
Package ‘irace’
February 2, 2026

Type Package

Title Iterated Racing for Automatic Algorithm Configuration

Description Iterated race is an extension of the Iterated F-race method for
the automatic configuration of optimization algorithms, that is,
(offline) tuning their parameters by finding the most appropriate
settings given a set of instances of an optimization problem.
M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, T. Stützle,
and M. Birattari (2016) <doi:10.1016/j.orp.2016.09.002>.

Version 4.4.0

Depends R (>= 4.0.0)

Imports R6, codetools, compiler, data.table (>= 1.15.0), fs,
matrixStats (>= 1.4.1), spacefillr, stats, utils, withr

Suggests Rmpi (>= 0.6.0), highr, knitr, parallel, testthat (>= 3.1.8)

VignetteBuilder knitr

License GPL (>= 2)

URL https://mlopez-ibanez.github.io/irace/,

https://github.com/MLopez-Ibanez/irace

BugReports https://github.com/MLopez-Ibanez/irace/issues

ByteCompile yes

Encoding UTF-8

RoxygenNote 7.3.2

SystemRequirements GNU make

Config/testthat/edition 3

NeedsCompilation yes

Author Manuel López-Ibáñez [aut, cre] (ORCID:
<https://orcid.org/0000-0001-9974-1295>),

Jérémie Dubois-Lacoste [aut],
Leslie Pérez Cáceres [aut],
Thomas Stützle [aut],
Mauro Birattari [aut],

1

https://doi.org/10.1016/j.orp.2016.09.002
https://mlopez-ibanez.github.io/irace/
https://github.com/MLopez-Ibanez/irace
https://github.com/MLopez-Ibanez/irace/issues
https://orcid.org/0000-0001-9974-1295

2 Contents

Eric Yuan [ctb],
Prasanna Balaprakash [ctb],
Nguyen Dang [ctb]

Maintainer Manuel López-Ibáñez <manuel.lopez-ibanez@manchester.ac.uk>

Repository CRAN

Date/Publication 2026-02-02 06:30:44 UTC

Contents
irace-package . 3
ablation . 4
ablation_cmdline . 6
buildCommandLine . 8
checkIraceScenario . 9
checkParameters . 10
checkScenario . 10
check_output_target_runner . 11
configurations_print . 12
configurations_print_command . 12
defaultScenario . 13
getConfigurationById . 18
getConfigurationByIteration . 19
getFinalElites . 20
get_instanceID_seed_pairs . 21
has_testing_data . 22
irace . 22
irace_cmdline . 26
irace_license . 32
irace_main . 33
irace_summarise . 34
irace_version . 35
multi_irace . 36
parameters . 37
path_rel2abs . 39
plotAblation . 39
printParameters . 40
printScenario . 41
psRace . 42
random_seed . 43
readConfigurationsFile . 44
readParameters . 46
readScenario . 48
read_ablogfile . 49
read_logfile . 49
read_pcs_file . 50
removeConfigurationsMetaData . 51
save_irace_logfile . 52

irace-package 3

scenario_update_paths . 53
target_evaluator_default . 54
target_runner_default . 55
testConfigurations . 56
testing_fromfile . 57
testing_fromlog . 58

Index 60

irace-package The irace package: Iterated Racing for Automatic Algorithm Configu-
ration

Description

Iterated race is an extension of the Iterated F-race method for the automatic configuration of opti-
mization algorithms, that is, (offline) tuning their parameters by finding the most appropriate set-
tings given a set of instances of an optimization problem. M. López-Ibáñez, J. Dubois-Lacoste, L.
Pérez Cáceres, T. Stützle, and M. Birattari (2016) <doi:10.1016/j.orp.2016.09.002>.

Details

License: GPL (>= 2)

Author(s)

Maintainers: Manuel López-Ibáñez and Leslie Pérez Cáceres <irace-package@googlegroups.com>

References

Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Thomas Stützle, and Mauro
Birattari. The irace package: Iterated Racing for Automatic Algorithm Configuration. Operations
Research Perspectives, 2016. doi:10.1016/j.orp.2016.09.002

Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Thomas Stützle, and Mauro Birattari. The irace
package, Iterated Race for Automatic Algorithm Configuration. Technical Report TR/IRIDIA/2011-
004, IRIDIA, Université Libre de Bruxelles, Belgium, 2011.

Manuel López-Ibáñez and Thomas Stützle. The Automatic Design of Multi-Objective Ant Colony
Optimization Algorithms. IEEE Transactions on Evolutionary Computation, 2012.

See Also

irace() for examples and vignette(package = "irace") for the user-guide.

https://doi.org/10.1016/j.orp.2016.09.002

4 ablation

ablation Performs ablation between two configurations (from source to target).

Description

Ablation is a method for analyzing the differences between two configurations.

Usage

ablation(
iraceResults,
src = 1L,
target = NULL,
ab_params = NULL,
type = c("full", "racing"),
nrep = 1L,
seed = 1234567L,
ablationLogFile = "log-ablation.Rdata",
instancesFile = "train",
...

)

Arguments

iraceResults list()|character(1)
Object created by irace and typically saved in the log file irace.Rdata. If a
character string is given, then it is interpreted as the path to the log file from
which the iraceResults object will be loaded.

src, target integer(1)|character(1)
Source and target configuration IDs. By default, the first configuration ever
evaluated (ID 1) is used as src and the best configuration found by irace is
used as target. If the argument is a string, it is interpreted as the path to a
file, with the format specified by readConfigurationsFile(), that contains
the configuration.

ab_params character()
Specific parameter names to be used for the ablation. They must be in parameters$names.
By default, use all parameters.

type "full"|"racing"
Type of ablation to perform: "full" will execute each configuration on all
n_instances to determine the best-performing one; "racing" will apply racing
to find the best configurations.

nrep integer(1)
Number of replications per instance used in "full" ablation. When nrep > 1,
each configuration will be executed nrep times on each instance with different
random seeds.

ablation 5

seed integer(1)
Integer value to use as seed for the random number generation.

ablationLogFile

character(1)
Log file to save the ablation log. If NULL, the results are not saved to a file.

instancesFile character(1)
Instances file used for ablation: 'train', 'test' or a filename containing the
list of instances.

... Further arguments to override scenario settings, e.g., debugLevel, parallel,
etc.

Value

A list containing the following elements:

allConfigurations Configurations tested in the ablation.

state State of the ablation process.

experiments A matrix with the results of the experiments (columns are configurations, rows are
instances).

scenario Scenario object with the settings used for the experiments.

trajectory IDs of the best configurations at each step of the ablation.

best Best configuration found in the experiments.

complete TRUE if the ablation process was completed.

Author(s)

Leslie Pérez Cáceres and Manuel López-Ibáñez

References

C. Fawcett and H. H. Hoos. Analysing differences between algorithm configurations through abla-
tion. Journal of Heuristics, 22(4):431–458, 2016.

See Also

plotAblation() ablation_cmdline()

Examples

logfile <- system.file(package="irace", "exdata", "sann.rda")
Execute ablation between the first and the best configuration found by irace.
ablog <- ablation(logfile, ablationLogFile = NULL)
plotAblation(ablog)
Execute ablation between two selected configurations, and selecting only a
subset of parameters, directly reading the setup from the irace log file.
ablog <- ablation(logfile, src = 1, target = 10,

ab_params = c("temp"), ablationLogFile = NULL)
plotAblation(ablog, type = "mean")

6 ablation_cmdline

ablation_cmdline Launch ablation with command-line options.

Description

Launch ablation() with the same command-line options as the command-line executable (ablation.exe
in Windows).

Usage

ablation_cmdline(argv = commandArgs(trailingOnly = TRUE))

Arguments

argv character()
The arguments provided on the R command line as a character vector, e.g.,
c("-i", "irace.Rdata", "--src", 1).

Details

The function reads the parameters given on the command line used to invoke R, launches ablation()
and possibly plotAblation().

List of command-line options:

-l,--log-file Path to the (.Rdata) file created by irace from which
the "iraceResults" object will be loaded.

-S,--src Source configuration ID or the path to a file
containing the configuration. Default: 1.

-T,--target Target configuration ID (by default the best
configuration found by irace) or the path to a file
containing the configuration.

-P,--params Specific parameter names to be used for the ablation
(separated with commas). By default use all

-t,--type Type of ablation to perform: "full" will execute each
configuration on all "--n-instances" to determine the
best-performing one; "racing" will apply racing to
find the best configurations. Default: full.

-n,--nrep Number of replications per instance used in "full"
ablation. Default: 1.

--seed Integer value to use as seed for the random number
generation. Default: 1234567.

-o,--output-file Log file to save the ablation log. If "", the results
are not saved to a file. Default: log-ablation.Rdata.

--instances-file Instances file used for ablation: "train", "test" or a

ablation_cmdline 7

filename containing the list of instances. Default:
train.

-p,--plot Output filename (.pdf) for the plot. If not given, no
plot is created.

-O,--plot-type Type of plot. Supported values are "mean", "boxplot",
"rank" or "rank,boxplot". Default: mean.

--old-path Old path found in the log-file (.Rdata) given as input
to be replaced by --new-path.

--new-path New path to replace the path found in the log-file
(.Rdata) given as input.

-e,--exec-dir Directory where the target runner will be run.
-s,--scenario Scenario file to override the scenario given in the

log-file (.Rdata)
--parallel Number of calls to targetRunner to execute in

parallel. Values 0 or 1 mean no parallelization.

Value

A list containing the following elements:

allConfigurations Configurations tested in the ablation.

state State of the ablation process.

experiments A matrix with the results of the experiments (columns are configurations, rows are
instances).

scenario Scenario object with the settings used for the experiments.

trajectory IDs of the best configurations at each step of the ablation.

best Best configuration found in the experiments.

complete TRUE if the ablation process was completed.

Author(s)

Manuel López-Ibáñez

See Also

plotAblation() ablation()

Examples

ablation_cmdline("--help")
Find the ablation command-line executable:
Sys.glob(file.path(system.file(package="irace", "bin"), "ablation*"))

8 buildCommandLine

buildCommandLine Generate a command-line representation of a configuration

Description

buildCommandLine receives two vectors, one containing the values of the parameters, the other
containing the switches of the parameters. It builds a string with the switches and the values that
can be used as a command line to call the program to be tuned, thus generating one candidate
configuration.

Usage

buildCommandLine(values, switches)

Arguments

values A vector containing the value of each parameter for the candidate configuration.

switches A vector containing the switches of each paramter (in an order that corresponds
to the values vector).

Value

A string concatenating each element of switches and values for all parameters with a space be-
tween each pair of parameters (but none between the switches and the corresponding values).

Author(s)

Manuel López-Ibáñez and Jérémie Dubois-Lacoste

Examples

switches <- c("--switch1 ", "--switch2-", "--switch3=")
values <- list("value_1", 1L, sqrt(2))
buildCommandLine (values, switches)
Build a command-line from the results produced by a previous run of irace.
First, load the data produced by irace.
logfile <- file.path(system.file(package="irace"), "exdata", "irace-acotsp.Rdata")
iraceResults <- read_logfile(logfile)
allConfigurations <- iraceResults$allConfigurations
parameters <- iraceResults$scenario$parameters
apply(allConfigurations[1:10, unlist(parameters$names)], 1, buildCommandLine,

unlist(parameters$switches))

checkIraceScenario 9

checkIraceScenario Test that the given irace scenario can be run.

Description

Test that the given irace scenario can be run by checking the scenario settings provided and trying
to run the target-algorithm.

Usage

checkIraceScenario(scenario)

Arguments

scenario list()
Data structure containing irace settings. The data structure has to be the one
returned by the function defaultScenario() or readScenario().

Details

If the parameters argument is missing, then the parameters will be read from the file parameterFile
given by scenario. If parameters is provided, then parameterFile will not be read. This func-
tion will try to execute the target-algorithm.

Value

returns TRUE if successful and gives an error and returns FALSE otherwise.

Author(s)

Manuel López-Ibáñez and Jérémie Dubois-Lacoste

See Also

readScenario for reading a configuration scenario from a file.

printScenario prints the given scenario.

defaultScenario returns the default scenario settings of irace.

checkScenario to check that the scenario is valid.

10 checkScenario

checkParameters checkParameters

Description

FIXME: This is incomplete, for now we only repair inputs from previous irace versions.

Usage

checkParameters(parameters)

Arguments

parameters ParameterSpace
Data structure containing the parameter space definition. The data structure has
to similar to the one returned by the function readParameters.

checkScenario Check and correct the given scenario

Description

Checks for errors a (possibly incomplete) scenario setup of irace and transforms it into a valid
scenario.

Usage

checkScenario(scenario = defaultScenario())

Arguments

scenario list()
Data structure containing irace settings. The data structure has to be the one
returned by the function defaultScenario() or readScenario().

Details

This function checks that the directories and the file names provided and required by the irace exist.
It also checks that the settings are of the proper type, e.g. that settings expected to be integers are
really integers. Finally, it also checks that there is no inconsistency between settings. If an error is
found that prevents irace from running properly, it will stop with an error.

Value

The scenario received as a parameter, possibly corrected. Unset scenario settings are set to their
default values.

check_output_target_runner 11

Author(s)

Manuel López-Ibáñez and Jérémie Dubois-Lacoste

See Also

readScenario() for reading a configuration scenario from a file.

printScenario() prints the given scenario.

defaultScenario() returns the default scenario settings of irace.

checkScenario() to check that the scenario is valid.

check_output_target_runner

Check the output of the target runner and repair it if possible. If the
output is incorrect, this function will throw an error.

Description

Check the output of the target runner and repair it if possible. If the output is incorrect, this function
will throw an error.

Usage

check_output_target_runner(output, scenario, bound = NULL)

Arguments

output The output from target runner.

scenario list()
Data structure containing irace settings. The data structure has to be the one
returned by the function defaultScenario() or readScenario().

bound Optional time bound that the target runner should have respected.

Value

The output with its contents repaired.

12 configurations_print_command

configurations_print Print configurations as a data frame

Description

Print configurations as a data frame

Usage

configurations_print(configurations, metadata = FALSE)

Arguments

configurations data.frame
Parameter configurations of the target algorithm (one per row).

metadata logical(1)
whether to print the metadata or not. The metadata are data for the configura-
tions (additionally to the value of each parameter) used by irace.

Value

None.

Author(s)

Manuel López-Ibáñez and Jérémie Dubois-Lacoste

See Also

configurations_print_command() to print the configurations as command-line strings.

configurations_print_command

Print configurations as command-line strings.

Description

Prints configurations after converting them into a representation for the command-line.

Usage

configurations_print_command(configurations, parameters)

defaultScenario 13

Arguments

configurations data.frame
Parameter configurations of the target algorithm (one per row).

parameters ParameterSpace
Data structure containing the parameter space definition. The data structure has
to similar to the one returned by the function readParameters.

Value

None.

Author(s)

Manuel López-Ibáñez and Jérémie Dubois-Lacoste

See Also

configurations_print() to print the configurations as a data frame.

defaultScenario Default scenario settings

Description

Return scenario object with default values.

Usage

defaultScenario(scenario = list(), params_def = .irace.params.def)

Arguments

scenario list()
Data structure containing irace settings. The data structure has to be the one
returned by the function defaultScenario() or readScenario().

params_def data.frame()
Definition of the options accepted by the scenario. This should only be modified
by packages that wish to extend irace.

Value

A list indexed by the irace parameter names, containing the default values for each parameter,
except for those already present in the scenario passed as argument. The scenario list contains the
following elements:

• General options:

14 defaultScenario

scenarioFile Path of the file that describes the configuration scenario setup and other irace
settings. (Default: "./scenario.txt")

execDir Directory where the programs will be run. (Default: "./")
logFile File to save tuning results as an R dataset, either absolute path or relative to execDir.

(Default: "./irace.Rdata")
quiet Reduce the output generated by irace to a minimum. (Default: 0)
debugLevel Debug level of the output of irace. Set this to 0 to silence all debug messages.

Higher values (1, 2 or 3) provide more verbose debug messages. (Default: 0)
seed Seed of the random number generator (by default, generate a random seed). (Default:

NA)
repairConfiguration User-defined R function that takes a configuration generated by irace

and repairs it. (Default: "")
postselection Perform a postselection race after the execution of irace to consume all re-

maining budget. Value 0 disables the postselection race. (Default: 1)
aclib Enable/disable AClib mode. This option enables compatibility with GenericWrap-

per4AC as targetRunner script. (Default: 0)

• Elitist irace:

elitist Enable/disable elitist irace. (Default: 1)
elitistNewInstances Number of instances added to the execution list before previous in-

stances in elitist irace. (Default: 1)
elitistLimit In elitist irace, maximum number per race of elimination tests that do not

eliminate a configuration. Use 0 for no limit. (Default: 2)

• Internal irace options:

sampleInstances Randomly sample the training instances or use them in the order given.
(Default: 1)

softRestart Enable/disable the soft restart strategy that avoids premature convergence of
the probabilistic model. (Default: 1)

softRestartThreshold Soft restart threshold value for numerical parameters. (Default:
1e-04)

nbIterations Maximum number of iterations. (Default: 0)
nbExperimentsPerIteration Number of runs of the target algorithm per iteration. (Default:

0)
minNbSurvival Minimum number of configurations needed to continue the execution of each

race (iteration). (Default: 0)
nbConfigurations Number of configurations to be sampled and evaluated at each iteration.

(Default: 0)
mu Parameter used to define the number of configurations sampled and evaluated at each

iteration. (Default: 5)

• Target algorithm parameters:

parameterFile File that contains the description of the parameters of the target algorithm.
(Default: "./parameters.txt")

parameters Parameters space object (usually read from a file using readParameters). (De-
fault: "")

• Target algorithm execution:

defaultScenario 15

targetRunner Executable called for each configuration that executes the target algorithm to
be tuned. See the templates and examples provided. (Default: "./target-runner")

targetRunnerLauncher Executable that will be used to launch the target runner, when targetRunner
cannot be executed directly (e.g., a Python script in Windows). (Default: "")

targetCmdline Command-line arguments provided to targetRunner (or targetRunnerLauncher
if defined). The substrings \{configurationID\}, \{instanceID\}, \{seed\}, \{instance\},
and \{bound\} will be replaced by their corresponding values. The substring \{targetRunnerArgs\}
will be replaced by the concatenation of the switch and value of all active parameters
of the particular configuration being evaluated. The substring \{targetRunner\}, if
present, will be replaced by the value of targetRunner (useful when using targetRunnerLauncher).
(Default: "{configurationID} {instanceID} {seed} {instance} {bound} {targetRunnerArgs}")

targetRunnerRetries Number of times to retry a call to targetRunner if the call failed.
(Default: 0)

targetRunnerTimeout Timeout in seconds of any targetRunner call (only applies to target-runner
executables not to R functions), ignored if 0. (Default: 0)

targetRunnerData Optional data passed to targetRunner. This is ignored by the default
targetRunner function, but it may be used by custom targetRunner functions to pass
persistent data around. (Default: "")

targetRunnerParallel Optional R function to provide custom parallelization of targetRunner.
(Default: "")

targetEvaluator Optional script or R function that provides a numeric value for each con-
figuration. See templates/target-evaluator.tmpl (Default: "")

deterministic If the target algorithm is deterministic, configurations will be evaluated only
once per instance. (Default: 0)

parallel Number of calls to targetRunner to execute in parallel. Values 0 or 1 mean no
parallelization. (Default: 0)

loadBalancing Enable/disable load-balancing when executing experiments in parallel. Load-
balancing makes better use of computing resources, but increases communication over-
head. If this overhead is large, disabling load-balancing may be faster. (Default: 1)

mpi Enable/disable MPI. Use Rmpi to execute targetRunner in parallel (parameter parallel
is the number of slaves). (Default: 0)

batchmode Specify how irace waits for jobs to finish when targetRunner submits jobs to a
batch cluster: sge, pbs, torque, slurm or htcondor. targetRunner must submit jobs to the
cluster using, for example, qsub. (Default: 0)

• Initial configurations:

initConfigurations Data frame describing initial configurations (usually read from a file
using readConfigurations). (Default: "")

configurationsFile File that contains a table of initial configurations. If empty or NULL,
all initial configurations are randomly generated. (Default: "")

• Training instances:

instances Character vector of the instances to be used in the targetRunner. (Default: "")
trainInstancesDir Directory where training instances are located; either absolute path or

relative to current directory. If no trainInstancesFiles is provided, all the files in
trainInstancesDir will be listed as instances. (Default: "")

16 defaultScenario

trainInstancesFile File that contains a list of training instances and optionally additional
parameters for them. If trainInstancesDir is provided, irace will search for the files
in this folder. (Default: "")

blockSize Number of training instances, that make up a ’block’ in trainInstancesFile.
Elimination of configurations will only be performed after evaluating a complete block
and never in the middle of a block. Each block typically contains one instance from each
instance class (type or family) and the block size is the number of classes. The value of
blockSize will multiply firstTest, eachTest and elitistNewInstances. (Default:
1)

• Tuning budget:

maxExperiments Maximum number of runs (invocations of targetRunner) that will be per-
formed. It determines the maximum budget of experiments for the tuning. (Default: 0)

minExperiments Minimum number of runs (invocations of targetRunner) that will be per-
formed. It determines the minimum budget of experiments for the tuning. The actual
budget depends on the number of parameters and minNbSurvival. (Default: NA)

maxTime Maximum total execution time for the executions of targetRunner. targetRunner
must return two values: cost and time. This value and the one returned by targetRunner
must use the same units (seconds, minutes, iterations, evaluations, ...). (Default: 0)

budgetEstimation Fraction (smaller than 1) of the budget used to estimate the mean com-
putation time of a configuration. Only used when maxTime > 0 (Default: 0.05)

minMeasurableTime Minimum time unit that is still (significantly) measureable. (Default:
0.01)

• Statistical test:

testType Statistical test used for elimination. The default value selects t-test if capping
is enabled or F-test, otherwise. Valid values are: F-test (Friedman test), t-test (pairwise
t-tests with no correction), t-test-bonferroni (t-test with Bonferroni’s correction for mul-
tiple comparisons), t-test-holm (t-test with Holm’s correction for multiple comparisons).
(Default: "")

firstTest Number of instances evaluated before the first elimination test. It must be a mul-
tiple of eachTest. (Default: 5)

eachTest Number of instances evaluated between elimination tests. (Default: 1)
confidence Confidence level for the elimination test. (Default: 0.95)

• Adaptive capping:

capping Enable the use of adaptive capping, a technique designed for minimizing the compu-
tation time of configurations. Capping is enabled by default if elitist is active, maxTime
> 0 and boundMax > 0. (Default: NA)

cappingAfterFirstTest If set to 1, elimination due to capping only happens after firstTest
instances are seen. (Default: 0)

cappingType Measure used to obtain the execution bound from the performance of the elite
configurations.

– median: Median performance of the elite configurations.
– mean: Mean performance of the elite configurations.
– best: Best performance of the elite configurations.
– worst: Worst performance of the elite configurations.

defaultScenario 17

(Default: "median")
boundType Method to calculate the mean performance of elite configurations.

– candidate: Mean execution times across the executed instances and the current one.
– instance: Execution time of the current instance.

(Default: "candidate")
boundMax Maximum execution bound for targetRunner. It must be specified when capping

is enabled. (Default: 0)
boundDigits Precision used for calculating the execution time. It must be specified when

capping is enabled. (Default: 0)
boundPar Penalization multiplication constant (PARX) for timed out executions (executions

that reach boundMax execution time). (Default: 1)
boundAsTimeout Replace the configuration cost of bounded executions with boundMax. (De-

fault: 1)

• Recovery:

recoveryFile Previously saved log file to recover the execution of irace, either absolute
path or relative to the current directory. If empty or NULL, recovery is not performed.
(Default: "")

• Testing:

testInstancesDir Directory where testing instances are located, either absolute or relative
to current directory. (Default: "")

testInstancesFile File containing a list of test instances and optionally additional param-
eters for them. (Default: "")

testInstances Character vector of the instances to be used in the targetRunner when ex-
ecuting the testing. (Default: "")

testNbElites Number of elite configurations returned by irace that will be tested if test
instances are provided. (Default: 1)

testIterationElites Enable/disable testing the elite configurations found at each iteration.
(Default: 0)

Author(s)

Manuel López-Ibáñez and Jérémie Dubois-Lacoste

See Also

readScenario() for reading a configuration scenario from a file.

printScenario() prints the given scenario.

defaultScenario() returns the default scenario settings of irace.

checkScenario() to check that the scenario is valid.

18 getConfigurationById

getConfigurationById Returns the configurations selected by ID.

Description

Returns the configurations selected by ID.

Usage

getConfigurationById(iraceResults, ids, drop.metadata = FALSE)

Arguments

iraceResults list()|character(1)
Object created by irace and typically saved in the log file irace.Rdata. If a
character string is given, then it is interpreted as the path to the log file from
which the iraceResults object will be loaded.

ids integer()
The id or a vector of ids of the candidates configurations to obtain.

drop.metadata logical(1)
Remove metadata, such as the configuration ID and the ID of the parent, from
the returned configurations. See removeConfigurationsMetaData().

Value

A data frame containing the elite configurations required, in the order and with the repetitions given
by ids.

Author(s)

Manuel López-Ibáñez and Leslie Pérez Cáceres

Examples

log_file <- system.file("exdata/irace-acotsp.Rdata", package="irace", mustWork=TRUE)
getConfigurationById(log_file, ids = c(2,1), drop.metadata = TRUE)

getConfigurationByIteration 19

getConfigurationByIteration

Returns the configurations by the iteration in which they were exe-
cuted.

Description

Returns the configurations by the iteration in which they were executed.

Usage

getConfigurationByIteration(iraceResults, iterations, drop.metadata = FALSE)

Arguments

iraceResults list()|character(1)
Object created by irace and typically saved in the log file irace.Rdata. If a
character string is given, then it is interpreted as the path to the log file from
which the iraceResults object will be loaded.

iterations integer()
The iteration number or a vector of iteration numbers from where the configura-
tions should be obtained. Negative values start counting from the last iteration.

drop.metadata logical(1)
Remove metadata, such as the configuration ID and the ID of the parent, from
the returned configurations. See removeConfigurationsMetaData().

Value

A data frame containing the elite configurations required.

Author(s)

Manuel López-Ibáñez and Leslie Pérez Cáceres

Examples

log_file <- system.file("exdata/irace-acotsp.Rdata", package="irace", mustWork=TRUE)
getConfigurationByIteration(log_file, iterations = c(-2, -1), drop.metadata = TRUE)

20 getFinalElites

getFinalElites Return the elite configurations of the final iteration.

Description

Return the elite configurations of the final iteration.

Usage

getFinalElites(iraceResults, n = 0L, drop.metadata = FALSE)

Arguments

iraceResults list()|character(1)
Object created by irace and typically saved in the log file irace.Rdata. If a
character string is given, then it is interpreted as the path to the log file from
which the iraceResults object will be loaded.

n integer(1)
Number of elite configurations to return, if n is larger than the number of con-
figurations, then only the existing ones are returned. The default (n=0) returns
all of them.

drop.metadata logical(1)
Remove metadata, such as the configuration ID and the ID of the parent, from
the returned configurations. See removeConfigurationsMetaData().

Value

A data frame containing the elite configurations required.

Author(s)

Manuel López-Ibáñez and Leslie Pérez Cáceres

Examples

log_file <- system.file("exdata/irace-acotsp.Rdata", package="irace", mustWork=TRUE)
print(removeConfigurationsMetaData(getFinalElites(log_file, n=1)))

get_instanceID_seed_pairs 21

get_instanceID_seed_pairs

Returns the pairs of instance IDs and seeds used as instances in the
race (and optionally the actual instances).

Description

Returns the pairs of instance IDs and seeds used as instances in the race (and optionally the actual
instances).

Usage

get_instanceID_seed_pairs(iraceResults, index, instances = FALSE)

Arguments

iraceResults list()|character(1)
Object created by irace and typically saved in the log file irace.Rdata. If a
character string is given, then it is interpreted as the path to the log file from
which the iraceResults object will be loaded.

index integer()
Indexes of the (instanceID,seed) pairs to be returned. The default returns every-
thing.

instances logical(1)
Whether to add the actual instances as an additional column (only if the in-
stances are of atomic type).

Value

data.table()
With default arguments, a data.table containing two columns "instanceID" and "seed". With
instances=TRUE and if the instances are of atomic type (see is.atomic()) type, another column
instance is added that contains the actual instance.

Author(s)

Manuel López-Ibáñez

Examples

log_file <- system.file("exdata/irace-acotsp.Rdata", package="irace", mustWork=TRUE)
head(get_instanceID_seed_pairs(log_file))
Add the instance names
get_instanceID_seed_pairs(log_file, index=1:10, instances=TRUE)

22 irace

has_testing_data Check if the results object generated by irace has data about the testing
phase.

Description

Check if the results object generated by irace has data about the testing phase.

Usage

has_testing_data(iraceResults)

Arguments

iraceResults list()|character(1)
Object created by irace and typically saved in the log file irace.Rdata. If a
character string is given, then it is interpreted as the path to the log file from
which the iraceResults object will be loaded.

Value

logical(1)

Examples

irace_results <- read_logfile(system.file("exdata/irace-acotsp.Rdata", package="irace",
mustWork=TRUE))

print(has_testing_data(irace_results))

irace Execute one run of the Iterated Racing algorithm.

Description

The function irace implements the Iterated Racing procedure for parameter tuning. It receives a
configuration scenario and a parameter space to be tuned, and returns the best configurations found,
namely, the elite configurations obtained from the last iterations. As a first step, it checks the correct-
ness of scenario using checkScenario() and recovers a previous execution if scenario$recoveryFile
is set. A R data file log of the execution is created in scenario$logFile.

Usage

irace(scenario)

irace 23

Arguments

scenario list()
Data structure containing irace settings. The data structure has to be the one
returned by the function defaultScenario() or readScenario().

Details

The execution of this function is reproducible under some conditions. See the FAQ section in the
User Guide.

Value

(data.frame)

A data frame with the set of best algorithm configurations found by irace. The data frame has the
following columns:

• .ID. : Internal id of the candidate configuration.
• Parameter names : One column per parameter name in parameters.

• .PARENT. : Internal id of the parent candidate configuration.

Additionally, this function saves an R data file containing an object called iraceResults. The path
of the file is indicated in scenario$logFile. The iraceResults object is a list with the following
structure:

scenario The scenario R object containing the irace options used for the execution. See defaultScenario
for more information. The element scenario$parameters contains the parameters R object
that describes the target algorithm parameters. See readParameters.

allConfigurations The target algorithm configurations generated by irace. This object is a data
frame, each row is a candidate configuration, the first column (.ID.) indicates the internal
identifier of the configuration, the following columns correspond to the parameter values, each
column named as the parameter name specified in the parameter object. The final column
(.PARENT.) is the identifier of the configuration from which model the actual configuration
was sampled.

allElites A list that contains one element per iteration, each element contains the internal identi-
fier of the elite candidate configurations of the corresponding iteration (identifiers correspond
to allConfigurations$.ID.).

iterationElites A vector containing the best candidate configuration internal identifier of each
iteration. The best configuration found corresponds to the last one of this vector.

experiments A matrix with configurations as columns and instances as rows. Column names
correspond to the internal identifier of the configuration (allConfigurations$.ID.).

experimen_log A data.table with columns iteration, instance, configuration, time. This
matrix contains the log of all the experiments that irace performs during its execution. The
instance column refers to the index of the race_state$instances_log data frame. Time is
saved ONLY when reported by the targetRunner.

softRestart A logical vector that indicates if a soft restart was performed on each iteration. If
FALSE, then no soft restart was performed.

https://cran.r-project.org/package=irace/vignettes/irace-package.pdf

24 irace

state An environment that contains the state of irace, the recovery is done using the information
contained in this object.

testing A list that contains the testing results. The elements of this list are: experiments a matrix
with the testing experiments of the selected configurations in the same format as the explained
above and seeds a vector with the seeds used to execute each experiment.

Author(s)

Manuel López-Ibáñez and Jérémie Dubois-Lacoste

See Also

irace_main() a higher-level interface to irace().

irace_cmdline() a command-line interface to irace().

readScenario() for reading a configuration scenario from a file.

readParameters() read the target algorithm parameters from a file.

defaultScenario() returns the default scenario settings of irace.

checkScenario() to check that the scenario is valid.

Examples

Not run:
In general, there are three steps:
scenario <- readScenario(filename = "scenario.txt")
irace(scenario = scenario)

End(Not run)
###
This example illustrates how to tune the parameters of the simulated
annealing algorithm (SANN) provided by the optim() function in the
R base package. The goal in this example is to optimize instances of
the following family:
f(x) = lambda * f_rastrigin(x) + (1 - lambda) * f_rosenbrock(x)
where lambda follows a normal distribution whose mean is 0.9 and
standard deviation is 0.02. f_rastrigin and f_rosenbrock are the
well-known Rastrigin and Rosenbrock benchmark functions (taken from
the cmaes package). In this scenario, different instances are given
by different values of lambda.
###
First we provide an implementation of the functions to be optimized:
f_rosenbrock <- function (x) {

d <- length(x)
z <- x + 1
hz <- z[1L:(d - 1L)]
tz <- z[2L:d]
sum(100 * (hz^2 - tz)^2 + (hz - 1)^2)

}
f_rastrigin <- function (x) {

sum(x * x - 10 * cos(2 * pi * x) + 10)
}

irace 25

We generate 20 instances (in this case, weights):
weights <- rnorm(20, mean = 0.9, sd = 0.02)

On this set of instances, we are interested in optimizing two
parameters of the SANN algorithm: tmax and temp. We setup the
parameter space as follows:
parameters_table <- '

tmax "" i,log (1, 5000)
temp "" r (0, 100)
'

We use the irace function readParameters to read this table:
parameters <- readParameters(text = parameters_table)

Next, we define the function that will evaluate each candidate
configuration on a single instance. For simplicity, we restrict to
three-dimensional functions and we set the maximum number of
iterations of SANN to 1000.
target_runner <- function(experiment, scenario)
{

instance <- experiment$instance
configuration <- experiment$configuration

D <- 3
par <- runif(D, min=-1, max=1)
fn <- function(x) {

weight <- instance
return(weight * f_rastrigin(x) + (1 - weight) * f_rosenbrock(x))

}
For reproducible results, we should use the random seed given by
experiment$seed to set the random seed of the target algorithm.
res <- withr::with_seed(experiment$seed,

stats::optim(par,fn, method="SANN",
control=list(maxit=1000

, tmax = as.numeric(configuration[["tmax"]])
, temp = as.numeric(configuration[["temp"]])

)))
This list may also contain:
- 'time' if irace is called with 'maxTime'
- 'error' is a string used to report an error
- 'outputRaw' is a string used to report the raw output of calls to
an external program or function.
- 'call' is a string used to report how target_runner called the
external program or function.
return(list(cost = res$value))

}

We define a configuration scenario by setting targetRunner to the
function define above, instances to the first 10 random weights, and
a maximum budget of 'maxExperiments' calls to targetRunner.
scenario <- list(targetRunner = target_runner,

instances = weights[1:10],
maxExperiments = 500,

26 irace_cmdline

Do not create a logFile
logFile = "",
parameters = parameters)

We check that the scenario is valid. This will also try to execute
target_runner.
checkIraceScenario(scenario)

We are now ready to launch irace. We do it by means of the irace
function. The function will print information about its
progress. This may require a few minutes, so it is not run by default.
tuned_confs <- irace(scenario = scenario)

We can print the best configurations found by irace as follows:
configurations_print(tuned_confs)

We can evaluate the quality of the best configuration found by
irace versus the default configuration of the SANN algorithm on
the other 10 instances previously generated.
test_index <- 11:20
test_seeds <- sample.int(2147483647L, size = length(test_index), replace = TRUE)
test <- function(configuration)
{

res <- lapply(seq_along(test_index),
function(x) target_runner(

experiment = list(instance = weights[test_index[x]],
seed = test_seeds[x],
configuration = configuration),

scenario = scenario))
return (sapply(res, getElement, name = "cost"))

}
To do so, first we apply the default configuration of the SANN
algorithm to these instances:
default <- test(data.frame(tmax=10, temp=10))

We extract and apply the winning configuration found by irace
to these instances:
tuned <- test(removeConfigurationsMetaData(tuned_confs[1,]))

Finally, we can compare using a boxplot the quality obtained with the
default parametrization of SANN and the quality obtained with the
best configuration found by irace.
boxplot(list(default = default, tuned = tuned))

irace_cmdline Launch irace with command-line options.

irace_cmdline 27

Description

Calls irace_main() using command-line options, maybe parsed from the command line used to
invoke R.

Usage

irace_cmdline(argv = commandArgs(trailingOnly = TRUE))

irace.cmdline(argv = commandArgs(trailingOnly = TRUE))

Arguments

argv character()
The arguments provided on the R command line as a character vector, e.g.,
c("--scenario", "scenario.txt", "-p", "parameters.txt"). Using the
default value (not providing the parameter) is the easiest way to call irace_cmdline().

Details

The function reads the parameters given on the command line used to invoke R, finds the name of the
scenario file, initializes the scenario from the file (with the function readScenario()) and possibly
from parameters passed in the command line. It finally starts irace by calling irace_main().

List of command-line options:

-h,--help Show this help.
-v,--version Show irace package version.
-c,--check Check scenario.
-i,--init Initialize the working directory with template config

files.
--only-test Only test the configurations given in the file passed

as argument.
-s,--scenario File that describes the configuration scenario setup

and other irace settings. Default: ./scenario.txt.
--exec-dir Directory where the programs will be run. Default: ./.

-p,--parameter-file File that contains the description of the parameters
of the target algorithm. Default: ./parameters.txt.

--configurations-file File that contains a table of initial configurations.
If empty or `NULL`, all initial configurations are
randomly generated.

-l,--log-file File to save tuning results as an R dataset, either
absolute path or relative to execDir. Default:
./irace.Rdata.

--recovery-file Previously saved log file to recover the execution of
`irace`, either absolute path or relative to the
current directory. If empty or `NULL`, recovery is
not performed.

--train-instances-dir Directory where training instances are located;
either absolute path or relative to current directory.

28 irace_cmdline

If no `trainInstancesFiles` is provided, all the files
in `trainInstancesDir` will be listed as instances.

--train-instances-file File that contains a list of training instances and
optionally additional parameters for them. If
`trainInstancesDir` is provided, `irace` will search
for the files in this folder.

--sample-instances Randomly sample the training instances or use them in
the order given. Default: 1.

--test-instances-dir Directory where testing instances are located, either
absolute or relative to current directory.

--test-instances-file File containing a list of test instances and
optionally additional parameters for them.

--test-num-elites Number of elite configurations returned by irace that
will be tested if test instances are provided.
Default: 1.

--test-iteration-elites Enable/disable testing the elite configurations
found at each iteration. Default: 0.

--test-type Statistical test used for elimination. The default
value selects `t-test` if `capping` is enabled or
`F-test`, otherwise. Valid values are: F-test
(Friedman test), t-test (pairwise t-tests with no
correction), t-test-bonferroni (t-test with
Bonferroni's correction for multiple comparisons),
t-test-holm (t-test with Holm's correction for
multiple comparisons).

--first-test Number of instances evaluated before the first
elimination test. It must be a multiple of `eachTest`.
Default: 5.

--block-size Number of training instances, that make up a 'block'
in `trainInstancesFile`. Elimination of configurations
will only be performed after evaluating a complete
block and never in the middle of a block. Each block
typically contains one instance from each instance
class (type or family) and the block size is the
number of classes. The value of `blockSize` will
multiply `firstTest`, `eachTest` and
`elitistNewInstances`. Default: 1.

--each-test Number of instances evaluated between elimination
tests. Default: 1.

--target-runner Executable called for each configuration that executes
the target algorithm to be tuned. See the templates
and examples provided. Default: ./target-runner.

--target-runner-launcher Executable that will be used to launch the target
runner, when `targetRunner` cannot be executed
directly (e.g., a Python script in Windows).

--target-cmdline Command-line arguments provided to `targetRunner` (or
`targetRunnerLauncher` if defined). The substrings
`\{configurationID\}`, `\{instanceID\}`, `\{seed\}`,

irace_cmdline 29

`\{instance\}`, and `\{bound\}` will be replaced by
their corresponding values. The substring
`\{targetRunnerArgs\}` will be replaced by the
concatenation of the switch and value of all active
parameters of the particular configuration being
evaluated. The substring `\{targetRunner\}`, if
present, will be replaced by the value of
`targetRunner` (useful when using
`targetRunnerLauncher`). Default: {configurationID}
{instanceID} {seed} {instance} {bound}
{targetRunnerArgs}.

--target-runner-retries Number of times to retry a call to `targetRunner`
if the call failed. Default: 0.

--target-runner-timeout Timeout in seconds of any `targetRunner` call (only
applies to `target-runner` executables not to R
functions), ignored if 0. Default: 0.

--target-evaluator Optional script or R function that provides a numeric
value for each configuration. See
templates/target-evaluator.tmpl

--deterministic If the target algorithm is deterministic,
configurations will be evaluated only once per
instance. Default: 0.

--max-experiments Maximum number of runs (invocations of `targetRunner`)
that will be performed. It determines the maximum
budget of experiments for the tuning. Default: 0.

--min-experiments Minimum number of runs (invocations of `targetRunner`)
that will be performed. It determines the minimum
budget of experiments for the tuning. The actual
budget depends on the number of parameters and
`minNbSurvival`.

--max-time Maximum total execution time for the executions of
`targetRunner`. `targetRunner` must return two values:
cost and time. This value and the one returned by
`targetRunner` must use the same units (seconds,
minutes, iterations, evaluations, ...). Default: 0.

--budget-estimation Fraction (smaller than 1) of the budget used to
estimate the mean computation time of a configuration.
Only used when `maxTime` > 0 Default: 0.05.

--min-measurable-time Minimum time unit that is still (significantly)
measureable. Default: 0.01.

--parallel Number of calls to `targetRunner` to execute in
parallel. Values `0` or `1` mean no parallelization.
Default: 0.

--load-balancing Enable/disable load-balancing when executing
experiments in parallel. Load-balancing makes better
use of computing resources, but increases
communication overhead. If this overhead is large,
disabling load-balancing may be faster. Default: 1.

30 irace_cmdline

--mpi Enable/disable MPI. Use `Rmpi` to execute
`targetRunner` in parallel (parameter `parallel` is
the number of slaves). Default: 0.

--batchmode Specify how irace waits for jobs to finish when
`targetRunner` submits jobs to a batch cluster: sge,
pbs, torque, slurm or htcondor. `targetRunner` must
submit jobs to the cluster using, for example, `qsub`.
Default: 0.

-q,--quiet Reduce the output generated by irace to a minimum.
Default: 0.

--debug-level Debug level of the output of `irace`. Set this to 0 to
silence all debug messages. Higher values (1, 2 or 3)
provide more verbose debug messages. Default: 0.

--seed Seed of the random number generator (by default,
generate a random seed).

--soft-restart Enable/disable the soft restart strategy that avoids
premature convergence of the probabilistic model.
Default: 1.

--soft-restart-threshold Soft restart threshold value for numerical
parameters. Default: 1e-04.

-e,--elitist Enable/disable elitist irace. Default: 1.
--elitist-new-instances Number of instances added to the execution list

before previous instances in elitist irace. Default:
1.

--elitist-limit In elitist irace, maximum number per race of
elimination tests that do not eliminate a
configuration. Use 0 for no limit. Default: 2.

--capping Enable the use of adaptive capping, a technique
designed for minimizing the computation time of
configurations. Capping is enabled by default if
`elitist` is active, `maxTime > 0` and `boundMax > 0`.

--capping-after-first-test If set to 1, elimination due to capping only
happens after `firstTest` instances are seen. Default:
0.

--capping-type Measure used to obtain the execution bound from the
performance of the elite configurations: median, mean,
worst, best. Default: median.

--bound-type Method to calculate the mean performance of elite
configurations: candidate or instance. Default:
candidate.

--bound-max Maximum execution bound for `targetRunner`. It must be
specified when capping is enabled. Default: 0.

--bound-digits Precision used for calculating the execution time. It
must be specified when capping is enabled. Default: 0.

--bound-par Penalization multiplication constant (PARX) for timed
out executions (executions that reach `boundMax`
execution time). Default: 1.

--bound-as-timeout Replace the configuration cost of bounded executions

irace_cmdline 31

with `boundMax`. Default: 1.
--postselection Perform a postselection race after the execution of

irace to consume all remaining budget. Value 0
disables the postselection race. Default: 1.

--aclib Enable/disable AClib mode. This option enables
compatibility with GenericWrapper4AC as targetRunner
script. Default: 0.

--iterations Maximum number of iterations. Default: 0.
--experiments-per-iteration Number of runs of the target algorithm per

iteration. Default: 0.
--min-survival Minimum number of configurations needed to continue

the execution of each race (iteration). Default: 0.
--num-configurations Number of configurations to be sampled and evaluated

at each iteration. Default: 0.
--mu Parameter used to define the number of configurations

sampled and evaluated at each iteration. Default: 5.
--confidence Confidence level for the elimination test. Default:

0.95.

Value

(invisible(data.frame))

A data frame with the set of best algorithm configurations found by irace. The data frame has the
following columns:

• .ID. : Internal id of the candidate configuration.
• Parameter names : One column per parameter name in parameters.

• .PARENT. : Internal id of the parent candidate configuration.

Additionally, this function saves an R data file containing an object called iraceResults. The path
of the file is indicated in scenario$logFile. The iraceResults object is a list with the following
structure:

scenario The scenario R object containing the irace options used for the execution. See defaultScenario
for more information. The element scenario$parameters contains the parameters R object
that describes the target algorithm parameters. See readParameters.

allConfigurations The target algorithm configurations generated by irace. This object is a data
frame, each row is a candidate configuration, the first column (.ID.) indicates the internal
identifier of the configuration, the following columns correspond to the parameter values, each
column named as the parameter name specified in the parameter object. The final column
(.PARENT.) is the identifier of the configuration from which model the actual configuration
was sampled.

allElites A list that contains one element per iteration, each element contains the internal identi-
fier of the elite candidate configurations of the corresponding iteration (identifiers correspond
to allConfigurations$.ID.).

iterationElites A vector containing the best candidate configuration internal identifier of each
iteration. The best configuration found corresponds to the last one of this vector.

32 irace_license

experiments A matrix with configurations as columns and instances as rows. Column names
correspond to the internal identifier of the configuration (allConfigurations$.ID.).

experimen_log A data.table with columns iteration, instance, configuration, time. This
matrix contains the log of all the experiments that irace performs during its execution. The
instance column refers to the index of the race_state$instances_log data frame. Time is
saved ONLY when reported by the targetRunner.

softRestart A logical vector that indicates if a soft restart was performed on each iteration. If
FALSE, then no soft restart was performed.

state An environment that contains the state of irace, the recovery is done using the information
contained in this object.

testing A list that contains the testing results. The elements of this list are: experiments a matrix
with the testing experiments of the selected configurations in the same format as the explained
above and seeds a vector with the seeds used to execute each experiment.

Author(s)

Manuel López-Ibáñez and Jérémie Dubois-Lacoste

See Also

irace_main() to start irace with a given scenario.

Examples

irace_cmdline("--version")

irace_license irace_license

Description

A character string containing the license information of irace.

Usage

irace_license

Format

An object of class character of length 1.

irace_main 33

irace_main Higher-level interface to launch irace.

Description

Higher-level interface to launch irace.

Usage

irace_main(scenario, output.width = 9999L)

Arguments

scenario list()
Data structure containing irace settings. The data structure has to be the one
returned by the function defaultScenario() or readScenario().

output.width integer(1)
The width used for the screen output.

Details

This function checks the correctness of the scenario, reads the parameter space from scenario$parameterFile,
invokes irace(), prints its results in various formatted ways, (optionally) calls psRace() and, fi-
nally, evaluates the best configurations on the test instances (if provided). If you want a lower-level
interface that just runs irace, please see function irace().

Value

(invisible(data.frame))

A data frame with the set of best algorithm configurations found by irace. The data frame has the
following columns:

• .ID. : Internal id of the candidate configuration.
• Parameter names : One column per parameter name in parameters.

• .PARENT. : Internal id of the parent candidate configuration.

Additionally, this function saves an R data file containing an object called iraceResults. The path
of the file is indicated in scenario$logFile. The iraceResults object is a list with the following
structure:

scenario The scenario R object containing the irace options used for the execution. See defaultScenario
for more information. The element scenario$parameters contains the parameters R object
that describes the target algorithm parameters. See readParameters.

allConfigurations The target algorithm configurations generated by irace. This object is a data
frame, each row is a candidate configuration, the first column (.ID.) indicates the internal
identifier of the configuration, the following columns correspond to the parameter values, each
column named as the parameter name specified in the parameter object. The final column

34 irace_summarise

(.PARENT.) is the identifier of the configuration from which model the actual configuration
was sampled.

allElites A list that contains one element per iteration, each element contains the internal identi-
fier of the elite candidate configurations of the corresponding iteration (identifiers correspond
to allConfigurations$.ID.).

iterationElites A vector containing the best candidate configuration internal identifier of each
iteration. The best configuration found corresponds to the last one of this vector.

experiments A matrix with configurations as columns and instances as rows. Column names
correspond to the internal identifier of the configuration (allConfigurations$.ID.).

experimen_log A data.table with columns iteration, instance, configuration, time. This
matrix contains the log of all the experiments that irace performs during its execution. The
instance column refers to the index of the race_state$instances_log data frame. Time is
saved ONLY when reported by the targetRunner.

softRestart A logical vector that indicates if a soft restart was performed on each iteration. If
FALSE, then no soft restart was performed.

state An environment that contains the state of irace, the recovery is done using the information
contained in this object.

testing A list that contains the testing results. The elements of this list are: experiments a matrix
with the testing experiments of the selected configurations in the same format as the explained
above and seeds a vector with the seeds used to execute each experiment.

Author(s)

Manuel López-Ibáñez and Jérémie Dubois-Lacoste

See Also

irace_cmdline() a command-line interface to irace().

readScenario() for reading a configuration scenario from a file.

readParameters() read the target algorithm parameters from a file.

defaultScenario() returns the default scenario settings of irace.

irace_summarise Summarise the results of a run of irace

Description

Summarise the results of a run of irace

Usage

irace_summarise(iraceResults)

irace_version 35

Arguments

iraceResults list()|character(1)
Object created by irace and typically saved in the log file irace.Rdata. If a
character string is given, then it is interpreted as the path to the log file from
which the iraceResults object will be loaded.

Value

list()

Author(s)

Manuel López-Ibáñez

Examples

irace_results <- read_logfile(system.file("exdata/irace-acotsp.Rdata",
package="irace", mustWork=TRUE))

irace_summarise(irace_results)

irace_version A character string containing the version of irace including git SHA.

Description

A character string containing the version of irace including git SHA.

Usage

irace_version

Format

An object of class character of length 1.

36 multi_irace

multi_irace Execute irace() multiple times with the same or different scenarios
and parameter space definitions.

Description

There are three modes of operation:

• One scenarios and k parameters: k runs with the same scenario and each parameter space
definition.

• One parameters and k scenarios: k runs with the same parameter space definition and each
scenario.

• k parameters and k scenarios: k runs with each scenario and parameter space definition.

Each of the k runs can be repeated n times by supplying a value for n.

Usage

multi_irace(
scenarios,
parameters,
n = 1L,
parallel = 1L,
split_output = parallel > 1L,
global_seed = NULL

)

Arguments

scenarios list()
A list of scenarios. If only a single scenario is supplied, it is used for all param-
eters.

parameters list()
A list of parameter space definitions. If only a single definition is supplied, it is
used for all scenarios.

n integer(1)
The number of repetitions.

parallel integer(1)
The number of workers to use. A value of 1 means sequential execution. Note
that parallel > 1 is not supported on Windows.

split_output logical(1)
If TRUE, the output of irace() is written to {execDir}/run_{i}/irace.out
instead of the standard output.

global_seed integer(1)
The global seed used to seed the individual runs.

parameters 37

Value

A list of the outputs of irace().

See Also

irace() the main interface for single irace runs.

parameters Create a parameter space to be tuned.

Description

• param_cat() creates a categorical parameter.

• param_ord() creates an ordinal parameter.

• param_real() creates a real-valued parameter.

• param_int() creates an integer parameter.

Usage

parametersNew(..., forbidden = NULL, debugLevel = 0L)

param_cat(name = name, values, label = "", condition = TRUE)

param_ord(name, values, label = "", condition = TRUE)

param_real(
name,
lower,
upper,
label = "",
condition = TRUE,
transf = "",
digits = 15L

)

param_int(name, lower, upper, label = "", condition = TRUE, transf = "")

Arguments

... one or more parameters created by param_int(), param_real(), param_ord(),
or param_cat().

forbidden expression()|character(1)
String or list of expressions that define forbidden parameter configurations.

debugLevel integer(1)
Larger values produce more verbose output.

38 parameters

name character(1)
Parameter name (must be alphanumeric).

values character()
Domain as a vector of strings.

label character(1)
Label associated to the parameter. Often used to encode a command-line switch
that activates the parameter.

condition expression(1)|character(1)
Expression that defines when the parameter is active according to the value of
other parameters.

lower, upper Lower and upper limits of the valid domain.

transf character(1)
If "log", then the parameter is sampled in a logarithmic scale.

digits integer(1)
The number of decimal places to be considered for real-valued parameters.

Value

ParameterSpace

Examples

digits <- 4L
parametersNew(
param_cat(name = "algorithm", values = c("as", "mmas", "eas", "ras", "acs"), label = "--"),
param_ord(name = "localsearch", values = c("0", "1", "2", "3"), label = "--localsearch "),
param_real(name = "alpha", lower = 0.0, upper=5.0, label = "--alpha ", digits = digits),
param_real(name = "beta", lower = 0.0, upper = 10.0, label = "--beta ", digits = digits),
param_real(name = "rho", lower = 0.01, upper = 1.00, label = "--rho ", digits = digits),
param_int(name = "ants", lower = 5, upper = 100, transf = "log", label = "--ants "),
param_real(name = "q0", label = "--q0 ", lower=0.0, upper=1.0,

condition = expression(algorithm == "acs")),
param_int(name = "rasrank", label = "--rasranks ", lower=1, upper=quote(min(ants, 10)),

condition = 'algorithm == "ras"'),
param_int(name = "elitistants", label = "--elitistants ", lower=1, upper=expression(ants),

condition = 'algorithm == "eas"'),
param_int(name = "nnls", label = "--nnls ", lower = 5, upper = 50,

condition = expression(localsearch %in% c(1,2,3))),
param_cat(name = "dlb", label = "--dlb ", values = c(0,1),

condition = "localsearch %in% c(1,2,3)"),
forbidden = "(alpha == 0) & (beta == 0)")

path_rel2abs 39

path_rel2abs Converts a relative path to an absolute path.

Description

If the path passed corresponds to an executable, it tries to find its path using Sys.which(). Expan-
sion of '~' in Windows follows the definition of fs::path_expand() rather than base::path.expand().
This function tries really hard to create canonical paths.

Usage

path_rel2abs(path, cwd = getwd())

Arguments

path (character(1)) Character string representing a relative path.
cwd (character(1)) Current working directory.

Value

(character(1)) Character string representing the absolute path

Examples

path_rel2abs("..")

plotAblation Create plot from an ablation log

Description

Create plot from an ablation log

Usage

plotAblation(
ablog,
pdf_file = NULL,
width = 20,
height = 7,
type = c("mean", "boxplot", "rank"),
n = 0L,
mar = NULL,
ylab = "Mean configuration cost",
ylim = NULL,
rename_labels = NULL,
...

)

40 printParameters

Arguments

ablog (list()|character(1)) Ablation log object returned by ablation(). Alterna-
tively, the path to an .Rdata file, e.g., "log-ablation.Rdata", from which the
object will be loaded.

pdf_file Output filename.

width Width provided to create the PDF file.

height Height provided to create the PDF file.

type Type of plot. Supported values are "mean" and "boxplot". Adding "rank" will
plot rank per instance instead of raw cost value.

n integer(1)
Number of parameters included in the plot. By default all parameters are in-
cluded.

mar Vector with the margins for the ablation plot.

ylab Label of y-axis.

ylim Numeric vector of length 2 giving the y-axis range.

rename_labels character()
Renaming table for nicer labels. For example, c("No value"="NA", "LongParameterName"="LPN").

... Further graphical parameters may also be supplied as arguments. See graphics::plot.default().

Author(s)

Leslie Pérez Cáceres and Manuel López-Ibáñez

See Also

ablation() ablation_cmdline()

Examples

logfile <- file.path(system.file(package="irace"), "exdata", "log-ablation.Rdata")
plotAblation(ablog = logfile)
plotAblation(ablog = logfile, type = "mean")
plotAblation(ablog = logfile, type = c("rank","boxplot"), rename_labels = c(

"localsearch"="ls", algorithm="algo", source="default"))

printParameters Print parameter space in the textual format accepted by irace.

Description

Print parameter space in the textual format accepted by irace.

Usage

printParameters(parameters)

printScenario 41

Arguments

parameters ParameterSpace
Data structure containing the parameter space definition. The data structure has
to similar to the one returned by the function readParameters.

Value

character()

See Also

readParameters()

Examples

parameters_table <- '
name switch type values [conditions (using R syntax)]
algorithm "--" c (as,mmas,eas,ras,acs)
localsearch "--localsearch " c (0, 1, 2, 3)
alpha "--alpha " r (0.00, 5.00)
beta "--beta " r (0.00, 10.00)
rho "--rho " r (0.01, 1.00)
ants "--ants " i,log (5, 100)
q0 "--q0 " r (0.0, 1.0) | algorithm == "acs"
q0dep "--q0 " r (0.0, q0) | algorithm != "acs"
rasrank "--rasranks " i (1, "min(ants, 10)") | algorithm == "ras"
elitistants "--elitistants " i (1, ants) | algorithm == "eas"
nnls "--nnls " i (5, 50) | localsearch %in% c(1,2,3)
dlb "--dlb " c (0, 1) | localsearch %in% c(1,2,3)

[forbidden]
(alpha == 0.0) & (beta == 0.0)

'
parameters <- readParameters(text=parameters_table)
printParameters(parameters)

printScenario Prints the given scenario

Description

Prints the given scenario

Usage

printScenario(scenario)

42 psRace

Arguments

scenario list()
Data structure containing irace settings. The data structure has to be the one
returned by the function defaultScenario() or readScenario().

Author(s)

Manuel López-Ibáñez and Jérémie Dubois-Lacoste

See Also

readScenario() for reading a configuration scenario from a file.

printScenario() prints the given scenario.

defaultScenario() returns the default scenario settings of irace.

checkScenario() to check that the scenario is valid.

psRace Post-selection race

Description

psRace performs a post-selection race of a set of configurations.

Usage

psRace(
iraceResults,
max_experiments,
conf_ids = NULL,
iteration_elites = FALSE,
psrace_logFile = NULL

)

Arguments

iraceResults list()|character(1)
Object created by irace and typically saved in the log file irace.Rdata. If a
character string is given, then it is interpreted as the path to the log file from
which the iraceResults object will be loaded.

max_experiments

numeric(1)
Number of experiments for the post-selection race. If it is equal to or smaller
than 1, then it is a fraction of the total budget given by iraceResults$scenario$maxExperiments
or iraceResults$scenario$maxTime / iraceResults$state$boundEstimate.

conf_ids IDs of the configurations in iraceResults$allConfigurations to be used for
the post-selection. If NULL, then the configurations are automatically selected.

random_seed 43

iteration_elites

If FALSE, give priority to selecting the configurations that were elite in the last
iteration. If TRUE, select from all elite configurations of all iterations. This
parameter only has an effect when conf_ids is not NULL.

psrace_logFile character(1)
Log file to save the post-selection race log. If NULL, the log is saved in iraceResults$scenario$logFile.

Value

The elite configurations after the post-selection. In addition, if iraceResults$scenario$logFile
is defined, it saves an updated copy of iraceResults in that file, where iraceResults$psrace_log
is a list with the following elements:

configurations Configurations used in the post-selection race.

instances Data frame with the instances used in the post-selection race. First column has the
instances IDs from iraceResults$scenario$instances, second column the seed assigned
to the instance.

max_experiments Configuration budget assigned to the post-selection race.

experiments Matrix of results generated by the post-selection race, in the same format as the ma-
trix iraceResults$experiments. Column names are the configuration IDs and row names
are the instance IDs.

elites Best configurations found in the experiments.

Author(s)

Leslie Pérez Cáceres and Manuel López-Ibáñez

Examples

irace_log <- read_logfile(system.file(package="irace", "exdata", "sann.rda"))
Use a temporary file to not change the original "sann.rda".
psrace_logFile <- withr::local_tempfile(fileext = ".Rdata")
Execute the post-selection after the execution of irace. Use 10% of the total budget.
psRace(irace_log, max_experiments=0.1, psrace_logFile = psrace_logFile)
Print psrace_log
irace_log <- read_logfile(psrace_logFile)
str(irace_log$psrace_log)

random_seed Get, set and restore the state of the random number generator state.

Description

Get, set and restore the state of the random number generator state.

44 readConfigurationsFile

Usage

get_random_seed()

set_random_seed(seed)

restore_random_seed(seed)

Arguments

seed (list()|integer(1))
Either an integer or the list returned gy get_random_seed().

Details

These functions originate from the withr package.

Value

get_random_seed() returns a list with two components random_seed and rng_kind or NULL if
no seed was set; set_random_seed() and restore_random_seed() do not return anything.

Examples

old_seed <- get_random_seed()
on.exit(restore_random_seed(old_seed))
set_random_seed(42)
value1 <- runif(1)
set_random_seed(42)
value2 <- runif(1)
stopifnot(all.equal(value1,value2))

readConfigurationsFile

Read parameter configurations from a file

Description

Reads a set of target-algorithm configurations from a file and puts them in irace format. The
configurations are checked to match the parameters description provided.

Usage

readConfigurationsFile(filename, parameters, debugLevel = 0L, text)

readConfigurationsFile 45

Arguments

filename character(1)
Filename from which the configurations should be read. The contents should be
readable by read.table(, header=TRUE).

parameters ParameterSpace
Data structure containing the parameter space definition. The data structure has
to similar to the one returned by the function readParameters.

debugLevel integer(1)
Larger values produce more verbose output.

text character(1)
If file is not supplied and this is, then configurations are read from the value of
text via a text connection.

Details

Example of an input file:

This is a comment line
param_1 param_2

0.5 "value_1"
1.0 NA
1.2 "value_3"

The order of the columns does not necessarily have to be the same as in the file containing the
definition of the parameters.

Value

A data frame containing the obtained configurations. Each row of the data frame is a candidate
configuration, the columns correspond to the parameter names in parameters.

Author(s)

Manuel López-Ibáñez and Jérémie Dubois-Lacoste

See Also

readParameters() to obtain a valid parameter structure from a parameters file.

46 readParameters

readParameters Reads the parameters to be tuned by irace from a file or from a char-
acter string.

Description

Reads the parameters to be tuned by irace from a file or from a character string.

Usage

readParameters(file, digits = 4L, debugLevel = 0L, text)

Arguments

file character(1)
Filename containing the definitions of the parameters to be tuned.

digits integer(1)
The number of decimal places to be considered for real-valued parameters.

debugLevel integer(1)
Larger values produce more verbose output.

text character(1)
If file is not supplied and this is, then parameters are read from the value of
text via a text connection.

Details

Either file or text must be given. If file is given, the parameters are read from the file file. If
text is given instead, the parameters are read directly from the text character string. In both cases,
the parameters must be given (in text or in the file whose name is file) in the expected form. See
the documentation for details. If none of these parameters is given, irace will stop with an error.

A fixed parameter is a parameter that should not be sampled but instead should be always set to
the only value of its domain. In this function we set isFixed to TRUE only if the parameter is a
categorical and has only one possible value. If it is an integer and the minimum and maximum are
equal, or it is a real and the minimum and maximum values satisfy round(minimum, digits) ==
round(maximum, digits), then the parameter description is rejected as invalid to identify potential
user errors.

The order of the parameters determines the order in which parameters are given to targetRunner.
Changing the order may also change the results produced by irace, even with the same random
seed.

Value

A list containing the definitions of the parameters read. The list is structured as follows:

names Vector that contains the names of the parameters.

readParameters 47

types Vector that contains the type of each parameter ’i’, ’c’, ’r’, ’o’. Numerical parameters can
be sampled in a log-scale with ’i,log’ and ’r,log’ (no spaces).

switches Vector that contains the switches to be used for the parameters on the command line.

domain List of vectors, where each vector may contain two values (minimum, maximum) for real
and integer parameters, or possibly more for categorical parameters.

conditions List of R logical expressions, with variables corresponding to parameter names.

isFixed Logical vector that specifies which parameter is fixed and, thus, it does not need to be
tuned.

nbParameters An integer, the total number of parameters.

nbFixed An integer, the number of parameters with a fixed value.

nbVariable Number of variable (to be tuned) parameters.

depends List of character vectors, each vector specifies which parameters depend on this one.

is_dependent Logical vector that specifies which parameter has a dependent domain.

digits Integer vector that specifies the number of digits per parameter.

forbidden List of expressions that define which parameter configurations are forbidden.

Author(s)

Manuel López-Ibáñez and Jérémie Dubois-Lacoste

Examples

Read the parameters directly from text
parameters_table <- '
name switch type values [conditions (using R syntax)]
algorithm "--" c (as,mmas,eas,ras,acs)
localsearch "--localsearch " o (0, 1, 2, 3)
alpha "--alpha " r (0.00, 5.00)
beta "--beta " r (0.00, 10.00)
rho "--rho " r (0.01, 1.00)
ants "--ants " i,log (5, 100)
q0 "--q0 " r (0.0, 1.0) | algorithm == "acs"
rasrank "--rasranks " i (1, "min(ants, 10)") | algorithm == "ras"
elitistants "--elitistants " i (1, ants) | algorithm == "eas"
nnls "--nnls " i (5, 50) | localsearch %in% c(1,2,3)
dlb "--dlb " c (0, 1) | localsearch %in% c(1,2,3)

[forbidden]
(alpha == 0.0) & (beta == 0.0)
[global]
digits = 4
'
parameters <- readParameters(text=parameters_table)
str(parameters)

48 readScenario

readScenario Reads from a file the scenario settings to be used by irace.

Description

The scenario argument is an initial scenario that is overwritten for every setting specified in the file
to be read.

Usage

readScenario(filename = "", scenario = list(), params_def = .irace.params.def)

Arguments

filename character(1)
Filename from which the scenario will be read. If empty, the default scenarioFile
is used. An example scenario file is provided in system.file(package="irace",
"templates/scenario.txt.tmpl").

scenario list()
Data structure containing irace settings. The data structure has to be the one
returned by the function defaultScenario() or readScenario().

params_def data.frame()
Definition of the options accepted by the scenario. This should only be modified
by packages that wish to extend irace.

Value

The scenario list read from the file. The scenario settings not present in the file are not present in
the list, i.e., they are NULL.

Author(s)

Manuel López-Ibáñez and Jérémie Dubois-Lacoste

See Also

printScenario() prints the given scenario.

defaultScenario() returns the default scenario settings of irace.

checkScenario() to check that the scenario is valid.

read_ablogfile 49

read_ablogfile Read the log file (log-ablation.Rdata) produced by ablation().

Description

Read the log file (log-ablation.Rdata) produced by ablation().

Usage

read_ablogfile(filename)

Arguments

filename character(1)
Filename that contains the log file saved by ablation(). Example: log-ablation.Rdata.

Value

list()

read_logfile Read the log file produced by irace (irace.Rdata).

Description

Read the log file produced by irace (irace.Rdata).

Usage

read_logfile(filename, name = "iraceResults")

Arguments

filename Filename that contains the log file saved by irace. Example: irace.Rdata.

name Optional argument that allows overriding the default name of the object in the
file.

Value

(list())

Examples

irace_results <- read_logfile(system.file("exdata/irace-acotsp.Rdata", package="irace",
mustWork=TRUE))

str(irace_results)

50 read_pcs_file

read_pcs_file Read parameters in PCS (AClib) format and write them in irace for-
mat.

Description

Read parameters in PCS (AClib) format and write them in irace format.

Usage

read_pcs_file(file, digits = 4L, debugLevel = 0L, text)

Arguments

file character(1)
Filename containing the definitions of the parameters to be tuned.

digits integer(1)
The number of decimal places to be considered for real-valued parameters.

debugLevel integer(1)
Larger values produce more verbose output.

text character(1)
If file is not supplied and this is, then parameters are read from the value of
text via a text connection.

Details

Either file or text must be given. If file is given, the parameters are read from the file file. If
text is given instead, the parameters are read directly from the text character string. In both cases,
the parameters must be given (in text or in the file whose name is file) in the expected form. See
the documentation for details. If none of these parameters is given, irace will stop with an error.

FIXME: Multiple conditions and default configuration are currently ignored. See https://github.
com/MLopez-Ibanez/irace/issues/31

Value

A string representing the parameters in irace format.

Author(s)

Manuel López-Ibáñez

References

Frank Hutter, Manuel López-Ibáñez, Chris Fawcett, Marius Thomas Lindauer, Holger H. Hoos,
Kevin Leyton-Brown, and Thomas Stützle. AClib: A Benchmark Library for Algorithm Con-
figuration. In P. M. Pardalos, M. G. C. Resende, C. Vogiatzis, and J. L. Walteros, editors, Learning
and Intelligent Optimization, 8th International Conference, LION 8, volume 8426 of Lecture Notes
in Computer Science, pages 36–40. Springer, Heidelberg, 2014.

https://github.com/MLopez-Ibanez/irace/issues/31
https://github.com/MLopez-Ibanez/irace/issues/31

removeConfigurationsMetaData 51

See Also

readParameters()

Examples

Read the parameters directly from text
pcs_table <- '
name domain
algorithm {as,mmas,eas,ras,acs}[as]
localsearch {0, 1, 2, 3}[0]
alpha [0.00, 5.00][1]
beta [0.00, 10.00][1]
rho [0.01, 1.00][0.95]
ants [1, 100][10]il
q0 [0.0, 1.0][0]
rasrank [1, 100][1]i
elitistants [1, 750][1]i
nnls [5, 50][5]i
dlb {0, 1}[1]
Conditionals:
q0 | algorithm in {acs}
rasrank | algorithm in {ras}
elitistants | algorithm in {eas}
nnls | localsearch in {1,2,3}
dlb | localsearch in {1,2,3}
{alpha=0, beta=0}'
parameters_table <- read_pcs_file(text=pcs_table)
cat(parameters_table)
parameters <- readParameters(text=parameters_table)
str(parameters)

removeConfigurationsMetaData

removeConfigurationsMetaData

Description

Remove the columns with "metadata" of a data frame containing configurations. Currently, meta-
data corresponds to column names starting with a period. This function should be used before
printing the configurations to output only the values for the parameters of the configuration without
metadata possibly useless to the user.

Usage

removeConfigurationsMetaData(configurations)

52 save_irace_logfile

Arguments

configurations data.frame
Parameter configurations of the target algorithm (one per row).

Value

The same data frame without "metadata".

Author(s)

Manuel López-Ibáñez and Jérémie Dubois-Lacoste

See Also

configurations_print_command() to print the configurations as command lines. configurations_print()
to print the configurations as a data frame.

save_irace_logfile Save the log generated by irace to a file (by default irace.Rdata).

Description

This function may be useful if you are manually editing the log data generated by a run of irace.

Usage

save_irace_logfile(iraceResults, logfile)

Arguments

iraceResults list()
Object created by irace and typically saved in the log file irace.Rdata.

logfile character(1)
Filename to save iraceResults. Usually, this is given by scenario$logFile.
If NULL or "", no data is saved.

See Also

read_logfile()

scenario_update_paths 53

scenario_update_paths Update filesystem paths of a scenario consistently.

Description

This function should be used to change the filesystem paths stored in a scenario object. Useful when
moving a scenario from one computer to another.

Usage

scenario_update_paths(scenario, from, to, fixed = TRUE)

Arguments

scenario list()
Data structure containing irace settings. The data structure has to be the one
returned by the function defaultScenario() or readScenario().

from character(1)
Character string containing a regular expression (or character string for fixed =
TRUE) to be matched.

to character(1)
The replacement string.character string. For fixed = FALSE this can include
backreferences "\1" to "\9" to parenthesized subexpressions of from.

fixed logical(1)
If TRUE, from is a string to be matched as is.

Value

The updated scenario

See Also

base::grep()

Examples

Not run:
scenario <- readScenario(filename = "scenario.txt")
scenario <- scenario_update_paths(scenario, from = "/home/manuel/", to = "/home/leslie")

End(Not run)

54 target_evaluator_default

target_evaluator_default

target_evaluator_default

Description

target_evaluator_default is the default targetEvaluator function that is invoked if targetEvaluator
is a string (by default targetEvaluator is NULL and this function is not invoked). You can use it
as an advanced example of how to create your own targetEvaluator function.

Usage

target_evaluator_default(
experiment,
num_configurations,
all_conf_id,
scenario,
target_runner_call

)

Arguments

experiment A list describing the experiment. It contains at least:

id_configuration An alphanumeric string that uniquely identifies a configu-
ration;

id_instance An alphanumeric string that uniquely identifies an instance;
seed Seed for the random number generator to be used for this evaluation, ig-

nore the seed for deterministic algorithms;
instance String giving the instance to be used for this evaluation;
bound (only when capping is enabled) Time bound for the execution;
configuration 1-row data frame with a column per parameter name;

num_configurations

Number of configurations alive in the race.

all_conf_id Vector of configuration IDs of the alive configurations.

scenario list()
Data structure containing irace settings. The data structure has to be the one
returned by the function defaultScenario() or readScenario().

target_runner_call

String describing the call to targetRunner that corresponds to this call to targetEvaluator.
This is used for providing extra information to the user, for example, in case
targetEvaluator fails.

target_runner_default 55

Value

The function targetEvaluator must return a list with one element "cost", the numerical value
corresponding to the cost measure of the given configuration on the given instance.

The return list may also contain the following optional elements that are used by irace for reporting
errors in targetEvaluator:

error is a string used to report an error;

outputRaw is a string used to report the raw output of calls to an external program or function;

call is a string used to report how targetRunner called an external program or function.

Author(s)

Manuel López-Ibáñez and Jérémie Dubois-Lacoste

target_runner_default Default targetRunner function.

Description

Use it as an advanced example of how to create your own targetRunner function.

Usage

target_runner_default(experiment, scenario)

Arguments

experiment A list describing the experiment. It contains at least:

id_configuration An alphanumeric string that uniquely identifies a configu-
ration;

id_instance An alphanumeric string that uniquely identifies an instance;
seed Seed for the random number generator to be used for this evaluation, ig-

nore the seed for deterministic algorithms;
instance String giving the instance to be used for this evaluation;
bound (only when capping is enabled) Time bound for the execution;
configuration 1-row data frame with a column per parameter name;

scenario list()
Data structure containing irace settings. The data structure has to be the one
returned by the function defaultScenario() or readScenario().

56 testConfigurations

Value

If targetEvaluator is NULL, then the targetRunner function must return a list with at least one
element "cost", the numerical value corresponding to the evaluation of the given configuration on
the given instance.

If the scenario option maxTime is non-zero or if capping is enabled then the list must contain at
least another element "time" that reports the execution time for this call to targetRunner. The
return list may also contain the following optional elements that are used by irace for reporting
errors in targetRunner:

error is a string used to report an error;

outputRaw is a string used to report the raw output of calls to an external program or function;

call is a string used to report how targetRunner called an external program or function.

Author(s)

Manuel López-Ibáñez and Jérémie Dubois-Lacoste

testConfigurations Execute the given configurations on the testing instances specified in
the scenario

Description

Execute the given configurations on the testing instances specified in the scenario

Usage

testConfigurations(configurations, scenario)

Arguments

configurations data.frame
Parameter configurations of the target algorithm (one per row).

scenario list()
Data structure containing irace settings. The data structure has to be the one
returned by the function defaultScenario() or readScenario().

Details

A test instance set must be provided through scenario[["testInstances"]].

Value

A list with the following elements:

experiments Experiments results.

seeds Array of the instance seeds used in the experiments.

testing_fromfile 57

Author(s)

Manuel López-Ibáñez

See Also

testing_fromlog()

testing_fromfile Test configurations given an explicit table of configurations and a sce-
nario file

Description

Executes the testing of an explicit list of configurations given in filename (same format as in
readConfigurationsFile()). A logFile is created unless disabled in scenario. This may over-
write an existing one!

Usage

testing_fromfile(filename, scenario)

Arguments

filename character(1)
Path to a file containing configurations: one configuration per line, one parame-
ter per column, parameter names in header.

scenario list()
Data structure containing irace settings. The data structure has to be the one
returned by the function defaultScenario() or readScenario().

Value

iraceResults

Author(s)

Manuel López-Ibáñez

See Also

testing_fromlog() provides a different interface for testing.

58 testing_fromlog

testing_fromlog Test configurations given in the logfile (typically irace.Rdata) pro-
duced by irace.

Description

testing_fromlog executes the testing of the target algorithm configurations found by an irace
execution.

Usage

testing_fromlog(
logFile,
testNbElites,
testIterationElites,
testInstancesDir,
testInstancesFile,
testInstances

)

Arguments

logFile character(1)
Path to the logfile (typically irace.Rdata) produced by irace.

testNbElites Number of (final) elite configurations to test. Overrides the value found in
logFile.

testIterationElites

logical(1)
If FALSE, only the final testNbElites configurations are tested; otherwise,
also test the best configurations of each iteration. Overrides the value found
in logFile.

testInstancesDir

Directory where testing instances are located, either absolute or relative to cur-
rent directory.

testInstancesFile

File containing a list of test instances and optionally additional parameters for
them.

testInstances Character vector of the instances to be used in the targetRunner when execut-
ing the testing.

Details

The function testing_fromlog loads the logFile and obtains the testing setup and configurations
to be tested. Within the logFile, the variable scenario$testNbElites specifies how many final
elite configurations to test and scenario$testIterationElites indicates whether test the best
configuration of each iteration. The values may be overridden by setting the corresponding argu-
ments in this function. The set of testing instances must appear in scenario[["testInstances"]].

testing_fromlog 59

Value

logical(1)
TRUE if the testing ended successfully otherwise, FALSE.

Author(s)

Manuel López-Ibáñez and Leslie Pérez Cáceres

See Also

defaultScenario() to provide a default scenario for irace. testing_fromfile() provides a
different interface for testing.

Index

∗ ablation
ablation, 4
ablation_cmdline, 6
plotAblation, 39
read_ablogfile, 49

∗ analysis
get_instanceID_seed_pairs, 21
getConfigurationById, 18
getConfigurationByIteration, 19
getFinalElites, 20
irace_summarise, 34
read_logfile, 49
save_irace_logfile, 52

∗ automatic
irace-package, 3

∗ configuration
irace-package, 3

∗ datasets
irace_license, 32
irace_version, 35

∗ optimize
irace-package, 3

∗ package
irace-package, 3

∗ running
irace, 22
irace_cmdline, 26
irace_main, 33
multi_irace, 36
testing_fromfile, 57
testing_fromlog, 58

∗ tuning
irace-package, 3

ablation, 4
ablation(), 6, 7, 40, 49
ablation_cmdline, 6
ablation_cmdline(), 5, 40

base::grep(), 53

base::path.expand(), 39
buildCommandLine, 8

check_output_target_runner, 11
checkIraceScenario, 9
checkParameters, 10
checkScenario, 9, 10
checkScenario(), 11, 17, 22, 24, 42, 48
configurations_print, 12
configurations_print(), 13, 52
configurations_print_command, 12
configurations_print_command(), 12, 52

defaultScenario, 9, 13, 23, 31, 33
defaultScenario(), 9–11, 13, 17, 23, 24, 33,

34, 42, 48, 53–57, 59

fs::path_expand(), 39

get_instanceID_seed_pairs, 21
get_random_seed (random_seed), 43
get_random_seed(), 44
getConfigurationById, 18
getConfigurationByIteration, 19
getFinalElites, 20
graphics::plot.default(), 40

has_testing_data, 22

irace, 22
irace(), 3, 24, 33, 34, 36, 37
irace-package, 3
irace.cmdline (irace_cmdline), 26
irace_cmdline, 26
irace_cmdline(), 24, 27, 34
irace_license, 32
irace_main, 33
irace_main(), 24, 27, 32
irace_summarise, 34
irace_version, 35
is.atomic(), 21

60

INDEX 61

multi_irace, 36

param_cat (parameters), 37
param_int (parameters), 37
param_ord (parameters), 37
param_real (parameters), 37
parameters, 37
parametersNew (parameters), 37
path_rel2abs, 39
plotAblation, 39
plotAblation(), 5–7
printParameters, 40
printScenario, 9, 41
printScenario(), 11, 17, 42, 48
psRace, 42
psRace(), 33

random_seed, 43
read_ablogfile, 49
read_logfile, 49
read_logfile(), 52
read_pcs_file, 50
readConfigurationsFile, 44
readConfigurationsFile(), 4, 57
readParameters, 10, 13, 23, 31, 33, 41, 45, 46
readParameters(), 24, 34, 41, 45, 51
readScenario, 9, 48
readScenario(), 9–11, 13, 17, 23, 24, 27, 33,

34, 42, 48, 53–57
removeConfigurationsMetaData, 51
removeConfigurationsMetaData(), 18–20
restore_random_seed (random_seed), 43
restore_random_seed(), 44

save_irace_logfile, 52
scenario_update_paths, 53
set_random_seed (random_seed), 43
set_random_seed(), 44
Sys.which(), 39

target_evaluator_default, 54
target_runner_default, 55
testConfigurations, 56
testing_fromfile, 57
testing_fromfile(), 59
testing_fromlog, 58
testing_fromlog(), 57

withr, 44

	irace-package
	ablation
	ablation_cmdline
	buildCommandLine
	checkIraceScenario
	checkParameters
	checkScenario
	check_output_target_runner
	configurations_print
	configurations_print_command
	defaultScenario
	getConfigurationById
	getConfigurationByIteration
	getFinalElites
	get_instanceID_seed_pairs
	has_testing_data
	irace
	irace_cmdline
	irace_license
	irace_main
	irace_summarise
	irace_version
	multi_irace
	parameters
	path_rel2abs
	plotAblation
	printParameters
	printScenario
	psRace
	random_seed
	readConfigurationsFile
	readParameters
	readScenario
	read_ablogfile
	read_logfile
	read_pcs_file
	removeConfigurationsMetaData
	save_irace_logfile
	scenario_update_paths
	target_evaluator_default
	target_runner_default
	testConfigurations
	testing_fromfile
	testing_fromlog
	Index

