
Package ‘omopgenerics’
January 28, 2026

Title Methods and Classes for the OMOP Common Data Model

Version 1.3.6

Description Provides definitions of core classes and methods used by analytic
pipelines that query the OMOP (Observational Medical Outcomes Partnership)
common data model.

License Apache License (>= 2)

Encoding UTF-8

RoxygenNote 7.3.3

Imports cli, dbplyr (>= 2.5.1), dplyr, generics, glue, lifecycle,
methods, purrr, rlang, snakecase, stringi, stringr, tidyr,
vctrs

Depends R (>= 4.1)

Suggests bit64, CDMConnector, covr, duckdb, gt, here, jsonlite, knitr,
omock, readr, rmarkdown, testthat (>= 3.0.0), withr

URL https://darwin-eu.github.io/omopgenerics/

BugReports https://github.com/darwin-eu/omopgenerics/issues

Config/testthat/edition 3

Config/testthat/parallel true

VignetteBuilder knitr

NeedsCompilation no

Author Martí Català [aut, cre] (ORCID:
<https://orcid.org/0000-0003-3308-9905>),

Edward Burn [aut] (ORCID: <https://orcid.org/0000-0002-9286-1128>),
Mike Du [ctb] (ORCID: <https://orcid.org/0000-0002-9517-8834>),
Yuchen Guo [ctb] (ORCID: <https://orcid.org/0000-0002-0847-4855>),
Adam Black [ctb] (ORCID: <https://orcid.org/0000-0001-5576-8701>),
Marta Alcalde-Herraiz [ctb] (ORCID:

<https://orcid.org/0009-0002-4405-1814>)

Maintainer Martí Català <marti.catalasabate@ndorms.ox.ac.uk>

Repository CRAN

Date/Publication 2026-01-28 17:30:02 UTC

1

https://darwin-eu.github.io/omopgenerics/
https://github.com/darwin-eu/omopgenerics/issues
https://orcid.org/0000-0003-3308-9905
https://orcid.org/0000-0002-9286-1128
https://orcid.org/0000-0002-9517-8834
https://orcid.org/0000-0002-0847-4855
https://orcid.org/0000-0001-5576-8701
https://orcid.org/0009-0002-4405-1814

2 Contents

Contents
achillesColumns . 5
achillesTables . 6
additionalColumns . 6
addSettings . 7
assertCharacter . 8
assertChoice . 9
assertClass . 10
assertDate . 10
assertList . 11
assertLogical . 12
assertNumeric . 13
assertTable . 14
assertTrue . 15
attrition . 15
attrition.cohort_table . 16
bind . 17
bind.cohort_table . 17
bind.summarised_result . 18
cdmClasses . 19
cdmDisconnect . 20
cdmFromTables . 21
cdmName . 22
cdmReference . 23
cdmSelect . 24
cdmSource . 24
cdmSourceType . 25
cdmTableFromSource . 26
cdmVersion . 27
checkCohortRequirements . 28
cohortCodelist . 29
cohortColumns . 30
cohortCount . 31
cohortTables . 32
collect.cdm_reference . 32
collect.cohort_table . 33
combineStrata . 34
compute.cdm_table . 34
createIndexes . 35
createLogFile . 36
createTableIndex . 36
dropSourceTable . 37
dropTable . 37
emptyAchillesTable . 38
emptyCdmReference . 38
emptyCodelist . 39
emptyCodelistWithDetails . 39

Contents 3

emptyCohortTable . 40
emptyConceptSetExpression . 41
emptyOmopTable . 41
emptySummarisedResult . 42
estimateTypeChoices . 43
existingIndexes . 43
expectedIndexes . 44
exportCodelist . 44
exportConceptSetExpression . 45
exportSummarisedResult . 45
filterAdditional . 46
filterGroup . 47
filterSettings . 48
filterStrata . 49
getCohortId . 50
getCohortName . 51
getPersonIdentifier . 51
groupColumns . 52
importCodelist . 53
importConceptSetExpression . 53
importSummarisedResult . 54
insertCdmTo . 54
insertFromSource . 55
insertTable . 55
isResultSuppressed . 56
isTableEmpty . 57
listSourceTables . 57
logMessage . 58
newAchillesTable . 59
newCdmReference . 59
newCdmSource . 60
newCdmTable . 61
newCodelist . 61
newCodelistWithDetails . 62
newCohortTable . 62
newConceptSetExpression . 63
newLocalSource . 64
newOmopTable . 65
newSummarisedResult . 65
numberRecords . 66
numberSubjects . 67
omopColumns . 68
omopDataFolder . 69
omopTableFields . 70
omopTables . 70
pivotEstimates . 71
print.cdm_reference . 72
print.codelist . 73

4 Contents

print.codelist_with_details . 73
print.concept_set_expression . 74
readSourceTable . 75
recordCohortAttrition . 75
resultColumns . 76
resultPackageVersion . 77
settings . 78
settings.cohort_table . 78
settings.summarised_result . 79
settingsColumns . 80
sourceType . 81
splitAdditional . 82
splitAll . 83
splitGroup . 84
splitStrata . 85
statusIndexes . 86
strataColumns . 87
summariseLogFile . 88
summary.cdm_reference . 89
summary.cdm_source . 90
summary.cohort_table . 90
summary.summarised_result . 91
suppress . 92
suppress.summarised_result . 93
tableName . 94
tableSource . 95
tidy.summarised_result . 96
tidyColumns . 97
tmpPrefix . 98
toSnakeCase . 98
transformToSummarisedResult . 99
uniqueId . 100
uniqueTableName . 100
uniteAdditional . 101
uniteGroup . 102
uniteStrata . 102
validateAchillesTable . 103
validateAgeGroupArgument . 104
validateCdmArgument . 105
validateCdmTable . 106
validateCohortArgument . 106
validateCohortIdArgument . 108
validateColumn . 109
validateConceptSetArgument . 110
validateNameArgument . 111
validateNameLevel . 112
validateNameStyle . 112
validateNewColumn . 113

achillesColumns 5

validateOmopTable . 114
validateResultArgument . 115
validateStrataArgument . 116
validateWindowArgument . 117
[[.cdm_reference . 117
[[<-.cdm_reference . 118
$.cdm_reference . 119
$<-.cdm_reference . 120

Index 121

achillesColumns Required columns for each of the achilles result tables

Description

Required columns for each of the achilles result tables

Usage

achillesColumns(table, version = "5.3", onlyRequired = lifecycle::deprecated())

Arguments

table Table for which to see the required columns. One of "achilles_analysis", "achilles_results",
or "achilles_results_dist".

version Version of the OMOP Common Data Model.

onlyRequired deprecated.

Value

Character vector with the column names

Examples

library(omopgenerics)
achillesColumns("achilles_analysis")
achillesColumns("achilles_results")
achillesColumns("achilles_results_dist")

6 additionalColumns

achillesTables Names of the tables that contain the results of achilles analyses

Description

Names of the tables that contain the results of achilles analyses

Usage

achillesTables(version = "5.3")

Arguments

version Version of the OMOP Common Data Model.

Value

Names of the tables that are contain the results from the achilles analyses

Examples

library(omopgenerics)
achillesTables()

additionalColumns Identify variables in additional_name column

Description

Identifies and returns the unique values in additional_name column.

Usage

additionalColumns(result)

Arguments

result A tibble.

Value

Unique values of the additional name column.

addSettings 7

Examples

{
library(dplyr)
library(omopgenerics)

x <- tibble(
"result_id" = as.integer(c(1, 2)),
"cdm_name" = c("cprd", "eunomia"),
"group_name" = "cohort_name",
"group_level" = "my_cohort",
"strata_name" = "sex",
"strata_level" = "male",
"variable_name" = "Age group",
"variable_level" = "10 to 50",
"estimate_name" = "count",
"estimate_type" = "numeric",
"estimate_value" = "5",
"additional_name" = "overall",
"additional_level" = "overall"

) |>
newSummarisedResult(settings = tibble(

"result_id" = c(1, 2), "custom" = c("A", "B")
))

x

x |> additionalColumns()
}

addSettings Add settings columns to a <summarised_result> object

Description

Add settings columns to a <summarised_result> object

Usage

addSettings(result, settingsColumn = settingsColumns(result))

Arguments

result A <summarised_result> object.
settingsColumn Settings to be added as columns, by default settingsColumns(result) will be

added. If NULL or empty character vector, no settings will be added.

Value

A <summarised_result> object with the added setting columns.

8 assertCharacter

Examples

{
library(dplyr)
library(omopgenerics)

x <- tibble(
"result_id" = as.integer(c(1, 2)),
"cdm_name" = c("cprd", "eunomia"),
"group_name" = "cohort_name",
"group_level" = "my_cohort",
"strata_name" = "sex",
"strata_level" = "male",
"variable_name" = "Age group",
"variable_level" = "10 to 50",
"estimate_name" = "count",
"estimate_type" = "numeric",
"estimate_value" = "5",
"additional_name" = "overall",
"additional_level" = "overall"

) |>
newSummarisedResult(settings = tibble(

"result_id" = c(1, 2), "custom" = c("A", "B")
))

x

x |> addSettings()
}

assertCharacter Assert that an object is a character and fulfill certain conditions.

Description

Assert that an object is a character and fulfill certain conditions.

Usage

assertCharacter(
x,
length = NULL,
na = FALSE,
null = FALSE,
unique = FALSE,
named = FALSE,
minNumCharacter = 0,
call = parent.frame(),
msg = NULL

)

assertChoice 9

Arguments

x Variable to check.
length Required length. If NULL length is not checked.
na Whether it can contain NA values.
null Whether it can be NULL.
unique Whether it has to contain unique elements.
named Whether it has to be named.
minNumCharacter

Minimum number of characters that all elements must have.
call Call argument that will be passed to cli error message.
msg Custom error message.

assertChoice Assert that an object is within a certain oprtions.

Description

Assert that an object is within a certain oprtions.

Usage

assertChoice(
x,
choices,
length = NULL,
na = FALSE,
null = FALSE,
unique = FALSE,
named = FALSE,
call = parent.frame(),
msg = NULL

)

Arguments

x Variable to check.
choices Options that x is allowed to be.
length Required length. If NULL length is not checked.
na Whether it can contain NA values.
null Whether it can be NULL.
unique Whether it has to contain unique elements.
named Whether it has to be named.
call Call argument that will be passed to cli error message.
msg Custom error message.

10 assertDate

assertClass Assert that an object has a certain class.

Description

Assert that an object has a certain class.

Usage

assertClass(
x,
class,
length = NULL,
null = FALSE,
all = FALSE,
extra = TRUE,
call = parent.frame(),
msg = NULL

)

Arguments

x To check.

class Expected class or classes.

length Required length. If NULL length is not checked.

null Whether it can be NULL.

all Whether it should have all the classes or only at least one of them.

extra Whether the object can have extra classes.

call Call argument that will be passed to cli.

msg Custom error message.

assertDate Assert Date

Description

Assert Date

assertList 11

Usage

assertDate(
x,
length = NULL,
na = FALSE,
null = FALSE,
unique = FALSE,
named = FALSE,
call = parent.frame(),
msg = NULL

)

Arguments

x Expression to check.
length Required length.
na Whether it can contain NA values.
null Whether it can be NULL.
unique Whether it has to contain unique elements.
named Whether it has to be named.
call Call argument that will be passed to cli error message.
msg Custom error message.

Value

x

assertList Assert that an object is a list.

Description

Assert that an object is a list.

Usage

assertList(
x,
length = NULL,
na = FALSE,
null = FALSE,
unique = FALSE,
named = FALSE,
class = NULL,
call = parent.frame(),
msg = NULL

)

12 assertLogical

Arguments

x Variable to check.

length Required length. If NULL length is not checked.

na Whether it can contain NA values.

null Whether it can be NULL.

unique Whether it has to contain unique elements.

named Whether it has to be named.

class Class that the elements must have.

call Call argument that will be passed to cli error message.

msg Custom error message.

assertLogical Assert that an object is a logical.

Description

Assert that an object is a logical.

Usage

assertLogical(
x,
length = NULL,
na = FALSE,
null = FALSE,
unique = FALSE,
named = FALSE,
call = parent.frame(),
msg = NULL

)

Arguments

x Variable to check.

length Required length. If NULL length is not checked.

na Whether it can contain NA values.

null Whether it can be NULL.

unique Whether it has to contain unique elements.

named Whether it has to be named.

call Call argument that will be passed to cli error message.

msg Custom error message.

assertNumeric 13

assertNumeric Assert that an object is a numeric.

Description

Assert that an object is a numeric.

Usage

assertNumeric(
x,
integerish = FALSE,
min = -Inf,
max = Inf,
length = NULL,
na = FALSE,
null = FALSE,
unique = FALSE,
named = FALSE,
call = parent.frame(),
msg = NULL

)

Arguments

x Variable to check.

integerish Whether it has to be an integer

min Minimum value that the object can be.

max Maximum value that the object can be.

length Required length. If NULL length is not checked.

na Whether it can contain NA values.

null Whether it can be NULL.

unique Whether it has to contain unique elements.

named Whether it has to be named.

call Call argument that will be passed to cli error message.

msg Custom error message.

14 assertTable

assertTable Assert that an object is a table.

Description

Assert that an object is a table.

Usage

assertTable(
x,
class = NULL,
numberColumns = NULL,
numberRows = NULL,
columns = character(),
allowExtraColumns = TRUE,
null = FALSE,
unique = FALSE,
call = parent.frame(),
msg = NULL

)

Arguments

x Variable to check.

class A class that the table must have: "tbl", "data.fram", "tbl_sql", ...

numberColumns Number of columns that it has to contain.

numberRows Number of rows that it has to contain.

columns Name of the columns required.

allowExtraColumns

Whether extra columns are allowed.

null Whether it can be NULL.

unique Whether it has to contain unique rows.

call Call argument that will be passed to cli error message.

msg Custom error message.

assertTrue 15

assertTrue Assert that an expression is TRUE.

Description

Assert that an expression is TRUE.

Usage

assertTrue(x, null = FALSE, call = parent.frame(), msg = NULL)

Arguments

x Expression to check.

null Whether it can be NULL.

call Call argument that will be passed to cli error message.

msg Custom error message.

attrition Get attrition from an object.

Description

Get attrition from an object.

Usage

attrition(x)

Arguments

x An object for which to get an attrition summary.

Value

A table with the attrition.

16 attrition.cohort_table

attrition.cohort_table

Get cohort attrition from a cohort_table object.

Description

Get cohort attrition from a cohort_table object.

Usage

S3 method for class 'cohort_table'
attrition(x)

Arguments

x A cohort_table

Value

A table with the attrition.

Examples

library(omopgenerics)
library(dplyr, warn.conflicts = FALSE)

person <- tibble(
person_id = 1, gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

)
observation_period <- tibble(

observation_period_id = 1, person_id = 1,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
cohort <- tibble(

cohort_definition_id = c(1, 1, 1, 2),
subject_id = 1,
cohort_start_date = as.Date(c("2020-01-01", "2021-01-01", "2022-01-01", "2022-01-01")),
cohort_end_date = as.Date(c("2020-01-01", "2021-01-01", "2022-01-01", "2022-01-01")),

)
cdm <- cdmFromTables(

tables = list("person" = person, "observation_period" = observation_period),
cdmName = "my_example_cdm",
cohortTables = list("cohort1" = cohort)

)

attrition(cdm$cohort1)

bind 17

bind Bind two or more objects of the same class.

Description

Bind two or more objects of the same class.

Usage

bind(...)

Arguments

... Objects to bind.

Value

New object.

bind.cohort_table Bind two or more cohort tables

Description

Bind two or more cohort tables

Usage

S3 method for class 'cohort_table'
bind(..., name)

Arguments

... Generated cohort set objects to bind. At least two must be provided.

name Name of the new generated cohort set.

Value

The cdm object with a new generated cohort set containing all of the cohorts passed.

18 bind.summarised_result

Examples

library(omopgenerics)
library(dplyr, warn.conflicts = FALSE)

cohort1 <- tibble(
cohort_definition_id = 1,
subject_id = 1:3,
cohort_start_date = as.Date("2010-01-01"),
cohort_end_date = as.Date("2010-01-05")

)
cohort2 <- tibble(

cohort_definition_id = c(2, 2, 3, 3, 3),
subject_id = c(1, 2, 3, 1, 2),
cohort_start_date = as.Date("2010-01-01"),
cohort_end_date = as.Date("2010-01-05")

)
cdm <- cdmFromTables(

tables = list(
"person" = tibble(

person_id = c(1, 2, 3), gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

),
"observation_period" = tibble(

observation_period_id = 1:3, person_id = 1:3,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
),
cdmName = "mock",
cohortTables = list("cohort1" = cohort1, "cohort2" = cohort2)

)

cdm <- bind(cdm$cohort1, cdm$cohort2, name = "cohort3")
settings(cdm$cohort3)
cdm$cohort3

bind.summarised_result

Bind two or summarised_result objects

Description

Bind two or summarised_result objects

Usage

S3 method for class 'summarised_result'
bind(...)

cdmClasses 19

Arguments

... summarised_result objects

Value

A summarised_result object the merged objects.

Examples

library(omopgenerics)
library(dplyr, warn.conflicts = FALSE)

cdm <- cdmFromTables(
tables = list(

"person" = tibble(
person_id = c(1, 2, 3), gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

),
"observation_period" = tibble(

observation_period_id = 1:3, person_id = 1:3,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
),
cdmName = "mock",
cohortTables = list("cohort1" = tibble(

cohort_definition_id = 1,
subject_id = 1:3,
cohort_start_date = as.Date("2010-01-01"),
cohort_end_date = as.Date("2010-01-05")

))
)

result1 <- summary(cdm)
result2 <- summary(cdm$cohort1)

mergedResult <- bind(result1, result2)
mergedResult

cdmClasses Separate the cdm tables in classes

Description

Separate the cdm tables in classes

20 cdmDisconnect

Usage

cdmClasses(cdm)

Arguments

cdm A cdm_reference object.

Value

A list of table names, the name of the list indicates the class.

cdmDisconnect Disconnect from a cdm object.

Description

Disconnect from a cdm object.

Usage

cdmDisconnect(cdm, ...)

Arguments

cdm A cdm reference or the source of a cdm reference.

... Used for consistency.

Value

TRUE if process wass successful. library(omopgenerics) library(dplyr, warn.conflicts = FALSE)

person <- tibble(person_id = 1, gender_concept_id = 0, year_of_birth = 1990, race_concept_id
= 0, ethnicity_concept_id = 0) observation_period <- tibble(observation_period_id = 1, per-
son_id = 1, observation_period_start_date = as.Date("2000-01-01"), observation_period_end_date
= as.Date("2023-12-31"), period_type_concept_id = 0) cdm <- cdmFromTables(tables = list("person"
= person, "observation_period" = observation_period), cdmName = "mock")

cdmDisconnect(cdm)

cdmFromTables 21

cdmFromTables Create a cdm object from local tables

Description

Create a cdm object from local tables

Usage

cdmFromTables(tables, cdmName, cohortTables = list(), cdmVersion = NULL)

Arguments

tables List of tables to be part of the cdm object.

cdmName Name of the cdm object.

cohortTables List of tables that contains cohort, cohort_set and cohort_attrition can be pro-
vided as attributes.

cdmVersion Version of the cdm_reference

Value

A cdm_reference object.

Examples

library(omopgenerics)
library(dplyr, warn.conflicts = FALSE)

person <- tibble(
person_id = 1, gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

)
observation_period <- tibble(

observation_period_id = 1, person_id = 1,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
cdm <- cdmFromTables(

tables = list("person" = person, "observation_period" = observation_period),
cdmName = "test"

)

22 cdmName

cdmName Get the name of a cdm_reference associated object

Description

Get the name of a cdm_reference associated object

Usage

cdmName(x)

Arguments

x A cdm_reference or cdm_table object.

Value

Name of the cdm_reference.

Examples

library(omopgenerics)
library(dplyr, warn.conflicts = FALSE)

cdm <- cdmFromTables(
tables = list(

"person" = tibble(
person_id = c(1, 2, 3), gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

),
"observation_period" = tibble(

observation_period_id = 1:3, person_id = 1:3,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
),
cdmName = "mock"

)

cdmName(cdm)

cdmName(cdm$person)

cdmReference 23

cdmReference Get the cdm_reference of a cdm_table.

Description

Get the cdm_reference of a cdm_table.

Usage

cdmReference(table)

Arguments

table A cdm_table.

Value

A cdm_reference.

Examples

library(omopgenerics)
library(dplyr, warn.conflicts = FALSE)

cdm <- cdmFromTables(
tables = list(

"person" = tibble(
person_id = c(1, 2, 3), gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

),
"observation_period" = tibble(

observation_period_id = 1:3, person_id = 1:3,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
),
cdmName = "mock"

)

cdmReference(cdm$person)

24 cdmSource

cdmSelect Restrict the cdm object to a subset of tables.

Description

Restrict the cdm object to a subset of tables.

Usage

cdmSelect(cdm, ...)

Arguments

cdm A cdm_reference object.

... Selection of tables to use, it supports tidyselect expressions.

Value

A cdm_reference with only the specified tables.

Examples

cdm <- emptyCdmReference("my cdm")
cdm

cdm |>
cdmSelect("person")

cdmSource Get the cdmSource of an object.

Description

Get the cdmSource of an object.

Usage

cdmSource(x, cdm = lifecycle::deprecated())

Arguments

x Object to obtain the cdmSource.

cdm Deprecated, use x please.

cdmSourceType 25

Value

A cdm_source object.

Examples

library(omopgenerics)
library(dplyr, warn.conflicts = FALSE)

cdm <- cdmFromTables(
tables = list(
"person" = tibble(

person_id = c(1, 2, 3), gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

),
"observation_period" = tibble(

observation_period_id = 1:3, person_id = 1:3,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
),
cdmName = "mock"

)

cdmSource(cdm)
cdmSource(cdm$person)

cdmSourceType Get the source type of a cdm_reference object.

Description

[Deprecated]

Usage

cdmSourceType(cdm)

Arguments

cdm A cdm_reference object.

Value

A character vector with the type of source of the cdm_reference object.

26 cdmTableFromSource

Examples

library(omopgenerics)
library(dplyr, warn.conflicts = FALSE)

cdm <- cdmFromTables(
tables = list(
"person" = tibble(

person_id = c(1, 2, 3), gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

),
"observation_period" = tibble(

observation_period_id = 1:3, person_id = 1:3,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
),
cdmName = "mock"

)

cdmSourceType(cdm)

cdmTableFromSource This is an internal developer focused function that creates a cdm_table
from a table that shares the source but it is not a cdm_table. Please
use insertTable if you want to insert a table to a cdm_reference object.

Description

This is an internal developer focused function that creates a cdm_table from a table that shares
the source but it is not a cdm_table. Please use insertTable if you want to insert a table to a
cdm_reference object.

Usage

cdmTableFromSource(src, value)

Arguments

src A cdm_source object.

value A table that shares source with the cdm_reference object.

Value

A cdm_table.

cdmVersion 27

cdmVersion Get the version of an object.

Description

Get the version of an object.

Usage

cdmVersion(x)

Arguments

x Object to know the cdm version of an object.

Value

A character vector indicating the cdm version.

Examples

library(omopgenerics)
library(dplyr, warn.conflicts = FALSE)

cdm <- cdmFromTables(
tables = list(

"person" = tibble(
person_id = c(1, 2, 3), gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

),
"observation_period" = tibble(

observation_period_id = 1:3, person_id = 1:3,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
),
cdmName = "mock"

)

cdmVersion(cdm)
cdmVersion(cdm$person)

28 checkCohortRequirements

checkCohortRequirements

Check whether a cohort table satisfies requirements

Description

[Deprecated]

Usage

checkCohortRequirements(
cohort,
checkEndAfterStart = TRUE,
checkOverlappingEntries = TRUE,
checkMissingValues = TRUE,
checkInObservation = TRUE,
type = "error",
call = parent.frame()

)

Arguments

cohort cohort_table object.
checkEndAfterStart

If TRUE a check that all cohort end dates come on or after cohort start date will
be performed.

checkOverlappingEntries

If TRUE a check that no individuals have overlapping cohort entries will be
performed.

checkMissingValues

If TRUE a check that there are no missing values in required fields will be per-
formed.

checkInObservation

If TRUE a check that cohort entries are within the individuals observation peri-
ods will be performed.

type Can be either "error" or "warning". If "error" any check failure will result in an
error, whereas if "warning" any check failure will result in a warning.

call The call for which to return the error message.

Value

An error will be returned if any of the selected checks fail.

cohortCodelist 29

cohortCodelist Get codelist from a cohort_table object.

Description

Get codelist from a cohort_table object.

Usage

cohortCodelist(
cohort,
cohortId = NULL,
codelistType = c("index event", "inclusion criteria", "exit criteria"),
type = lifecycle::deprecated(),
cohortTable = lifecycle::deprecated()

)

Arguments

cohort A cohort_table object.

cohortId A particular cohort definition id that is present in the cohort table. If NULL the
codelists of all cohorts will be retrieved.

codelistType The reason for the codelist. Can be "index event", "inclusion criteria", or "exit
criteria".

type deprecated.

cohortTable deprecated.

Value

A table with the codelists used.

Examples

library(omopgenerics)
library(dplyr, warn.conflicts = FALSE)

person <- tibble(
person_id = 1, gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

)
observation_period <- tibble(

observation_period_id = 1, person_id = 1,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
cohort <- tibble(

30 cohortColumns

cohort_definition_id = c(1, 1, 1, 2),
subject_id = 1,
cohort_start_date = as.Date(c(

"2020-01-01", "2021-01-01", "2022-01-01", "2022-01-01"
)),
cohort_end_date = as.Date(c(

"2020-01-01", "2021-01-01", "2022-01-01", "2022-01-01"
))

)
cdm <- cdmFromTables(

tables = list("person" = person, "observation_period" = observation_period),
cdmName = "my_example_cdm",
cohortTables = list("cohort1" = cohort)

)
cdm$cohort1 <- newCohortTable(table = cdm$cohort1,

cohortCodelistRef = dplyr::tibble(
cohort_definition_id = c(1,1,1,2,2),
codelist_name =c("disease X", "disease X", "disease X",

"disease Y", "disease Y"),
concept_id = c(1,2,3,4,5),
codelist_type = "index event"

))
cohortCodelist(cdm$cohort1, cohortId = 1, codelistType = "index event")

cohortColumns Required columns for a generated cohort set.

Description

Required columns for a generated cohort set.

Usage

cohortColumns(table, version = "5.3")

Arguments

table Either cohort, cohort_set or cohort_attrition

version Version of the OMOP Common Data Model.

Value

Character vector with the column names

Required columns

cohortCount 31

Examples

library(omopgenerics)
cohortColumns("cohort")

cohortCount Get cohort counts from a cohort_table object.

Description

Get cohort counts from a cohort_table object.

Usage

cohortCount(cohort)

Arguments

cohort A cohort_table object.

Value

A table with the counts.

Examples

library(omopgenerics)
library(dplyr, warn.conflicts = FALSE)

person <- tibble(
person_id = 1, gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

)
observation_period <- tibble(

observation_period_id = 1, person_id = 1,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
cohort <- tibble(

cohort_definition_id = c(1, 1, 1, 2),
subject_id = 1,
cohort_start_date = as.Date(c(

"2020-01-01", "2021-01-01", "2022-01-01", "2022-01-01"
)),
cohort_end_date = as.Date(c(

"2020-01-01", "2021-01-01", "2022-01-01", "2022-01-01"
)),

)

32 collect.cdm_reference

cdm <- cdmFromTables(
tables = list("person" = person, "observation_period" = observation_period),
cdmName = "my_example_cdm",
cohortTables = list("cohort1" = cohort)

)

cohortCount(cdm$cohort1)

cohortTables Cohort tables that a cdm reference can contain in the OMOP Common
Data Model.

Description

Cohort tables that a cdm reference can contain in the OMOP Common Data Model.

Usage

cohortTables(version = "5.3")

Arguments

version Version of the OMOP Common Data Model.

Value

cohort tables

Examples

library(omopgenerics)
cohortTables()

collect.cdm_reference Retrieves the cdm reference into a local cdm.

Description

Retrieves the cdm reference into a local cdm.

Usage

S3 method for class 'cdm_reference'
collect(x, ...)

collect.cohort_table 33

Arguments

x A cdm_reference object.

... For compatibility only, not used.

Value

A local cdm_reference.

Examples

library(omopgenerics)
library(dplyr, warn.conflicts = FALSE)

cdm <- cdmFromTables(
tables = list(

"person" = dplyr::tibble(
person_id = c(1, 2, 3), gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

),
"observation_period" = dplyr::tibble(

observation_period_id = 1:3, person_id = 1:3,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
),
cdmName = "mock"

)

collect(cdm)

collect.cohort_table To collect a cohort_table object.

Description

To collect a cohort_table object.

Usage

S3 method for class 'cohort_table'
collect(x, ...)

Arguments

x cohort_table object.

... Not used (for compatibility).

34 compute.cdm_table

Value

A data frame with the cohort_table

combineStrata Provide all combinations of strata levels.

Description

Provide all combinations of strata levels.

Usage

combineStrata(levels, overall = FALSE)

Arguments

levels Vector of all strata levels to combine.
overall Whether to provide an empty element character().

Value

A vector of all combinations of strata.

Examples

combineStrata(character())
combineStrata(character(), overall = TRUE)
combineStrata(c("age", "sex"), overall = TRUE)
combineStrata(c("age", "sex", "year"))

compute.cdm_table Store results in a table.

Description

Store results in a table.

Usage

S3 method for class 'cdm_table'
compute(
x,
name = NULL,
temporary = NULL,
overwrite = TRUE,
logPrefix = NULL,
...

)

createIndexes 35

Arguments

x Table in the cdm.

name Name to store the table with.

temporary Whether to store table temporarily (TRUE) or permanently (FALSE).

overwrite Whether to overwrite previously existing table with name same.

logPrefix Prefix to use when saving a log file.

... For compatibility (not used).

Value

Reference to a table in the cdm

createIndexes Create the missing indexes

Description

[Experimental]

Usage

createIndexes(cdm, name = NULL)

Arguments

cdm A cdm_reference object.

name Name(s) of the cdm tables.

Value

Whether the process was completed successfully.

36 createTableIndex

createLogFile Create a log file

Description

Create a log file

Usage

createLogFile(logFile = here::here("log_{date}_{time}"))

Arguments

logFile File path to write logging messages. You can use ’{date}’ and ’{time}’ to add
the date and time in the log file name.

Value

Invisible TRUE if logger was created correctly.

Examples

library(dplyr)

logFile <- tempfile(pattern = "log_{date}_{time}", fileext = ".txt")
createLogFile(logFile = logFile)

logMessage("Starting analysis")
1 + 1
logMessage("Analysis finished")

res <- summariseLogFile()

glimpse(res)

tidy(res)

createTableIndex Create a table index

Description

[Experimental]

Usage

createTableIndex(table, index)

dropSourceTable 37

Arguments

table A cdm_table object.
index Index to be created.

Value

Whether the index could be created

dropSourceTable Drop a table from a cdm object.

Description

Drop a table from a cdm object.

Usage

dropSourceTable(cdm, name)

Arguments

cdm A cdm reference.
name Name(s) of the table(s) to insert. Tidyselect statements are supported.

Value

The table in the cdm reference.

dropTable Drop a table from a cdm object. [Deprecated]

Description

Drop a table from a cdm object. [Deprecated]

Usage

dropTable(cdm, name)

Arguments

cdm A cdm reference.
name Name(s) of the table(s) to drop Tidyselect statements are supported.

Value

The cdm reference.

38 emptyCdmReference

emptyAchillesTable Create an empty achilles table

Description

Create an empty achilles table

Usage

emptyAchillesTable(cdm, name)

Arguments

cdm A cdm_reference to create the table.

name Name of the table to create.

Value

The cdm_reference with an achilles empty table

Examples

library(omopgenerics)
cdm <- emptyCdmReference("my_example_cdm")
emptyAchillesTable(cdm = cdm, name = "achilles_results")

emptyCdmReference Create an empty cdm_reference

Description

Create an empty cdm_reference

Usage

emptyCdmReference(cdmName, cdmVersion = NULL)

Arguments

cdmName Name of the cdm_reference

cdmVersion Version of the cdm_reference

Value

An empty cdm_reference

emptyCodelist 39

Examples

library(omopgenerics)
emptyCdmReference(cdmName = "my_example_cdm")

emptyCodelist Empty codelist object.

Description

Empty codelist object.

Usage

emptyCodelist()

Value

An empty codelist object.

Examples

emptyCodelist()

emptyCodelistWithDetails

Empty codelist object.

Description

Empty codelist object.

Usage

emptyCodelistWithDetails()

Value

An empty codelist object.

Examples

emptyCodelistWithDetails()

40 emptyCohortTable

emptyCohortTable Create an empty cohort_table object

Description

Create an empty cohort_table object

Usage

emptyCohortTable(cdm, name, overwrite = TRUE)

Arguments

cdm A cdm_reference to create the table.

name Name of the table to create.

overwrite Whether to overwrite an existent table.

Value

The cdm_reference with an empty cohort table

Examples

library(omopgenerics)
library(dplyr, warn.conflicts = FALSE)

person <- tibble(
person_id = 1, gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

)
observation_period <- tibble(

observation_period_id = 1, person_id = 1,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
cdm <- cdmFromTables(

tables = list("person" = person, "observation_period" = observation_period),
cdmName = "test"

)

cdm <- emptyCohortTable(cdm, "my_empty_cohort")

cdm
cdm$my_empty_cohort
settings(cdm$my_empty_cohort)
attrition(cdm$my_empty_cohort)
cohortCount(cdm$my_empty_cohort)

emptyConceptSetExpression 41

emptyConceptSetExpression

Empty concept_set_expression object.

Description

Empty concept_set_expression object.

Usage

emptyConceptSetExpression()

Value

An empty concept_set_expression object.

Examples

emptyConceptSetExpression()

emptyOmopTable Create an empty omop table

Description

Create an empty omop table

Usage

emptyOmopTable(cdm, name)

Arguments

cdm A cdm_reference to create the table.

name Name of the table to create.

Value

The cdm_reference with an empty cohort table

42 emptySummarisedResult

Examples

library(omopgenerics)

person <- dplyr::tibble(
person_id = 1, gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

)
observation_period <- dplyr::tibble(

observation_period_id = 1, person_id = 1,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
cdm <- cdmFromTables(

tables = list("person" = person, "observation_period" = observation_period),
cdmName = "test"

)

cdm <- emptyOmopTable(cdm, "drug_exposure")

cdm$drug_exposure

emptySummarisedResult Empty summarised_result object.

Description

Empty summarised_result object.

Usage

emptySummarisedResult(settings = NULL)

Arguments

settings Tibble/data.frame with the settings of the empty summarised_result. It has to
contain at least result_id column.

Value

An empty summarised_result object.

Examples

library(omopgenerics)

emptySummarisedResult()

estimateTypeChoices 43

estimateTypeChoices Choices that can be present in estimate_type column.

Description

Choices that can be present in estimate_type column.

Usage

estimateTypeChoices()

Value

A character vector with the options that can be present in estimate_type column in the sum-
marised_result objects.

Examples

library(omopgenerics)

estimateTypeChoices()

existingIndexes Existing indexes in a cdm object

Description

[Experimental]

Usage

existingIndexes(cdm, name)

Arguments

cdm A cdm_reference object.

name Name(s) of the cdm tables.

Value

A tibble with 3 columns: table_class class of the table, table_name name of the table, and
existing_index index definition.

44 exportCodelist

expectedIndexes Expected indexes in a cdm object

Description

[Experimental]

Usage

expectedIndexes(cdm, name)

Arguments

cdm A cdm_reference object.

name Name(s) of the cdm tables.

Value

A tibble with 3 columns: table_class class of the table, table_name name of the table, and
expected_index index definition.

exportCodelist Export a codelist object.

Description

Export a codelist object.

Usage

exportCodelist(x, path, type = "json")

Arguments

x A codelist

path Path to where files will be created.

type Type of files to export. Currently ’json’ and ’csv’ are supported.

Value

Files with codelists

exportConceptSetExpression 45

exportConceptSetExpression

Export a concept set expression.

Description

Export a concept set expression.

Usage

exportConceptSetExpression(x, path, type = "json")

Arguments

x A concept set expression

path Path to where files will be created.

type Type of files to export. Currently ’json’ and ’csv’ are supported.

Value

Files with concept set expressions

exportSummarisedResult

Export a summarised_result object to a csv file.

Description

Export a summarised_result object to a csv file.

Usage

exportSummarisedResult(
...,
minCellCount = 5,
fileName = "results_{cdm_name}_{date}.csv",
path = getwd(),
logFile = getOption("omopgenerics.logFile"),
logSqlPath = getOption("omopgenerics.log_sql_path"),
logExplainPath = lifecycle::deprecated()

)

46 filterAdditional

Arguments

... A set of summarised_result objects.

minCellCount Minimum count for suppression purposes.

fileName Name of the file that will be created. Use {cdm_name} to refer to the cdmName
of the objects and {date} to add the export date.

path Path where to create the csv file. It is ignored if fileName it is a full name with
path included.

logFile Path to the log file to export.

logSqlPath Path to the folder that contains the sql logs to export.

logExplainPath deprecated.

filterAdditional Filter the additional_name-additional_level pair in a sum-
marised_result

Description

Filter the additional_name-additional_level pair in a summarised_result

Usage

filterAdditional(result, ...)

Arguments

result A <summarised_result> object.

... Expressions that return a logical value (additionalColumns() are used to eval-
uate the expression), and are defined in terms of the variables in .data. If multiple
expressions are included, they are combined with the & operator. Only rows for
which all conditions evaluate to TRUE are kept.

Value

A <summarised_result> object with only the rows that fulfill the required specified additional.

Examples

library(dplyr)
library(omopgenerics)

x <- tibble(
"result_id" = 1L,
"cdm_name" = "eunomia",
"group_name" = "cohort_name",
"group_level" = c("cohort1", "cohort2", "cohort3"),
"strata_name" = "sex",

filterGroup 47

"strata_level" = "Female",
"variable_name" = "number subjects",
"variable_level" = NA_character_,
"estimate_name" = "count",
"estimate_type" = "integer",
"estimate_value" = c("100", "44", "14"),
"additional_name" = c("year", "time_step", "year &&& time_step"),
"additional_level" = c("2010", "4", "2015 &&& 5")

) |>
newSummarisedResult()

x |>
filterAdditional(year == "2010")

filterGroup Filter the group_name-group_level pair in a summarised_result

Description

Filter the group_name-group_level pair in a summarised_result

Usage

filterGroup(result, ...)

Arguments

result A <summarised_result> object.

... Expressions that return a logical value (groupColumns() are used to evaluate
the expression), and are defined in terms of the variables in .data. If multiple
expressions are included, they are combined with the & operator. Only rows for
which all conditions evaluate to TRUE are kept.

Value

A <summarised_result> object with only the rows that fulfill the required specified group.

Examples

library(dplyr)
library(omopgenerics)

x <- tibble(
"result_id" = 1L,
"cdm_name" = "eunomia",
"group_name" = c("cohort_name", "age_group &&& cohort_name", "age_group"),
"group_level" = c("my_cohort", ">40 &&& second_cohort", "<40"),
"strata_name" = "sex",

48 filterSettings

"strata_level" = "Female",
"variable_name" = "number subjects",
"variable_level" = NA_character_,
"estimate_name" = "count",
"estimate_type" = "integer",
"estimate_value" = c("100", "44", "14"),
"additional_name" = "overall",
"additional_level" = "overall"

) |>
newSummarisedResult()

x |>
filterGroup(cohort_name == "second_cohort")

filterSettings Filter a <summarised_result> using the settings

Description

Filter a <summarised_result> using the settings

Usage

filterSettings(result, ...)

Arguments

result A <summarised_result> object.

... Expressions that return a logical value (columns in settings are used to evaluate
the expression), and are defined in terms of the variables in .data. If multiple
expressions are included, they are combined with the & operator. Only rows for
which all conditions evaluate to TRUE are kept.

Value

A <summarised_result> object with only the result_id rows that fulfill the required specified set-
tings.

Examples

library(dplyr)
library(omopgenerics)

x <- tibble(
"result_id" = as.integer(c(1, 2)),
"cdm_name" = c("cprd", "eunomia"),
"group_name" = "cohort_name",
"group_level" = "my_cohort",

filterStrata 49

"strata_name" = "sex",
"strata_level" = "male",
"variable_name" = "Age group",
"variable_level" = "10 to 50",
"estimate_name" = "count",
"estimate_type" = "numeric",
"estimate_value" = "5",
"additional_name" = "overall",
"additional_level" = "overall"

) |>
newSummarisedResult(settings = tibble(

"result_id" = c(1, 2), "custom" = c("A", "B")
))

x

x |> filterSettings(custom == "A")

filterStrata Filter the strata_name-strata_level pair in a summarised_result

Description

Filter the strata_name-strata_level pair in a summarised_result

Usage

filterStrata(result, ...)

Arguments

result A <summarised_result> object.

... Expressions that return a logical value (strataColumns() are used to evaluate
the expression), and are defined in terms of the variables in .data. If multiple
expressions are included, they are combined with the & operator. Only rows for
which all conditions evaluate to TRUE are kept.

Value

A <summarised_result> object with only the rows that fulfill the required specified strata.

Examples

library(dplyr)
library(omopgenerics)

x <- tibble(
"result_id" = 1L,

50 getCohortId

"cdm_name" = "eunomia",
"group_name" = "cohort_name",
"group_level" = "my_cohort",
"strata_name" = c("sex", "sex &&& age_group", "sex &&& year"),
"strata_level" = c("Female", "Male &&& <40", "Female &&& 2010"),
"variable_name" = "number subjects",
"variable_level" = NA_character_,
"estimate_name" = "count",
"estimate_type" = "integer",
"estimate_value" = c("100", "44", "14"),
"additional_name" = "overall",
"additional_level" = "overall"

) |>
newSummarisedResult()

x |>
filterStrata(sex == "Female")

getCohortId Get the cohort definition id of a certain name

Description

Get the cohort definition id of a certain name

Usage

getCohortId(cohort, cohortName = NULL)

Arguments

cohort A cohort_table object.

cohortName Names of the cohort of interest. If NULL all cohort names are shown.

Value

Cohort definition ids

getCohortName 51

getCohortName Get the cohort name of a certain cohort definition id

Description

Get the cohort name of a certain cohort definition id

Usage

getCohortName(cohort, cohortId = NULL)

Arguments

cohort A cohort_table object.

cohortId Cohort definition id of interest. If NULL all cohort ids are shown.

Value

Cohort names

getPersonIdentifier Get the column name with the person identifier from a table (either
subject_id or person_id), it will throw an error if it contains both or
neither.

Description

Get the column name with the person identifier from a table (either subject_id or person_id), it will
throw an error if it contains both or neither.

Usage

getPersonIdentifier(x, call = parent.frame())

Arguments

x A table.

call A call argument passed to cli functions.

Value

Person identifier column.

52 groupColumns

groupColumns Identify variables in group_name column

Description

Identifies and returns the unique values in group_name column.

Usage

groupColumns(result)

Arguments

result A tibble.

Value

Unique values of the group name column.

Examples

{
library(dplyr)
library(omopgenerics)

x <- tibble(
"result_id" = as.integer(c(1, 2)),
"cdm_name" = c("cprd", "eunomia"),
"group_name" = "cohort",
"group_level" = "my_cohort",
"strata_name" = "sex",
"strata_level" = "male",
"variable_name" = "Age group",
"variable_level" = "10 to 50",
"estimate_name" = "count",
"estimate_type" = "numeric",
"estimate_value" = "5",
"additional_name" = "overall",
"additional_level" = "overall"

) |>
newSummarisedResult(settings = tibble(

"result_id" = c(1, 2), "custom" = c("A", "B")
))

x

x |> groupColumns()
}

importCodelist 53

importCodelist Import a codelist.

Description

Import a codelist.

Usage

importCodelist(path, type = "json")

Arguments

path Path to where files will be created.

type Type of files to export. Currently ’json’ and ’csv’ are supported.

Value

A codelist

importConceptSetExpression

Import a concept set expression.

Description

Import a concept set expression.

Usage

importConceptSetExpression(path, type = "json")

Arguments

path Path to where files will be created.

type Type of files to export. Currently ’json’ and ’csv’ are supported.

Value

A concept set expression

54 insertCdmTo

importSummarisedResult

Import a set of summarised results.

Description

Import a set of summarised results.

Usage

importSummarisedResult(path, recursive = FALSE, ...)

Arguments

path Path to directory with CSV files containing summarised results or to a specific
CSV file with a summarised result.

recursive If TRUE and path is a directory, search for files will recurse into directories

... Passed to readr::read_csv.

Value

A summarised result

insertCdmTo Insert a cdm_reference object to a different source.

Description

Insert a cdm_reference object to a different source.

Usage

insertCdmTo(cdm, to)

Arguments

cdm A cdm_reference, if not local it will be collected into memory.

to A cdm_source or another cdm_reference, with a valid cdm_source.

Value

The first cdm_reference object inserted to the source.

insertFromSource 55

insertFromSource Convert a table that is not a cdm_table but have the same original
source to a cdm_table. This Table is not meant to be used to insert
tables in the cdm, please use insertTable instead.

Description

[Deprecated]

Usage

insertFromSource(cdm, value)

Arguments

cdm A cdm_reference object.

value A table that shares source with the cdm_reference object.

Value

A table in the cdm_reference environment

insertTable Insert a table to a cdm object.

Description

Insert a table to a cdm object.

Usage

insertTable(cdm, name, table, overwrite = TRUE, temporary = FALSE, ...)

Arguments

cdm A cdm reference or the source of a cdm reference.

name Name of the table to insert.

table Table to insert to the cdm.

overwrite Whether to overwrite an existent table.

temporary Whether to create a temporary table.

... For compatibility.

56 isResultSuppressed

Value

The cdm reference. library(omopgenerics) library(dplyr, warn.conflicts = FALSE)

person <- tibble(person_id = 1, gender_concept_id = 0, year_of_birth = 1990, race_concept_id
= 0, ethnicity_concept_id = 0) observation_period <- tibble(observation_period_id = 1, per-
son_id = 1, observation_period_start_date = as.Date("2000-01-01"), observation_period_end_date
= as.Date("2023-12-31"), period_type_concept_id = 0) cdm <- cdmFromTables(tables = list("person"
= person, "observation_period" = observation_period), cdmName = "my_example_cdm")

x <- tibble(a = 1)

cdm <- insertTable(cdm = cdm, name = "new_table", table = x)

cdm$new_table

isResultSuppressed To check whether an object is already suppressed to a certain min cell
count.

Description

To check whether an object is already suppressed to a certain min cell count.

Usage

isResultSuppressed(result, minCellCount = 5)

Arguments

result The suppressed result to check

minCellCount Minimum count of records used when suppressing

Value

Warning or message with check result

Examples

x <- dplyr::tibble(
"result_id" = 1L,
"cdm_name" = "eunomia",
"group_name" = "cohort_name",
"group_level" = "my_cohort",
"strata_name" = c("sex", "sex &&& age_group", "sex &&& year"),
"strata_level" = c("Female", "Male &&& <40", "Female &&& 2010"),
"variable_name" = "number subjects",
"variable_level" = NA_character_,
"estimate_name" = "count",
"estimate_type" = "integer",
"estimate_value" = c("100", "44", "14"),
"additional_name" = "overall",

isTableEmpty 57

"additional_level" = "overall"
) |>

newSummarisedResult()

isResultSuppressed(x)

isTableEmpty Check if a table is empty or not

Description

Check if a table is empty or not

Usage

isTableEmpty(table)

Arguments

table a table

Value

Boolean to indicate if a cdm_table is empty (TRUE or FALSE).

listSourceTables List tables that can be accessed though a cdm object.

Description

List tables that can be accessed though a cdm object.

Usage

listSourceTables(cdm)

Arguments

cdm A cdm reference or the source of a cdm reference.

Value

A character vector with the names of tables.

58 logMessage

logMessage Log a message to a logFile

Description

The message is written to the logFile and displayed in the console, if logFile does not exist the
message is only displayed in the console.

Usage

logMessage(
message = "Start logging file",
logFile = getOption("omopgenerics.logFile")

)

Arguments

message Message to log.

logFile File path to write logging messages. Create a logFile with createLogFile().

Value

Invisible TRUE if the logging message is written to a log file.

Examples

library(dplyr)

logFile <- tempfile(pattern = "log_{date}_{time}", fileext = ".txt")
createLogFile(logFile = logFile)

logMessage("Starting analysis")
1 + 1
logMessage("Analysis finished")

res <- summariseLogFile()

glimpse(res)

tidy(res)

newAchillesTable 59

newAchillesTable Create an achilles table from a cdm_table.

Description

Create an achilles table from a cdm_table.

Usage

newAchillesTable(table, version = "5.3", cast = FALSE)

Arguments

table A cdm_table.

version version of the cdm.

cast Whether to cast columns to the correct type.

Value

An achilles_table object

newCdmReference cdm_reference objects constructor

Description

cdm_reference objects constructor

Usage

newCdmReference(tables, cdmName, cdmVersion = NULL, .softValidation = FALSE)

Arguments

tables List of tables that are part of the OMOP Common Data Model reference.

cdmName Name of the cdm object.

cdmVersion Version of the cdm. Supported versions 5.3 and 5.4.
.softValidation

Whether to perform a soft validation of consistency. If set to FALSE, non over-
lapping observation periods are ensured.

Value

A cdm_reference object.

60 newCdmSource

Examples

library(omopgenerics)
library(dplyr, warn.conflicts = FALSE)

cdmTables <- list(
"person" = tibble(
person_id = 1, gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

) |>
newCdmTable(newLocalSource(), "person"),

"observation_period" = tibble(
observation_period_id = 1, person_id = 1,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

) |>
newCdmTable(newLocalSource(), "observation_period")

)
cdm <- newCdmReference(tables = cdmTables, cdmName = "mock")

cdm

newCdmSource Create a cdm source object.

Description

Create a cdm source object.

Usage

newCdmSource(src, sourceType)

Arguments

src Source to a cdm object.

sourceType Type of the source object.

Value

A validated cdm source object.

newCdmTable 61

newCdmTable Create an cdm table.

Description

Create an cdm table.

Usage

newCdmTable(table, src, name)

Arguments

table A table that is part of a cdm.

src The source of the table.

name The name of the table.

Value

A cdm_table object

newCodelist ’codelist’ object constructor

Description

’codelist’ object constructor

Usage

newCodelist(x)

Arguments

x A named list where each element contains a vector of concept IDs.

Value

A codelist object.

62 newCohortTable

newCodelistWithDetails

’codelist’ object constructor

Description

’codelist’ object constructor

Usage

newCodelistWithDetails(x)

Arguments

x A named list where each element contains a tibble with the column concept_id

Value

A codelist object.

newCohortTable cohort_table objects constructor.

Description

cohort_table objects constructor.

Usage

newCohortTable(
table,
cohortSetRef = attr(table, "cohort_set"),
cohortAttritionRef = attr(table, "cohort_attrition"),
cohortCodelistRef = attr(table, "cohort_codelist"),
.softValidation = FALSE

)

Arguments

table cdm_table object with at least: cohort_definition_id, subject_id, cohort_start_date,
cohort_end_date.

cohortSetRef Table with at least: cohort_definition_id, cohort_name
cohortAttritionRef

Table with at least: cohort_definition_id, number_subjects, number_records,
reason_id, reason, excluded_subjects, excluded_records.

newConceptSetExpression 63

cohortCodelistRef

Table with at least: cohort_definition_id, codelist_name, concept_id and codelist_type.
.softValidation

Whether to perform a soft validation of consistency. If set to FALSE four ad-
ditional checks will be performed: 1) a check that cohort end date is not before
cohort start date, 2) a check that there are no missing values in required columns,
3) a check that cohort duration is all within observation period, and 4) that there
are no overlapping cohort entries

Value

A cohort_table object

Examples

person <- dplyr::tibble(
person_id = 1, gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

)
observation_period <- dplyr::tibble(

observation_period_id = 1, person_id = 1,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
cohort1 <- dplyr::tibble(

cohort_definition_id = 1, subject_id = 1,
cohort_start_date = as.Date("2020-01-01"),
cohort_end_date = as.Date("2020-01-10")

)
cdm <- cdmFromTables(

tables = list(
"person" = person,
"observation_period" = observation_period,
"cohort1" = cohort1

),
cdmName = "test"

)
cdm
cdm$cohort1 <- newCohortTable(table = cdm$cohort1)
cdm
settings(cdm$cohort1)
attrition(cdm$cohort1)
cohortCount(cdm$cohort1)

newConceptSetExpression

’concept_set_expression’ object constructor

64 newLocalSource

Description

’concept_set_expression’ object constructor

Usage

newConceptSetExpression(x)

Arguments

x a named list of tibbles, each of which containing concept set definitions

Value

A concept_set_expression

newLocalSource A new local source for the cdm

Description

A new local source for the cdm

Usage

newLocalSource()

Value

A list in the format of a cdm source

Examples

library(omopgenerics)
newLocalSource()

newOmopTable 65

newOmopTable Create an omop table from a cdm table.

Description

Create an omop table from a cdm table.

Usage

newOmopTable(table, version = "5.3", cast = FALSE)

Arguments

table A cdm_table.

version version of the cdm.

cast Whether to cast columns to the correct type.

Value

An omop_table object

newSummarisedResult ’summarised_results’ object constructor

Description

’summarised_results’ object constructor

Usage

newSummarisedResult(x, settings = attr(x, "settings"))

Arguments

x Table.

settings Settings for the summarised_result object.

Value

A summarised_result object

66 numberRecords

Examples

library(dplyr)
library(omopgenerics)

x <- tibble(
"result_id" = 1L,
"cdm_name" = "cprd",
"group_name" = "cohort_name",
"group_level" = "acetaminophen",
"strata_name" = "sex &&& age_group",
"strata_level" = c("male &&& <40", "male &&& >=40"),
"variable_name" = "number_subjects",
"variable_level" = NA_character_,
"estimate_name" = "count",
"estimate_type" = "integer",
"estimate_value" = c("5", "15"),
"additional_name" = "overall",
"additional_level" = "overall"

) |>
newSummarisedResult()

x
settings(x)
summary(x)

x <- tibble(
"result_id" = 1L,
"cdm_name" = "cprd",
"group_name" = "cohort_name",
"group_level" = "acetaminophen",
"strata_name" = "sex &&& age_group",
"strata_level" = c("male &&& <40", "male &&& >=40"),
"variable_name" = "number_subjects",
"variable_level" = NA_character_,
"estimate_name" = "count",
"estimate_type" = "integer",
"estimate_value" = c("5", "15"),
"additional_name" = "overall",
"additional_level" = "overall"

) |>
newSummarisedResult(settings = tibble(
result_id = 1L, result_type = "custom_summary", mock = TRUE, value = 5

))

x
settings(x)
summary(x)

numberRecords Count the number of records that a cdm_table has.

numberSubjects 67

Description

Count the number of records that a cdm_table has.

Usage

numberRecords(x)

Arguments

x A cdm_table.

Value

An integer with the number of records in the table.

Examples

person <- dplyr::tibble(
person_id = 1, gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

)
observation_period <- dplyr::tibble(

observation_period_id = 1, person_id = 1,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
cdm <- cdmFromTables(

tables = list("person" = person, "observation_period" = observation_period),
cdmName = "test"

)

numberRecords(cdm$observation_period)

numberSubjects Count the number of subjects that a cdm_table has.

Description

Count the number of subjects that a cdm_table has.

Usage

numberSubjects(x)

Arguments

x A cdm_table.

68 omopColumns

Value

An integer with the number of subjects in the table.

Examples

person <- dplyr::tibble(
person_id = 1, gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

)
observation_period <- dplyr::tibble(

observation_period_id = 1, person_id = 1,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
cdm <- cdmFromTables(

tables = list("person" = person, "observation_period" = observation_period),
cdmName = "test"

)

numberSubjects(cdm$observation_period)

omopColumns Required columns that the standard tables in the OMOP Common
Data Model must have.

Description

Required columns that the standard tables in the OMOP Common Data Model must have.

Usage

omopColumns(
table,
field = NULL,
version = "5.3",
onlyRequired = lifecycle::deprecated()

)

Arguments

table Table to see required columns.

field Name of the specific field.

version Version of the OMOP Common Data Model.

onlyRequired deprecated

omopDataFolder 69

Value

Character vector with the column names

Examples

library(omopgenerics)

omopColumns("person")

omopDataFolder Check or set the OMOP_DATA_FOLDER where the OMOP related
data is stored.

Description

Check or set the OMOP_DATA_FOLDER where the OMOP related data is stored.

Usage

omopDataFolder(path = NULL)

Arguments

path Path to a folder to store the OMOP related data. If NULL the current OMOP_DATA_FOLDER
is returned.

Value

The OMOP data folder.

Examples

omopDataFolder()
omopDataFolder(file.path(tempdir(), "OMOP_DATA"))
omopDataFolder()

70 omopTables

omopTableFields Return a table of omop cdm fields informations

Description

Return a table of omop cdm fields informations

Usage

omopTableFields(cdmVersion = "5.3")

Arguments

cdmVersion cdm version of the omop cdm.

Value

a tibble contain informations on all the different fields in omop cdm.

omopTables Standard tables that a cdm reference can contain in the OMOP Com-
mon Data Model.

Description

Standard tables that a cdm reference can contain in the OMOP Common Data Model.

Usage

omopTables(version = "5.3")

Arguments

version Version of the OMOP Common Data Model.

Value

Standard tables

Examples

library(omopgenerics)

omopTables()

pivotEstimates 71

pivotEstimates Set estimates as columns

Description

Pivot the estimates as new columns in result table.

Usage

pivotEstimates(result, pivotEstimatesBy = "estimate_name", nameStyle = NULL)

Arguments

result A <summarised_result>.
pivotEstimatesBy

Names from which pivot wider the estimate values. If NULL the table will not
be pivotted.

nameStyle Name style (glue package specifications) to customise names when pivotting
estimates. If NULL standard tidyr::pivot_wider formatting will be used.

Value

A tibble.

Examples

{
library(dplyr)
library(omopgenerics)

x <- tibble(
"result_id" = 1L,
"cdm_name" = c("cprd", "eunomia"),
"group_name" = "cohort_name",
"group_level" = "my_cohort",
"strata_name" = "sex",
"strata_level" = "male",
"variable_name" = "Age group",
"variable_level" = "10 to 50",
"estimate_name" = "count",
"estimate_type" = "numeric",
"estimate_value" = "5",
"additional_name" = "overall",
"additional_level" = "overall"

) |>
newSummarisedResult()

x |>
pivotEstimates()

72 print.cdm_reference

}

print.cdm_reference Print a CDM reference object

Description

Print a CDM reference object

Usage

S3 method for class 'cdm_reference'
print(x, ...)

Arguments

x A cdm_reference object

... Included for compatibility with generic. Not used.

Value

Invisibly returns the input

Examples

library(omopgenerics)

cdm <- cdmFromTables(
tables = list(

"person" = dplyr::tibble(
person_id = c(1, 2, 3), gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

),
"observation_period" = dplyr::tibble(

observation_period_id = 1:3, person_id = 1:3,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
),
cdmName = "mock"

)

print(cdm)

print.codelist 73

print.codelist Print a codelist

Description

Print a codelist

Usage

S3 method for class 'codelist'
print(x, ...)

Arguments

x A codelist

... Included for compatibility with generic. Not used.

Value

Invisibly returns the input

Examples

codes <- list("disease X" = c(1, 2, 3), "disease Y" = c(4, 5))
codes <- newCodelist(codes)
print(codes)

print.codelist_with_details

Print a codelist with details

Description

Print a codelist with details

Usage

S3 method for class 'codelist_with_details'
print(x, ...)

Arguments

x A codelist with details

... Included for compatibility with generic. Not used.

74 print.concept_set_expression

Value

Invisibly returns the input

Examples

codes <- list("disease X" = dplyr::tibble(
concept_id = c(1, 2, 3),
other = c("a", "b", "c")

))
codes <- newCodelistWithDetails(codes)
print(codes)

print.concept_set_expression

Print a concept set expression

Description

Print a concept set expression

Usage

S3 method for class 'concept_set_expression'
print(x, ...)

Arguments

x A concept set expression

... Included for compatibility with generic. Not used.

Value

Invisibly returns the input

Examples

asthma_cs <- list(
"asthma_narrow" = dplyr::tibble(

"concept_id" = 1,
"excluded" = FALSE,
"descendants" = TRUE,
"mapped" = FALSE

),
"asthma_broad" = dplyr::tibble(

"concept_id" = c(1, 2),
"excluded" = FALSE,
"descendants" = TRUE,

readSourceTable 75

"mapped" = FALSE
)

)
asthma_cs <- newConceptSetExpression(asthma_cs)
print(asthma_cs)

readSourceTable Read a table from the cdm_source and add it to to the cdm.

Description

Read a table from the cdm_source and add it to to the cdm.

Usage

readSourceTable(cdm, name)

Arguments

cdm A cdm reference.

name Name of a table to read in the cdm_source space.

Value

A cdm_reference with new table.

recordCohortAttrition Update cohort attrition.

Description

Update cohort attrition.

Usage

recordCohortAttrition(cohort, reason, cohortId = NULL)

Arguments

cohort A cohort_table object.

reason A character string.

cohortId Cohort definition id of the cohort to update attrition. If NULL all cohort_definition_id
are updated.

76 resultColumns

Value

cohort_table with updated attrition.

Examples

library(omopgenerics)
library(dplyr, warn.conflicts = FALSE)

person <- tibble(
person_id = 1, gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

)
observation_period <- tibble(

observation_period_id = 1, person_id = 1,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
cohort <- tibble(

cohort_definition_id = c(1, 1, 1, 2),
subject_id = 1,
cohort_start_date = as.Date(c("2020-01-01", "2021-01-01", "2022-01-01", "2022-01-01")),
cohort_end_date = as.Date(c("2020-01-01", "2021-01-01", "2022-01-01", "2022-01-01")),

)
cdm <- cdmFromTables(

tables = list("person" = person, "observation_period" = observation_period),
cdmName = "my_example_cdm",
cohortTables = list("cohort1" = cohort)

)

cdm$cohort1
attrition(cdm$cohort1)

cdm$cohort1 <- cdm$cohort1 |>
group_by(cohort_definition_id, subject_id) |>
filter(cohort_start_date == min(cohort_start_date)) |>
ungroup() |>
compute(name = "cohort1", temporary = FALSE) |>
recordCohortAttrition("Restrict to first observation")

cdm$cohort1
attrition(cdm$cohort1)

resultColumns Required columns that the result tables must have.

Description

Required columns that the result tables must have.

resultPackageVersion 77

Usage

resultColumns(table = "summarised_result")

Arguments

table Table to see required columns.

Value

Required columns

Examples

library(omopgenerics)

resultColumns()

resultPackageVersion Check if different packages version are used for summarise_results
object

Description

Check if different packages version are used for summarise_results object

Usage

resultPackageVersion(result)

Arguments

result a summarised results object

Value

a summarised results object

78 settings.cohort_table

settings Get settings from an object.

Description

Get settings from an object.

Usage

settings(x)

Arguments

x Object

Value

A table with the settings of the object.

settings.cohort_table Get cohort settings from a cohort_table object.

Description

Get cohort settings from a cohort_table object.

Usage

S3 method for class 'cohort_table'
settings(x)

Arguments

x A cohort_table object.

Value

A table with the details of the cohort settings.

settings.summarised_result 79

Examples

library(omopgenerics)
library(dplyr, warn.conflicts = FALSE)

person <- tibble(
person_id = 1, gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

)
observation_period <- tibble(

observation_period_id = 1, person_id = 1,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
cohort <- tibble(

cohort_definition_id = 1,
subject_id = 1,
cohort_start_date = as.Date("2010-01-01"),
cohort_end_date = as.Date("2012-01-01")

)
cdm <- cdmFromTables(

tables = list("person" = person, "observation_period" = observation_period),
cdmName = "test",
cohortTables = list("my_cohort" = cohort)

)

settings(cdm$my_cohort)

cdm$my_cohort <- cdm$my_cohort |>
newCohortTable(cohortSetRef = tibble(
cohort_definition_id = 1, cohort_name = "new_name"

))

settings(cdm$my_cohort)

settings.summarised_result

Get settings from a summarised_result object.

Description

Get settings from a summarised_result object.

Usage

S3 method for class 'summarised_result'
settings(x)

80 settingsColumns

Arguments

x A summarised_result object.

Value

A table with the settings.

Examples

library(omopgenerics)
library(dplyr, warn.conflicts = FALSE)

person <- tibble(
person_id = 1, gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

)
observation_period <- tibble(

observation_period_id = 1, person_id = 1,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
cohort <- tibble(

cohort_definition_id = 1,
subject_id = 1,
cohort_start_date = as.Date("2010-01-01"),
cohort_end_date = as.Date("2012-01-01")

)
cdm <- cdmFromTables(

tables = list("person" = person, "observation_period" = observation_period),
cdmName = "test",
cohortTables = list("my_cohort" = cohort)

)

result <- summary(cdm$my_cohort)

settings(result)

settingsColumns Identify settings columns of a <summarised_result>

Description

Identifies and returns the columns of the settings table obtained by using settings() in a <summarised_result>
object.

Usage

settingsColumns(result, metadata = FALSE)

sourceType 81

Arguments

result A <summarised_result>.

metadata Whether to include metadata columns in settings or not.

Value

Vector with names of the settings columns

Examples

{
library(dplyr)
library(omopgenerics)

x <- tibble(
"result_id" = as.integer(c(1, 2)),
"cdm_name" = c("cprd", "eunomia"),
"group_name" = "cohort_name",
"group_level" = "my_cohort",
"strata_name" = "sex",
"strata_level" = "male",
"variable_name" = "Age group",
"variable_level" = "10 to 50",
"estimate_name" = "count",
"estimate_type" = "numeric",
"estimate_value" = "5",
"additional_name" = "overall",
"additional_level" = "overall"

) |>
newSummarisedResult(settings = tibble(

"result_id" = c(1, 2), "custom" = c("A", "B")
))

x

x |> settingsColumns()
}

sourceType Get the source type of an object.

Description

Get the source type of an object.

Usage

sourceType(x)

82 splitAdditional

Arguments

x Object to know the source type.

Value

A character vector that defines the type of cdm_source.

splitAdditional Split additional_name and additional_level columns

Description

Pivots the input dataframe so the values of the column additional_name are transformed into columns
that contain values from the additional_level column.

Usage

splitAdditional(result, keep = FALSE, fill = "overall")

Arguments

result A dataframe with at least the columns additional_name and additional_level.

keep Whether to keep the original group_name and group_level columns.

fill Optionally, a character that specifies what value should be filled in with when
missing.

Value

A dataframe.

Examples

{
library(dplyr)
library(omopgenerics)

x <- tibble(
"result_id" = as.integer(c(1, 2)),
"cdm_name" = c("cprd", "eunomia"),
"group_name" = "cohort_name",
"group_level" = "my_cohort",
"strata_name" = "sex",
"strata_level" = "male",
"variable_name" = "Age group",
"variable_level" = "10 to 50",
"estimate_name" = "count",
"estimate_type" = "numeric",
"estimate_value" = "5",

splitAll 83

"additional_name" = "overall",
"additional_level" = "overall"

) |>
newSummarisedResult(settings = tibble(

"result_id" = c(1, 2), "custom" = c("A", "B")
))

x

x |> splitAdditional()
}

splitAll Split all pairs name-level into columns.

Description

Pivots the input dataframe so any pair name-level columns are transformed into columns (name)
that contain values from the corresponding level.

Usage

splitAll(result, keep = FALSE, fill = "overall", exclude = "variable")

Arguments

result A data.frame.

keep Whether to keep the original name-level columns.

fill A character that specifies what value should be filled in when missing.

exclude Name of a column pair to exclude.

Value

A dataframe with group, strata and additional as columns.

Examples

{
library(dplyr)
library(omopgenerics)

x <- tibble(
"result_id" = as.integer(c(1, 2)),
"cdm_name" = c("cprd", "eunomia"),
"group_name" = "cohort_name",
"group_level" = "my_cohort",
"strata_name" = "sex",
"strata_level" = "male",

84 splitGroup

"variable_name" = "Age group",
"variable_level" = "10 to 50",
"estimate_name" = "count",
"estimate_type" = "numeric",
"estimate_value" = "5",
"additional_name" = "overall",
"additional_level" = "overall"

) |>
newSummarisedResult(settings = tibble(

"result_id" = c(1, 2), "custom" = c("A", "B")
))

x

x |> splitAll()
}

splitGroup Split group_name and group_level columns

Description

Pivots the input dataframe so the values of the column group_name are transformed into columns
that contain values from the group_level column.

Usage

splitGroup(result, keep = FALSE, fill = "overall")

Arguments

result A dataframe with at least the columns group_name and group_level.

keep Whether to keep the original group_name and group_level columns.

fill Optionally, a character that specifies what value should be filled in with when
missing.

Value

A dataframe.

Examples

{
library(dplyr)
library(omopgenerics)

x <- tibble(
"result_id" = as.integer(c(1, 2)),

splitStrata 85

"cdm_name" = c("cprd", "eunomia"),
"group_name" = "cohort_name",
"group_level" = "my_cohort",
"strata_name" = "sex",
"strata_level" = "male",
"variable_name" = "Age group",
"variable_level" = "10 to 50",
"estimate_name" = "count",
"estimate_type" = "numeric",
"estimate_value" = "5",
"additional_name" = "overall",
"additional_level" = "overall"

) |>
newSummarisedResult(settings = tibble(

"result_id" = c(1, 2), "custom" = c("A", "B")
))

x

x |> splitGroup()
}

splitStrata Split strata_name and strata_level columns

Description

Pivots the input dataframe so the values of the column strata_name are transformed into columns
that contain values from the strata_level column.

Usage

splitStrata(result, keep = FALSE, fill = "overall")

Arguments

result A dataframe with at least the columns strata_name and strata_level.

keep Whether to keep the original group_name and group_level columns.

fill Optionally, a character that specifies what value should be filled in with when
missing.

Value

A dataframe.

86 statusIndexes

Examples

{
library(dplyr)
library(omopgenerics)

x <- tibble(
"result_id" = as.integer(c(1, 2)),
"cdm_name" = c("cprd", "eunomia"),
"group_name" = "cohort_name",
"group_level" = "my_cohort",
"strata_name" = "sex",
"strata_level" = "male",
"variable_name" = "Age group",
"variable_level" = "10 to 50",
"estimate_name" = "count",
"estimate_type" = "numeric",
"estimate_value" = "5",
"additional_name" = "overall",
"additional_level" = "overall"

) |>
newSummarisedResult(settings = tibble(

"result_id" = c(1, 2), "custom" = c("A", "B")
))

x

x |> splitStrata()
}

statusIndexes Status of the indexes

Description

[Experimental]

Usage

statusIndexes(cdm, name = NULL)

Arguments

cdm A cdm_reference object.
name Name(s) of the cdm tables.

Value

A tibble with 3 columns: table_class class of the table, table_name name of the table, index
index definition, and index_status status of the index, either: ’missing’, ’extra’, ’present’.

strataColumns 87

strataColumns Identify variables in strata_name column

Description

Identifies and returns the unique values in strata_name column.

Usage

strataColumns(result)

Arguments

result A tibble.

Value

Unique values of the strata name column.

Examples

{
library(dplyr)
library(omopgenerics)

x <- tibble(
"result_id" = as.integer(c(1, 2)),
"cdm_name" = c("cprd", "eunomia"),
"group_name" = "cohort_name",
"group_level" = "my_cohort",
"strata_name" = "sex",
"strata_level" = "male",
"variable_name" = "Age group",
"variable_level" = "10 to 50",
"estimate_name" = "count",
"estimate_type" = "numeric",
"estimate_value" = "5",
"additional_name" = "overall",
"additional_level" = "overall"

) |>
newSummarisedResult(settings = tibble(

"result_id" = c(1, 2), "custom" = c("A", "B")
))

x

x |> strataColumns()
}

88 summariseLogFile

summariseLogFile Summarise and extract the information of a log file into a
summarised_result object.

Description

Summarise and extract the information of a log file into a summarised_result object.

Usage

summariseLogFile(
logFile = getOption("omopgenerics.logFile"),
cdmName = "unknown"

)

Arguments

logFile File path to the log file to summarise. Create a logFile with createLogFile().

cdmName Name of the cdm for the summarise_result object.

Value

A summarise_result with the information of the log file.

Examples

library(dplyr)

logFile <- tempfile(pattern = "log_{date}_{time}", fileext = ".txt")
createLogFile(logFile = logFile)

logMessage("Starting analysis")
1 + 1
logMessage("Analysis finished")

res <- summariseLogFile()

glimpse(res)

tidy(res)

summary.cdm_reference 89

summary.cdm_reference Summary a cdm reference

Description

Summary a cdm reference

Usage

S3 method for class 'cdm_reference'
summary(object, ...)

Arguments

object A cdm reference object.

... For compatibility (not used).

Value

A summarised_result object with a summary of the data contained in the cdm.

Examples

library(dplyr, warn.conflicts = FALSE)

person <- tibble(
person_id = 1, gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

)
observation_period <- tibble(

observation_period_id = 1, person_id = 1,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
cdm <- cdmFromTables(

tables = list("person" = person, "observation_period" = observation_period),
cdmName = "test"

)

summary(cdm)

90 summary.cohort_table

summary.cdm_source Summarise a cdm_source object

Description

Summarise a cdm_source object

Usage

S3 method for class 'cdm_source'
summary(object, ...)

Arguments

object A generated cohort set object.

... For compatibility (not used).

Value

A list of properties of the cdm_source object.

Examples

summary(newLocalSource())

summary.cohort_table Summary a generated cohort set

Description

Summary a generated cohort set

Usage

S3 method for class 'cohort_table'
summary(object, ...)

Arguments

object A generated cohort set object.

... For compatibility (not used).

Value

A summarised_result object with a summary of a cohort_table.

summary.summarised_result 91

Examples

library(dplyr, warn.conflicts = FALSE)

person <- tibble(
person_id = 1, gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

)
observation_period <- tibble(

observation_period_id = 1, person_id = 1,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
cdm <- cdmFromTables(

tables = list("person" = person, "observation_period" = observation_period),
cdmName = "test",
cohortTables = list("cohort1" = tibble(
cohort_definition_id = 1,
subject_id = 1,
cohort_start_date = as.Date("2010-01-01"),
cohort_end_date = as.Date("2010-01-05")

))
)

summary(cdm$cohort1)

summary.summarised_result

Summary a summarised_result

Description

Summary a summarised_result

Usage

S3 method for class 'summarised_result'
summary(object, ...)

Arguments

object A summarised_result object.

... For compatibility (not used).

Value

A summary of the result_types contained in a summarised_result object.

92 suppress

Examples

library(dplyr, warn.conflicts = FALSE)

person <- tibble(
person_id = 1, gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

)
observation_period <- tibble(

observation_period_id = 1, person_id = 1,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
cdm <- cdmFromTables(

tables = list("person" = person, "observation_period" = observation_period),
cdmName = "test"

)

result <- summary(cdm)

summary(result)

suppress Function to suppress counts in result objects

Description

Function to suppress counts in result objects

Usage

suppress(result, minCellCount = 5)

Arguments

result Result object

minCellCount Minimum count of records to report results.

Value

Table with suppressed counts

suppress.summarised_result 93

suppress.summarised_result

Function to suppress counts in result objects

Description

Function to suppress counts in result objects

Usage

S3 method for class 'summarised_result'
suppress(result, minCellCount = 5)

Arguments

result summarised_result object.

minCellCount Minimum count of records to report results.

Value

summarised_result with suppressed counts.

Examples

library(dplyr, warn.conflicts = FALSE)
library(omopgenerics)

my_result <- tibble(
"result_id" = "1",
"cdm_name" = "mock",
"result_type" = "summarised_characteristics",
"package_name" = "omopgenerics",
"package_version" = as.character(utils::packageVersion("omopgenerics")),
"group_name" = "overall",
"group_level" = "overall",
"strata_name" = c(rep("overall", 6), rep("sex", 3)),
"strata_level" = c(rep("overall", 6), "male", "female", "female"),
"variable_name" = c(

"number records", "age_group", "age_group",
"age_group", "age_group", "my_variable", "number records", "age_group",
"age_group"

),
"variable_level" = c(

NA, "<50", "<50", ">=50", ">=50", NA, NA,
"<50", "<50"

),
"estimate_name" = c(

"count", "count", "percentage", "count", "percentage",
"random", "count", "count", "percentage"

94 tableName

),
"estimate_type" = c(

"integer", "integer", "percentage", "integer",
"percentage", "numeric", "integer", "integer", "percentage"

),
"estimate_value" = c("10", "5", "50", "3", "30", "1", "3", "12", "6"),
"additional_name" = "overall",
"additional_level" = "overall"

)
my_result <- newSummarisedResult(my_result)
my_result |> glimpse()
my_result <- suppress(my_result, minCellCount = 5)
my_result |> glimpse()

tableName Get the table name of a cdm_table.

Description

Get the table name of a cdm_table.

Usage

tableName(table)

Arguments

table A cdm_table.

Value

A character with the name.

Examples

library(omopgenerics)
library(dplyr, warn.conflicts = FALSE)

cdm <- cdmFromTables(
tables = list(

"person" = tibble(
person_id = c(1, 2, 3), gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

),
"observation_period" = tibble(

observation_period_id = 1:3, person_id = 1:3,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

tableSource 95

)
),
cdmName = "mock"

)

tableName(cdm$person)

tableSource Get the table source of a cdm_table.

Description

Get the table source of a cdm_table.

Usage

tableSource(table)

Arguments

table A cdm_table.

Value

A cdm_source object.

Examples

library(omopgenerics)
library(dplyr, warn.conflicts = FALSE)

cdm <- cdmFromTables(
tables = list(

"person" = tibble(
person_id = c(1, 2, 3), gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

),
"observation_period" = tibble(

observation_period_id = 1:3, person_id = 1:3,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
),
cdmName = "mock"

)

tableSource(cdm$person)

96 tidy.summarised_result

tidy.summarised_result

Turn a <summarised_result> object into a tidy tibble

Description

[Experimental] Provides tools for obtaining a tidy version of a <summarised_result> object. This
tidy version will include the settings as columns, estimate_value will be pivotted into columns
using estimate_name as names, and group, strata, and additional will be splitted.

Usage

S3 method for class 'summarised_result'
tidy(x, ...)

Arguments

x A <summarised_result>.

... For compatibility (not used).

Value

A tibble.

Examples

{
library(dplyr)
library(omopgenerics)

x <- tibble(
"result_id" = as.integer(c(1, 2)),
"cdm_name" = c("cprd", "eunomia"),
"group_name" = "cohort_name",
"group_level" = "my_cohort",
"strata_name" = "sex",
"strata_level" = "male",
"variable_name" = "Age group",
"variable_level" = "10 to 50",
"estimate_name" = "count",
"estimate_type" = "numeric",
"estimate_value" = "5",
"additional_name" = "overall",
"additional_level" = "overall"

) |>
newSummarisedResult(settings = tibble(

"result_id" = c(1, 2), "custom" = c("A", "B")
))

tidyColumns 97

x

x |> tidy()
}

tidyColumns Identify tidy columns of a <summarised_result>

Description

Identifies and returns the columns that the tidy version of the <summarised_result> will have.

Usage

tidyColumns(result)

Arguments

result A <summarised_result>.

Value

Table columns after applying tidy() function to a <summarised_result>.

Examples

{
library(dplyr)
library(omopgenerics)

x <- tibble(
"result_id" = as.integer(c(1, 2)),
"cdm_name" = c("cprd", "eunomia"),
"group_name" = "cohort_name",
"group_level" = "my_cohort",
"strata_name" = "sex",
"strata_level" = "male",
"variable_name" = "Age group",
"variable_level" = "10 to 50",
"estimate_name" = "count",
"estimate_type" = "numeric",
"estimate_value" = "5",
"additional_name" = "overall",
"additional_level" = "overall"

) |>
newSummarisedResult(settings = tibble(

"result_id" = c(1, 2), "custom" = c("A", "B")
))

98 toSnakeCase

x

x |> tidyColumns()
}

tmpPrefix Create a temporary prefix for tables, that contains a unique prefix that
starts with tmp.

Description

Create a temporary prefix for tables, that contains a unique prefix that starts with tmp.

Usage

tmpPrefix()

Value

A temporary prefix.

Examples

library(omopgenerics)
tmpPrefix()

toSnakeCase Convert a character vector to snake case

Description

Convert a character vector to snake case

Usage

toSnakeCase(x)

Arguments

x Character vector to convert

Value

A snake_case vector

transformToSummarisedResult 99

Examples

toSnakeCase("myVariable")

toSnakeCase(c("cohort1", "Cohort22b"))

transformToSummarisedResult

Create a <summarised_result> object from a data.frame, given a set
of specifications.

Description

Create a <summarised_result> object from a data.frame, given a set of specifications.

Usage

transformToSummarisedResult(
x,
group = character(),
strata = character(),
additional = character(),
estimates = character(),
settings = character()

)

Arguments

x A data.frame.

group Columns in x to be used in group_name-group_level formatting.

strata Columns in x to be used in strata_name-strata_level formatting.

additional Columns in x to be used in additional_name-additional_level formatting.

estimates Columns in x to be formatted into: estimate_name-estimate_type-estimate_value.

settings Columns in x thta form the settings of the <summarised_result> object.

Value

A <summarised_result> object.

Examples

x <- dplyr::tibble(
cohort_name = c("cohort1", "cohort2"),
variable_name = "age",
mean = c(50, 45.3),
median = c(55L, 44L)

100 uniqueTableName

)

transformToSummarisedResult(
x = x,
group = c("cohort_name"),
estimates = c("mean", "median")

)

uniqueId Get a unique Identifier with a certain number of characters and a pre-
fix.

Description

Get a unique Identifier with a certain number of characters and a prefix.

Usage

uniqueId(n = 1, exclude = character(), nChar = 3, prefix = "id_")

Arguments

n Number of identifiers.

exclude Columns to exclude.

nChar Number of characters.

prefix A prefix for the identifiers.

Value

A character vector with n unique identifiers.

uniqueTableName Create a unique table name

Description

Create a unique table name

Usage

uniqueTableName(prefix = "")

Arguments

prefix Prefix for the table names.

uniteAdditional 101

Value

A string that can be used as a dbplyr temp table name

Examples

library(omopgenerics)
uniqueTableName()

uniteAdditional Unite one or more columns in additional_name-additional_level for-
mat

Description

Unites targeted table columns into additional_name-additional_level columns.

Usage

uniteAdditional(
x,
cols = character(0),
keep = FALSE,
ignore = c(NA, "overall")

)

Arguments

x Tibble or dataframe.

cols Columns to aggregate.

keep Whether to keep the original columns.

ignore Level values to ignore.

Value

A tibble with the new columns.

Examples

x <- dplyr::tibble(
variable = "number subjects",
value = c(10, 15, 40, 78),
sex = c("Male", "Female", "Male", "Female"),
age_group = c("<40", ">40", ">40", "<40")

)

x |>
uniteAdditional(c("sex", "age_group"))

102 uniteStrata

uniteGroup Unite one or more columns in group_name-group_level format

Description

Unites targeted table columns into group_name-group_level columns.

Usage

uniteGroup(x, cols = character(0), keep = FALSE, ignore = c(NA, "overall"))

Arguments

x Tibble or dataframe.

cols Columns to aggregate.

keep Whether to keep the original columns.

ignore Level values to ignore.

Value

A tibble with the new columns.

Examples

x <- dplyr::tibble(
variable = "number subjects",
value = c(10, 15, 40, 78),
sex = c("Male", "Female", "Male", "Female"),
age_group = c("<40", ">40", ">40", "<40")

)

x |>
uniteGroup(c("sex", "age_group"))

uniteStrata Unite one or more columns in strata_name-strata_level format

Description

Unites targeted table columns into strata_name-strata_level columns.

Usage

uniteStrata(x, cols = character(0), keep = FALSE, ignore = c(NA, "overall"))

validateAchillesTable 103

Arguments

x Tibble or dataframe.

cols Columns to aggregate.

keep Whether to keep the original columns.

ignore Level values to ignore.

Value

A tibble with the new columns.

Examples

x <- dplyr::tibble(
variable = "number subjects",
value = c(10, 15, 40, 78),
sex = c("Male", "Female", "Male", "Female"),
age_group = c("<40", ">40", ">40", "<40")

)

x |>
uniteStrata(c("sex", "age_group"))

validateAchillesTable Validate if a cdm_table is a valid achilles table.

Description

Validate if a cdm_table is a valid achilles table.

Usage

validateAchillesTable(
table,
version = NULL,
cast = FALSE,
call = parent.frame()

)

Arguments

table A cdm_table to validate.

version The cdm vocabulary version.

cast Whether to cast columns to required type.

call Passed to cli call.

104 validateAgeGroupArgument

Value

invisible achilles table

validateAgeGroupArgument

Validate the ageGroup argument. It must be a list of two integerish
numbers lower age and upper age, both of the must be greater or equal
to 0 and lower age must be lower or equal to the upper age. If not
named automatic names will be given in the output list.

Description

Validate the ageGroup argument. It must be a list of two integerish numbers lower age and upper
age, both of the must be greater or equal to 0 and lower age must be lower or equal to the upper age.
If not named automatic names will be given in the output list.

Usage

validateAgeGroupArgument(
ageGroup,
multipleAgeGroup = TRUE,
overlap = FALSE,
null = TRUE,
ageGroupName = "age_group",
call = parent.frame()

)

Arguments

ageGroup age group in a list.
multipleAgeGroup

allow mutliple age group.

overlap allow overlapping ageGroup.

null null age group allowed true or false.

ageGroupName Name of the default age group.

call parent frame.

Value

validate ageGroup

Examples

validateAgeGroupArgument(list(c(0, 39), c(40, Inf)))

validateCdmArgument 105

validateCdmArgument Validate if an object in a valid cdm_reference.

Description

Validate if an object in a valid cdm_reference.

Usage

validateCdmArgument(
cdm,
checkOverlapObservation = FALSE,
checkStartBeforeEndObservation = FALSE,
checkPlausibleObservationDates = FALSE,
checkPerson = FALSE,
requiredTables = character(),
validation = "error",
call = parent.frame()

)

Arguments

cdm A cdm_reference object
checkOverlapObservation

TRUE to perform check on no overlap observation period
checkStartBeforeEndObservation

TRUE to perform check on correct observational start and end date
checkPlausibleObservationDates

TRUE to perform check that there are no implausible observation period start
dates (before 1800-01-01) or end dates (after the current date)

checkPerson TRUE to perform check on person id in all clinical table are in person table

requiredTables Name of tables that are required to be part of the cdm_reference object.

validation How to perform validation: "error", "warning".

call A call argument to pass to cli functions.

Value

A cdm_reference object

Examples

cdm <- cdmFromTables(
tables = list(

"person" = dplyr::tibble(
person_id = c(1, 2, 3), gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

106 validateCohortArgument

),
"observation_period" = dplyr::tibble(

observation_period_id = 1:3, person_id = 1:3,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
),
cdmName = "mock"

)

validateCdmArgument(cdm)

validateCdmTable Validate if a table is a valid cdm_table object.

Description

Validate if a table is a valid cdm_table object.

Usage

validateCdmTable(table, name = NULL, call = parent.frame())

Arguments

table Object to validate.

name If we want to validate that the table has a specific name.

call Call argument that will be passed to cli.

Value

The table or an error message.

validateCohortArgument

Validate a cohort table input.

Description

Validate a cohort table input.

validateCohortArgument 107

Usage

validateCohortArgument(
cohort,
checkEndAfterStart = FALSE,
checkOverlappingEntries = FALSE,
checkMissingValues = FALSE,
checkInObservation = FALSE,
checkAttributes = FALSE,
checkPermanentTable = FALSE,
dropExtraColumns = FALSE,
validation = "error",
call = parent.frame()

)

Arguments

cohort Object to be validated as a valid cohort input.
checkEndAfterStart

If TRUE a check that all cohort end dates come on or after cohort start date will
be performed.

checkOverlappingEntries

If TRUE a check that no individuals have overlapping cohort entries will be
performed.

checkMissingValues

If TRUE a check that there are no missing values in required fields will be per-
formed.

checkInObservation

If TRUE a check that cohort entries are within the individuals observation peri-
ods will be performed.

checkAttributes

Whether to check if attributes are present and populated correctly.
checkPermanentTable

Whether to check if the table has to be a permanent table.
dropExtraColumns

Whether to drop extra columns that are not the required ones.

validation How to perform validation: "error", "warning".

call A call argument to pass to cli functions.

Examples

cdm <- cdmFromTables(
tables = list(

"person" = dplyr::tibble(
person_id = c(1, 2, 3), gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

),
"observation_period" = dplyr::tibble(

108 validateCohortIdArgument

observation_period_id = 1:3, person_id = 1:3,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
),
cohortTables = list(
cohort = dplyr::tibble(

cohort_definition_id = 1L,
subject_id = 1L,
cohort_start_date = as.Date("2020-01-01"),
cohort_end_date = as.Date("2021-02-10")

)
),
cdmName = "mock"

)

validateCohortArgument(cdm$cohort)

validateCohortIdArgument

Validate cohortId argument. CohortId can either be a co-
hort_definition_id value, a cohort_name or a tidyselect ex-
pression referinc to cohort_names. If you want to sup-
port tidyselect expressions please use the function as:
validateCohortIdArgument({{cohortId}}, cohort).

Description

Validate cohortId argument. CohortId can either be a cohort_definition_id value, a cohort_name
or a tidyselect expression referinc to cohort_names. If you want to support tidyselect expressions
please use the function as: validateCohortIdArgument({{cohortId}}, cohort).

Usage

validateCohortIdArgument(
cohortId,
cohort,
null = TRUE,
validation = "error",
call = parent.frame()

)

Arguments

cohortId A cohortId vector to be validated.

cohort A cohort_table object.

validateColumn 109

null Whether NULL is accepted. If NULL all cohortId will be returned.

validation How to perform validation: "error", "warning".

call A call argument to pass to cli functions.

Examples

cdm <- cdmFromTables(
tables = list(

"person" = dplyr::tibble(
person_id = c(1, 2, 3), gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

),
"observation_period" = dplyr::tibble(

observation_period_id = 1:3, person_id = 1:3,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
),
cohortTables = list(
cohort = dplyr::tibble(

cohort_definition_id = 1L,
subject_id = 1L,
cohort_start_date = as.Date("2020-01-01"),
cohort_end_date = as.Date("2021-02-10")

)
),
cdmName = "mock"

)

validateCohortIdArgument(NULL, cdm$cohort)
validateCohortIdArgument(1L, cdm$cohort)
validateCohortIdArgument(2L, cdm$cohort, validation = "warning")

validateColumn Validate whether a variable points to a certain exiting column in a
table.

Description

Validate whether a variable points to a certain exiting column in a table.

Usage

validateColumn(
column,
x,
type = c("character", "date", "logical", "numeric", "integer"),

110 validateConceptSetArgument

validation = "error",
call = parent.frame()

)

Arguments

column Name of a column that you want to check that exist in x table.

x Table to check if the column exist.

type Type of the column.

validation Whether to throw warning or error.

call Passed to cli functions.

Value

the validated name

Examples

x <- dplyr::tibble(a = 1, b = "xxx")

validateColumn("a", x, validation = "warning")
validateColumn("a", x, type = "character", validation = "warning")
validateColumn("a", x, type = "numeric", validation = "warning")
validateColumn("not_existing", x, type = "numeric", validation = "warning")

validateConceptSetArgument

Validate conceptSet argument. It can either be a list, a codelist, a con-
cept set expression or a codelist with details. The output will always
be a codelist.

Description

Validate conceptSet argument. It can either be a list, a codelist, a concept set expression or a codelist
with details. The output will always be a codelist.

Usage

validateConceptSetArgument(
conceptSet,
cdm = NULL,
validation = "error",
call = parent.frame()

)

validateNameArgument 111

Arguments

conceptSet It can be either a named list of concepts or a codelist, codelist_with_details or
concept_set_expression object.

cdm A cdm_reference object, needed if a concept_set_expression is provided.

validation How to perform validation: "error", "warning".

call A call argument to pass to cli functions.

Value

A codelist object.

Examples

conceptSet <- list(disease_x = c(1L, 2L))
validateConceptSetArgument(conceptSet)

validateNameArgument Validate name argument. It must be a snake_case character vector.
You can add the a cdm object to check name is not already used in that
cdm.

Description

Validate name argument. It must be a snake_case character vector. You can add the a cdm object to
check name is not already used in that cdm.

Usage

validateNameArgument(
name,
cdm = NULL,
validation = "error",
null = FALSE,
call = parent.frame()

)

Arguments

name Name of a new table to be added to a cdm object.

cdm A cdm_reference object. It will check if a table named name already exists in
the cdm.

validation How to perform validation: "error", "warning".

null If TRUE, name can be NULL

call A call argument to pass to cli functions.

112 validateNameStyle

Examples

this is a validate name
name <- "my_new_table"
validateNameArgument(name)

this is not
name <- "myTableNAME"
validateNameArgument(name, validation = "warning")

validateNameLevel Validate if two columns are valid Name-Level pair.

Description

Validate if two columns are valid Name-Level pair.

Usage

validateNameLevel(
x,
prefix,
sep = " &&& ",
validation = "error",
call = parent.frame()

)

Arguments

x A tibble.

prefix Prefix for the name-level pair, e.g. ’strata’ for strata_name-strata_level pair.

sep Separation pattern.

validation Either ’error’, ’warning’ or ’message’.

call Will be used by cli to report errors.

validateNameStyle Validate nameStyle argument. If any of the element in ... has length
greater than 1 it must be contained in nameStyle. Note that snake case
notation is used.

Description

Validate nameStyle argument. If any of the element in ... has length greater than 1 it must be
contained in nameStyle. Note that snake case notation is used.

validateNewColumn 113

Usage

validateNameStyle(nameStyle, ..., call = parent.frame())

Arguments

nameStyle A character vector. It must contain all the ... elements in snake_case format
and between {}.

... Elements to be included.

call Passed to cli functions.

Value

invisible nameStyle.

Examples

validateNameStyle(
nameStyle = "hi_{cohort_name}",
cohortName = c("cohort1", "cohort2"),
otherVariable = c("only 1 value")

)

Not run:
validateNameStyle(

nameStyle = "hi_{cohort_name}",
cohortName = c("cohort1", "cohort2"),
otherVariable = c("value1", "value2")

)

End(Not run)
validateNameStyle(

nameStyle = "{other_variable}_hi_{cohort_name}",
cohortName = c("cohort1", "cohort2"),
otherVariable = c("value1", "value2")

)

validateNewColumn Validate a new column of a table

Description

Validate a new column of a table

Usage

validateNewColumn(table, column, validation = "warning", call = parent.frame())

114 validateOmopTable

Arguments

table The table to check if the column already exists.

column Character vector with the name(s) of the new column(s).

validation Whether to throw warning or error.

call Passed to cli functions.

Value

table without conflicting columns.

Examples

x <- dplyr::tibble(
column1 = c(1L, 2L),
column2 = c("a", "b")

)
validateNewColumn(x, "not_exiting_column")
validateNewColumn(x, "column1")

validateOmopTable Validate an omop_table

Description

Validate an omop_table

Usage

validateOmopTable(
omopTable,
version = NULL,
cast = FALSE,
call = parent.frame()

)

Arguments

omopTable An omop_table to check.

version The version of the cdm.

cast Whether to cast columns to the correct type.

call Call argument that will be passed to cli error message.

Value

An omop_table object.

validateResultArgument 115

validateResultArgument

Validate if a an object is a valid ’summarised_result’ object.

Description

Validate if a an object is a valid ’summarised_result’ object.

Usage

validateResultArgument(
result,
checkNoDuplicates = FALSE,
checkNameLevel = FALSE,
checkSuppression = FALSE,
validation = "error",
call = parent.frame()

)

Arguments

result summarised_result object to validate.
checkNoDuplicates

Whether there are not allowed duplicates in the result object.

checkNameLevel Whether the name-level paired columns are can be correctly split.
checkSuppression

Whether the suppression in the result object is well defined.

validation Only error is supported at the moment.

call parent.frame

Value

summarise result object

Examples

x <- dplyr::tibble(
"result_id" = 1L,
"cdm_name" = "eunomia",
"group_name" = "cohort_name",
"group_level" = "my_cohort",
"strata_name" = c("sex", "sex &&& age_group", "sex &&& year"),
"strata_level" = c("Female", "Male &&& <40", "Female &&& 2010"),
"variable_name" = "number subjects",
"variable_level" = NA_character_,
"estimate_name" = "count",
"estimate_type" = "integer",

116 validateStrataArgument

"estimate_value" = c("100", "44", "14"),
"additional_name" = "overall",
"additional_level" = "overall"

) |>
newSummarisedResult()

validateResultArgument(x)

validateStrataArgument

To validate a strata list. It makes sure that elements are unique and
point to columns in table.

Description

To validate a strata list. It makes sure that elements are unique and point to columns in table.

Usage

validateStrataArgument(strata, table, call = parent.frame())

Arguments

strata A list of characters that point to columns in table.

table A table with columns.

call Passed to cli functions.

Value

The same strata input or an error if the input is incorrect.

Examples

strata <- list("age", "sex", c("age", "sex"))
x <- dplyr::tibble(age = 30L, sex = "Female")

validateStrataArgument(strata, x)

validateWindowArgument 117

validateWindowArgument

Validate a window argument. It must be a list of two elements (window
start and window end), both must be integerish and window start must
be lower or equal than window end.

Description

Validate a window argument. It must be a list of two elements (window start and window end), both
must be integerish and window start must be lower or equal than window end.

Usage

validateWindowArgument(window, snakeCase = TRUE, call = parent.frame())

Arguments

window time window

snakeCase return default window name in snake case if TRUE

call A call argument to pass to cli functions.

Value

time window

Examples

validateWindowArgument(list(c(0, 15), c(-Inf, Inf)))
validateWindowArgument(list(c(0, 15), c(-Inf, Inf)), snakeCase = FALSE)

[[.cdm_reference Subset a cdm reference object.

Description

Subset a cdm reference object.

Usage

S3 method for class 'cdm_reference'
x[[name]]

118 [[<-.cdm_reference

Arguments

x A cdm reference

name The name or index of the table to extract from the cdm object.

Value

A single cdm table reference

Examples

library(omopgenerics)
library(dplyr, warn.conflicts = FALSE)

cdm <- cdmFromTables(
tables = list(

"person" = tibble(
person_id = c(1, 2, 3), gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

),
"observation_period" = tibble(

observation_period_id = 1:3, person_id = 1:3,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
),
cdmName = "mock"

)

cdm[["person"]]

[[<-.cdm_reference Assign a table to a cdm reference.

Description

Assign a table to a cdm reference.

Usage

S3 replacement method for class 'cdm_reference'
cdm[[name]] <- value

Arguments

cdm A cdm reference.

name Name where to assign the new table.

value Table with the same source than the cdm object.

$.cdm_reference 119

Value

The cdm reference.

$.cdm_reference Subset a cdm reference object.

Description

Subset a cdm reference object.

Usage

S3 method for class 'cdm_reference'
x$name

Arguments

x A cdm reference.

name The name of the table to extract from the cdm object.

Value

A single cdm table reference

Examples

library(omopgenerics)
library(dplyr, warn.conflicts = FALSE)

cdm <- cdmFromTables(
tables = list(

"person" = tibble(
person_id = c(1, 2, 3), gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

),
"observation_period" = tibble(

observation_period_id = 1:3, person_id = 1:3,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
),
cdmName = "mock"

)

cdm$person

120 $<-.cdm_reference

$<-.cdm_reference Assign an table to a cdm reference.

Description

Assign an table to a cdm reference.

Usage

S3 replacement method for class 'cdm_reference'
cdm$name <- value

Arguments

cdm A cdm reference.

name Name where to assign the new table.

value Table with the same source than the cdm object.

Value

The cdm reference.

Examples

library(omopgenerics)

cdm <- cdmFromTables(
tables = list(

"person" = dplyr::tibble(
person_id = c(1, 2, 3), gender_concept_id = 0, year_of_birth = 1990,
race_concept_id = 0, ethnicity_concept_id = 0

),
"observation_period" = dplyr::tibble(

observation_period_id = 1:3, person_id = 1:3,
observation_period_start_date = as.Date("2000-01-01"),
observation_period_end_date = as.Date("2023-12-31"),
period_type_concept_id = 0

)
),
cdmName = "mock"

)

cdm$person

Index

[[.cdm_reference, 117
[[<-.cdm_reference, 118
$.cdm_reference, 119
$<-.cdm_reference, 120

achillesColumns, 5
achillesTables, 6
additionalColumns, 6
addSettings, 7
assertCharacter, 8
assertChoice, 9
assertClass, 10
assertDate, 10
assertList, 11
assertLogical, 12
assertNumeric, 13
assertTable, 14
assertTrue, 15
attrition, 15
attrition.cohort_table, 16

bind, 17
bind.cohort_table, 17
bind.summarised_result, 18

cdmClasses, 19
cdmDisconnect, 20
cdmFromTables, 21
cdmName, 22
cdmReference, 23
cdmSelect, 24
cdmSource, 24
cdmSourceType, 25
cdmTableFromSource, 26
cdmVersion, 27
checkCohortRequirements, 28
cohortCodelist, 29
cohortColumns, 30
cohortCount, 31
cohortTables, 32

collect.cdm_reference, 32
collect.cohort_table, 33
combineStrata, 34
compute.cdm_table, 34
createIndexes, 35
createLogFile, 36
createTableIndex, 36

dropSourceTable, 37
dropTable, 37

emptyAchillesTable, 38
emptyCdmReference, 38
emptyCodelist, 39
emptyCodelistWithDetails, 39
emptyCohortTable, 40
emptyConceptSetExpression, 41
emptyOmopTable, 41
emptySummarisedResult, 42
estimateTypeChoices, 43
existingIndexes, 43
expectedIndexes, 44
exportCodelist, 44
exportConceptSetExpression, 45
exportSummarisedResult, 45

filterAdditional, 46
filterGroup, 47
filterSettings, 48
filterStrata, 49

getCohortId, 50
getCohortName, 51
getPersonIdentifier, 51
groupColumns, 52

importCodelist, 53
importConceptSetExpression, 53
importSummarisedResult, 54
insertCdmTo, 54
insertFromSource, 55

121

122 INDEX

insertTable, 55
isResultSuppressed, 56
isTableEmpty, 57

listSourceTables, 57
logMessage, 58

newAchillesTable, 59
newCdmReference, 59
newCdmSource, 60
newCdmTable, 61
newCodelist, 61
newCodelistWithDetails, 62
newCohortTable, 62
newConceptSetExpression, 63
newLocalSource, 64
newOmopTable, 65
newSummarisedResult, 65
numberRecords, 66
numberSubjects, 67

omopColumns, 68
omopDataFolder, 69
omopTableFields, 70
omopTables, 70

pivotEstimates, 71
print.cdm_reference, 72
print.codelist, 73
print.codelist_with_details, 73
print.concept_set_expression, 74

readSourceTable, 75
recordCohortAttrition, 75
resultColumns, 76
resultPackageVersion, 77

settings, 78
settings.cohort_table, 78
settings.summarised_result, 79
settingsColumns, 80
sourceType, 81
splitAdditional, 82
splitAll, 83
splitGroup, 84
splitStrata, 85
statusIndexes, 86
strataColumns, 87
summariseLogFile, 88
summary.cdm_reference, 89

summary.cdm_source, 90
summary.cohort_table, 90
summary.summarised_result, 91
suppress, 92
suppress.summarised_result, 93

tableName, 94
tableSource, 95
tidy.summarised_result, 96
tidyColumns, 97
tmpPrefix, 98
toSnakeCase, 98
transformToSummarisedResult, 99

uniqueId, 100
uniqueTableName, 100
uniteAdditional, 101
uniteGroup, 102
uniteStrata, 102

validateAchillesTable, 103
validateAgeGroupArgument, 104
validateCdmArgument, 105
validateCdmTable, 106
validateCohortArgument, 106
validateCohortIdArgument, 108
validateColumn, 109
validateConceptSetArgument, 110
validateNameArgument, 111
validateNameLevel, 112
validateNameStyle, 112
validateNewColumn, 113
validateOmopTable, 114
validateResultArgument, 115
validateStrataArgument, 116
validateWindowArgument, 117

	achillesColumns
	achillesTables
	additionalColumns
	addSettings
	assertCharacter
	assertChoice
	assertClass
	assertDate
	assertList
	assertLogical
	assertNumeric
	assertTable
	assertTrue
	attrition
	attrition.cohort_table
	bind
	bind.cohort_table
	bind.summarised_result
	cdmClasses
	cdmDisconnect
	cdmFromTables
	cdmName
	cdmReference
	cdmSelect
	cdmSource
	cdmSourceType
	cdmTableFromSource
	cdmVersion
	checkCohortRequirements
	cohortCodelist
	cohortColumns
	cohortCount
	cohortTables
	collect.cdm_reference
	collect.cohort_table
	combineStrata
	compute.cdm_table
	createIndexes
	createLogFile
	createTableIndex
	dropSourceTable
	dropTable
	emptyAchillesTable
	emptyCdmReference
	emptyCodelist
	emptyCodelistWithDetails
	emptyCohortTable
	emptyConceptSetExpression
	emptyOmopTable
	emptySummarisedResult
	estimateTypeChoices
	existingIndexes
	expectedIndexes
	exportCodelist
	exportConceptSetExpression
	exportSummarisedResult
	filterAdditional
	filterGroup
	filterSettings
	filterStrata
	getCohortId
	getCohortName
	getPersonIdentifier
	groupColumns
	importCodelist
	importConceptSetExpression
	importSummarisedResult
	insertCdmTo
	insertFromSource
	insertTable
	isResultSuppressed
	isTableEmpty
	listSourceTables
	logMessage
	newAchillesTable
	newCdmReference
	newCdmSource
	newCdmTable
	newCodelist
	newCodelistWithDetails
	newCohortTable
	newConceptSetExpression
	newLocalSource
	newOmopTable
	newSummarisedResult
	numberRecords
	numberSubjects
	omopColumns
	omopDataFolder
	omopTableFields
	omopTables
	pivotEstimates
	print.cdm_reference
	print.codelist
	print.codelist_with_details
	print.concept_set_expression
	readSourceTable
	recordCohortAttrition
	resultColumns
	resultPackageVersion
	settings
	settings.cohort_table
	settings.summarised_result
	settingsColumns
	sourceType
	splitAdditional
	splitAll
	splitGroup
	splitStrata
	statusIndexes
	strataColumns
	summariseLogFile
	summary.cdm_reference
	summary.cdm_source
	summary.cohort_table
	summary.summarised_result
	suppress
	suppress.summarised_result
	tableName
	tableSource
	tidy.summarised_result
	tidyColumns
	tmpPrefix
	toSnakeCase
	transformToSummarisedResult
	uniqueId
	uniqueTableName
	uniteAdditional
	uniteGroup
	uniteStrata
	validateAchillesTable
	validateAgeGroupArgument
	validateCdmArgument
	validateCdmTable
	validateCohortArgument
	validateCohortIdArgument
	validateColumn
	validateConceptSetArgument
	validateNameArgument
	validateNameLevel
	validateNameStyle
	validateNewColumn
	validateOmopTable
	validateResultArgument
	validateStrataArgument
	validateWindowArgument
	[[.cdm_reference
	[[<-.cdm_reference
	$.cdm_reference
	$<-.cdm_reference
	Index

