Package ‘highs’

February 3, 2026
Type Package
Title 'HiGHS' Optimization Solver
Version 1.12.0-2

Description R interface to 'HiGHS', an optimization solver for solving mixed integer
optimization problems with quadratic or linear objective and linear constraints.

License GPL (>=2)

Imports Rcpp (>=1.0.7), checkmate

Depends R (>=4.0.0)

SystemRequirements Bash, PkgConfig, CMAKE (>=3.16), C++17

URL https://gitlab.com/roigrp/solver/highs

BugReports https://gitlab.com/roigrp/solver/highs/-/issues
Suggests tinytest

Biarch FALSE

LinkingTo Rcpp

Encoding UTF-8

RoxygenNote 7.3.3

NeedsCompilation yes

Author Florian Schwendinger [aut, cre],
Dirk Schumacher [aut],
Julian Hall [cph],
Ivet Galabova [cph],
Leona Gottwald [cph],
Michael Feldmeier [cph]

Maintainer Florian Schwendinger <FlorianSchwendinger@gmx.at>
Repository CRAN
Date/Publication 2026-02-03 08:50:15 UTC

https://gitlab.com/roigrp/solver/highs
https://gitlab.com/roigrp/solver/highs/-/issues

2 Contents

Contents
example_model oL L 3
example_SOIVer L. e e 4
highs_available_solver_options 4
highs_control 5
highs_model e 5
highs_solve e e 7
highs_solver e 9
highs_write_model 10
hi_model_get_ncons 11
hi_model_get nvars 11
hi_model_set_constraint_matrix e e e e e e e e e 12
hi_model_set_hessian e e 12
hi_model_set_Ths e 13
hi_model_set_lower e e e 14
hi_ model _set_ ncol e 14
hi_ model set NnTOW e e e 15
hi_model_set_objective 15
hi_model_set_offset e 16
hi_model_set_rhs e e 17
hi_model_Set_Sense e e e e e 17
hi_model_set_upper. e e e 18
hi_model_set_vartype L e 18
hi_new_model e 19
hi_new_SOIVer e e 19
hi_reset_global_scheduler 20
hi_solver_add_cols e 21
hi_solver_add_rows e e 21
hi_solver_add_vars e e 22
hi_solver_change_constraint_bounds oo L. 23
hi_solver_change_variable_bounds oo 23
hi_solver_clear 24
hi_solver_clear_model 25
hi_solver_clear_solver e 25
hi_solver_get_bool_option 26
hi_solver_get_constraint_bounds L 26
hi_solver_get_constraint_matrix 27
hi_solver_get_dbl_option 27
hi_solver_get_int_option 28
hi_solver_get_Ip_costs 29
hi_solver_get_ num_col 29
hi_solver_get_num_row v i i e e e 30
hi_solver_get_option e 30
hi_solver_get_options e e e e 31
hi_solver_get_sense e 32
hi_solver_get_solution 32

hi_solver_get_str_option 33

example_model 3

hi_solver_get_variable_bounds 33
hi_solver_get_vartype i i e e e e 34
hi_solver_infinity L e 35
hi_solver_info 35
hi_solver_run 36
hi_solver_set_coeff e 36
hi_solver_set_constraint_bounds 37
hi_solver_set_integrality 38
hi_solver_set_objective 38
hi_solver_set_offset e 39
hi_solver_set_option 40
hi_solver_set_options e e 41
hi_SOIVEr_Set_SENSE v i v i i e e e e e e e e e e e e e 42
hi_solver_set variable bounds 42
hi_solver_status 43
hi_solver_status_messaget e e 43
hi_solver_write_basis e e 44
hi_solver_write_model 45
Index 46
example_model Generate Example Optimization Models
Description

Creates example optimization models for different problem types: - Linear Programming (LP) -
Mixed Integer Linear Programming (MILP) - Quadratic Programming (QP)

Usage

example_model (op_type = c("LP", "MILP", "QP"))

Arguments
op_type Character string specifying the type of optimization model. Must be one of
"LP", llMILPII’ Or ||QP||.
Value

A HiGHS model object configured according to the specified type: - LP: Maximization problem
with 3 variables and 3 constraints - MILP: Maximization problem with mixed integer and continu-
ous variables - QP: Problem with quadratic objective function

Examples

model <- example_model("LP")
model <- example_model ("MILP")
model <- example_model("QP")

4 highs_available_solver._options

example_solver Create a HIGHS Solver Object

Description

Creates and solves an example optimization model using the HiGHS solver. This is a convenience
wrapper that combines model creation and solving in a single function call.

Usage

example_solver(op_type = c("LP", "MILP", "QP"))

Arguments
op_type Character string specifying the type of optimization model. Must be one of
"LP"’ llMILPII’ Or n PH-
Value

An object of class "highs_solver".

Examples

solver <- example_solver("LP")
solver <- example_solver("MILP")
solver <- example_solver("QP")

highs_available_solver_options
Available Solver Options

Description

Reference for the available solver options.

Usage

highs_available_solver_options()

Value

A data. frame containing the available solver options.

Examples

highs_available_solver_options()

highs_control

highs_control Highs Control

Description

Highs Control
Usage

highs_control(threads = 1L, time_limit = Inf, log_to_console = FALSE, ...)
Arguments

threads an integer giving the number of threads to be used.

time_limit a double giving the time limit.

log_to_console alogical giving if the output should be shown in the console.

other arguments supported by the HiGHS solver.

Examples

control <- highs_control()

highs_model Create a Highs Model

Description

Solve linear and quadratic mixed integer optimization problems.

Usage

highs_model (
Q = NULL,
L,
lower,
upper,
A = NULL,
lhs = NULL,
rhs = NULL,
types = rep.int(1L, length(L)),
maximum = FALSE,
offset = @

Arguments

Q
L

lower

upper

lhs

rhs
types
maximum

offset

Value

highs_model

a numeric symmetric matrix giving the quadratic part of the objective.
a numeric vector giving the linear part of the objective function.

a numeric vector giving the lower bounds of the variables.

a numeric vector giving the upper bounds of the variables.

a numeric matrix giving the linear part of the constraints. Rows are constraints,
and columns are decision variables.

a numeric vector giving the left hand-side of the linear constraints.
a numeric vector giving the right hand-side of the linear constraints.

a integer vector or character vector giving the variable types. 'C' or '1' for
continuous, 'I' or '2' for integer, 'SC' or '3' for semi continuous, 'SI' or
'4" for semi integer and 'II' or '5' for implicit integer.

alogical if TRUE the solver searches for a maximum, if FALSE the solver searches
for a minimum.

a numeric value giving the offset (default is).

A an object of class highs_model.

Examples

library("highs")

#
#

E S > % o o oH o

2 3 >0 # #H# HF H H

Minimize:
X_0 + x_1+3
Subject to:
x_1 <= 7
5<= x_0 + 2x_1 <= 15
6 <= 3x_0 + 2x_1
0 <= x_0 <= 4
1 <= x_1
<- rbind(c(@, 1), c(1, 2), c(3, 2))
<- highs_model(L = c(1.0, 1), lower = c(@, 1), upper = c(4, Inf),
A = A, lhs = c(-Inf, 5, 6), rhs = c(7, 15, Inf),
offset = 3)
Minimize:
-X_2 = 3x_3 + (1/2) * (2 x_1%2 = 2 x_1x_3 + 0.2 x_2"2 + 2 x_3"2)
Subject to:
Xx_1 + x_3 <=2
0 <= X

<- c(o, -1, -3)

<- rbind(c(2, 0.0, -1), c(0, 0.2, @), c(-1, 0.0, 2))

<- cbind(1, @, 1)

<- highs_model(Q = Q, L =L, lower =@, A=A, rhs = 2)

highs_solve 7

highs_solve Solve an Optimization Problems

Description

Solve linear and quadratic mixed integer optimization problems.

Usage

highs_solve(
Q = NULL,
L,
lower,
upper,
A = NULL,
lhs = NULL,
rhs = NULL,
types = rep.int(1L, length(L)),
maximum = FALSE,

offset = 0,
control = highs_control()
)
Arguments
Q a numeric symmetric matrix giving the quadratic part of the objective.
L a numeric vector giving the linear part of the objective function.
lower a numeric vector giving the lower bounds of the variables.
upper a numeric vector giving the upper bounds of the variables.
A a numeric matrix giving the linear part of the constraints. Rows are constraints,
and columns are decision variables.
lhs a numeric vector giving the left hand-side of the linear constraints.
rhs a numeric vector giving the right hand-side of the linear constraints.
types a integer vector or character vector giving the variable types. 'C' or '1' for
continuous, 'I' or '2' for integer, 'SC' or '3"' for semi continuous, 'SI' or
'4"' for semi integer and 'II' or '5' for implicit integer.
maximum a logical if TRUE the solver searches for a maximum, if FALSE the solver searches
for a minimum.
offset a numeric value giving the offset (default is).
control a list giving additional options for the solver, see highs_available_solver_options

or the README file for a list of all available options.

8 highs_solve

Value

A list containing the result provided by the solver, containing the following named objects:

primal_solution
a numeric vector giving the primal solution.

objective_value
a numeric giving the objective value.

status an integer giving the status code
status_message a character string giving the status message (explanation of the status_code).
solver_msg a list giving the original (not canonicalized) solver message.

info a list giving additional information provided by the solver.

Additional information on can be found in the README file.

Examples

library("highs")
Minimize:
x_0+ x_1+3

Subject to:

x_1 <= 7
5 <= x_0 + 2x_1 <= 15
6 <= 3x_0 + 2x_1

0 <=x_0<=4

1 <= x_1

A <- rbind(c(@, 1), c(1, 2), c(3, 2))

s <- highs_solve(L = c(1.0, 1), lower = c(@, 1), upper = c(4, Inf),
A = A, lhs = c(-Inf, 5, 6), rhs = c(7, 15, Inf),
offset = 3)

s[["objective_value"]]

s[["primal_solution"]]

Minimize:

-x_2 - 3x_3 + (1/2) * (2 x_1"2 - 2 x_1x_3 + 0.2 x_2"2 + 2 x_3"2)
Subject to:

x_1 +x.3<=2

0 <= x

L <= c(o, -1, -3)

Q <- rbind(c(2, 0.0, -1), c(0, 0.2, @), c(-1, 0.0, 2))

A <- cbind(1, 0, 1)

s <- highs_solve(Q = Q, L = L, lower =@, A=A, rhs = 2)
s[["objective_value"]]

s[["primal_solution”]]

highs_solver 9

highs_

solver Highs Solver

Description

Create a wrapper around the HiGHS solver. Manly usefull if one wants a low level wrapper around
highs with hot-start capabilities.

Usage

highs_solver(model, control = highs_control())

Arguments
model an object of class "highs_model” created with highs_model ().
control an object of class "highs_control” created with highs_control().
Details
Methods

The following methods are provided by the "highs_solver” class.

solve(...) method to be called to solve the optimization problem. Returns an integer giving
the status code returned by HiIGHS.

status () method to obtain the status from the solver.
status_message () method to obtain the status message from the solver.
solution() method to obtain the solution from the solver.

info() info to obtain addtional information from the solver.

L(i, v) method to get and set the linear part of the objective.

A(i, j, v) method to get and set the constraint matrix coefficients.

cbounds (i, lhs, rhs) method to get and set the constraint bounds (left hand-side and right
hand-side).

types(i, v) method to get and set the variable types.
vbounds (i, lower, upper) method to get and set the variable bounds.

maximum(maximize) method to get and set the sense of the problem.

Method arguments

. optional control arguments, which can be used to alter the options set via the control
argument when initializing the solver.

i a vector of integers giving the index (vector index or row index) of the coeficcients to be
altered.

10 highs_write_model

* j avector of integers giving the index (column index) of the coeficcients to be altered.
* v a vector of doubles giving the values of the coeficcients to be altered.

* lhs a vector of doubles giving left hand-side.

* rhs a vector of doubles giving right hand-side.

* lower a vector of doubles giving the lower bounds to be altered.

* upper a vector of doubles giving the upper bounds to be altered.

Value

an object of class "highs_solver"”.

Examples

A <= rbind(c(0, 1), c(1, 2), c(3, 2))

m <- highs_model(L = c(1.0, 1), lower = c(@, 1), upper = c(4, Inf),
A = A, lhs = c(-Inf, 5, 6), rhs = c(7, 15, Inf),
offset = 3)

solver <- highs_solver(m)

highs_write_model Write a Highs Model to a File

Description

Write an highs model to file.

Usage

highs_write_model(model, file)

Arguments
model an object of class highs_model.
file a character string giving the filename.
Examples

model <- example_model()
model_file <- tempfile(fileext = ".mps")
highs_write_model (model, model_file)

hi_model_get_ncons 11

hi_model_get_ncons Get Number of Constraints in a Model

Description

This function retrieves the number of constraints in a given ‘highs_model* object.

Usage

hi_model_get_ncons(model)

Arguments

model A ‘highs_model‘ object. The model from which to get the number of variables.

Value

An integer representing the number of constraints in the model.

Examples

model <- hi_new_model()
hi_model_get_ncons(model)

hi_model_get_nvars Get Number of Variables in a Highs Model

Description

This function retrieves the number of variables in a given Highs model.

Usage

hi_model_get_nvars(model)

Arguments

model A ‘highs_model‘ object. The model from which to get the number of variables.

Value

An integer representing the number of variables in the model.

Examples

model <- hi_new_model()
hi_model_get_nvars(model)

12 hi_model set_hessian

hi_model_set_constraint_matrix
Set Constraint Matrix for Highs Model

Description

This function sets the constraint matrix for a given Highs model.

Usage

hi_model_set_constraint_matrix(model, matrix)

Arguments
model an object of class "highs_model”.
matrix a matrix giving the Hessian matrix. Allowed matrix classes are "matrix”,
"dgCMatrix"”, "matrix.csc”, and "simple_triplet_matrix".
Value
NULL
Examples

model <- hi_new_model()
matrix <- matrix(c(1, @, @, 1), nrow = 2)
hi_model_set_constraint_matrix(model, matrix)

hi_model_set_hessian Set Hessian Matrix for Highs Model

Description

This function sets the Hessian matrix for a given Highs model.

Usage

hi_model_set_hessian(model, matrix)

Arguments
model an object of class "highs_model”.
matrix a matrix giving the Hessian matrix. Allowed matrix classes are "matrix”,

"dgCMatrix”, "matrix.csc"”, and "simple_triplet_matrix".

hi_model set lhs 13

Value

NULL

Examples

model <- hi_new_model()
hessian_matrix <- matrix(c(1, 0, @, 1), nrow = 2)
hi_model_set_hessian(model, hessian_matrix)

hi_model_set_lhs Set Left Hand Side for a Highs Model

Description

This function sets the left hand side for a given Highs model.

Usage

hi_model_set_lhs(model, 1lhs)

Arguments

model an object of class "highs_model”.

lhs a numeric vector giving the left hand side values.

Value

NULL

Examples

model <- hi_new_model()
model <- hi_model_set_lhs(model, c(@, 1, 2))

14 hi_model_set_ncol

hi_model_set_lower Set Lower Bounds for Highs Model

Description

This function sets the lower bounds for a given Highs model.

Usage

hi_model_set_lower(model, lower)

Arguments

model an object of class "highs_model”.

lower a numeric vector giving the lower bounds.

Value

NULL

Examples

model <- hi_new_model()
lower_bounds <- c(0, 1, 2)
hi_model_set_lower(model, lower_bounds)

hi_model_set_ncol Sets the number of columns in the model

Description

This function sets the number of columns in the given model.

Usage

hi_model_set_ncol(model, ncol)

Arguments

model an object of class "highs_model”.

ncol an integer giving the number of columns (variables) to set in the model
Value

NULL

hi_model set nrow 15

Examples

model <- hi_new_model()
hi_model_set_ncol(model, 10L) # Sets the model to have 10 columns

hi_model_set_nrow Set the number of rows in the model

Description

This function sets the number of rows in the given model.

Usage

hi_model_set_nrow(model, nrow)

Arguments

model an object of class "highs_model”.

nrow an integer giving the number of rows (variables) to set in the model

Value

NULL

Examples

model <- hi_new_model()
hi_model_set_nrow(model, 5L) # Sets the model to have 5 rows

hi_model_set_objective
Set Objective for Highs Model

Description

This function sets the objective for a given Highs model.

Usage

hi_model_set_objective(model, objective)

Arguments

model an object of class "highs_model”.

objective a numeric vector giving the objective values to be set for the model.

16 hi_model_set_offset

Value

NULL

Examples

model <- hi_new_model()
objective <- c(1, 2, 3)
hi_model_set_objective(model, objective)

hi_model_set_offset Set Offset for Highs Model

Description

This function sets the offset for a given Highs model.

Usage

hi_model_set_offset(model, offset)

Arguments

model an object of class "highs_model”.

offset a numeric value of length 1. The offset value to be set for the model.

Value

NULL

Examples

model <- hi_new_model()
hi_model_set_offset(model, 10)

hi_model set rhs 17

hi_model_set_rhs Set Right Hand Side for a Highs Model

Description

This function sets the left hand side for a given Highs model.

Usage

hi_model_set_rhs(model, rhs)

Arguments

model an object of class "highs_model”.

rhs a numeric vector giving the left hand side values.

Value

NULL

Examples

model <- hi_new_model()
model <- hi_model_set_rhs(model, c(0, 1, 2))

hi_model_set_sense Set the sense of the optimization model

Description

This function sets the sense of the optimization model to either maximization or minimization.

Usage

hi_model_set_sense(model, maximum)

Arguments
model an object of class "highs_model”.
maximum a boolean value indicating whether the model should be set to maximization
(‘TRUE®) or minimization (‘FALSE®).
Value

NULL

18

Examples

model <- hi_new_model()
hi_model_set_sense(model, TRUE) # Set the model to maximization
hi_model_set_sense(model, FALSE) # Set the model to minimization

hi_model_set_vartype

hi_model_set_upper Set Upper Bounds for a Highs Model

Description

This function sets the upper bounds for a given Highs model.

Usage

hi_model_set_upper(model, upper)

Arguments

model an object of class "highs_model”.

upper a numeric vector giving the upper bounds.

Value

NULL

Examples

model <- hi_new_model()
upper_bounds <- c(10, 20, 30)
hi_model_set_upper(model, upper_bounds)

hi_model_set_vartype Set Variable Types in a Highs Model

Description

This function sets the variable types in a given Highs model.

Usage

hi_model_set_vartype(model, types)

hi_new_model

Arguments

model an object of class "highs_model”.

types an integer vector specifying the types of the variables.
Value

The function does not return a value. It modifies the ‘model‘ object in place.

Examples

model <- hi_new_model()
types <- c(1, 2, 1, 0)
hi_model_set_vartype(model, types)

19

hi_new_model Create new Highs Model

Description

Create a new highs model object.

Usage

hi_new_model()

Value

an object of class "highs_model”.

Examples

model <- hi_new_model()

hi_new_solver Create a new solver instance.

Description

This function initializes a new Highs solver instance using the provided model pointer.

Usage

hi_new_solver (model)

20

Arguments

model an object of class "highs_model”

Value

A new solver instance.

Examples

model <- example_model()
solver <- hi_new_solver(model)

hi_reset_global_scheduler

hi_reset_global_scheduler
Reset Global Scheduler

Description

This function resets the global scheduler used by the solver.

Usage

hi_reset_global_scheduler(blocking)

Arguments

blocking A logical value indicating whether to wait for completion.

Value

Invisible NULL.

Examples

hi_reset_global_scheduler(TRUE)

hi_solver_add_cols 21

hi_solver_add_cols Add Variables to Model

Description

This function adds new variables (columns) to the optimization model.

Usage

hi_solver_add_cols(solver, costs, lower, upper, start, index, value)

Arguments
solver An object of class "highs_solver".
costs A numeric vector of objective coefficients.
lower A numeric vector giving the lower bounds of the new variables.
upper A numeric vector giving the upper bounds of the new variables.
start An integer vector of starting positions in the sparse matrix.
index An integer vector of row indices.
value A numeric vector of coefficient values.

Value

The solver instance with new variables added.

Examples

solver <- example_solver()
hi_solver_add_cols(solver, c(1), c(@), c(10), c(@, 1), c(@), c(2))

hi_solver_add_rows Add Constraints to Model

Description

This function adds new constraints (rows) to the optimization model.

Usage

hi_solver_add_rows(solver, lhs, rhs, start, index, value)

22

Arguments
solver An object of class "highs_solver".
lhs A numeric vector of left-hand side bounds.
rhs A numeric vector of right-hand side bounds.
start An integer vector of starting positions in the sparse matrix.
index An integer vector of column indices.
value A numeric vector of coefficient values.
Value

The solver instance with new constraints added.

Examples

solver <- example_solver()
hi_solver_add_rows(solver, c(-Inf), c(10), c(@, 2), c(o, 1), c(1, 2))

hi_solver_add_vars

hi_solver_add_vars Add Variables to the Solver

Description

This function adds new variables to the solver with specified bounds.

Usage

hi_solver_add_vars(solver, lower, upper)

Arguments
solver An object of class "highs_solver".
lower A numeric vector of lower bounds for the new variables.
upper A numeric vector of upper bounds for the new variables.
Value

The solver instance with the new variables added.

Examples

solver <- example_solver()
hi_solver_add_vars(solver, lower = c(@, @, @), upper = c(10, 10, 10))

hi_solver_change_constraint_bounds 23

hi_solver_change_constraint_bounds
Change Constraint Bounds

Description

This function updates the bounds of an existing constraint in the model.

Usage

hi_solver_change_constraint_bounds(solver, idx, lhs, rhs)

Arguments
solver An object of class "highs_solver".
idx An integer vector specifying the constraint indices.
lhs The new left-hand side bound.
rhs The new right-hand side bound.
Value

The solver instance with updated constraint bounds.

Examples

solver <- example_solver()
hi_solver_change_constraint_bounds(solver, 1, -Inf, 100)

hi_solver_change_variable_bounds
Change Variable Bounds

Description

This function updates the bounds of an existing variable in the model.

Usage

hi_solver_change_variable_bounds(solver, idx, lower, upper)

24

Arguments
solver
idx
lower

upper

Value

An object of class "highs_solver".
An integer specifying the variable index.
The new lower bound.

The new upper bound.

The solver instance with updated bounds.

Examples

solver <- example_solver()
hi_solver_change_variable_bounds(solver, 1, @, 10)

hi_solver clear

hi_solver_clear

Clear All Solver Data

Description

This function clears all data from the solver instance, including the model and solution.

Usage

hi_solver_clear(solver)

Arguments

solver

Value

An object of class "highs_solver".

The cleared solver instance.

Examples

solver <- example_solver()
hi_solver_clear(solver)

hi_solver clear model

25

hi_solver_clear_model Clear Model Data

Description

This function clears only the model data from the solver instance.

Usage

hi_solver_clear_model(solver)

Arguments

solver An object of class "highs_solver".

Value

The solver instance with cleared model data.

Examples

solver <- example_solver()
hi_solver_clear_model(solver)

hi_solver_clear_solver
Clear Solver State

Description

This function clears the internal solver state while preserving the model.

Usage

hi_solver_clear_solver(solver)

Arguments

solver An object of class "highs_solver".

Value

The solver instance with cleared solver state.

26 hi_solver_get_constraint_bounds

Examples

solver <- example_solver()
hi_solver_clear_solver(solver)

hi_solver_get_bool_option
Get Boolean Option Value

Description

This function retrieves the value of a boolean solver option.

Usage

hi_solver_get_bool_option(solver, key)

Arguments

solver An object of class "highs_solver".

key A character string specifying the option name.
Value

A logical value.

Examples

solver <- example_solver()
value <- hi_solver_get_bool_option(solver, "mip_detect_symmetry")

hi_solver_get_constraint_bounds
Get Constraint Bounds

Description

This function retrieves the bounds for all constraints in the model.

Usage

hi_solver_get_constraint_bounds(solver)

Arguments

solver An object of class "highs_solver".

hi_solver_get_constraint_matrix

Value

A list containing lower and upper bounds for all constraints.

Examples

solver <- example_solver()
bounds <- hi_solver_get_constraint_bounds(solver)

27

hi_solver_get_constraint_matrix
Get Constraint Matrix

Description

This function retrieves the constraint matrix of the optimization model.

Usage

hi_solver_get_constraint_matrix(solver)

Arguments

solver An object of class "highs_solver".

Value

A sparse matrix representing the constraints.

Examples

solver <- example_solver()
matrix <- hi_solver_get_constraint_matrix(solver)

hi_solver_get_dbl_option
Get Double Option Value

Description

This function retrieves the value of a double precision solver option.

Usage

hi_solver_get_dbl_option(solver, key)

28

Arguments

solver An object of class "highs_solver".

key A character string specifying the option name.
Value

A numeric value.

Examples

solver <- example_solver()
value <- hi_solver_get_dbl_option(solver, "time_limit")

hi_solver_get_int_option

hi_solver_get_int_option
Get Integer Option Value

Description

This function retrieves the value of an integer solver option.

Usage

hi_solver_get_int_option(solver, key)

Arguments

solver An object of class "highs_solver".

key A character string specifying the option name.
Value

An integer value.

Examples

solver <- example_solver()
value <- hi_solver_get_int_option(solver, "log_dev_level"”)

hi_solver_get_Ip_costs

29

hi_solver_get_lp_costs
Get Objective Coefficients

Description

This function retrieves the objective coefficients of the linear program.

Usage

hi_solver_get_lp_costs(solver)

Arguments

solver An object of class "highs_solver".

Value

A numeric vector of objective coefficients.

Examples

solver <- example_solver()
costs <- hi_solver_get_lp_costs(solver)

hi_solver_get_num_col Get Number of Variables

Description

This function returns the number of variables (columns) in the optimization model.

Usage

hi_solver_get_num_col(solver)

Arguments

solver An object of class "highs_solver".

Value

An integer representing the number of variables.

30 hi_solver_get_option

Examples

solver <- example_solver()
n_vars <- hi_solver_get_num_col(solver)

hi_solver_get_num_row Get Number of Constraints

Description

This function returns the number of constraints (rows) in the optimization model.

Usage

hi_solver_get_num_row(solver)

Arguments

solver An object of class "highs_solver".

Value

An integer representing the number of constraints.

Examples

solver <- example_solver()
n_constraints <- hi_solver_get_num_row(solver)

hi_solver_get_option Get a HiGHS Solver Option

Description

Retrieves the value of a specific option from a HiGHS solver instance.

Usage

hi_solver_get_option(
solver,
key,
type = c("auto”, "bool", "integer"”, "double"”, "string")

)

hi_solver_get_options 31

Arguments
solver A HiGHS solver object of class "highs_solver”.
key A character string specifying the option name to retrieve.
type Type of the option. Can be one of "auto", "bool", "integer", "double", or "string".
When set to "auto" (default), the function will attempt to determine the type from
the available options list. Specify a type directly if the option is valid but not
listed in the available options.
Value

The value of the specified option with the appropriate type.

Examples

solver <- example_solver()
hi_solver_get_option(solver, "output_flag")
hi_solver_get_option(solver, "solver", type = "string")

hi_solver_get_options Get multiple HiGHS Solver Options

Description

Retrieves the values of multiple options from a HIGHS solver instance.

Usage

hi_solver_get_options(solver, keys = NULL)

Arguments
solver A HiGHS solver object of class "highs_solver”.
keys A character vector of option names to retrieve.
Value

A named list of option values with the appropriate types.

Examples

solver <- example_solver()
hi_solver_get_options(solver, c("output_flag", "solver"))

32 hi_solver_get_solution

hi_solver_get_sense Get the optimization sense of the solver instance.

Description
This function returns the optimization sense (e.g., minimization or maximization) of the provided
solver instance.

Usage

hi_solver_get_sense(solver)

Arguments

solver An object of class "highs_solver" representing the solver instance.

Value

The optimization sense of the solver instance.

Examples

solver <- example_solver()
hi_solver_get_sense(solver)

hi_solver_get_solution
Get Solution

Description

This function retrieves the solution from the solver after optimization.

Usage

hi_solver_get_solution(solver)

Arguments

solver An object of class "highs_solver".

Value

A list containing the solution information.

hi_solver_get_str_option

Examples

solver <- example_solver()
hi_solver_run(solver)
solution <- hi_solver_get_solution(solver)

33

hi_solver_get_str_option
Get String Option Value

Description

This function retrieves the value of a string solver option.

Usage

hi_solver_get_str_option(solver, key)

Arguments

solver An object of class "highs_solver".

key A character string specifying the option name.
Value

A character string.

Examples

solver <- example_solver()
value <- hi_solver_get_str_option(solver, "solver")

hi_solver_get_variable_bounds
Get Variable Bounds

Description

This function retrieves the bounds for all variables in the model.

Usage

hi_solver_get_variable_bounds(solver)

34

Arguments

solver An object of class "highs_solver".

Value

A list containing lower and upper bounds for all variables.

Examples

solver <- example_solver()
bounds <- hi_solver_get_variable_bounds(solver)

hi_solver_get_vartype

hi_solver_get_vartype Get Variable Types

Description

This function retrieves the type (continuous, integer, etc.) of all variables.

Usage

hi_solver_get_vartype(solver)

Arguments

solver An object of class "highs_solver".

Value

A character vector of variable types.

Examples

solver <- example_solver()
types <- hi_solver_get_vartype(solver)

hi_solver_infinity

35

hi_solver_infinity Get Solver Infinity Value

Description

This function returns the value that the solver uses to represent infinity.

Usage

hi_solver_infinity()

Value

A numeric value representing infinity in the solver.

Examples

inf <- hi_solver_infinity()

hi_solver_info Get Solver Information

Description

This function retrieves detailed information about the solver’s state and performance.

Usage

hi_solver_info(solver)

Arguments

solver An object of class "highs_solver".

Value

A list containing solver information.

Examples

solver <- example_solver()
info <- hi_solver_info(solver)

36

hi_solver_set_coeff

hi_solver_run Run the Solver

Description

This function executes the optimization solver on the current model.

Usage

hi_solver_run(solver)

Arguments

solver An object of class "highs_solver".

Value

The solver instance after optimization.

Examples

solver <- example_solver()
hi_solver_run(solver)

hi_solver_set_coeff Set a coefficient in the constraint matrix.

Description

This function assigns a coefficient value to a specific entry in the constraint matrix.

Usage

hi_solver_set_coeff(solver, row, col, val)

Arguments
solver An object of class "highs_solver".
row The row index.
col The column index.
val The coefficient value.
Value

The solver instance with the updated coefficient.

hi_solver_set_constraint_bounds

Examples

solver <- example_solver()
hi_solver_set_coeff(solver, 1, 1, 4.2)

37

hi_solver_set_constraint_bounds
Set constraint bounds for a given constraint.

Description

This function sets the lower and upper bounds for a specific constraint.

Usage

hi_solver_set_constraint_bounds(solver, index, lower, upper)

Arguments
solver An object of class "highs_solver".
index The constraint index.
lower The lower bound.
upper The upper bound.
Value

The solver instance with updated constraint bounds.

Examples

solver <- example_solver()
hi_solver_set_constraint_bounds(solver, 1, -Inf, 100)

38 hi_solver_set_objective

hi_solver_set_integrality
Set integrality for a set of variables in the solver.

Description

This function defines whether a variable is categorized as integral or continuous.

Usage

hi_solver_set_integrality(solver, index, type)

Arguments
solver An object of class "highs_solver".
index An integer vector specifying the variable index.
type An integer vector representing the integrality type.
Value

The solver instance with updated integrality settings.

Examples

solver <- example_solver()
hi_solver_set_integrality(solver, 1, 1)

hi_solver_set_objective
Set the objective coefficient for a set of variables.

Description

This function assigns a coefficient to a variable in the objective function.

Usage

hi_solver_set_objective(solver, index, coeff)

Arguments
solver An object of class "highs_solver".
index The variable index.

coeff A numeric value representing the objective coefficient.

hi_solver_set_offset

Value

The solver instance with the updated objective.

Examples

solver <- example_solver()
hi_solver_set_objective(solver, 2, 3.5)

39

hi_solver_set_offset Set the objective offset for the solver.

Description

This function sets the objective offset in the solver instance.

Usage

hi_solver_set_offset(solver, ext_offset)

Arguments
solver An object of class "highs_solver".
ext_offset A numeric value representing the offset.
Value

The solver instance with the updated offset.

Examples

solver <- example_solver()
hi_solver_set_offset(solver, 5.0)

40

hi_solver_set_option

hi_solver_set_option Seta HiGHS Solver Option

Description

Sets the value of a specific option for a HIGHS solver instance.

Usage
hi_solver_set_option(
solver,
key,
value,
type = c("auto”, "bool"”, "integer"”, "double"”, "string")
)
Arguments
solver A HiGHS solver object of class "highs_solver”.
key A character string specifying the option name to set.
value The value to set for the specified option. Will be coerced to the appropriate type.
type Type of the option. Can be one of "auto", "bool", "integer", "double", or "string".
When set to "auto" (default), the function will attempt to determine the type from
the available options list. Specify a type directly if the option is valid but not
listed in the available options.
Value
Invisibly returns NULL.
Examples

solver <- example_solver()
hi_solver_set_option(solver, "output_flag", "FALSE")
hi_solver_set_option(solver, "solver"”, "simplex"”, type = "string")

hi_solver_set_options 41

hi_solver_set_options Ser Multiple HIGHS Solver Options

Description

Sets multiple options for a HIGHS solver instance at once.

Usage

hi_solver_set_options(solver, control = list())

Arguments
solver A HiGHS solver object of class "highs_solver”.
control A named list of options to set. Names should be valid option names and values
will be coerced to the appropriate types.
Value
Invisibly returns NULL.
Examples

solver <- example_solver()
hi_solver_set_options(solver, list(output_flag = FALSE, solver = "simplex"))

control <- list(

presolve = "on",
solver = "simplex",
parallel = "on",

ranging = "off",
time_limit = 100.0,

primal_feasibility_tolerance = le-7,
dual_feasibility_tolerance = le-7,
random_seed = 1234,

threads = 4,

output_flag = TRUE,
log_to_console = TRUE,

run_crossover = "on",
allow_unbounded_or_infeasible = FALSE,

mip_detect_symmetry = TRUE,

mip_max_nodes = 10000,

mip_max_leaves = 5000,

mip_feasibility_tolerance = 1e-6
)

hi_solver_set_options(solver, control)

42 hi_solver_set_variable_bounds

hi_solver_set_sense Set the optimization sense of the solver instance.

Description
This function updates the optimization sense for the given solver instance. Use TRUE for maxi-
mization and FALSE for minimization.

Usage

hi_solver_set_sense(solver, maximum)

Arguments
solver An object of class "highs_solver".
maximum A boolean indicating whether to set maximization (TRUE) or minimization
(FALSE).
Value

The updated solver instance with the new optimization sense.

Examples

solver <- example_solver()
hi_solver_set_sense(solver, TRUE)

hi_solver_set_variable_bounds
Set variable bounds for a set of variables.

Description

This function sets the lower and upper bounds for a set of variables.

Usage

hi_solver_set_variable_bounds(solver, index, lower, upper)

Arguments
solver An object of class "highs_solver".
index The variable index.
lower The lower bound.

upper The upper bound.

hi_solver_status

Value

The solver instance with updated variable bounds.

Examples

solver <- example_solver()
hi_solver_set_variable_bounds(solver, 2, 0, 10)

43

hi_solver_status Get Solver Status

Description

This function returns the current status of the solver.

Usage

hi_solver_status(solver)

Arguments

solver An object of class "highs_solver".

Value

A status code indicating the solver state.

Examples

solver <- example_solver()
hi_solver_run(solver)
status <- hi_solver_status(solver)

hi_solver_status_message
Get Solver Status Message

Description

This function returns a human-readable message describing the current solver status.

Usage

hi_solver_status_message(solver)

44

Arguments

solver An object of class "highs_solver".

Value

A character string containing the status message.

Examples

solver <- example_solver()
hi_solver_run(solver)
message <- hi_solver_status_message(solver)

hi_solver_write_basis

hi_solver_write_basis Write Basis to File

Description

This function writes the current basis information to a file.

Usage

hi_solver_write_basis(solver, filename)

Arguments

solver An object of class "highs_solver".

filename A character string specifying the output file path.

Value

Invisible NULL.

Examples

solver <- example_solver()
basis_file <- tempfile(fileext = ".txt")
hi_solver_write_basis(solver, basis_file)

hi_solver_write_model

45

hi_solver_write_model Write Model to File

Description

This function writes the current optimization model to a file.

Usage

hi_solver_write_model(solver, filename)

Arguments

solver An object of class "highs_solver".

filename A character string specifying the output file path.

Value

Invisible NULL.

Examples

solver <- example_solver()
model_file <- tempfile(fileext = ".mps")
hi_solver_write_model(solver, model_file)

Index

example_model, 3
example_solver, 4

hi_model_get_ncons, 11
hi_model_get_nvars, 11
hi_model_set_constraint_matrix, 12
hi_model_set_hessian, 12
hi_model_set_lhs, 13
hi_model_set_lower, 14
hi_model_set_ncol, 14
hi_model_set_nrow, 15
hi_model_set_objective, 15
hi_model_set_offset, 16
hi_model_set_rhs, 17
hi_model_set_sense, 17
hi_model_set_upper, 18
hi_model_set_vartype, 18
hi_new_model, 19

hi_new_solver, 19
hi_reset_global_scheduler, 20
hi_solver_add_cols, 21
hi_solver_add_rows, 21
hi_solver_add_vars, 22
hi_solver_change_constraint_bounds, 23
hi_solver_change_variable_bounds, 23
hi_solver_clear, 24
hi_solver_clear_model, 25
hi_solver_clear_solver, 25
hi_solver_get_bool_option, 26
hi_solver_get_constraint_bounds, 26
hi_solver_get_constraint_matrix, 27
hi_solver_get_dbl_option, 27
hi_solver_get_int_option, 28
hi_solver_get_lp_costs, 29
hi_solver_get_num_col, 29
hi_solver_get_num_row, 30
hi_solver_get_option, 30
hi_solver_get_options, 31
hi_solver_get_sense, 32
hi_solver_get_solution, 32

hi_solver_get_str_option, 33
hi_solver_get_variable_bounds, 33
hi_solver_get_vartype, 34
hi_solver_infinity, 35
hi_solver_info, 35
hi_solver_run, 36
hi_solver_set_coeff, 36
hi_solver_set_constraint_bounds, 37
hi_solver_set_integrality, 38
hi_solver_set_objective, 38
hi_solver_set_offset, 39
hi_solver_set_option, 40
hi_solver_set_options, 41
hi_solver_set_sense, 42
hi_solver_set_variable_bounds, 42
hi_solver_status, 43
hi_solver_status_message, 43
hi_solver_write_basis, 44
hi_solver_write_model, 45
highs_available_solver_options, 4,7
highs_control, 5

highs_model, 5

highs_solve, 7

highs_solver, 9
highs_write_model, 10

46

	example_model
	example_solver
	highs_available_solver_options
	highs_control
	highs_model
	highs_solve
	highs_solver
	highs_write_model
	hi_model_get_ncons
	hi_model_get_nvars
	hi_model_set_constraint_matrix
	hi_model_set_hessian
	hi_model_set_lhs
	hi_model_set_lower
	hi_model_set_ncol
	hi_model_set_nrow
	hi_model_set_objective
	hi_model_set_offset
	hi_model_set_rhs
	hi_model_set_sense
	hi_model_set_upper
	hi_model_set_vartype
	hi_new_model
	hi_new_solver
	hi_reset_global_scheduler
	hi_solver_add_cols
	hi_solver_add_rows
	hi_solver_add_vars
	hi_solver_change_constraint_bounds
	hi_solver_change_variable_bounds
	hi_solver_clear
	hi_solver_clear_model
	hi_solver_clear_solver
	hi_solver_get_bool_option
	hi_solver_get_constraint_bounds
	hi_solver_get_constraint_matrix
	hi_solver_get_dbl_option
	hi_solver_get_int_option
	hi_solver_get_lp_costs
	hi_solver_get_num_col
	hi_solver_get_num_row
	hi_solver_get_option
	hi_solver_get_options
	hi_solver_get_sense
	hi_solver_get_solution
	hi_solver_get_str_option
	hi_solver_get_variable_bounds
	hi_solver_get_vartype
	hi_solver_infinity
	hi_solver_info
	hi_solver_run
	hi_solver_set_coeff
	hi_solver_set_constraint_bounds
	hi_solver_set_integrality
	hi_solver_set_objective
	hi_solver_set_offset
	hi_solver_set_option
	hi_solver_set_options
	hi_solver_set_sense
	hi_solver_set_variable_bounds
	hi_solver_status
	hi_solver_status_message
	hi_solver_write_basis
	hi_solver_write_model
	Index

