The irlba Package

Bryan W. Lewis
blewis@illposed.net,

adapted from the work of:
Jim Baglama (University of Rhode Island)
and Lothar Reichel (Kent State University).

January 27, 2026

1 Introduction

The irlba package provides a fast way to compute partial singular value decompositions (SVD)
of large sparse or dense matrices. Recent additions to the package can also compute fast partial
symmetric eigenvalue decompositions and principal components. The package is an R implementa-
tion of the augmented implicitly restarted Lanczos bidiagonalization algorithm of Jim Baglama and
Lothar Reichel'. Source code is maintained at https://github.com/bwlewis /irlba.

The irlba package works with real- and complex-valued dense R matrices and real-valued sparse
matrices from the Matrix package. It provides several easy ways to define custom matrix arith-
metic that works with other matrix classes including big.matrix from the bigmemory package
and others. The irlba is both faster and more memory efficient than the usual R svd function
for computing a few of the largest singular vectors and corresponding singular values of a matrix.
It takes advantage of available high-performance linear algebra libraries if R is compiled to use
them. In particular, the package uses the same BLAS and LAPACK libraries that R uses (see
https://cran.r-project.org/doc/manuals/R-admin.html#BLAS), or the CHOLMOD library from
R’s Matrix package for sparse matrix problems.

A whirlwind summary of the algorithm follows, along with a few basic examples. A much more
detailed description and discussion of the algorithm may be found in the cited Baglama-Reichel
reference.

! Augmented Implicitly Restarted Lanczos Bidiagonalization Methods, J. Baglama and L. Reichel, SIAM J. Sci.
Comput. 2005.

https://github.com/bwlewis/irlba
https://cran.r-project.org/doc/manuals/R-admin.html#BLAS

The irlba Package

2 Partial Singular Value Decomposition

Let A € R”" and assume / > n. These notes simplify the presentation by considering only real-
valued matrices and assuming without losing generality that there are at least as many rows as
columns (the method works more generally). A singular value decomposition of A can be expressed
as:

3

1 if j=k
A= ol vl = uluy = J ’
I J J 0 o.w.,

where u; € R/, v;eR", j=1,2,...,n,and oy > 09> --- >0, > 0.
Let 1 <k <n. A rank k partial SVD of A is defined as:

k

,_ T

A = E ojUV; -
=1

The following simple example shows how to use irlba to compute the five largest singular
values and corresponding singular vectors of a 5000 x 5000 matrix. We compare to the usual R svd
function and report timings for our test machine, a 4-CPU core, 3.0 GHz AMD A10-7850K personal
computer with 16 GB RAM, using R version 3.3.1 using the high performance AMD ACML core
math library BLAS and LAPACK.

> library(’irlba’)
> set.seed(1)
> A <- matrix(rnorm(5000%5000), 5000)
> t1 <- proc.time()
> L <- irlba(A, 5)
> print(proc.time() - t1)

user system elapsed
17.440 0.192 4.417
> gc()

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 1096734 58.6 1770749 94.6 1442291 77.1
Vcells 26685618 203.6 62229965 474.8 52110704 397.6

Compare with the standard svd function:

The irlba Package

> t1 <- proc.time()
> S <- svd(4, nu=5, nv=5)
> print(proc.time() - t1)

user system elapsed
277.092 11.552 74.425
> gc()

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 1097441 58.7 1770749 94.6 1442291 77.1
Vcells 26741910 204.1 169891972 1296.2 176827295 1349.1

The irlba method uses about 1/20 elapsed time as the svd method in this example and less than
one third the peak memory. The defalut tolerance value yields the following relative error in the
estimated singular values:

> sqrt (crossprod(S$d[1:5]-L$d)/crossprod(S$d[1:5]))
[,1]
[1,] 4.352641e-10

2.1 Convergence tolerance

IRLBA is an iterative method that estimates a few singular values and associated singular vectors.
A sketch of the algorithm is outlined in Section 3 below. The R tol and svtol arguments control
when the algorithm converges with tol specifying subspace convergence, and svtol specifying
convergence of estimated singular values.

Subspace convergence occurs when the algorithm iterations find estimated singular vectors that

satisfy
|AVy, — US| < tol - ||A]],

where || - || means spectral matrix norm, A is the matrix, V;, and Uy are the estimated right and left
k singular vectors computed by the algorithm, and ||A|| is the estimated spectral norm of the matrix
defined by the largest singular value computed by the algorithm. Using R notation, the algorithm
stops when

L <- irlba(A, k, tol)
svd(A 7*) L$v - L$u 7*), diag(L$d))$d[1] < tol * L$d[1]

It’s possible to encounter problems that fail to converge before the maximum number of algorithm
iterations specified by the maxit argument.

When the largest singular values are clustered together it can be hard to detect subspace con-
vergence. More recent versions of the IRLBA implementation include the svtol argument that
specifies a maximum for the relative change in each estimated singular value from one iteration to
the next.

The irlba Package

The convergence tolerance values together help improve correct subspace detection in difficult
settings when the singular values are clustered. But in the worst cases, block methods can perform
better as shown in the documentation for the svdr method.

Also see the related rsvd function by N. Benjamin Erichson, https://cran.r-project.org/package—rsvd.

2.2 Differences with svd

The irlba function is designed to compute a partial singular value decomposition. It is largely
compatible with the usual R svd function but there are some differences. In particular:

1. The irlba function only computes the number of singular values corresponding to the max-
imum of the desired singular vectors, max(nu, nv). For example, if 5 singular vectors are
desired (nu=nv=5), then only the five corresponding singular values are computed. The stan-
dard R svd function always returns the total set of singular values for the matrix, regardless
of how many singular vectors are specified.

2. The irlba function is an iterative method that continues until either a tolerance or maximum
number of iterations is reached. Problems with difficult convergence properties are not likely
to be encountered, but the method will fail with an error after the iteration limit is reached
in those cases.

Watch out especially for the first difference noted above!

2.3 Principal Components

Version 2.1.0 of the package introduces optional arguments and prcomp-like function syntax for
efficiently computing partial SVDs of matrices after centering and scaling their columns and other
adjustments. Use the following arguments to the irlba function, or the new irlba_prcomp function

for PCA:

e center: if center is a numeric vector with length equal to the number of columns of the
matrix, then each column of the matrix has the corresponding value from center subtracted
from it.

e scale: if ’scale’ is a numeric vector with length equal to the number of columns of the matrix,
then each column is divided by the corresponding value from scale.

Both centering and scaling options are performed implicitly in the algorithm and, for instance, do
not affect sparsity of the input matrix or increase storage requirements. The following example
compares the output of the usual prcomp function with output from irlba. Note that in general,
singular vectors and principal component vectors are only unique up to sign!

https://cran.r-project.org/package=rsvd

The irlba Package

set.seed (1)
x <- matrix(rnorm(200), nrow=20)
pl <- prcomp_irlba(x, n=3)
summary (p1)
Importance of componentsys:

PC1 PC2 PC3
Standard deviation 1.5411 1.2513 1.1916
Proportion of Variance 0.2806 0.1850 0.1678
Cumulative Proportion 0.2806 0.4656 0.6334

vV VvV Vv Vv

> # Compare with
> p2 <- prcomp(x, tol=0.7)
> summary (p2)

Importance of components:

PC1 pPC2 PC3
Standard deviation 1.5411 1.2513 1.1916
Proportion of Variance 0.2806 0.1850 0.1678
Cumulative Proportion 0.2806 0.4656 0.6334

Alternatively, you can compute principal components directly using the singular value decomposi-
tion and the center option:

> p3 <- svd(scale(x, center=colMeans(x), scale=FALSE))
> p4 <- irlba(x, 3, center=colMeans(x))

> # compare with prcomp

> sqrt(crossprod(pl$rotation[,1] - p3$v([,1]1))
[,1]

[1,] 9.773228e-13

> sqrt(crossprod(pl$rotation[,1] + p4$v([,1]1))
[,1]

[1,] 1.652423e-12

2.4 Truncated symmetric eigenvalue decomposition

Use the partial_eigen function to estimate a subset of the largest (most positive) eigenvalues
and corresponding eigenvectors of a symmetric dense or sparse real-valued matrix. The function
is particularly well-suited to estimating the largest eigenvalues and corresponding eigenvectors of
symmetric positive semi-definite matrices of the form AT A.

The irlba Package

2.5 User-Defined Matrix Multiplication

The irlba function only uses matrix vector products with the input data matrix to compute its
solution. It’s easy to use R’s native object model to define custom matrix classes with user-defined
matrix multiplication functions. Such functions can be used to support special matrix objects, out
of core computation of large problems, or matrix-free operators.

Here is a simple example that defines a matrix product that scales the columns of the matrix to
have unit norm (cf the scale option).

> A <- matrix(runif(400), nrow=20)

> col_scale <- sqrt(apply(4, 2, crossprod))

> setClass("scaled_matrix", contains="matrix", slots=c(scale="numeric"))
> setMethod (")*),", signature(x="scaled_matrix", y="numeric"),

+ function(x ,y) x@.Data 7*/, (y / x@scale))

> setMethod ("7*}", signature(x="numeric", y="scaled_matrix"),

+ function(x ,y) (x 7*J), y@.Data) / y@scale)

> a <- new("scaled_matrix", A, scale=col_scale)

> irlba(a, 3)$d

[1] 3.9298391 0.9565016 0.8266859

Compare with
> svd(sweep (4, 2, col_scale, FUN=‘/¢))$d[1:3]

[1] 3.9298391 0.9565016 0.8266859

See the following link for an example that uses large-scale out of core computation: http://bwlewis.github.io/

NOTE! The reference R algorithm implementation is used whenever user-defined matrix multi-
plication is specified (instead of the faster C code path).

3 A Quick Summary of the IRLBA Method

3.1 Partial Lanczos Bidiagonalization

Start with a given vector p;. Compute m steps of the Lanczos process:

ATQ,, = PmBgH—rmeﬁ,

https://bwlewis.github.io/1000_genomes_examples/PCA_whole_genome.html

The irlba Package

Bm c Rmxm,Pm c Rnxm, Qm c RExm
P;z;Pm - QZ;;Qm = I,
rm € R, Py, =0,

P’m = [p17p27"'apm]-

)

3.2 Approximating Partial SVD with A Partial Lanczos bidiagonaliza-

tion

AT AP,

AATQy,

Compute the SVD of B,,:

(i.e.,

J

and

Uj

AT

B,vP =0

A"Q, By
P.BL B, + rmel B,

APmBZl + Armegb,
QmBmB;L + Armeﬁ.

ATQmu}B

T, B T, B
PoBouj + rme,u;
B B T, B
g; vaj + rmeu;
T, B
€Uy -

Uj Uj + 'm

The irlba Package

The part in red above represents the error with respect to the exact SVD. The IRLBA strategy is
to iteratively reduce the norm of that error term by augmenting and restarting.

Here is the overall method:

1. Compute the Lanczos process up to step m.
2. Compute k < m approximate singular vectors.

3. Orthogonalize against the approximate singular vectors to get a new starting vector.

W

. Continue the Lanczos process with the new starting vector for m more steps.

5. Check for convergence tolerance and exit if met.

6. GOTO 1.
3.3 Sketch of the augmented process...

Pk-i-l = [@177}27"'7@k7pm+1]7

APy = [61T, 01, . . ., Oklk, Apmii]

Orthogonalize Ap,,+1 against {a; }?:11 Appa1 = 25:1 Pty + 1.

Qk+1 = [ly, g, U, T/ | 7]
5'1 P1
_ P P2
By =
Pk
7|

Apk+1 = Qk+IBk+1~

	Introduction
	Partial Singular Value Decomposition
	Convergence tolerance
	Differences with svd
	Principal Components
	Truncated symmetric eigenvalue decomposition
	User-Defined Matrix Multiplication

	A Quick Summary of the IRLBA Method
	Partial Lanczos Bidiagonalization
	Approximating Partial SVD with A Partial Lanczos bidiagonalization
	Sketch of the augmented process...

