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1 Motivation

Current efforts in systems genetics have focused on the development of statistical approaches that
aim to disentangle causal relationships among molecular phenotypes in segregating populations.
Model selection criterions, such as the AIC and BIC, have been widely used for this purpose,
in spite of being unable to quantify the uncertainty associated with the model selection call. In
this tutorial we illustrate the use of software implementing the causal model selection hypothesis
tests proposed by Chaibub Neto et al. (2012).

2 Overview

This tutorial illustrates the basic functionality of the CMST routines in the qtlhot R package
using few simulated toy examples. The analysis of a yeast genetical genomics data-set presented
in Chaibub Neto et al. (2012) is reproduced in a separate package, R/qtlyeast. The R/qtlhot
package depends on R/qtl (Broman et al. 2003), and we assume the reader is familiar with it.

3 Basic functionality

Here, we illustrate the basic functionality of the CMST routines in the R/qtlhot package in a
toy simulated example.

> library(qtlhot)

We first use the SimCrossCausal function to simulate a cross object with 3 phenotypes, y1,
y9 and y3, where y; has a causal effect on both yo and y3. The simulated cross data set, Cross, is
composed of: 100 individuals (n.ind = 100); 3 chromosomes of length 100cM (len = rep(100,
3)); 101 unequally spaced markers per chromosome (n.mar = 101 and eq.spacing = FALSE);
additive genetic effect set to 1 (add.eff = 1); dominance genetic effect set to 0 (dom.eff =
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0); residual variances for y; (sig2.1) and the other phenotypes (sig2.2) set to 0.4 and 0.1,
respectively; backcross cross type (cross.type = "bc"); and phenotype data transformed to
normal scores (normalize = TRUE). The argument beta = rep(0.5, 2), represents the causal
effect of y; on the other phenotypes (i.e., coefficients of the regressions of yo = 0.5y; + € and
y3 = 0.5y + €). The length of beta controls the number of phenotypes to be simulated.

> set.seed(987654321)

> CMSTCross <- SimCrossCausal(n.ind = 100,

+ len = rep(100, 3),
n.mar = 101,

beta = rep(0.5, 2),
add.eff = 1,
dom.eff = 0,

sig2.1 = 0.4,
sig2.2 = 0.1,
eq.spacing = FALSE,
cross.type = "bc",
normalize = TRUE)

+ + + + + + + + +

We compute the genotype conditional probabilities using Haldane’s map function, genotype
error rate of 0.0001, and setting the maximum distance between positions at which genotype
probabilities were calculated to 1cM.

> CMSTCross <- calc.genoprob(CMSTCross, step = 1)

We perform QTL mapping using Haley-Knott regression (Haley and Knott 1992), and sum-
marize the results for the 3 phenotypes. Figure 1 presents the LOD score profiles for all 3
phenotypes. The black, blue and red curves represent the LOD profiles of phenotypes y1, y2 and
Y3, respectively.

> Scan <- scanone(CMSTCross, pheno.col = 1 : 3, method = "hk")
> summary(Scan[, c(1, 2, 3)], thr = 3)

chr pos yi1
cl.locbs 1 55 12.6

> summary(Scan[, c(1, 2, 4)], thr = 3)
chr pos y2

cl.lochb 1 55 5.27

> summary(Scan[, c(1, 2, 5)], thr = 3)

chr pos y3
DIMBO 1 55.5 7.58



> plot(Scan, lodcolumn = 1 : 3, ylab = "LOD")
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Figure 1: LOD score profiles for phenotypes y; (black curve), ys (blue curve) and ys (red curve).

Phenotypes y1 and yo map to exactly same QTL at position 55 ¢cM on chromosome 1.
Phenotype y3 maps to a QTL at position 55.5 cM. Whenever two phenotypes map to close, but
not exactly identical, positions we are faced with the question of which QTL to use as causal
anchor. Instead of making a (sometimes) arbitrary choice, our approach is to compute the joint
LOD profile of both phenotypes and use the QTL detected by this joint mapping approach as the
causal anchor. The function GetCommonQtls performs the joint QTL mapping for phenotypes
whose marginal LOD peak positions are higher than a certain LOD threshold (thr), and are
less than a fixed distance apart (peak.dist). The function can also handle separate additive
and interacting covariates for each phenotype (addcovi, intcovl, addcov2, intcov2). In this
simulated example the QTL detected by the joint analysis agreed with phenotype’s y1 QTL.



> commqgtls <- GetCommon@tls(CMSTCross,

+ phenol = "y1",
+ pheno2 = "y3",
+ thr = 3,

+ peak.dist = 5,
+ addcovl = NULL,
+ addcov2 = NULL,
+ intcovl = NULL,
+ intcov2 = NULL)
> commqtls

Q Q.chr Q.pos
1 cl1.locbhb 1 55

Now, we fit our causal model selection tests for phenotypes y; and yo using the CMSTtests
function. The Q. chr and Q.pos arguments specify the chromosome and position (in ¢cM) of the
QTL to be used as a causal anchor. The argument method specify which version of the CMST
test should be used. The options "par", "non.par" and "joint" represent, respectively, the
parametric, non-parametric, joint parametric versions of the CMST test. The option "all" fits
all three versions. The penalty argument specifies whether we should test statistics based on
the AIC ("aic"), BIC ("bic"), or both ("both") penalties. In this particular call we computed
all 3 versions using both penalties fitting 6 separate CMST tests.

> nms <- names (CMSTCross$pheno)
> outl <- CMSTtests(CMSTCross,

+ phenol = nms[1],
+ pheno2 = nms[2],
+ Q.chr = 1,

+ Q.pos = 55,

+ addcovl = NULL,

+ addcov2 = NULL,

+ intcovl = NULL,

+ intcov2 = NULL,

+ method = "all",
+ penalty = "both")

The output of the CMSTtests function is composed of a list with 17 elements. It returns the
names of the phenotypes and number of individuals (n.ind):

> out1[1:3]

$phenol
[1] ||y1n

$pheno?2



[1] uy2n

$n.ind
[1] 100

The log-likelihood scores (loglik) of models My, My, Ms, and My (see Chaibub Neto et al.
2012 for details):

> outl[4]

$loglik
[1] -123.5318 -140.4604 -141.5803 -123.4834

The dimensions of the models (model.dim):
> out1[5]

$model .dim
[11 6667

The R? values (R2) relative to the regression of phenotypes 1 and 2 on the causal anchor:
> outl1[6]

$R2
[1] 0.4407170 0.2153583

The covariance matrix (S.hat) with the variances and covariances of the penalized log-likelihood
ratios of models M1 X Mg, M1 X Mg, M1 X M4, M2 X Mg, M2 X M4, and M3 X M4:

> out1[7]
$S.hat

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0.26221327 -0.01323094 0.010924311 -0.275444212 -0.251288963 0.02415525
[2,] -0.01323094 0.36275299 0.012080993 0.375983930 0.025311930 -0.35067200
[3,1] 0.01092431 0.01208099 0.001115354 0.001156681 -0.009808958 -0.01096564
[4,] -0.27544421 0.37598393 0.001156681 0.651428142 0.276600893 -0.37482725
[65,]1 -0.25128896 0.02531193 -0.009808958 0.276600893 0.241480006 -0.03512089
[6,] 0.02415525 -0.35067200 -0.010965639 -0.374827248 -0.035120888 0.33970636

The BIC scores (BICs):

> outl1/[8]

$BICs

[1] 274.6946 308.5518 310.7917 279.2030



The BIC-based penalized log-likelihood test statistics (Z.bic):

> outl1[9]
$Z.bic

[,1] [,2] [,3] [,4]
[1,] NA 3.305926 2.9966507 6.749745
[2,] NA NA 0.1387598 -2.986200
[3,] NA NA NA -2.709873
[4,] NA NA NA NA

The BIC-based model selection p-values for the parametric CMST (pvals.p.BIC), non-parametric
CMST (pvals.np.BIC) and joint parametric CMST (pvals.j.BIC):

> out1[10:12]

$pvals.p.BIC
[1] 0.001364817 0.999526684 0.998635183 1.000000000

$pvals.np.BIC
[1] 6.289575e-06 9.999977e-01 9.999999¢-01 1.000000e+00

$pvals.j.BIC
[1] 0.003779474 0.999946885 0.999669186 1.000000000

The analogous AIC-based quantities:
> out1[13:17]

$AICs
[1] 259.0636 292.9208 295.1606 260.9668

$Z.aic

[,1] [,2] [,3] [,4]
[1,] NA 3.305926 2.9966507 2.849429
[2,] NA NA 0.1387598 -3.251273
[3,] NA NA NA -2.933361
[4,] NA NA NA NA

$pvals.p.AIC
[1] 0.002189889 0.999526684 0.998635183 0.997810111

$pvals.np.AIC
[1] 6.289575e-06 9.999977e-01 1.000000e+00 9.999977e-01

$pvals.j.AIC
[1] 0.005993868 0.999946885 0.999669186 1.000000000



The function CMSTtests can also computes CMST tests of a single phenotype against a list
of phenotypes. Its output is less detailed though. In this particular call we test y; against yo
and ys.

out2 <- CMSTtests(CMSTCross,
phenol = nms[1],
pheno2 = nms[-1],
Q.chr = 1,
Q.pos = 55.5,
addcovl NULL,
addcov2 NULL,
intcovl NULL,
intcov2 NULL,
method = "all",
penalty = "both")

R2.Y1 ~ Q R2.Y2 ~ Q
y1l_y2 0.4286585 0.2112760
y1_y3 0.4286585 0.2945801

$AIC.stats
AIC.1 AIC.2 AIC.3 AIC.4 z.12 z.13 z.14 z.23
yl_y2 261.1967 293.4397 297.8127 263.0819 3.136952 3.034372 2.6436961 0.2659898
y1_y3 256.9466 278.0272 311.4368 258.2783 2.177343 3.876750 0.8229369 2.0030490
z.24 z.34
yl_y2 -3.084095 -2.975873
y1l_y3 -2.329987 -4.023391

$BIC.stats
BIC.1 BIC.2 BIC.3 BIC.4 z.12 z.13 z.14 z.23
yl_y2 276.8278 309.0707 313.4437 281.3181 3.136952 3.034372 6.297065 0.2659898
yl_y3 272.5777 293.6583 327.0678 276.5145 2.177343 3.876750 2.432884 2.0030490
z.24 z.34
yl_y2 -2.819431 -2.752652
yl_y3 -2.022629 -3.826214

$pvals.j.BIC

pval.1l pval.2 pval.3 pval.4
yl_y2 0.003366319 0.9998806 0.9997017 1
y1_y3 0.035842249 0.9974573 0.9999900 1

$pvals.p.BIC



pval.1l pval.2 pval.3 pval.4
yl_y2 0.001205187 0.9991464 0.9987948 1.0000000
yl_y3 0.014727493 0.9852725 0.9999471 0.9925105

$pvals.np.BIC

pval.1l pval.2 pval.3 pval.4
yl_y2 2.346206e-06 0.9999992 1 1.0000000
y1l_y3 1.758821e-03 0.9991050 1 0.9999607

$pvals.j.AIC

pval.1l pval.2 pval.3 pval.4
yl_y2 0.01109575 0.9998806 0.9997017 1
y1l_y3 0.38662933 0.9985143 0.9999950 1

$pvals.p.AIC

pval.l pval.2 pval.3 pval.4
yl_y2 0.004100312 0.9991464 0.9987948 0.9958997
y1l_y3 0.205271925 0.9900966 0.9999713 0.7947281

$pvals.np.AIC

pval.1l pval.2 pval.3 pval.4
yil_y2 1.608001e-05 0.9999992 1 0.9999937
yl_y3 4.431304e-02 0.9991050 1 0.9715560

4 Other Functions

There are several other functions involved in simulation and in data analysis that are not well
documented yet. See R/qtlyeast available at GITHUB for further analysis. Here we do scans for

the three traits, and create a reduced object with only high LOD values.

> CMSTscan <- scanone(CMSTCross, pheno.col = 1:3, method = "hk")
> CMSThigh <- highlod(CMSTscan)

For our purposes, we place the three traits on chromosome 1 at some arbitrary positions,

with trait y1 having causal “targets” of the other two traits.

traits <- names (CMSTCross$pheno)

annot <- data.frame(name = traits, traits = traits, chr = rep(1, 3),
Mb.pos = c(55,10,100))

annot$cM.pos <- annot$Mb.pos

annot

vV V. + Vv Vv

name traits chr Mb.pos cM.pos
1 y1 y1 1 55 55



2 y2 y2 1 10 10
3 3 y3 1 100 100

> targets <- list(yl = c("y2","y3"))

Now we used the scans (via CMSThigh) and the annotation to identify candidate regulators,
the subset of cis-acting candidate regulators, and co-mapping targets.

> cand.reg <- GetCandReg(CMSThigh, annot, traits)
> cand.reg

gene phys.chr phys.pos peak.chr peak.pos peak.lod

1 y1 1 55 1 55.00000 12.618418
y2 1 10 1 55.00000 ©5.266431
3 y3 1 100 1 55.54525 7.577615

> cis.cand.reg <- GetCisCandReg(CMSThigh, cand.reg)
> cis.cand.reg

gene phys.chr phys.pos peak.pos peak.lod peak.pos.lower peak.pos.upper
1 y1 1 55 55 12.61842 53 57.61146

> comap.targets <- GetCoMappingTraits(CMSThigh, cand.reg)
> comap.targets

$y1
[1] ||y2n ||y3n
$y2
[1] "yl" ||y3n
$y3
[1] ||y1n ||y2n

Next, we perform tests to infer causal relationships.

> tests <- list()
> for(k in seq(names(comap.targets))) {
+ tests[[k]] <- FitAllTests(CMSTCross, phenol = names(comap.targets) [k],

+ pheno2 = comap.targets[[k]],
+ Q.chr = cand.reglk, 4],

+ Q.pos = cand.reglk, 5])

+ }



pheno2 = 1
pheno2 = 2

CIT pheno2 = y2
CIT pheno2 = y3
pheno2 = 1
pheno2 = 2

CIT pheno2 = yi
CIT pheno2 = y3
pheno2 = 1
pheno2 =

CIT pheno2 = yl
CIT pheno2 = y2

> names (tests) <- names(comap.targets)
> tests <- JoinTestOutputs (comap.targets, tests)

> test

$R2s

yl_y2
yl_y3
y2_y1
y2_y3
y3_y1
y3_y2

$AIC.s

yl_y2
yi_y3
y2_y1
y2_y3
y3_y1
y3_y2

yl_y2
yi_y3
y2_yl
y2_y3
y3_y1
y3_y2

$BIC.s

S

R2.Y1 ~ Q
0.4407170
0.4407170
0.2153583
0.2153583
0.2945801
0.2945801

tats
AIC.1
259.0636
254.8135
292.9208
226.3940
278.0272
215.7506
z.23
0.1387598
1.9587743
2.9966507
1.2380872
3.8767496
0.3909483

tats
BIC.1

R2.Y2 ~ Q

0
0
0.
0
0
0

292.
278.
259.
216.
256.

226

.21535683
.2914979

4407170

AIC.2
9208
4632
0636
1866
9466
.9129

zZ.

.2914979
.4286585
.2112760

AIC.3

295.1606 260.
309.7396 256.
295.1606 260.
231.6614 213.
311.4368 258.
231.7444 212.

24 z.34

.2512727 -2.933361
.4119422 -4.279798
.8494289 -2.933361
.6314165 -2.084435
.8229369 -4.023391
.0014294 -2.073127

BIC.2

BIC.3

AIC.4
9668
4303
9668
0150
2783
9632

BIC.4

10

3.
2.
-3.
-1.
-2.
.098857

1

z.12
305926
339472
305926
014912
177343

z.12

z.13
2.9966507
4.2078724
0.1387598
0.4428305
2.0030490
1.2871586

z.13

z.14

.8494289
.3197398
.2612727
.0302949
.3299872
.5813799



yi_y2
yi-y3
y2_yl
y2_y3
y3_y1
y3_y2

yil_y2
yl_y3
y2_y1l
y2_y3
y3_yl
y3_y2

274.6946
270
308
242
293
231

.1387598
.9587743
.9966507 6.
.2380872
.8767496 2.
.3909483

.4445
.5518
.0250
.6583
.3816
z.23

$pvals. j.BIC

yl_y2
yi_y3
y2_yl
y2_y3
y3_yl
y3_y2

O O O O O O

pval.1l

.003779474
.023770207
.999946885
.991331495
.997457264
.708326515

$pvals.p.BIC

yl_y2
yl_y3
y2_y1
y2_y3
y3_y1
y3_y2

O O O O O O

pval.l

.001364817
.009655499
.999526684
.948970690
.985272507
.515154554

$pvals.np.BIC

yl_y2
yl_y3
y2_yl
y2_y3
y3-yl
y3-y2

0 O © ©O© N O»®

pval.1l

.289575e-06
.043886e-04
.999977e-01
.556870e-01
.991050e-01
.158992e-01

$pvals.j.AIC

yl_y2 0.005993868 0.999946885 0.

pval.1l

308.
294.
274.
231.
272.
242.

.9861997
.1267544

.1127673

.6276524

O O O O O o

O O O O O o

5518
0943
6946
8176
5777
5439
z.

310.
325.
310.
247.
327.
247.
24

7497448

4328842

pval.2
.999946885
.998342606
.003779474
. 727786029
.035842249
.990042453

pval.2
.999526684
.990344501
.001364817
.544892461
.014727493
. 948200693

pval.

7917
3707
7917
2924
0678
3754

O O O O O o

O O O O o o

2

.9996692
.9999985
.9996692
.9881747
.9999900
.9878292

.9986352 1
.9999871 O
.9986352 1
.9635304 O.
.9999471 O
.9629147 0

©O© = 0 O ©O ©

.999977e-01
.999084e-01
.289575e-06
.643735e-01
.758821e-03
.895106e-01

pval.2

279.
274.
279.
231.
276.
231.
z.34

2030
6665
2030
2511
5145
1994

.709873
.070649
.709873
.793211
.826214
. 7855659

pval.3

O~ O - = =

pval.3

pval.3
.9999999
.0000000
.9999999
.9997956
.0000000
.9997956

O O O - O

pval.3
9996692 1.

11

3.305926
2.339472
.305926
.014912
.177343
1.098857

pval.4

.0000000
.0000000
.0000000
.9533151
.0000000
.9698693

pval.4

.0000000
.9997158
.0000000

4551075

.9925105
.4848454

pval.4
.0000000
.9999997
.0000000
.1841008
.9999607
.2420592

O O O = O =

pval.4
0000000

2
4
0

0
2
1

.9966507
.2078724
.1387598
.4428305
.0030490
.2871586

6.74974480
3.44622282

-2.98619967
-1.63495434
-2.02262858
-0.03799597



y1_y3 0.195697275
y2_y1 0.999946885
y2_y3 0.997728473
y3_y1l 0.998514322
y3_y2 0.875137894

$pvals.p.AIC

yi_y2
yl_y3
y2_y1
y2_y3
y3_yl
y3_y2

O O O O O O

pval.1l

.002189889
.093460955
.999526684
.978836716
.990096585
. 719507792

$pvals.np.AIC

yl_y2
yl_y3
y2_y1
y2-y3
y3-y1
y3-y2

$pval

y2
y3
y1
y3
yl
y2

= PN NE e

$phen

(1,]
[2,]
(3,]
[4,]
(5,]
(6,]

Finaly, we compare the inferred causal relationships to the known targets to assess precision,

© © © ©O© W oM

pval.1l

.289575e-06
.318560e-03
.999977e-01
.823999e-01
.991050e-01
.823999e-01

O O O O O O

.998720666
.005993868
.880223915
.386629331
.997069515

pval.2

.999526684
.992066102
.002189889
.736115878
.205271925
.977326933

O P © O O ©

pval.

O O O O O

O O O O O O

2

.9999990
.9996692
.9949729
.9999950
.9947476

.9986352
.9999906
.9986352
.9814397
.9999713
.9809198

.999977e-01
.999084e-01
.289575e-06
.895106e-01
.431304e-02
.895106e-01

s.cit
pval.1l

.641765e-06
.770222e-06
.741579e-01
.692473e-02
.219075e-01
.351854e-04

os

(,11 [,2]
llylll ||y2|l
llylll l|y3"
lly2|l llyill
lly2|l lly3"
"y3" "yi
lly3|l lly2"

pval.2

.741579e-01
.029575e-01
.641765e-06
.015192e-04
.617830e-06
.160420e-02

O = O = =

pval.3

O O O O O O

pval.3
.0000000
.0000000
.0000000
.9997956
.0000000
.9997956

O = O = = =

true positive rate and false positive rate.

12

.0000000
.0000000
.6993183
.0000000
. 7328496

pval.4

.9978101
.9065390
.9978101
.2638841
. 7947281
.2804922

pval.4
.99999765
.99824118
.99999765
.02844397
.97155603
.02844397

O O O O O O



> PrecTpFpMatrix(alpha = seq(0.01, 0.10, by = 0.01),
+ val.targets = targets, all.orfs = CMSThigh$names, tests = tests,
+ cand.reg = cand.reg, cis.cand.reg = cis.cand.reg)

$Preci

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
aic 1.00 1.00 1.00 1 1 1 1 1 1 1
bic 1.00 1.00 1.00 1 1 1 1 1 1 1
j.bic 1.00 1.00 1.00 1 1 1 1 1 1 1
p.bic 1.00 1.00 1.00 1 1 1 1 1 1 1
np.bic 1.00 1.00 1.00 1 1 1 1 1 1 1
j.aic 1.00 1.00 1.00 1 1 1 1 1 1 1
p.-aic 1.00 1.00 1.00 1 1 1 1 1 1 1
np.aic 1.00 1.00 1.00 1 1 1 1 1 1 1
cit 0.67 0.67 0.67 1 1 1 1 1 1 1
$Prec2

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
aic 1 1 1 1 1 1 1 1 1 1
bic 1 1 1 1 1 1 1 1 1 1
j.bic 1 1 1 1 1 1 1 1 1 1
p.bic 1 1 1 1 1 1 1 1 1 1
np.bic 1 1 1 1 1 1 1 1 1 1
j.aic 1 1 1 1 1 1 1 1 1 1
p.aic 1 1 1 1 1 1 1 1 1 1
np.aic 1 1 1 1 1 1 1 1 1 1
cit 1 1 1 1 1 1 1 1 1 1
$Tp1

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
aic 2 2 2 2 2 2 2 2 2 2
bic 2 2 2 2 2 2 2 2 2 2
j.bic 1 1 2 2 2 2 2 2 2 2
p.bic 2 2 2 2 2 2 2 2 2 2
np.bic 2 2 2 2 2 2 2 2 2 2
j.aic 1 1 1 1 1 1 1 1 1 1
p.aic 1 1 1 1 1 1 1 1 1 2
np.aic 2 2 2 2 2 2 2 2 2 2
cit 2 2 2 2 2 2 2 2 2 2
$Tp2

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
aic 2 2 2 2 2 2 2 2 2 2
bic 2 2 2 2 2 2 2 2 2 2

13



j-bic
p.bic
np.bic
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