Package ‘representr’

January 29, 2026

Type Package
Title Create Representative Records After Entity Resolution

Version 0.1.6

Description An implementation of Kaplan, Betancourt, Ste-
orts (2022) <doi:10.1080/00031305.2022.2041482> that creates representa-
tive records for use in downstream tasks after entity resolution is performed. Multiple meth-
ods for creating the representative records (data sets) are provided.

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.3

Imports doParallel, foreach, dplyr, Rcpp
Suggests knitr, rmarkdown, ggplot2
LinkingTo Rcpp

VignetteBuilder knitr
NeedsCompilation yes

Author Andee Kaplan [aut, cre],
Brenda Betancourt [aut],
Rebecca C. Steorts [aut]

Maintainer Andee Kaplan <andee.kaplan@colostate.edu>
Repository CRAN
Date/Publication 2026-01-29 18:20:02 UTC

Contents

clust_composite L. e e e e e e
clust_proto_random L. e
dist_binary L e e
dist_COL_type o e e e
emp_Kl_div

https://doi.org/10.1080/00031305.2022.2041482

2 clust_composite
pp_weights L e 7
TEPTESENL . . o v v v v o e 8
() 0] 41 112 10
rloregl . . . L e e e 11
Within_category_cCOmpare_Cpp - - « « « « v v v v v e e e e e e e e e e 12

Index 14

clust_composite Composite record from a cluster using a weighted average of each
column values.

Description

Composite record from a cluster using a weighted average of each column values.
Usage
clust_composite(
cluster,
col_type,
weights = rep(1/nrow(cluster), nrow(cluster))
)
Arguments
cluster A data frame of the clustered records
col_type A vector encoding the column type for each column in the dataset. Can take
values in "categorical", "ordinal", "string", or "numeric"
weights A vector of length equal to the number of records in the cluster indicating the
weight for each. Defaults to equal weight.
Value

Returns the composite record from an individual cluster.

@examples data("rl_regl")

clusters <- split(rl_regl, identity.rl_regl) type <- c("string", "string", "numeric", "

meric", "categorical”, "ordinal", "numeric", "numeric")

clust_composite(clusters[[1]], type)

clust_proto_random 3

clust_proto_random Prototype record from a cluster.

Description

Prototype record from a cluster.

Usage
clust_proto_random(
cluster,
prob = rep(1/nrow(cluster), nrow(cluster)),
id = TRUE

)

clust_proto_minimax(cluster, not_cluster, distance, id = TRUE, ...)

maxmin_compare(ties, not_cluster, distance, ...)

within_category_compare(ties, not_cluster, distance, ...)

random_compare(ties, not_cluster, distance, ...)

Arguments

cluster A data frame of the clustered records.

prob A vector of length nrow(cluster) that sums to 1, giving the probability of
selection.

id Logical indicator to return id of record selected (TRUE) or actual record (FALSE).
Note, if returning id, must have original row numbers as rownames in each clus-
ter.

not_cluster A data frame of the records outside the cluster

distance A distance function for comparing records
Additional arguments passed to the comparison function

ties A data frame of the records that are tied

Value

If id = FALSE, returns the prototype record from an individual cluster. Otherwise, returns the record
id of the prototype record for that cluster. If there is a tie in the minimax prototype method, then
random selection is used to break the tie.

4 dist_binary

Examples

data("rl_regl")

clusters <- split(rl_regl, identity.rl_regl)
clust_proto_random(clusters[[1]])

not_clusters <- lapply(seqg_along(clusters), function(x){
if (nrow(clusters[[x]1) > 1)

do.call(rbind, clusters[-x1)
»

clust_proto_minimax(clusters[[1]], not_clusters[[1]], dist_binary)

dist_binary The distance between two records

Description

The distance between two records

Usage

dist_binary(a, b)

dist_col_type_slow(
a,
b,
col_type,
string_dist = utils::adist,
weights = rep(1/length(a), length(a)),
orders = NULL,

)
Arguments

a Record a

b Record b

col_type A vector encoding the column type for each column in the dataset. Can take
values in "categorical", "ordinal", "string", or "numeric"

string_dist String distance function. Default is edit distance. Function must take at least
two arguments (strings)

weights A vector of weights for each column for making some column distances more
important. Must sum to 1. Defaults to equal weights.

orders A named list containing the order of the levels in each ordinal column. Defaults

to NULL, which corresponds to no ordinal variables.

Additional parameters passed to string distance function.

dist_col_type 5

Value

binary_dist returns a numeric value indicating how many discrepancies there are between two
records.

col_type_dist return a numeric value of the weighted column type specific distance between two
records.

Examples

data("rl_regl")
dist_binary(rl_regi[1,], rl_regi[2,]1)

type <- c("string”, "string"”, "numeric”, "numeric",
"numeric”, "categorical”, "ordinal”, "numeric"”, "numeric")

order <- list(education = c("Less than a high school diploma”,
"High school graduates, no college”, "Some college or associate degree”,
"Bachelor's degree only”, "Advanced degree"))

dist_col_type_slow(rl_regi[1,], rl_regi[2,], col_type = type, order = order)

dist_col_type dist_col_type Inner column type record distance function

Description

dist_col_type Inner column type record distance function

Usage

dist_col_type(a, b, col_type, weights, orders)

Arguments

a record a

b record b

col_type A vector encoding the column type for each column in the dataset. Can take
values in "categorical”, "ordinal", "string", or "numeric"

weights A vector of weights for each column for making some column distances more
important. Must sum to 1. Defaults to equal weights.

orders A named list containing the order of the levels in each ordinal column. Defaults

to NULL, which corresponds to no ordinal variables.

6 emp_kl_div

emp_kl_div Calculate the empirical KL divergence for a representative dataset as
compared to the true dataset

Description

Calculate the empirical KL divergence for a representative dataset as compared to the true dataset

Usage

emp_k1_div(
true_dat,
rep_dat,
categoric_vars,
numeric_vars,

1.m=10,
weights = rep(1, nrow(rep_dat))
)
Arguments
true_dat The true dataset
rep_dat A representative dataset

categoric_vars A vector of column positions or column names for the categoric variables.

numeric_vars A vector of column positions or column names for the numeric variables.

1.m Approximate number of true data points to be in each bin for numeric variables.
Default is 10.
weights If weighted frequencies are desired, pass a vector weights of the same length as

representative data points.

Details

This function computes the estimated the KL divergence of two samples of data using the empirical
distribution functions for the representative data set and true data set with continuous variables
transformed to categorical using a histogram approach with statistically equivalent data-dependent
bins, as detailed in

Wang, Qing, Sanjeev R. Kulkarni, and Sergio Verdd. "Divergence estimation of continuous distri-
butions based on data-dependent partitions." IEEE Transactions on Information Theory 51.9 (2005):
3064-3074.

Examples
data("rl_regl")

random prototyping
rep_dat_random <- represent(rl_regl, identity.rl_regl, "proto_random”, id = FALSE, parallel = FALSE)

pp_weights 7

empirical KL divergence
cat_vars <- c("sex")
num_vars <- c("income"”, "bp")
emp_kl_div(rl_regl[unique(identity.rl_regl), c(cat_vars, num_vars)],
rep_dat_random[, c(cat_vars, num_vars)],
cat_vars, num_vars)

pp_weights Get posterior weights for each record post record-linkage using pos-
terior prototyping.

Description

Get posterior weights for each record post record-linkage using posterior prototyping.

Usage
pp_weights(
data,
posterior_linkage,
rep_method,
parallel = TRUE,
cores = NULL,

scale = FALSE,
save_loc = NULL,
verbose = FALSE

Arguments

data A data frame of records to be represented.

posterior_linkage
A matrix of size m X n, indicating the posterior cluster ids post-record linkage,
each row represents the cluster assignment for each record in data for 1 iteration
of the sampler.

rep_method Which method to use for representation. Valid options include "proto_minimax"
and "proto_random".

parallel Logical flag if to use parallel computation or not (via foreach).

cores If specified, the number of cores to use with foreach.

Additional parameters sent to cluster representation function. See minimax or
random methods. If passing a probability to the random method, must be list
of the same length as the number of iterations in lambda and within each must
be a list of the same length as the number of clusters. Within each should be
a vector of probabilities, the same length as the number of rows in the cluster
prob[[iteration][[cluster]].

8 represent

scale If "proto_minimax" method is specified, logical flag to indicate if the column-
type distance function should be scaled so that each distance takes value in [0,
1]. Defaults to FALSE.

save_loc Location to save intermediate progress. If NULL, no intermediate progress is
saved.
verbose Flag for progress messages.
Examples

data(rl_regl)

make a fake posterior distribution for the linkage

m<- 10

n <- nrow(rl_regl)

post_link <- matrix(sample(seq_len(n), n*m, replace = TRUE), nrow = m)

get the posterior prototyping weights
col_type <- c("string"”, "string”, "numeric”, "numeric”, "numeric"”, "categorical”, "ordinal”,

"numeric”, "numeric")
orders <- list(education = c("Less than a high school diploma”, "High school graduates, no college”,
"Some college or associate degree"”, "Bachelor's degree only”, "Advanced degree"))

weights <- c(.25, .25, .05, .05, .1, .15, .05, .05, .05)
pp_weight <- pp_weights(rl_regl, post_link, "proto_minimax", distance = dist_col_type,
col_type = col_type, weights = weights, orders = orders, scale = TRUE, parallel = FALSE)

threshold by posterior prototyping weights
head(rl_regl[pp_weight > 0.5, 1)

represent Create a representative dataset post record-linkage.

Description

Create a representative dataset post record-linkage.

Usage

represent(
data,
linkage,
rep_method,
parallel = TRUE,
cores = NULL,

D

scale = FALSE

represent 9

Arguments
data A data frame of records to be represented.
linkage A numeric vector indicating the cluster ids post-record linkage for each record
in data.
rep_method Which method to use for representation. Valid options include "proto_minimax",
"proto_random", and "composite".
parallel Logical flag if to use parallel computation or not (via foreach).
cores If specified, the number of cores to use with foreach.
Additional parameters sent to cluster representation function. See prototyping
or composite methods.
scale If "proto_minimax" method is specified, logical flag to indicate if the column-
type distance function should be scaled so that each distance takes value in [0,
1]. Defaults to FALSE.
Examples

data("rl_regl")

random prototyping
rep_dat_random <- represent(rl_regl, identity.rl_regl, "proto_random”, id = FALSE, parallel = FALSE)
head(rep_dat_random)

minimax prototyping
col_type <- c("string"”, "string"”, "numeric”, "numeric”, "numeric"”, "categorical”, "ordinal”,

"numeric”, "numeric")
orders <- list(education = c("Less than a high school diploma”, "High school graduates, no college”,
"Some college or associate degree”, "Bachelor's degree only”, "Advanced degree”))

weights <- c(.25, .25, .05, .05, .1, .15, .05, .05, .05)

rep_dat_minimax <- represent(rl_regl, identity.rl_regl, "proto_minimax"”, id = FALSE,
distance = dist_col_type, col_type = col_type, weights = weights, orders = orders,
scale = TRUE, parallel = FALSE)

head(rep_dat_minimax)

Not run:

with alternative tie breaker

rep_dat_minimax <- represent(rl_regl, identity.rl_regl, "proto_minimax”, id = FALSE,
distance = dist_col_type, col_type = col_type, weights = weights, orders = orders,
ties_fn = "maxmin_compare”, scale = TRUE, parallel = FALSE)

head(rep_dat_minimax)

rep_dat_minimax <- represent(rl_regl, identity.rl_regl, "proto_minimax”, id = FALSE,
distance = dist_col_type, col_type = col_type, weights = weights, orders = orders,
ties_fn = "within_category_compare_cpp"”, scale = TRUE, parallel = FALSE)
head(rep_dat_minimax)

composite prototyping

rep_dat_composite <- represent(rl_regl, identity.rl_regl, "composite”,
col_type = col_type, parallel = FALSE)

head(rep_dat_composite)

10 representr

End(Not run)

representr representr: A package for creating representative records post-record
linkage.

Description

The representr package provides two types of representative record generation: point prototyping
and posterior prototyping.

Point Prototyping

To bridge the gap between record linkage and a downstream task, there are three methods to choose
or create the representative records from linked data: random prototyping, minimax prototyping,
and composite. These are all based on a point estimate of the linkage structure post-record linkage
(rather than a posterior distribution).

Random prototyping chooses a record from each cluster at random, either uniformly or according
to a supplied distribution. Minimax prototyping selects the record whose farthest neighbors within
the cluster is closest, based on some notion of closeness that is measured by a record distance
function. There are two distance functions included in this package (binary and column-based), or
the user can specify their own. Composite record creation constructs the representative record by
aggregating the records (in each cluster) to form a composite record that includes information from
each linked record.

Each of these three types of prototyping can be used from the function represent.

Posterior prototyping

The posterior distribution of the linkage can be used in two ways in this package. The first, is as
weights or in a distance function for the above point prototyping methods. The second, is through
the posterior prototyping (PP) weights presented in Kaplan, Betancourt, and Steorts (2018+). The
PP weights are accessible through the pp_weights function.

References

Kaplan, Andee, Brenda Betancourt, and Rebecca C. Steorts. "Posterior Prototyping: Bridging the
Gap between Bayesian Record Linkage and Regression." arXiv preprint arXiv:1810.01538 (2018).

rl_regl 11

rl_regi 500 records suitable for record linkage with additional regression
variables

Description

Simulated datasets containing the name, birthdate, and additional attributes of 500 records, of which
there are 350 unique individuals.

Usage

rl_regil
rl_reg2
rl_regb
identity.rl_regil
identity.rl_reg2
identity.rl_reg5h

linkage.rl

Format

rl_regl and rl_reg5 are data frames with 500 rows and 9 columns. Each row represents 1 records
with the following columns:

fname First name

Iname Last name

bm Birth month (numeric)

bd Birth day

by Birth year

sex Sex ("M" or "F")

education Education level ("Less than a high school diploma", ""High school graduates, no col-
lege", "Some college or associate degree", "Bachelor’s degree only", or "Advanced degree")

income Yearly income (in 1000s)
bp Systolic blood pressure
identity.rl_regl and identity.rl_reg5 are integer vectors indicating the true record ids of the

two datasets. Two records represent the same individual if and only if their corresponding identity
values are equal.

12 within_category_compare_cpp

linkage.rl contains the result of running 100,000 iterations of a record linkage model using the
package dblinkR.

An object of class data. frame with 500 rows and 9 columns.
An object of class data. frame with 500 rows and 9 columns.
An object of class integer of length 500.
An object of class integer of length 500.
An object of class integer of length 500.

An object of class matrix (inherits from array) with 100000 rows and 500 columns.

Details

There is a known relationship between three of the variables in the dataset, blood pressure (bp),
income, and sex.

bp = 160 + 101 (sex =" M") — income + 0.5income * I (sex =" M") + €

where € Normal(0,02) and o = 1,2, 5.

The 150 duplicated records have randomly generated errors.

Source

Names and birthdates generated with the ANU Online Personal Data Generator and Corruptor
(GeCO) version 0.1 https://dmm.anu.edu.au/geco/.

within_category_compare_cpp
within_category_compare_cpp Inner column type record distance
function

Description

within_category_compare_cpp Inner column type record distance function

Usage

within_category_compare_cpp(
ties,
not_cluster,
col_type,
weights,
orders,
distance

https://dmm.anu.edu.au/geco/

within_category_compare_cpp 13

Arguments
ties
not_cluster

col_type

weights

orders

distance

A data frame of the records that are tied
A data frame of the records outside the cluster

A vector encoding the column type for each column in the dataset. Can take
values in "categorical”, "ordinal", "string", or "numeric"

A vector of weights for each column for making some column distances more
important. Must sum to 1. Defaults to equal weights.

A named list containing the order of the levels in each ordinal column. Defaults
to NULL, which corresponds to no ordinal variables.

function that does nothing right now, but must be supplied to not break other
code.

Index

x datasets
rl_regl, 11

binary, 10

clust_composite, 2

clust_proto_minimax
(clust_proto_random), 3

clust_proto_random, 3

column-based, /0

composite, 9

dist_binary, 4
dist_col_type, 5
dist_col_type_slow(dist_binary), 4

emp_kl_div, 6

identity.rl_regl (rl_regl), 11
identity.rl_reg2(rl_regl), 11
identity.rl_reg5(rl_regl), 11

linkage.rl (rl_regl), 11

maxmin_compare (clust_proto_random), 3
minimax, 7

pp_weights, 7, 10
prototyping, 9

random, 7

random_compare (clust_proto_random), 3
represent, 8, 10

representr, 10

representr-package (representr), 10
rl_regl, 11

rl_reg2(rl_regl), 11
rl_reg5(rl_regl), 11

within_category_compare
(clust_proto_random), 3
within_category_compare_cpp, 12

14

	clust_composite
	clust_proto_random
	dist_binary
	dist_col_type
	emp_kl_div
	pp_weights
	represent
	representr
	rl_reg1
	within_category_compare_cpp
	Index

