
Package ‘plumber’
January 28, 2026

Type Package

Title An API Generator for R

Version 1.3.3

Description Gives the ability to automatically generate and serve an HTTP
API from R functions using the annotations in the R documentation
around your functions.

License MIT + file LICENSE

URL https://www.rplumber.io, https://github.com/rstudio/plumber

BugReports https://github.com/rstudio/plumber/issues

Depends R (>= 3.0.0)

Imports crayon, httpuv (>= 1.5.5), jsonlite (>= 0.9.16), lifecycle (>=
1.0.0), magrittr, mime, promises (>= 1.1.0), R6 (>= 2.0.0),
rlang (>= 1.0.0), sodium, stringi (>= 0.3.0), swagger (>=
3.33.0), webutils (>= 1.1)

Suggests arrow, base64enc, coro, future, geojsonsf, htmlwidgets,
later, ragg, rapidoc, readr, readxl, redoc, rmarkdown,
rstudioapi, sf, spelling, svglite, testthat (>= 0.11.0), utils,
visNetwork, withr, writexl, yaml

ByteCompile TRUE

Config/Needs/check Cairo, r-quantities/units

Config/Needs/website tidyverse/tidytemplate

Encoding UTF-8

Language en-US

RoxygenNote 7.3.3

Collate 'async.R' 'content-types.R' 'default-handlers.R' 'hookable.R'
'shared-secret-filter.R' 'parser-cookie.R' 'parse-body.R'
'parse-query.R' 'plumber.R' 'deprecated-R6.R' 'deprecated.R'
'digital-ocean.R' 'find-port.R' 'globals.R' 'includes.R'
'json.R' 'new-rstudio-project.R' 'openapi-spec.R'
'openapi-types.R' 'options_plumber.R' 'paths.R' 'plumb-block.R'

1

https://www.rplumber.io
https://github.com/rstudio/plumber
https://github.com/rstudio/plumber/issues

2 Contents

'plumb-globals.R' 'plumb.R' 'plumber-response.R'
'plumber-static.R' 'plumber-step.R' 'pr.R' 'pr_set.R'
'serializer.R' 'session-cookie.R' 'ui.R' 'utf8.R'
'utils-pipe.R' 'utils.R' 'validate_api_spec.R' 'zzz.R'

NeedsCompilation no

Author Barret Schloerke [cre, aut] (ORCID:
<https://orcid.org/0000-0001-9986-114X>),

Jeff Allen [aut, ccp],
Bruno Tremblay [ctb],
Frans van Dunné [ctb],
Sebastiaan Vandewoude [ctb],
Posit Software, PBC [cph, fnd] (ROR: <https://ror.org/03wc8by49>)

Maintainer Barret Schloerke <barret@posit.co>

Repository CRAN

Date/Publication 2026-01-28 06:10:08 UTC

Contents
as_attachment . 3
endpoint_serializer . 4
forward . 5
get_character_set . 5
include_file . 6
is_plumber . 6
options_plumber . 7
parser_form . 9
plumb . 11
Plumber . 12
PlumberEndpoint . 24
PlumberStatic . 27
PlumberStep . 28
plumb_api . 30
pr . 31
pr_cookie . 31
pr_filter . 34
pr_handle . 35
pr_hook . 36
pr_mount . 38
pr_run . 39
pr_set_404 . 40
pr_set_api_spec . 41
pr_set_debug . 42
pr_set_docs . 43
pr_set_docs_callback . 44
pr_set_error . 45
pr_set_parsers . 46

https://orcid.org/0000-0001-9986-114X
https://ror.org/03wc8by49

as_attachment 3

pr_set_serializer . 47
pr_static . 47
random_cookie_key . 48
register_docs . 48
register_parser . 49
register_serializer . 51
serializer_headers . 52
session_cookie . 56
validate_api_spec . 58

Index 60

as_attachment Return an attachment response

Description

This will set the appropriate fields in the Content-Disposition header value. To make sure the
attachment is used, be sure your serializer eventually calls serializer_headers

Usage

as_attachment(value, filename = NULL)

Arguments

value Response value to be saved

filename File name to use when saving the attachment. If no filename is provided, the
value will be treated as a regular attachment

Value

Object with class "plumber_attachment"

Examples

Not run:
plumber.R

#' @get /data
#' @serializer csv
function() {

will cause the file to be saved as `iris.csv`, not `data` or `data.csv`
as_attachment(iris, "iris.csv")

}

End(Not run)

4 endpoint_serializer

endpoint_serializer Endpoint Serializer with Hooks

Description

This method allows serializers to return preexec, postexec, and aroundexec ([Experimental])
hooks in addition to a serializer. This is useful for graphics device serializers which need a preexec
and postexec hook to capture the graphics output.

Usage

endpoint_serializer(
serializer,
preexec_hook = NULL,
postexec_hook = NULL,
aroundexec_hook = NULL

)

Arguments

serializer Serializer method to be used. This method should already have its initialization
arguments applied.

preexec_hook Function to be run directly before a PlumberEndpoint calls its route method.

postexec_hook Function to be run directly after a PlumberEndpoint calls its route method.

aroundexec_hook

Function to be run around a PlumberEndpoint call. Must handle a .next argu-
ment to continue execution. [Experimental]

Details

preexec and postexec hooks happened directly before and after a route is executed. These hooks
are specific to a single PlumberEndpoint’s route calculation.

Examples

The definition of `serializer_device` returns
* a `serializer_content_type` serializer
* `aroundexec` hook
print(serializer_device)

forward 5

forward Forward Request to The Next Handler

Description

This function is used when a filter is done processing a request and wishes to pass control off to
the next handler in the chain. If this is not called by a filter, the assumption is that the filter fully
handled the request itself and no other filters or endpoints should be evaluated for this request.
forward() cannot be used within handlers to trigger the next matching handler in the router. It
only has relevance for filters.

Usage

forward()

Examples

Not run:
pr() %>%

pr_filter("foo", function(req, res) {
print("This is filter foo")
forward()

}) %>%
pr_run()

End(Not run)

get_character_set Request character set

Description

Request character set

Usage

get_character_set(content_type = NULL)

Arguments

content_type Request Content-Type header

Value

Default to UTF-8. Otherwise return charset defined in request header.

6 is_plumber

include_file Send File Contents as Response

Description

Returns the file at the given path as the response. If you want an endpoint to return a file as an
attachment for user to download see as_attachment().

Usage

include_file(file, res, content_type = getContentType(tools::file_ext(file)))

include_html(file, res)

include_md(file, res, format = NULL)

include_rmd(file, res, format = NULL)

Arguments

file The path to the file to return

res The response object into which we’ll write

content_type If provided, the given value will be sent as the Content-Type header in the
response. Defaults to the contentType of the file extension. To disable the
Content-Type header, set content_type = NULL.

format Passed as the output_format to rmarkdown::render

Details

include_html will merely return the file with the proper content_type for HTML. include_md
and include_rmd will process the given markdown file through rmarkdown::render and return
the resultant HTML as a response.

is_plumber Determine if Plumber object

Description

Determine if Plumber object

Usage

is_plumber(pr)

options_plumber 7

Arguments

pr Hopefully a Plumber object

Value

Logical value if pr inherits from Plumber

Examples

is_plumber(Plumber$new()) # TRUE
is_plumber(list()) # FALSE

options_plumber Plumber options

Description

There are a number of global options that affect Plumber’s behavior. These can be set globally
with options() or with options_plumber(). Options set using options_plumber() should not
include the plumber. prefix. Alternatively, environment variable can be used to set plumber options
using uppercase and underscores (i.e. to set plumber.apiHost you can set environment variable
PLUMBER_APIHOST).

Usage

options_plumber(
...,
port = getOption("plumber.port"),
docs = getOption("plumber.docs"),
docs.callback = getOption("plumber.docs.callback"),
trailingSlash = getOption("plumber.trailingSlash"),
methodNotAllowed = getOption("plumber.methodNotAllowed"),
apiURL = getOption("plumber.apiURL"),
apiScheme = getOption("plumber.apiScheme"),
apiHost = getOption("plumber.apiHost"),
apiPort = getOption("plumber.apiPort"),
apiPath = getOption("plumber.apiPath"),
maxRequestSize = getOption("plumber.maxRequestSize"),
sharedSecret = getOption("plumber.sharedSecret"),
legacyRedirects = getOption("plumber.legacyRedirects")

)

get_option_or_env(x, default = NULL)

8 options_plumber

Arguments

... Ignored. Should be empty
port, docs, docs.callback, trailingSlash, methodNotAllowed, apiScheme,
apiHost, apiPort, apiPath, apiURL, maxRequestSize, sharedSecret,
legacyRedirects

See details
x a character string holding an option name.
default if the specified option is not set in the options list, this value is returned. This

facilitates retrieving an option and checking whether it is set and setting it sepa-
rately if not.

Details

plumber.port Port Plumber will attempt to use to start http server. If the port is already in use,
server will not be able to start. Defaults to NULL.

plumber.docs Name of the visual documentation interface to use. Defaults to TRUE, which will
use "swagger".

plumber.docs.callback A function. Called with a single parameter corresponding to the visual
documentation url after Plumber server is ready. This can be used by RStudio to open the docs
when then API is ran from the editor. Defaults to option NULL.

plumber.trailingSlash Logical value which allows the router to redirect any request that has a
matching route with a trailing slash. For example, if set to TRUE and the GET route /test/
existed, then a GET request of /test?a=1 would redirect to /test/?a=1. Defaults to FALSE.
This option will default to TRUE in a future release.

plumber.methodNotAllowed [Experimental] Logical value which allows the router to notify that
an unavailable method was requested, but a different request method is allowed. For example,
if set to TRUE and the GET route /test existed, then a POST request of /test would receive
a 405 status and the allowed methods. Defaults to TRUE.

plumber.apiURL Server urls for OpenAPI Specification respecting pattern scheme://host:port/path.
Other api* options will be ignored when set.

plumber.apiScheme Scheme used to build OpenAPI url and server url for OpenAPI Specification.
Defaults to http, or an empty string when used outside a running router.

plumber.apiHost Host used to build docs url and server url for OpenAPI Specification. Defaults
to host defined by run method, or an empty string when used outside a running router.

plumber.apiPort Port used to build OpenAPI url and server url for OpenAPI Specification. De-
faults to port defined by run method, or an empty string when used outside a running router.

plumber.apiPath Path used to build OpenAPI url and server url for OpenAPI Specification. De-
faults to an empty string.

plumber.maxRequestSize Maximum length in bytes of request body. Body larger than maximum
are rejected with http error 413. 0 means unlimited size. Defaults to 0.

plumber.sharedSecret Shared secret used to filter incoming request. When NULL, secret is not
validated. Otherwise, Plumber compares secret with http header PLUMBER_SHARED_SECRET.
Failure to match results in http error 400. Defaults to NULL.

plumber.legacyRedirects Plumber will redirect legacy route /__swagger__/ and /__swagger__/index.html
to ../__docs__/ and ../__docs__/index.html. You can disable this by settings this option
to FALSE. Defaults to TRUE

parser_form 9

Value

The complete, prior set of options() values. If a particular parameter is not supplied, it will return
the current value. If no parameters are supplied, all returned values will be the current options()
values.

parser_form Plumber Parsers

Description

Parsers are used in Plumber to transform request body received by the API. Extra parameters may
be provided to parser functions when enabling them on router. This will allow for non-default
behavior.

Usage

parser_form()

parser_json(...)

parser_geojson(...)

parser_text(parse_fn = identity)

parser_yaml(...)

parser_csv(...)

parser_tsv(...)

parser_read_file(read_fn = readLines)

parser_rds(...)

parser_feather(...)

parser_arrow_ipc_stream(...)

parser_parquet(...)

parser_excel(..., sheet = NULL)

parser_octet()

parser_multi()

parser_none()

10 parser_form

Arguments

... parameters supplied to the appropriate internal function
parse_fn function to further decode a text string into an object
read_fn function used to read a the content of a file. Ex: readRDS()
sheet Sheet to read. Either a string (the name of a sheet), or an integer (the position of

the sheet). Defaults to the first sheet. To read all sheets, use NA.

Details

Parsers are optional. When unspecified, only default endpoint parsers are enabled. You can use
@parser NAME tag to enable parser on endpoint. Multiple parsers can be enabled on the same
endpoint using multiple @parser NAME tags.

User should be aware that rds parsing should only be done from a trusted source. Do not accept
rds files blindly.

See registered_parsers() for a list of registered parsers names.

Functions

• parser_form(): Form query string parser
• parser_json(): JSON parser. See jsonlite::parse_json() for more details. (Defaults to

using simplifyVectors = TRUE)
• parser_geojson(): GeoJSON parser. See geojsonsf::geojson_sf() for more details.
• parser_text(): Helper parser to parse plain text
• parser_yaml(): YAML parser. See yaml::yaml.load() for more details.
• parser_csv(): CSV parser. See readr::read_csv() for more details.
• parser_tsv(): TSV parser. See readr::read_tsv() for more details.
• parser_read_file(): Helper parser that writes the binary body to a file and reads it back

again using read_fn. This parser should be used when reading from a file is required.
• parser_rds(): RDS parser. See readRDS() for more details.
• parser_feather(): feather parser. See arrow::read_feather() for more details.
• parser_arrow_ipc_stream(): Arrow IPC parser. See arrow::read_ipc_stream() for

more details.
• parser_parquet(): parquet parser. See arrow::read_parquet() for more details.
• parser_excel(): excel parser. See readxl::read_excel() for more details. (Defaults

to reading in the first worksheet only, use @parser excel list(sheet=NA) to read in all
worksheets.)

• parser_octet(): Octet stream parser. Returns the raw content.
• parser_multi(): Multi part parser. This parser will then parse each individual body with its

respective parser. When this parser is used, req$body will contain the updated output from
webutils::parse_multipart() by adding the parsed output to each part. Each part may
contain detailed information, such as name (required), content_type, content_disposition,
filename, (raw, original) value, and parsed (parsed value). When performing Plumber
route argument matching, each multipart part will match its name to the parsed content.

• parser_none(): No parser. Will not process the postBody.

plumb 11

Examples

Not run:
Overwrite `text/json` parsing behavior to not allow JSON vectors to be simplified
#* @parser json list(simplifyVector = FALSE)
Activate `rds` parser in a multipart request
#* @parser multi
#* @parser rds
pr <- Plumber$new()
pr$handle("GET", "/upload", function(rds) {rds}, parsers = c("multi", "rds"))

End(Not run)

plumb Process a Plumber API

Description

Process a Plumber API

Usage

plumb(file = NULL, dir = ".")

Arguments

file The file to parse as the plumber router definition.

dir The directory containing the plumber.R file to parse as the plumber router def-
inition. Alternatively, if an entrypoint.R file is found, it will take precedence
and be responsible for returning a runnable router.

Details

API routers are the core request handler in plumber. A router is responsible for taking an incoming
request, submitting it through the appropriate filters and eventually to a corresponding endpoint, if
one is found.

See the Programmatic Usage article for additional details on the methods available on this object.

https://www.rplumber.io/articles/programmatic-usage.html

12 Plumber

Plumber Package Plumber Router

Description

Package Plumber Router

Package Plumber Router

Details

Routers are the core request handler in plumber. A router is responsible for taking an incoming
request, submitting it through the appropriate filters and eventually to a corresponding endpoint, if
one is found.

See the Programmatic Usage article for additional details on the methods available on this object.

Super class

plumber::Hookable -> Plumber

Public fields

flags For internal use only

Active bindings

endpoints Plumber router endpoints read-only

filters Plumber router filters read-only

mounts Plumber router mounts read-only

environment Plumber router environment read-only

routes Plumber router routes read-only

Methods

Public methods:
• Plumber$new()

• Plumber$run()

• Plumber$mount()

• Plumber$unmount()

• Plumber$registerHook()

• Plumber$handle()

• Plumber$removeHandle()

• Plumber$print()

• Plumber$serve()

• Plumber$route()

https://www.rplumber.io/articles/programmatic-usage.html

Plumber 13

• Plumber$call()

• Plumber$onHeaders()

• Plumber$onWSOpen()

• Plumber$setSerializer()

• Plumber$setParsers()

• Plumber$set404Handler()

• Plumber$setErrorHandler()

• Plumber$setDocs()

• Plumber$setDocsCallback()

• Plumber$setDebug()

• Plumber$getDebug()

• Plumber$filter()

• Plumber$setApiSpec()

• Plumber$getApiSpec()

• Plumber$addEndpoint()

• Plumber$addAssets()

• Plumber$addFilter()

• Plumber$addGlobalProcessor()

• Plumber$openAPIFile()

• Plumber$swaggerFile()

• Plumber$clone()

Method new(): Create a new Plumber router
See also plumb(), pr()

Usage:
Plumber$new(file = NULL, filters = defaultPlumberFilters, envir)

Arguments:
file path to file to plumb
filters a list of Plumber filters
envir an environment to be used as the enclosure for the routers execution

Returns: A new Plumber router

Method run(): Start a server using Plumber object.
See also: pr_run()

Usage:
Plumber$run(
host = "127.0.0.1",
port = get_option_or_env("plumber.port", NULL),
swagger = deprecated(),
debug = missing_arg(),
swaggerCallback = missing_arg(),
...,
docs = missing_arg(),
quiet = FALSE

)

14 Plumber

Arguments:

host a string that is a valid IPv4 or IPv6 address that is owned by this server, which the appli-
cation will listen on. "0.0.0.0" represents all IPv4 addresses and "::/0" represents all IPv6
addresses.

port a number or integer that indicates the server port that should be listened on. Note that on
most Unix-like systems including Linux and Mac OS X, port numbers smaller than 1025
require root privileges.
This value does not need to be explicitly assigned. To explicitly set it, see options_plumber().

swagger Deprecated. Please use docs instead. See $setDocs(docs) or $setApiSpec() for
more customization.

debug If TRUE, it will provide more insight into your API errors. Using this value will only last
for the duration of the run. If a $setDebug() has not been called, debug will default to
FALSE at $run() time. See $setDebug() for more details.

swaggerCallback An optional single-argument function that is called back with the URL to
an OpenAPI user interface when one becomes ready. If missing, defaults to information
previously set with $setDocsCallback(). This value will only be used while running the
router.

... Should be empty.
docs Visual documentation value to use while running the API. This value will only be used

while running the router. If missing, defaults to information previously set with setDocs().
For more customization, see $setDocs() or pr_set_docs() for examples.

quiet If TRUE, don’t print routine startup messages.

Method mount(): Mount a Plumber router
Plumber routers can be “nested” by mounting one into another using the mount() method. This
allows you to compartmentalize your API by paths which is a great technique for decomposing
large APIs into smaller files.
See also: pr_mount()

Usage:
Plumber$mount(path, router)

Arguments:

path a character string. Where to mount router.
router a Plumber router. Router to be mounted.

Examples:

\dontrun{
root <- pr()

users <- Plumber$new("users.R")
root$mount("/users", users)

products <- Plumber$new("products.R")
root$mount("/products", products)
}

Method unmount(): Unmount a Plumber router

Plumber 15

Usage:
Plumber$unmount(path)

Arguments:

path a character string. Where to unmount router.

Method registerHook(): Register a hook
Plumber routers support the notion of "hooks" that can be registered to execute some code at a
particular point in the lifecycle of a request. Plumber routers currently support four hooks:

1. preroute(data, req, res)

2. postroute(data, req, res, value)

3. preserialize(data, req, res, value)

4. postserialize(data, req, res, value)

In all of the above you have access to a disposable environment in the data parameter that is
created as a temporary data store for each request. Hooks can store temporary data in these hooks
that can be reused by other hooks processing this same request.
One feature when defining hooks in Plumber routers is the ability to modify the returned value.
The convention for such hooks is: any function that accepts a parameter named value is expected
to return the new value. This could be an unmodified version of the value that was passed in, or
it could be a mutated value. But in either case, if your hook accepts a parameter named value,
whatever your hook returns will be used as the new value for the response.
You can add hooks using the registerHook method, or you can add multiple hooks at once using
the registerHooks method which takes a name list in which the names are the names of the
hooks, and the values are the handlers themselves.
See also: pr_hook(), pr_hooks()

Usage:
Plumber$registerHook(
stage = c("preroute", "postroute", "preserialize", "postserialize", "exit"),
handler

)

Arguments:

stage a character string. Point in the lifecycle of a request.
handler a hook function.

Examples:

\dontrun{
pr <- pr()
pr$registerHook("preroute", function(req){
cat("Routing a request for", req$PATH_INFO, "...\n")

})
pr$registerHooks(list(
preserialize=function(req, value){
print("About to serialize this value:")
print(value)

Must return the value since we took one in. Here we're not choosing

16 Plumber

to mutate it, but we could.
value

},
postserialize=function(res){
print("We serialized the value as:")
print(res$body)

}
))

pr$handle("GET", "/", function(){ 123 })
}

Method handle(): Define endpoints
The “handler” functions that you define in these handle calls are identical to the code you would
have defined in your plumber.R file if you were using annotations to define your API. The handle()
method takes additional arguments that allow you to control nuanced behavior of the endpoint like
which filter it might preempt or which serializer it should use.
See also: pr_handle(), pr_get(), pr_post(), pr_put(), pr_delete()

Usage:
Plumber$handle(
methods,
path,
handler,
preempt,
serializer,
parsers,
endpoint,
...

)

Arguments:
methods a character string. http method.
path a character string. Api endpoints
handler a handler function.
preempt a preempt function.
serializer a serializer function.
parsers a named list of parsers.
endpoint a PlumberEndpoint object.
... additional arguments for PlumberEndpoint new method (namely lines, params, comments,

responses and tags. Excludes envir).

Examples:
\dontrun{
pr <- pr()
pr$handle("GET", "/", function(){
"<html><h1>Programmatic Plumber!</h1></html>"

}, serializer=plumber::serializer_html())
}

Plumber 17

Method removeHandle(): Remove endpoints

Usage:
Plumber$removeHandle(methods, path, preempt = NULL)

Arguments:
methods a character string. http method.
path a character string. Api endpoints
preempt a preempt function.

Method print(): Print representation of plumber router.

Usage:
Plumber$print(prefix = "", topLevel = TRUE, ...)

Arguments:
prefix a character string. Prefix to append to representation.
topLevel a logical value. When method executed on top level router, set to TRUE.
... additional arguments for recursive calls

Returns: A terminal friendly representation of a plumber router.

Method serve(): Serve a request

Usage:
Plumber$serve(req, res)

Arguments:
req request object
res response object

Method route(): Route a request

Usage:
Plumber$route(req, res)

Arguments:
req request object
res response object

Method call(): httpuv interface call function. (Required for httpuv)

Usage:
Plumber$call(req)

Arguments:
req request object

Method onHeaders(): httpuv interface onHeaders function. (Required for httpuv)

Usage:
Plumber$onHeaders(req)

Arguments:
req request object

18 Plumber

Method onWSOpen(): httpuv interface onWSOpen function. (Required for httpuv)

Usage:
Plumber$onWSOpen(ws)

Arguments:
ws WebSocket object

Method setSerializer(): Sets the default serializer of the router.
See also: pr_set_serializer()

Usage:
Plumber$setSerializer(serializer)

Arguments:
serializer a serializer function

Examples:
\dontrun{
pr <- pr()
pr$setSerializer(serializer_unboxed_json())
}

Method setParsers(): Sets the default parsers of the router. Initialized to c("json", "form",
"text", "octet", "multi")

Usage:
Plumber$setParsers(parsers)

Arguments:
parsers Can be one of:

• A NULL value
• A character vector of parser names
• A named list() whose keys are parser names names and values are arguments to be

applied with do.call()

• A TRUE value, which will default to combining all parsers. This is great for seeing what
is possible, but not great for security purposes

If the parser name "all" is found in any character value or list name, all remaining parsers
will be added. When using a list, parser information already defined will maintain their
existing argument values. All remaining parsers will use their default arguments.
Example:
provide a character string
parsers = "json"

provide a named list with no arguments
parsers = list(json = list())

provide a named list with arguments; include `rds`
parsers = list(json = list(simplifyVector = FALSE), rds = list())

default plumber parsers
parsers = c("json", "form", "text", "octet", "multi")

Plumber 19

Method set404Handler(): Sets the handler that gets called if an incoming request can’t be
served by any filter, endpoint, or sub-router.
See also: pr_set_404()

Usage:
Plumber$set404Handler(fun)

Arguments:
fun a handler function.

Examples:
\dontrun{
pr <- pr()
pr$set404Handler(function(req, res) {cat(req$PATH_INFO)})
}

Method setErrorHandler(): Sets the error handler which gets invoked if any filter or endpoint
generates an error.
See also: pr_set_404()

Usage:
Plumber$setErrorHandler(fun)

Arguments:
fun a handler function.

Examples:
\dontrun{
pr <- pr()
pr$setErrorHandler(function(req, res, err) {
message("Found error: ")
str(err)

})
}

Method setDocs(): Set visual documentation to use for API
See also: pr_set_docs(), register_docs(), registered_docs()

Usage:
Plumber$setDocs(docs = get_option_or_env("plumber.docs", TRUE), ...)

Arguments:
docs a character value or a logical value. See pr_set_docs() for examples. If using options_plumber(),

the value must be set before initializing your Plumber router.
... Arguments for the visual documentation. See each visual documentation package for fur-

ther details.

Method setDocsCallback(): Set a callback to notify where the API’s visual documentation is
located.
When set, it will be called with a character string corresponding to the API docs url. This allows
RStudio to locate visual documentation.
If using options_plumber(), the value must be set before initializing your Plumber router.
See also: pr_set_docs_callback()

20 Plumber

Usage:
Plumber$setDocsCallback(
callback = get_option_or_env("plumber.docs.callback", NULL)

)

Arguments:

callback a callback function for taking action on the docs url. (Also accepts NULL values to
disable the callback.)

Method setDebug(): Set debug value to include error messages.
See also: $getDebug() and pr_set_debug()

Usage:
Plumber$setDebug(debug = FALSE)

Arguments:

debug TRUE provides more insight into your API errors.

Method getDebug(): Retrieve the debug value. If it has never been set, it will return FALSE.
See also: $getDebug() and pr_set_debug()

Usage:
Plumber$getDebug()

Method filter(): Add a filter to plumber router
See also: pr_filter()

Usage:
Plumber$filter(name, expr, serializer)

Arguments:

name a character string. Name of filter
expr an expr that resolve to a filter function or a filter function
serializer a serializer function

Method setApiSpec(): Allows to modify router autogenerated OpenAPI Specification
Note, the returned value will be sent through serializer_unboxed_json() which will turn all
length 1 vectors into atomic values. To force a vector to serialize to an array of size 1, be sure to
call as.list() on your value. list() objects are always serialized to an array value.
See also: pr_set_api_spec()

Usage:
Plumber$setApiSpec(api = NULL)

Arguments:

api This can be
• an OpenAPI Specification formatted list object
• a function that accepts the OpenAPI Specification autogenerated by plumber and returns

a OpenAPI Specification formatted list object.
• a path to an OpenAPI Specification
The value returned will not be validated for OAS compatibility.

Plumber 21

Method getApiSpec(): Retrieve OpenAPI file

Usage:
Plumber$getApiSpec()

Method addEndpoint(): addEndpoint has been deprecated in v0.4.0 and will be removed in a
coming release. Please use handle() instead.

Usage:
Plumber$addEndpoint(
verbs,
path,
expr,
serializer,
processors,
preempt = NULL,
params = NULL,
comments

)

Arguments:
verbs verbs
path path
expr expr
serializer serializer
processors processors
preempt preempt
params params
comments comments

Method addAssets(): addAssets has been deprecated in v0.4.0 and will be removed in a coming
release. Please use mount and PlumberStatic$new() instead.

Usage:
Plumber$addAssets(dir, path = "/public", options = list())

Arguments:
dir dir
path path
options options

Method addFilter(): $addFilter() has been deprecated in v0.4.0 and will be removed in a
coming release. Please use $filter() instead.

Usage:
Plumber$addFilter(name, expr, serializer, processors)

Arguments:
name name
expr expr
serializer serializer

22 Plumber

processors processors

Method addGlobalProcessor(): $addGlobalProcessor() has been deprecated in v0.4.0 and
will be removed in a coming release. Please use $registerHook(s) instead.

Usage:
Plumber$addGlobalProcessor(proc)

Arguments:

proc proc

Method openAPIFile(): Deprecated. Retrieve OpenAPI file

Usage:
Plumber$openAPIFile()

Method swaggerFile(): Deprecated. Retrieve OpenAPI file

Usage:
Plumber$swaggerFile()

Method clone(): The objects of this class are cloneable with this method.

Usage:
Plumber$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

pr(), pr_run(), pr_get(), pr_post(), pr_mount(), pr_hook(), pr_hooks(), pr_cookie(),
pr_filter(), pr_set_api_spec(), pr_set_docs(), pr_set_serializer(), pr_set_parsers(),
pr_set_404(), pr_set_error(), pr_set_debug(), pr_set_docs_callback()

Examples

--
Method `Plumber$mount`
--

Not run:
root <- pr()

users <- Plumber$new("users.R")
root$mount("/users", users)

products <- Plumber$new("products.R")
root$mount("/products", products)

End(Not run)

--
Method `Plumber$registerHook`

Plumber 23

--

Not run:
pr <- pr()
pr$registerHook("preroute", function(req){

cat("Routing a request for", req$PATH_INFO, "...\n")
})
pr$registerHooks(list(

preserialize=function(req, value){
print("About to serialize this value:")
print(value)

Must return the value since we took one in. Here we're not choosing
to mutate it, but we could.
value

},
postserialize=function(res){

print("We serialized the value as:")
print(res$body)

}
))

pr$handle("GET", "/", function(){ 123 })

End(Not run)

--
Method `Plumber$handle`
--

Not run:
pr <- pr()
pr$handle("GET", "/", function(){

"<html><h1>Programmatic Plumber!</h1></html>"
}, serializer=plumber::serializer_html())

End(Not run)

--
Method `Plumber$setSerializer`
--

Not run:
pr <- pr()
pr$setSerializer(serializer_unboxed_json())

End(Not run)

--
Method `Plumber$set404Handler`
--

Not run:

24 PlumberEndpoint

pr <- pr()
pr$set404Handler(function(req, res) {cat(req$PATH_INFO)})

End(Not run)

--
Method `Plumber$setErrorHandler`
--

Not run:
pr <- pr()
pr$setErrorHandler(function(req, res, err) {

message("Found error: ")
str(err)

})

End(Not run)

PlumberEndpoint Plumber Endpoint

Description

Plumber Endpoint

Plumber Endpoint

Details

Defines a terminal handler in a Plumber router.

Parameters values are obtained from parsing blocks of lines in a plumber file. They can also be
provided manually for historical reasons.

Super classes

plumber::Hookable -> plumber::PlumberStep -> PlumberEndpoint

Public fields

verbs a character vector. http methods. For historical reasons we have to accept multiple verbs for
a single path. Now it’s simpler to just parse each separate verb/path into its own endpoint, so
we just do that.

path a character string. endpoint path
comments endpoint comments
description endpoint description
responses endpoint responses
params endpoint parameters
tags endpoint tags
parsers step allowed parsers

PlumberEndpoint 25

Methods

Public methods:
• PlumberEndpoint$getTypedParams()

• PlumberEndpoint$canServe()

• PlumberEndpoint$matchesPath()

• PlumberEndpoint$new()

• PlumberEndpoint$getPathParams()

• PlumberEndpoint$getFunc()

• PlumberEndpoint$getFuncParams()

• PlumberEndpoint$getEndpointParams()

• PlumberEndpoint$setPath()

• PlumberEndpoint$clone()

Method getTypedParams(): retrieve endpoint typed parameters

Usage:
PlumberEndpoint$getTypedParams()

Method canServe(): ability to serve request

Usage:
PlumberEndpoint$canServe(req)

Arguments:

req a request object

Returns: a logical. TRUE when endpoint can serve request.

Method matchesPath(): determines if route matches requested path

Usage:
PlumberEndpoint$matchesPath(path)

Arguments:

path a url path

Returns: a logical. TRUE when endpoint matches the requested path.

Method new(): Create a new PlumberEndpoint object

Usage:
PlumberEndpoint$new(
verbs,
path,
expr,
envir,
serializer,
parsers,
lines,
params,
comments,

26 PlumberEndpoint

description,
responses,
tags,
srcref

)

Arguments:

verbs Endpoint verb Ex: "GET", "POST"
path Endpoint path. Ex: "/index.html", "/foo/bar/baz"
expr Endpoint function or expression that evaluates to a function.
envir Endpoint environment
serializer Endpoint serializer. Ex: serializer_json()
parsers Can be one of:

• A NULL value
• A character vector of parser names
• A named list() whose keys are parser names names and values are arguments to be

applied with do.call()

• A TRUE value, which will default to combining all parsers. This is great for seeing what
is possible, but not great for security purposes

If the parser name "all" is found in any character value or list name, all remaining parsers
will be added. When using a list, parser information already defined will maintain their
existing argument values. All remaining parsers will use their default arguments.
Example:
provide a character string
parsers = "json"

provide a named list with no arguments
parsers = list(json = list())

provide a named list with arguments; include `rds`
parsers = list(json = list(simplifyVector = FALSE), rds = list())

default plumber parsers
parsers = c("json", "form", "text", "octet", "multi")

lines Endpoint block
params Endpoint params
comments, description, responses, tags Values to be used within the OpenAPI Spec
srcref srcref attribute from block

Returns: A new PlumberEndpoint object

Method getPathParams(): retrieve endpoint path parameters

Usage:
PlumberEndpoint$getPathParams(path)

Arguments:

path endpoint path

PlumberStatic 27

Method getFunc(): retrieve endpoint function

Usage:
PlumberEndpoint$getFunc()

Method getFuncParams(): retrieve endpoint expression parameters

Usage:
PlumberEndpoint$getFuncParams()

Method getEndpointParams(): retrieve endpoint defined parameters

Usage:
PlumberEndpoint$getEndpointParams()

Method setPath(): Updates $path with a sanitized path and updates the internal path meta-
data

Usage:
PlumberEndpoint$setPath(path)

Arguments:

path Path to set $path. If missing a beginning slash, one will be added.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PlumberEndpoint$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

PlumberStatic Static file router

Description

Static file router

Static file router

Details

Creates a router that is backed by a directory of files on disk.

Super classes

plumber::Hookable -> plumber::Plumber -> PlumberStatic

28 PlumberStep

Methods

Public methods:

• PlumberStatic$new()

• PlumberStatic$print()

• PlumberStatic$clone()

Method new(): Create a new PlumberStatic router

Usage:
PlumberStatic$new(direc, options)

Arguments:

direc a path to an asset directory.
options options to be evaluated in the PlumberStatic router environment

Returns: A new PlumberStatic router

Method print(): Print representation of PlumberStatic() router.

Usage:
PlumberStatic$print(prefix = "", topLevel = TRUE, ...)

Arguments:

prefix a character string. Prefix to append to representation.
topLevel a logical value. When method executed on top level router, set to TRUE.
... additional arguments for recursive calls

Returns: A terminal friendly representation of a PlumberStatic() router.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PlumberStatic$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

PlumberStep plumber step R6 class

Description

an object representing a step in the lifecycle of the treatment of a request by a plumber router.

Super class

plumber::Hookable -> PlumberStep

PlumberStep 29

Public fields

srcref from step block
lines lines from step block
serializer step serializer function

Methods

Public methods:
• PlumberStep$new()

• PlumberStep$exec()

• PlumberStep$registerHook()

• PlumberStep$clone()

Method new(): Create a new PlumberStep() object
Usage:
PlumberStep$new(expr, envir, lines, serializer, srcref)

Arguments:
expr step expr
envir step environment
lines step block
serializer step serializer
srcref srcref attribute from block
Returns: A new PlumberStep object

Method exec(): step execution function
Usage:
PlumberStep$exec(req, res)

Arguments:
req, res Request and response objects created by a Plumber request

Method registerHook(): step hook registration method
Usage:
PlumberStep$registerHook(
stage = c("preexec", "postexec", "aroundexec"),
handler

)

Arguments:
stage a character string.
handler a step handler function.

Method clone(): The objects of this class are cloneable with this method.
Usage:
PlumberStep$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

30 plumb_api

plumb_api Process a Package’s Plumber API

Description

So that packages can ship multiple plumber routers, users should store their Plumber APIs in the
inst subfolder plumber (./inst/plumber/API_1/plumber.R).

Usage

plumb_api(package = NULL, name = NULL, edit = FALSE)

available_apis(package = NULL)

Arguments

package Package to inspect

name Name of the package folder to plumb().

edit Whether or not to open the API source code for viewing / editing

Details

To view all available Plumber APIs across all packages, please call available_apis(). A package
value may be provided to only display a particular package’s Plumber APIs.

Value

A Plumber object. If either package or name is null, the appropriate available_apis() will be
returned.

Functions

• plumb_api(): plumb()s a package’s Plumber API. Returns a Plumber router object

• available_apis(): Displays all available package Plumber APIs. Returns a data.frame of
package, name, and source_directory information.

pr 31

pr Create a new Plumber router

Description

Create a new Plumber router

Usage

pr(
file = NULL,
filters = defaultPlumberFilters,
envir = new.env(parent = .GlobalEnv)

)

Arguments

file Path to file to plumb

filters A list of Plumber filters

envir An environment to be used as the enclosure for the routers execution

Value

A new Plumber router

Examples

Not run:
pr() %>%

pr_run()

End(Not run)

pr_cookie Store session data in encrypted cookies.

Description

plumber uses the crypto R package sodium, to encrypt/decrypt req$session information for each
server request.

32 pr_cookie

Usage

pr_cookie(
pr,
key,
name = "plumber",
expiration = FALSE,
http = TRUE,
secure = FALSE,
same_site = FALSE,
path = NULL

)

Arguments

pr A Plumber API. Note: The supplied Plumber API object will also be updated in
place as well as returned by the function.

key The secret key to use. This must be consistent across all R sessions where you
want to save/restore encrypted cookies. It should be produced using random_cookie_key.
Please see the "Storing secure keys" section for more details complex character
string to bolster security.

name The name of the cookie in the user’s browser.

expiration A number representing the number of seconds into the future before the cookie
expires or a POSIXt date object of when the cookie expires. Defaults to the end
of the user’s browser session.

http Boolean that adds the HttpOnly cookie flag that tells the browser to save the
cookie and to NOT send it to client-side scripts. This mitigates cross-site script-
ing. Defaults to TRUE.

secure Boolean that adds the Secure cookie flag. This should be set when the route is
eventually delivered over HTTPS.

same_site A character specifying the SameSite policy to attach to the cookie. If specified,
one of the following values should be given: "Strict", "Lax", or "None". If
"None" is specified, then the secure flag MUST also be set for the modern
browsers to accept the cookie. An error will be returned if same_site = "None"
and secure = FALSE. If not specified or a non-character is given, no SameSite
policy is attached to the cookie.

path The URI path that the cookie will be available in future requests. Defaults to the
request URI. Set to "/" to make cookie available to all requests at the host.

Details

The cookie’s secret encryption key value must be consistent to maintain req$session information
between server restarts.

Storing secure keys

While it is very quick to get started with user session cookies using plumber, please exercise pre-
caution when storing secure key information. If a malicious person were to gain access to the

https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting
https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting
https://en.wikipedia.org/wiki/HTTPS

pr_cookie 33

secret key, they would be able to eavesdrop on all req$session information and/or tamper with
req$session information being processed.

Please:

• Do NOT store keys in source control.

• Do NOT store keys on disk with permissions that allow it to be accessed by everyone.

• Do NOT store keys in databases which can be queried by everyone.

Instead, please:

• Use a key management system, such as ’keyring’ (preferred)

• Store the secret in a file on disk with appropriately secure permissions, such as "user read
only" (Sys.chmod("myfile.txt", mode = "0600")), to prevent others from reading it.

Examples of both of these solutions are done in the Examples section.

See Also

• ’sodium’: R bindings to ’libsodium’

• ’libsodium’: A Modern and Easy-to-Use Crypto Library

• ’keyring’: Access the system credential store from R

• Set-Cookie flags: Descriptions of different flags for Set-Cookie

• Cross-site scripting: A security exploit which allows an attacker to inject into a website mali-
cious client-side code

Examples

Not run:

Set secret key using `keyring` (preferred method)
keyring::key_set_with_value("plumber_api", password = plumber::random_cookie_key())

pr() %>%
pr_cookie(
keyring::key_get("plumber_api"),
name = "counter"

) %>%
pr_get("/sessionCounter", function(req) {

count <- 0
if (!is.null(req$session$counter)){

count <- as.numeric(req$session$counter)
}
req$session$counter <- count + 1
return(paste0("This is visit #", count))

}) %>%
pr_run()

https://github.com/r-lib/keyring
https://github.com/r-lib/sodium
https://doc.libsodium.org/
https://github.com/r-lib/keyring
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#Directives
https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting

34 pr_filter

Save key to a local file
pswd_file <- "normal_file.txt"
cat(plumber::random_cookie_key(), file = pswd_file)
Make file read-only
Sys.chmod(pswd_file, mode = "0600")

pr() %>%
pr_cookie(
readLines(pswd_file, warn = FALSE),
name = "counter"

) %>%
pr_get("/sessionCounter", function(req) {

count <- 0
if (!is.null(req$session$counter)){

count <- as.numeric(req$session$counter)
}
req$session$counter <- count + 1
return(paste0("This is visit #", count))

}) %>%
pr_run()

End(Not run)

pr_filter Add a filter to Plumber router

Description

Filters can be used to modify an incoming request, return an error, or return a response prior to the
request reaching an endpoint.

Usage

pr_filter(pr, name, expr, serializer)

Arguments

pr A Plumber API. Note: The supplied Plumber API object will also be updated in
place as well as returned by the function.

name A character string. Name of filter

expr An expr that resolve to a filter function or a filter function

serializer A serializer function

Value

The Plumber router with the defined filter added

pr_handle 35

Examples

Not run:
pr() %>%

pr_filter("foo", function(req, res) {
print("This is filter foo")
forward()

}) %>%
pr_get("/hi", function() "Hello") %>%
pr_run()

End(Not run)

pr_handle Add handler to Plumber router

Description

This collection of functions creates handlers for a Plumber router.

Usage

pr_handle(pr, methods, path, handler, preempt, serializer, endpoint, ...)

pr_get(pr, path, handler, preempt, serializer, endpoint, ...)

pr_post(pr, path, handler, preempt, serializer, endpoint, ...)

pr_put(pr, path, handler, preempt, serializer, endpoint, ...)

pr_delete(pr, path, handler, preempt, serializer, endpoint, ...)

pr_head(pr, path, handler, preempt, serializer, endpoint, ...)

Arguments

pr A Plumber API. Note: The supplied Plumber API object will also be updated in
place as well as returned by the function.

methods Character vector of HTTP methods

path The endpoint path

handler A handler function

preempt A preempt function

serializer A Plumber serializer

endpoint A PlumberEndpoint object

... Additional arguments for PlumberEndpoint

36 pr_hook

Details

The generic pr_handle() creates a handle for the given method(s). Specific functions are imple-
mented for the following HTTP methods:

• GET

• POST

• PUT

• DELETE

• HEAD Each function mutates the Plumber router in place and returns the updated router.

Value

A Plumber router with the handler added

Examples

Not run:
pr() %>%

pr_handle("GET", "/hi", function() "Hello World") %>%
pr_run()

pr() %>%
pr_handle(c("GET", "POST"), "/hi", function() "Hello World") %>%
pr_run()

pr() %>%
pr_get("/hi", function() "Hello World") %>%
pr_post("/echo", function(req, res) {
if (is.null(req$body)) return("No input")
list(

input = req$body
)

}) %>%
pr_run()

End(Not run)

pr_hook Register a hook

Description

Plumber routers support the notion of "hooks" that can be registered to execute some code at a
particular point in the lifecycle of a request. Plumber routers currently support four hooks:

1. preroute(data, req, res)

pr_hook 37

2. postroute(data, req, res, value)

3. preserialize(data, req, res, value)

4. postserialize(data, req, res, value) In all of the above you have access to a disposable
environment in the data parameter that is created as a temporary data store for each request.
Hooks can store temporary data in these hooks that can be reused by other hooks processing
this same request.

Usage

pr_hook(pr, stage, handler)

pr_hooks(pr, handlers)

Arguments

pr A Plumber API. Note: The supplied Plumber API object will also be updated in
place as well as returned by the function.

stage A character string. Point in the lifecycle of a request.

handler A hook function.

handlers A named list of hook handlers

Details

One feature when defining hooks in Plumber routers is the ability to modify the returned value.
The convention for such hooks is: any function that accepts a parameter named value is expected
to return the new value. This could be an unmodified version of the value that was passed in, or
it could be a mutated value. But in either case, if your hook accepts a parameter named value,
whatever your hook returns will be used as the new value for the response.

You can add hooks using the pr_hook, or you can add multiple hooks at once using pr_hooks,
which takes a named list in which the names are the names of the hooks, and the values are the
handlers themselves.

Value

A Plumber router with the defined hook(s) added

Examples

Not run:
pr() %>%

pr_hook("preroute", function(req){
cat("Routing a request for", req$PATH_INFO, "...\n")

}) %>%
pr_hooks(list(

preserialize = function(req, value){
print("About to serialize this value:")
print(value)

Must return the value since we took one in. Here we're not choosing

38 pr_mount

to mutate it, but we could.
value

},
postserialize = function(res){

print("We serialized the value as:")
print(res$body)

}
)) %>%
pr_handle("GET", "/", function(){ 123 }) %>%
pr_run()

End(Not run)

pr_mount Mount a Plumber router

Description

Plumber routers can be “nested” by mounting one into another using the mount() method. This
allows you to compartmentalize your API by paths which is a great technique for decomposing
large APIs into smaller files. This function mutates the Plumber router (pr()) in place and returns
the updated router.

Usage

pr_mount(pr, path, router)

Arguments

pr The host Plumber router.

path A character string. Where to mount router.

router A Plumber router. Router to be mounted.

Value

A Plumber router with the supplied router mounted

Examples

Not run:
pr1 <- pr() %>%

pr_get("/hello", function() "Hello")

pr() %>%
pr_get("/goodbye", function() "Goodbye") %>%
pr_mount("/hi", pr1) %>%
pr_run()

pr_run 39

End(Not run)

pr_run Start a server using plumber object

Description

port does not need to be explicitly assigned.

Usage

pr_run(
pr,
host = "127.0.0.1",
port = get_option_or_env("plumber.port", NULL),
...,
debug = missing_arg(),
docs = missing_arg(),
swaggerCallback = missing_arg(),
quiet = FALSE

)

Arguments

pr A Plumber API. Note: The supplied Plumber API object will also be updated in
place as well as returned by the function.

host A string that is a valid IPv4 or IPv6 address that is owned by this server, which
the application will listen on. "0.0.0.0" represents all IPv4 addresses and "::/0"
represents all IPv6 addresses.

port A number or integer that indicates the server port that should be listened on.
Note that on most Unix-like systems including Linux and Mac OS X, port num-
bers smaller than 1025 require root privileges.

... Should be empty.
debug If TRUE, it will provide more insight into your API errors. Using this value will

only last for the duration of the run. If pr_set_debug() has not been called,
debug will default to interactive() at pr_run() time

docs Visual documentation value to use while running the API. This value will only
be used while running the router. If missing, defaults to information previously
set with pr_set_docs(). For more customization, see pr_set_docs() for ex-
amples.

swaggerCallback

An optional single-argument function that is called back with the URL to an
OpenAPI user interface when one becomes ready. If missing, defaults to infor-
mation set with pr_set_docs_callback(). This value will only be used while
running the router.

quiet If TRUE, don’t print routine startup messages.

40 pr_set_404

Examples

Not run:
pr() %>%

pr_run()

pr() %>%
pr_run(
manually set port
port = 5762,
turn off visual documentation
docs = FALSE,
do not display startup messages
quiet = TRUE

)

End(Not run)

pr_set_404 Set the handler that is called when the incoming request can’t be
served

Description

This function allows a custom error message to be returned when a request cannot be served by an
existing endpoint or filter.

Usage

pr_set_404(pr, fun)

Arguments

pr A Plumber API. Note: The supplied Plumber API object will also be updated in
place as well as returned by the function.

fun A handler function

Value

The Plumber router with a modified 404 handler

Examples

Not run:
handler_404 <- function(req, res) {

res$status <- 404
res$body <- "Oops"

}

pr_set_api_spec 41

pr() %>%
pr_get("/hi", function() "Hello") %>%
pr_set_404(handler_404) %>%
pr_run()

End(Not run)

pr_set_api_spec Set the OpenAPI Specification

Description

Allows to modify OpenAPI Specification autogenerated by plumber.

Usage

pr_set_api_spec(pr, api)

Arguments

pr A Plumber API. Note: The supplied Plumber API object will also be updated in
place as well as returned by the function.

api This can be

• an OpenAPI Specification formatted list object
• a function that accepts the OpenAPI Specification autogenerated by plumber

and returns a OpenAPI Specification formatted list object.
• a path to an OpenAPI Specification

The value returned will not be validated for OAS compatibility.

Details

Note, the returned value will be sent through serializer_unboxed_json() which will turn all
length 1 vectors into atomic values. To force a vector to serialize to an array of size 1, be sure to
call as.list() on your value. list() objects are always serialized to an array value.

Value

The Plumber router with the new OpenAPI Specification object or function.

Examples

Not run:
Set the API Spec to a function to use the auto-generated OAS object
pr() %>%

pr_set_api_spec(function(spec) {
spec$info$title <- Sys.time()
spec

42 pr_set_debug

}) %>%
pr_get("/plus/<a:int>/<b:int>", function(a, b) { a + b }) %>%
pr_run()

Set the API Spec using an object
pr() %>%

pr_set_api_spec(my_custom_object) %>%
pr_get("/plus/<a:int>/<b:int>", function(a, b) { a + b }) %>%
pr_run()

End(Not run)

pr_set_debug Set debug value to include error messages of routes cause an error

Description

By default, error messages from your plumber routes are hidden, but can be turned on by setting the
debug value to TRUE using this setter.

Usage

pr_set_debug(pr, debug = FALSE)

Arguments

pr A Plumber API. Note: The supplied Plumber API object will also be updated in
place as well as returned by the function.

debug TRUE provides more insight into your API errors.

Value

The Plumber router with the new debug setting.

Examples

Not run:
Will contain the original error message
pr() %>%

pr_set_debug(TRUE) %>%
pr_get("/boom", function() stop("boom")) %>%
pr_run()

Will NOT contain an error message
pr() %>%

pr_set_debug(FALSE) %>%
pr_get("/boom", function() stop("boom")) %>%
pr_run()

pr_set_docs 43

End(Not run)

Setting within a plumber file
#* @plumber
function(pr) {

pr %>%
pr_set_debug(TRUE)

}

pr_set_docs Set the API visual documentation

Description

docs should be either a logical or a character value matching a registered visual documentation.
Multiple handles will be added to Plumber object. OpenAPI json file will be served on paths
/openapi.json. Documentation will be served on paths /__docs__/index.html and /__docs__/.

Usage

pr_set_docs(pr, docs = get_option_or_env("plumber.docs", TRUE), ...)

Arguments

pr A Plumber API. Note: The supplied Plumber API object will also be updated in
place as well as returned by the function.

docs a character value or a logical value. If using options_plumber(), the value
must be set before initializing your Plumber router.

... Arguments for the visual documentation. See each visual documentation pack-
age for further details.

Value

The Plumber router with the new docs settings.

Examples

Not run:
View API using Swagger UI
Official Website: https://swagger.io/tools/swagger-ui/
install.packages("swagger")
if (require(swagger)) {

pr() %>%
pr_set_docs("swagger") %>%
pr_get("/plus/<a:int>/<b:int>", function(a, b) { a + b }) %>%
pr_run()

}

44 pr_set_docs_callback

View API using Redoc
Official Website: https://github.com/Redocly/redoc
if (require(redoc)) {

pr() %>%
pr_set_docs("redoc") %>%
pr_get("/plus/<a:int>/<b:int>", function(a, b) { a + b }) %>%
pr_run()

}

View API using RapiDoc
Official Website: https://github.com/mrin9/RapiDoc
if (require(rapidoc)) {

pr() %>%
pr_set_docs("rapidoc") %>%
pr_get("/plus/<a:int>/<b:int>", function(a, b) { a + b }) %>%
pr_run()

}

Disable the OpenAPI Spec UI
pr() %>%

pr_set_docs(FALSE) %>%
pr_get("/plus/<a:int>/<b:int>", function(a, b) { a + b }) %>%
pr_run()

End(Not run)

pr_set_docs_callback Set the callback to tell where the API visual documentation is located

Description

When set, it will be called with a character string corresponding to the API visual documentation
url. This allows RStudio to locate visual documentation.

Usage

pr_set_docs_callback(
pr,
callback = get_option_or_env("plumber.docs.callback", NULL)

)

Arguments

pr A Plumber API. Note: The supplied Plumber API object will also be updated in
place as well as returned by the function.

callback a callback function for taking action on the docs url.

Details

If using options_plumber(), the value must be set before initializing your Plumber router.

pr_set_error 45

Value

The Plumber router with the new docs callback setting.

Examples

Not run:
pr() %>%

pr_set_docs_callback(function(url) { message("API location: ", url) }) %>%
pr_get("/plus/<a:int>/<b:int>", function(a, b) { a + b }) %>%
pr_run()

End(Not run)

pr_set_error Set the error handler that is invoked if any filter or endpoint generates
an error

Description

Set the error handler that is invoked if any filter or endpoint generates an error

Usage

pr_set_error(pr, fun)

Arguments

pr A Plumber API. Note: The supplied Plumber API object will also be updated in
place as well as returned by the function.

fun An error handler function. This should accept req, res, and the error value

Value

The Plumber router with a modified error handler

Examples

Not run:
handler_error <- function(req, res, err){

res$status <- 500
list(error = "Custom Error Message")

}

pr() %>%
pr_get("/error", function() log("a")) %>%
pr_set_error(handler_error) %>%
pr_run()

End(Not run)

46 pr_set_parsers

pr_set_parsers Set the default endpoint parsers for the router

Description

By default, Plumber will parse JSON, text, query strings, octet streams, and multipart bodies. This
function updates the default parsers for any endpoint that does not define their own parsers.

Usage

pr_set_parsers(pr, parsers)

Arguments

pr A Plumber API. Note: The supplied Plumber API object will also be updated in
place as well as returned by the function.

parsers Can be one of:

• A NULL value
• A character vector of parser names
• A named list() whose keys are parser names names and values are argu-

ments to be applied with do.call()

• A TRUE value, which will default to combining all parsers. This is great for
seeing what is possible, but not great for security purposes

If the parser name "all" is found in any character value or list name, all re-
maining parsers will be added. When using a list, parser information already
defined will maintain their existing argument values. All remaining parsers will
use their default arguments.
Example:

provide a character string
parsers = "json"

provide a named list with no arguments
parsers = list(json = list())

provide a named list with arguments; include `rds`
parsers = list(json = list(simplifyVector = FALSE), rds = list())

default plumber parsers
parsers = c("json", "form", "text", "octet", "multi")

Details

Note: The default set of parsers will be completely replaced if any value is supplied. Be sure to
include all of your parsers that you would like to include. Use registered_parsers() to get a list
of available parser names.

pr_set_serializer 47

Value

The Plumber router with the new default PlumberEndpoint parsers

pr_set_serializer Set the default serializer of the router

Description

By default, Plumber serializes responses to JSON. This function updates the default serializer to the
function supplied via serializer

Usage

pr_set_serializer(pr, serializer)

Arguments

pr A Plumber API. Note: The supplied Plumber API object will also be updated in
place as well as returned by the function.

serializer A serializer function

Value

The Plumber router with the new default serializer

pr_static Add a static route to the plumber object

Description

Add a static route to the plumber object

Usage

pr_static(pr, path, direc)

Arguments

pr A Plumber API. Note: The supplied Plumber API object will also be updated in
place as well as returned by the function.

path The mounted path location of the static folder

direc The local folder to be served statically

48 register_docs

Examples

Not run:
pr() %>%

pr_static("/path", "./my_folder/location") %>%
pr_run()

End(Not run)

random_cookie_key Random cookie key generator

Description

Uses a cryptographically secure pseudorandom number generator from sodium::helpers() to
generate a 64 digit hexadecimal string. ’sodium’ wraps around ’libsodium’.

Usage

random_cookie_key()

Details

Please see session_cookie for more information on how to save the generated key.

Value

A 64 digit hexadecimal string to be used as a key for cookie encryption.

See Also

session_cookie

register_docs Add visual documentation for plumber to use

Description

register_docs() is used by other packages like swagger, rapidoc, and redoc. When you load
these packages, it calls register_docs() to provide a user interface that can interpret your plumber
OpenAPI Specifications.

Usage

register_docs(name, index, static = NULL)

registered_docs()

https://github.com/r-lib/sodium
https://doc.libsodium.org/

register_parser 49

Arguments

name Name of the visual documentation

index A function that returns the HTML content of the landing page of the documen-
tation. Parameters (besides req and res) will be supplied as if it is a regular GET
route. Default parameter values may be used when setting the documentation
index function. See the example below.

static A function that returns the path to the static assets (images, javascript, css, fonts)
the Docs will use.

Examples

Not run:
Example from the `swagger` R package
register_docs(

name = "swagger",
index = function(version = "3", ...) {
swagger::swagger_spec(

api_path = paste0(
"window.location.origin + ",
"window.location.pathname.replace(",

"/\\(__docs__\\\\/|__docs__\\\\/index.html\\)$/, \"\"",
") + ",
"\"openapi.json\""

),
version = version

)
},
static = function(version = "3", ...) {

swagger::swagger_path(version)
}

)

When setting the docs, `index` and `static` function arguments can be supplied
* via `pr_set_docs()`
* or through URL query string variables
pr() %>%

Set default argument `version = "3"` for the swagger `index` and `static` functions
pr_set_docs("swagger", version = "3") %>%
pr_get("/plus/<a:int>/<b:int>", function(a, b) { a + b }) %>%
pr_run()

End(Not run)

register_parser Manage parsers

50 register_parser

Description

A parser is responsible for decoding the raw body content of a request into a list of arguments that
can be mapped to endpoint function arguments. For instance, parser_json() parse content-type
application/json.

Usage

register_parser(alias, parser, fixed = NULL, regex = NULL, verbose = TRUE)

registered_parsers()

Arguments

alias An alias to map parser from the @parser plumber tag to the global parsers list.

parser The parser function to be added. This build the parser function. See Details for
more information.

fixed A character vector of fixed string to be matched against a request content-type
to use parser.

regex A character vector of regex string to be matched against a request content-type
to use parser.

verbose Logical value which determines if a warning should be displayed when alias in
map are overwritten.

Details

When parser is evaluated, it should return a parser function. Parser matching is done first by
content-type header matching with fixed then by using regular expressions with regex. Note
that plumber strips ; charset* from content-type header before matching.

Plumber will try to use parser_json() (if available) when no content-type header is found and
the request body starts with { or [.

Functions signature should include value, ... and possibly content_type, filename. Other pa-
rameters may be provided if you want to use the headers from webutils::parse_multipart().

Parser function structure is something like below.

function(parser_arguments_here) {
return a function to parse a raw value
function(value, ...) {
do something with raw value

}
}

Functions

• registered_parsers(): Return all registered parsers

register_serializer 51

Examples

`content-type` header is mostly used to look up charset and adjust encoding
parser_dcf <- function(...) {

function(value, content_type = "text/x-dcf", ...) {
charset <- get_character_set(content_type)
value <- rawToChar(value)
Encoding(value) <- charset
read.dcf(value, ...)

}
}

Could also leverage existing parsers
parser_dcf <- function(...) {

parser_read_file(function(tmpfile) {
read.dcf(tmpfile, ...)

})
}

Register the newly created parser
Not run: register_parser("dcf", parser_dcf, fixed = "text/x-dcf")

register_serializer Register a Serializer

Description

A serializer is responsible for translating a generated R value into output that a remote user can
understand. For instance, the serializer_json serializes R objects into JSON before returning
them to the user. The list of available serializers in plumber is global.

Usage

register_serializer(name, serializer, verbose = TRUE)

registered_serializers()

Arguments

name The name of the serializer (character string)

serializer The serializer function to be added. This function should accept arguments that
can be supplied when plumb()ing a file. This function should return a func-
tion that accepts four arguments: value, req, res, and errorHandler. See
print(serializer_json) for an example.

verbose Logical value which determines if a message should be printed when overwrit-
ing serializers

52 serializer_headers

Details

There are three main building-block serializers:

• serializer_headers: the base building-block serializer that is required to have as_attachment()
work

• serializer_content_type(): for setting the content type. (Calls serializer_headers())

• serializer_device(): add endpoint hooks to turn a graphics device on and off in addition
to setting the content type. (Uses serializer_content_type())

Functions

• register_serializer(): Register a serializer with a name

• registered_serializers(): Return a list of all registered serializers

Examples

`serializer_json()` calls `serializer_content_type()` and supplies a serialization function
print(serializer_json)
serializer_content_type() calls `serializer_headers()` and supplies a serialization function
print(serializer_content_type)

serializer_headers Plumber Serializers

Description

Serializers are used in Plumber to transform the R object produced by a filter/endpoint into an HTTP
response that can be returned to the client. See here for more details on Plumber serializers and how
to customize their behavior.

Usage

serializer_headers(headers = list(), serialize_fn = identity)

serializer_content_type(type, serialize_fn = identity)

serializer_octet(..., type = "application/octet-stream")

serializer_csv(..., type = "text/csv; charset=UTF-8")

serializer_tsv(..., type = "text/tab-separated-values; charset=UTF-8")

serializer_html(type = "text/html; charset=UTF-8")

serializer_json(..., type = "application/json")

serializer_unboxed_json(auto_unbox = TRUE, ..., type = "application/json")

https://www.rplumber.io/articles/rendering-output.html#serializers-1

serializer_headers 53

serializer_geojson(..., type = "application/geo+json")

serializer_rds(version = "2", ascii = FALSE, ..., type = "application/rds")

serializer_feather(type = "application/vnd.apache.arrow.file")

serializer_arrow_ipc_stream(type = "application/vnd.apache.arrow.stream")

serializer_parquet(type = "application/vnd.apache.parquet")

serializer_excel(
...,
type = "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"

)

serializer_yaml(..., type = "text/x-yaml; charset=UTF-8")

serializer_text(
...,
serialize_fn = as.character,
type = "text/plain; charset=UTF-8"

)

serializer_format(..., type = "text/plain; charset=UTF-8")

serializer_print(..., type = "text/plain; charset=UTF-8")

serializer_cat(..., type = "text/plain; charset=UTF-8")

serializer_write_file(type, write_fn, fileext = NULL)

serializer_htmlwidget(..., type = "text/html; charset=UTF-8")

serializer_device(type, dev_on, dev_off = grDevices::dev.off)

serializer_jpeg(..., type = "image/jpeg")

serializer_png(..., type = "image/png")

serializer_svg(..., type = "image/svg+xml")

serializer_bmp(..., type = "image/bmp")

serializer_tiff(..., type = "image/tiff")

serializer_pdf(..., type = "application/pdf")

54 serializer_headers

serializer_agg_jpeg(..., type = "image/jpeg")

serializer_agg_png(..., type = "image/png")

serializer_agg_tiff(..., type = "image/tiff")

serializer_svglite(..., type = "image/svg+xml")

Arguments

headers list() of headers to add to the response object

serialize_fn Function to serialize the data. The result object will be converted to a character
string. Ex: jsonlite::toJSON().

type The value to provide for the Content-Type HTTP header.

... extra arguments supplied to respective internal serialization function.

auto_unbox automatically unbox() all atomic vectors of length 1. It is usually safer to avoid
this and instead use the unbox() function to unbox individual elements. An
exception is that objects of class AsIs (i.e. wrapped in I()) are not automatically
unboxed. This is a way to mark single values as length-1 arrays.

version the workspace format version to use. NULL specifies the current default version
(3). The only other supported value is 2, the default from R 1.4.0 to R 3.5.0.

ascii a logical. If TRUE or NA, an ASCII representation is written; otherwise (default)
a binary one. See also the comments in the help for save.

write_fn Function that should write serialized content to the temp file provided. write_fn
should have the function signature of function(value, tmp_file){}.

fileext A non-empty character vector giving the file extension. This value will try to be
inferred from the content type provided.

dev_on Function to turn on a graphics device. The graphics device dev_on function
will receive any arguments supplied to the serializer in addition to filename.
filename points to the temporary file name that should be used when saving
content.

dev_off Function to turn off the graphics device. Defaults to grDevices::dev.off()

Functions

• serializer_headers(): Add a static list of headers to each return value. Will add Content-Disposition
header if a value is the result of as_attachment().

• serializer_content_type(): Adds a Content-Type header to the response object

• serializer_octet(): Octet serializer. If content is received that does not have a "raw" type,
then an error will be thrown.

• serializer_csv(): CSV serializer. See also: readr::format_csv()

• serializer_tsv(): TSV serializer. See also: readr::format_tsv()

• serializer_html(): HTML serializer

• serializer_json(): JSON serializer. See also: jsonlite::toJSON()

serializer_headers 55

• serializer_unboxed_json(): JSON serializer with auto_unbox defaulting to TRUE. See
also: jsonlite::toJSON()

• serializer_geojson(): GeoJSON serializer. See also geojsonsf::sf_geojson() and
[geojsonsf::sfc_geojson()].

• serializer_rds(): RDS serializer. See also: base::serialize()

• serializer_feather(): feather serializer. See also: arrow::write_feather()

• serializer_arrow_ipc_stream(): Arrow IPC serializer. See also: arrow::write_ipc_stream()

• serializer_parquet(): parquet serializer. See also: arrow::write_parquet()

• serializer_excel(): excel serializer. See also: writexl::write_xlsx()

• serializer_yaml(): YAML serializer. See also: yaml::as.yaml()

• serializer_text(): Text serializer. See also: as.character()

• serializer_format(): Text serializer. See also: format()

• serializer_print(): Text serializer. Captures the output of print()

• serializer_cat(): Text serializer. Captures the output of cat()

• serializer_write_file(): Write output to a temp file whose contents are read back as a
serialized response. serializer_write_file() creates (and cleans up) a temp file, calls
the serializer (which should write to the temp file), and then reads the contents back as the
serialized value. If the content type starts with "text", the return result will be read into a
character string, otherwise the result will be returned as a raw vector.

• serializer_htmlwidget(): htmlwidget serializer. See also: htmlwidgets::saveWidget()

• serializer_device(): Helper method to create graphics device serializers, such as serializer_png().
See also: endpoint_serializer()

• serializer_jpeg(): JPEG image serializer. See also: grDevices::jpeg()

• serializer_png(): PNG image serializer. See also: grDevices::png()

• serializer_svg(): SVG image serializer. See also: grDevices::svg()

• serializer_bmp(): BMP image serializer. See also: grDevices::bmp()

• serializer_tiff(): TIFF image serializer. See also: grDevices::tiff()

• serializer_pdf(): PDF image serializer. See also: grDevices::pdf()

• serializer_agg_jpeg(): JPEG image serializer using ragg. See also: ragg::agg_jpeg()

• serializer_agg_png(): PNG image serializer using ragg. See also: ragg::agg_png()

• serializer_agg_tiff(): TIFF image serializer using ragg. See also: ragg::agg_tiff()

• serializer_svglite(): SVG image serializer using svglite. See also: svglite::svglite()

56 session_cookie

session_cookie Store session data in encrypted cookies.

Description

plumber uses the crypto R package sodium, to encrypt/decrypt req$session information for each
server request.

Usage

session_cookie(
key,
name = "plumber",
expiration = FALSE,
http = TRUE,
secure = FALSE,
same_site = FALSE,
path = NULL

)

Arguments

key The secret key to use. This must be consistent across all R sessions where you
want to save/restore encrypted cookies. It should be produced using random_cookie_key.
Please see the "Storing secure keys" section for more details complex character
string to bolster security.

name The name of the cookie in the user’s browser.

expiration A number representing the number of seconds into the future before the cookie
expires or a POSIXt date object of when the cookie expires. Defaults to the end
of the user’s browser session.

http Boolean that adds the HttpOnly cookie flag that tells the browser to save the
cookie and to NOT send it to client-side scripts. This mitigates cross-site script-
ing. Defaults to TRUE.

secure Boolean that adds the Secure cookie flag. This should be set when the route is
eventually delivered over HTTPS.

same_site A character specifying the SameSite policy to attach to the cookie. If specified,
one of the following values should be given: "Strict", "Lax", or "None". If
"None" is specified, then the secure flag MUST also be set for the modern
browsers to accept the cookie. An error will be returned if same_site = "None"
and secure = FALSE. If not specified or a non-character is given, no SameSite
policy is attached to the cookie.

path The URI path that the cookie will be available in future requests. Defaults to the
request URI. Set to "/" to make cookie available to all requests at the host.

https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting
https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting
https://en.wikipedia.org/wiki/HTTPS

session_cookie 57

Details

The cookie’s secret encryption key value must be consistent to maintain req$session information
between server restarts.

Storing secure keys

While it is very quick to get started with user session cookies using plumber, please exercise pre-
caution when storing secure key information. If a malicious person were to gain access to the
secret key, they would be able to eavesdrop on all req$session information and/or tamper with
req$session information being processed.

Please:

• Do NOT store keys in source control.

• Do NOT store keys on disk with permissions that allow it to be accessed by everyone.

• Do NOT store keys in databases which can be queried by everyone.

Instead, please:

• Use a key management system, such as ’keyring’ (preferred)

• Store the secret in a file on disk with appropriately secure permissions, such as "user read
only" (Sys.chmod("myfile.txt", mode = "0600")), to prevent others from reading it.

Examples of both of these solutions are done in the Examples section.

See Also

• ’sodium’: R bindings to ’libsodium’

• ’libsodium’: A Modern and Easy-to-Use Crypto Library

• ’keyring’: Access the system credential store from R

• Set-Cookie flags: Descriptions of different flags for Set-Cookie

• Cross-site scripting: A security exploit which allows an attacker to inject into a website mali-
cious client-side code

Examples

Not run:

Set secret key using `keyring` (preferred method)
keyring::key_set_with_value("plumber_api", plumber::random_cookie_key())

Load a plumber API
plumb_api("plumber", "01-append") %>%

Add cookie support via `keyring`
pr_cookie(

keyring::key_get("plumber_api")
) %>%
pr_run()

https://github.com/r-lib/keyring
https://github.com/r-lib/sodium
https://doc.libsodium.org/
https://github.com/r-lib/keyring
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#Directives
https://developer.mozilla.org/en-US/docs/Glossary/Cross-site_scripting

58 validate_api_spec

Save key to a local file
pswd_file <- "normal_file.txt"
cat(plumber::random_cookie_key(), file = pswd_file)
Make file read-only
Sys.chmod(pswd_file, mode = "0600")

Load a plumber API
plumb_api("plumber", "01-append") %>%

Add cookie support and retrieve secret key from file
pr_cookie(
readLines(pswd_file, warn = FALSE)

) %>%
pr_run()

End(Not run)

validate_api_spec Validate OpenAPI Spec

Description

Validate an OpenAPI Spec using @redocly/cli.

Usage

validate_api_spec(
pr,
...,
ruleset = c("minimal", "recommended", "recommended-strict"),
verbose = TRUE

)

Arguments

pr A Plumber API

... Ignored

ruleset Character that determines the ruleset to use for validation. Can be one of "min-
imal", "recommended", or "recommended-strict". Defaults to "minimal". See
@redocly/cli options for more details.

verbose Logical that determines if a "is valid" statement is displayed. Defaults to TRUE

https://redocly.com/docs/cli/commands/lint
https://redocly.com/docs/cli/commands/lint#options

validate_api_spec 59

Details

If any warning or error is presented, an error will be thrown.

This function is [Experimental] and may be altered, changed, or removed in the future.

Examples

Not run:
pr <- plumb_api("plumber", "01-append")
validate_api_spec(pr)

End(Not run)

Index

arrow::read_feather(), 10
arrow::read_ipc_stream(), 10
arrow::read_parquet(), 10
arrow::write_feather(), 55
arrow::write_ipc_stream(), 55
arrow::write_parquet(), 55
as.character(), 55
as.list(), 20, 41
as_attachment, 3
as_attachment(), 6, 52
available_apis (plumb_api), 30
available_apis(), 30

base::serialize(), 55

cat(), 55

do.call(), 18, 26, 46

endpoint_serializer, 4
endpoint_serializer(), 55

format(), 55
forward, 5

geojsonsf::geojson_sf(), 10
geojsonsf::sf_geojson(), 55
geojsonsf::sfc_geojson(), 55
get_character_set, 5
get_option_or_env (options_plumber), 7
grDevices::bmp(), 55
grDevices::dev.off(), 54
grDevices::jpeg(), 55
grDevices::pdf(), 55
grDevices::png(), 55
grDevices::svg(), 55
grDevices::tiff(), 55

htmlwidgets::saveWidget(), 55

I(), 54

include_file, 6
include_html (include_file), 6
include_md (include_file), 6
include_rmd (include_file), 6
is_plumber, 6

jsonlite::parse_json(), 10
jsonlite::toJSON(), 54, 55

options(), 7, 9
options_plumber, 7
options_plumber(), 7, 14, 19, 43, 44

parser_arrow_ipc_stream (parser_form), 9
parser_csv (parser_form), 9
parser_excel (parser_form), 9
parser_feather (parser_form), 9
parser_form, 9
parser_geojson (parser_form), 9
parser_json (parser_form), 9
parser_json(), 50
parser_multi (parser_form), 9
parser_none (parser_form), 9
parser_octet (parser_form), 9
parser_parquet (parser_form), 9
parser_rds (parser_form), 9
parser_read_file (parser_form), 9
parser_text (parser_form), 9
parser_tsv (parser_form), 9
parser_yaml (parser_form), 9
plumb, 11
plumb(), 13, 30, 51
plumb_api, 30
Plumber, 7, 12, 30, 31, 43
plumber::Hookable, 12, 24, 27, 28
plumber::Plumber, 27
plumber::PlumberStep, 24
PlumberEndpoint, 4, 16, 24, 47
PlumberStatic, 27
PlumberStep, 28

60

INDEX 61

PlumberStep(), 29
pr, 31
pr(), 13, 22, 38
pr_cookie, 31
pr_cookie(), 22
pr_delete (pr_handle), 35
pr_delete(), 16
pr_filter, 34
pr_filter(), 20, 22
pr_get (pr_handle), 35
pr_get(), 16, 22
pr_handle, 35
pr_handle(), 16, 36
pr_head (pr_handle), 35
pr_hook, 36
pr_hook(), 15, 22
pr_hooks (pr_hook), 36
pr_hooks(), 15, 22
pr_mount, 38
pr_mount(), 14, 22
pr_post (pr_handle), 35
pr_post(), 16, 22
pr_put (pr_handle), 35
pr_put(), 16
pr_run, 39
pr_run(), 13, 22, 39
pr_set_404, 40
pr_set_404(), 19, 22
pr_set_api_spec, 41
pr_set_api_spec(), 20, 22
pr_set_debug, 42
pr_set_debug(), 20, 22, 39
pr_set_docs, 43
pr_set_docs(), 14, 19, 22, 39
pr_set_docs_callback, 44
pr_set_docs_callback(), 19, 22, 39
pr_set_error, 45
pr_set_error(), 22
pr_set_parsers, 46
pr_set_parsers(), 22
pr_set_serializer, 47
pr_set_serializer(), 18, 22
pr_static, 47
print(), 55

ragg::agg_jpeg(), 55
ragg::agg_png(), 55
ragg::agg_tiff(), 55
random_cookie_key, 32, 48, 56

readr::format_csv(), 54
readr::format_tsv(), 54
readr::read_csv(), 10
readr::read_tsv(), 10
readRDS(), 10
readxl::read_excel(), 10
regex, 50
register_docs, 48
register_docs(), 19, 48
register_parser, 49
register_serializer, 51
registered_docs (register_docs), 48
registered_docs(), 19
registered_parsers (register_parser), 49
registered_parsers(), 10
registered_serializers

(register_serializer), 51

save, 54
serializer_agg_jpeg

(serializer_headers), 52
serializer_agg_png

(serializer_headers), 52
serializer_agg_tiff

(serializer_headers), 52
serializer_arrow_ipc_stream

(serializer_headers), 52
serializer_bmp (serializer_headers), 52
serializer_cat (serializer_headers), 52
serializer_content_type

(serializer_headers), 52
serializer_csv (serializer_headers), 52
serializer_device (serializer_headers),

52
serializer_excel (serializer_headers),

52
serializer_feather

(serializer_headers), 52
serializer_format (serializer_headers),

52
serializer_geojson

(serializer_headers), 52
serializer_headers, 52
serializer_html (serializer_headers), 52
serializer_htmlwidget

(serializer_headers), 52
serializer_jpeg (serializer_headers), 52
serializer_json (serializer_headers), 52
serializer_json(), 26

62 INDEX

serializer_octet (serializer_headers),
52

serializer_parquet
(serializer_headers), 52

serializer_pdf (serializer_headers), 52
serializer_png (serializer_headers), 52
serializer_png(), 55
serializer_print (serializer_headers),

52
serializer_rds (serializer_headers), 52
serializer_svg (serializer_headers), 52
serializer_svglite

(serializer_headers), 52
serializer_text (serializer_headers), 52
serializer_tiff (serializer_headers), 52
serializer_tsv (serializer_headers), 52
serializer_unboxed_json

(serializer_headers), 52
serializer_unboxed_json(), 20, 41
serializer_write_file

(serializer_headers), 52
serializer_yaml (serializer_headers), 52
session_cookie, 48, 56
sodium::helpers(), 48
svglite::svglite(), 55

unbox(), 54

validate_api_spec, 58

webutils::parse_multipart(), 10, 50
writexl::write_xlsx(), 55

yaml::as.yaml(), 55
yaml::yaml.load(), 10

	as_attachment
	endpoint_serializer
	forward
	get_character_set
	include_file
	is_plumber
	options_plumber
	parser_form
	plumb
	Plumber
	PlumberEndpoint
	PlumberStatic
	PlumberStep
	plumb_api
	pr
	pr_cookie
	pr_filter
	pr_handle
	pr_hook
	pr_mount
	pr_run
	pr_set_404
	pr_set_api_spec
	pr_set_debug
	pr_set_docs
	pr_set_docs_callback
	pr_set_error
	pr_set_parsers
	pr_set_serializer
	pr_static
	random_cookie_key
	register_docs
	register_parser
	register_serializer
	serializer_headers
	session_cookie
	validate_api_spec
	Index

