsten, R. (2011). A Computationally Stable Approach to Gaussian
Process Interpolation of Deterministic Computer Simulation Data. Technometrics, 53:366-378.
doi:10.1198/TECH.2011.09141.

Rasmussen, C. E. and Williams, C. K. L. (2006). Gaussian Processes for Machine Learning. The
MIT Press. https://gaussianprocess.org/gpml/.

Ripley, B. D. (1981). Spatial Statistics. John Wiley & Sons. doi:10.1002/0471725218.

Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). Design and Analysis of Computer
Experiments. Statistical Science, 4(4):409—423. doi:10.1214/ss/1177012413.

Santner, T. J., Williams, B. J., and Notz, W. 1. (2018). The Design and Analysis of Computer
Experiments. 2nd edition. Springer-Verlag.

Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer Series in
Statistics. Springer-Verlag. doi:10.1007/9781461214946.

See Also

gekm for fitting a (gradient-enhanced) Kriging model.

tangents for drawing tangent lines.

Examples

1-dimensional example: Oakley and 0’Hagan (2002)

Define test function and its gradient
f <- function(x) 5 + x + cos(x)
fGrad <- function(x) 1 - sin(x)

Generate coordinates and calculate slopes
x <- seq(-5, 5, length = 5)

y <= ()

dy <- fGrad(x)

dat <- data.frame(x, y)

deri <- data.frame(x = dy)

Fit (gradient-enhanced) Kriging model
km.1d <- gekm(y ~ x, data = dat, covtype = "gaussian”, theta = 1)
gekm.1d <- gekm(y ~ x, data = dat, deriv = deri, covtype = "gaussian”, theta = 1)

Generate new data
newdat <- data.frame(x = seq(-6, 6, length = 10))

Compute predictions

predict(gekm.1d, newdat, sd.fit = FALSE)

predict(gekm.1d, newdat)

predict(gekm.1d, newdat, sd.fit = TRUE, scale = TRUE)

predict(gekm.1d, newdat, sd.fit = FALSE, interval = "confidence")
predict(gekm.1d, newdat, sd.fit = FALSE, df = Inf, interval = "confidence")

https://doi.org/10.1016/S0098-3004%2800%2900016-9
https://doi.org/10.1198/TECH.2011.09141
https://gaussianprocess.org/gpml/
https://doi.org/10.1002/0471725218
https://doi.org/10.1214/ss/1177012413
https://doi.org/10.1007/978-1-4612-1494-6

44

predict.gekm

predict(gekm.1d, newdat, sd.fit = FALSE, scale = TRUE, interval = "confidence")

Plot predictions and confidence intervals

newdat <- data.frame(x = seq(-6, 6, length = 500))

pred.km.1d <- predict(km.1d, newdat, sd.fit = FALSE, interval = "confidence”, scale = TRUE)
pred.gekm.1d <- predict(gekm.1d, newdat, sd.fit = FALSE, interval = "confidence”, scale = TRUE)

par(mfrow = c(1, 2), oma = c(3.5, 3.5, @0, 0.2), mar = c(@, @, 1.5, @))
ylim <- range(pred.km.1d, pred.gekm.1d)

curve(f(x), from = -6, to = 6, ylim = ylim, main = "Kriging")
matplot(newdat$x, pred.km.1d, xlab = "x", ylab = "f(x)",

type = "1"”, 1ty = 1, col = c(4, 8, 8),

add = TRUE)

points(x, y, pch = 16)

noan

curve(f(x), from = -6, to = 6, ylim = ylim, yaxt = "n", main = "GEK")
matplot(newdat$x, pred.gekm.1d, xlab = "x", ylab = "f(x)",

type = "1", 1ty = 1, col = c(3, 8, 8),

add = TRUE)

points(x, y, pch = 16)

tangents(x, y, dy, col = 2, length = 2)

mtext(side = 1, outer = TRUE, line
mtext(side = 2, outer = TRUE, line

2.5, "x")
2.5, "f(x)")

2-dimensional example: Branin-Hoo function

Generate a grid for training

n <-4

x1 <- seq(-5, 10, length = n)

x2 <- seq(@, 15, length = n)

x <- expand.grid(x1 = x1, x2 = x2)
y <= branin(x)

dy <- braninGrad(x)

dat <- data.frame(x, y)

deri <- data.frame(dy)

Fit (gradient-enhanced) Kriging model
km.2d <- gekm(y ~ ., data = dat)
gekm.2d <- gekm(y ~ ., data = dat, deriv = deri)

Generate new data for prediction

n.grid <- 50

x1.grid <- seq(-5, 10, length = n.grid)

x2.grid <- seq(@, 15, length = n.grid)

newdat <- expand.grid(x1 = x1.grid, x2 = x2.grid)

Prediction for both models and actual outcome

pred.km.2d <- predict(km.2d, newdat)

pred.gekm.2d <- predict(gekm.2d, newdat)

truth <- outer(x1.grid, x2.grid, function(x1, x2) branin(cbind(x1, x2)))

Contour plots of predicted and actual output

qing 45

par(mfrow = c(1, 3), oma = c(3.5, 3.5, @, 0.2), mar = c(@, 0, 1.5, @))
contour(x1.grid, x2.grid, truth, nlevels = 30,

levels = seq(@, 300, 10), main = "Branin-Hoo")

points(x, pch = 16)

contour(x1.grid, x2.grid, matrix(pred.km.2d$fit, nrow = n.grid, ncol = n.grid),
levels = seq(@, 300, 10), main = "Kriging", yaxt = "n")

points(x, pch = 16)

contour(x1.grid, x2.grid, matrix(pred.gekm.2d$fit, nrow = n.grid, ncol = n.grid),
levels = seq(@, 300, 10), main = "GEK"”, yaxt = "n")

points(x, pch = 16)

mtext(side = 1, outer = TRUE, line = 2.5, expression(x[1]))

mtext(side = 2, outer = TRUE, line = 2, expression(x[2]))

Contour plots of predicted variance

par(mfrow = c(1, 2), oma = c(3.5, 3.5, @0, 0.2), mar = c(@, 0, 1.5, @))
contour(x1.grid, x2.grid, matrix(pred.km.2d$sd.fit*2, nrow = n.grid, ncol = n.grid),
main = "Kriging variance"”)

points(x, pch = 16)

contour(x1.grid, x2.grid, matrix(pred.gekm.2d$sd.fit*2, nrow = n.grid, ncol = n.grid),
main = "GEK variance"”, yaxt = "n")

points(x, pch = 16)

mtext(side = 1, outer = TRUE, line = 2.5, expression(x[1]))

mtext(side = 2, outer = TRUE, line = 2, expression(x[2]))

ging Qing Function

Description

Qing function is defined by

with 2, € [—500,500] for k = 1,.... d.

Usage
qing(x)
gingGrad(x)
Arguments

X a numeric vector or a numeric matrix with n rows and d columns. If a vector
is passed, the 1-dimensional version of the Rastrigin function is calculated.

46 qing

Details

The gradient of Qing function is

4$1 (1‘% — 1)
quing(arl,...,xd) =
4z q(z? — d)

Qing function has 27 global minimum fging(z*) = 0 at 2* = (£/1,...,+Vd).

Value

ging returns the function value of Qing function at x.

gingGrad returns the gradient of Qing function at x.

Author(s)

Carmen van Meegen

References

Qing, A. (2006). Dynamic Differential Evolution Strategy and Applications in Electromagnetic
Inverse Scattering Problems. [EEE Transactions on Geoscience and Remote Sensing, 44(1):116-
—125. doi:10.1109/TGRS.2005.859347.

Jamil, M. and Yang, X.-S. (2013). A Literature Survey of Benchmark Functions for Global Opti-
mization Problems. International Journal of Mathematical Modelling and Numerical Optimisation,
4(2):150-—194. doi:10.1504/IIMMNO.2013.055204.

See Also

testfunctions for further test functions.

Examples

1-dimensional Qing function with tangents
curve(qing(x), from = -1.7, to = 1.7)

x <- seq(-1.5, 1.5, length = 5)

y <= qing(x)

dy <- gingGrad(x)

tangents(x, y, dy, length = 1, lwd = 2, col = "red")
points(x, y, pch = 16)

Contour plot of Qing function

n.grid <- 50

x1 <- seq(-2, 2, length.out = n.grid)

x2 <- seq(-2, 2, length.out = n.grid)

y <- outer(x1, x2, function(x1, x2) ging(cbind(x1, x2)))

nin nin

contour(x1, x2, y, xaxs = "i", yaxs = "i", nlevels = 25, xlab = "x1", ylab = "x2")

Perspective plot of Qing function

https://doi.org/10.1109/TGRS.2005.859347
https://doi.org/10.1504/IJMMNO.2013.055204

rastrigin 47

col.pal <- colorRampPalette(c("#000QQ7F", "blue", "#@QQ7FFF", "cyan", "#7FFF7F", "yellow”,
"#FF7F0Q", "red”, "#7F0000"))

colors <- col.pal(100)

y.facet.center <- (y[-1, -1]1 + y[-1, -n.grid] + y[-n.grid, -1] + y[-n.grid, -n.grid])/4
y.facet.range <- cut(y.facet.center, 100)

persp(x1, x2, y, phi = 30, theta = -315, expand = 0.75, ticktype = "detailed”,

col = colors[y.facet.rangel)

rastrigin Rastrigin Function

Description

Rastrigin function is defined by

frastrigin (21, ..., Tq) = 10d + (a:i — 10 cos(2mxy))

™~
Il &
—

with z, € [—5.12,5.12] for k = 1, ..., d.

Usage
rastrigin(x)
rastriginGrad(x)
Arguments
X a numeric vector or a numeric matrix with n rows and d columns. If a vector
is passed, the 1-dimensional version of the Rastrigin function is calculated.
Details

The gradient of Rastrigin function is

2x1 + 20sin(27xy)

vfrastrigin(xla sy Id) = :
224 + 20sin(27z4))

Rastrigin function has one global minimum fiastrigin (z*) = 0 at 2* = (0, ..., 0).

Value

rastrigin returns the function value of Rastrigin function at x.

rastriginGrad returns the gradient of Rastrigin function at x.

48 schwefel

Author(s)

Carmen van Meegen

References

Plevris, V. and Solorzano, G. (2022). A Collection of 30 Multidimensional Functions for Global
Optimization Benchmarking. Data, 7(4):46. doi:10.3390/data7040046.

Surjanovic, S. and Bingham, D. (2013). Virtual Library of Simulation Experiments: Test Functions
and Datasets. https://www.sfu.ca/~ssurjano/ (retrieved January 19, 2024).

See Also

testfunctions for further test functions.

tangents for drawing tangent lines.

Examples

1-dimensional Rastrigin function with tangents
curve(rastrigin(x), from = -5, to = 5, n = 200)

x <- seq(-4.5, 4.5, length = 5)

y <- rastrigin(x)

dy <- rastriginGrad(x)

tangents(x, y, dy, length = 2, 1wd = 2, col = "red")
points(x, y, pch = 16)

Contour plot of Rastrigin function

n.grid <- 100

x1 <= x2 <- seq(-5.12, 5.12, length.out = n.grid)

y <- outer(x1, x2, function(x1, x2) rastrigin(cbind(x1, x2)))

nin nin

contour(x1, x2, y, xaxs = "i", yaxs = "i", nlevels = 25, xlab = "x1", ylab = "x2")

Perspective plot of Rastrigin function

col.pal <- colorRampPalette(c("#00QQQ7F", "blue", "#QQ7FFF", "cyan", "#7FFF7F", "yellow",
"#FF7F0Q", "red", "#7F0000"))

colors <- col.pal(100)

y.facet.center <- (y[-1, -1]1 + y[-1, -n.grid] + y[-n.grid, -1]1 + y[-n.grid, -n.gridl)/4
y.facet.range <- cut(y.facet.center, 100)

persp(x1, x2, y, phi = 30, theta = -315, expand = 0.75, ticktype = "detailed”,

col = colors[y.facet.rangel)

schwefel Schwefel Function

https://doi.org/10.3390/data7040046
https://www.sfu.ca/~ssurjano/

schwefel 49

Description

The Schwefel function is defined by

d

Fuctiwetel (21, ooy Tq) = 418.9829d — >z sin <\/|xk\>

k=1

with x5, € [—500,500] for k =1, ..., d.

Usage
schwefel (x)
schwefelGrad(x)
Arguments

X a numeric vector of length d or a numeric matrix with n rows and d columns.

Details

The gradient of the Schwefel function is

3
2[z1|2

—sin (\/@> _ % lell)
vfschwefel(xh s 7$d) = :

) ejeos(y/Feal)

E3
2|zq]2

The Schwefel function has one global minimum fychwete1 (2*) = 0 at z* = (420.968746, . . ., 420.968746).

Value

schwefel returns the function value of the Schwefel function at x.

schwefelGrad returns the gradient of the Schwefel function at x.

Author(s)

Carmen van Meegen

References

Plevris, V. and Solorzano, G. (2022). A Collection of 30 Multidimensional Functions for Global
Optimization Benchmarking. Data, 7(4):46. doi:10.3390/data7040046.

Surjanovic, S. and Bingham, D. (2013). Virtual Library of Simulation Experiments: Test Functions
and Datasets. https://www.sfu.ca/~ssurjano/ (retrieved January 19, 2024).

See Also

testfunctions for further test functions.

tangents for drawing tangent lines.

https://doi.org/10.3390/data7040046
https://www.sfu.ca/~ssurjano/

50 short

Examples

1-dimensional Schwefel function with tangents
curve(schwefel(x), from = -500, to = 500, n = 500)

x <- seq(-450, 450, length = 5)

y <- schwefel(x)

dy <- schwefelGrad(x)

tangents(x, y, dy, length = 200, lwd = 2, col = "red")
points(x, y, pch = 16)

Contour plot of Schwefel function

n.grid <- 75

x1 <- x2 <- seq(-500, 500, length.out = n.grid)

y <- outer(x1, x2, function(x1, x2) schwefel(cbind(x1, x2)))

nin nin

contour(x1, x2, y, xaxs = "i", yaxs = "i", nlevels = 25, xlab = "x1", ylab = "x2")

Perspective plot of Schwefel function

col.pal <- colorRampPalette(c("#00QQQ7F", "blue", "#QQ7FFF", "cyan", "#7FFF7F", "yellow",
"#FF7F0Q", "red", "#7F0000"))

colors <- col.pal(100)

y.facet.center <- (y[-1, -1]1 + y[-1, -n.grid] + y[-n.grid, -1] + y[-n.grid, -n.grid]l)/4
y.facet.range <- cut(y.facet.center, 100)

persp(x1, x2, y, phi = 30, theta = -315, expand = 0.75, ticktype = "detailed”,

col = colors[y.facet.rangel)

short Short Column Function

Description

The short column function is defined by

AM p?

Jorore) =1 =15 = gy

with z = (Y, M, P).

Usage

short(x, b =5, h =1
shortGrad(x, b = 5, h = 15)

Arguments
X a numeric vector of length 3 or a numeric matrix with n rows and 3 columns.
b width of the cross-section in mm of the short column. Default is 5.

h depth of the cross-section in mm of the short column. Default is 15.

sigma.gekm 51

Details

The short column function describes the limite state function of a short column with uncertain
material properties and loads.

Input Distribution Mean Standard deviation Description
Y LN 5 0.5 yield stress in MPa,
M N 2000 400 bending moment in MNm
P N 500 100 axial force in MPa

The bending moment and the axial force are correlated with Cor(M, P) = 0.5. Note, N represents
the normal distribution and LN is the log-normal distribution.
Value

short returns the function value of short column function at x.

shortGrad returns the gradient of short column function at x.

Author(s)

Carmen van Meegen

References

Kuschel, N. and Rackwitz, R. (1997). Two Basic Problems in Reliability-Based Structural Opti-
mization. Mathematical Methods of Operations Research, 46(3):309-333.

Surjanovic, S. and Bingham, D. (2013). Virtual Library of Simulation Experiments: Test Functions
and Datasets. https://www.sfu.ca/~ssurjano/ (retrieved January 19, 2024).

See Also

testfunctions for further test functions.

sigma.gekm Extract Process Standard Deviation

Description

Extract the estimated process standard deviation of a Kriging model with or without derivatives.

Usage

S3 method for class 'gekm'
sigma(object, scale = FALSE, ...)

https://www.sfu.ca/~ssurjano/

52 sigma.gekm
Arguments
object an object of class "gekm”.
scale logical. Should the estimated process standard deviation be scaled? Default is
FALSE, see ‘Details’.
further arguments, currently not used.
Details

By default, the process variance o2 is estimated using the maximum likelihood estimator, which
uses nobs in the denominator, where nobs is the total number of observations used to fit the model.
Note for gradient-enhanced Kriging: nobs =n + n % d with n and d being the number of response
values and inputs, respectively.

Setting scale = TRUE replaces the denominator nobs with nobs - p - 2, where p is the number of
regression coefficients. If the correlation parameters are known and weak priors are assumed for
the hyperparameters (the regression coefficients and the process variance), i.e., f(3,02) x 072,

this leads to the Bayesian estimator of the process variance.

Value

The (scaled) estimated process standard deviation.

Author(s)

Carmen van Meegen

References

Morris, M., Mitchell, T., and Ylvisaker, D. (1993). Bayesian Design and Analysis of Computer Ex-
periments: Use of Derivatives in Surface Prediction. Technometrics, 35(3):243-255. doi:10.1080/
00401706.1993.10485320.

Oakley, J. and O’Hagan, A. (2002). Bayesian Inference for the Uncertainty Distribution of Com-
puter Model Outputs. Biometrika, 89(4):769—784. doi:10.1093/biomet/89.4.769.

O’Hagan, A. (1991). Bayes-Hermite Quadrature. Journal of Statistical Planning an Inference,
29(3):245-260. doi:10.1016/03783758(91)90002V.

O’Hagan, A., Kennedy, M. C., and Oakley, J. E. (1999). Uncertainty Analysis and Other Inference
Tools for Complex Computer Codes. In Bayesian Statistics 6, Ed. J. M. Bernardo, J. O. Berger, A.
P. Dawid and A .F. M. Smith, 503-524. Oxford University Press.

Park, J.-S. and Beak, J. (2001). Efficient Computation of Maximum Likelihood Estimators in a
Spatial Linear Model with Power Exponential Covariogram. Computers & Geosciences, 27(1):1-7.
doi:10.1016/S00983004(00)000169.

Santner, T. J., Williams, B. J., and Notz, W. 1. (2018). The Design and Analysis of Computer
Experiments. 2nd edition. Springer-Verlag.

Zimmermann, R. (2015). On the Condition Number Anomaly of Gaussian Correlation Matrices.
Linear Algebra and its Applications, 466:512--526. doi:10.1016/j.1aa.2014.10.038.

https://doi.org/10.1080/00401706.1993.10485320
https://doi.org/10.1080/00401706.1993.10485320
https://doi.org/10.1093/biomet/89.4.769
https://doi.org/10.1016/0378-3758%2891%2990002-V
https://doi.org/10.1016/S0098-3004%2800%2900016-9
https://doi.org/10.1016/j.laa.2014.10.038

simulate.gekm 53

See Also

gekm for fitting a (gradient-enhanced) Kriging model.

Examples

1-dimensional example: Oakley and O’Hagan (2002)

Define test function and its gradient
f <- function(x) 5 + x + cos(x)
fGrad <- function(x) 1 - sin(x)

Generate coordinates and calculate slopes
x <- seq(-5, 5, length = 5)

y <= f(x)

dy <- fGrad(x)

dat <- data.frame(x, y)

deri <- data.frame(x = dy)

Fit (gradient-enhanced) Kriging model
km.1d <- gekm(y ~ x, data = dat, covtype = "gaussian”, theta = 1)
gekm.1d <- gekm(y ~ x, data = dat, deriv = deri, covtype = "gaussian"”, theta = 1)

Extact estimated process standard deviation
sigma(km.1d)

sigma(gekm.1d)

sigma(gekm.1d, scale = TRUE)

simulate.gekm Simulation of Conditional Process Paths

Description

Simulates process paths conditional on a fitted gekm object.

Usage

S3 method for class 'gekm'
simulate(object, nsim = 1, seed = NULL, newdata = NULL,

scale = FALSE, df = NULL, tol = NULL, ...)
Arguments
object an object of class "gekm”.
nsim number of simulated process paths. Default is 1.
seed argument is not supported.
newdata adata. frame containing the points at which the process path should be realized.

The column names must be identical to those in the data used to construct the
"gekm" object.

54 simulate.gekm

scale logical. Should the estimated process standard deviation be scaled? Default is
FALSE, see sigma.gekm for details.

df degrees of freedom of the ¢ distribution. Default is NULL, see predict.gekm for
details.

tol a tolerance for the conditional number of the conditional correlation matrix of
newdata, see blockChol for details. Default is NULL, i.e. no regularization is
applied.

further arguments, not used.

Details

By setting df = Inf, paths of a Gaussian process are simulated.

Value

A matrix with nrow(newdata) rows and nsim columns of simulated response values at the points
of newdata. Each column represents one conditional simulated process path.

Author(s)

Carmen van Meegen

References

Cressie, N. A. C. (1993). Statistics for Spartial Data. John Wiley & Sons. doi:10.1002/9781119115151.

Oakley, J. and O’Hagan, A. (2002). Bayesian Inference for the Uncertainty Distribution of Com-
puter Model Outputs. Biometrika, 89(4):769—784. doi:10.1093/biomet/89.4.769.

Ripley, B. D. (1981). Spatial Statistics. John Wiley & Sons. doi:10.1002/0471725218.

See Also

gekm for fitting a (gradient-enhanced) Kriging model.

predict.gekm for prediction at new data points based on a model of class "gekm".

Examples

1-dimensional example

Define test function and its gradient from Oakley and O’Hagan (2002)
f <- function(x) 5 + x + cos(x)
fGrad <- function(x) 1 - sin(x)

Generate coordinates and calculate slopes
x <- seq(-5, 5, length = 5)

y <= f(x)

dy <- fGrad(x)

dat <- data.frame(x, y)

deri <- data.frame(x = dy)

https://doi.org/10.1002/9781119115151
https://doi.org/10.1093/biomet/89.4.769
https://doi.org/10.1002/0471725218

simulate.gekm 55

Fit Kriging model
km.1d <- gekm(y ~ x, data = dat, covtype = "gaussian”, theta = 1)

Fit Gradient-Enhanced Kriging model
gekm.1d <- gekm(y ~ x, data = dat, deriv = deri, covtype = "gaussian”, theta = 1)

Generate new data for prediction and simulation
newdat <- data.frame(x = seq(-6, 6, length = 600))

Prediction for both models

df <- NULL

scale <- FALSE

pred.km.1d <- predict(km.1d, newdat, sd.fit = FALSE, interval = "confidence”,

df = df, scale = scale)

pred.gekm.1d <- predict(gekm.1d, newdat, sd.fit = FALSE, interval = "confidence”,
df = df, scale = scale)

Simulate process paths conditional on fitted models

set.seed(1)

n <- 500

sim.km.1d <- simulate(km.1d, nsim = n, newdata = newdat, tol = 35, df = df, scale = scale)
sim.gekm.1d <- simulate(gekm.1d, nsim = n, newdata = newdat, tol = 35, df = df, scale = scale)

par(mfrow = c(1, 2), oma = c(3.5, 3.5, @, 0.2), mar = c(@, 0, 1.5, 9))
matplot(newdat$x, sim.km.1d, type = "1", 1ty =1, col = 2:8, 1lwd = 1,
ylim = c(-1, 12), main = "Kriging")

matplot(newdat$x, pred.km.1d, type = "1", lwd = 2, add = TRUE,

col = "black”, 1ty = 1)

points(x, y, pch = 16, cex = 1, col = "red")

matplot(newdat$x, sim.gekm.1d, type = "1", 1ty = 1, col = 2:8,
Iwd = 1, ylim = c(-1, 12), main = "GEK", yaxt = "n")
matplot(newdat$x, pred.gekm.1d, type = "1", 1lwd = 2, add = TRUE,
col = "black”, 1ty = 1)

points(x, y, pch = 16, cex = 1, col = "red")

mtext(side = 1, outer = TRUE, line = 2.5, "x")
mtext(side = 2, outer = TRUE, line = 2.5, "f(x)")

Compare predicted means and standard deviations from predict() and simulate()
pred.km.1d <- predict(km.1d, newdat, sd.fit = TRUE, df = df, scale = scale)
pred.gekm.1d <- predict(gekm.1d, newdat, sd.fit = TRUE, df = df, scale = scale)

Predicted means

plot(newdat$x, pred.km.1d$fit, type = "1", 1ty =1, 1lwd = 1,
ylim = c(-1, 12), main = "Kriging")

lines(newdat$x, rowMeans(sim.km.1d), col = 4)

points(x, y, pch = 16, cex = 1, col = "red")

plot(newdat$x, pred.gekm.1d$fit, type = "1", 1ty =1, lwd = 1,
ylim = c(-1, 12), main = "GEK", yaxt = "n")

lines(newdat$x, rowMeans(sim.gekm.1d), col = 4)

points(x, y, pch = 16, cex = 1, col = "red")

56 sphere

1, outer = TRUE, line = 2.5, "x")
2.5, "f(x)"

mtext(side
mtext(side = 2, outer = TRUE, line

Standard deviation

plot(newdat$x, pred.km.1d$sd.fit, type = "1", 1ty =1, 1lwd = 1,
ylim = c(@, 0.8), main = "Kriging")

lines(newdat$x, apply(sim.km.1d, 1, sd), col = 4)

points(x, rep(@, 5), pch = 16, cex = 1, col = "red")

plot(newdat$x, pred.gekm.1d$sd.fit, type = "1", 1ty =1, lwd = 1,
ylim = c(@, 0.8), main = "GEK", yaxt = "n")

lines(newdat$x, apply(sim.gekm.1d, 1, sd), col = 4)

points(x, rep(@, 5), pch = 16, cex = 1, col = "red")

mtext(side = 1, outer = TRUE, line = 2.5, "x")

mtext(side = 2, outer = TRUE, line = 2.5, "standard deviation”)
sphere Sphere Function
Description

The sphere function is defined by

d
.]csphelre(.’L‘l7 ...7:17d) = in
k=1
with z, € [—5.12,5.12] for k = 1, ..., d.

Usage

sphere(x)

sphereGrad(x)
Arguments

X a numeric vector or a numeric matrix with n rows and d columns. If a vector

is passed, the 1-dimensional version of the sphere function is calculated.

Details

The gradient of the sphere function is

21’1

vfsphere(xla"'vxd) = :
2:Ed

The sphere function has one global minimum fsphere(2*) = 0 at z* = (0,...,0).

sphere 57

Value

sphere returns the function value of the sphere function at x.

sphereGrad returns the gradient of the sphere function at x.

Author(s)

Carmen van Meegen

References

Plevris, V. and Solorzano, G. (2022). A Collection of 30 Multidimensional Functions for Global
Optimization Benchmarking. Data, 7(4):46. doi:10.3390/data7040046.

Surjanovic, S. and Bingham, D. (2013). Virtual Library of Simulation Experiments: Test Functions
and Datasets. https://www.sfu.ca/~ssurjano/ (retrieved January 19, 2024).

See Also

testfunctions for further test functions.

tangents for drawing tangent lines.

Examples

1-dimensional sphere function with tangents
curve(sphere(x), from = -5, to = 5)

x <- seq(-4.5, 4.5, length = 5)

y <- sphere(x)

dy <- sphereGrad(x)

tangents(x, y, dy, length = 2, lwd = 2, col = "red")
points(x, y, pch = 16)

Contour plot of sphere function

n.grid <- 15

x1 <= x2 <- seq(-5.12, 5.12, length.out = n.grid)

y <- outer(x1, x2, function(x1, x2) sphere(cbind(x1, x2)))

nin nin

contour(x1, x2, y, xaxs = "i", yaxs = "i", nlevels = 25, xlab = "x1", ylab = "x2")
contour(x1, x2, y, #xaxs = "i", yaxs = "i",
nlevels = 25, xlab = "x1", ylab = "x2")

x <- expand.grid(x1, x2)
gradient <- sphereGrad(x)

vectorfield(x, gradient, col = 4, scale = 1.1)

Perspective plot of sphere function

col.pal <- colorRampPalette(c("#000QQ7F", "blue", "#@QQ7FFF", "cyan", "#7FFF7F", "yellow”,
"#FF7F0Q", "red", "#7F0000"))

colors <- col.pal(100)

y.facet.center <- (y[-1, -1] + y[-1, -n.grid] + y[-n.grid, -1] + y[-n.grid, -n.grid])/4
y.facet.range <- cut(y.facet.center, 100)

https://doi.org/10.3390/data7040046
https://www.sfu.ca/~ssurjano/

58 steel

persp(x1, x2, y, phi = 30, theta = -315, expand = 0.75, ticktype = "detailed”,
col = colors[y.facet.rangel)

steel Steel Column Function

Description

The steel column function is defined by

_ 1 FoEb
fsteel(x)_FS ‘P<2Bl)+Bl)I{(£Cb_P)>7

with P = P + Py + Py, B, = “EBDH® gnd o = (Fg, Py, Py, Py, B, D, H, Fy, E).

212
Usage
steel(x, L = 7500)
steelGrad(x, L = 7500)
Arguments
X a numeric vector of length 9 or a numeric matrix with n rows and 9 columns.
length in mm of the steel column. Default is 7500.
Details
The steel column function describes the limite state function of a steel column with uncertain pa-
rameters.
Input Distribution Mean Standard Deviation Description
Fq LN 400 35 yield stress in MPa
P N 500000 50000 dead weight load in N
P G 600000 90000 variable load in N
Ps G 600000 90000 variable load in N
LN b 3 flange breadth in mm
D LN t 2 flange thickness in mm
H LN h 5 profile height in mm
Ey N 30 10 initial deflection in mm
E W 210000 4200 Young’s modulus in MPa

Here, V is the normal distribution and £\ is the log-normal distribution. Further, G represents the
Gumbel distribution and Y denotes the Weibull distribution.
Value

steel returns the function value of steel column function at x.

steelGrad returns the gradient of steel column function at x.

styblinski 59

Author(s)

Carmen van Meegen

References

Kuschel, N. and Rackwitz, R. (1997). Two Basic Problems in Reliability-Based Structural Opti-
mization. Mathematical Methods of Operations Research, 46(3):309-333.

Surjanovic, S. and Bingham, D. (2013). Virtual Library of Simulation Experiments: Test Functions
and Datasets. https://www.sfu.ca/~ssurjano/ (retrieved January 19, 2024).

See Also

testfunctions for further test functions.

styblinski Styblinski-Tang Function

Description

Styblinski-Tang function is defined by

d
1

Fstyblinski (T1, -, Ta) = = Y (x} — 1627 + 5%)
2

k=1

with xy, € [-5,5] fork =1, ...,d.
Usage

styblinski(x)

styblinskiGrad(x)
Arguments

X a numeric vector or a numeric matrix with n rows and d columns. If a vector

is passed, the 1-dimensional version of the Rastrigin function is calculated.

Details

The gradient of Styblinski-Tang function is

223 — 1621 + 2.5

V fstyblinski (T1, -y Tq) = :
223 — 1624 + 2.5

Styblinski-Tang function has one global minimum fitybiinski (%) = —39.16599d at 2* = (—2.903534,

..., —2.903534).

https://www.sfu.ca/~ssurjano/

60 styblinski

Value

styblinski returns the function value of Styblinski-Tang function at x.

styblinskiGrad returns the gradient of Styblinski-Tang function at x.

Author(s)

Carmen van Meegen

References

Jamil, M. and Yang, X.-S. (2013). A Literature Survey of Benchmark Functions for Global Opti-
mization Problems. International Journal of Mathematical Modelling and Numerical Optimisation,
4(2):150--194. doi:10.1504/IJMMNO.2013.055204.

Surjanovic, S. and Bingham, D. (2013). Virtual Library of Simulation Experiments: Test Functions
and Datasets. https://www.sfu.ca/~ssurjano/ (retrieved January 19, 2024).

See Also

testfunctions for further test functions.

tangents for drawing tangent lines.

Examples

1-dimensional Styblinski-Tang function with tangents
curve(styblinski(x), from = -5, to = 5)

x <- seq(-4.5, 4.5, length = 5)

y <- styblinski(x)

dy <- styblinskiGrad(x)

tangents(x, y, dy, length = 2, 1wd = 2, col = "red")
points(x, y, pch = 16)

Contour plot of Styblinski-Tang function

n.grid <- 50

x1 <- seq(-5, 5, length.out = n.grid)

x2 <- seq(-5, 5, length.out = n.grid)

y <- outer(x1, x2, function(x1, x2) styblinski(cbind(x1, x2)))

nin nin

contour(x1, x2, y, xaxs = "i", yaxs = "i", nlevels = 25, xlab = "x1", ylab = "x2")

Perspective plot of Styblinski-Tang function

col.pal <- colorRampPalette(c("#00QQQ7F", "blue", "#QQ7FFF", "cyan", "#7FFF7F", "yellow",
"#FF7F0Q", "red", "#7F0000"))

colors <- col.pal(100)

y.facet.center <- (y[-1, -1]1 + y[-1, -n.grid] + y[-n.grid, -1] + y[-n.grid, -n.grid])/4
y.facet.range <- cut(y.facet.center, 100)

persp(x1, x2, y, phi = 30, theta = -315, expand = 0.75, ticktype = "detailed”,

col = colors[y.facet.rangel)

https://doi.org/10.1504/IJMMNO.2013.055204
https://www.sfu.ca/~ssurjano/

sulfur 61

sulfur Sulfur Model Function

Description

The sulfur function is defined by

1 - 3QYL
fsulfur(x) = _553(1 - AC)T2(1 - Rs)zﬁmefllle A
with 2 = (Q,Y,L, \I]evgv f\I/e’T, 1- Aca 1- Rs)
Usage
sulfur(x, S_0 = 1366, A = 5.1e+14)
sulfurGrad(x, S_0@ = 1366, A = 5.1e+14)
Arguments
X a numeric vector of length 9 or a numeric matrix with n rows and 9 columns.
S_0 solar constant in W /m?. Default is 1366.
A surface area of the earth in m?2. Defaultis 5. 1e+14.
Details

The sulfur model function calculates the direct radiative forcing by sulfate aerosols [W /m?].

Input Central value Uncertainty factor Description

Q 71 1.15 source strength of anthropogenic sulfur in Tg/yr

Y 0.5 1.5 fraction of SO4 oxidized to SOT

L 5.5 1.5 average lifetime of atmospheric SO in days

v, 5 1.4 aerosol mass scattering efficiency in m? /g

B 0.3 1.3 fraction of light scattering into upward hemisphere

fo, 1.7 1.2 fractional increase in aerosol scattering efficiency due to hygroscopic growth
T 0.76 1.2 atmospheric transmittance above aerosol layer

1- A, 0.39 1.1 fraction of earth not covered by cloud

1—- R, 0.85 1.1 surface coalbedo

The inputs are all log-normally distributed.

Value

sulfur returns the function value of sulfur function at x.

sulfurGrad returns the gradient of sulfur function at x.

62 summary.gekm

Author(s)

Carmen van Meegen

References

Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, Jr., J. A., Hansen, J. E.,
and Hoffman, D. J. (1992). Climate Forcing by Anthropogenic Aerosols. Science, 255:423-430.
doi:10.1126/science.255.5043.423.

Penner, J. E., Charlson, R. J., Hales, J. M., Laulainen, N. S., Leifer, R., Novakov, T., Ogren, J.,
Radke, L. F., Schwartz, S. E., and Travis, L. (1994). Quantifying and Minimizing Uncertainty
of Climate Forcing by Anthropogenic Aerosols. Bulletin of the American Meteorological Society,
75(3):375-400. doi:10.1175/15200477(1994)075<0375:QAMUOC>2.0.CO;2.

Tatang, M. A., Pan, W., Prinn, R. G., and McRae, G. J. (1997). An Efficient Method for Para-
metric Uncertainty Analysis of Numerical Geophysical Model. Journal of Geophysical Research
Atmospheres, 102(18):21925-21932. doi:10.1029/97JD01654.

See Also

testfunctions for further test functions.

summary . gekm Summary Method for a gekm Object

Description

Summarizing (Gradient-Enhanced) Kriging Models.

Usage

S3 method for class 'gekm'
summary(object, scale = FALSE, ...)

S3 method for class 'summary.gekm'

print(x, digits = 4L, ...)
Arguments
object an object of class "gekm".
X an object of class "summary.gekm”.
scale logical. Should the estimated process standard deviation be scaled? Default is

FALSE, see sigma.gekm for details.
digits number of digits to be used for the print method.

further arguments passed to printCoefmat in the print method.

https://doi.org/10.1126/science.255.5043.423
https://doi.org/10.1175/1520-0477%281994%29075%3C0375%3AQAMUOC%3E2.0.CO%3B2
https://doi.org/10.1029/97JD01654

summary.gekm 63

Value

The summary method for an object of class "gekm"” returns a list with the following components:

call the matched call of object.
terms the terms object used.
coefficients amatrix with the estimated regression coefficients.
sigma the estimated (scaled) process standard deviation.
df degrees of freedom, i.e. the number of observations used to fit the model minus
the number of regression coefficients.
cov.scaled the (scaled) covariance matrix of the estimated regression coefficients.
covtype the name of the correlation function.
theta the (estimated) correlation parameteres.
Author(s)

Carmen van Meegen

References

Morris, M., Mitchell, T., and Ylvisaker, D. (1993). Bayesian Design and Analysis of Computer Ex-
periments: Use of Derivatives in Surface Prediction. Technometrics, 35(3):243-255. doi:10.1080/
00401706.1993.10485320.

Oakley, J. and O’Hagan, A. (2002). Bayesian Inference for the Uncertainty Distribution of Com-
puter Model Outputs. Biometrika, 89(4):769-784. doi:10.1093/biomet/89.4.769.

Park, J.-S. and Beak, J. (2001). Efficient Computation of Maximum Likelihood Estimators in a
Spatial Linear Model with Power Exponential Covariogram. Computers & Geosciences, 27(1):1-7.
doi:10.1016/S00983004(00)000169.

Rasmussen, C. E. and Williams, C. K. L. (2006). Gaussian Processes for Machine Learning. The
MIT Press. https://gaussianprocess.org/gpml/.

Ripley, B. D. (1981). Spatial Statistics. John Wiley & Sons. doi:10.1002/0471725218.

Sacks, J., Welch, W. J., Mitchell, T. J., and Wynn, H. P. (1989). Design and Analysis of Computer
Experiments. Statistical Science, 4(4):409-423. doi:10.1214/ss/1177012413.

Santner, T. J., Williams, B. J., and Notz, W. 1. (2018). The Design and Analysis of Computer
Experiments. 2nd edition. Springer-Verlag.

Stein, M. L. (1999). Interpolation of Spatial Data: Some Theory for Kriging. Springer Series in
Statistics. Springer-Verlag. doi:10.1007/9781461214946.

Zimmermann, R. (2015). On the Condition Number Anomaly of Gaussian Correlation Matrices.
Linear Algebra and its Applications, 466:512--526. doi:10.1016/j.1aa.2014.10.038.

See Also

gekm for fitting a (gradient-enhanced) Kriging model.
coef for extracting the (matrix of) coefficients.
veov for calculating the covaraince matrix of the regression coefficients.

confint for computing confidence intervals for the regression coefficients.

https://doi.org/10.1080/00401706.1993.10485320
https://doi.org/10.1080/00401706.1993.10485320
https://doi.org/10.1093/biomet/89.4.769
https://doi.org/10.1016/S0098-3004%2800%2900016-9
https://gaussianprocess.org/gpml/
https://doi.org/10.1002/0471725218
https://doi.org/10.1214/ss/1177012413
https://doi.org/10.1007/978-1-4612-1494-6
https://doi.org/10.1016/j.laa.2014.10.038

64 tangents

Examples

1-dimensional example: Oakley and 0’Hagan (2002)

Define test function and its gradient
f <- function(x) 5 + x + cos(x)
fGrad <- function(x) 1 - sin(x)

Generate coordinates and calculate slopes
x <- seq(-5, 5, length = 5)

y <= (0

dy <- fGrad(x)

dat <- data.frame(x, y)

deri <- data.frame(x = dy)

Fit (gradient-enhanced) Kriging model
km.1d <- gekm(y ~ . + I(x*2), data = dat, covtype = "gaussian”, theta = 1)
gekm.1d <- gekm(y ~ . + I(x*2), data = dat, deriv = deri, covtype = "gaussian”, theta = 1)

Model summaries
summary (km. 1d)

summary (gekm. 1d)

summary (gekm.1d, scale = TRUE)

tangents Add Tangent Lines to a Plot

Description

Draw tangent lines to an existing plot.

Usage

tangents(x, y, slope, length =1, ...)
Arguments

X,y coordinate vectors of points x and function values y.

slope vector of slopes at the points x.

length desired length of tangent lines, see ‘Details’.

further graphical parameters to be passed to segments.

Details

The length of the tangent lines is scaled according to the current aspect ratio of the existing plot.

Author(s)

Carmen van Meegen

testfunctions 65

References

Oakley, J. and O’Hagan, A. (2002). Bayesian Inference for the Uncertainty Distribution of Com-
puter Model Outputs. Biometrika, 89(4):769-784. doi:10.1093/biomet/89.4.769.

See Also

segments for drawing line segments between pairs of points.

Examples

Define test function and its gradient from Oakley and O'Hagan (2002)
f <= function(x) 5 + x + cos(x)
fGrad <- function(x) 1 - sin(x)

Generate coordinates and calculate slopes
x <- seq(-5, 5, length = 5)

y <= f(x)

dy <- fGrad(x)

Draw curve and tangent lines

curve(f(x), from = -6, to = 6)

tangents(x, y, dy, length = 2, lwd = 2, col = 2:6)
points(x, y, pch = 16)

testfunctions Test Functions in gek

Description

Overview of test functions and their associated gradients available in gek.

2-dimensional test functions for optimization

* branin: Branin-Hoo function

e camel3: Three-hump camel function
* camel6: Six-hump camel function

* himmelblau: Himmelblaus’s function

Multi-dimensional test functions for optimization

* banana: Rosenbrock’s Banana function
* cigar: Bent Cigar function

¢ griewank: Griewank function

* ging: Qing function

* rastrigin: Rastrigin function

* schwefel: Schwefel function

* sphere: Sphere function

e styblinski: Styblinski-Tang function

https://doi.org/10.1093/biomet/89.4.769

66

testfunctions

Test functions for uncertainty quantification

¢ borehole: Borehole function
e steel: Steel column function
¢ short: Short column function

e sulfur: Sulfur model function

Author(s)

Carmen van Meegen

References

Branin, Jr., F. H. (1972). Widely Convergent Method of Finding Multiple Solutions of Simultaneous
Nonlinear Equations. IBM Journal of Research and Development, 16(5):504-522.

Jamil, M. and Yang, X.-S. (2013). A Literature Survey of Benchmark Functions for Global Opti-
mization Problems. International Journal of Mathematical Modelling and Numerical Optimisation,
4(2):150--194. doi:10.1504/IJMMNO.2013.055204.

Harper, W. V. and Gupta, S. K. (1983). Sensitivity/Uncertainty Analysis of a Borehole Scenario
Comparing Latin Hypercube Sampling and Deterministic Sensitivity Approaches. BMI/ONWI-
516, Office of Nuclear Waste Isolation, Battelle Memorial Institute, Columbus, OH.

Himmelblau, D. (1972). Applied Nonlinear Programming. McGraw-Hill. ISBN 0-07-028921-2.

Kuschel, N. and Rackwitz, R. (1997). Two Basic Problems in Reliability-Based Structural Opti-
mization. Mathematical Methods of Operations Research, 46(3):309-333.

Morris, M., Mitchell, T., and Ylvisaker, D. (1993). Bayesian Design and Analysis of Computer Ex-
periments: Use of Derivatives in Surface Prediction. Technometrics, 35(3):243-255. doi:10.1080/
00401706.1993.10485320.

Plevris, V. and Solorzano, G. (2022). A Collection of 30 Multidimensional Functions for Global
Optimization Benchmarking. Data, 7(4):46. doi:10.3390/data7040046.

Rosenbrock, H. H. (1960). An Automatic Method for Finding the Greatest or least Value of a
Function. The Computer Journal, 3(3):175-184. doi:10.1093/comjnl/3.3.175.

Surjanovic, S. and Bingham, D. (2013). Virtual Library of Simulation Experiments: Test Functions
and Datasets. https://www.sfu.ca/~ssurjano/ (retrieved January 19, 2024).

See Also

banana, borehole, branin, camel3, camel6, cigar, griewank, himmelblau, qing, rastrigin,
schwefel, short, sphere, steel, styblinski, sulfur

https://doi.org/10.1504/IJMMNO.2013.055204
https://doi.org/10.1080/00401706.1993.10485320
https://doi.org/10.1080/00401706.1993.10485320
https://doi.org/10.3390/data7040046
https://doi.org/10.1093/comjnl/3.3.175
https://www.sfu.ca/~ssurjano/

vectorfield 67

vectorfield Add a Vector Field to a Plot

Description

Draw a vector field to an existing plot.

Usage
vectorfield(x, gradient, scale = 1, max.len = 0.1, min.len = 90.001, ...)
Arguments
X amatrix with 2 columns containing the coordinates.
gradient amatrix with 2 columns columns containing the corresponding gradients at the
locations in x.
scale a scaling factor for the arrows to be drawn.
max.len the maximum length of the edges of the arrow head.
min.len the minimum length of the edges of the arrow head.
further graphical parameters to be passed to arrows.
Author(s)

Carmen van Meegen

See Also

arrows for drawing arrows between pairs of points.

Examples

x <- seq(-2, 2, 0.2)
n <- length(x)
X <- expand.grid(X = x, Y= x)

f <= function(x,y) x * exp(-x*2-y*2)

df <- deriv(~ x * exp(-x"2-y*2), c("x", "y"), function(x, y){})
res <- df (X[, 11, X[,2D)

grad <- attr(res, "gradient"”)

contour(x, x, matrix(res, n, n), asp = 1)
vectorfield(X, grad)

contour(x, x, matrix(res, n, n), asp = 1)
vectorfield(X, grad, col = 4, code = 1, scale = 2)
contour(x, x, matrix(res, n, n), asp = 1)

vectorfield(X, grad, col = 4, 1lwd = 2, scale = 2)
contour(x, x, matrix(res, n, n), asp = 1)
vectorfield(X, grad, col = 1, angle = 20, scale = 2)

68

contour(x, x, matrix(res, n, n), asp = 1)
vectorfield(X, grad, col = 4, angle = 20, length
contour(x, x, matrix(res, n, n), asp = 1)
vectorfield(X, grad, col = 4, angle = 20, length
contour(x, x, matrix(res, n, n), asp = 1)

vectorfield(X, grad, col = 3, min.len = 0.1, max.

0.1)
= 0.1, scale = 2)

len = 0.15, scale = 2)

vectorfield

Index

x algebra
blockChol, 4

* aplot
plot.gekm, 39
tangents, 64
vectorfield, 67

* array
blockChol, 4

x datasets
cons, 18

+x models
gekm, 22
sigma.gekm, 51
summary . gekm, 62

arrows, 39, 40, 67

backsolve, 4, 5
banana, 2, 65, 66

bananaGrad (banana), 2
blockChol, 4, 8, 23, 33, 35, 54
blockCor, 5, 6, 23, 33, 35
borehole, 9, 66
boreholeGrad (borehole), 9
branin, 11, 40, 65, 66
braninGrad (branin), 11

call, 35
camel3, 13, 65, 66
camel3Grad (camel3), 13
camelso, 14, 65, 66
camel6Grad (camel6), 14
character, 6, 23, 33, 35, 37,41
chol, 4, 5
cigar, 15, 65, 66
cigarGrad (cigar), 15
class, 21, 24
coef, 18, 63
confint, 63
confint.gekm, 17

69

cons, 18
consTPM (cons), 18
consVSA (cons), 18

data.frame, 19,21, 23, 24,41, 53
deriv, 21-23
derivModelMatrix, 20, 23, 33, 35

environment, 33, 35
expression, 39

factor, 2/
formula, 2/

gekm, 6, 10, 18, 20, 22, 31, 32, 34, 36, 38, 40,

43,53, 54,63
graphical parameters, 64, 67
griewank, 28, 65, 66
griewankGrad (griewank), 28

himmelblau, 30, 65, 66
himmelblauGrad (himmelblau), 30

1,23
integer, 23

list, 23, 37, 39, 42

logical, 7,17,23,37,39,41, 52, 54, 62
loglik.gekm, 31

loglLikFun, 32, 35, 36
loglikGrad, 33, 34, 34

loo, 37,40

loo.gekm, 39

matrix, 2,6, 10, 11, 13, 14, 17, 28, 30, 33, 35,
37,42, 45,47, 50, 54, 56, 58, 59, 61,

63,67
model.matrix, 27, 33, 35

model.matrix.gekm (derivModelMatrix), 20

nmkb, 23

70 INDEX

numeric, 6, 23

optim, 23
optimize, 23

plot.default, 39
plot.gekm, 20, 25, 38, 39

points, 39
predict.gekm, 25, 37-39, 41, 54
print.gekm (gekm), 22
print.summary.gekm (summary.gekm), 62
printCoefmat, 62

ging, 45, 65, 66
gingGrad (qing), 45

rastrigin, 47, 65, 66
rastriginGrad (rastrigin), 47

schwefel, 48, 65, 66
schwefelGrad (schwefel), 48
segments, 64, 65

short, 50, 66

shortGrad (short), 50
sigma.gekm, 17, 23,37, 39,41, 51, 54, 62
simulate.gekm, 25, 53
sphere, 56, 65, 66

sphereGrad (sphere), 56
steel, 58, 66

steelGrad (steel), 58
styblinski, 59, 65, 66
styblinskiGrad (styblinski), 59
sulfur, 61, 66

sulfurGrad (sulfur), 61
summary . gekm, 25, 62

tangents, 8, 16, 29, 43, 48, 49, 57, 60, 64

terms, 24, 63

testfunctions, 3, 10, 12, 14-16, 29, 31, 46,
48, 49,51, 57, 59, 60, 62, 65

veov, 18, 63

vector, 2,10, 11, 13, 14, 17, 23, 28, 30, 33,
35,37,42,45,47, 50, 56, 58, 59, 61

vectorfield, 67

	banana
	blockChol
	blockCor
	borehole
	branin
	camel3
	camel6
	cigar
	confint.gekm
	cons
	derivModelMatrix
	gekm
	griewank
	himmelblau
	logLik.gekm
	logLikFun
	logLikGrad
	loo
	plot.gekm
	predict.gekm
	qing
	rastrigin
	schwefel
	short
	sigma.gekm
	simulate.gekm
	sphere
	steel
	styblinski
	sulfur
	summary.gekm
	tangents
	testfunctions
	vectorfield
	Index

