Package ‘nat.nblast’

February 3, 2026
Type Package

Title NeuroAnatomy Toolbox (‘nat') Extension for Assessing Neuron
Similarity and Clustering

Version 1.6.9

Description Extends package 'nat' (NeuroAnatomy Toolbox) by providing a
collection of NBLAST-related functions for neuronal morphology compari-
son (Costa et al. (2016) <doi:10.1016/j.neuron.2016.06.012>).

URL https://natverse.org/nat.nblast/, http://natverse.org/nat.nblast/

BugReports https://github.com/natverse/nat.nblast/issues
Depends R (>=2.15.1), rgl, methods, nat (>=1.5.12)
Imports nabor, dendroextras, plyr, spam

Suggests spelling, bigmemory, ff, testthat, knitr, rmarkdown
License GPL-3

LazyData yes

VignetteBuilder knitr

RoxygenNote 7.3.3

Language en-GB

Encoding UTF-8

NeedsCompilation no

Author Gregory Jefferis [aut, cre] (ORCID:
<https://orcid.org/0000-0002-0587-9355>),
James Manton [aut] (ORCID: <https://orcid.org/0000-0001-9260-3156>)

Maintainer Gregory Jefferis <jefferis@gmail.com>
Repository CRAN
Date/Publication 2026-02-03 12:00:02 UTC

https://doi.org/10.1016/j.neuron.2016.06.012
https://natverse.org/nat.nblast/
http://natverse.org/nat.nblast/
https://github.com/natverse/nat.nblast/issues
https://orcid.org/0000-0002-0587-9355
https://orcid.org/0000-0001-9260-3156

2 nat.nblast-package

Contents
nat.nblast-package L e 2
calc_dists_dotprods 4
calc_prob_mat. e 5
calc_SCOre_MAtIIX v v v v e e e e e e e e 6
Create_SCOringMAtriX v v v v v e e e e e e e e e e e e e e e e e e 6
diagonal e e e 8
fetraces20 L e e e 9
fill_in_sparse_score_mat e 10
fill_pairs_sparse_score_mat i e e e 10
nblast e e e e 11
nblast_allbyall 14
NeuriteBlast e 15
NEUTON_PAITS .« . v v v v v et e e e e e e e e e e e e e e e e 17
nhclust e 17
plot3d.hclust. oL 19
show_similarity e 20
smat.fcwb L L e e e 21
SPArSE_SCOTE_IMAL . . . « v v v v v et e e et e e e e e e e e e e e e 22
subset.hclust L 23
sub_dist_mat e e e 23
sub_score_mat e e e e e e e 24
WeightedNNBasedLinesetMatching 25
[e 26

Index 28

nat.nblast-package Neuron similarity, search and clustering tools
Description

nat.nblast provides tools to compare neuronal morphology using the NBLAST algorithm (Costa et
al. 2016).

Similarity and search

The main entry point for similarity and search functions is nblast. Traced neurons will normally
be converted to the dotprops format for search. When multiple neurons are compared they should
be in a neuronlist object.

The current NBLAST version (2) depends on a scoring matrix. Default matrices trained using
Drosophila neurons in the FCWB template brain space are distributed with this package (see
smat . fcwb); see Scoring Matrices section below for creating new scoring matrices.

nblast makes use of a more flexible but more complicated function NeuriteBlast which includes
several additional options. The function WeightedNNBasedLinesetMatching provides the primi-
tive functionality of finding the nearest neighbour distances and absolute dot products for two sets
of segments. Neither of these functions are intended for end use.

nat.nblast-package 3

Calculating all by all similarity scores is facilitated by the nblast_allbyall function which can
take either a neuronlist as input or a character vector naming (a subset) of neurons in a (large)
neuronlist. The neuronlist containing the input neurons should be resident in memory i.e. not
the neuronlistfh.

Clustering

Once an all by all similarity score matrix is available it can be used as the input to a variety of
clustering algorithms. nhclust provides a convenient wrapper for R’s hierarchical clustering func-
tion hclust. If you wish to use another clustering function, then you can use the sub_dist_mat to
convert a raw similarity score matrix into a normalised distance matrix (or R dist object) suitable
for clustering. If you need a similarity matrix or want to modify the normalisation then you can use
sub_score_mat.

Note that raw NBLAST scores are not symmetric (i.e. S(A,B) is not equal to S(B,A)) so before clus-
tering we construct a symmetric similarity/distance matrix 1/2 * (S(A,B)/S(A,A) + S(B,A)/S(B,B)
). See sub_score_mat’s documentation for details.

Cached scores

Although NBLAST is fast and can be parallelised, it makes sense to cache to disk all by all similarity
scores for a group of neurons that will be subject to repeated clustering or other analysis. The
matrix can simply be saved to disk and then reloaded using base R functions like save and load.
sub_score_mat and sub_dist_mat can be used to extract a subset of scores from this raw score
matrix. For large matrices, the bigmemory or ff packages allow matrices to be stored on disk and
portions loaded into memory on demand. sub_score_mat and sub_dist_mat work equally well
for regular in-memory matrices and these disk-backed matrices.

To give an example, for 16,129 neurons from the flycircuit.tw dataset, the 260,144,641 comparisons
took about 250 hours of compute time (half a day on ~20 cores). When saved to disk as single
precision (i.e. 4 bytes per score) ff matrix they occupy just over 1Gb.

Calculating scoring matrices

The NBLAST algorithm depends on appropriately calibrated scoring matrices. These encapsulate
the log odds ratio that a pair of segments come from two structurally related neurons rather than
two unrelated neurons, given the observed distance and absolute dot product of the two segments.
Scoring matrices can be constructed using the create_scoringmatrix function, supplying a set of
matching neurons and a set of non-matching neurons. See the create_scoringmatrix documen-
tation for links to lower-level functions that provide finer control over construction of the scoring
matrix.

Package Options

There is one package option nat.nblast.defaultsmat which is NULL by default, but could for
example be set to one of the scoring matrices included with the package such as “smat. fcwb” or to
a new user-constructed matrix.

Author(s)

Maintainer: Gregory Jefferis <jefferis@gmail.com> (ORCID)

https://orcid.org/0000-0002-0587-9355

4 calc_dists_dotprods

Authors:

e James Manton <ajd.manton@googlemail . com> (ORCID)

References

Costa, M., Ostrovsky, A.D., Manton, J.D., Prohaska, S., and Jefferis, G.S.X.E. (2014). NBLAST:
Rapid, sensitive comparison of neuronal structure and construction of neuron family databases.
bioRxiv preprint. doi:10.1101/006346.

See Also

nblast, smat. fcwb, nhclust, sub_dist_mat, sub_score_mat, create_scoringmatrix

calc_dists_dotprods Calculate distances and dot products between two sets of neurons

Description

Calculate distances and dot products between two sets of neurons

Usage

calc_dists_dotprods(
query_neurons,
target_neurons,
subset = NULL,
ignoreSelf = TRUE,

Arguments

query_neurons aneuronlist to use for calculating distances and dot products.
target_neurons a further neuronlist to use for calculating distances and dot products.

subset adata. frame specifying which neurons in query_neurons and target_neurons
should be compared, with columns specifying query and target neurons by name,
with one row for each pair. If unspecified, this defaults to an all-by-all compari-
son.

ignoreSelf a Boolean indicating whether to ignore comparisons of a neuron against itself
(default TRUE).

extra arguments to pass to NeuriteBlast.
Details

Distances and dot products are the raw inputs for constructing scoring matrices for the NBLAST
search algorithm.

https://orcid.org/0000-0001-9260-3156
https://doi.org/10.1101/006346

calc_prob_mat 5

Value

A list, one element for for pair of neurons with a 2 column data.frame containing one column of
distances and another of absolute dot products.

calc_prob_mat Calculate probability matrix from distances and dot products between
neuron segments

Description

Calculate probability matrix from distances and dot products between neuron segments

Usage

calc_prob_mat(
nndists,
dotprods,
distbreaks,
dotprodbreaks = seq(@, 1, by = 0.1),
ReturnCounts = FALSE

)
Arguments
nndists a list of nearest-neighbour distances or a list of both nearest-neighbour distances
and dot products.
dotprods a list of dot products.
distbreaks a vector specifying the breaks for distances in the probability matrix.

dotprodbreaks a vector specifying the breaks for dot products in the probability matrix.

ReturnCounts a Boolean indicating that counts should be returned instead of the default prob-
abilities.

Value

A matrix with columns as specified by dotprodbreaks and rows as specified by distbreaks, con-
taining probabilities (for default value of ReturnCounts=TRUE) or counts (if ReturnCounts=TRUE)
for finding neuron segments with the given distance and dot product.

6 create_scoringmatrix

calc_score_matrix Calculate scoring matrix from probability matrices for matching and
non-matching sets of neurons

Description

Calculate scoring matrix from probability matrices for matching and non-matching sets of neurons

Usage

calc_score_matrix(matchmat, randmat, logbase = 2, epsilon = 1e-06)

Arguments
matchmat a probability matrix given by considering *matching’ neurons.
randmat a probability matrix given by considering 'non-matching’ or ‘random’ neurons.
logbase the base to which the logarithm should be taken to produce the final scores.
epsilon a pseudocount to prevent division by zero when constructing the log odds ratio
in the probability matrix.
Value

A matrix with with class=c("scoringmatrix”, "table"), with columns as specified by dotprodbreaks
and rows as specified by distbreaks, containing scores for neuron segments with the given dis-
tance and dot product.

create_scoringmatrix Create a scoring matrix given matching and non-matching sets of neu-
rons

Description

Calculate a scoring matrix embodying the logarithm of the odds that a matching pair of neurite seg-
ments come from a structurally related rather than random pair of neurons. This function embodies
sensible default behaviours and is recommended for end users. More control is available by using
the individual functions listed in See Also.

Usage

create_scoringmatrix(
matching_neurons,
nonmatching_neurons,
matching_subset = NULL,
non_matching_subset = NULL,
ignoreSelf = TRUE,

create_scoringmatrix

distbreaks,

dotprodbreaks = seq(@, 1, by = 0.1),
logbase = 2,

epsilon = 1e-06,

Arguments

matching_neurons

a neuronlist of matching neurons.

nonmatching_neurons

a neuronlist of non-matching neurons.

matching_subset, non_matching_subset

data.frames indicating which pairs of neurons in the two input neuron lists should
be used to generate the matching and null distributions. See details for the de-
fault behaviour when NULL.

ignoreSelf a Boolean indicating whether to ignore comparisons of a neuron against itself
(default TRUE).

distbreaks a vector specifying the breaks for distances in the probability matrix.

dotprodbreaks a vector specifying the breaks for dot products in the probability matrix.

logbase the base to which the logarithm should be taken to produce the final scores.

epsilon a pseudocount to prevent division by zero when constructing the log odds ratio
in the probability matrix.
extra arguments to pass to NeuriteBlast or options for the call to mlply call
that actually iterates over neuron pairs.

Details

By default create_scoringmatrix will use all neurons in matching_neurons to create the match-
ing distribution. This is appropriate if all of these neurons are of a single type. If you wish to use
multiple types of neurons then you will need to specify a matching_subset to indicate which pairs
of neurons are of the same type.

By default create_scoringmatrix will use a random set of pairs from non_matching_neurons
to create the null distribution. The number of random pairs will be equal to the number of matching
pairs defined by matching_neurons This is appropriate if non_matching_neurons contains a large
collection of neurons of different types. You may wish to set the random seed using set.seed if
you want to ensure that exactly the same (pseudo-)random pairs of neurons are used in subsequent

calls.

Value

A matrix with columns as specified by dotprodbreaks and rows as specified by distbreaks,
containing log odd scores for neuron segments with the given distance and dot product.

See Also

calc_score_matrix, calc_prob_mat, calc_dists_dotprods, neuron_pairs

8 diagonal

Examples

calculate scoring matrix

bring in some mushroom body neurons

library(nat)

data(kcs20)

convert the (connected) tracings into dotprops (point and vector)

representation, resampling at 1 micron intervals along neuron

fctraces20.dps=dotprops(fctraces20, resample=1)

we will use both all kcs vs all fctraces20 and fctraces20 vs fctraces20

as random_pairs to make the null distribution

random_pairs=rbind(neuron_pairs(fctraces20), neuron_pairs(nat::kcs20, fctraces20))

you can add .progress='natprogress' if this looks like taking a while

smat=create_scoringmatrix(kcs20, c(kcs20, fctraces20.dps),
non_matching_subset=random_pairs)

now plot the scoring matrix

distbreaks=attr(smat, 'distbreaks"')

distbreaks=distbreaks[-length(distbreaks)]

dotprodbreaks=attr(smat, 'dotprodbreaks')[-1]

Create a function interpolating colors in the range of specified colors

jet.colors <- colorRampPalette(c("blue”, "green", "yellow”, "red"))

2d filled contour plot of scoring matrix. Notice that the there is a region

at small distances and large abs dot product with the highest log odds ratio

i.e. most indicative of a match rather than non-match

filled.contour(x=distbreaks, y=dotprodbreaks, z=smat, col=jet.colors(20),
main="'smat: log odds ratio', xlab='distance /um', ylab='abs dot product')

3d perspective plot of the scoring matrix
persp3d(x=distbreaks, y=dotprodbreaks, z=smat, col=jet.colors(20)[cut(smat,20)],
xlab="distance /um', ylab='abs dot product', zlab='log odds ratio')

diagonal Extract diagonal terms from a variety of matrix types

Description

Extract diagonal terms from a variety of matrix types

Usage
diagonal(x, indices = NULL)

Default S3 method:
diagonal(x, indices = NULL)

fetraces20 9

Arguments
X A square matrix
indices specifies a subset of the diagonal using a character vector of names, a logical
vector or integer indices. The default (NULL) implies all elements.
Details

Insists that input matrix is square. Uses the 'diagonal’ attribute when available and has specialised
handling of ff, big.matrix, dgCMatrix matrices. Does not check that row and column names are
identical for those matrix classes (unlike the base diag function, but always uses rownames.

Value

a named vector containing the diagonal elements.

Examples

m=fill_in_sparse_score_mat(letters[1:5])
diagonal(m)

fctraces20 20 traced Drosophila neurons from Chiang et al 2011

Description

This R list (which has additional class neuronlist) contains 15 skeletonized Drosophila neurons
as dotprops objects. Original data is due to Chiang et al. [1], who have generously shared their raw
data. Automated tracing of neuron skeletons was carried out by Lee et al [2]. Image registration
and further processing was carried out by Greg Jefferis, Marta Costa and James Manton[3].

References

[1] Chiang A.S., Lin C.Y., Chuang C.C., Chang H.M., Hsieh C.H., Yeh C.W., Shih C.T., Wu J.J.,
Wang G.T., Chen Y.C., Wu C.C., Chen G.Y., Ching Y.T., Lee P.C., Lin C.Y., Lin H.H., Wu C.C,,
Hsu H.W., Huang Y.A., Chen J.Y., et al. (2011). Three-dimensional reconstruction of brain-wide
wiring networks in Drosophila at single-cell resolution. Curr Biol 21 (1), 1-11. doi: doi:10.1016/
j.cub.2010.11.056

[2] P.-C. Lee, C.-C. Chuang, A.-S. Chiang, and Y.-T. Ching. (2012). High-throughput com-
puter method for 3d neuronal structure reconstruction from the image stack of the Drosophila
brain and its applications. PLoS Comput Biol, 8(9):e1002658, Sep 2012. doi: doi:10.1371/
journal.pcbi.1002658.

[3] NBLAST: Rapid, sensitive comparison of neuronal structure and construction of neuron family
databases. Marta Costa, Aaron D. Ostrovsky, James D. Manton, Steffen Prohaska, Gregory S.X.E.
Jefferis. bioRxiv doi: doi:10.1101/006346.

https://doi.org/10.1016/j.cub.2010.11.056
https://doi.org/10.1016/j.cub.2010.11.056
https://doi.org/10.1371/journal.pcbi.1002658
https://doi.org/10.1371/journal.pcbi.1002658
https://doi.org/10.1101/006346

10 fill_pairs_sparse_score_mat

fill_in_sparse_score_mat

Add one or more submatrices to a sparse score matrix

Description

Add one or more submatrices to a sparse score matrix

Usage

fill_in_sparse_score_mat(sparse_matrix, ..., diag = NULL)

Arguments

sparse_matrix either an existing (square) sparse matrix or a character vector of names that will
be used to define an empty sparse matrix.

Additional matrices to insert into sparse_matrix. Row and column names must
have matches in sparse_matrix.

diag optional full diagonal for sparse matrix i.e. self-match scores.

See Also

Sparse_score_mat

fill_pairs_sparse_score_mat

Add forwards, reverse and self scores for a pair of neurons to a sparse
score matrix

Description

Add forwards, reverse and self scores for a pair of neurons to a sparse score matrix

Usage

fill_pairs_sparse_score_mat(
sparse_matrix,
ni,
n2,
dense_matrix,
reverse = TRUE,
self = TRUE,
reverse_self = (reverse && self)

nblast

Arguments
sparse_matrix
nl
n2
dense_matrix
reverse

self

reverse_self

Value

11

the sparse matrix to fill in.

the name of the query neuron.

the name of the target neuron.

the score matrix from which to extract scores.

logical indicating that the reverse score should also be filled in (default TRUE).

logical indicating that the self-score of the query should also be filled in (used
for normalised scores; default TRUE).

logical indicating that the self-score of the target should also be filled in (used
for mean scores; default TRUE).

A sparse matrix (of class spam) with the specified score entries filled.

nblast

Calculate similarity score for neuron morphologies

Description

Uses the NBLAST algorithm that compares the morphology of two neurons. For more control over
the parameters of the algorithm, see the arguments of NeuriteBlast.

Usage

nblast(
query,

target = getOption(”"nat.default.neuronlist”),

smat = NULL,

sd = 3,

version = c(2, 1),
normalised = FALSE,
UseAlpha = FALSE,

OmitFailures

Arguments

query
target

smat

= NA,

the query neuron.

aneuronlist to compare neuron against. Defaults to options(”nat.default.neuronlist”).
See nat-package.

the scoring matrix to use (see details)

12 nblast

sd Standard deviation to use in distance dependence of NBLAST vl algorithm.
Ignored when version=2.

version the version of the algorithm to use (the default, 2, is the latest).

normalised whether to divide scores by the self-match score of the query

UseAlpha whether to weight the similarity score for each matched segment to emphasise

long range neurites rather then arbours (default: FALSE, see UseAlpha section
for details).

OmitFailures Whether to omit neurons for which FUN gives an error. The default value (NA)
will result in nblast stopping with an error message the moment there is an
error. For other values, see details.

Additional arguments passed to NeuriteBlast or the function used to compute
scores from distances/dot products. (expert use only).

Details

when smat=NULL options(”"nat.nblast.defaultsmat”) will be checked and if NULL, then smat. fcwb
or smat_alpha. fcwb will be used depending on the value of UseAlpha.

When OmitFailures is not NA, individual nblast calls will be wrapped in try to ensure that failure
for any single neuron does not abort the whole nblast call. When OmitFailures=FALSE, missing
values will be left as NA. OmitFailures=TRUE is not (yet) implemented. If you want to drop scores
for neurons that failed you will need to set OmitFailures=FALSE and then use na.omit or similar
to post-process the scores.

Note that when OmitFailures=FALSE error messages will not be printed because the call is wrapped
as try(expr, silent=TRUE).

Internally, the plyr package is used to provide options for parallelising NBLAST and displaying
progress. To display a progress bar as the scores are computed, add . progress="natprogress” to
the arguments (non-text progress bars are available — see create_progress_bar). To parallelise,
add .parallel=TRUE to the arguments. In order to make use of parallel calculation, you must reg-
ister a parallel backend that will distribute the computations. There are several possible backends,
the simplest of which is the multicore option made available by doMC, which spreads the load across
cores of the same machine. Before using this, the backend must be registered using registerDoMC
(see example below).

Value

Named list of similarity scores.

NBLAST Versions

The nblast version argument presently exposes two versions of the algorithm; both use the same
core procedure of aligning two vector clouds, segment by segment, and then computing the distance
and absolute dot product between the nearest segment in the target neuron for every segment in the
query neuron. However they differ significantly in the procedure used to calculate a score using this
set of distances and absolute dot products.

Version 1 of the algorithm uses a standard deviation (argument sd) as a user-supplied parameter for
a negative exponential weighting function that determines the relationship between score and the
distance between segments. This corresponds to the parameter o in the weighting function:

nblast 13

f= i vl exp (—d /20?)
This is the same approach described in Kohl et al 2013 and the similarity scores in the interval (0,1)
described in that paper can exactly recapitulated by setting version=1 and normalised=TRUE.

Version 2 of the algorithm is described in Costa et al 2014. This uses a more sophisticated and
principled scoring approach based on a log-odds ratio defined by the distribution of matches and
non-matches in sample data. This information is passed to the nblast function in the form of
a scoring matrix (which can be computed by create_scoringmatrix); a default scoring matrix
smat. fcwb has been constructed for Drosophila neurons.

Which version should I use? You should use version 2 if you are working with Drosophila neurons
or you have sufficient training data (in the form of validated matching and random neuron pairs to
construct a scoring matrix). If this is not the case, you can always fall back to version 1, setting the
free parameter (sd or o) to a value that encapsulates your understanding of the location precision of
neurons in your species/brain region of interest. In the fly brain we have used ¢ = 3 microns, since
previous estimates of the localisation of identifiable features of neurons (Jefferis, Potter et al 2007)
are of this order.

UseAlpha

In NBLAST v2, the alpha factor for a segment indicates whether neighbouring segments are aligned
in a similar direction (as typical for e.g. a long range axonal projection) or randomly aligned (as
typical for dendritic arbours). See Costa et al. for details. Setting UseAlpha=TRUE will emphasise
the axon, primary neurite etc. of a neuron. This can be a particularly useful option e.g. when you
are searching by a traced fragment that you know or suspect to follow an axon tract.

References

Kohl, J. Ostrovsky, A.D., Frechter, S., and Jefferis, G.S.X.E (2013). A bidirectional circuit switch
reroutes pheromone signals in male and female brains. Cell 155 (7), 1610-23 doi:10.1016/j.cell.2013.11.025.

Costa, M., Ostrovsky, A.D., Manton, J.D., Prohaska, S., and Jefferis, G.S.X.E. (2014). NBLAST:
Rapid, sensitive comparison of neuronal structure and construction of neuron family databases.
bioRxiv preprint. doi:10.1101/006346.

Jefferis G.S.X.E., Potter C.J., Chan A.M., Marin E.C., Rohlfing T., Maurer C.R.J., and Luo L.
(2007). Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and
pheromone representation. Cell 128 (6), 1187-1203. doi:10.1016/j.cell.2007.01.040

See Also

nat-package, nblast_allbyall, create_scoringmatrix, smat.fcwb

Examples

load sample Kenyon cell data from nat package

data(kcs20, package='nat')

search one neuron against all neurons
scores=nblast(kcs20[['GadMARCM-F000142_seg002']], kcs20)

scores from best to worst, top hit is of course same neuron
sort(scores, decreasing = TRUE)

hist(scores, breaks=25, col='grey')

https://doi.org/10.1016/j.cell.2013.11.025
https://doi.org/10.1101/006346
https://doi.org/10.1016/j.cell.2007.01.040

14 nblast_allbyall

abline(v=1500, col='red')

plot query neuron

open3d()

plot top 3 hits (including self match with thicker lines)
plot3d(kcs20[which(sort(scores, decreasing = TRUE)>1500)], 1lwd=c(3,1,1))
rest=names(which(scores<1500))

plot3d(rest, db=kcs20, col='grey', 1lwd=0.5)

normalised scores (i.e. self match = 1) of all neurons vs each other

note use of progress bar

scores.norm=nblast(kcs20, kcs20, normalised = TRUE, .progress="natprogress"”)
hist(scores.norm, breaks=25, col='grey')

produce a heatmap from normalised scores

jet.colors <- colorRampPalette(c("blue”, "green", "yellow”, "red"))
heatmap(scores.norm, labCol = with(kcs20,type), col=jet.colors(20), symm = TRUE)

Not run:

Parallelise NBLASTing across 4 cores using doMC package
library(doMC)

registerDoMC(4)

scores.norm2=nblast(kcs20, kcs20, normalised=TRUE, .parallel=TRUE)
stopifnot(all.equal(scores.norm2, scores.norm))

End(Not run)

nblast_allbyall Wrapper function to compute all by all NBLAST scores for a set of
neurons

Description

Calls nblast to compute the actual scores. Can accept either a neuronlist or neuron names as
a character vector. This is a thin wrapper around nblast and its main advantage is the option of
"mean" normalisation for forward and reverse scores, which is the most sensible input to give to a
clustering algorithm as well as the choice of returning a distance matrix.

Usage
nblast_allbyall(x, ...)

S3 method for class 'character'
nblast_allbyall(x, smat = NULL, db = getOption("nat.default.neuronlist”), ...)

S3 method for class 'neuronlist'’
nblast_allbyall(

X,

smat = NULL,

distance = FALSE,

NeuriteBlast 15

normalisation = c("raw”, "normalised”, "mean"),
)
Arguments
X Input neurons (neuronlist or character vector)
Additional arguments for methods or nblast
smat the scoring matrix to use (see details of nblast for meaning of default NULL
value)
db A neuronlist or acharacter vector naming one. Defaults to value of options(”nat.default.neuronli
distance logical indicating whether to return distances or scores.

normalisation the type of normalisation procedure that should be carried out, selected from

raw', 'normalised’ or 'mean' (i.e. the average of normalised scores in both
directions). If distance=TRUE then this cannot be raw.
Details

Note that nat already provides a function nhclust for clustering, which is a wrapper for R’s hclust
function. nhclust actually expects raw scores as input.

TODO

It would be a good idea in the future to implement a parallel version of this function.

See Also

nblast, sub_score_mat, nhclust

Examples

library(nat)
kcs20.scoremat=nblast_allbyall(kcs20)
kcs20.hclust=nhclust(scoremat=kcs20.scoremat)
plot(kcs20.hclust)

NeuriteBlast Produce similarity score for neuron morphologies

Description

A low-level entry point to the NBLAST algorithm that compares the morphology of a neuron with
those of a list of other neurons. For most use cases, one would probably wish to use nblast instead.

16 NeuriteBlast

Usage

NeuriteBlast(
query,
target,
targetBinds = NULL,
normalised = FALSE,
OmitFailures = NA,
simplify = TRUE,

)
Arguments
query either a single query neuron or a neuronlist
target aneuronlist to compare neuron against.
targetBinds numeric indices or names with which to subset target.
normalised whether to divide scores by the self-match score of the query

OmitFailures Whether to omit neurons for which FUN gives an error. The default value (NA)
will result in nblast stopping with an error message the moment there is an
error. For other values, see details.

simplify whether to simplify the scores from a list to a vector. TRUE by default. The only
time you might want to set this false is if you are collecting something other
than simple scores from the search function. See simplify2array for further
details.

extra arguments to pass to the distance function.

Details

For detailed description of the OmitFailures argument, see the details section of nblast.

Value

Named list of similarity scores.

See Also

WeightedNNBasedLinesetMatching

neuron_pairs 17

neuron_pairs Utility function to generate all or random pairs of neurons

Description

Utility function to generate all or random pairs of neurons

Usage

neuron_pairs(query, target, n = NA, ignoreSelf = TRUE)

Arguments

query, target either neuronlists or character vectors of names. If target is missing, query
will be used as both query and target.

n number of random pairs to draw. When NA, the default, uses expand.grid to
draw all pairs.

ignoreSelf Logical indicating whether to omit pairs consisting of the same neuron (default
TRUE).

Value

a data.frame with two character vector columns, query and target.

See Also

calc_score_matrix, expand.grid

Examples

neuron_pairs(nat::kcs20, n=20)

nhclust Cluster a set of neurons

Description

Given an NBLAST all by all score matrix (which may be specified by a package default) and/or a
vector of neuron identifiers use hclust to carry out a hierarchical clustering. The default value of
the distfun argument will handle square distance matrices and R dist objects.

18 nhclust
Usage
nhclust(
neuron_names,
method = "ward”,
scoremat = NULL,
distfun = as.dist,
maxneurons = 4000
)
Arguments
neuron_names character vector of neuron identifiers.
method clustering method (default Ward’s).
scoremat score matrix to use (see sub_score_mat for details of default).
distfun function to convert distance matrix returned by sub_dist_mat into R dist ob-
ject (default= as.dist).
additional parameters passed to hclust.
maxneurons set this to a sensible value to avoid loading huge (order N*2) distances directly
into memory.
Value
An object of class hclust which describes the tree produced by the clustering process.
See Also
hclust, dist
Other scoremats: sub_dist_mat()
Examples

library(nat)

kcscores=nblast_allbyall(kcs20)

hckcs=nhclust(scoremat=kcscores)

divide hclust object into 3 groups

library(dendroextras)

dkcs=colour_clusters(hckcs, k=3)

change dendrogram labels to neuron type, extracting this information
from type column in the metadata data.frame attached to kcs20 neuronlist
labels(dkcs)=with(kcs20[labels(dkcs)], type)

plot(dkcs)

3d plot of neurons in those clusters (with matching colours)
open3d()

plot3d(hckecs, k=3, db=kcs20)

names of neurons in 3 groups

subset(hckcs, k=3)

plot3d.hclust 19

plot3d.hclust Methods to identify and plot groups of neurons cut from an hclust
object

Description

plot3d.hclust uses plot3d to plot neurons from each group, cut from the hclust object, by
colour.

Usage

S3 method for class 'hclust'
plot3d(

X!

k = NULL,

h = NULL,

groups = NULL,

col = rainbow,

colour.selected = FALSE,

Arguments
X an hclust object generated by nhclust.
k number of clusters to cut from hclust object.
h height to cut hclust object.
groups numeric vector of groups to plot.
col colours for groups (directly specified or a function).

colour.selected
When set to TRUE the colour palette only applies to the displayed cluster groups
(default FALSE).

additional arguments for plot3d

Details

Note that the colours are in the order of the dendrogram as assigned by colour_clusters.

Value

A list of rgl IDs for plotted objects (see plot3d).

See Also

nhclust, plot3d, slice, colour_clusters

20

Examples

20 Kenyon cells

data(kcs20, package='nat')

calculate mean, normalised NBLAST scores
kcs20.aba=nblast_allbyall(kcs20)
kcs20.hc=nhclust(scoremat = kcs20.aba)

plot the resultant dendrogram
plot(kcs20.hc)

now plot the neurons in 3D coloured by cluster group

note that specifying db explicitly could be avoided by use of the
\code{nat.default.neuronlist} option.

plot3d(kcs20.hc, k=3, db=kcs20)

only plot first two groups

(will plot in same colours as when all groups are plotted)
plot3d(kcs20.hc, k=3, db=kcs20, groups=1:2)

only plot first two groups

(will be coloured with a two-tone palette)

plot3d(kcs20.hc, k=3, db=kcs20, groups=1:2, colour.selected=TRUE)

show_similarity

show_similarity

Display two neurons with segments in the query coloured by similarity

Description

By default, the query neuron will be drawn with its segments shaded from red to blue, with red

indicating a poor match to the target segments, and blue a good match.

Usage

show_similarity(
query,
target,
smat = NULL,
cols = colorRampPalette(c("red”, "yellow”, "cyan”, "navy")),
col = "black”,

AbsoluteScale = FALSE,
PlotVectors = TRUE,

)
Arguments
query a neuron to compare and colour.
target the neuron to compare against.
smat a score matrix (if NULL, defaults to smat. fcwb).

smat.fcwb 21

cols the function to use to colour the segments (e.g. heat.colors).
col the colour with which to draw the target neuron.

AbsoluteScale logical indicating whether the colours should be calculated based on the mini-
mum and maximum similarities for the neuron (AbsoluteScale = FALSE) or on
the minimum and maximum possible for all neurons.

PlotVectors logical indicating whether the vectors of the dotprops representation should be
plotted. If FALSE, only the points are plotted.

extra arguments to pass to plot3d.

Value

show_similarity is called for the side effect of drawing the plot; a vector of object IDs is returned.

See Also

The low level function WeightedNNBasedLinesetMatching is used to retrieve the scores.

Examples

Not run:
library(nat)

Pull out gamma and alpha-beta neurons
gamma_neurons <- subset(kcs20, type=='gamma')
ab_neurons <- subset(kcs20, type=='ab')

Compare two alpha-beta neurons with similar branching, but dissimilar arborisation
clear3d()
show_similarity(ab_neurons[[1]], ab_neurons[[2]])

Compare an alpha-beta and a gamma neuron with some similarities and differences
clear3d()

show_similarity(ab_neurons[[1]], gamma_neurons[[3]1])

End(Not run)

smat. fcwb Scoring matrices for neuron similarities in FCWB template brain

Description

Scoring matrices quantify the log2 odds ratio that a segment pair with a given distance and absolute
dot product come from a pair of neurons of the same type, rather than unrelated neurons.

22 sparse_score_mat

Details

These scoring matrices were generated using all by all pairs from 150 DL2 antennal lobe projection
neurons from the FlyCircuit dataset and 5000 random pairs from the same dataset.

* smat. fcwb was trained using nearest-neighbour distance and the tangent vector defined by the
first eigen vector of the k=5 nearest neighbours.

* smat_alpha. fcwb was defined as for smat. fcwb but weighted by the factor alpha defined as
(11-12)/(11+12+13) where 11,12,13 are the three eigen values.

Most work on the flycircuit dataset has been carried out using the smat. fcwb scoring matrix al-
though the smat_alpha. fcwb matrix which emphasises the significance of matches between linear
regions of the neuron (such as axons) may have some advantages.

sparse_score_mat Convert a subset of a square score matrix to a sparse representation

Description

This can be useful for storing raw forwards and reverse NBLAST scores for a set of neurons without
having to store all the uncomputed elements in the full score matrix.

Usage

sparse_score_mat (neuron_names, dense_matrix)

Arguments

neuron_names a character vector of neuron names to save scores for.

dense_matrix the original, dense version of the full score matrix.

Value

A spare matrix, in compressed, column-oriented form, as an R object inheriting from both CsparseMatrix-class
and generalMatrix-class.

See Also

fill_in_sparse_score_mat

Examples

data(kcs20, package = "nat")
scores=nblast_allbyall(kcs20)

scores. 3.sparse=sparse_score_mat (names(kcs20)[3], scores)
scores.3.sparse

can also add additional submatrices
fill_in_sparse_score_mat(scores.3.sparse,scores[3:6,3:4])

subset.hclust 23

subset.hclust Return the labels of items in 1 or more groups cut from hclust object

Description

Return the labels of items in 1 or more groups cut from hclust object

Usage
S3 method for class 'hclust'
subset(x, k = NULL, h = NULL, groups = NULL, ...)
Arguments
X tree like object
k an integer scalar with the desired number of groups
h numeric scalar with height where the tree should be cut
groups a vector of which groups to inspect.

Additional parameters passed to methods

Details

Only one of h and k should be supplied.

Value

A character vector of labels of selected items

sub_dist_mat Convert (a subset of) a raw score matrix to a distance matrix

Description

This function can convert a raw score matrix returned by nblast into a square distance matrix or
dist object. It can be used with file-backed matrices as well as regular R matrices resident in
memory.

Usage

sub_dist_mat(
neuron_names,
scoremat = NULL,
form = c("matrix”, "dist"),
maxneurons = NA

24 sub_score_mat

Arguments

neuron_names character vector of neuron identifiers.

scoremat score matrix to use (see sub_score_mat for details of default).
form the type of object to return.
maxneurons set this to a sensible value to avoid loading huge (order N*2) distances directly

into memory.

Details
Note that if neuron_names is missing then the rownames of scoremat will be used i.e. every neuron
in scoremat will be used.

Value
return An object of class matrix or dist (as determined by the form argument), corresponding to a

subset of the distance matrix

See Also

Other scoremats: nhclust()

sub_score_mat Return scores (or distances) for given query and target neurons

Description

Scores can either be returned as raw numbers, normalised such that a self-hit has score 1, or as the
average of the normalised scores in both the forwards & reverse directions (i.e. |query->target|
+ | target->query| / 2). Distances are returned as either 1 - normscore in the forwards direction,
or as 1 - normscorebar, where normscorebar is normscore averaged across both directions.

Usage

sub_score_mat (
query,
target,
scoremat = NULL,
distance = FALSE,
normalisation = c("raw”, "normalised”, "mean")

WeightedNNBasedLinesetMatching 25

Arguments

query, target character vectors of neuron identifiers.

scoremat a matrix, ff matrix, bigmatrix or a character vector specifying the name of an
ff matrix containing the all by all score matrix.

distance logical indicating whether to return distances or scores.

normalisation the type of normalisation procedure that should be carried out, selected from
'raw', 'normalised' or 'mean’ (i.e. the average of normalised scores in both
directions). If distance=TRUE then this cannot be raw.

[

See Also

sub_dist_mat

WeightedNNBasedLinesetMatching
Compute point & tangent vector similarity score between two linesets

Description

WeightedNNBasedLinesetMatching is a low level function that is called by nblast. Most end
users will not usually need to call it directly. It does allow the results of an NBLAST comparison
to be inspected in further detail (see examples).

Usage
WeightedNNBasedLinesetMatching(target, query, ...)

S3 method for class 'dotprops'
WeightedNNBasedLinesetMatching(target, query, UseAlpha = FALSE, ...)

S3 method for class 'neuron'
WeightedNNBasedLinesetMatching(
target,

query,
UseAlpha = FALSE,
OnlyClosestPoints = FALSE,

Arguments

target, query dotprops or neuron objects to compare (must be of the same class)
e extra arguments to pass to the distance function.

UseAlpha Whether to scale dot product of tangent vectors (default=F)
OnlyClosestPoints

Whether to restrict searches to the closest points in the target (default FALSE,
only implemented for dotprops).

26 [

Details

WeightedNNBasedLinesetMatching will work with 2 objects of class dotprops or neuron. The
code to calculate scores directly for neuron objects gives broadly comparable scores to that for
dotprops objects, but has been lightly tested. Furthermore only objects in dotprops form were
used in the construction of the scoring matrices distributed in this package. It is therefore recom-
mended to convert neuron objects to dotprops objects using the dotprops function.

UseAlpha determines whether the alpha values (eigl-eig2)/sum(eigl:3) are passed on to Weight-
edNNBasedLinesetMatching. These will be used to scale the dot products of the direction vectors
for nearest neighbour pairs.

Value

Value of NNDistFun passed to WeightedNNBasedLinesetMatching

See Also

dotprops

Examples

Retrieve per segment distances / absolute dot products
segvals=WeightedNNBasedLinesetMatching(kcs20[[1]1], kcs20[[2]1], NNDistFun=list)

names(segvals)=c("dist"”, "adotprod")
pairs(segvals)
[Extract parts of a sparse spam matrix
Description

Extract parts of a sparse spam matrix

Usage

S4 method for signature 'spam,character,character,logical’
x[i, j, ..., drop = TRUE]

S4 method for signature 'spam,character,character,missing’
x[i, j, ..., drop = TRUE]

S4 method for signature 'spam,character,missing,logical’
x[i, j, ..., drop = TRUE]

S4 method for signature 'spam,character,missing,missing'’
x[i, j, ..., drop = TRUE]

S4 method for signature 'spam,missing,character,logical’

x[i, j, ..., drop = TRUE]

S4 method for signature 'spam,missing,character,missing'’
x[i, j, ..., drop = TRUE]

Arguments
X object to extract from.
i row identifiers.
j column identifiers.

additional arguments.

drop logical indicating that dimensions should be dropped.

27

Index

* package
nat.nblast-package, 2
* scoremats
nhclust, 17
sub_dist_mat, 23
[, 26
[,spam,character,character,logical-method
(0),26
[,spam,character,character,missing-method
(0), 26
[,spam,character,missing,logical-method
(), 26
[,spam,character,missing,missing-method
([), 26
[,spam,missing,character,logical-method
(L), 26
[,spam,missing,character,missing-method

([),26
as.dist, /8

calc_dists_dotprods, 4, 7
calc_prob_mat, 5, 7
calc_score_matrix, 6,7, 17
colour_clusters, 19
create_progress_bar, 12
create_scoringmatrix, 3, 4,6, 13

data.frame, 4
diag, 9
diagonal, 8
dist, 3, 18
dotprops, 2, 25, 26

expand.grid, 17
fctraces20, 9
fill_in_sparse_score_mat, 10

fill_pairs_sparse_score_mat, 10

hclust, 3, 17-19

28

heat.colors, 2/
load, 3
mlply, 7

na.omit, /2

nat.nblast (nat.nblast-package), 2
nat.nblast-package, 2
nblast, 2,4, 11, 15, 16,25
nblast_allbyall, 3, 13, 14
NeuriteBlast, 4, 7,11, 12,15
neuron, 25
neuron_pairs, 7, 17
neuronlist, 24, 7,11, 14-17
neuronlistfh, 3
nhclust, 3, 4, 15,17, 19, 24

plot3d, 19, 21
plot3d.hclust, 19
plyr, 12

save, 3

set.seed, 7
show_similarity, 20
simplify2array, 16
slice, 19
smat.fcwb, 2, 4, 13,21
smat_alpha. fcwb (smat.fcwb), 21
spam, 11
sparse_score_mat, 22
sub_dist_mat, 3, 4, 18, 23,25
sub_score_mat, 3, 4, 15,24
subset.hclust, 23

WeightedNNBasedLinesetMatching, 16, 21,
25

	nat.nblast-package
	calc_dists_dotprods
	calc_prob_mat
	calc_score_matrix
	create_scoringmatrix
	diagonal
	fctraces20
	fill_in_sparse_score_mat
	fill_pairs_sparse_score_mat
	nblast
	nblast_allbyall
	NeuriteBlast
	neuron_pairs
	nhclust
	plot3d.hclust
	show_similarity
	smat.fcwb
	sparse_score_mat
	subset.hclust
	sub_dist_mat
	sub_score_mat
	WeightedNNBasedLinesetMatching
	[
	Index

