Package ‘netUtils’

January 24, 2026
Title A Collection of Tools for Network Analysis
Version 0.8.4

Description Provides a collection of network analytic (convenience) functions which are miss-
ing in other standard packages. This includes triad census with at-
tributes <doi:10.1016/j.socnet.2019.04.003>, core-periphery models <doi:10.1016/S0378-
8733(99)00019-2>, and several graph generators. Most functions are build upon 'igraph'.
URL https://github.com/schochastics/netUtils/,

https://schochastics.github.io/netUtils/

BugReports https://github.com/schochastics/netUtils/issues
License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

LinkingTo Rcpp, ReppArmadillo

Imports Rcpp, igraph (>= 2.0.0), stats

Suggests covr, GA, testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation yes

Author David Schoch [aut, cre] (ORCID:
<https://orcid.org/0000-0003-2952-4812>)

Maintainer David Schoch <david@schochastics.net>
Repository CRAN
Date/Publication 2026-01-24 13:10:02 UTC

Contents

as_adj_listl L
as_adj_weighted
as_multi_adj. e
bipartite_from_data_frame L

https://doi.org/10.1016/j.socnet.2019.04.003
https://doi.org/10.1016/S0378-8733(99)00019-2
https://doi.org/10.1016/S0378-8733(99)00019-2
https://github.com/schochastics/netUtils/
https://schochastics.github.io/netUtils/
https://github.com/schochastics/netUtils/issues
https://orcid.org/0000-0003-2952-4812

2 as_adj_list1

clique_verteX_mat e e e e e e e e e 5
core_periphery e 6
dyad_census_attr L e e e 7
fast_cliques 7
graph_cartesian e e e 8
Sraph_Cor e e e e 9
graph_direct e e 10
graph_from_multi_edgelist oL 11
graph_Kpartite e e 12
helpers e 12
TECIPIOCILY_COT v o v v vt e e e e e e e e e e e e 13
SAMPIE_COTESET . « + « v v v v o e e e e e e e e e e e e e e e e e 14
sample_Ifr L e 15
sample_pa_homophilic oL 16
split_graph 17
strigraph oL 18
structural_equivalence L e 19
triad_census_attr L. e e 19
Index 21
as_adj_list1 Adjacency list
Description

Create adjacency lists from a graph, either for adjacent edges or for neighboring vertices. This
version is faster than the version of igraph but less general.

Usage
as_adj_list1(g)

Arguments

g An igraph object

Details
The function does not have a mode parameter and only returns the adjacency list comparable to
as_adj_list(g,mode="all)

Value

A list of numeric vectors.

Author(s)
David Schoch

as_adj_weighted 3

Examples

library(igraph)
g <- make_ring(10)
as_adj_list1(g)

as_adj_weighted weighted dense adjacency matrix

Description

returns the weighted adjacency matrix in dense format

Usage

as_adj_weighted(g, attr = NULL)

Arguments
g An igraph object
attr Either NULL or a character string giving an edge attribute name. If NULL a
traditional adjacency matrix is returned. If not NULL then the values of the
given edge attribute are included in the adjacency matrix.
Details
This method is faster than as_adj from igraph if you need the weighted adjacency matrix in dense
format
Value

Numeric matrix

Author(s)
David Schoch

Examples

library(igraph)

g <- sample_gnp(10, 0.2)
E(g)$weight <- runif(ecount(g))
as_adj_weighted(g, attr = "weight")

4 bipartite_from_data_frame

as_multi_adj Convert a list of graphs to an adjacency matrices

Description

Convenience function that turns a list of igraph objects into adjacency matrices.

Usage

as_multi_adj(g_lst, attr = NULL, sparse = FALSE)

Arguments
g_lst A list of igraph object
attr Either NULL or a character string giving an edge attribute name. If NULL a
binary adjacency matrix is returned.
sparse Logical scalar, whether to create a sparse matrix. The *Matrix’ package must be
installed for creating sparse matrices.
Value

List of numeric matrices

Author(s)
David Schoch

bipartite_from_data_frame
two-mode network from a data.frame

Description

Create a two-mode network from a data.frame

Usage

bipartite_from_data_frame(d, typel, type2, attr = NULL, weighted = TRUE)

Arguments
d data.frame
typel column name of mode 1
type2 column name of mode 2
attr named list of edge attributes

weighted should a weighted graph be created if multiple edges occur

clique_vertex_mat

Value

two mode network as igraph object

Author(s)

David Schoch

Examples
library(igraph)
edges <- data.frame(model = 1:5, mode2 = letters[1:5])
bipartite_from_data_frame(edges, "model”, "mode2")
clique_vertex_mat Clique Vertex Matrix
Description

Creates the clique vertex matrix with entries (i,j) equal to one if node j is in clique i

Usage

clique_vertex_mat(g)

Arguments

g An igraph object

Value

Numeric matrix

Author(s)

David Schoch

Examples

library(igraph)
g <- sample_gnp(10, 0.2)
clique_vertex_mat(g)

6 core_periphery

core_periphery Discrete core-periphery model

Description

Fits a discrete core-periphery model to a given network

Usage

core_periphery(graph, method = "rkl_dc", iter = 500, ...)
Arguments

graph igraph object

method algorithm to use (see details)

iter number of iterations if method=GA

other parameters for GA

Details

The function fits the data to an optimal pattern matrix with a genetic algorithm (method="GA")
or arank 1 approximation, either with degree centrality (method="rk1_dc") or eigenvector central-
ity (method="rkl_ec") . The rank 1 approximation is computationally far cheaper but also more
experimental. Best is to compare the results from both models.

Value
list with numeric vector with entries (k1,k2,...ki...) where ki assigns vertex i to either the core (ki=1)
or periphery (ki=0), and the maximal correlation with an optimal pattern matrix

Author(s)
David Schoch

References

Borgatti, Stephen P., and Martin G. Everett. "Models of core/periphery structures."” Social networks
21.4 (2000): 375-395.

Examples

set.seed(121)

split graphs have a perfect core-periphery structure
sg <- split_graph(n = 20, p = 0.3, core = 0.5)
core_periphery(sg)

dyad_census_attr

dyad_census_attr dyad census with node attributes

Description

dyad census with node attributes

Usage

dyad_census_attr(g, vattr)

Arguments
g igraph object. should be a directed graph.
vattr name of vertex attribute to be used.
Details

The node attribute should be integers from 1 to max(attr)

Value

dyad census as a data.frame.

Author(s)
David Schoch

Examples

library(igraph)

g <- sample_gnp(10, 0.4, directed = TRUE)
V(g)$attr <- c(rep(1, 5), rep(2, 5))
dyad_census_attr(g, "attr")

fast_cliques Find Cliques, maximal or not, fast

Description

Enumerates all (maximal) cliques using MACE. Can be faster than igraph in some circumstances

Usage
fast_cliques(g, what = "M"”, min = NULL, max = NULL, outfile = NA)

8 graph_cartesian

Arguments
g An igraph object
what either "M" for maximal cliques or "C" for all cliques
min Numeric constant, lower limit on the size of the cliques to find. NULL means
no limit, ie. it is the same as O
max Numeric constant, upper limit on the size of the cliques to find. NULL means
no limit
outfile character. If not NA, cliques are written to file
Details

C Code downloaded from http://research.nii.ac.jp/~uno/codes.htm. Download the code and run
make and then point an environment variable called MACE_PATH to the binary. See http://research.nii.ac.jp/~uno/code/mace
for more details. MACE is faster than igraph for dense graphs.
Value
a list containing numeric vectors of vertex ids. Each list element is a clique. If outfile!=NA, the
output is written to the specified file
Author(s)
David Schoch

References

Kazuhisa Makino, Takeaki Uno, "New Algorithms for Enumerating All Maximal Cliques", Lecture
Notes in Computer Science 3111 (Proceedings of SWAT 2004), Springer, pp.260-272, 2004

graph_cartesian Cartesian product of two graphs

Description

Compute the Cartesian product of two graphs

Usage

graph_cartesian(g, h)

Arguments
g An igraph object
h An igraph object

graph_cor 9

Details

See https://en.wikipedia.org/wiki/Cartesian_product_of_graphs

Value

Cartesian product as igraph object

Author(s)
David Schoch

Examples

library(igraph)

g <- make_ring(4)

h <- make_full_graph(2)
graph_cartesian(g, h)

graph_cor Graph correlation

Description
This function computes the correlation between networks. Implemented methods expect the graph
to be an adjacency matrix, an igraph, or a network object.

Usage
graph_cor(objectl, object2)

Default S3 method:
graph_cor(objectl, object2)

S3 method for class 'igraph'
graph_cor(objectl, object2, ...)

S3 method for class 'matrix'
graph_cor(objectl, object2)

S3 method for class 'array'
graph_cor(objectl, object2)

Arguments
object1 igraph object or adjacency matrix
object?2 igraph object or adjacency matrix over the same vertex set as objectl

additional arguments

10 graph_direct

Value

correlation between graphs

graph_direct Direct product of two graphs

Description

Compute the direct product of two graphs

Usage

graph_direct(g, h)

Arguments
g An igraph object
h An igraph object
Details

See https://en.wikipedia.org/wiki/Tensor_product_of_graphs

Value

Direct product as igraph object

Author(s)

David Schoch

Examples

library(igraph)

g <- make_ring(4)

h <- make_full_graph(2)
graph_direct(g, h)

graph_from_multi_edgelist 11

graph_from_multi_edgelist
Multiple networks from a single edgelist with a typed attribute

Description

Create a list of igraph objects from an edgelist according to a type attribute

Usage

graph_from_multi_edgelist(
d,
from = NULL,
to = NULL,
type = NULL,
weight = NULL,
directed = FALSE

)
Arguments
d data frame.
from column name of sender. If NULL, defaults to first column.
to column of receiver. If NULL, defaults to second column.
type type attribute to split the edgelist. If NULL, defaults to third column.
weight optional column name of edge weights. Ignored if NULL.
directed logical scalar, whether or not to create a directed graph.
Value
list of igraph objects.
Author(s)
David Schoch
Examples
library(igraph)

d <- data.frame(
from = rep(c(1, 2, 3), 3), to = rep(c(2, 3, 1), 3),
type = rep(c(”a”, "b", "c"), each = 3), weight = 1:9

)

graph_from_multi_edgelist(d, "from”, "to", "type", "weight")

12

helpers

graph_kpartite k partite graphs

Description

Create a random k-partite graph.

Usage
graph_kpartite(n = 10, grp = c(5, 5))

Arguments

n number of nodes

grp vector of partition sizes

Value

igraph object

Author(s)
David Schoch

Examples

3-partite graph with equal sized groups
graph_kpartite(n = 15, grp = c(5, 5, 5))

helpers helper function

Description

small functions to deal with typical network problems

Usage

biggest_component(g)

delete_isolates(g)

Arguments

g igraph object

reciprocity_cor 13

Value

igraph object

Author(s)
David Schoch

reciprocity_cor Reciprocity correlation coefficient

Description

Reciprocity correlation coefficient

Usage

reciprocity_cor(g)

Arguments

g igraph object. should be a directed graph

Details

The usual definition of reciprocity has some defects. It cannot tell the relative difference of reci-
procity compared with purely random network with the same number of vertices and edges. The
useful information from reciprocity is not the value itself, but whether mutual links occur more or
less often than expected by chance.

To overcome this issue, reciprocity can be defined as the correlation coefficient between the entries
of the adjacency matrix of a directed graph:

Zi;ﬁj(aij —a)((aj; —a’)
> izjlaij —a')?

where a’ is the density of g.

This definition gives an absolute quantity which directly allows one to distinguish between recip-
rocal (>0) and antireciprocal (< 0) networks, with mutual links occurring more and less often than
random respectively.

Value

Reciprocity as a correlation

Author(s)
David Schoch

14 sample_coreseq

References

Diego Garlaschelli; Loffredo, Maria I. (2004). "Patterns of Link Reciprocity in Directed Networks".
Physical Review Letters. American Physical Society. 93 (26): 268701

Examples

library(igraph)

g <- sample_gnp(20, p = 0.3, directed = TRUE)
reciprocity(g)

reciprocity_cor(g)

sample_coreseq Generate random graphs with a given coreness sequence

Description

Similar to sample_degseq just with coreness

Usage

sample_coreseq(cores)

Arguments

cores coreness sequence

Details
The code is an adaption of the python code from https://github.com/ktvank/Random-Graphs-with-
Prescribed-K-Core-Sequences/

Value

igraph object of graph with the same coreness sequence as the input

Author(s)
David Schoch

References

Van Koevering, Katherine, Austin R. Benson, and Jon Kleinberg. 2021. ‘Random Graphs with
Prescribed K-Core Sequences: A New Null Model for Network Analysis’. ArXiv:2102.12604.
https://doi.org/10.1145/3442381.3450001.

sample_Ifr

Examples

library(igraph)

15

gl <- make_graph("Zachary")
kcores1 <- coreness(gl)

g2 <- sample_coreseq(kcores1)
kcores2 <- coreness(g2)

the sorted arrays are the same

all(sort(kcores1) == sort(kcores2))
sample_l1fr LFR benchmark graphs
Description

Generates benchmark networks for clustering tasks with a priori known communities. The algo-
rithm accounts for the heterogeneity in the distributions of node degrees and of community sizes.

Usage

sample_1fr(
n7
taul = 2,
tau2 = 1,
mu = 0.1,

average_degree,

max_degree,
min_community
max_community
on =0,

Arguments

n

taul

tau2

mu

average_degree

NULL,
= NULL,

Number of nodes in the created graph.

Power law exponent for the degree distribution of the created graph. This value
must be strictly greater than one

Power law exponent for the community size distribution in the created graph.
This value must be strictly greater than one

Fraction of inter-community edges incident to each node. This value must be in
the interval O to 1.

Desired average degree of nodes in the created graph. This value must be in the
interval O to n. Exactly one of this and min_degree must be specified, otherwise
an error is raised

16 sample_pa_homophilic

max_degree Maximum degree of nodes in the created graph. If not specified, this is set to
n-1.

min_community Minimum size of communities in the graph. If not specified, this is set to
min_degree

max_community Maximum size of communities in the graph. If not specified, this is set to n, the
total number of nodes in the graph.

on number of overlapping nodes
om number of memberships of the overlapping nodes
Details

code adapted from https://github.com/synwalk/synwalk-analysis/tree/master/1fr_generator

Value

an igraph object

References

A. Lancichinetti, S. Fortunato, and F. Radicchi.(2008) Benchmark graphs for testing community
detection algorithms. Physical Review E, 78. arXiv:0805.4770

Examples

Simple Girven-Newman benchmark graphs

g <- sample_1fr(
n = 128, average_degree = 16,
max_degree = 16, mu = 0.1,
min_community = 32, max_community = 32

sample_pa_homophilic Homophilic random graph using BA preferential attachment model

Description

A graph of n nodes is grown by attaching new nodes each with m edges that are preferentially
attached to existing nodes with high degree, depending on the homophily parameters.

Usage
sample_pa_homophilic(
n7
m}
minority_fraction,
h_ab,
h_ba = NULL,

directed = FALSE

https://github.com/synwalk/synwalk-analysis/tree/master/lfr_generator

split_graph 17

Arguments
n number of nodes
m number of edges a new node is connected to

minority_fraction
fraction of nodes that belong to the minority group

h_ab probability to connect a node from group a with groub b
h_ba probability to connect a node from group b with groub a. If NULL, h_ab is used.
directed should a directed network be created

Details

The code is an adaption of the python code from https://github.com/gesiscss/HomophilicNtwMinorities/

Value

igraph object

Author(s)

David Schoch #maximally heterophilic network sample_pa_homophilic(n = 50, m = 2,minority_fraction
= 0.2,h_ab = 1) #maximally homophilic network sample_pa_homophilic(n = 50, m = 2,minor-
ity_fraction = 0.2,h_ab = 0)

References

Karimi, F., Génois, M., Wagner, C., Singer, P., & Strohmaier, M. (2018). Homophily influences
ranking of minorities in social networks. Scientific reports, 8(1), 1-12. (https://www.nature.com/articles/s41598-
018-29405-7)

Espin-Noboa, L., Wagner, C., Strohmaier, M., & Karimi, F. (2022). Inequality and inequity in
network-based ranking and recommendation algorithms. Scientific reports, 12(1), 1-14. (https://www.nature.com/articles/s41
022-05434-1)

split_graph split graph

Description

Create a random split graph with a perfect core-periphery structure.

Usage

split_graph(n, p, core)

18 str.igraph

Arguments

n number of nodes
p probability of peripheral nodes to connect to the core nodes

core fraction of nodes in the core

Value

igraph object

Author(s)
David Schoch

Examples

split graph with 20 nodes and a core size of 10
split_graph(n = 20, p = 0.4, 0.5)

str.igraph Print graphs to terminal

Description

Prints an igraph object to terminal (different than the standard igraph method)

Usage
S3 method for class 'igraph'
str(object, ...)

Arguments
object An igraph object

additional arguments to print (ignored)

Value

str does not return anything. The obvious side effect is output to the terminal.

Author(s)
David Schoch

structural_equivalence 19

structural_equivalence
Maximal Structural Equivalence

Description

Calculates structural equivalence for an undirected graph

Usage

structural_equivalence(g)

Arguments

g An igraph object

Details
Two nodes u and v are structurally equivalent if they have exactly the same neighbors. The equiva-
lence classes produced with this function are either cliques or empty graphs.

Value

vector of equivalence classes

Author(s)
David Schoch

triad_census_attr triad census with node attributes

Description

triad census with node attributes

Usage

triad_census_attr(g, vattr)

Arguments

g igraph object. should be a directed graph

vattr name of vertex attribute to be used

20 triad_census_attr

Details

The node attribute should be integers from 1 to max(attr). The output is a named vector where the
names are of the form Txxx-abc, where xxx corresponds to the standard triad census notation and
"abc" are the attributes of the involved nodes.

The implemented algorithm is comparable to the algorithm in Lienert et al.

Value

triad census with node attributes

Author(s)
David Schoch

References

Lienert, J., Koehly, L., Reed-Tsochas, F., & Marcum, C. S. (2019). An efficient counting method
for the colored triad census. Social Networks, 58, 136-142.

Examples

library(igraph)

set.seed(112)

g <- sample_gnp(20, p = 0.3, directed = TRUE)
add a vertex attribute

V(g)$type <- rep(1:2, each = 10)
triad_census_attr(g, "type")

Index

as_adj_list1,2
as_adj_weighted, 3
as_multi_adj, 4

biggest_component (helpers), 12
bipartite_from_data_frame, 4

clique_vertex_mat, 5
core_periphery, 6
coreness, 14

delete_isolates (helpers), 12
dyad_census_attr, 7

fast_cliques, 7

graph_cartesian, 8
graph_cor, 9

graph_direct, 10
graph_from_multi_edgelist, 11
graph_kpartite, 12

helpers, 12
reciprocity_cor, 13

sample_coreseq, 14
sample_degseq, /4
sample_1fr, 15
sample_pa_homophilic, 16
split_graph, 17
str.igraph, 18
structural_equivalence, 19

triad_census_attr, 19

21

	as_adj_list1
	as_adj_weighted
	as_multi_adj
	bipartite_from_data_frame
	clique_vertex_mat
	core_periphery
	dyad_census_attr
	fast_cliques
	graph_cartesian
	graph_cor
	graph_direct
	graph_from_multi_edgelist
	graph_kpartite
	helpers
	reciprocity_cor
	sample_coreseq
	sample_lfr
	sample_pa_homophilic
	split_graph
	str.igraph
	structural_equivalence
	triad_census_attr
	Index

