Package ‘rclsp’

January 30, 2026

Type Package

Title A Modular Two-Step Convex Optimization Estimator for I1l-Posed
Problems

Version 0.3.0

Description Convex Least Squares Programming (CLSP) is a two-step estimator
for solving underdetermined, ill-posed, or structurally constrained
least-squares problems. It combines pseudoinverse-based estimation with
convex-programming correction methods inspired by Lasso, Ridge, and
Elastic Net to ensure numerical stability, constraint enforcement, and
interpretability. The package also provides numerical stability analysis
and CLSP-specific diagnostics, including partial R*2, normalized RMSE
(NRMSE), Monte Carlo t-tests for mean NRMSE, and condition-number-based
confidence bands.

License MIT + file LICENSE

Encoding UTF-8

Language en-US

Depends R (>=4.2)

Imports Matrix, stats, methods, CVXR, MASS
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3

URL https://github.com/econcz/rclsp

BugReports https://github.com/econcz/rclsp/issues
RoxygenNote 7.3.3
NeedsCompilation no

Author Ilya Bolotov [aut, cre] (ORCID:
<https://orcid.org/0000-0003-1148-7144>)

Maintainer Ilya Bolotov <ilya.bolotov@vse.cz>
Repository CRAN
Date/Publication 2026-01-30 16:30:02 UTC

https://github.com/econcz/rclsp
https://github.com/econcz/rclsp/issues
https://orcid.org/0000-0003-1148-7144

2 canonize
Contents
CANOMIZE v v v ittt e e e e e e 2
CISp . . o e 3
COIT . v v vttt i e e e e e e e e e e 7
TESt e 8
Index 10
canonize Construct the canonical design matrix A = [C|S; M|Q] for CLSP.
Description

This method assembles the constraint matrix A from user-supplied or internally generated compo-
nents — C, S, M, and Q — and assigns the corresponding right-hand side vector b. It is a required
pre-step before solving a Convex Least Squares Programming (CLSP) problem.

Usage

canoni
obje
prob
C =
S =

«. - T 3 T O X
1

zZero

Arguments

object
proble

C,S,M

ze(

ct,

lem = "",
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,

1L,

1L,
_diagonal = FALSE

An object of class "clsp”.
m Character, optional. Structural template for matrix construction. One of:
* 'ap' or 'tm': allocation or tabular matrix problem.
e 'cmls' or 'rp': constrained modular least squares or RP-type.
e "' or other: General CLSP problems (user-defined C and/or M).

Numeric matrix or NULL. Blocks of the constraint matrix A = [C|S; M|Q]. If C
and/or M are provided, the matrix A is constructed accordingly. If both are NULL
and A is not yet defined, an error is raised.

clsp 3

Q Numeric matrix or NULL. Externally supplied residual slack matrix used to adjust
inequality constraints in M. Required only when r > 1. Encodes the sign pattern
of residuals from the previous iteration and is used to construct the [C|S; M |Q)]
canonical form. Defaults to a conformable zero matrix on the first iteration.

b Numeric vector or NULL. Right-hand side vector. Must have as many rows as A.
Required.

m, p Integer or NULL. Dimensions of X € R™*P, relevant for allocation problems
(ap).

i,] Integer, default = 1. Grouping sizes for row and column sum constraints in AP
problems.

zero_diagonal Logical, default = FALSE. If TRUE, enforces structural zero diagonals via identity
truncation.
Details

Depending on the specified problem type, it can generate allocation, tabular matrix, or modular
constraints and enforce optional diagonal exclusions. All missing blocks are padded to ensure
conformability.

Value

An updated object of class "clsp”.

Attributes Set

A Numeric matrix. Canonical design matrix constructed from (C, S, M, Q).
C_idx Integer vector of length 2 indicating the size of the C block.

b Numeric vector. Conformable right-hand side vector.

clsp Convex Least Squares Programming (CLSP) estimator.

Description

The Convex Least Squares Programming (CLSP) estimator solves underdetermined, ill-posed, or
structurally constrained least-squares problems using a modular two-step approach. The first step
computes a pseudoinverse-based estimate, and the second step applies a convex correction (Lasso,
Ridge, or Elastic Net) to ensure numerical stability, constraint enforcement, and interpretability.

Usage

clsp(
problem = "",
C = NULL,
S = NULL,
M = NULL,

clsp

zero_diagonal = FALSE,

b = NULL,
m = NULL,
p = NULL,
i=1L,
j=1L,
r =1L,
Z = NULL,

rcond = FALSE,
tolerance = NULL,
iteration_limit = NULL,

final = TRUE,
alpha = NULL,

Arguments

problem

C,S, M

m, p

i’j

zero_diagonal

rcond

character scalar, optional Structural template for matrix construction. One of:

e 'ap' or 'tm': allocation or tabular matrix problem.
e 'cmls’' or 'rp': constrained modular least squares or RP-type.
* "' or other: general CLSP problems (user-defined C' and/or M).

numeric matrix or NULL Blocks of the constraint matrix A = {ISI g .fC
and/or M are provided, the matrix A is constructed accordingly. If both are

NULL and A is not yet defined, an error is raised.

numeric vector or NULL Right-hand-side vector. Must have as many rows as A.
Required.

integer scalar or NULL Dimensions of X € R"*P, relevant for allocation prob-
lems (Cap’).

integer scalar, default = 1 Grouping sizes for row and column-sum constraints
in AP problems.

logical scalar, default = FALSE If TRUE, enforces structural zero diagonals via
identity truncation.

integer scalar, default = T Number of refinement iterations for the pseudoinverse-
based estimator. When r > 1, the slack block @ is updated iteratively to im-
prove feasibility in underdetermined or ill-posed systems.

numeric matrix or NULL A symmetric idempotent matrix (projector) defining the
subspace for Bott—Duffin pseudoinversion. If NULL, the identity matrix is used,
reducing to the Moore—Penrose case.

numeric scalar or logical scalar, default = FALSE Regularization parameter for
the Moore—Penrose and Bott—Duffin inverses, providing numerically stable in-
version and ensuring convergence of singular values. If TRUE, an automatic
tolerance equal to tolerance is applied. If set to a numeric value, it specifies
the relative cutoff below which small singular values are treated as zero.

clsp 5

tolerance numeric scalar or NULL, default = NULL Convergence tolerance for NRMSE
change between iterations.

iteration_limit
integer scalar or NULL, default = NULL Maximum number of iterations allowed
in the refinement loop.

final logical scalar, default = TRUE If TRUE, a convex programming problem is solved
to refine zhat. The resulting solution z minimizes a weighted ¢; /¢5 norm
around z subject to Az = b.

alpha numeric scalar, numeric vector, or NULL, default = NULL Regularization parame-
ter:

e o = 0: Lasso (¢1 norm)

* o = 1: Ridge (¢ norm)

* 0 < a < 1: Elastic Net. If a numeric scalar is provided, that value is used
after clipping to [0, 1]. If a numeric vector is provided, each candidate is
evaluated via a full solve, and the o with the smallest NRMSE is selected.
If NULL, « is chosen automatically according to

. NRMSE,—¢
a =min | 1,
NRMSE,—¢ + NRMSE,_; + tolerance
Optional. Additional arguments passed to the CVXR solver backend.
Details
This estimator unifies pseudoinverse-based least squares with convex programming correction.
The pseudoinverse step computes an initial solution z(") iteratively via the Moore—Penrose or
Bott-Duffin inverse. The convex step then refines z by minimizing a mixed ¢; /¢ norm under
equality constraints Az = b. The method supports allocation problems (AP), constrained modular
least squares (CMLYS), and general CLSP formulations.
Value
An object of class "clsp” representing the fitted Convex Least Squares Programming (CLSP)
model. The object is a named list containing all initialized fields and solver results. Class-specific
methods such as summary.clsp(), corr.clsp(), and ttest.clsp() can be used to extract, ana-
lyze, and summarize the results.
See Also
CVXR
Examples
Not run:

Example: CMLS (RP) estimation with stationary-point constraints

set.seed(123456789)

sample (dataset)

k <- 500L

p <- 6L

co <-1

D <- matrix(NA_real_, nrow = k, ncol = p)

DL, 1] <-1.0

D[, 2:p] <= matrix(rnorm(k * (p - 1)), k, p - 1)

b_true <- rnorm(p)
b_true <- (b_true / sum(b_true)) * co@

e <- matrix(rnorm(k), ncol = 1)
y <- D %x% b_true + e
build blocks for CLSP (CMLS)

o

<- rbind(
matrix(c@, ncol = 1),
matrix(@, nrow = k - 2, ncol = 1),
matrix(@, nrow =k - 1, ncol = 1),
matrix(y, ncol = 1)

)
C <= rbind(
matrix(1, nrow = 1, ncol = p),
diff(D, differences = 2),
diff(D, differences = 1)
)
diagonal sign-matrix for 2nd differences

[%2]

<- rbind(
matrix(@, nrow = 1, ncol = k - 2),

number of observations

++

number of regressor
sum of coefficients

constant

normalize to sum =

sum of coefficients

row of ones
2nd differences
1st differences

+*

diag(sign(diff(as.numeric(y), differences = 2))),

matrix(@, nrow = k - 1, ncol = k - 2)

)

model

model <- rclsp::clsp(
problem = "cmls"”,
b = b,
C =C,
S =S,
M =D,
r =1L,
alpha =1.0

)

results

print("true beta (x_M):")
print(round(b_true, 4))

print("beta hat (x_M hat):")
print(round(model$x, 4))

no refinement
MNBLUE solution

S

C

clsp

corr 7

print(model)

bootstrap t-test
tt <- rclsp::ttest(

model,

sample_size = 30L,

seed = 123456789L,
distribution = rnorm,
partial = TRUE

)

print(”"Bootstrap t-test:")
print(tt)

End(Not run)

corr Compute the structural correlogram of the CLSP constraint system.

Description

This method performs a row-deletion sensitivity analysis on the canonical constraint matrix [C/|S],
denoted as Ceanon, and evaluates the marginal effect of each constraint row on numerical stability,
angular alignment, and estimator sensitivity.

Usage

corr(object, reset = FALSE, threshold = 0)

Arguments
object An object of class "clsp”.
reset Logical, default = FALSE. If TRUE, forces recomputation of all diagnostic values.
threshold Numeric, default = 0. If positive, limits the output to constraints with RMSA; >
threshold.
Details

For each row 7 in Ceanen, it computes:

* The Root Mean Square Alignment (RMSA;) with all other rows j # 3.
* The change in condition numbers x(C'), x(B), and x(A) when row ¢ is deleted.
* The effect on estimation quality: changes in NRMSE, 2, z, and x.

Additionally, it computes the total RMSA statistic across all rows, summarizing the overall angular
alignment of the constraint block.

8 ttest

Value

A named list containing per-row diagnostic values:

constraint Vector of constraint indices (1-based).
rmsa_i List of RMSA; values.

rmsa_dkappaC List of Ax(C) after deleting row i.
rmsa_dkappaB List of Ax(B) after deleting row i.
rmsa_dkappaA List of Ax(A) after deleting row i.
rmsa_dnrmse List of ANRMSE after deleting row i.
rmsa_dzhat List of AZ after deleting row i.

rmsa_dz List of Az after deleting row i.

rmsa_dx List of Az after deleting row i.

ttest Perform bootstrap or Monte Carlo t-tests on the NRMSE statistic from
the CLSP estimator.

Description

This function either (a) resamples residuals via a nonparametric bootstrap to generate an empirical
NRMSE sample, or (b) produces synthetic right-hand side vectors b from a user-defined or default
distribution and re-estimates the model. It tests whether the observed NRMSE significantly deviates
from the null distribution of resampled or simulated NRMSE values.

Usage

ttest(
object,
reset = FALSE,
sample_size = 50L,
seed = NULL,
distribution = NULL,
partial = FALSE,
simulate = FALSE

)
Arguments
object An object of class "clsp”.
reset Logical, default = FALSE. If TRUE, forces recomputation of the NRMSE null
distribution.
sample_size Integer, default = 50. Size of the Monte Carlo simulated sample under HO.

seed Integer or NULL, default = NULL. Optional random seed to override the default.

ttest 9

distribution Function or NULL, default = NULL. Distribution for generating synthetic b vectors.
One of: rnorm, runif, or a custom RNG function. Defaults to standard normal.

partial Logical, default = FALSE. If TRUE, runs the t-test on the partial NRMSE: dur-
ing simulation, the C-block entries are preserved and the M-block entries are
simulated.

simulate Logical, default = FALSE. If TRUE, performs a parametric Monte Carlo simulation

by generating synthetic right-hand side vectors b. If FALSE (default), executes a
nonparametric bootstrap procedure on residuals without re-estimation.

Value

A named list containing test results and null distribution statistics:

p_one_left P(nrmse < null mean)
p_one_right P(nrmse > null mean)
p_two_sided 2-sided t-test p-value
nrmse Observed value

mean_null Mean of null distribution

std_null Standard deviation of null distribution

Index

canonize, 2
clsp, 3
corr, 7
CVXR, 5

ttest, 8

10

	canonize
	clsp
	corr
	ttest
	Index

