
Package ‘netmediate’
January 27, 2026

Version 1.1.1

Type Package

Title Micro-Macro Analysis for Social Networks

Maintainer Scott Duxbury <duxbury@email.unc.edu>

Description Estimates micro effects on macro structures (MEMS) and average micro mediated ef-
fects (AMME).
URL: <https://github.com/sduxbury/netmediate>.
BugReports: <https://github.com/sduxbury/netmediate/issues>.
Robins, Garry, Phillipa Pattison, and Jodie Woolcock (2005) <doi:10.1086/427322>.
Snijders, Tom A. B., and Christian E. G. Steglich (2015) <doi:10.1177/0049124113494573>.
Imai, Kosuke, Luke Keele, and Dustin Tingley (2010) <doi:10.1037/a0020761>.
Duxbury, Scott (2023) <doi:10.1177/00811750231209040>.
Duxbury, Scott (2024) <doi:10.1177/00811750231220950>.

License GPL (>= 2)

Imports MASS, btergm, stats, ergm, tergm, RSiena, sna, network,
ergMargins, VGAM, plyr, lme4, plm, gam, intergraph

Suggests Matrix, igraph, relevent, statnet, statnet.common

Encoding UTF-8

NeedsCompilation no

Author Scott Duxbury [aut, cre, cph],
Xin Zhao [ctb]

Repository CRAN

Date/Publication 2026-01-27 14:50:02 UTC

Contents
AMME . 2
compare_MEMS . 20
identity_function . 28
mediate_MEMS . 29
MEMS . 39
Moran_dv . 53

1

https://github.com/sduxbury/netmediate
https://github.com/sduxbury/netmediate/issues
https://doi.org/10.1086/427322
https://doi.org/10.1177/0049124113494573
https://doi.org/10.1037/a0020761
https://doi.org/10.1177/00811750231209040
https://doi.org/10.1177/00811750231220950

2 AMME

Index 55

AMME Function to estimate the average micro mediated effect (AMME).

Description

AMME implements parametric and nonparametric estimation routines to estimate the average me-
diated micro effect. It requires two models. The first is a generative network model (i.e., a model
where the dyad, dyad-time period, or dyad-group is the unit of analysis) of the form f(Aij |Tij , Zij),
where A is a cross-sectional or longitudinal network or group of longitudinal or cross-sectional net-
works, T is the possibly endogenous network selection process of interest and Z is a matrix of
possibly endogenous confounding selection mechanisms.

The second model is a cross-sectional or longitudinal macro model (i.e., a model where the unit
of analysis is a node, subgraph, or network or a combination of nodes, subgraphs, and networks
measured collected from multiple settings [such as distinct schools or organizations]) of the form
g(Yi|Mi, Xi, Ti), where Yi is the outcome variable, Mi is the mediating macro variable, Xi is a
matrix of control variables that possibly vary as a function of selection process Tij , and Ti is the
optional unit-level measure of Tij . The AMME is the change in Yi when Tij allowed to vary versus
set to 0 because of an associated change in Mi. The AMME is given by

AMME =
1

2n
yi(Ti(t),Mi(Tij), Xi(t))− yi(Ti(t),Mi(0), Xi(t))

, where n is the number of observations and t = 0, Tij . AMME currently accepts the follow-
ing micro models: glm, glmer, ergm, btergm, sienaFit, rem.dyad, and netlogit objects. The
following macro model objects are accepted: lm, glm, lmer, glmer, gam, plm, and lnam objects.
Pooled estimation for multiple network models is also implemented for ergm and sienaFit micro
models. Both parametric and nonparametric estimation are available.

Usage

AMME(micro_model,
macro_model,
micro_process,
mediator,
macro_function,
link_id,
object_type=NULL,
controls=NULL,
control_functions=NULL,
interval=c(0,1),
nsim=500,
algorithm="parametric",
silent=FALSE,
full_output=FALSE,
SAOM_data=NULL,
SAOM_var=NULL,

AMME 3

time_interval=NULL,
covar_list=NULL,
edgelist=NULL,
net_logit_y=NULL,
net_logit_x=NULL,
group_id=NULL,
node_numbers=NULL,
sensitivity_ev=TRUE)

Arguments

micro_model the micro-model. Currently accepts glm, glmer, ergm, btergm, sienaFit,
rem.dyad, and netlogit objects. Pooled estimation for multiple network mod-
els is also implemented for ergm and sienaFit objects. To implement pooled
estimation, model should be provided as a list of ergm or sienaFit objects.

macro_model the macro model. Currently accepts lm, glm, lmer, glmer, gam, plm, and lnam
objects.

micro_process a character string containing the name of the micro process of interest. The char-
acter string should exactly match the relevant coefficient name in micro_model
output.

mediator a character string containing the name of the mediating variable of interest. The
character string should exactly match the relevant coefficient name in macro_model
output.

macro_function a function that calculates mediator on the simulated networks. Currently ac-
cepts user defined functions as well as functions inherent in the igraph and
statnet packages for R.

link_id a required vector of IDs used to link the micro_model output to the macro_model
input. If calculating a network-level mediator, this should be the network identi-
fier or network-group/network-time period identifier. If calculating a node-level
mediator, this should be the node ID or node-time-period/node-group identi-
fier. Observations should correspond exactly to rows in the macro_model data
matrix. If calculating multiple network statistics at different levels of analysis
when controls are included, link_id may be provided as an ordered list of
identifiers. In this case, each entry in the list is a vector of IDs corresponding to
the unique entries of the relevant statistics. If provided as a list, the first entry
should correspond to macro_function (i.e., the mediator) and the remaining
entries should correspond to control_functions (i.e., the controls).

controls a vector of character strings listing the control variables in macro_model that
may vary as a function of micro_process. Each element in controls should
correspond exactly to a coefficient in macro_model output. If controls is left
NULL,then the AMME is calculated without controlling for confounding network
variables.

control_functions

a list of functions used to calculate controls. The elements in control_functions
should correspond exactly to the elements in controls and should be provided
in the same order. If micro_process appears as an independent variable in
macro_model, then this can be specified by specifying the netmediate helper
function identity_function to control_functions.

4 AMME

object_type A character string or vector of character strings that tells netmediate the type of
object to apply the macro_function and control_functions to. If controls
are included into the AMME call, then object_type should be provided as a vector
of character strings where the first element is the object_type for macro_function
and the remaining elements are the ordered object_type for control_functions.
Currently accepts igraph and network objects. If left NULL, network objects
are assumed. Can be over-ridden to use other object types with a user-function
by defining a function that accepts either a network or igraph object and returns
a numeric value or vector of numeric values (see examples).

interval Tuning parameters to vary the strength of θ. Should be provided as a vector of
numeric values with 2 entries.

nsim The number of simulations or bootstrap samples to use during estimation.

algorithm The estimation algorithm to be used. Currently accepts "parametric" and
"nonparametric". If "parametric", estimation is obtained with Monte Carlo
sampling. If "nonparametric", estimation uses bootstrap resampling.

silent logical parameter. Whether to provide updates on the progress of the simulation
or not.

full_output logical parameter. If set to TRUE, the entire distribution of simulated statistics
will be provided as part of the model output.

SAOM_data required when micro_model is a sienaFit object; ignored otherwise. If a
sienaFit object is provided, SAOM_data should be the siena object that con-
tains the data for SAOM estimation. If using pooled estimation on multiple
sienaFit objects (i.e., providing a list of sienaFit objects), then SAOM_data
should be provided as an ordered list with each entry containing the siena object
corresponding to list of sienaFit objects.

SAOM_var optional parameter when micro_model is a sienaFit object. SAOM_var is a
list of of the varCovar and varDyadCovar objects used to assign time vary-
ing node and dyad covariates when calling sienaDataCreate. If provided,
netmediate assigns the varying node covariates and dyad covariates to each
simulated network. This parameter is required when macro_function com-
putes a statistic that varies as a function of time varying node or dyad covariates
(i.e., network segregation, assorativity). Time invariant characteristics (coCovar
and coDyadCovar) are handled internally by MEMS and should not be provided.
When providing a list of sienaFit objects for pooled estimation, SAOM_var
should be provided as a list of lists, where each entry in the list contains a list of
varCovar and varDyadCovar objects associated with corresponding sienaFit
object.

time_interval an optional parameter to be used when micro_model is a rem.dyad object. May
be provided as a numeric vector or the character string "aggregate". If a nu-
meric vector is provided unique network snapshots at each interval. For exam-
ple, time_interval=c(0,2,3) would induce two networks, one for the 0 - 2
time period and one for the 2 - 3 time period. If specified as "aggregate", the
AMME is calculated by creating an aggregated cross-sectional representation
of the entire event sequence. If left NULL, defaults to |"aggregate". Note that
time_interval must correspond to the time periods observed in macro_model.
That is, time_interval must be set to "aggregate" when macro_model is

AMME 5

cross-sectional and the entries in time_interval must correspond to the time
periods observed in the repeated measurement data when macro_model is lon-
gitudinal.

covar_list an optional list of sender/receiver covariates used in rem.dyad estimation. Only
required when a rem.dyad object is the micro_model and covariates are in the
rem.dyad call. The list format should correspond to the format required by
rem.dyad.

edgelist an optional three column edgelist providing the sender, receiver, and time of
event occurrence when micro_model is a rem.dyad object. Only required when
time_interval is set to NULL or "aggregate". Ignored for other types of mod-
els.

net_logit_y the dependent variable when micro_model is a netlogit object. Should be
provided as a vector.

net_logit_x the matrix of independent variables when micro_model is a netlogit object

group_id optional vector of group identifiers to use when micro_model is a glm or glmer
on grouped data (i.e., multiple time periods, multiple networks). When speci-
fied, AMME will induce unique networks for each grouping factor. If left unspec-
ified, all groups/time periods are pooled. If using glmer, the grouping factor
does not have to be provided as part of the model or used as a random effect.
If specified, the entries in the macro_model model matrix are assumed to be
sequentially ordered by unit_id-group_id.

node_numbers a numeric vector containing the number of nodes in each group_id when us-
ing glm or glmer. If estimating AMME aggregated over all networks (i.e.,
group_id=NULL), this shoud be the total number of nodes in all networks. Re-
quired when using glm or glmer, ignored otherwise.

sensitivity_ev an optional parameter telling AMME whether to return sensitivity tests baased on
the E-value and risk ratios, as described by Duxbury and Zhao (2025). Defaults
to TRUE

Details

Estimates the AMME over the provided intervals. Standard errors and confidence intervals are
based on the sampling distribution of simulated values, which are calculated either parametrically
or nonparametrically according to algorithm. Parametric estimation is typically faster, but cannot
be used for nonparametric network models (e.g., quadratic assignment procedure).

macro_function and control_functions make up the core utilites of AMME. macro_function cal-
culates the mediating variable of interest, while control_functions calculates all control variables
that vary as a function of micro_process and potentially confound the effect of mediator. When
controls are left NULL, then AMME estimates the AMME without accounting for confounding vari-
ables. Specifying controls and control_functions ensures that estimates of the AMME account
for alternative pathways from micro_process to the outcome variable in macro_model. In cases
where micro_process is included as a predictor variable in macro_model, this can be specified by
including the netmediate helper function identity_function into control_functions.

netmediate currently supports functions calculated on igraph and network objects, which should
be specified using the object_type argument. These may be functions inherent to the statnet and
igraph software package or they may be functions from other packages that accept network/igraph

6 AMME

objects. The functions provided to macro_function and control_functions may also be user-
defined functions that accept network or igraph objects as inputs and return a numeric value or
vector of numeric values as output. It is also possible to over-ride the network and igraph object
requirements within a user function. To do so, set the object_type argument (or relevant element
within the object_type argument when object_type is a list) to either network or igraph and
then define a user-function that accepts a network or igraph object as its input, converts the object
to the desired data structure, calculates the statistic of interest, and returns a numeric value or vector
of numeric values. See examples below for an illustration.

By default, the AMME is calculated by averaging over the distribution of simulated values. If
full_output is set to TRUE, the distribution of simualted statistics is returned. This may be useful
when the median or mode of the simulated distribution is required or if the researcher wants to
inspect the distributional shape of simulated values.

When the sensitivity_ev argumetn is left at TRUE (the default), AMME will return an E-value and
a risk ratio assessing how robust the AMME estimate is to a hypothetical omitted confounding
variable. A higher value for either metric means that an omitted variable would have to a large
effect on the macro outcome to nullify the effect of the parameterized micro process. See Duxbury
and Zhou (2025) for details on interpretation.

AMME also supports pooled estimation for when multiple ergm or sienaFit objects are used as the
micro_model. To use pooled estimation, the model parameter should be specified as a list of ergm
or sienaFit objects. If using sienaFit, the SAOM_data argument will also need to be specified
as an ordered list with elements corresponding to entries in the list of sienaFit objects. Similarly,
the SAOM_var parameter will need to be specified as a list of lists, where each entry in the list is,
itself, a list containing all varCovar and varDyadCovar objects used to calculate macro statistics
of interest. Note that SAOM_var should not be provided if the macro statistic of interest is not a
function of the variables contained in varCovar and varDyadCovar.

Value

If full_output=FALSE, then a table is returned with the AMME, its standard error, confidence
interval, and p-value.

If full_output=TRUE, then a list is returned with the following three elements.

summary_dat is the table of summary output ucontaining the AMME, its standard error, con-
fidence interval, and p-value.

AMME_obs is vector of observations where each entry is the AMME for a single simulation
trial.

prop_explained_obs

is vector containing the proportion explained values for each simulation trial.

Author(s)

Duxbury, Scott W. Associate Professor, University of North Carolina–Chapel Hill, Department of
Sociology.

Zhao, Xin (Louis), PhD Student, University of North Carolina–Chapel Hill, Department of Sociol-
ogy

AMME 7

References

Duxbury, Scott W. 2024. "Micro-macro Mediation Analysis in Social Networks." Sociological
Methodology.

Duxbury, Scott W., and Xin Zhao. Working paper. "Sensitivity Tests for Micro-Macro Network
Analysis."

See Also

MEMS ergm.mma mediate

Examples

Not run:
##############################
Basic AMME specifications
#############################

####create ERGM generative model
library(statnet)
data("faux.mesa.high")
ergm_model<-ergm(faux.mesa.high~edges+

nodecov("Grade")+
nodefactor("Race")+
nodefactor("Sex")+
nodematch("Race")+
nodematch("Sex")+
absdiff("Grade"))

###create node-level data for second stage analysis with
node_level_data<-data.frame(grade=faux.mesa.high%v%"Grade",

race=faux.mesa.high%v%"Race",
sex=faux.mesa.high%v%"Sex",
degree=degree(faux.mesa.high))

node_level_data$senior<-0
node_level_data$senior[node_level_data$grade==max(node_level_data$grade)]<-1
node_level_data$v_id<-1:network.size(faux.mesa.high) #define ID for each observation

probit_model<-glm(senior~race+sex+degree,
data=node_level_data,
family=binomial(link="probit"))

###estimate the indirect effect of grade homophily on senior status acting through degree centrality
#in a model with no network control variables

AMME(micro_model=ergm_model,
macro_model=probit_model,
micro_process="absdiff.Grade",
mediator="degree",
macro_function=degree,

8 AMME

link_id=node_level_data$v_id, #specify vertex IDs
object_type="network",
interval=c(0,1),
nsim=50,
algorithm="parametric",
silent=FALSE)

#use nonparametric estimation for a generalized additive model
library(gam)

gam_model<-gam(senior~race+sex+s(degree),
data=node_level_data)

AMME(micro_model=ergm_model,
macro_model=gam_model,
micro_process="absdiff.Grade",
mediator="s(degree)",
macro_function=degree,
link_id=node_level_data$v_id,
object_type="network",
interval=c(0,1),
nsim=50,
algorithm="nonparametric",
silent=FALSE)

###estimate AMME with linear network autocorrelation model

lnam_model<-lnam(node_level_data$grade,
x=as.matrix(node_level_data[,4:5]),
W1=as.sociomatrix(faux.mesa.high))

AMME(micro_model=ergm_model,
macro_model=lnam_model,
micro_process="absdiff.Grade",
mediator="degree",
macro_function=degree,
link_id=node_level_data$v_id,
object_type="network",
interval=c(0,1),
nsim=50,
algorithm="parametric",
silent=FALSE)

############################
Including controls
###########################

AMME 9

##single control
node_level_data<-data.frame(grade=faux.mesa.high%v%"Grade",

race=faux.mesa.high%v%"Race",
sex=faux.mesa.high%v%"Sex",
degree=degree(faux.mesa.high),
betweenness=betweenness(faux.mesa.high))

node_level_data$senior<-0
node_level_data$senior[node_level_data$grade==max(node_level_data$grade)]<-1
node_level_data$v_id<-1:network.size(faux.mesa.high) #define ID for each observation

probit_model<-glm(senior~race+sex+degree+betweenness,
data=node_level_data,
family=binomial(link="probit"))

AMME(micro_model=ergm_model,
macro_model=probit_model,
micro_process="absdiff.Grade",
mediator="degree",
macro_function=degree,
link_id=node_level_data$v_id, #specify vertex IDs
controls="betweenness", #should match model output exactly
control_functions=betweenness,
object_type="network",
interval=c(0,1),
nsim=50,
algorithm="parametric",
silent=FALSE)

##multiple controls
##include an AR 1 parameter to make it a nonlinear network autocorrelation model
node_level_data$AR1<-as.sociomatrix(faux.mesa.high)%*%node_level_data$senior
probit_model<-glm(senior~race+sex+degree+betweenness+AR1,

data=node_level_data,
family=binomial(link="probit"))

#specify user function
ar_function<-function(x){

return(as.sociomatrix(x)%*%node_level_data$senior)
}

AMME(micro_model=ergm_model,
macro_model=probit_model,
micro_process="absdiff.Grade",
mediator="degree",
macro_function=degree,
link_id=node_level_data$v_id,
controls=c("betweenness","AR1"), #should match model output exactly
control_functions=list(betweenness,ar_function), #provide functions as a list

10 AMME

object_type="network",
interval=c(0,1),
nsim=50,
algorithm="parametric",
silent=FALSE)

##using identity_function when micro_process has a direct effect on y
#to use identity_function, the control and micro_process need to have the same
#name and the macro control variable has to be numeric

node_level_data$Sex<-as.numeric(as.factor(node_level_data$sex))
logit_model<-glm(senior~race+Sex+degree+betweenness+AR1,

data=node_level_data,
family=binomial)

AMME(micro_model=ergm_model,
macro_model=logit_model,
micro_process="nodefactor.Sex.M",
mediator="degree",
macro_function=degree,
link_id=node_level_data$v_id,
controls=c("betweenness","AR1","Sex"), #should match model output exactly
control_functions=list(betweenness,ar_function,identity_function),
object_type="network",
interval=c(0,1),
nsim=50,
algorithm="parametric",
silent=FALSE)

################################
More complex data structures
###############################

###############################
AMME with longitudinal data
##############################

#bootstrap TERGM and panel data model
library(btergm)
library(plm)
data(alliances)

ally_data<-list(LSP[[1]],
LSP[[2]],

AMME 11

LSP[[3]])

#fit bootstrap TERGM with 200 replications
bt_model<-btergm(ally_data~edges+

gwesp(.7,fixed=T)+
mutual,R=200)

#create node data
ally_node_data<-data.frame(outdeg=c(rowSums(LSP[[1]]),rowSums(LSP[[2]]),rowSums(LSP[[3]])),

indeg=c(colSums(LSP[[1]]),colSums(LSP[[2]]),colSums(LSP[[3]])))

ally_node_data$v_id<-rep(rownames(LSP[[1]]),3) #create node IDS
ally_node_data$t_id<-c(rep(1, nrow(ally_data[[1]])), #create time IDS

rep(2, nrow(ally_data[[1]])),
rep(3, nrow(ally_data[[1]])))

ally_node_data$link_id<-paste(ally_node_data$v_id,ally_node_data$t_id)#create node-panel identifiers

ally_node_data$v_id<-as.factor(as.character(ally_node_data$v_id))

#estimate a linear model with node fixed effects
lm_model<- lm(outdeg~indeg +v_id,

data = ally_node_data)

AMME(micro_model=bt_model,
macro_model=lm_model,
micro_process="gwesp.OTP.fixed.0.7",
mediator="indeg",
macro_function=function(x){degree(x,cmode="indegree")},
link_id=ally_node_data$link_id, #provide node-panel identifiers
object_type="network",
interval=c(0,1),
nsim=11,
algorithm="nonparametric",
silent=FALSE)

##include controls at different units of analysis
#include global transitivity statistic at each network panel

transitivity_list<-c(gtrans(as.network(LSP[[1]])),
gtrans(as.network(LSP[[2]])),
gtrans(as.network(LSP[[3]])))

ally_node_data$transitivity<-c(rep(transitivity_list[1],nrow(LSP[[1]])),
rep(transitivity_list[2],nrow(LSP[[2]])),
rep(transitivity_list[3],nrow(LSP[[3]])))

lm_model<- lm(outdeg~indeg+transitivity +v_id,

12 AMME

data = ally_node_data)

AMME(micro_model=bt_model,
macro_model=lm_model,
micro_process="gwesp.OTP.fixed.0.7",
mediator="indeg",
macro_function=function(x){degree(x,cmode="indegree")},

link_id=list(ally_node_data$link_id,ally_node_data$t_id),#list of IDs for nodes and time
controls="transitivity",
control_functions = gtrans,
object_type="network",
interval=c(0,1),
nsim=11,
algorithm="nonparametric",
silent=FALSE)

#SAOM and panel data model with PLM package
library(RSiena)
#specify 3 wave network panel data as DV
network_list<-array(c(s501,s502,s503),dim = c(50,50,3))

Network<-sienaDependent(network_list)
Smoking<-varCovar(s50s)
Alcohol<-varCovar(s50a)
SAOM.Data<-sienaDataCreate(Network=Network,Smoking,Alcohol)

#specify
SAOM.terms<-getEffects(SAOM.Data)
SAOM.terms<-includeEffects(SAOM.terms,egoX,altX,sameX,interaction1="Alcohol")
SAOM.terms<-includeEffects(SAOM.terms,egoX,altX,sameX,interaction1="Smoking")
SAOM.terms<-includeEffects(SAOM.terms,transTies,inPop)

create.model<-sienaAlgorithmCreate(projname="netmediate",
nsub=5,
n3=2000)

##estimate the SAOM
SAOM_model<-siena07(create.model,

data=SAOM.Data,
effects=SAOM.terms,
verbose=TRUE)

##create node-level data
node_level_data<-data.frame(smoking=s50s[,1], #smoking behavior for DV

alcohol=s50a[,1],

AMME 13

v_id=rownames(s501), #unique node IDS
wave="Wave 1", #unique time IDS
outdegree=rowSums(s501),
indegree=colSums(s501),
AR1=s501%*%s50s[,1], #assign network autocorrelation
gcc=gtrans(as.network(s501)))

node_level_data<-rbind(node_level_data,data.frame(smoking=s50s[,2],
alcohol=s50a[,2],
v_id=rownames(s502),
wave="Wave 2",
outdegree=rowSums(s502),
indegree=colSums(s502),
AR1=s502%*%s50s[,2],
gcc=gtrans(as.network(s502))))

node_level_data<-rbind(node_level_data,data.frame(smoking=s50s[,3],
alcohol=s50a[,3],
v_id=rownames(s503),
wave="Wave 3",
outdegree=rowSums(s503),
indegree=colSums(s503),
AR1=s503%*%s50s[,3],
gcc=gtrans(as.network(s503))))

##create unique identifiers for node-panel
node_level_data$unique_ids<-paste(node_level_data$v_id,node_level_data$wave)

##estimate one-way fixed effects model with PLM
library(plm)
FE_model<-plm(smoking~alcohol+outdegree+indegree+AR1+gcc,

data=node_level_data,
index=c("v_id","wave"))

##create AR function to provide to AMME
ar_function<-function(x){return(as.sociomatrix(x)%*%(x%v%"Smoking"))}

AMME(micro_model=SAOM_model,
macro_model=FE_model,
micro_process="reciprocity",
mediator="indegree",
macro_function=function(x){degree(x,cmode="indegree")},
link_id=list(node_level_data$unique_id,node_level_data$unique_id,

node_level_data$unique_id,node_level_data$wave),
object_type="network",
controls=c("outdegree","AR1","gcc"),

control_functions=list(function(x){degree(x,cmode="outdegree")},ar_function,gtrans),

14 AMME

interval=c(0,.1),
nsim=500,
algorithm="parametric",
silent=FALSE,
SAOM_data = SAOM.Data,
SAOM_var=list(Smoking=Smoking,Alcohol=Alcohol)) #provide var_list

################################
AMME with pooled ERGM and SAOM
################################

#pooled ERGM
#fit two ERGMs to two networks

data("faux.mesa.high")
model1<-ergm(faux.mesa.high~edges+

nodecov("Grade")+
nodefactor("Race")+
nodefactor("Sex")+
nodematch("Race")+
nodematch("Sex")+
absdiff("Grade"))

data("faux.magnolia.high")
model2<-ergm(faux.magnolia.high~edges+

nodecov("Grade")+
nodefactor("Race")+
nodefactor("Sex")+
nodematch("Race")+
nodematch("Sex")+
absdiff("Grade"))

#create node level data
node_level_data<-data.frame(grade=faux.mesa.high%v%"Grade",

sex=faux.mesa.high%v%"Sex",
degree=degree(faux.mesa.high),
betweenness=betweenness(faux.mesa.high),
gcc=gtrans(faux.mesa.high),
net_id="Mesa")

node_level_data$senior<-0
node_level_data$senior[node_level_data$grade==max(node_level_data$grade)]<-1
node_level_data$v_id<-1:network.size(faux.mesa.high)

node_level_data2<-data.frame(grade=faux.magnolia.high%v%"Grade",

AMME 15

sex=faux.magnolia.high%v%"Sex",
degree=degree(faux.magnolia.high),
betweenness=betweenness(faux.magnolia.high),
gcc=gtrans(faux.magnolia.high),
net_id="Magnolia")

node_level_data2$senior<-0
node_level_data2$senior[node_level_data$grade==max(node_level_data2$grade)]<-1
node_level_data2$v_id<-206:(network.size(faux.magnolia.high)+205)
node_level_data<-rbind(node_level_data,node_level_data2)

#estimate glm macro model with an AR 1 process
probit_model<-glm(senior~sex+degree+betweenness+gcc,

data=node_level_data,
family=binomial(link="probit"))

AMME(micro_model=list(model1,model2),
macro_model=probit_model,
micro_process="nodematch.Sex",
mediator="degree",
macro_function=degree,
link_id=list(node_level_data$v_id,node_level_data$v_id,node_level_data$net_id),
object_type="network",
controls=c("betweenness","gcc"),
control_functions=list(betweenness,gtrans),
interval=c(0,1),
nsim=50,
algorithm="parametric",
silent=FALSE)

##pooled SAOM with control functions using time varying covariates

library(RSiena)
#specify 3 wave network panel data as DV
network_list<-array(c(s501,s502,s503),dim = c(50,50,3))

Network<-sienaDependent(network_list)
Smoking<-varCovar(s50s)
Alcohol<-varCovar(s50a)
SAOM.Data<-sienaDataCreate(Network=Network,Smoking,Alcohol)

#specify
SAOM.terms<-getEffects(SAOM.Data)
SAOM.terms<-includeEffects(SAOM.terms,egoX,altX,sameX,interaction1="Alcohol")
SAOM.terms<-includeEffects(SAOM.terms,egoX,altX,sameX,interaction1="Smoking")
SAOM.terms<-includeEffects(SAOM.terms,transTies,inPop)

16 AMME

create.model<-sienaAlgorithmCreate(projname="netmediate",
nsub=5,
n3=2000)

##estimate the SAOM
SAOM_model<-siena07(create.model,

data=SAOM.Data,
effects=SAOM.terms,
verbose=TRUE)

##create node-level data
node_level_data<-data.frame(smoking=s50s[,1], #smoking behavior for DV

alcohol=s50a[,1],
v_id=rownames(s501), #unique node IDS
wave="Wave 1", #unique time IDS
outdegree=rowSums(s501),
indegree=colSums(s501),
AR1=s501%*%s50s[,1], #assign network autocorrelation
gcc=gtrans(as.network(s501)))

node_level_data<-rbind(node_level_data,data.frame(smoking=s50s[,2],
alcohol=s50a[,2],
v_id=rownames(s502),
wave="Wave 2",
outdegree=rowSums(s502),
indegree=colSums(s502),
AR1=s502%*%s50s[,2],
gcc=gtrans(as.network(s502))))

node_level_data<-rbind(node_level_data,data.frame(smoking=s50s[,3],
alcohol=s50a[,3],
v_id=rownames(s503),
wave="Wave 3",
outdegree=rowSums(s503),
indegree=colSums(s503),
AR1=s503%*%s50s[,3],
gcc=gtrans(as.network(s503))))

#recycle the same model for illustrative purposes
node_level_data$net_ID<-"Model 1"
node_level_data<-rbind(node_level_data,node_level_data)
node_level_data$net_ID[151:300]<-"Model 2"

##create unique identifiers for node-panel
#ID for node-panel-model

node_level_data$unique_id<-paste(node_level_data$v_id,node_level_data$wave,node_level_data$net_ID)
#ID for panel-model

node_level_data$unique_waves<-paste(node_level_data$wave,node_level_data$net_ID)

AMME 17

#estimate a linear network autocorrelation model with node fixed effects
FE_model<-lm(smoking~alcohol+outdegree+indegree+AR1+gcc+v_id,

data=node_level_data)

##create user function calculate AR1 process on time varying node attributes
ar_function<-function(x){return(as.sociomatrix(x)%*%(x%v%"Smoking"))}

##estimate AMME
AMME(micro_model=list(SAOM_model,SAOM_model), #provide list of sienaFit objects

macro_model=FE_model,
micro_process="reciprocity",
mediator="indegree",
macro_function=function(x){degree(x,cmode="indegree")},
link_id=list(node_level_data$unique_id,node_level_data$unique_id,

node_level_data$unique_id,node_level_data$unique_waves),
object_type="network",
controls=c("outdegree","AR1","gcc"),

control_functions=list(function(x){degree(x,cmode="outdegree")},ar_function,gtrans),
interval=c(0,.1),

nsim=100, #parametric estimation requires more simulations than coefficients
algorithm="parametric",
silent=FALSE,
SAOM_data = list(SAOM.Data,SAOM.Data), #list of siena objects
SAOM_var=list(list(Smoking=Smoking,Alcohol=Alcohol),#provide var_list

list(Smoking=Smoking,Alcohol=Alcohol)))

#################################
AMME with nested data
################################

####create dyad-level data

library(lme4)
library(btergm)
##use small data to simplify estimation
glm_dat<-edgeprob(model1)
glm_dat$net_id<-"mesa"
glm_dat2<-edgeprob(model2)
glm_dat2$net_id<-"magnolia"
glm_dat<-rbind(glm_dat,glm_dat2[,-c(4)])

##estimate micro model as glm for btoh networks using pooled ERGM data
net_glm<-glm(tie~nodecov.Grade+

nodefactor.Race.Hisp+
nodefactor.Race.NatAm+

18 AMME

nodefactor.Race.Other+
nodefactor.Sex.M+
nodematch.Race+
nodematch.Sex+
absdiff.Grade,

data=glm_dat)

#create macro data
node_level_data<-data.frame(grade=faux.mesa.high%v%"Grade",

sex=faux.mesa.high%v%"Sex",
degree=degree(faux.mesa.high),
betweenness=betweenness(faux.mesa.high),
gcc=gtrans(faux.mesa.high),
net_id="Mesa")

node_level_data$senior<-0
node_level_data$senior[node_level_data$grade==max(node_level_data$grade)]<-1
node_level_data$v_id<-1:network.size(faux.mesa.high)

node_level_data2<-data.frame(grade=faux.magnolia.high%v%"Grade",
sex=faux.magnolia.high%v%"Sex",
degree=degree(faux.magnolia.high),
betweenness=betweenness(faux.magnolia.high),
gcc=gtrans(faux.magnolia.high),
net_id="Magnolia")

node_level_data2$senior<-0
node_level_data2$senior[node_level_data$grade==max(node_level_data2$grade)]<-1
node_level_data2$v_id<-206:(network.size(faux.magnolia.high)+205)
node_level_data<-rbind(node_level_data,node_level_data2)

#estimate glm macro model
probit_model<-glm(senior~sex+degree+betweenness+gcc,

data=node_level_data,
family=binomial(link="probit"))

AMME(micro_model=net_glm,
macro_model=probit_model,
micro_process="nodematch.Sex",
mediator="degree",
macro_function=degree,
link_id=list(node_level_data$v_id,node_level_data$v_id,node_level_data$net_id),
object_type="network",
controls=c("betweenness","gcc"),
control_functions=list(betweenness,gtrans),
interval=c(0,1),
nsim=50,

AMME 19

algorithm="parametric",
silent=FALSE,
group_id=glm_dat$net_id,
node_numbers = c(network.size(faux.mesa.high),

network.size(faux.magnolia.high)))

###using glmer for micro model
net_glmer<-glmer(tie~nodecov.Grade+

nodefactor.Race.Hisp+
nodefactor.Race.NatAm+
nodefactor.Race.Other+
nodefactor.Sex.M+
nodematch.Race+
nodematch.Sex+
absdiff.Grade+
(1|net_id),

data=glm_dat)

probit_glmer<-glm(senior~sex+degree+betweenness+gcc,
data=node_level_data,
family=binomial(link="probit"))

AMME(micro_model=net_glm,
macro_model=probit_glmer,
micro_process="nodematch.Sex",
mediator="degree",
macro_function=degree,
link_id=list(node_level_data$v_id,node_level_data$v_id,node_level_data$net_id),
object_type="network",
controls=c("betweenness","gcc"),
control_functions=list(betweenness,gtrans),
interval=c(0,1),
nsim=50,
algorithm="parametric",
silent=FALSE,
group_id=glm_dat$net_id,
node_numbers = c(network.size(faux.mesa.high),

network.size(faux.magnolia.high)))

End(Not run)

20 compare_MEMS

compare_MEMS Function to compare micro effect on macro structure (MEMS) esti-
mates between models.

Description

compare_MEMS implements parametric and nonparametric routines to compare MEMS estimate be-
tween models. When compared between nested models, compare_MEMS results can be interpreted
as the portion of a MEMS explained by a mediating or confounding variable. When compared be-
tween models with distinct functional forms and the same specification, compare_MEMS results can
be interpreted as the sensitivity of MEMS results to decision about model functional form as described
by Wertsching and Duxbury (2025).

compare_MEMS can also be used as a test of the difference between two MEMS estimates within the
same model. This is useful when researchers watn to formally evaluate whether the MEMS for one
explanatory micro mechanism is significantly larger or smaller than a second explanatory micro
mecahnism.

The difference in MEMS is the change in MEMS after one or more micro-processes are included
into a model or, in the case of sensitivity tests, when the functional form is changed. Let MEMSp

represent the MEMS obtained from a model that omits one or more intervening variables and
MEMSf be the MMES obtained from a model that includes the intervening variable(s). The
change in MEMS is given

∆MEMS = MEMSp −MEMSf

. MEMSp and MEMSf may also be have the same specification but use distinct functional forms
or other modeling decisions in the case of sensitivity tests. Tuning parameters can be assigned to
toggle the strength of θ in model-implied estimates of MEMS. MEMS currently accepts glm, glmer,
ergm, btergm, sienaFit, rem.dyad, and netlogit objects and implements both parametric and
nonparametric estimation. Pooled estimation for multiple network models is also implemented for
ergm and sienaFit objects.

Usage

compare_MEMS(partial_model,
full_model,
micro_process,
micro_process2=NULL,
macro_function,
macro_function2=NULL,
object_type=NULL,
interval=c(0,1),
nsim=500,
algorithm="parametric",
silent=FALSE,
full_output=FALSE,
sensitivity_ev=TRUE,
SAOM_data=NULL,

compare_MEMS 21

SAOM_var=NULL,
time_interval=NULL,
covar_list=NULL,
edgelist=NULL,
net_logit_y=NULL,
net_logit_x=NULL,
group_id=NULL,
node_numbers=NULL,
mediator=NULL,
link_id=NULL,
controls=NULL,
control_functions=NULL)

Arguments

partial_model the micro-model excluding one or more intervening or confounding variables of
interest. May also be a fully specified model in the case of sensitivity tests. Cur-
rently accepts glm, glmer, ergm, btergm, sienaFit, rem.dyad, and netlogit
objects. Pooled estimation for multiple network models is also implemented for
ergm and sienaFit objects. To implement pooled estimation, model should be
provided as a list of ergm or sienaFit objects.

full_model the micro-model including one or more intervening or confounding variables of
interest. May also be a fully specified model with a distinct functional form
from partial_model in the case of sensitivity tests. Alternatively, researchers
may provide the same model as given in partial_model when comparing MEMS
estimates within a single model. In these latter cases, micro_process2 must
be provided as well. Currently accepts glm, glmer, ergm, btergm, sienaFit,
rem.dyad, and netlogit objects. Pooled estimation for multiple network mod-
els is also implemented for ergm and sienaFit objects. To implement pooled
estimation, model should be provided as a list of ergm or sienaFit objects.

micro_process a character string containing the name of the micro process of interest. The char-
acter string should exactly match coefficient names in partial_model output.

micro_process2 an optional character string containing the name of the micro process for com-
parison. Used when full_model is a different class of model than partial_model
or when comparing MEMS estimates for two different explanatory variables within
the same model. When full_model is a different class of model than partial_model,
the character string provided micro_process2 should match exactly the coeffi-
cient name in full_model.

macro_function a function that calculates the macro statistic of interest. Currently accepts
user defined functions as well as functions inherent in the igraph and statnet
packages for R.

macro_function2

an optional function that calculates the macro statistic of interest. When pro-
vided, macro_function2 will be used in place of macro_function when cal-
culating the MEMS provided by the full_model argument. This is intended for
use in comparisons between distinct models (e.g., SAOM and ERGM) when
a user provided function must be written differently for each model’s output.
Defaults to NULL.

22 compare_MEMS

object_type A character string that tells netmediate the type of object to apply the macro_function
to. Currently accepts igraph and network objects. If left NULL, network objects
are assumed. Can be over-ridden to use other object types with a user-function
by defining a function that accepts either a network or igraph object and returns
a numeric value or vector of numeric values (see examples).

interval The value of tuning parameters to assign to θ. Should be provided as a vector of
numeric values with 2 entries.

nsim The number of simulations or bootstrap samples to use during estimation.

algorithm The estimation algorithm to be used. Currently accepts "parametric" and
"nonparametric". If "parametric", estimation is obtained with Monte Carlo
sampling. If "nonparametric", estimation uses bootstrap resampling.

silent logical parameter. Whether to provide updates on the progress of the simulation
or not.

full_output logical parameter. If set to TRUE, compare_MEMS will return all sampled statistics
and complete results for MEMSp and MEMSf .

sensitivity_ev optional parameter. If set to TRUE, will return E-values for direct, total, and
indirect MEMS estimates. Not defined for sensitivity tests between models.

SAOM_data required when the model is a sienaFit object; ignored otherwise. If a sienaFit
object is provided, SAOM_data should be the siena object that contains the data
for SAOM estimation. If using pooled estimation on multiple sienaFit objects
(i.e., providing a list of sienaFit objects), then SAOM_data should be provided
as an ordered list with each entry containing the siena object corresponding to
list of sienaFit objects.

SAOM_var optional parameter when the model is a sienaFit object. SAOM_var is a list of
of the varCovar and varDyadCovar objects used to assign time varying node
and dyad covariates when calling sienaDataCreate. If provided, netmediate
assigns the varying node covariates and dyad covariates to each simulated net-
work. This parameter is required when macro_function computes a statistic
that varies as a function of time varying node or dyad covariates (i.e., net-
work segregation, assorativity). Time invariant characteristics (coCovar and
coDyadCovar) are handled internally by MEMS and should not be provided. When
providing a list of sienaFit objects for pooled estimation, SAOM_var should be
provided as a list of lists, where each entry in the list contains a list of varCovar
and varDyadCovar objects associated with corresponding sienaFit object.

time_interval an optional parameter to be used with rem.dyad objects. May be provided as
a numeric vector or the character string "aggregate". If a numeric vector is pro-
vided unique network snapshots at each interval. For example, time_interval=c(0,2,3)
would induce two networks, one for the 0 - 2 time period and one for the 2 - 3
time period. If specified as "aggregate", the MEMS is calculated by creating
an aggregated cross-sectional representation of the entire event sequence. If left
NULL, defaults to |"aggregate".

covar_list an optional list of sender/receiver covariates used in rem.dyad estimation. Only
required for rem.dyad objects when covariates are included. The list format
should correspond to the format required by rem.dyad

compare_MEMS 23

edgelist an optional three column edgelist providing the sender, receiver, and time of
event occurrence when using rem.rem.dyad. Only required when time_interval
is set to NULL or "aggregate". Ignored for other types of models.

net_logit_y the dependent variable for netlogit objects. Should be provided as a vector.
Only required when model is a netlogit object.

net_logit_x the matrix of independent variables for netlogit type objects. Only required
when model is a netlogit object.

group_id optional vector of group identifiers to use when estimating a glm or glmer on
grouped data (i.e., multiple time periods, multiple networks). When specified,
MEMS will induce unique networks for each grouping factor. If left unspecified,
all groups/time periods are pooled. If using glmer, the grouping factor does not
have to be provided as part of the model or used as a random effect.

node_numbers a numeric vector containing the number of nodes in each group_id when us-
ing glm or glmer. If estimating MEMS aggregated over all networks (i.e.,
group_id=NULL), this shoud be the total number of nodes in all networks. Re-
quired when using glm or glmer, ignored otherwise.

mediator a character string detailing the mediator of interest. Intended for internal use
with the AMME function; not intended for end users.

link_id a vector or list of vectors corresponding to unique identifiers. Intended for inter-
nal use with the AMME function; not intended for end users.

controls a vector of character strings listing the controls to be calculated when using
AMME. Intended for internal use with the AMME function; not intended for end
users.

control_functions

a list of functions to calculate the macro control variables provided in controls.
Intended for internal use with the AMME function; not intended for end users.

Details

Compares MEMS estimates between two models. If one or more confounding or intervening vari-
ables are excluded or included between models, the change in MEMS can be interpreted as the
portion of the MEMS explained by one or more confounding or intervening variable. If two models
are provided with the same specification but a distinct functional form, the change in MEMS is a
sensitivty test of how much the MEMS estimate changes because of a model decision. This can be
useful, for example, when comparing TERGM and SAOM estimates as each models make distinct
assumptions about sources of network change and the temporal ordering of tie changes.

compare_MEMS functionality inherits directly from the MEMS command. See the MEMS page for more
details.

Value

If full_output=FALSE, then a table is returned with the change MEMS, its standard error, confi-
dence interval, and p-value, and the same results for the partial and complete MEMS.

If full_output=TRUE, then a list is returned with the following three elements.

24 compare_MEMS

diff_MEMS_results

is the table of summary output containing the MEMS, its standard error, confi-
dence interval, and p-value, and a list of the simulated values of the change in
MEMS.

p_MEMS_results contains the summary statistics for the partial MEMS along with all simulated
statistics.

f_MEMS_results contains the summary statistics for the full MEMS along with all simulated
statistics.

Author(s)

Duxbury, Scott W. Associate Professor, University of North Carolina–Chapel Hill, Department of
Sociology.

References

Duxbury, Scott W. 2024. "Micro Effects on Macro Structure in Social Networks." Sociological
Methodology.

Wertsching, Jenna, and Scott W. Duxbury. Working paper. "Micro Effects on Macro Structure:
Identification, Comparison between Nested Models, and Sensitivity Tests for Functional Form."

Duxbury, Scott W., and Xin Zhao. Working paper. "Sensitivity Tests for Micro-Macro Network
Analysis."

See Also

AMME MEMS ergm.mma mediate mediate_MEMS

Examples

Not run:

library(statnet)
library(igraph)
data("faux.mesa.high")

####################
###mediation analysis
####################

#how much of the effect of racial homophily on transitivity
#is explained by triadic closure effects?

model<-ergm(faux.mesa.high~edges+nodecov("Grade")+nodefactor("Race")+
nodefactor("Sex")+nodematch("Race")+nodematch("Sex")+absdiff("Grade"))

model2<-ergm(faux.mesa.high~edges+nodecov("Grade")+nodefactor("Race")+
nodefactor("Sex")+nodematch("Race")+nodematch("Sex")+absdiff("Grade")+
gwesp(.5,fixed=TRUE))

compare_MEMS 25

compare_MEMS(partial_model=model,
full_model=model2,
micro_process="nodematch.Race",
macro_function=transitivity,
object_type = "igraph",
silent=FALSE,
algorithm="parametric")

########################
Effect size comparison
########################

#Is the effect of racial homophily on transitivity larger or smaller
#than the effect of grade homophily?

compare_MEMS(partial_model=model2,
full_model=model2,
micro_process="nodematch.Race",
micro_process2="absdiff.Grade",
macro_function=transitivity,
object_type = "igraph",
silent=FALSE,
algorithm="parametric")

###################
Robustness check
##################

#Are MEMS estimates derived from ERGM robust to alternative MPLE estimation strategies?

model_MPLE<-ergmMPLE(faux.mesa.high~edges+nodecov("Grade")+nodefactor("Race")+
nodefactor("Sex")+nodematch("Race")+nodematch("Sex")+absdiff("Grade")+
gwesp(.5,fixed=TRUE),
output="fit")

compare_MEMS(partial_model=model2,
full_model=model_MPLE,
micro_process="gwesp.fixed.0.5",
macro_function=transitivity,
object_type = "igraph",
silent=FALSE,
algorithm="parametric",
sensitivity_ev=FALSE)

###Compare between SAOM and TERGM
#treating behavioral (smoking) autocorrelation
#as outcome

26 compare_MEMS

library(RSiena)
##we'll load RSiena since we're using data from here.
###create a list of adjacency matrices
network_array<-list(s501,s502,s503)
smoking<-as.data.frame(s50s) ##load smoking data

##for our analysis, we'll look at binary smoking behavior
for(i in 1:ncol(smoking)){

smoking[,i][smoking[,i]>1]<-2
}

alcohol<-as.data.frame(s50a) ##we'll use alcohol consumption as a covariate as well

##
Co-evolution model
#######################################

##create "sienaDependent" object,
TLSnet<-sienaDependent(array(c(network_array[[1]],

network_array[[2]],
network_array[[3]]),

dim=c(50,50,3)))
TLSbeh<-sienaDependent(as.matrix(smoking),type="behavior")

#set covariates
Alcohol<-varCovar(as.matrix(alcohol))

###create dataset, but specify network AND behavior
SAOM.Data<-sienaDataCreate(Network=TLSnet,

Behavior=TLSbeh,
Alcohol)

###Create the effects object
SAOM.terms<-getEffects(SAOM.Data)

###We'll start by specifying the NETWORK function

SAOM.terms<-includeEffects(SAOM.terms,egoX,altX,absDiffX,interaction1="Alcohol")
SAOM.terms<-includeEffects(SAOM.terms,egoX,altX,sameX,interaction1="Behavior")
SAOM.terms<-includeEffects(SAOM.terms,transTies,inPop)

###Now let's specify the BEHAVIOR function

compare_MEMS 27

SAOM.terms<-includeEffects(SAOM.terms,effFrom,name="Behavior",
interaction1="Alcohol")

SAOM.terms<-includeEffects(SAOM.terms,totSim,name="Behavior",
interaction1="Network")

SAOM.terms<-includeEffects(SAOM.terms,isolate,
name="Behavior",interaction1="Network")

#estimate the model

create.model<-sienaAlgorithmCreate(projname="Co-evolution_output",
seed=21093,
nsub=4,
n3=1000)

TLSmodel<-siena07(create.model,
data=SAOM.Data,
effects=SAOM.terms,
verbose=TRUE,
returnDeps=TRUE)

TLSmodel

#now fit the TERGM
library(statnet)

net_list<-list(as.network(s501),as.network(s502),as.network(s503))
net_list[[1]]<-network::set.vertex.attribute(net_list[[1]],"smoking",s50s[,1])
net_list[[2]]<-network::set.vertex.attribute(net_list[[2]],"smoking",s50s[,2])
net_list[[3]]<-network::set.vertex.attribute(net_list[[3]],"smoking",s50s[,3])
net_list[[1]]<-network::set.vertex.attribute(net_list[[1]],"alcohol",s50a[,1])
net_list[[2]]<-network::set.vertex.attribute(net_list[[2]],"alcohol",s50a[,2])
net_list[[3]]<-network::set.vertex.attribute(net_list[[3]],"alcohol",s50a[,3])

TERGM_1<-tergm(net_list~Form(
~edges+
mutual+
gwesp(.5,fixed=TRUE)+
gwidegree(.5,fixed=TRUE)+
nodeicov("smoking")+
nodeocov("smoking")+
nodematch("smoking")+
nodeicov("alcohol")+
nodeocov("alcohol")+
absdiff("alcohol")),

estimate="CMLE"

)

#create network autocorrelation function for TERGM

28 identity_function

Moran_tergm<-function(x){

y<-network::get.vertex.attribute(x,"smoking")
return(nacf(x,y,type="moran",lag=1)[2])

}

#test difference in TERGM and SAOM estimates of the MEMS for
#network selection on same smoking behavior for
#smoking similarity at the aggregate level

compare_MEMS(partial_model=TLSmodel,
full_model=TERGM_1,

micro_process="same Behavior",
macro_function =Moran_dv,
micro_process2="Form(1)~nodematch.smoking",
macro_function2=Moran_tergm,
object_type = "network",
SAOM_data = SAOM.Data,
silent=FALSE)

End(Not run)

identity_function Function to map micro_process onto macro_model within calls to
AMME.

Description

A function to control for a node-level micro_process in AMME estimation.

Usage

identity_function(x)

Arguments

x a network object used to transfer micro_process.

Value

No return value, used internally with AMME

mediate_MEMS 29

mediate_MEMS Function to conduct mediation analysis with micro effects on macro
structure (MEMS).

Description

mediate_MEMS implements parametric and nonparametric routines to compare MEMS estimate be-
tween models. Largely a wrapper for compare_MEMS, the sole novel functionality of mediate_MEMS
is provided when a user specifies the model_comparison argument to be TRUE. When model_comparison
is set to TRUE, mediate_MEMS compares the direct, indirect, and total MEMS estimates to those
obtained from partial_model2 and full_model2. This can be used as a sensitivity test to re-
searchers’ choice of model. It can also provide the basis for testing differences in direct, total, and
indirect effect sizes within the same model by setting partial_model2 to equal partial_model
and full_model2 to equal full_model and provide a second explanatory micro process to the
micro_process2 argument. In these cases, the difference between "models" captures the differ-
ences effect size of the direct, indirect, and total MEMS estimates for two distinct explanatory micro
processes. See Wertsching and Duxbury (2025) for details.

The difference in MEMS is the change in MEMS after one or more micro-processes are included
into a model or, in the case of sensitivity tests, when the functional form is changed. Let MEMSp

represent the MEMS obtained from a model that omits one or more intervening variables and
MEMSf be the MMES obtained from a model that includes the intervening variable(s). The
change in MEMS is given

∆MEMS = MEMSp −MEMSf

. MEMSp and MEMSf may also be have the same specification but use distinct functional forms
or other modeling decisions in the case of sensitivity tests. Tuning parameters can be assigned to
toggle the strength of θ in model-implied estimates of MEMS. MEMS currently accepts glm, glmer,
ergm, btergm, sienaFit, rem.dyad, and netlogit objects and implements both parametric and
nonparametric estimation. Pooled estimation for multiple network models is also implemented for
ergm and sienaFit objects.

Usage

mediate_MEMS(partial_model,
full_model,
micro_process,
macro_function,
model_comparison=FALSE,
partial_model2=NULL,
full_model2=NULL,
micro_process2=NULL,
macro_function2=NULL,
object_type=NULL,
interval=c(0,1),
nsim=500,
algorithm="parametric",

30 mediate_MEMS

silent=FALSE,
full_output=FALSE,
sensitivity_ev=TRUE,
SAOM_data=NULL,
SAOM_var=NULL,
time_interval=NULL,
covar_list=NULL,
edgelist=NULL,
net_logit_y=NULL,
net_logit_x=NULL,
group_id=NULL,
node_numbers=NULL,
mediator=NULL,
link_id=NULL,
controls=NULL,
control_functions=NULL)

Arguments

partial_model the micro-model excluding one or more intervening or confounding variables
of interest. May also be a fully specified model with a distinct functional form
in the case of sensitivity tests. Currently accepts glm, glmer, ergm, btergm,
sienaFit, rem.dyad, and netlogit objects. Pooled estimation for multiple
network models is also implemented for ergm and sienaFit objects. To imple-
ment pooled estimation, model should be provided as a list of ergm or sienaFit
objects.

full_model the micro-model including one or more intervening or confounding variables of
interest. May also be a fully specified model with a distinct functional form
in the case of sensitivity tests. Currently accepts glm, glmer, ergm, btergm,
sienaFit, rem.dyad, and netlogit objects. Pooled estimation for multiple
network models is also implemented for ergm and sienaFit objects. To imple-
ment pooled estimation, model should be provided as a list of ergm or sienaFit
objects.

micro_process a character string containing the name of the micro process of interest. The
character string should exactly match coefficient names in model output.

macro_function a function that calculates the macro statistic of interest. Currently accepts
user defined functions as well as functions inherent in the igraph and statnet
packages for R.

model_comparison

returns sensitivity tests evaluating robustness of partial, full, and indirect MEMS
estimates to distinct model choices when set to TRUE. Default is FALSE

partial_model2 a second model identitical to the specification of partial_model that uses a dis-
tinct functional form. Differences in MEMS estimates from partial_model are
compared to MEMS estimates from partial_model2. Required if model_comparison=TRUE
and ignored otherwise.

full_model2 a second model identitical to the specification of full_model that uses a distinct
functional form. Differences in MEMS estimates from full_model are com-

mediate_MEMS 31

pared to MEMS estimates from full_model2. Required if model_comparison=TRUE
and ignored otherwise.

micro_process2 the character string identifying the micro_process to compare in sensitivity anal-
ysis. Required if model_comparison=TRUE and ignored otherwise.

macro_function2

an optional function that calculates the macro statistic of interest. When pro-
vided, macro_function2 will be used in place of macro_function when calcu-
lating the MEMS provided by the partial_model2 and full_model2 arguments.
This is intended for use in comparisons between distinct models (e.g., SAOM
and ERGM) when a user provided function must be written differently for each
model’s output. Defaults to NULL.

object_type A character string that tells netmediate the type of object to apply the macro_function
to. Currently accepts igraph and network objects. If left NULL, network objects
are assumed. Can be over-ridden to use other object types with a user-function
by defining a function that accepts either a network or igraph object and returns
a numeric value or vector of numeric values (see examples).

interval The value of tuning parameters to assign to θ. Should be provided as a vector of
numeric values with 2 entries.

nsim The number of simulations or bootstrap samples to use during estimation.

algorithm The estimation algorithm to be used. Currently accepts "parametric" and
"nonparametric". If "parametric", estimation is obtained with Monte Carlo
sampling. If "nonparametric", estimation uses bootstrap resampling.

silent logical parameter. Whether to provide updates on the progress of the simulation
or not.

full_output logical parameter. If set to TRUE, mediate_MEMS will return all sampled statistics
and complete results for MEMSp and MEMSf .

sensitivity_ev optional parameter. If set to TRUE, will return E-values for direct, total, and
indirect MEMS estimates.

SAOM_data required when the model is a sienaFit object; ignored otherwise. If a sienaFit
object is provided, SAOM_data should be the siena object that contains the data
for SAOM estimation. If using pooled estimation on multiple sienaFit objects
(i.e., providing a list of sienaFit objects), then SAOM_data should be provided
as an ordered list with each entry containing the siena object corresponding to
list of sienaFit objects.

SAOM_var optional parameter when the model is a sienaFit object. SAOM_var is a list of
of the varCovar and varDyadCovar objects used to assign time varying node
and dyad covariates when calling sienaDataCreate. If provided, netmediate
assigns the varying node covariates and dyad covariates to each simulated net-
work. This parameter is required when macro_function computes a statistic
that varies as a function of time varying node or dyad covariates (i.e., net-
work segregation, assorativity). Time invariant characteristics (coCovar and
coDyadCovar) are handled internally by MEMS and should not be provided. When
providing a list of sienaFit objects for pooled estimation, SAOM_var should be
provided as a list of lists, where each entry in the list contains a list of varCovar
and varDyadCovar objects associated with corresponding sienaFit object.

32 mediate_MEMS

time_interval an optional parameter to be used with rem.dyad objects. May be provided as
a numeric vector or the character string "aggregate". If a numeric vector is pro-
vided unique network snapshots at each interval. For example, time_interval=c(0,2,3)
would induce two networks, one for the 0 - 2 time period and one for the 2 - 3
time period. If specified as "aggregate", the MEMS is calculated by creating
an aggregated cross-sectional representation of the entire event sequence. If left
NULL, defaults to |"aggregate".

covar_list an optional list of sender/receiver covariates used in rem.dyad estimation. Only
required for rem.dyad objects when covariates are included. The list format
should correspond to the format required by rem.dyad

edgelist an optional three column edgelist providing the sender, receiver, and time of
event occurrence when using rem.rem.dyad. Only required when time_interval
is set to NULL or "aggregate". Ignored for other types of models.

net_logit_y the dependent variable for netlogit objects. Should be provided as a vector.
Only required when model is a netlogit object.

net_logit_x the matrix of independent variables for netlogit type objects. Only required
when model is a netlogit object.

group_id optional vector of group identifiers to use when estimating a glm or glmer on
grouped data (i.e., multiple time periods, multiple networks). When specified,
MEMS will induce unique networks for each grouping factor. If left unspecified,
all groups/time periods are pooled. If using glmer, the grouping factor does not
have to be provided as part of the model or used as a random effect.

node_numbers a numeric vector containing the number of nodes in each group_id when us-
ing glm or glmer. If estimating MEMS aggregated over all networks (i.e.,
group_id=NULL), this shoud be the total number of nodes in all networks. Re-
quired when using glm or glmer, ignored otherwise.

mediator a character string detailing the mediator of interest. Intended for internal use
with the AMME function; not intended for end users.

link_id a vector or list of vectors corresponding to unique identifiers. Intended for inter-
nal use with the AMME function; not intended for end users.

controls a vector of character strings listing the controls to be calculated when using
AMME. Intended for internal use with the AMME function; not intended for end
users.

control_functions

a list of functions to calculate the macro control variables provided in controls.
Intended for internal use with the AMME function; not intended for end users.

Details

Compares MEMS estimates between two models. If one or more confounding or intervening vari-
ables are excluded or included between models, the change in MEMS can be interpreted as the
portion of the MEMS explained by one or more confounding or intervening variable. If two models
are provided with the same specification but a distinct functional form, the change in MEMS is a
sensitivty test of how much the MEMS estimate changes because of a model decision. This can be
useful, for example, when comparing TERGM and SAOM estimates as each models make distinct
assumptions about sources of network change and the temporal ordering of tie changes.

mediate_MEMS 33

If a single pair of models are compared, mediate_MEMS results will be identical to compare_MEMS
results. However, if model_comparison is set to TRUE and a second pair of models are provided
using a different set of control variables or a distinct functional form, mediate_MEMS will also return
sensitivity tests evaluating whether the partial, full, and indirect MEMS estimates are significantly
different between the two sets of models. This functionality can also be used to formally test
differences in partial, full, and indirect effect sizes by setting partial_model2 to be the same as
partial model and full_model2 to be the same as full_model and setting micro_process2 to
be a different variable than micro_process.

mediate_MEMS functionality inherits directly from the compare_MEMS and MEMS commands. See the
compare_MEMS and MEMS pages for more details.

Value

If full_output=FALSE and model_comparison=FALSE, then a table is returned with the change
MEMS, its standard error, confidence interval, and p-value, and the same results for the partial and
complete MEMS.

If full_output=TRUE and model_comparison=FALSE, then a list is returned with the following
three elements.

diff_MEMS_results

is the table of summary output containing the MEMS, its standard error, confi-
dence interval, and p-value, and a list of the simulated values of the change in
MEMS.

p_MEMS_results contains the summary statistics for the partial MEMS along with all simulated
statistics.

f_MEMS_results contains the summary statistics for the full MEMS along with all simulated
statistics.

If full_output=FALSE and model_comparison=TRUE, then a list is returned with the following
elements.

model_set1 is the table of summary output testing the partial, full, and indirect MEMS using
partial_model and full_model.

model_set2 is the table of summary output testing the partial, full, and indirect MEMS using
partial_model2 and full_model2

model_comparison

is the table of output testing the difference in estimates between model_set1
and model_set2

If full_output=TRUE and model_comparison=TRUE, then a list is returned with the following three
elements.

summary_results

is the list of summary output provided as described above when full_output=TRUE.

sample_results is a list containing the simulation draws used to calculate point estimates, vari-
ance estimates, and sensitivity tests for the partial MEMS, full MEMS, and in-
direct MEMS.

34 mediate_MEMS

Author(s)

Duxbury, Scott W. Associate Professor, University of North Carolina–Chapel Hill, Department of
Sociology.

References

Duxbury, Scott W. 2024. "Micro Effects on Macro Structure in Social Networks." Sociological
Methodology.

Wertsching, Jenna, and Scott W. Duxbury. Working paper. "Micro Effects on Macro Structure:
Identification, Comparison between Nested Models, and Sensitivity Tests for Functional Form."

Duxbury, Scott W., and Xin Zhao. Working paper. "Sensitivity Tests for Micro-Macro Network
Analysis."

See Also

AMME MEMS ergm.mma mediate compare_MEMS

Examples

Not run:

library(statnet)
library(igraph)
data("faux.mesa.high")

#how much of the effect of racial homophily on transitivity
#is explained by triadic closure effects?

model<-ergm(faux.mesa.high~edges+nodecov("Grade")+nodefactor("Race")+
nodefactor("Sex")+nodematch("Race")+nodematch("Sex")+absdiff("Grade"))

model2<-ergm(faux.mesa.high~edges+nodecov("Grade")+nodefactor("Race")+
nodefactor("Sex")+nodematch("Race")+nodematch("Sex")+absdiff("Grade")+
gwesp(.5,fixed=TRUE))

#compare results from compare_MEMS and mediate_MEMS

compare_MEMS(partial_model=model,
full_model=model2,
micro_process="nodematch.Race",
macro_function=transitivity,
object_type = "igraph",
silent=FALSE,
algorithm="parametric")

mediate_MEMS(partial_model=model,
full_model=model2,
micro_process="nodematch.Race",

mediate_MEMS 35

macro_function=transitivity,
object_type = "igraph",
silent=FALSE,
algorithm="parametric")

###test sensitivity to MPLE versus MCMC MLE estimation

modela<-ergmMPLE(faux.mesa.high~edges+nodecov("Grade")+nodefactor("Race")+
nodefactor("Sex")+nodematch("Race")+nodematch("Sex")+absdiff("Grade"),
output="fit")

model2a<-ergmMPLE(faux.mesa.high~edges+nodecov("Grade")+nodefactor("Race")+
nodefactor("Sex")+nodematch("Race")+nodematch("Sex")+absdiff("Grade")+
gwesp(.5,fixed=TRUE),
output="fit")

mediate_MEMS(partial_model=model,
full_model=model2,
micro_process="nodematch.Race",
model_comparison = TRUE,
partial_model2=modela,
full_model2=model2a,
micro_process2="nodematch.Race",
macro_function=transitivity,
object_type = "igraph",
silent=FALSE,
algorithm="parametric")

##compare direct, total, and indirect effect sizes

mediate_MEMS(partial_model=model,
full_model=model2,
micro_process="nodematch.Race",
model_comparison = TRUE,
partial_model2=model,
full_model2=model2,
micro_process2="absdiff.Grade",
macro_function=transitivity,
object_type = "igraph",
silent=FALSE,
algorithm="parametric")

36 mediate_MEMS

###
More complicated sensitivty test using macro function 2
###

#are the direct, total, and indirect MEMS of
#network selection on similar smoking behavior on
#students' shared smoking robust to distinct
#model choices?

###Compare between SAOM and TERGM treating behavioral
#(smoking) autocorrelation as outcome, smoking homophily
#as treatment, and triadic closure as mediator

##
Co-evolution SAOM
#######################################

library(RSiena)
network_array<-list(s501,s502,s503)
smoking<-as.data.frame(s50s)

for(i in 1:ncol(smoking)){

smoking[,i][smoking[,i]>1]<-2
}

alcohol<-as.data.frame(s50a) ##we'll use alcohol consumption as a covariate as well

##create "sienaDependent" object,
TLSnet<-sienaDependent(array(c(network_array[[1]],

network_array[[2]],
network_array[[3]]),

dim=c(50,50,3)))
TLSbeh<-sienaDependent(as.matrix(smoking),type="behavior")

#set covariates
Alcohol<-varCovar(as.matrix(alcohol))

###create dataset, but specify network AND behavior
SAOM.Data<-sienaDataCreate(Network=TLSnet,

Behavior=TLSbeh,
Alcohol)

###Create the effects object
SAOM.terms<-getEffects(SAOM.Data)

mediate_MEMS 37

###We'll start by specifying the NETWORK function

SAOM.terms<-includeEffects(SAOM.terms,egoX,altX,absDiffX,interaction1="Alcohol")
SAOM.terms<-includeEffects(SAOM.terms,egoX,altX,sameX,interaction1="Behavior")

###Now let's specify the BEHAVIOR function
SAOM.terms<-includeEffects(SAOM.terms,effFrom,name="Behavior",

interaction1="Alcohol")
SAOM.terms<-includeEffects(SAOM.terms,totSim,name="Behavior",

interaction1="Network")
SAOM.terms<-includeEffects(SAOM.terms,isolate,

name="Behavior",interaction1="Network")

#estimate the model WITHOUT transitive ties

create.model<-sienaAlgorithmCreate(projname="Co-evolution_output",
seed=21093,
nsub=4,
n3=1000)

TLSmodel_notrans<-siena07(create.model,
data=SAOM.Data,
effects=SAOM.terms,
verbose=TRUE,
returnDeps=TRUE)

#include transTies
SAOM.terms<-includeEffects(SAOM.terms,transTies,inPop)
TLSmodel<-siena07(create.model,

data=SAOM.Data,
effects=SAOM.terms,
verbose=TRUE,
returnDeps=TRUE)

#now fit the TERGM
library(statnet)

net_list<-list(as.network(s501),as.network(s502),as.network(s503))
net_list[[1]]<-network::set.vertex.attribute(net_list[[1]],"smoking",s50s[,1])
net_list[[2]]<-network::set.vertex.attribute(net_list[[2]],"smoking",s50s[,2])
net_list[[3]]<-network::set.vertex.attribute(net_list[[3]],"smoking",s50s[,3])
net_list[[1]]<-network::set.vertex.attribute(net_list[[1]],"alcohol",s50a[,1])
net_list[[2]]<-network::set.vertex.attribute(net_list[[2]],"alcohol",s50a[,2])
net_list[[3]]<-network::set.vertex.attribute(net_list[[3]],"alcohol",s50a[,3])

38 mediate_MEMS

TERGM_1_nogwesp<-tergm(net_list~Form(
~edges+
mutual+
gwidegree(.5,fixed=TRUE)+
nodeicov("smoking")+
nodeocov("smoking")+
nodematch("smoking")+
nodeicov("alcohol")+
nodeocov("alcohol")+
absdiff("alcohol")),

estimate="CMLE"

)

TERGM_1<-tergm(net_list~Form(
~edges+

mutual+
gwesp(.5,fixed=TRUE)+
gwidegree(.5,fixed=TRUE)+
nodeicov("smoking")+
nodeocov("smoking")+
nodematch("smoking")+
nodeicov("alcohol")+
nodeocov("alcohol")+
absdiff("alcohol")),

estimate="CMLE"

)

#create network autocorrelation function for TERGM
Moran_tergm<-function(x){

y<-network::get.vertex.attribute(x,"smoking")
return(nacf(x,y,type="moran",lag=1)[2])

}

#test difference in TERGM and SAOM direct, total, and indirect
#MEMS estimates

mediate_MEMS(partial_model=TLSmodel_notrans,
full_model=TLSmodel,
micro_process="same Behavior",
macro_function =Moran_dv,
model_comparison = TRUE,
partial_model2=TERGM_1_nogwesp,
full_model2=TERGM_1,
micro_process2="Form(1)~nodematch.smoking",
macro_function2=Moran_tergm,

MEMS 39

object_type = "network",
SAOM_data = SAOM.Data,
silent=FALSE,
nsim=100)

End(Not run)

MEMS Function to estimate the micro effect on macro structure (MEMS).

Description

MEMS implements parametric and nonparametric estimation routines to estimate the micro effect on
macro structure when using a generative network model (i.e., a model where the dyad, dyad-time
period, or dyad-group is the unit of analysis). The MEMS is defined in postestimation as a function
of the possibly endogenous micro process X , which is assumed to be a predictor in the micro model
of the form A = f(θX + γTZ), where Z is a matrix of possibly endogenous controls and A is the
network of interest. The MEMS is given by

MEMS =
∑
i

M(θ,X, γ, Z)i −M(γ, Z)i
n

, for n observations. Tuning parameters can be assigned to toggle the strength of θ in model-implied
estimates of MEMS. MEMS currently accepts glm, glmer, ergm, btergm, sienaFit, rem.dyad, and
netlogit objects and implements both parametric and nonparametric estimation. Pooled estima-
tion for multiple network models is also implemented for ergm and sienaFit objects.

Usage

MEMS(model,
micro_process,
macro_function,
object_type=NULL,
interval=c(0,1),
nsim=500,
algorithm="parametric",
silent=FALSE,
full_output=FALSE,
SAOM_data=NULL,
SAOM_var=NULL,
time_interval=NULL,
covar_list=NULL,
edgelist=NULL,

40 MEMS

net_logit_y=NULL,
net_logit_x=NULL,
group_id=NULL,
node_numbers=NULL,
mediator=NULL,
link_id=NULL,
controls=NULL,
control_functions=NULL,
sensitivity_ev=TRUE)

Arguments

model the micro-model to be analyzed. Currently accepts glm, glmer, ergm, btergm,
sienaFit, rem.dyad, and netlogit objects. Pooled estimation for multiple
network models is also implemented for ergm and sienaFit objects. To imple-
ment pooled estimation, model should be provided as a list of ergm or sienaFit
objects.

micro_process a character string containing the name of the micro process of interest. The
character string should exactly match coefficient names in model output.

macro_function a function that calculates the macro statistic of interest. Currently accepts
user defined functions as well as functions inherent in the igraph and statnet
packages for R.

object_type A character string that tells netmediate the type of object to apply the macro_function
to. Currently accepts igraph and network objects. If left NULL, network objects
are assumed. Can be over-ridden to use other object types with a user-function
by defining a function that accepts either a network or igraph object and returns
a numeric value or vector of numeric values (see examples).

interval The value of tuning parameters to assign to θ. Should be provided as a vector of
numeric values with 2 entries.

nsim The number of simulations or bootstrap samples to use during estimation.

algorithm The estimation algorithm to be used. Currently accepts "parametric" and
"nonparametric". If "parametric", estimation is obtained with Monte Carlo
sampling. If "nonparametric", estimation uses bootstrap resampling.

silent logical parameter. Whether to provide updates on the progress of the simulation
or not.

full_output logical parameter. If set to TRUE, the entire distribution of simulated statistics
will be provided as part of the model output.

SAOM_data required when the model is a sienaFit object; ignored otherwise. If a sienaFit
object is provided, SAOM_data should be the siena object that contains the data
for SAOM estimation. If using pooled estimation on multiple sienaFit objects
(i.e., providing a list of sienaFit objects), then SAOM_data should be provided
as an ordered list with each entry containing the siena object corresponding to
list of sienaFit objects.

SAOM_var optional parameter when the model is a sienaFit object. SAOM_var is a list of
of the varCovar and varDyadCovar objects used to assign time varying node
and dyad covariates when calling sienaDataCreate. If provided, netmediate

MEMS 41

assigns the varying node covariates and dyad covariates to each simulated net-
work. This parameter is required when macro_function computes a statistic
that varies as a function of time varying node or dyad covariates (i.e., net-
work segregation, assorativity). Time invariant characteristics (coCovar and
coDyadCovar) are handled internally by MEMS and should not be provided. When
providing a list of sienaFit objects for pooled estimation, SAOM_var should be
provided as a list of lists, where each entry in the list contains a list of varCovar
and varDyadCovar objects associated with corresponding sienaFit object.

time_interval an optional parameter to be used with rem.dyad objects. May be provided as
a numeric vector or the character string "aggregate". If a numeric vector is pro-
vided unique network snapshots at each interval. For example, time_interval=c(0,2,3)
would induce two networks, one for the 0 - 2 time period and one for the 2 - 3
time period. If specified as "aggregate", the MEMS is calculated by creating
an aggregated cross-sectional representation of the entire event sequence. If left
NULL, defaults to |"aggregate".

covar_list an optional list of sender/receiver covariates used in rem.dyad estimation. Only
required for rem.dyad objects when covariates are included. The list format
should correspond to the format required by rem.dyad

.

edgelist an optional three column edgelist providing the sender, receiver, and time of
event occurrence when using rem.rem.dyad. Only required when time_interval
is set to NULL or "aggregate". Ignored for other types of models.

net_logit_y the dependent variable for netlogit objects. Should be provided as a vector.
Only required when model is a netlogit object.

net_logit_x the matrix of independent variables for netlogit type objects. Only required
when model is a netlogit object.

group_id optional vector of group identifiers to use when estimating a glm or glmer on
grouped data (i.e., multiple time periods, multiple networks). When specified,
MEMS will induce unique networks for each grouping factor. If left unspecified,
all groups/time periods are pooled. If using glmer, the grouping factor does not
have to be provided as part of the model or used as a random effect.

node_numbers a numeric vector containing the number of nodes in each group_id when us-
ing glm or glmer. If estimating MEMS aggregated over all networks (i.e.,
group_id=NULL), this shoud be the total number of nodes in all networks. Re-
quired when using glm or glmer, ignored otherwise.

mediator a character string detailing the mediator of interest. Intended for internal use
with the AMME function; not intended for end users.

link_id a vector or list of vectors corresponding to unique identifiers. Intended for inter-
nal use with the AMME function; not intended for end users.

controls a vector of character strings listing the controls to be calculated when using
AMME. Intended for internal use with the AMME function; not intended for end
users.

control_functions

a list of functions to calculate the macro control variables provided in controls.
Intended for internal use with the AMME function; not intended for end users.

42 MEMS

sensitivity_ev an optional parameter telling MEMS whether to return sensitivity tests baased on
the E-value and risk ratios, as described by Duxbury and Zhao (2025). Defaults
to TRUE

Details

Estimates the MEMS over the provided intervals. If the macro statistic is calculated on the node
or subgraph levels or on multiple network observations, the aMEMS is provided instead. Standard
errors and confidence intervals are based on the sampling distribution of simulated values, which
are calculated either parametrically or nonparametrically according to algorithm. Parametric es-
timation is typically faster, but cannot be used for nonparametric network models (e.g., quadratic
assignment procedure).

macro_function is the workhorse component of MEMS. The function should calculate the macro
statistic of interest. netmediate currently supports functions calculated on igraph and network
objects, which should be specified as using the object_type argument. These may be functions
inherent to the statnet and igraph software package or they may be functions from other packages
that accept network/igraph objects. They may also be user-defined functions that accept network
or igraph objects as input and return a numeric value or vector of numeric values as output. It is
also possible to over-ride the network and igraph object requirements within a user function. To
do so, set the object_type argument to either network or igraph and then define a user-function
that accepts a network or igraph object as its input, converts the object to the desired data structure,
calculates the statistic of interest, and finally returns a numeric value or vector of numeric values.
See examples below for an illustration.

By default, the MEMS is provided by averaging over the distribution of simulated values. If
full_output is set to TRUE, the entire distribution of simualted statistics is returned. This may be
useful when the median or mode of the simulated distribution is required or if the researcher wants
to inspect the distributional shape of simulated values. When the sensitivity_ev argumetn is left
at TRUE (the default), MEMS will return an E-value and a risk ratio assessing how robust the MEMS
estimate is to a hypothetical omitted confounding variable. A higher value for either metric means
that an omitted variable would have to a large effect on the macro outcome to nullify the effect of
the parameterized micro process. See Duxbury and Zhou (2025) for details on interpretation.

MEMS also supports pooled estimation for multiple ergm or sienaFit objects. To use pooled es-
timation, the model parameter should be specified as a list of ergm or sienaFit objects. If us-
ing sienaFit, the SAOM_data argument will also need to be specified as an ordered list with ele-
ments corresponding to entries in the list of sienaFit objects. Similarly, the SAOM_var parameter
will need to be specified as a list of lists, where each entry in the list is, itself, a list containing
all varCovar and varDyadCovar objects used to calculate macro statistics of interest. Note that
SAOM_var should not be provided if the macro statistic of interest is not a function of the variables
contained in varCovar and varDyadCovar.

When estimating a relational event model with a rem.dyad object, time_interval can be specified
to provide exact time intervals over which to induce unique networks. This utility is often useful
when combining rem.dyad estimation with AMME when the macro_model is panel data with coarse
timing information. The same behavior can be obtained when estimating a relational event model
using glm or glmer by assigning the desired time intervals in the model matrix and then providing
the vector of time intervals to the group_id parameter when calling MEMS.

MEMS 43

Value

If full_output=FALSE, then a table is returned with the MEMS, its standard error, confidence
interval, and p-value.

If full_output=TRUE, then a list is returned with the following three elements.

summary_dat is the table of summary output containing the MEMS, its standard error, confi-
dence interval, and p-value.

output_data is a matrix where each row is a simulated draw of the MEMS (or a simulation
draw for a specific network in the case of temporal data or pooled estimation)
and each column corresponds to a unique value provided in the interval argu-
ment.

mems_samples is vector matrix corresponding where each row is a simulated draw of the MEM
(or a simulation draw for a specific network in the case of temporal data or
pooled estimation) and each column represents the differences in MEMS/aMEMS
when subtracting the value of a macro statistic at one interval level from the next
highest interval level.

Author(s)

Duxbury, Scott W. Associate Professor, University of North Carolina–Chapel Hill, Department of
Sociology.

Zhao, Xin (Louis). PhD Candidate, University of North Carolina–Chapel Hill, Department of So-
ciology

References

Duxbury, Scott W. 2024. "Micro Effects on Macro Structure in Social Networks." Sociological
Methodology.

Wertsching, Jenna, and Scott W. Duxbury. Working paper. "Micro Effects on Macro Structure:
Identification, Comparison between Nested Models, and Sensitivity Tests for Functional Form."

Duxbury, Scott W., and Xin Zhao. Working paper. "Sensitivity Tests for Micro-Macro Network
Analysis."

See Also

AMME ergm.mma mediate

Examples

Not run:
##
ERGM examples and basic utilities
#######################################

####start with a simple model
library(statnet)

44 MEMS

data("faux.mesa.high")

model1<-ergm(faux.mesa.high~edges+
nodecov("Grade")+
nodefactor("Race")+
nodefactor("Sex")+
nodematch("Race")+
nodematch("Sex")+
absdiff("Grade"))

##calculate the MEMS when the absolute difference in grade is changed from an interval of 0 to 1
#with default specifications for gtrans

MEMS(model1,
micro_process="absdiff.Grade",
macro_function = gtrans,
object_type = "network",
nsim=100,
interval=c(0,1),
silent=FALSE,
algorithm = "parametric")

#call an argument from gtrans by specifying it as a function
#use nonparametric estimation

MEMS(model1,
micro_process="absdiff.Grade",
macro_function = function(x){gtrans(x,measure="strongcensus")},
object_type = "network",
nsim=100,
interval=c(0,1),
silent=FALSE,
algorithm = "nonparametric")

####calculate the MEMS using igraph
MEMS(model1,

micro_process="absdiff.Grade",
macro_function = function(x){igraph::transitivity(x,type="local")},
object_type = "igraph",
nsim=100,
interval=c(0,1),
silent=FALSE,
algorithm = "parametric")

##specify a user function that counts the number of communities
community_counts<-function(x){

walktrap<-igraph::walktrap.community(x) #use walktrap community detection

MEMS 45

return(length(unique(walktrap$membership))) #return the number of communities
}

MEMS(model1,
micro_process="absdiff.Grade",
macro_function = community_counts,
object_type = "igraph",
nsim=100,
interval=c(0,1),
silent=FALSE,
algorithm = "parametric")

##calculate a function using exogenous node attributes
assortativity_grade<-function(x){

require(igraph)
return(assortativity_nominal(x,V(x)$Grade))

}

MEMS(model1,
micro_process="absdiff.Grade",
macro_function = assortativity_grade,
object_type = "igraph",
nsim=100,
interval=c(0,1),
silent=FALSE,
algorithm = "parametric")

##specify a user function that does not depend on either igraph or statnet
#assuming a network input object, we have

manual_user_function<-function(x){
x<-as.sociomatrix(x)
return(colSums(x))

}

MEMS(model1,
micro_process="absdiff.Grade",
macro_function = manual_user_function,
object_type = "network",
nsim=100,
interval=c(0,1),
silent=FALSE,
algorithm = "parametric")

####estimation for POOLED ERGM
data("faux.magnolia.high")

46 MEMS

model2<-ergm(faux.magnolia.high~edges+
nodecov("Grade")+
nodefactor("Race")+
nodefactor("Sex")+
nodematch("Race")+
nodematch("Sex")+
absdiff("Grade"))

MEMS(list(model1,model2),
micro_process="absdiff.Grade",
macro_function = assortativity_grade,
object_type = "igraph",
nsim=50,
interval=c(0,1),
silent=FALSE,
algorithm = "parametric")

#################################
Estimation with GLM and GLMER
#################################
library(btergm)

#use models 1 and 2 from examples above
glm_dat<-edgeprob(model1)
glm_dat2<-edgeprob(model2)
glm_dat2<-glm_dat2[,-c(4)]

##create stacked dataset for the purposes of grouped estimation
glm_dat$net_id<-"mesa" #specify ID for each network
glm_dat2$net_id<-"magnolia"
glm_dat<-rbind(glm_dat,glm_dat2)

##estimate as a linear probability model
net_glm<-glm(tie~nodecov.Grade+

nodefactor.Race.Hisp+
nodefactor.Race.NatAm+
nodefactor.Race.Other+
nodefactor.Sex.M+
nodematch.Race+
nodematch.Sex+
absdiff.Grade,

data=glm_dat)

MEMS(net_glm,

MEMS 47

micro_process="nodematch.Race", #should be written as in netlogit output
macro_function = function(x){gtrans(x)},
object_type = "network",
nsim=100,
interval=c(0,.5),
silent=FALSE,
full_output = FALSE,
algorithm = "parametric",
group_id=glm_dat$net_id, #provide network ID for estimation

node_numbers =c(network.size(faux.mesa.high), #provide the number of nodes in each network
network.size(faux.magnolia.high)))

##estimate as a multilevel model
library(lme4)
net_glmer<-glmer(tie~nodecov.Grade+

nodefactor.Race.Hisp+
nodefactor.Race.NatAm+
nodefactor.Race.Other+
nodefactor.Sex.M+
nodematch.Race+
nodematch.Sex+
absdiff.Grade+

(1|net_id),
data=glm_dat,
family=gaussian)

MEMS(net_glmer,
micro_process="nodematch.Race", #should be written as in netlogit output
macro_function = function(x){gtrans(x)},
object_type = "network",
nsim=50,
interval=c(0,.5),
silent=FALSE,
full_output = FALSE,
algorithm = "parametric",
group_id=glm_dat$net_id,
node_numbers =c(203,974))

##
##nonparametric estimation for bootstrap TERGM
##

library(btergm)
data(alliances)
ally_data<-list(LSP[[1]],

LSP[[2]],
LSP[[3]])

48 MEMS

bt_model<-btergm(ally_data~edges+
gwesp(.7,fixed=T)+
mutual,R=200)

MEMS(bt_model,
micro_process="gwesp.OTP.fixed.0.7",
macro_function = gtrans,
object_type = "network",
nsim=50,
interval=c(0,1),
silent=FALSE,
algorithm = "nonparametric")

################################
Parametric estimation using SAOM
##################################
library(RSiena)
#specify 3 wave network panel data as DV
network_list<-array(c(s501,s502,s503),dim = c(50,50,3))

Network<-sienaDependent(network_list)
Smoking<-varCovar(s50s)
Alcohol<-varCovar(s50a)
SAOM.Data<-sienaDataCreate(Network=Network,Smoking,Alcohol)

#specify
SAOM.terms<-getEffects(SAOM.Data)
SAOM.terms<-includeEffects(SAOM.terms,egoX,altX,sameX,interaction1="Alcohol")
SAOM.terms<-includeEffects(SAOM.terms,egoX,altX,sameX,interaction1="Smoking")
SAOM.terms<-includeEffects(SAOM.terms,transTies,inPop)

create.model<-sienaAlgorithmCreate(projname="netmediate",
nsub=5,
n3=2000)

##estimate the model using siena07
SAOM_model<-siena07(create.model,

data=SAOM.Data,
effects=SAOM.terms,
verbose=TRUE)

SAOM_model

MEMS 49

##basic specification for reciprocity effects on outdegree distribution
MEMS(SAOM_model,

micro_process="reciprocity", #should be written as in SIENA output
macro_function = function(x){igraph::degree(x,mode="out")},
object_type = "igraph",
interval=c(0,.5),
SAOM_data=SAOM.Data,
silent=FALSE,
algorithm = "parametric")

##include user functions on time varying covariates
assortativity_smoking<-function(x){

return(assortativity_nominal(x,V(x)$Smoking))
}

MEMS(SAOM_model,
micro_process="reciprocity",
macro_function = assortativity_smoking,
object_type = "igraph",
interval=c(0,.5),
SAOM_data=SAOM.Data,

SAOM_var=list(Smoking=Smoking,Alcohol=Alcohol), #Smoking and Alcohol are varCovar objects
silent=FALSE,
full_output = FALSE,
algorithm = "parametric")

###Pooled SAOM
MEMS(list(SAOM_model,SAOM_model),

micro_process="reciprocity",
macro_function = gtrans,
object_type = "network",
interval=c(0,.5),
SAOM_data=list(SAOM.Data,SAOM.Data),
silent=FALSE,
full_output = FALSE,
nsim=100,
algorithm = "parametric")

#Pooled SAOM with user functions and time varying attributes
assortativity_smoking<-function(x){

return(assortativity_nominal(x,V(x)$Smoking))
}

50 MEMS

MEMS(list(SAOM_model,SAOM_model),
micro_process="reciprocity",
macro_function = assortativity_smoking,
object_type = "igraph",
interval=c(0,.5),
SAOM_data=list(SAOM.Data,SAOM.Data),
SAOM_var=list(list(Smoking=Smoking,Alcohol=Alcohol),

list(Smoking=Smoking,Alcohol=Alcohol)),
silent=FALSE,
full_output = FALSE,
nsim=100,
algorithm = "parametric")

##
Selection and Influence in SAOM when analyzing
co-evolution of networks and behavior
##

##Example Moran decomposition
library(RSiena)

###run the model--taken from RSiena scripts

prepare first two waves of s50 data for RSiena analysis:
(thedata <- sienaDataCreate(

friendship = sienaDependent(array(
c(s501,s502),dim=c(50,50,2))),

drinking = sienaDependent(s50a[,1:2])
))

specify a model with (generalised) selection and influence:
themodel <- getEffects(thedata)
themodel <- includeEffects(themodel,name='friendship',gwespFF)
themodel <- includeEffects(themodel,name='friendship',simX,interaction1='drinking')
themodel <- includeEffects(themodel,name='drinking',avSim,interaction1='friendship')
themodel

estimate this model:
estimation.options <- sienaAlgorithmCreate(projname='results',cond=FALSE,seed=1234567)
(theresults <- siena07(estimation.options,data=thedata,effects=themodel))

MEMS 51

##calculate MEMS for selection effect
#Uses Moran_dv--a function internally called by netmediate
#to calculate change in amount of network autocorrelation
#as a function of both endogenous behavior and network dependent
#variables

MEMS(theresults,
micro_process="drinking similarity",
macro_function =Moran_dv,
object_type = "network",
SAOM_data = thedata,
silent=FALSE,
nsim=50)

#just influence
MEMS(theresults,

micro_process="drinking average similarity",
macro_function =Moran_dv,
object_type = "network",
SAOM_data = thedata,
silent=FALSE,
nsim=50)

##joint effect of selection and influence
MEMS(theresults,

micro_process=c("drinking similarity","drinking average similarity"),
macro_function =Moran_dv,
object_type = "network",
SAOM_data = thedata,
silent=FALSE,
nsim=500)

#######################################
Relational event models using relevent
#######################################
set.seed(21093)
library(relevent)
##generate a network with 15 discrete time periods

#example based on relevent rem.dyad example
library(relevent)
roweff<-rnorm(10) #Build rate matrix
roweff<-roweff-roweff[1] #Adjust for later convenience
coleff<-rnorm(10)
coleff<-coleff-coleff[1]
lambda<-exp(outer(roweff,coleff,"+"))

52 MEMS

diag(lambda)<-0
ratesum<-sum(lambda)
esnd<-as.vector(row(lambda)) #List of senders/receivers
erec<-as.vector(col(lambda))
time<-0
edgelist<-vector()
while(time<15){ # Observe the system for 15 time units

drawsr<-sample(1:100,1,prob=as.vector(lambda)) #Draw from model
time<-time+rexp(1,ratesum)
if(time<=15) #Censor at 15
edgelist<-rbind(edgelist,c(time,esnd[drawsr],erec[drawsr]))

else
edgelist<-rbind(edgelist,c(15,NA,NA))

}
effects<-c("CovSnd","FERec")

##estimate model
fit.time<-rem.dyad(edgelist,10,effects=effects,

covar=list(CovSnd=roweff),
ordinal=FALSE,hessian=TRUE)

###aggregate estimation
MEMS(fit.time,

micro_process="CovSnd.1", #should be written as in relevent output
macro_function = function(x){sna::degree(x)},
object_type = "network",
nsim=10,
interval=c(0,.5),
silent=FALSE,
covar_list=list(CovSnd=roweff), #covariate effects
time_interval="aggregate", ##aggregated estimation
edgelist=edgelist,
algorithm = "parametric")

##time interval estimation
##estimation with time intervals
MEMS(fit.time,

micro_process="CovSnd.1",
macro_function = function(x){igraph::degree(x)},
object_type = "igraph",
nsim=10,
interval=c(0,.1),
silent=TRUE,
covar_list=list(CovSnd=roweff),
time_interval=c(0,5,10,15), #specify three time intervals, 0 - 5, 5 - 10, and 10 - 15
algorithm = "parametric")

Moran_dv 53

##
Network regression with quadratic assignment procedure
##
library(sna)
##generate network data
set.seed(21093)
x<-rgraph(20,4)
y.l<-x[1,,]+4*x[2,,]+2*x[3,,]
y.p<-apply(y.l,c(1,2),function(a){1/(1+exp(-a))})
y<-rgraph(20,tprob=y.p)

nl<-netlogit(y,x,reps=100)
summary(nl)

MEMS(nl,
micro_process="x2", #should be written as in netlogit output
macro_function = function(x){degree(x)},
object_type = "igraph",
nsim=20,
interval=c(0,1),
silent=FALSE,
full_output = FALSE,
net_logit_y=y,
net_logit_x=x,
algorithm = "nonparametric")

End(Not run)

Moran_dv Function to calculate Moran’s first order network autocorrelation in
co-evolution SAOM.

54 Moran_dv

Description

A function to calculate Moran’s first order network autocorrelation in co-evolution SAOM using
both the endogenous dependent variables (behavior and network functions).

Usage

Moran_dv(network)

Arguments

network a network object used to calculate autocorrelation.

Value

No return value, used internally with MEMS and AMME

Index

∗ ~macro
AMME, 2
compare_MEMS, 20
mediate_MEMS, 29
MEMS, 39

∗ ~mediation
AMME, 2
compare_MEMS, 20
mediate_MEMS, 29
MEMS, 39

∗ ~micro
AMME, 2
compare_MEMS, 20
mediate_MEMS, 29
MEMS, 39

∗ ~networks
AMME, 2
compare_MEMS, 20
mediate_MEMS, 29
MEMS, 39

AMME, 2, 23, 24, 32, 34, 41–43

coCovar, 4, 22, 31, 41
coDyadCovar, 4, 22, 31, 41
compare_MEMS, 20, 34

ergm, 6, 42
ergm.mma, 7, 24, 34, 43

gam, 3
glmer, 3, 5, 23, 32, 41, 42

identity_function, 28
igraph, 3–6, 21, 22, 30, 31, 40, 42

lmer, 3
lnam, 3

mediate, 7, 24, 34, 43
mediate_MEMS, 24, 29

MEMS, 7, 24, 34, 39
Moran_dv, 53

netlogit, 5, 23, 32, 41
network, 4–6, 22, 31, 40, 42

plm, 3

rem.dyad, 4, 5, 22, 23, 32, 41, 42

siena, 4, 22, 31, 40
sienaDataCreate, 4, 22, 31, 40
sienaFit, 4, 6, 22, 31, 40–42
statnet, 5, 42

varCovar, 4, 6, 22, 31, 40–42
varDyadCovar, 4, 6, 22, 31, 40–42

55

	AMME
	compare_MEMS
	identity_function
	mediate_MEMS
	MEMS
	Moran_dv
	Index

