Package ‘prophet’

January 22, 2026

Title Automatic Forecasting Procedure
Version 1.1.7
Date 2026-01-22

Description Implements a procedure for forecasting time series data based on
an additive model where non-linear trends are fit with yearly, weekly, and
daily seasonality, plus holiday effects. It works best with time series
that have strong seasonal effects and several seasons of historical data.
Prophet is robust to missing data and shifts in the trend, and typically
handles outliers well.

URL https://github.com/facebook/prophet

BugReports https://github.com/facebook/prophet/issues
Depends R (>=3.4.0), Repp (>=0.12.0), rlang (>=0.3.0.1)

Imports dplyr (>=0.7.7), dygraphs (>= 1.1.1.4), extraDistr, ggplot2,
grid, lubridate, methods, RcppParallel (>= 5.0.1), rstan (>=
2.18.1), rstantools (>= 2.0.0), scales, StanHeaders, stats,
tidyr (>=0.6.1), xts

Suggests cmdstanr, posterior, knitr, testthat, readr, rmarkdown

Additional_repositories https://stan-dev.r-universe.dev
SystemRequirements GNU make, C++17

Biarch true

License MIT + file LICENSE

LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppParallel (>=5.0.1),
ReppEigen (>=0.3.3.3.0), rstan (>= 2.18.1), StanHeaders (>=
2.18.0)

VignetteBuilder knitr
Encoding UTF-8
RoxygenNote 7.2.0

NeedsCompilation yes

https://github.com/facebook/prophet
https://github.com/facebook/prophet/issues
https://stan-dev.r-universe.dev

add_changepoints_to_plot

Author Cuong Duong [cre, aut],
Sean Taylor [aut],
Ben Letham [aut]

Maintainer Cuong Duong <cuong.duong242@gmail.com>
Repository CRAN
Date/Publication 2026-01-22 08:20:02 UTC

Contents
add_changepoints_to_plot 2
add_country_holidays 3
add_regressor e e 4
add_seasonality 5
cross_validation s 6
dyplot.prophet L 7
fitprophet 8
generated_holidays L 8
make_future_dataframe 9
performance_metrics L. e e e e e e 9
plot.prophet e e e e 10
plot_cross_validation_metric oL 11
plot_forecast_component 12
predict.prophet L 13
predictive_samples 13
prophet . . .o 14
prophet_plot_components 16
regressor_coefficientso 17
rolling_median_by_h 18
Index 19

add_changepoints_to_plot

Get layers to overlay significant changepoints on prophet forecast plot.

Description

Get layers to overlay significant changepoints on prophet forecast plot.

Usage

add_changepoints_to_plot(

m’

threshold = 0.01,
cp_color = "red”,
cp_linetype = "dashed"”,

add_country_holidays 3

trend = TRUE,
)
Arguments
m Prophet model object.
threshold Numeric, changepoints where abs(delta) >= threshold are significant. (Default
0.01)
cp_color Character, line color. (Default "red")

cp_linetype Character or integer, line type. (Default "dashed")
trend Logical, if FALSE, do not draw trend line. (Default TRUE)

Other arguments passed on to layers.

Value

A list of ggplot2 layers.

Examples

Not run:
plot(m, fcst) + add_changepoints_to_plot(m)

End(Not run)

add_country_holidays Add in built-in holidays for the specified country.

Description

These holidays will be included in addition to any specified on model initialization.

Usage

add_country_holidays(m, country_name)

Arguments

m Prophet object.

country_name Name of the country, like *UnitedStates’ or "US’

Details

Holidays will be calculated for arbitrary date ranges in the history and future. See the online docu-
mentation for the list of countries with built-in holidays.

Built-in country holidays can only be set for a single country.

4 add_regressor

Value

The prophet model with the holidays country set.

add_regressor Add an additional regressor to be used for fitting and predicting.

Description

The dataframe passed to ‘fit* and ‘predict® will have a column with the specified name to be used
as a regressor. When standardize="auto’, the regressor will be standardized unless it is binary. The
regression coefficient is given a prior with the specified scale parameter. Decreasing the prior scale
will add additional regularization. If no prior scale is provided, holidays.prior.scale will be used.
Mode can be specified as either *additive’ or *multiplicative’. If not specified, m$seasonality.mode
will be used. ’additive’ means the effect of the regressor will be added to the trend, *multiplicative’
means it will multiply the trend.

Usage
add_regressor(m, name, prior.scale = NULL, standardize = "auto”, mode = NULL)
Arguments
m Prophet object.
name String name of the regressor
prior.scale Float scale for the normal prior. If not provided, holidays.prior.scale will be
used.
standardize Bool, specify whether this regressor will be standardized prior to fitting. Can be
“auto’ (standardize if not binary), True, or False.
mode Optional, ’additive’ or "'multiplicative’. Defaults to m$seasonality.mode.
Value

The prophet model with the regressor added.

add_seasonality 5

add_seasonality Add a seasonal component with specified period, number of Fourier
components, and prior scale.

Description

Increasing the number of Fourier components allows the seasonality to change more quickly (at risk
of overfitting). Default values for yearly and weekly seasonalities are 10 and 3 respectively.

Usage

add_seasonality(
m)
name,
period,
fourier.order,
prior.scale = NULL,

mode = NULL,
condition.name = NULL
)
Arguments
m Prophet object.
name String name of the seasonality component.
period Float number of days in one period.

fourier.order Int number of Fourier components to use.
prior.scale Optional float prior scale for this component.
mode Optional ’additive’ or *multiplicative’.

condition.name String name of the seasonality condition.

Details

Increasing prior scale will allow this seasonality component more flexibility, decreasing will dampen
it. If not provided, will use the seasonality.prior.scale provided on Prophet initialization (defaults to
10).

Mode can be specified as either *additive’ or *multiplicative’. If not specified, m$seasonality.mode
will be used (defaults to ’additive’). Additive means the seasonality will be added to the trend,
multiplicative means it will multiply the trend.

If condition.name is provided, the dataframe passed to “fit* and ‘predict‘ should have a column with
the specified condition.name containing booleans which decides when to apply seasonality.

Value

The prophet model with the seasonality added.

6 cross_validation

cross_validation Cross-validation for time series.

Description

Computes forecasts from historical cutoff points which user can input.If not provided, these are
computed beginning from (end - horizon), and working backwards making cutoffs with a spacing
of period until initial is reached.

Usage

cross_validation(
model,
horizon,
units,
period = NULL,
initial = NULL,
cutoffs = NULL

)
Arguments
model Fitted Prophet model.
horizon Integer size of the horizon
units String unit of the horizon, e.g., "days", "secs".
period Integer amount of time between cutoff dates. Same units as horizon. If not
provided, 0.5 * horizon is used.
initial Integer size of the first training period. If not provided, 3 * horizon is used.
Same units as horizon.
cutoffs Vector of cutoff dates to be used during cross-validtation. If not provided works
beginning from (end - horizon), works backwards making cutoffs with a spacing
of period until initial is reached.
Details

When period is equal to the time interval of the data, this is the technique described in https://robjhyndman.com/hyndsight/tsc

Value

A dataframe with the forecast, actual value, and cutoff date.

dyplot.prophet 7

dyplot.prophet Plot the prophet forecast.

Description

Plot the prophet forecast.

Usage
dyplot.prophet(x, fcst, uncertainty = TRUE, ...)
Arguments
X Prophet object.
fcst Data frame returned by predict(m, df).
uncertainty Optional boolean indicating if the uncertainty interval for yhat should be plotted,
which will only be done if x$uncertainty.samples > 0. Must be present in fcst as
yhat_lower and yhat_upper.
additional arguments passed to dygraphs::dygraph
Value
A dygraph plot.
Examples
Not run:

history <- data.frame(

ds = seq(as.Date('2015-01-01"'), as.Date('2016-01-01'), by = 'd'),
y = sin(1:366/200) + rnorm(366)/10)

m <- prophet(history)

future <- make_future_dataframe(m, periods = 365)

forecast <- predict(m, future)

dyplot.prophet(m, forecast)

End(Not run)

8 generated_holidays

fit.prophet Fit the prophet model.

Description

This sets m$params to contain the fitted model parameters. It is a list with the following elements:
k (M array): M posterior samples of the initial slope. m (M array): The initial intercept. delta
(MxN matrix): The slope change at each of N changepoints. beta (MxK matrix): Coefficients for
K seasonality features. sigma_obs (M array): Noise level. Note that M=1 if MAP estimation.

Usage
fit.prophet(m, df, ...)

Arguments
m Prophet object.
df Data frame.
Additional arguments passed to the optimizing or sampling functions in Stan.
generated_holidays Generated table of holiday dates at the country level from 1995 to
2045
Description

The data is primarily based on the Python package [holidays](https://pypi.org/project/holidays/)

Usage

generated_holidays

Format

A data frame with four variables: ds, holiday, country, year

Source

https://github.com/facebook/prophet/blob/main/python/scripts/generate_holidays_file.

py

https://github.com/facebook/prophet/blob/main/python/scripts/generate_holidays_file.py
https://github.com/facebook/prophet/blob/main/python/scripts/generate_holidays_file.py

make_future_dataframe 9

make_future_dataframe Make dataframe with future dates for forecasting.

Description

Make dataframe with future dates for forecasting.

Usage

make_future_dataframe(m, periods, freq = "day”, include_history = TRUE)

Arguments
m Prophet model object.
periods Int number of periods to forecast forward.
freq ’day’, *week’, "'month’, *quarter’, "year’, 1(1 sec), 60(1 minute) or 3600(1 hour).

include_history
Boolean to include the historical dates in the data frame for predictions.

Value

Dataframe that extends forward from the end of m$history for the requested number of periods.

performance_metrics Compute performance metrics from cross-validation results.

Description

Computes a suite of performance metrics on the output of cross-validation. By default the following
metrics are included: *mse’: mean squared error, 'rmse’: root mean squared error, ‘'mae’: mean
absolute error, “mape’: mean percent error, ‘'mdape’: median percent error, ’smape’: symmetric
mean absolute percentage error, 'coverage’: coverage of the upper and lower intervals

Usage

performance_metrics(df, metrics = NULL, rolling_window = @.1)

Arguments
df The dataframe returned by cross_validation.
metrics An array of performance metrics to compute. If not provided, will use c("mse’,

s

rmse’, 'mae’, 'mape’, 'mdape’, ’smape’, ’coverage’).

rolling_window Proportion of data to use in each rolling window for computing the metrics.
Should be in [0, 1] to average.

10 plot.prophet

Details

A subset of these can be specified by passing a list of names as the ‘metrics‘ argument.

Metrics are calculated over a rolling window of cross validation predictions, after sorting by hori-
zon. Averaging is first done within each value of the horizon, and then across horizons as needed to
reach the window size. The size of that window (number of simulated forecast points) is determined
by the rolling_window argument, which specifies a proportion of simulated forecast points to in-
clude in each window. rolling_window=0 will compute it separately for each horizon. The default
of rolling_window=0.1 will use 10 rolling_window=1 will compute the metric across all simulated
forecast points. The results are set to the right edge of the window.

If rolling_window < 0, then metrics are computed at each datapoint with no averaging (i.e., 'mse’
will actually be squared error with no mean).

The output is a dataframe containing column "horizon’ along with columns for each of the metrics
computed.

Value

A dataframe with a column for each metric, and column “horizon’.

plot.prophet Plot the prophet forecast.

Description

Plot the prophet forecast.

Usage

S3 method for class 'prophet'
plot(

X,

fcst,

uncertainty = TRUE,

plot_cap = TRUE,

xlabel = "ds",
ylabel = "y",
)
Arguments
X Prophet object.
fcst Data frame returned by predict(m, df).
uncertainty Optional boolean indicating if the uncertainty interval for yhat should be plotted,

which will only be done if x$uncertainty.samples > 0. Must be present in fcst as
yhat_lower and yhat_upper.

plot_cross_validation_metric 11

plot_cap Boolean indicating if the capacity should be shown in the figure, if available.
xlabel Optional label for x-axis
ylabel Optional label for y-axis

additional arguments

Value

A ggplot2 plot.

Examples

Not run:

history <- data.frame(ds = seq(as.Date('2015-01-01"'), as.Date('2016-01-01'), by = 'd'),
y = sin(1:366/200) + rnorm(366)/10)

m <- prophet(history)

future <- make_future_dataframe(m, periods = 365)

forecast <- predict(m, future)

plot(m, forecast)

End(Not run)

plot_cross_validation_metric
Plot a performance metric vs. forecast horizon from cross validation.
Cross validation produces a collection of out-of-sample model predic-
tions that can be compared to actual values, at a range of different
horizons (distance from the cutoff). This computes a specified per-
formance metric for each prediction, and aggregated over a rolling
window with horizon.

Description
This uses fbprophet.diagnostics.performance_metrics to compute the metrics. Valid values of met-
ric are “mse’, ‘rmse’, ‘'mae’, 'mape’, and ’coverage’.

Usage

plot_cross_validation_metric(df_cv, metric, rolling_window = 0.1)

Arguments
df__cv The output from fbprophet.diagnostics.cross_validation.
metric Metric name, one of *'mse’, ‘'rmse’, *'mae’, 'mape’, ’coverage’.

rolling_window Proportion of data to use for rolling average of metric. In [0, 1]. Defaults to 0.1.

12

Details

pl ot_forecast_com ponent

rolling_window is the proportion of data included in the rolling window of aggregation. The default
value of 0.1 means 10 aggregation for computing the metric.

As a concrete example, if metric="mse’, then this plot will show the squared error for each cross
validation prediction, along with the MSE averaged over rolling windows of 10

Value

A ggplot2 plot.

plot_forecast_component

Plot a particular component of the forecast.

Description

Plot a particular component of the forecast.

Usage

plot_forecast_component(m, fcst, name, uncertainty = TRUE, plot_cap = FALSE)

Arguments

m
fcst
name

uncertainty

plot_cap

Value

A ggplot2 plot.

Prophet model
Dataframe output of ‘predict’.
String name of the component to plot (column of fcst).

Optional boolean to plot uncertainty intervals, which will only be done if m$uncertainty.samples
>0.

Boolean indicating if the capacity should be shown in the figure, if available.

predict.prophet 13

predict.prophet Predict using the prophet model.

Description

Predict using the prophet model.

Usage
S3 method for class 'prophet'
predict(object, df = NULL, ...)
Arguments
object Prophet object.
df Dataframe with dates for predictions (column ds), and capacity (column cap) if

logistic growth. If not provided, predictions are made on the history.

additional arguments.

Value

A dataframe with the forecast components.

Examples

Not run:

history <- data.frame(ds = seq(as.Date('2015-01-01'), as.Date('2016-01-01'), by = 'd'),
y = sin(1:366/200) + rnorm(366)/10)

m <- prophet(history)

future <- make_future_dataframe(m, periods = 365)

forecast <- predict(m, future)

plot(m, forecast)

End(Not run)

predictive_samples Sample from the posterior predictive distribution.

Description

Sample from the posterior predictive distribution.

Usage

predictive_samples(m, df)

14 prophet

Arguments
m Prophet object.
df Dataframe with dates for predictions (column ds), and capacity (column cap) if
logistic growth.
Value

A list with items "trend" and "yhat" containing posterior predictive samples for that component.

prophet Prophet forecaster.

Description

Prophet forecaster.

Usage

prophet
df = NULL,
growth = "linear”,
changepoints = NULL,
n.changepoints = 25,
changepoint.range = 0.8,

yearly.seasonality = "auto”,
weekly.seasonality = "auto”,
daily.seasonality = "auto”,
holidays = NULL,
seasonality.mode = "additive",

seasonality.prior.scale = 10,
holidays.prior.scale = 10,
changepoint.prior.scale = 0.05,
mcmc.samples = 0,
interval.width = 0.8,
uncertainty.samples = 1000,

fit = TRUE,

backend = NULL,

Arguments

df (optional) Dataframe containing the history. Must have columns ds (date type)
and y, the time series. If growth is logistic, then df must also have a column cap
that specifies the capacity at each ds. If not provided, then the model object will
be instantiated but not fit; use fit.prophet(m, df) to fit the model.

prophet 15

growth String ’linear’, ’logistic’, or ’flat’ to specify a linear, logistic or flat trend.

changepoints Vector of dates at which to include potential changepoints. If not specified,
potential changepoints are selected automatically.

n.changepoints Number of potential changepoints to include. Not used if input ‘changepoints*
is supplied. If ‘changepoints‘ is not supplied, then n.changepoints potential
changepoints are selected uniformly from the first ‘changepoint.range* propor-
tion of df$ds.

changepoint.range
Proportion of history in which trend changepoints will be estimated. Defaults to
0.8 for the first 80 ‘changepoints‘ is specified.

yearly.seasonality
Fit yearly seasonality. Can be "auto’, TRUE, FALSE, or a number of Fourier
terms to generate.

weekly.seasonality
Fit weekly seasonality. Can be ’auto’, TRUE, FALSE, or a number of Fourier
terms to generate.

daily.seasonality
Fit daily seasonality. Can be ’auto’, TRUE, FALSE, or a number of Fourier
terms to generate.

holidays data frame with columns holiday (character) and ds (date type)and optionally
columns lower_window and upper_window which specify a range of days around
the date to be included as holidays. lower_window=-2 will include 2 days prior
to the date as holidays. Also optionally can have a column prior_scale specify-
ing the prior scale for each holiday.

seasonality.mode
"additive’ (default) or *multiplicative’.

seasonality.prior.scale
Parameter modulating the strength of the seasonality model. Larger values allow
the model to fit larger seasonal fluctuations, smaller values dampen the season-
ality. Can be specified for individual seasonalities using add_seasonality.

holidays.prior.scale
Parameter modulating the strength of the holiday components model, unless
overridden in the holidays input.

changepoint.prior.scale
Parameter modulating the flexibility of the automatic changepoint selection.
Large values will allow many changepoints, small values will allow few change-
points.

mcmc. samples Integer, if greater than 0, will do full Bayesian inference with the specified num-
ber of MCMC samples. If 0, will do MAP estimation.

interval.width Numeric, width of the uncertainty intervals provided for the forecast. If mcmc.samples=0,
this will be only the uncertainty in the trend using the MAP estimate of the ex-
trapolated generative model. If mecme.samples>0, this will be integrated over all
model parameters, which will include uncertainty in seasonality.

uncertainty.samples
Number of simulated draws used to estimate uncertainty intervals. Settings this
value to 0 or False will disable uncertainty estimation and speed up the calcula-
tion.

16 prophet_plot_components

fit Boolean, if FALSE the model is initialized but not fit.

backend Whether to use the "rstan" or "cmdstanr" backend to fit the model. If not pro-
vided, uses the R_STAN_BACKEND environment variable.

Additional arguments, passed to fit.prophet

Value

A prophet model.

Examples

Not run:

history <- data.frame(ds = seq(as.Date('2015-01-01'), as.Date('2016-01-01"'), by = 'd'),
y = sin(1:366/200) + rnorm(366)/10)

m <- prophet(history)

End(Not run)

prophet_plot_components
Plot the components of a prophet forecast. Prints a ggplot2 with
whichever are available of: trend, holidays, weekly seasonality, yearly
seasonality, and additive and multiplicative extra regressors.

Description

Plot the components of a prophet forecast. Prints a ggplot2 with whichever are available of: trend,
holidays, weekly seasonality, yearly seasonality, and additive and multiplicative extra regressors.

Usage

prophet_plot_components(
m,
fcst,
uncertainty = TRUE,
plot_cap = TRUE,
weekly_start = 0,
yearly_start = 0,
render_plot = TRUE

Arguments

m Prophet object.
fest Data frame returned by predict(m, df).

regressor._coefficients 17

uncertainty Optional boolean indicating if the uncertainty interval should be plotted for the

trend, from fcst columns trend_lower and trend_upper.This will only be done if
mS$uncertainty.samples > 0.

plot_cap Boolean indicating if the capacity should be shown in the figure, if available.

weekly_start Integer specifying the start day of the weekly seasonality plot. O (default) starts

the week on Sunday. 1 shifts by 1 day to Monday, and so on.

yearly_start Integer specifying the start day of the yearly seasonality plot. 0 (default) starts

the year on Jan 1. 1 shifts by 1 day to Jan 2, and so on.

render_plot Boolean indicating if the plots should be rendered. Set to FALSE if you want

Value

the function to only return the list of panels.

Invisibly return a list containing the plotted ggplot objects

regressor_coefficients

Summarise the coefficients of the extra regressors used in the model.
For additive regressors, the coefficient represents the incremental im-
pact on 'y of a unit increase in the regressor. For multiplicative regres-
sors, the incremental impact is equal to trend(t) multiplied by the
coefficient.

Description

Coefficients are measured on the original scale of the training data.

Usage

regressor_coefficients(m)

Arguments

m

Details

Prophet model object, after fitting.

Output dataframe columns:

regressor: Name of the regressor
regressor_mode: Whether the regressor has an additive or multiplicative effect on y.
center: The mean of the regressor if it was standardized. Otherwise 0.

coef_lower: Lower bound for the coefficient, estimated from the MCMC samples. Only dif-
ferent to coef if mcmc_samples > 0.

coef: Expected value of the coefficient.

coef_upper: Upper bound for the coefficient, estimated from MCMC samples. Only to differ-
ent to coef if mcmc_samples > 0.

18 rolling_median_by_h

Value

Dataframe with one row per regressor.

rolling_median_by_h Compute a rolling median of x, after first aggregating by h

Description

Right-aligned. Computes a single median for each unique value of h. Each median is over at least
w samples.

Usage

rolling_median_by_h(x, h, w, name)

Arguments
X Array.
h Array of horizon for each value in x.
w Integer window size (number of elements).
name String name for metric in result dataframe.
Details

For each h where there are fewer than w samples, we take samples from the previous h,

Value

Dataframe with columns horizon and name, the rolling median of x.

Index

x datasets
generated_holidays, 8

add_changepoints_to_plot, 2
add_country_holidays, 3
add_regressor, 4
add_seasonality, 5

cross_validation, 6
dyplot.prophet, 7
fit.prophet, 8, 16
generated_holidays, 8
make_future_dataframe, 9

performance_metrics, 9
plot.prophet, 10
plot_cross_validation_metric, 11
plot_forecast_component, 12
predict.prophet, 13
predictive_samples, 13
prophet, 14
prophet_plot_components, 16

regressor_coefficients, 17
rolling_median_by_h, 18

19

	add_changepoints_to_plot
	add_country_holidays
	add_regressor
	add_seasonality
	cross_validation
	dyplot.prophet
	fit.prophet
	generated_holidays
	make_future_dataframe
	performance_metrics
	plot.prophet
	plot_cross_validation_metric
	plot_forecast_component
	predict.prophet
	predictive_samples
	prophet
	prophet_plot_components
	regressor_coefficients
	rolling_median_by_h
	Index

