
Package ‘pkgload’
February 3, 2026

Title Simulate Package Installation and Attach

Version 1.5.0

Description Simulates the process of installing a package and then
attaching it. This is a key part of the 'devtools' package as it
allows you to rapidly iterate while developing a package.

License MIT + file LICENSE

URL https://github.com/r-lib/pkgload, https://pkgload.r-lib.org

BugReports https://github.com/r-lib/pkgload/issues

Depends R (>= 3.4.0)

Imports cli (>= 3.3.0), desc, fs, glue, lifecycle, methods, pkgbuild,
processx, rlang (>= 1.1.1), rprojroot, utils

Suggests bitops, jsonlite, mathjaxr, pak, Rcpp, remotes, rstudioapi,
testthat (>= 3.2.1.1), usethis, withr

Config/Needs/website tidyverse/tidytemplate, ggplot2

Config/testthat/edition 3

Config/testthat/parallel TRUE

Config/testthat/start-first dll

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation no

Author Hadley Wickham [aut],
Winston Chang [aut],
Jim Hester [aut],
Lionel Henry [aut, cre],
Posit Software, PBC [cph, fnd],
R Core team [ctb] (Some namespace and vignette code extracted from base
R)

Maintainer Lionel Henry <lionel@posit.co>

Repository CRAN

Date/Publication 2026-02-03 06:10:46 UTC

1

https://github.com/r-lib/pkgload
https://pkgload.r-lib.org
https://github.com/r-lib/pkgload/issues

2 dev_example

Contents
dev_example . 2
dev_help . 3
help . 4
inst . 5
is_dev_package . 6
load_all . 6
load_code . 9
load_data . 9
load_dll . 10
packages . 10
package_file . 11
system.file . 12
unload . 12

Index 14

dev_example Run a examples for an in-development function.

Description

dev_example is a replacement for example. run_example is a low-level function that takes a path
to an Rd file.

Usage

dev_example(topic, quiet = FALSE)

run_example(
path,
run_donttest = FALSE,
run_dontrun = FALSE,
env = new.env(parent = globalenv()),
quiet = FALSE,
macros = NULL,
run,
test

)

Arguments

topic Name or topic (or name of Rd) file to run examples for

quiet If TRUE, does not echo code to console.

path Path to .Rd file

run_donttest if TRUE, do run \donttest sections in the Rd files.

dev_help 3

run_dontrun if TRUE, do run \dontrun sections in the Rd files.

env Environment in which code will be run.

macros Custom macros to use to parse the .Rd file. See the macros argument of tools::parse_Rd().
If NULL, then the tools::Rd2ex() (and tools::parse_Rd()) default is used.

run, test Deprecated, see run_dontrun and run_donttest above.

Examples

Not run:
Runs installed example:
library("ggplot2")
example("ggplot")

Runs development example:
dev_example("ggplot")

End(Not run)

dev_help In-development help for package loaded with devtools

Description

dev_help() searches for source documentation provided in packages loaded by devtools. To im-
prove performance, the .Rd files are parsed to create to index once, then cached. Use dev_topic_index_reset()
to clear that index. You can manually retrieve the index for a local package with dev_topic_index().

Usage

dev_help(
topic,
dev_packages = NULL,
stage = "render",
type = getOption("help_type")

)

dev_topic_find(topic, dev_packages = NULL)

dev_topic_index(path = ".")

dev_topic_index_reset(pkg_name)

Arguments

topic name of help to search for.

dev_packages A character vector of package names to search within. If NULL, defaults to all
packages loaded by devtools.

4 help

stage at which stage ("build", "install", or "render") should \\Sexpr macros be exe-
cuted? This is only important if you’re using \\Sexpr macro’s in your Rd files.

type of html to produce: "html" or "text". Defaults to your default documentation
type.

path Path to package.

pkg_name Name of package.

Examples

Not run:
library("ggplot2")
help("ggplot") # loads installed documentation for ggplot

load_all("ggplot2")
dev_help("ggplot") # loads development documentation for ggplot

End(Not run)

help Drop-in replacements for help and ? functions

Description

The ? and help functions are replacements for functions of the same name in the utils package.
They are made available when a package is loaded with load_all().

Usage

help(topic, package = NULL, ...)

?e2
e1?e2

Arguments

topic A name or character string specifying the help topic.

package A name or character string specifying the package in which to search for the
help topic. If NULL, search all packages.

... Additional arguments to pass to utils::help().

e1 First argument to pass along to utils::¿‘.

e2 Second argument to pass along to utils::¿‘.

inst 5

Details

The ? function is a replacement for utils::?() from the utils package. It will search for help in
devtools-loaded packages first, then in regular packages.

The help function is a replacement for utils::help() from the utils package. If package is not
specified, it will search for help in devtools-loaded packages first, then in regular packages. If
package is specified, then it will search for help in devtools-loaded packages or regular packages,
as appropriate.

Examples

Not run:
This would load devtools and look at the help for load_all, if currently
in the devtools source directory.
load_all()
?load_all
help("load_all")

End(Not run)

To see the help pages for utils::help and utils::`?`:
help("help", "utils")
help("?", "utils")

Not run:
Examples demonstrating the multiple ways of supplying arguments
NB: you can't do pkg <- "ggplot2"; help("ggplot2", pkg)
help(lm)
help(lm, stats)
help(lm, 'stats')
help('lm')
help('lm', stats)
help('lm', 'stats')
help(package = stats)
help(package = 'stats')
topic <- "lm"
help(topic)
help(topic, stats)
help(topic, 'stats')

End(Not run)

inst Get the installation path of a package

Description

Given the name of a package, this returns a path to the installed copy of the package, which can be
passed to other devtools functions.

6 load_all

Usage

inst(name)

Arguments

name the name of a package.

Details

It searches for the package in .libPaths(). If multiple dirs are found, it will return the first one.

Examples

inst("pkgload")
inst("grid")

is_dev_package Is the package currently under development?

Description

Returns TRUE or FALSE depending on if the package has been loaded by pkgload.

Usage

is_dev_package(name)

Arguments

name the name of a package.

load_all Load complete package

Description

load_all() loads a package. It roughly simulates what happens when a package is installed and
loaded with library(), without having to first install the package. It:

• Loads all data files in data/. See load_data() for more details.

• Sources all R files in the R directory, storing results in environment that behaves like a regular
package namespace. See load_code() for more details.

• Adds a shim from system.file() to shim_system.file() in the imports environment of
the package. This ensures that system.file() works with both development and installed
packages despite their differing directory structures.

load_all 7

• Adds shims from help() and ? to shim_help() and shim_question() to make it easier to
preview development documentation.

• Compiles any C, C++, or Fortran code in the src/ directory and connects the generated DLL
into R. See pkgbuild::compile_dll() for more details.

• Loads any compiled translations in inst/po.

• Runs .onAttach(), .onLoad() and .onUnload() functions at the correct times.

• If you use testthat, will load all test helpers so you can access them interactively. devtools
sets the DEVTOOLS_LOAD environment variable to the package name to let you check whether
the helpers are run during package loading.

is_loading() returns TRUE when it is called while load_all() is running. This may be useful e.g.
in .onLoad hooks. A package loaded with load_all() can be identified with is_dev_package().

Usage

load_all(
path = ".",
reset = TRUE,
compile = NA,
attach = TRUE,
export_all = TRUE,
export_imports = export_all,
helpers = export_all,
attach_testthat = uses_testthat(path),
quiet = NULL,
recompile = FALSE,
warn_conflicts = TRUE,
debug = TRUE

)

is_loading(pkg = NULL)

Arguments

path Path to a package, or within a package.

reset [Deprecated] This is no longer supported because preserving the namespace re-
quires unlocking its environment, which is no longer possible in recent versions
of R.

compile If TRUE always recompiles the package; if NA recompiles if needed (as deter-
mined by pkgbuild::needs_compile()); if FALSE, never recompiles.

attach Whether to attach a package environment to the search path. If FALSE load_all()
behaves like loadNamespace(). If TRUE (the default), it behaves like library().
If FALSE, the export_all, export_imports, and helpers arguments have no
effect.

export_all If TRUE (the default), export all objects. If FALSE, export only the objects that
are listed as exports in the NAMESPACE file.

8 load_all

export_imports If TRUE (the default), export all objects that are imported by the package. If
FALSE export only objects defined in the package.

helpers if TRUE loads testthat test helpers.

attach_testthat

If TRUE, attach testthat to the search path, which more closely mimics the envi-
ronment within test files.

quiet if TRUE suppresses output from this function.

recompile DEPRECATED. force a recompile of DLL from source code, if present. This is
equivalent to running pkgbuild::clean_dll() before load_all()

warn_conflicts If TRUE, issues a warning if a function in the global environment masks a func-
tion in the package. This can happen when you accidentally source a .R file,
rather than using load_all(), or if you define a function directly in the R con-
sole. This is frustrating to debug, as it feels like the changes you make to the
package source aren’t having the expected effect.

debug If TRUE (the default), then the build runs without optimisation (-O0) and with
debug symbols (-g). See pkgbuild::compile_dll() for details.

pkg If supplied, is_loading() only returns TRUE if the package being loaded is pkg.

Differences to regular loading

load_all() tries its best to reproduce the behaviour of loadNamespace() and library(). How-
ever it deviates from normal package loading in several ways.

• load_all() doesn’t install the package to a library, so system.file() doesn’t work. pk-
gload fixes this for the package itself installing a shim, shim_system.file(). However,
this shim is not visible to third party packages, so they will fail if they attempt to find files
within your package. One potential workaround is to use fs::path_package() instead of
system.file(), since that understands the mechanisms that devtools uses to load packages.

• load_all() loads all packages referenced in Imports at load time, but loadNamespace()
and library() only load package dependencies as they are needed.

• load_all() copies all objects (not just the ones listed as exports) into the package environ-
ment. This is useful during development because it makes internal objects easy to access. To
export only the objects listed as exports, use export_all = FALSE. This more closely sim-
ulates behavior when loading an installed package with library(), and can be useful for
checking for missing exports.

Controlling the debug compiler flags

load_all() delegates to pkgbuild::compile_dll() to perform the actual compilation, during
which by default some debug compiler flags are appended. If you would like to produce an opti-
mized build instead, you can opt out by either using debug = FALSE, setting the pkg.build_extra_flags
option to FALSE, or setting the PKG_BUILD_EXTRA_FLAGS environment variable to FALSE. For further
details see the Details section in pkgbuild::compile_dll().

load_code 9

Examples

Not run:
Load the package in the current directory
load_all("./")

Running again loads changed files
load_all("./")

With export_all=FALSE, only objects listed as exports in NAMESPACE
are exported
load_all("./", export_all = FALSE)

End(Not run)

load_code Load R code.

Description

Sources all .R/.r files in the R/ directory, storing results into the package namespace.

Usage

load_code(path = ".", quiet = NULL)

Arguments

path Path to a package, or within a package.

quiet if TRUE suppresses output from this function.

load_data Load data.

Description

Loads all .RData files in the data subdirectory.

Usage

load_data(path = ".")

Arguments

path Path to a package, or within a package.

10 packages

load_dll Load a compiled DLL

Description

Load a compiled DLL

Usage

load_dll(path = ".")

Arguments

path Path to a package, or within a package.

packages Helper functions for working with development packages.

Description

All functions search recursively up the directory tree from the input path until they find a DESCRIP-
TION file.

Usage

pkg_path(path = ".")

pkg_name(path = ".")

pkg_desc(path = ".")

pkg_version(path = ".")

pkg_version_raw(path = ".")

pkg_ns(path = ".")

Arguments

path Path to a package, or within a package.

package_file 11

Functions

• pkg_path(): Return the normalized package path.

• pkg_name(): Return the package name.

• pkg_desc(): Return the package DESCRIPTION as a desc::desc() object.

• pkg_version(): Return the parsed package version.

• pkg_version_raw(): Return the raw package version (as a string).

• pkg_ns(): Return the package namespace.

package_file Find file in a package.

Description

It always starts by finding by walking up the path until it finds the root directory, i.e. a directory
containing DESCRIPTION. If it cannot find the root directory, or it can’t find the specified path, it
will throw an error.

Usage

package_file(..., path = ".")

Arguments

... Components of the path.

path Place to start search for package directory.

Examples

Not run:
package_file("figures", "figure_1")

End(Not run)

12 unload

system.file Replacement version of system.file

Description

This function is meant to intercept calls to base::system.file(), so that it behaves well with
packages loaded by devtools. It is made available when a package is loaded with load_all().

Usage

shim_system.file(..., package = "base", lib.loc = NULL, mustWork = FALSE)

Arguments

... character vectors, specifying subdirectory and file(s) within some package. The
default, none, returns the root of the package. Wildcards are not supported.

package a character string with the name of a single package. An error occurs if more
than one package name is given.

lib.loc a character vector with path names of R libraries. See ‘Details’ for the meaning
of the default value of NULL.

mustWork logical. If TRUE, an error is given if there are no matching files.

Details

When system.file is called from the R console (the global environment), this function detects if
the target package was loaded with load_all(), and if so, it uses a customized method of searching
for the file. This is necessary because the directory structure of a source package is different from
the directory structure of an installed package.

When a package is loaded with load_all, this function is also inserted into the package’s imports
environment, so that calls to system.file from within the package namespace will use this modi-
fied version. If this function were not inserted into the imports environment, then the package would
end up calling base::system.file instead.

unload Unload a package

Description

unload() attempts to cleanly unload a package, including unloading its namespace, deleting S4
class definitions and unloading any loaded DLLs. Unfortunately S4 classes are not really de-
signed to be cleanly unloaded, and so we have to manually modify the class dependency graph
in order for it to work - this works on the cases for which we have tested but there may be oth-
ers. Similarly, automated DLL unloading is best tested for simple scenarios (particularly with

unload 13

useDynLib(pkgname) and may fail in other cases. If you do encounter a failure, please file a
bug report at https://github.com/r-lib/pkgload/issues.

unregister() is a gentler version of unload() which removes the package from the search path,
unregisters methods, and unregisters the namespace. It doesn’t unload the namespace or its DLL to
keep it in working order in case of dangling references.

Usage

unload(package = pkg_name(), quiet = FALSE)

unregister(package = pkg_name())

Arguments

package package name.

quiet if TRUE suppresses output from this function.

Examples

Not run:
Unload package that is in current directory
unload()

Unload package that is in ./ggplot2/
unload(pkg_name("ggplot2/"))

library(ggplot2)
unload the ggplot2 package directly by name
unload("ggplot2")

End(Not run)

https://github.com/r-lib/pkgload/issues

Index

∗ example functions
dev_example, 2

∗ programming
load_all, 6
load_code, 9
load_data, 9
load_dll, 10

.libPaths(), 6
? (help), 4

base::system.file(), 12

desc::desc(), 11
dev_example, 2
dev_help, 3
dev_topic_find (dev_help), 3
dev_topic_index (dev_help), 3
dev_topic_index_reset (dev_help), 3

fs::path_package(), 8

help, 4

inst, 5
is_dev_package, 6
is_dev_package(), 7
is_loading (load_all), 6

library(), 6, 8
load_all, 6
load_all(), 4, 12
load_code, 9
load_code(), 6
load_data, 9
load_data(), 6
load_dll, 10
loadNamespace(), 8

package_file, 11
packages, 10
pkg_desc (packages), 10

pkg_name (packages), 10
pkg_ns (packages), 10
pkg_path (packages), 10
pkg_version (packages), 10
pkg_version_raw (packages), 10
pkgbuild::clean_dll(), 8
pkgbuild::compile_dll(), 7, 8
pkgbuild::needs_compile(), 7

run_example (dev_example), 2

shim_help (help), 4
shim_help(), 7
shim_question (help), 4
shim_question(), 7
shim_system.file (system.file), 12
shim_system.file(), 6, 8
system.file, 12
system.file(), 6, 8

tools::parse_Rd(), 3
tools::Rd2ex(), 3

unload, 12
unregister (unload), 12
utils::?(), 5
utils::help(), 4, 5

14

	dev_example
	dev_help
	help
	inst
	is_dev_package
	load_all
	load_code
	load_data
	load_dll
	packages
	package_file
	system.file
	unload
	Index

