
Package ‘ribiosUtils’
February 3, 2026

Type Package

Title Utilities from and Interface to the 'Bioinfo-C' ('BIOS') Library

Version 1.7.7

Date 2026-01-22

Description Provides interface to the 'Bioinfo-C' (internal name: 'BIOS') library and utilities. 'ribiosU-
tils' is a Swiss-knife for computational biology in drug discovery, providing functions and utili-
ties with minimal external dependency and maximal efficiency.

Depends R (>= 3.4.0)

Imports methods, stats, utils

Suggests devtools, testthat

License GPL-3

URL https://github.com/bedapub/ribiosUtils,

https://bedapub.github.io/ribiosUtils/

BugReports https://github.com/bedapub/ribiosUtils/issues

Encoding UTF-8

RoxygenNote 7.3.3

NeedsCompilation yes

Author Jitao David Zhang [aut, cre, ctb] (ORCID:
<https://orcid.org/0000-0002-3085-0909>),

Clemens Broger [aut, ctb],
F.Hoffmann-La Roche AG [cph],
Junio C Hamano [cph],
Jean Thierry-Mieg [cph],
Konrad Rudolph [cph],
Richard Durbin [cph]

Maintainer Jitao David Zhang <jitao_david.zhang@roche.com>

Repository CRAN

Date/Publication 2026-02-03 10:20:02 UTC

1

https://github.com/bedapub/ribiosUtils
https://bedapub.github.io/ribiosUtils/
https://github.com/bedapub/ribiosUtils/issues
https://orcid.org/0000-0002-3085-0909

2 Contents

Contents
allIdentical . 4
applyTopOrIncAndNotExclFilter . 5
asNumMatrix . 6
assertColumnName . 7
assertContrast . 7
assertDesign . 8
assertDesignContrast . 9
bedaInfo . 9
biomicsPstorePath2URL . 10
bound . 10
cbindByRownames . 11
checkFile . 12
chosenFew . 13
closeLoggerConnections . 14
columnOverlapCoefficient . 15
compTwoVecs . 15
corByRownames . 16
countTokens . 17
createDir . 18
cumJaccardIndex . 18
cumOverlapCoefficient . 19
cumsumprop . 20
cutInterval . 21
cutreeIntoOrderedGroups . 22
dfFactor . 23
dfFactor2Str . 24
equateWellLabelWidth . 25
extname . 25
firstUp . 26
fixWidthStr . 27
haltifnot . 28
headhead . 29
headtail . 30
identicalMatrix . 31
identicalMatrixValue . 31
imatch . 32
invertList . 33
isDir . 34
isError . 35
isOdd . 36
isRocheCompoundID . 36
isTopOrIncAndNotExcl . 37
jaccardIndex . 38
keepMaxStatRow . 39
lastChar . 41
libordie . 41

Contents 3

list2df . 42
listOverlapCoefficient . 43
longdf2matrix . 44
matchColumn . 45
matchColumnName . 47
matrix2longdf . 48
mergeInfreqLevelsByCumsumprop . 49
midentical . 50
mmatch . 51
munion . 52
na.false . 53
naivePairwiseDist . 54
ofactor . 55
orderCutgroup . 56
overlapCoefficient . 56
overwriteDir . 57
pAbsLog10Score . 58
pairwiseJaccardIndex . 59
pairwiseOverlapDistance . 60
percentage . 61
pQnormScore . 61
print.BEDAinfo . 62
pScore . 63
putColsFirst . 64
pwdecode . 65
pwencode . 66
qqmsg . 66
qsystem . 67
refactorNum . 68
registerLog . 69
relevels . 71
relevelsByNamedVec . 72
relevelsByNotNamedVec . 73
reload . 74
removeColumns . 75
removeColumnsByFunc . 76
removeColumnsWithNA . 76
removeInvarCol . 77
removeRowsWithNA . 78
replaceColumnName . 78
replaceZeroPvalue . 79
ribiosTempdir . 80
ribiosTempfile . 80
ribiosUtils . 81
rmat . 81
rocheCore . 82
rowscale . 83
rowscale.matrix . 83

4 allIdentical

rowscale.table . 84
rrank . 85
rrank.matrix . 86
rrankInd . 87
rsetdiff . 88
scriptInit . 88
setDebug . 89
shortenRocheCompoundID . 90
shortenStr . 91
silencio . 91
sortAndFilterByCumsumprop . 92
sortByCol . 93
sortByDimnames . 94
strtoken . 95
stubborngc . 96
subsetByColumnName . 97
summarizeRows . 97
trim . 99
uniqueLength . 100
uniqueNonNA . 101
verbose . 101
wellIndex2position . 102
whoami . 103
writeLog . 103

Index 105

allIdentical Testing whether several objects are all identical with each other

Description

Given several objects, the function tests whether all of them are identical.

Usage

allIdentical(...)

Arguments

... Objects to be tested. Can be given as a list, or simplying appending names
separated by commas, see example.

Value

Logical, whether all objects are the same

applyTopOrIncAndNotExclFilter 5

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

identical

Examples

test1 <- test2 <- test3 <- LETTERS[1:3]
allIdentical(test1, test2, test3)
allIdentical(list(test1, test2, test3))

num1 <- num2 <- num3 <- num4 <- sqrt(3)
allIdentical(num1, num2, num3, num4)

applyTopOrIncAndNotExclFilter

Apply isTopOrIncAndNotExcl filter to a matrix

Description

Apply isTopOrIncAndNotExcl filter to a matrix

Usage

applyTopOrIncAndNotExclFilter(matrix, MARGIN, top = 1, falseValue = 0, ...)

Arguments

matrix A matrix.

MARGIN Integer, 1 stands for row and 2 stands for column, passed to apply.

top Integer, how many top elements should be kept, passed to isTopOrIncAndNotExcl.

falseValue The same type as data in the matrix, used to replace values that is FALSE when
judged by isTopOrIncAndNotExcl.

... Further parameters passed to isTopOrIncAndNotExcl, including incFunc, excFunc,
and decreasing. The function applies the filter function isTopOrIncAndNotExcl
to each row or each column to a matrix, keeps the values that are TRUE based on
the logical vector returned by function, and replaces the values that are FALSE
with the value defined by falseValue.

Value

A matrix with the same dimnames but with elements not satisfying isTopOrIncAndNotExcl re-
placed by falseValue.

6 asNumMatrix

Examples

myMat <- matrix(c(1,2,3,4,8,7,6,5,12,9,11,10), nrow=3, byrow=TRUE,
dimnames=list(c("A", "B", "C"), c("Alpha", "Beta", "Gamma", "Delta")))

print(myMat)
applyTopOrIncAndNotExclFilter(myMat, 1, top=2, falseValue=-1)
applyTopOrIncAndNotExclFilter(myMat, 2, top=2, falseValue=-1)
applyTopOrIncAndNotExclFilter(myMat, 2, top=2, falseValue=-1, decreasing=FALSE)
applyTopOrIncAndNotExclFilter(myMat, 1, top=2, falseValue=-1, incFunc=function(x) x%%2==0)
applyTopOrIncAndNotExclFilter(myMat, 1, top=2, falseValue=-1,

incFunc=function(x) x%%2==0, excFunc=function(x) x<5)

asNumMatrix Convert string-valued data frame or matrix into a numeric matrix

Description

Convert string-valued data frame or matrix into a numeric matrix

Usage

asNumMatrix(x)

Arguments

x A data.frame or matrix, most likely with string values

Value

A numeric matrix with the same dimension

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

Examples

testDf <- data.frame(a=c("2.34", "4.55"), b=c("7.33", "9.10"))
asNumMatrix(testDf)

testMatrix <- matrix(c("2.34", "4.55", "9E-3","-2.44", "7.33", "9.10"), nrow=2)
asNumMatrix(testMatrix)

assertColumnName 7

assertColumnName Assert whether the required column names exist

Description

The function calls matchColumnName internally to match the column names.

Usage

assertColumnName(data.frame.cols, reqCols, ignore.case = FALSE)

Arguments

data.frame.cols

column names of a data.frame. One can also provide a data.frame, which may
however cause worse performance since the data.frame is copied

reqCols required columns

ignore.case logical, whether the case is considered

Value

If all required column names are present, their indices are returned *invisibly*. Otherwise an error
message is printed.

Examples

myTestDf <- data.frame(HBV=1:3, VFB=0:2, BVB=4:6, FCB=2:4)
myFavTeams <- c("HBV", "BVB")
assertColumnName(myTestDf, myFavTeams)
myFavTeamsCase <- c("hbv", "bVb")
assertColumnName(myTestDf, myFavTeamsCase, ignore.case=TRUE)

assertContrast Check dimensionality of contrast matrix

Description

Check dimensionality of contrast matrix

Usage

assertContrast(design, contrast)

8 assertDesign

Arguments

design Design matrix

contrast Contrast matrix

Value

Side effect is used: the function stops if the ncol(design) does not equal nrow(contrast)

Examples

design <- matrix(1:20, ncol=5)
contrast <- matrix(c(-1,1,0,0,0, 0,1,0,-1,0), nrow=5)
assertContrast(design, contrast)

assertDesign Check dimensionality of design matrix

Description

Check dimensionality of design matrix

Usage

assertDesign(nsample, design)

Arguments

nsample Integer, number of samples

design Design matrix

Value

Side effect is used: the function stops if sample size does not equal ncol(matrix)

Examples

nsample <- 4
design <- matrix(1:20, ncol=5)
assertDesign(nsample, design)

assertDesignContrast 9

assertDesignContrast Check dimensionality of both design and contrast matrix

Description

Check dimensionality of both design and contrast matrix

Usage

assertDesignContrast(nsample, design, contrast)

Arguments

nsample Integer, number of samples

design Design matrix

contrast Contrast matrix

Value

Side effect is used: the function stops if there are errors in the dimensionalities

See Also

assertDesign, assertContrast

Examples

nsample <- 4
design <- matrix(1:20, ncol=5)
contrast <- matrix(c(-1,1,0,0,0, 0,1,0,-1,0), nrow=5)
assertDesignContrast(nsample, design, contrast)

bedaInfo Print BEDA project information

Description

Print BEDA project information

Usage

bedaInfo()

10 bound

Value

A list, including pstore path, URL, git address, and user id The function is used at the end of the
Rmarkdown report to print relevant information to help other colleagues finding relevant resources

Examples

bedaInfo()

biomicsPstorePath2URL Translate BiOmics-Pathology pstore path to URL

Description

Translate BiOmics-Pathology pstore path to URL

Usage

biomicsPstorePath2URL(path)

Arguments

path Unix path

Value

Character string of biomics pstore path The URL is only visible inside Roche

Examples

biomicsPstorePath2URL("/pstore/data/biomics/")

bound Set boundaries for numeric values, or perform a 0-1 normalization.

Description

The basic concepts of these functions are borrowed from the bound function in the Qt framework.

Usage

bound(x, low, high)

boundNorm(x, low = min(x, na.rm = TRUE), high = max(x, na.rm = TRUE))

cbindByRownames 11

Arguments

x A numeric vector or matrix

low New lower boundary

high New higher boundary

Details

bound sets the values smaller than low, or larger than high, to the value of low and high respec-
tively.If no such values exist, the vector or matrix is returned unchanged.

boundNorm performs a 0-1 normalization. Input vector or matrix is transformed linearly onto the
region defined between low and high, which has the unit length (1).

Value

A numeric vector or matrix, the same type as input.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

Examples

myVec <- c(2,4,3,-1,9,5,3,4)
bound(myVec, 0, 8)
boundNorm(myVec)
boundNorm returns negative values if input values lie out of the
given region between low and high
boundNorm(myVec, 0, 8)

myMat <- matrix(myVec, nrow=2)
myMat
bound(myMat, 0, 8)
boundNorm(myMat)
boundNorm(myMat, 0, 8)

cbindByRownames Column bind by rownames

Description

Column bind by rownames

Usage

cbindByRownames(..., type = c("intersect", "union"))

rbindByColnames(..., type = c("intersect", "union"))

12 checkFile

Arguments

... Two or more matrices, or a list of matrices.

type Character string, how are row names that are not shared by all items handled,
either intersect (intersect are kept) or union (union is used, NA is inserted
whenever necessary)

Value

A matrix

Examples

mat1 <- matrix(1:9, nrow=3, byrow=FALSE,
dimnames=list(LETTERS[1:3], LETTERS[1:3]))

mat2 <- matrix(1:9, nrow=3, byrow=FALSE,
dimnames=list(LETTERS[2:4], LETTERS[4:6]))

mat3 <- matrix(1:9, nrow=3, byrow=FALSE,
dimnames=list(LETTERS[c(2,4,5)], LETTERS[7:9]))

cbindByRownames(mat1, mat2, mat3, type="intersect")
cbindByRownames(mat1, mat2, mat3, type="union")
it is also possible to pass a list
cbindByRownames(list(mat1, mat2, mat3), type="union")
mat4 <- matrix(1:9, nrow=3, byrow=FALSE,

dimnames=list(LETTERS[1:3], LETTERS[1:3]))
mat5 <- matrix(1:9, nrow=3, byrow=FALSE,

dimnames=list(LETTERS[4:6], LETTERS[2:4]))
mat6 <- matrix(1:9, nrow=3, byrow=TRUE,

dimnames=list(LETTERS[7:9], LETTERS[c(2,4,6)]))
rbindByColnames(mat4, mat5, mat6, type="intersect")
rbindByColnames(mat4, mat5, mat6, type="union")
it is also possible to pass a list
rbindByColnames(list(mat4, mat5, mat6), type="union")

checkFile Check whether file(s) exist

Description

checkFile checks whether file exists, assertFile stops the program if files do not exist

Usage

checkFile(...)

assertFile(...)

Arguments

... Files to be checked

chosenFew 13

Details

assertFile is often used in scripts where missing a file would cause the script fail.

Value

checkFile returns logical vector. assertFile returns an invisible TRUE if files exist, otherwise
halts and prints error messages.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

isDir and assertDir

Examples

myDesc <- system.file("DESCRIPTION", package="ribiosUtils")
myNEWS <- system.file("NEWS", package="ribiosUtils")
checkFile(myDesc, myNEWS)
assertFile(myDesc, myNEWS)

chosenFew Print the chosen few items of a long vector

Description

Print the chosen few (the first and the last) items of a long vector

Usage

chosenFew(vec, start = 3, end = 1, collapse = ",")

Arguments

vec A vector of characters or other types that can be cast into characters

start Integer, how many elements at the start shall be printed

end Integer, how many elements at the end shall be printed

collapse Character used to separate elements

Value

A character string ready to be printed

14 closeLoggerConnections

Note

In case the vector is shorter than the sum of start and end, the whole vector is printed.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

Examples

lvec1 <- 1:100
chosenFew(lvec1)
chosenFew(lvec1, start=5, end=3)

svec <- 1:8
chosenFew(svec)
chosenFew(svec, start=5, end=4)

closeLoggerConnections

Close connections to all loggers This function closes all open con-
nections set up by loggers It is automatically run at the end of the R
session (setup by registerLog)

Description

Close connections to all loggers This function closes all open connections set up by loggers It is
automatically run at the end of the R session (setup by registerLog)

Usage

closeLoggerConnections()

Value

Invisible NULL. Only side effect is used.

See Also

registerLog

columnOverlapCoefficient 15

columnOverlapCoefficient

Pairwise jaccard/overlap coefficient can be calculated efficiently using
matrix Pairwise overlap coefficient of binary matrix by column

Description

Pairwise jaccard/overlap coefficient can be calculated efficiently using matrix Pairwise overlap co-
efficient of binary matrix by column

Usage

columnOverlapCoefficient(x, y = NULL)

Arguments

x An integer matrix, other objects will be coereced into a matrix

y An integer matrix, other objects will be coereced into a matrix. In case of NULL,
pairwise overlap coefficients by column of x is returned.

Value

A matrix of column-wise pairwise overlap coefficients of the binary matrix. NaN is reported when
neither of the columns have any non-zero element.

Examples

set.seed(1887)
testMatrix1 <- matrix(rbinom(120, 1, 0.2), nrow=15)
columnOverlapCoefficient(testMatrix1)

testMatrix2 <- matrix(rbinom(150, 1, 0.2), nrow=15)
testMatrix12Poe <- columnOverlapCoefficient(testMatrix1,

testMatrix2)

compTwoVecs Compare two vectors by set operations

Description

Basic set operations are used to compare two vectors

Usage

compTwoVecs(vec1, vec2)

16 corByRownames

Arguments

vec1 A vector of atomic types, e.g. integers, characters, etc.

vec2 A vector of the same type as vec1

Value

A vector of six integer elements

vec1.setdiff Number of unique items only in vec1 but not in vec2

intersect Number of items in both vec1 and vec2

vec2.setdiff Number of unique items only in vec2 but not in vec1

vec1.ulen Number of unique items in vec1

vec2.ulen Number of unique items in vec2

union Number of unique items in vec1 and vec2

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

Examples

year1 <- c("HSV", "FCB", "BVB", "S04", "FCN")
year2 <- c("HSV", "FCK", "S04")
compTwoVecs(year1, year2)

corByRownames Calculate correlation coefficients using common rows of the two ma-
trices

Description

Calculate correlation coefficients using common rows of the two matrices

Usage

corByRownames(mat1, mat2, ...)

Arguments

mat1 A numeric matrix

mat2 Another numeric matrix

... Passed cor At least two rows of both matrices must share the same names, oth-
erwise the function will report an error.

countTokens 17

Value

A matrix of the dimension m× n, where m and n are number of columns in mat1 and mat2, respec-
tively. The matrix has an attribute, commonRownames, giving the common rownames shared by the
two matrices.

Examples

myMat1 <- matrix(rnorm(24), nrow=6, byrow=TRUE,
dimnames=list(sprintf("R%d", 1:6), sprintf("C%d", 1:4)))

myMat2 <- matrix(rnorm(35), nrow=7, byrow=TRUE,
dimnames=list(sprintf("R%d", 7:1), sprintf("C%d", 1:5)))

corByRownames(myMat1, myMat2)

countTokens Count tokens by splitting strings

Description

Count tokens by splitting strings

Usage

countTokens(str, split = "\t", ...)

Arguments

str A character string vector
split Character used to split the strings
... Other parameters passed to the strsplit function

Value

Integer vector: count of tokens in the strings

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

strsplit to split strings, or a convenient wrapper strtoken in this package.

Examples

myStrings <- c("HSV\t1887\tFavorite", "FCB\t1900", "FCK\t1948")
countTokens(myStrings)

the function deals with factors as well
countTokens(factor(myStrings))

18 cumJaccardIndex

createDir Create a directory if it does not exist, and then make sure the creation
was successful.

Description

The function is particularly useful for scripting.

Usage

createDir(dir, showWarnings = FALSE, recursive = TRUE, mode = "0777")

Arguments

dir Directory name

showWarnings Passed to dir.create

recursive Passed to dir.create

mode Passed to dir.create

Value

Directory name (invisible)

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

Examples

tempdir <- tempdir()
createDir(tempdir)

cumJaccardIndex Cumulative Jaccard Index

Description

Cumulative Jaccard Index

Usage

cumJaccardIndex(list)

cumJaccardDistance(list)

cumOverlapCoefficient 19

Arguments

list A list of characters or integers

Value

The cumulative Jaccard Index, a vector of values between 0 and 1, of the same length as the input
list

The cumulative Jaccard Index is calculated by calculating the Jaccard Index of element i and the
union of elements between 1 and i-1. The cumulative Jaccard Index of the first element is set as
0.0.

The cumulative Jaccard distance is defined in almost the same way, with the only difference the
distance is returned. The value of the first element is 1.0.

Note

An advantage of using cumulative overlap coefficient over cumulative Jaccard Index is that it is
monotonic: the value is garanteed to decrease from 1 to 0, whereas the cumulative Jaccard Index
may not be monotic.

See Also

cumOverlapCoefficient

Examples

myList <- list(first=LETTERS[1:5], second=LETTERS[6:10], third=LETTERS[8:12], fourth=LETTERS[1:12])
cumJaccardIndex(myList)
cumJaccardDistance(myList)

cumOverlapCoefficient Cumulative overlap coefficient

Description

Cumulative overlap coefficient

Usage

cumOverlapCoefficient(list)

cumOverlapDistance(list)

Arguments

list A list of characters or integers

20 cumsumprop

Value

The cumulative overlap coefficients, a vector of values between 0 and 1, of the same length as the
input list

The cumulative overlap coefficient is calculated by calculating the overlap coefficient of element
i and the union of elements between 1 and i-1. The cumulative overlap coefficient of the first
element is set as 0.0.

The cumulative overlap distance is defined in almost the same way, with the only difference the dis-
tance is returned. The value of the first element is 1.0. Pratically it is calculated by 1-cumOverlapCoefficient.

Since the denominator of the overlap coefficient is the size of the smaller set of the two, which
is bound to be the size of element i, the cumulative overlap distance can be interpreted as the
proportion of new items in each new element that are unseen in previous elements. Similarly, the
cumulative overlap coefficient can be interpreted as the proportion of items in each new element
that have been seen in previous elements. See examples below.

Note

An advantage of using cumulative overlap coefficient over cumulative Jaccard Index is that it is
monotonic: the value is garanteed to decrease from 1 to 0, whereas the cumulative Jaccard Index
may not be monotic.

Examples

myList <- list(first=LETTERS[1:5], second=LETTERS[6:10], third=LETTERS[8:12], fourth=LETTERS[1:12])
cumOverlapCoefficient(myList)
cumOverlapDistance(myList)

cumsumprop Proportion of cumulative sum over sum

Description

Proportion of cumulative sum over sum

Usage

cumsumprop(x)

Arguments

x Numeric vector

Value

the proportion cumulative sum over sum

cutInterval 21

Examples

x <- 1:4
cumsumprop(x) ## 0.1, 0.3, 0.6, 1

cutInterval Cut a vector of numbers into interval factors.

Description

Three types of labels (levels) are supported: “cut.default” (Interval labels returned by cut as de-
fault), “left” (Left boundary of intervals), and “right” (Right boundary of intervals).

Usage

cutInterval(
x,
step = 1,
labelOption = c("cut.default", "left", "right"),
include.lowest = FALSE,
right = TRUE,
dig.lab = 3,
ordered_result = FALSE,
...

)

Arguments

x A vector of numbers

step Step size.

labelOption How is the label displayed.See details section.

include.lowest Logical, passed to cut

right Logial, passed to cut

dig.lab See cut

ordered_result See cut

... Other parameters that are passed to cut

Value

A vector of factors

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

22 cutreeIntoOrderedGroups

See Also

cut

Examples

testNum <- rnorm(100)
(testFac <- cutInterval(testNum, step=1, labelOption="cut.default"))

compare the result to
(testFacCut <- cut(testNum, 10))

cutreeIntoOrderedGroups

Cut a tree into groups of ordered sizes

Description

Cut a tree into groups of ordered sizes

Usage

cutreeIntoOrderedGroups(tree, k = NULL, h = NULL, decreasing = TRUE)

Arguments

tree a tree as produced by hclust, will be passed to cutree

k an integer scalar or vector with the desired number of groups

h numeric scalar or vector with heights where the tree should be cut.

decreasing logical, should be the first group the largest?
Cut a tree, e.g. as resulting from hclust, into groups, with the groups being
ordered by their size.

Value

A named integer vector of cluster assignments, ordered by cluster size (largest first by default). If
multiple values of k or h are provided, a matrix with one column per value.

See Also

cutree

dfFactor 23

Examples

hc <- hclust(dist(USArrests))
hck5 <- cutreeIntoOrderedGroups(hc, k = 5)
table(hck5)
compare with cutree, which does not order the groups
table(cutree(hc, k=5))

hck25 <- cutreeIntoOrderedGroups(hc, k = 2:5)
apply(hck25, 2, table)

dfFactor Get a factor vector for a data.frame

Description

The function try to assign a factor vector for a data.frame object. See details below.

Usage

dfFactor(df, sample.group)

Arguments

df A data.frame

sample.group A character, number or a vector of factors, from which the factor vector should
be deciphered. See details below.

Details

The function tries to get a factor vector of the same length as the number of rows in the data.frame.
The determination is done in the following order: Step 1: It tries to find a column in the data.frame
with the name as given by sample.group. If found, this column is transformed into a factor if not
and returned. Step 2: It tries to interpret the sample.group as an integer, as the index of the column
in the data.frame giving the factor. Step 3: When sample.group itself is a vector of the same
length as the data.frame, it is cast to factor when it is still not and returned.

Otherwise the program stops with error.

Value

A factor vector with the same length as the data.frame

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

24 dfFactor2Str

Examples

df <- data.frame(gender=c("M", "M", "F", "F", "M"),
age=c(12,12,14,12,14), score=c("A", "B-", "C", "B-", "A"))
dfFactor(df, "gender")
dfFactor(df, "score")
dfFactor(df, 1L)
dfFactor(df, 2L)
dfFactor(df, df$score)

dfFactor2Str Convert factor columns in a data.frame into character strings

Description

Convert factor columns in a data.frame into character strings

Usage

dfFactor2Str(df)

Arguments

df A data.frame

Value

A data.frame with factor columns coereced into character strings

Examples

exampleDf <- data.frame(Teams=c("HSV", "FCB", "FCB", "HSV"),
Player=c("Mueller", "Mueller", "Robben", "Holtby"),
scores=c(3.5, 1.5, 1.5, 1.0), stringsAsFactors=TRUE)

strDf <- dfFactor2Str(exampleDf)
stopifnot(identical(strDf[,1], c("HSV", "FCB", "FCB", "HSV")))
stopifnot(identical(exampleDf[,1], factor(c("HSV", "FCB", "FCB", "HSV"))))

equateWellLabelWidth 25

equateWellLabelWidth Format labels for wells in microwell plates to equal widths

Description

Format labels for wells in microwell plates to equal widths

Usage

equateWellLabelWidth(wells)

Arguments

wells A vector of character strings indicating well positions, they may be of different
widths, for instance A1, A10, A12

Value

A vector of the same length, with all labels adjusted to the equal width, with left-padding zeros
added whenever it makes sense. If the input labels are already of the same length, no change is
applied.

Examples

equateWellLabelWidth(c("A1", "C10", "D12"))

extname Get the base and extension(s) of file name(s)

Description

Many files have base and extensions in their names, for instance for the file mybook.pdf, the base is
mybook and the extension is pdf. basefilename extname functions extract these information from
one or more file names.

Usage

extname(x, ifnotfound = NA, lower.case = FALSE)

Arguments

x Character vector of file names; other classes will be coereced to characters

ifnotfound If no extension name was found, the value to be returned. Default is NA

lower.case Logical, should the names returned in lower case?

26 firstUp

Value

The base file name or the extension as characters, of the same length as the input file name character.
In case that a file name does not contain a extension, NA will be returned.

Note

In case there are multiple dots in the input file name, the last field will be taken as the extension,
and the rest as the base name. For instance for file test.out.txt, returned base name is test.out
and extension is txt.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

Examples

extname("mybook.pdf")
extname("sequence.in.fasta")
extname(c("/path/mybook.pdf", "test.doc"))
extname("README")
extname("README", ifnotfound="")
extname("/path/my\ home/Holiday Plan.txt")

basefilename("mybook.pdf")
basefilename("sequence.in.fasta")
basefilename(c("/path/mybook.pdf", "test.doc"))
basefilename("README")
basefilename("/path/my\ home/Holiday Plan.txt")

basefilename("myBook.pdf", lower.case=TRUE)
extname("myBook.PDF", lower.case=TRUE)

firstUp Make the first alphabet of strings uppercase

Description

Make the first alphabet of strings uppercase

Usage

firstUp(str)

Arguments

str A vector of character strings

fixWidthStr 27

Value

A vector of the same length, with the first alphabet in uppercase

See Also

toTitleCase

Examples

firstUp('test string')
firstUp(strsplit('many many years ago', ' ')[[1]])

fixWidthStr Shorten strings to strings with a fix width of characters

Description

Shorten strings to strings with a fix width of characters

Usage

fixWidthStr(str, nchar = 8, align = c("left", "right"))

Arguments

str A vector of strings
nchar The fixed with
align Character, how to align Strings with more or fewer characters than nchar are

either shortened or filled (with spaces)

Value

A vector of strings with fixed widths

Note

NA will be converted to characters and the same fixed width will be applied. The behavior is different
from shortenStr, where NA is kept as it is.

See Also

shortenStr

Examples

inputStrs <- c("abc", "abcd", "abcde", "abcdefg", "NA", NA)
outputStrs <- fixWidthStr(inputStrs, nchar=4)
stopifnot(all(nchar(outputStrs)==4))

28 haltifnot

haltifnot Ensure the Truth of R Expressions and Print Defined Error Message if
NOT

Description

If any of the expressions in ‘...’ are not all TRUE, stop is called, producing an error message defined
by the msg parameter.

Usage

haltifnot(..., msg = "Error undefined. Please contact the developer")

Arguments

... any number of ‘logical’ R expressions, which should evaluate to TRUE

msg Error message.

Details

The function is adapted from the stopifnot function, with the difference that the error message
can be defined the programmer. With haltifnot error message can be more informative, which is
desired for diagnostic and user-interation purposes.

Value

NULL if all statements in ... are TRUE

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

stop, warning and stopifnot

Examples

haltifnot(1==1, all.equal(pi, 3.14159265), 1<2) ## all TRUE
m <- matrix(c(1,3,3,1), 2,2)
haltifnot(m == t(m), diag(m) == rep(1,2)) ## all TRUE

op <- options(error = expression(NULL))
"disable stop(.)" << Use with CARE! >>

haltifnot(all.equal(pi, 3.141593), 2 < 2, all(1:10 < 12), "a" < "b",
msg="not all conditions are TRUE. Please contact the devleoper")

options(op)# revert to previous error handler

headhead 29

headhead head/tail function for matrix or data.frame

Description

These two functions reassembles head and tail, showing the first rows and columns of 2D data
structures, e.g. matrix or data.frame.

Usage

headhead(x, m = 6L, n = 6L)

Arguments

x A data.frame or matrix

m Integer, number of rows to show

n Integer, number of columns to show

Details

While head and tail can be applied to data.frame or matrix as well, they show all columns of
the first (last) rows even if the matrix has a large number of columns. These two function, headhead
and tailtail, circumvent this problem by showing only the first rows AND the first columns.

Value

The first rows/columns of the input object

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

head, tail

Examples

myMat <- matrix(rnorm(10000), nrow=10L)
head(myMat)
headhead(myMat)
tailtail(myMat)

30 headtail

headtail Print head and tail elements of a vector

Description

This function prints head and tail elements of a vector for visualization purposes. See examples for
its usage.

Usage

headtail(vec, head = 2, tail = 1, collapse = ", ")

Arguments

vec A vector of native types (e.g. character strings)

head Integer, number of head elements to be printed

tail Integer, number of tail elements to be printed

collapse Character string, used to collapse elements

Details

Head and tail elements are concatenated with ellipsis, if there are any elements that are not shown
in the vector.

Value

A character string representing the vector

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

head, tail

Examples

testVec1 <- LETTERS[1:10]
headtail(testVec1)
headtail(testVec1, head=3, tail=3)
headtail(testVec1, head=3, tail=3, collapse="|")

testVec2 <- letters[1:3]
headtail(testVec2, head=1, tail=1)
headtail(testVec2, head=2, tail=1)

identicalMatrix 31

identicalMatrix Test whether two matrices are identical by values and by dim names

Description

Test whether two matrices are identical by values and by dim names

Usage

identicalMatrix(x, y, epsilon = 1e-12)

Arguments

x a matrix
y another matrix
epsilon accuracy threshold: absolute differences below this threshold is ignored

Value

Logical

Examples

set.seed(1887); x <- matrix(rnorm(1000), nrow=10, dimnames=list(LETTERS[1:10],NULL))
set.seed(1887); y <- matrix(rnorm(1000), nrow=10, dimnames=list(LETTERS[1:10],NULL))
set.seed(1887); z <- matrix(rnorm(1000), nrow=10, dimnames=list(letters[1:10],NULL))
stopifnot(identicalMatrix(x,y))
stopifnot(!identicalMatrix(x,z))

identicalMatrixValue Test whether two matrices have the same numerica values given cer-
tain accuracy

Description

Test whether two matrices have the same numerica values given certain accuracy

Usage

identicalMatrixValue(x, y, epsilon = 1e-12)

Arguments

x a matrix
y another matrix
epsilon accuracy threshold: absolute differences below this threshold is ignored

32 imatch

Value

Logical

Examples

set.seed(1887); x <- matrix(rnorm(1000), nrow=10)
set.seed(1887); y <- matrix(rnorm(1000), nrow=10)
set.seed(1882); z <- matrix(rnorm(1000), nrow=10)
stopifnot(identicalMatrixValue(x,y))
stopifnot(!identicalMatrixValue(x,y+1E-5))
stopifnot(!identicalMatrixValue(x,y-1E-5))
stopifnot(!identicalMatrixValue(x,z))

imatch Case-insensitive match and pmatch

Description

Case-insensitive match and pmatch functions, especially useful in parsing user inputs, e.g. from
command line.

Usage

imatch(x, table, ...)

Arguments

x String vector

table A vector to be matched

... Other parameters passed to match or pmatch

Details

imatch and ipmatch works similar as match and pmatch, except that they are case-insensitive.

matchv, imatchv and ipmatchv are shot-cuts to get the matched value (therefore the ‘v’) if the
match succeeded, or NA if not. match(x, table) is equivalent to table[match(x, table)]. See
examples.

Value

imatch and ipmatch returns matching indices, or NA (by default) if the match failed.

matchv, imatchv and ipmatchv returns the matching element in table, or NA if the match failed.
Note that when cases are different in x and table, the one in table will be returned. This is
especially useful for cases where user’s input has different cases as the internal options.

invertList 33

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

match and pmatch

Examples

user.input <- c("hsv", "BvB")
user.input2 <- c("HS", "BV")
internal.options <- c("HSV", "FCB", "BVB", "FCN")

match(user.input, internal.options)
imatch(user.input, internal.options)
ipmatch(user.input, internal.options)
ipmatch(user.input2, internal.options)

matchv(user.input, internal.options)
matchv(tolower(user.input), tolower(internal.options))
imatchv(user.input, internal.options)
ipmatchv(user.input, internal.options)
ipmatchv(user.input2, internal.options)

invertList Invert the names and elements of a list

Description

Invert the names and elements of a list

Usage

invertList(inputList, simplify = FALSE)

Arguments

inputList a list, other classed (e.g. named vectors) will be converted to lists

simplify Logical, if yes and if no duplicated names, return a vector

Value

A list with values from the input becoming names and vice versa. When simplify=TRUE and there
are no duplicated names, a named character vector is returned instead.

34 isDir

Examples

myList <- list("A"=c("a", "alpha"), "B"=c("b", "Beta"), "C"="c")
invertList(myList)
invertList(myList, simplify=TRUE)

isDir Checks existing directory

Description

Checks whether given character strings point to valid directories

Usage

isDir(...)

checkDir(...)

assertDir(...)

Arguments

... One or more character strings giving directory names to be tested

Details

isDir tests whether the given string represent a valid, existing directory. assertDir performs a
logical test, and stops the program if the given string does not point to a given directory.

checkDir is synonymous to isDir

Value

isDir returns logical vector.

assertDir returns an invisible TRUE if directories exist, otherwise halts and prints error messages.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

file.info, checkFile and assertFile

isError 35

Examples

dir1 <- tempdir()
dir2 <- tempdir()

isDir(dir1, dir2)
assertDir(dir1, dir2)

isError Tell whether an object is an error

Description

Determines whether an object is of class try-error

Usage

isError(x)

Arguments

x Any object, potentially produced within a try-error structure.

Value

Logical value, TRUE if x inherits the try-error class.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

Examples

if(exists("nonExistObj")) rm(nonExistsObj)
myObj <- try(nonExistObj/5, silent=TRUE)
isError(myObj)

36 isRocheCompoundID

isOdd Whether an integer is odd (or even)

Description

Whether an integer is odd (or even)

Usage

isOdd(x)

isEven(x)

Arguments

x An integer.

Value

Logical, whether the input number is odd or even.

isOdd and isEven returns whether an integer is odd or even, respectively.

Examples

isOdd(3)
isEven(4)

isRocheCompoundID Tell whether a character string is a Roche compound ID

Description

Tell whether a character string is a Roche compound ID

Usage

isRocheCompoundID(str)

Arguments

str Character string(s)

Value

A logical vector of the same length as str, indicating whether each element is a Roche compound
ID or not.

isTopOrIncAndNotExcl 37

Note

Short versions (RO[1-9]{2,7}) are supported.

Examples

isRocheCompoundID(c("RO1234567", "RO-1234567",
"RO1234567-000", "RO1234567-000-000",
"ROnoise-000-000"))

isTopOrIncAndNotExcl Logical vector of being top or included and not excluded

Description

Logical vector of being top or included and not excluded

Usage

isTopOrIncAndNotExcl(x, top = 1, incFunc, excFunc, decreasing = TRUE)

Arguments

x An atomic vector that can be sorted by sort, for instance integers and character
strings.

top Integer, number of top elements that we want to consider.

incFunc Function, applied to x to return a logical vector of the same length, indicating
whether the values should be included even if it does not belong to the top ele-
ments.

excFunc Function, applied to x to return a logical vector of the same length, indicating
whether the values should be excluded even if it does belong to the top elements.

decreasing Logical, passed to sort. The default value is set to TRUE, which means that the
highest values are considered the top elements. If set to FALSE, the lowest values
are considered the top elements.

Value

A logical vector of the same length as the input x, indicating whether each element is being either
top or included, and not excluded. The function can be used to keep top elements of a vector while
considering both inclusion and exclusion criteria.

38 jaccardIndex

Examples

myVal <- c(2, 4, 8, 7, 1)
isTopOrIncAndNotExcl(myVal, top=1)
isTopOrIncAndNotExcl(myVal, top=3)
isTopOrIncAndNotExcl(myVal, top=3, incFunc=function(x) x>=2)
isTopOrIncAndNotExcl(myVal, top=3, excFunc=function(x) x%%2==1)
isTopOrIncAndNotExcl(myVal, top=3, incFunc=function(x) x>=2, excFunc=function(x) x%%2==1)
myVal2 <- c("a", "A", "a", "A", "A")
isTopOrIncAndNotExcl(myVal2, 2)
isTopOrIncAndNotExcl(myVal2, 2, incFunc=function(x) x=="A")
isTopOrIncAndNotExcl(myVal2, 4)
isTopOrIncAndNotExcl(myVal2, 4, excFunc=function(x) x=="a")

the function returns all TRUEs if top is larger than the length of the vector
isTopOrIncAndNotExcl(myVal, top=9)

jaccardIndex Calculate the Jaccard Index between two vectors

Description

Calculate the Jaccard Index between two vectors

Usage

jaccardIndex(x, y)

jaccardDistance(x, y)

Arguments

x A vector

y A vector

Value

The Jaccard Index, a number between 0 and 1

JaccardDistance is defined as 1-JaccardIndex.

Examples

myX <- 1:6
myY <- 4:9
jaccardIndex(myX, myY)
jaccardDistance(myX, myY)

myX <- LETTERS[1:5]

keepMaxStatRow 39

myY <- LETTERS[6:10]
jaccardIndex(myX, myY)
jaccardDistance(myX, myY)

keepMaxStatRow KEEP ROWS WITH THE MAXIMUM STATISTIC

Description

A common task in expression analysis is to collapse multiple features that are mapped to the same
gene by some statistic. This function does this job by keeping the matrix row (normally features)
with the higheest statistic specified by the user.

Usage

keepMaxStatRow(
matrix,
keys,
keepNArows = TRUE,
stat = function(x) mean(x, na.rm = TRUE),
levels = c("rownames", "attribute", "discard"),
...

)

Arguments

matrix A numeric matrix
keys A vector of character giving the keys the rows are mapped to. A common sce-

nario is that each row represents one probeset, while the vector keys give the
genes that the probesets are mapped to. Thus keys can be redundant, namely
multiple probesets can map to the same gene.

keepNArows Logical, whether rows with NA as their keys should be kept (TRUE) or should be
discarded (FALSE)

stat The function to calculate the univariate statistic. By default the NA-robust mean
is used.

levels How should the information of the levels of keys, e.g. unique keys, be kept.
dicard will discard this information, rownames will make the unique keys (po-
tentially with NAs) as row names of the output matrix, and attribute will ap-
pend an attribute named levels to the output matrix.

... Other parameters passed to the stat function

Details

isMaxStatRow returns a logical vector, with rows with maximal statistics each key as TRUE and oth-
erwise as FALSE. keepMaxStatRowInd returns the integer indices of such rows. Finally keepMaxStatRow
returns the resulting matrices.

For use see examples

40 keepMaxStatRow

Value

A numeric matrix with rows mapped to unique keys, selected by the maximum statistics. See
examples below

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

Examples

myFun1 <- function(x) mean(x, na.rm=TRUE)
myFun2 <- function(x) sd(x, na.rm=TRUE)
mat1 <- matrix(c(1,3,4,-5,

0,1,2,3,
7,9,5,3,
0,1,4,3), ncol=4, byrow=TRUE)

keys1 <- c("A", "B", "A", "B")

isMaxStatRow(mat1, keys1, stat=myFun1)
isMaxStatRow(mat1, keys1, stat=myFun2)

keepMaxStatRowInd(mat1, keys1, stat=myFun1)
keepMaxStatRowInd(mat1, keys1, stat=myFun2)

keepMaxStatRow(mat1, keys1, stat=myFun1)
keepMaxStatRow(mat1, keys1, stat="myFun2")
keepMaxStatRow(mat1, keys1, stat="myFun2", levels="discard")
keepMaxStatRow(mat1, keys1, stat="myFun2", levels="attribute")

mat2 <- matrix(c(1,3,4,5,
0,1,2,3,
7,9,5,3,
0,1,4,3,
4,0,-1,3.1,
9,4,-3,2,
8,9,1,2,
0.1,0.2,0.5,NA,
NA, 4, 3,NA), ncol=4, byrow=TRUE,

dimnames=list(LETTERS[1:9], NULL))
keys2 <- c("A", "B", "A", "B", NA, NA, "C", "A", "D")

isMaxStatRow(mat2, keys2, keepNArows=FALSE, stat=myFun1)
keepMaxStatRowInd(mat2, keys2, keepNArows=FALSE, stat=myFun1)

keepMaxStatRow(mat2, keys2, keepNArows=FALSE, stat=myFun1)
keepMaxStatRow(mat2, keys2, keepNArows=TRUE, stat=myFun1)
keepMaxStatRow(mat2, keys2, keepNArows=TRUE, stat=myFun1, levels="discard")
keepMaxStatRow(mat2, keys2, keepNArows=TRUE, stat=myFun1, levels="attribute")

lastChar 41

lastChar Return last characters from strings

Description

Return last characters from strings

Usage

lastChar(str)

Arguments

str A vector of character strings

Value

A vector of the same length, containing last characters

Examples

lastChar("Go tell it on the mountain")
lastChar(c("HSV", "FCB", "BVB"))

libordie Load a library mutedly and quit (die) in case of failing

Description

The specified library is loaded mutedly by suppressing all messages. If the library is not found, or
its version under the specification of minVer, the R session dies with a message.

Usage

libordie(package, minVer, missing.quit.status = 1, ver.quit.status = 1)

Arguments

package One package name (can be character or non-quoted symbol (see examples)

minVer Optional, character string, the minimum working version
missing.quit.status

Integer, the status of quitting when the package was not found
ver.quit.status

Integer, the status of quitting when the package was found, but older than the
minimum working version

42 list2df

Details

Only one package should be tested once.

Value

NULL if success, otherwise the session will be killed.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

The function calls qqmsg internally to kill the session

Examples

libordie(stats)
libordie("methods")
libordie(base, minVer="2.15-1")

list2df Transform a list of character strings into a data.frame

Description

Transform a list of character strings into a data.frame

Usage

list2df(list, names = NULL, col.names = c("Name", "Item"))

Arguments

list A list of character strings
names Values in the ’Name’ column of the result, used if the input list has no names
col.names Column names of the data.frame

Value

A data.frame

Examples

myList <- list(HSV=c("Mueller", "Papadopoulos", "Wood"), FCB=c("Lewandowski", "Robben", "Hummels"),
BVB=c("Reus", "Goetze", "Kagawa"))

list2df(myList, col.names=c("Club", "Player"))

listOverlapCoefficient 43

listOverlapCoefficient

Pairwise overlap coefficient of lists

Description

Pairwise overlap coefficient of lists

Usage

listOverlapCoefficient(x, y = NULL, checkUniqueNonNA = TRUE)

Arguments

x A list of vectors that are interpreted as sets of elements

y A list of vectors that are interpreted as sets of elements. In case of NULL, pairwise
overlap coefficient of lists in x is returned.

checkUniqueNonNA

Logical, should vectors in the list be first cleaned up so that NA values are
removed and the elements are made unique? Default is set as TRUE; if the user is
confident that the vectors are indeed valid sets, this option can be set as FALSE
to speed up the code

Value

A matrix of column-wise pairwise overlap coefficients.

Examples

set.seed(1887)
testSets1 <- sapply(rbinom(10, size=26, prob=0.3),

function(x) sample(LETTERS, x, replace=FALSE))
names(testSets1) <- sprintf("List%d", seq(along=testSets1))
testSets1Poe <- listOverlapCoefficient(testSets1)
testSets1PoeNoCheck <- listOverlapCoefficient(testSets1, checkUniqueNonNA=FALSE)
stopifnot(identical(testSets1Poe, testSets1PoeNoCheck))

testSets2 <- sapply(rbinom(15, size=26, prob=0.3),
function(x) sample(LETTERS, x, replace=FALSE))

names(testSets2) <- sprintf("AnotherList%d", seq(along=testSets2))
testSets12Poe <- listOverlapCoefficient(testSets1, testSets2)

44 longdf2matrix

longdf2matrix Convert a long-format data frame into matrix

Description

Input data.frame must contain at least three columns: one contains row names (specified by row.col),
one contains column names (column.col), and one contains values in matrix cells (value.col).
The output is a 2D matrix.

Usage

longdf2matrix(
df,
row.col = 1L,
column.col = 2L,
value.col = 3L,
missingValue = NULL

)

Arguments

df Long-format data frame

row.col Character or integer, which column of the input data.frame contains row names?

column.col Character or integer, which column contains column names?

value.col Character or integer, which column contains matrix values?

missingValue Values assigned in case of missing data

Value

A 2D matrix equivalent to the long-format data frame

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

matrix2longdf

Examples

test.df <- data.frame(H=c("HSV", "BVB", "HSV", "BVB"),
A=c("FCB", "S04", "S04", "FCB"),
score=c(3, 1, 1, 0))
longdf2matrix(test.df, row.col=1L, column.col=2L, value.col=3L)

data(Indometh)

matchColumn 45

longdf2matrix(Indometh, row.col="time", column.col="Subject",value.col="conc")
longdf2matrix(Indometh, row.col="Subject", column.col="time", value.col="conc")

matchColumn Match a column in data.frame to a master vector

Description

Given a vector known as master vcector, a data.frame and one column of the data.frame, the function
matchColumnIndex matches the values in the column to the master vector, and returns the indices
of each value in the column with respect to the vector. The function matchColumn returns whole or
subset of the data.frame, with the matching column in the exact order of the vector.

Usage

matchColumn(vector, data.frame, column, multi = FALSE)

Arguments

vector A vector, probably of character strings.

data.frame A data.frame object

column The column name (character) or index (integer between 1 and the column num-
ber), indicating the column to be matched. Exceptionally 0 is as well accepted,
which will match the row names of the data.frame to the given vector.

multi Logical, deciding what to do if a value in the vector is matched to several values
in the data.frame column. If set to TRUE, all rows containing the matched value
in the specified column are returned; otherwise, when the value is set to FALSE,
one arbitrary row is returned. See details and examples below.

Details

See more details below.

The function is used to address the following question: how can one order a data.frame by val-
ues of one of its columns, the order for which is given in a vector (known as “master vector”).
matchColumnIndex and matchColumn provide thoroughly-tested implementation to address this
question.

For one-to-one cases, where both the column and the vector have no duplicates and can be matched
one-to-one, the question is straightforward to solve with the match function in R. In one-to-many
or many-to-many matching cases, the parameter multi determines whether multiple rows matching
the same value should be shown. If mutli=FALSE, then the sorted data.frame that are returned has
exactly the same row number as the input vector; otherwise, the returned data.frame has more rows.
See the examples below.

In either case, in the returned data.frame object by matchColumn, values in the column used for
matching are overwritten by the master vector.If multi=TRUE, the order of values in the column is

46 matchColumn

also obeying the order of the master vector, with exceptions of repeating values casued by mutliple
matching.

The column parameter can be either character string or non-negative integers. In the exceptional
case, where column=0L (“L” indicates integer), the row names of the data.frame is used for match-
ing instead of any of the columns.

Both functions are NA-friendly, since NAs in neither vector nor column should break the code.

Value

For matchColumnIndex, if multi is set to FALSE, an integer vector of the same length as the master
vector, indicating the order of the data.frame rows by which the column can be re-organized
into the master vector. When multi is TRUE, the returning object is a list of the same length as
the master vector, each item containing the index (indices) of data.frame rows which match to the
master vector.

For matchColumn, a data.frame is always returned. In case multi=FALSE, the returning data frame
has the same number of rows as the length of the input master vector, and the column which was
specified to match contains the master vector in its order. If multi=TRUE, returned data frame can
contain equal or more numbers of rows than the master vector, and multiple-matched items are
repeated.

Note

When multi=TRUE, the indices within each list element (for matchColumnIndex) are returned in
ascending order.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

See match for basic matching operations.

Examples

df <- data.frame(Team=c("HSV", "BVB", "HSC", "FCB", "HSV"),
Pkt=c(25,23,12,18,21),
row.names=c("C", "B", "A", "F", "E"))

teams <- c("HSV", "BVB", "BRE", NA)
ind <- c("C", "A", "G", "F", "C", "B", "B", NA)

matchColumnIndex(teams, df, 1L, multi=FALSE)
matchColumnIndex(teams, df, 1L, multi=TRUE)
matchColumnIndex(teams, df, "Team", multi=FALSE)
matchColumnIndex(teams, df, "Team", multi=TRUE)
matchColumnIndex(teams, df, 0, multi=FALSE)
matchColumnIndex(ind, df, 0, multi=FALSE)
matchColumnIndex(ind, df, 0, multi=TRUE)

matchColumn(teams, df, 1L, multi=FALSE)

matchColumnName 47

matchColumn(teams, df, 1L, multi=TRUE)
matchColumn(teams, df, "Team", multi=FALSE)
matchColumn(teams, df, "Team", multi=TRUE)
matchColumn(ind, df, 0, multi=FALSE)
matchColumn(ind, df, 0, multi=TRUE)

matchColumnName Match a given vector to column names of a data.frame or matrix

Description

Match a given vector to column names of a data.frame or matrix

Usage

matchColumnName(data.frame.cols, reqCols, ignore.case = FALSE)

Arguments

data.frame.cols

column names of a data.frame. One can also provide a data.frame, which may
however cause worse performance since the data.frame is copied

reqCols required columns

ignore.case logical, whether the case is considered

Value

A vector of integers as indices

Examples

myTestDf <- data.frame(HBV=1:3, VFB=0:2, BVB=4:6, FCB=2:4)
myFavTeams <- c("HBV", "BVB")
matchColumnName(myTestDf, myFavTeams)
myFavTeamsCase <- c("hbv", "bVb")
matchColumnName(myTestDf, myFavTeamsCase, ignore.case=TRUE)
NA will be returned in this case if ignore.case is set to FALSE
matchColumnName(myTestDf, myFavTeamsCase, ignore.case=FALSE)

48 matrix2longdf

matrix2longdf Transform a matrix into a long-format data.frame

Description

The function converts a matrix into a long-format, three-column data.frame, containing row, columna
nd value. Such ‘long’ data.frames can be useful in data visualization and modelling.

Usage

matrix2longdf(
mat,
row.names,
col.names,
longdf.colnames = c("row", "column", "value")

)

Arguments

mat A matrix

row.names Character, row names to appear in the data.frame. If missing, the rownames
of the matrix will be used. If set to NULL, or if the matrix rownames are NULL, a
integer index vector starting from 1 will be used.

col.names Charater, column names to appear in the data.frame. The rule of handling
missing or NULL parameters is the same as row.names described above.

longdf.colnames

Character, column names of the output long data frame

Details

The function converts a matrix into a three-column, ‘long’ format data.frame containing row names,
column names, and values of the matrix.

Value

A data.frame object with three columns: row, column and value. If the input matrix is of dimesion
MxN, the returning data.frame is of the dimension MNx3.

Note

The length of row.names and col.names should be as the same as the matrix dimension. Otherwise
the function raises warnings.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

mergeInfreqLevelsByCumsumprop 49

Examples

test.mat <- matrix(1:12, ncol=4, nrow=3, dimnames=list(LETTERS[1:3],
LETTERS[1:4]))
print(test.mat)
print(matrix2longdf(test.mat))
print(matrix2longdf(test.mat, longdf.colnames=c("From", "To", "Time")))

mergeInfreqLevelsByCumsumprop

Merge infrequent levels by setting the threshold of the proportion of
cumulative sum over sum a.k.a. cumsumprop

Description

Merge infrequent levels by setting the threshold of the proportion of cumulative sum over sum a.k.a.
cumsumprop

Usage

mergeInfreqLevelsByCumsumprop(
classes,
thr = 0.9,
mergedLevel = "others",
returnFactor = TRUE

)

Arguments

classes Character strings or factor.

thr Numeric, between 0 and 1, how to define frequent levels. Default: 0.9, namely
levels which make up over 90% of all instances.

mergedLevel Character, how the merged level should be named.

returnFactor Logical, whether the value returned should be coereced into a factor.

Value

A character string vector or a factor, of the same length as the input classes, but with potentially
fewer levels.

Note

In case only one class is deemed as infrequent, its label is unchanged.

50 midentical

Examples

set.seed(1887)
myVals <- sample(c(rep("A", 4), rep("B", 3), rep("C", 2), "D"))
in the example below, since A, B, C make up of 90% of the total,
D is infrequent. Since it is alone, it is not merged
mergeInfreqLevelsByCumsumprop(myVals, 0.9)
mergeInfreqLevelsByCumsumprop(myVals, 0.9, returnFactor=FALSE) ## return characters
in the example below, since A and B make up 70% of the total,
and A, B, C 90%, they are all frequent and D is infrequent.
Following the logic above, no merging happens
mergeInfreqLevelsByCumsumprop(myVals, 0.8)
mergeInfreqLevelsByCumsumprop(myVals, 0.7) ## A and B are left, C and D are merged
mergeInfreqLevelsByCumsumprop(myVals, 0.5) ## A and B are left, C and D are merged
mergeInfreqLevelsByCumsumprop(myVals, 0.4) ## A is left
mergeInfreqLevelsByCumsumprop(myVals, 0.3) ## A is left

midentical Multiple identical

Description

Testing whether multiple objects are identical

Usage

midentical(
...,
num.eq = TRUE,
single.NA = TRUE,
attrib.as.set = TRUE,
ignore.bytecode = TRUE,
ignore.environment = FALSE,
ignore.srcref = TRUE,
extptr.as.ref = FALSE

)

Arguments

... Objects to be tested, or a list of them
num.eq, single.NA, attrib.as.set, ignore.bytecode

See identical

ignore.environment, ignore.srcref
See identical

extptr.as.ref See identical, new parameter since R-4.2

mmatch 51

Details

midentical extends identical to test multiple objects instead of only two.

Value

A logical value, TRUE if all objects are identical

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

identical

Examples

set1 <- "HSV"
set2 <- set3 <- set4 <- c("HSV", "FCB")

midentical(set1, set2)
midentical(list(set1, set2))

midentical(set2, set3, set4)
midentical(list(set2, set3, set4))

other options passed to identical
midentical(0, -0, +0, num.eq=FALSE)
midentical(0, -0, +0, num.eq=TRUE)

mmatch Multiple matching

Description

Multiple matching between two vectors. Different from R-native match function, where only one
match is returned even if there are multiple matches, mmatch returns all of them.

Usage

mmatch(x, table, nomatch = NA_integer_)

Arguments

x vector or NULL: the values to be matched.

table vector or NULL: the values to be matched against.

nomatch the value to be returned in case when no match is found.

52 munion

Details

Multiple matches can be useful in many cases, and there is no native R function for this purpose.
User can write their own functions combining lapplying with match or %in%, our experience
however shows that such non-vectorized function can be extremely slow, especially when the x or
table vector gets longer.

mmatch delegates the multiple-matching task to a C-level function, which is optimized for speed.
Internal benchmarking shows improvement of hundred fold, namely using mmatching costs about
1/100 of the time used by R-implementation.

Value

A list of the same length as the input x vector. Each list item contains the matching indices in
ascending order (similar to match).

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>, C-code was adapted from the program written
by Roland Schmucki.

See Also

match

Examples

vec1 <- c("HSV", "BVB", "FCB", "HSV", "BRE", "HSV", NA, "BVB")
vec2 <- c("FCB", "FCN", "FCB", "HSV", "BVB", "HSV", "FCK", NA, "BRE", "BRE")

mmatch(vec1, vec2)

compare to match
match(vec1, vec2)

munion Operations for multiple sets

Description

Set operation functions in the base package, union, intersect and setdiff, can only be applied to
binary manipulations involving two sets. Following functions, munion, mintersect and msetdiff,
extend their basic versions to deal with multiple sets.

Usage

munion(...)

na.false 53

Arguments

... Vectors of items, or a list of them. See examples below.

Details

These functions apply set manipulations (union, intersect, or difference) in a sequential manner: the
first two sets are considered first, then the third, the fourth and so on, till all sets have been visited.

Value

A vector of set operation results. Can be an empty vector if no results were returned.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

union, intersect and setdiff.

Examples

set1 <- c("HSV", "FCB", "BVB", "FCN", "HAN")
set2 <- c("HSV", "FCB", "BVB", "HAN")
set3 <- c("HSV", "BVB", "FSV")

munion(set1, set2, set3)
mintersect(set1, set2, set3)
msetdiff(set1, set2, set3)

sets can be given in a list as well
munion(list(set1, set2, set3))
mintersect(list(set1, set2, set3))
msetdiff(list(set1, set2, set3))

na.false Replace NA with FALSE

Description

Replace NA in a vector with FALSE

Usage

na.false(x)

54 naivePairwiseDist

Arguments

x A logical vector or matrix

Value

Logical vector or matrix with NAs replaced by FALSE

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

myX <- c("HSV", "FCK", "FCN", NA, "BVB") res <- myX == "HSV" na.false(res)

naivePairwiseDist Calculate pairwise distances between each pair of items in a list

Description

Calculate pairwise distances between each pair of items in a list

Usage

naivePairwiseDist(list, fun = jaccardIndex)

Arguments

list A list

fun A function that receives two vectors (such as jaccardIndex) and returns a number
(scale)

Value

A symmetric matrix of dimension mxm, where m is the length of the list

This function is inefficient compared with matrix-based methods. It is exported just for education
and for verifying results of matrix-based methods.

Examples

myList <- list(first=LETTERS[3:5], second=LETTERS[1:3], third=LETTERS[1:5], fourth=LETTERS[6:10])
naivePairwiseDist(myList, fun=jaccardIndex)
despite of the name, any function that returns a number can work
naivePairwiseDist(myList, fun=jaccardDistance)

ofactor 55

ofactor Ordered factor

Description

Build a factor using the order of input character strings

Usage

ofactor(x, ...)

Arguments

x A vector of character strings

... Other parameters passed to factor

Value

Factor with levels in the same order of the input strings.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

factor

Examples

testStrings <- c("A", "C", "B", "B", "C")
(testFac <- factor(testStrings))
(testOfac <- ofactor(testStrings))

stopifnot(identical(levels(testOfac), c("A", "C", "B")))

56 overlapCoefficient

orderCutgroup Reorder the groups by their group size

Description

Reorder the groups by their group size

Usage

orderCutgroup(groups, decreasing = TRUE)

Arguments

groups Named vectors of integers as group indices

decreasing Logical, should the first group be the largest?
The function permutes a vector of names integers so that the names matching
the same integer match to the same or another integer, while assuring that the
permuted group matching the first integer (or the last integer if decreasing is
set to FALSE) is the largest group by count.

overlapCoefficient Overlap coefficient, also known as Szymkiewicz-Simpson coefficient

Description

Overlap coefficient, also known as Szymkiewicz-Simpson coefficient

Usage

overlapCoefficient(x, y, checkUniqueNonNA = FALSE)

overlapDistance(x, y, checkUniqueNonNA = FALSE)

Arguments

x A vector

y A vector
checkUniqueNonNA

Logical, if TRUE, x and y are made unique and non-NA

Value

The overlap coefficient

overwriteDir 57

See Also

jaccardIndex

overlapCofficient calculates the overlap coefficient, and overlapDistance is defined by 1-
overlapCoefficient.

Examples

myX <- 1:6
myY <- 4:9
overlapCoefficient(myX, myY)

myY2 <- 4:10
overlapCoefficient(myX, myY2)
compare the result with Jaccard Index
jaccardIndex(myX, myY2)

overlapDistance
overlapDistance(myX, myY2)

overwriteDir Overwrite a directory

Description

Overwrite a directory

Usage

overwriteDir(dir, action = c("ask", "overwrite", "append", "no"))

Arguments

dir Chacater, path to a directory.
action Ask the user to input the option (ask), or one of the following options: overwrite,

append, and no. See below for other options.

Value

If action is set to overwrite, the directory will be deleted recursively if it exists, a new directory
with the same name will be created, and the function returns TRUE. If append is set, the function
creates the directory if necessary and returns TRUE. If no is set, the function does nothing and returns.

If action is set to ask, user will be prompted for actions.

If overwrite is set, the directory will be removed and written anew.

If append is set, in contrast to overwrite, the directory and the files in it are not removed if they
exists. In this case, files with the same name will be overwritten. Otherwise, new directories or files
will be simply created. On the other hand, if the directory does not exist, it will be created.

If no is set, no action will be taken. The funciton returns FALSE.

58 pAbsLog10Score

Examples

createTempDir <- function() {
tmpdir <- tempdir()
tmpfile1 <- tempfile(tmpdir=tmpdir)
tmpfile2 <- tempfile(tmpdir=tmpdir)

writeLines("First file", tmpfile1)
writeLines("Second file", tmpfile2)
return(tmpdir)

}
newTempFile <- function(tmpdir) {

writeLines("Third file", tempfile(tmpdir=tmpdir))
}

tmpdir <- createTempDir()
overwriteDir(tmpdir, action="ask")

overwrite: delete the directory and create it a new
tmpdir <- createTempDir()
fileCount <- length(dir(tmpdir))
dir(tmpdir) ## two files should be there
overwriteDir(tmpdir, action="overwrite")
newTempFile(tmpdir)
dir(tmpdir) ## now there should be only one file
stopifnot(length(dir(tmpdir))==1)

append: append files, and overwrite if a file of the same name is there
overwriteDir(tmpdir, action="append")
newTempFile(tmpdir)
dir(tmpdir) ## a new file is written
stopifnot(length(dir(tmpdir))==2)

no: no action, and returns FALSE
noRes <- overwriteDir(tmpdir, action="no")
stopifnot(!noRes)

pAbsLog10Score Transform p-values to continuous scores with the absolute-log10
transformation

Description

The function maps p values between 0 and 1 to continuous scores ranging on R by the following
equation: abs(log10(p)) ∗ sign

Usage

pAbsLog10Score(p, sign = 1, replaceZero = TRUE)

pairwiseJaccardIndex 59

Arguments

p p-value(s) between (0,1]

sign Sign of the score, either positive (in case of positive numbers), negative (in case
of negative numbers), or zero. In case a logical vector, TRUE is interpreted as
positive and FALSE is interpreted as negative.

replaceZero Logical, whether to replace zero p-values with the minimal double value speci-
fied by the machine. Default is TRUE. If set to FALSE, results will contain infinite
values.

Value

A numeric vector of transformed p-values using signed -log10 transformation.

See Also

pQnormScore, pScore, replaceZeroPvalue

Examples

testPvals <- c(0.001, 0.01, 0.05, 0.1, 0.5, 1)
pAbsLog10Score(testPvals)
testPvalSign <- rep(c(-1,1), 3)
pAbsLog10Score(testPvals, sign=testPvalSign)
testLog <- rep(c(TRUE, FALSE),3)
pAbsLog10Score(testPvals, testLog)

pairwiseJaccardIndex Calculate pairwise Jaccard Indices between each pair of items in a list

Description

Calculate pairwise Jaccard Indices between each pair of items in a list

Usage

pairwiseJaccardIndex(list)

pairwiseJaccardDistance(list)

Arguments

list A list

Value

A symmetric matrix of dimension mxm, where m is the length of the list

pairwiseJaccardDistance is defined as 1-pairwiseJaccardIndex.

60 pairwiseOverlapDistance

Examples

myList <- list(first=LETTERS[3:5], second=LETTERS[1:3], third=LETTERS[1:5], fourth=LETTERS[6:10])
pairwiseJaccardIndex(myList)

poormanPJI <- function(list) {
sapply(list, function(x) sapply(list, function(y) jaccardIndex(x,y)))

}
stopifnot(identical(pairwiseJaccardIndex(myList), poormanPJI(myList)))

pairwiseOverlapDistance

Calculate pairwise overlap coefficients between each pair of items in
a list

Description

Calculate pairwise overlap coefficients between each pair of items in a list

Usage

pairwiseOverlapDistance(list)

pairwiseOverlapCoefficient(list)

Arguments

list A list

Value

A symmetric matrix of dimension mxm, where m is the length of the list

pairwiseOverlapDistance is defined the pairwise overlap distance.

Examples

myList <- list(first=LETTERS[3:5], second=LETTERS[1:3], third=LETTERS[1:5], fourth=LETTERS[6:10])
pairwiseOverlapCoefficient(myList)
pairwiseOverlapDistance(myList)

poormanPOC <- function(list) {
sapply(list, function(x) sapply(list, function(y) overlapCoefficient(x,y)))

}
stopifnot(identical(pairwiseOverlapCoefficient(myList), poormanPOC(myList)))

percentage 61

percentage Print a decimal number in procent format

Description

Print a decimal number in procent format

Usage

percentage(x, fmt = "1.1")

Arguments

x a decimal number, usually between -1 and 1

fmt format string, ’1.1’ means a digit before and after the decimal point will be
printed

Value

Character string

Examples

percentage(c(0,0.1,0.25,1))
percentage(c(0,0.1,0.25,1), fmt="1.4")
percentage(c(0,-0.1,0.25,-1), fmt="+1.1")

pQnormScore Transform p-values to continuous scores with the quantile function of
the normal distribution

Description

Quantile function, also known as the inverse of cumulative distribution function of the normal dis-
tribution, is used to map p-values to continuous scores raging on R. The signs of the resulting
scores are positive by default and are determined by the parameter sign.

Usage

pQnormScore(p, sign = 1, replaceZero = TRUE)

62 print.BEDAinfo

Arguments

p p-value(s) between (0, 1]

sign Signs of the scores, either positive (in case of positive numbers), negative (in
case of negative numbers), or zero. In case of a logical vector, TRUE is interpreted
as positive and FALSE is interpreted as negative.

replaceZero Logical, whether to replace zero p-values with the minimal double value speci-
fied by the machine. Default is TRUE. If set to FALSE, results will contain infinite
values.

Value

A numeric vector of transformed p-values using signed quantile normal transformation.

See Also

pAbsLog10Score, pScore, double

Examples

testPvals <- c(0.001, 0.01, 0.05, 0.1, 0.5, 1)
pQnormScore(testPvals)
testPvalSign <- rep(c(-1,1), 3)
pQnormScore(testPvals, sign=testPvalSign)
testLog <- rep(c(TRUE, FALSE),3)
pQnormScore(testPvals, testLog)

print.BEDAinfo Print BEDAinfo object

Description

Print BEDAinfo object

Usage

S3 method for class 'BEDAinfo'
print(x, ...)

Arguments

x A BEDA info object, returned by bedaInfo

... Ignored

Value

Invisible NULL, only side effect is used

pScore 63

Examples

print(bedaInfo())

pScore Transform p-values to continuous scores

Description

The function wraps other functions to map p values ranging on (0, 1] to continuous scores ranging
on R in a number of ways.

Usage

pScore(p, sign = 1, method = c("qnorm", "absLog10"), replaceZero = TRUE)

Arguments

p p-value between (0,1]

sign Sign of the score, either positive (in case of positive numbers), negative (in case
of negative numbers), or zero. In case a logical vector, TRUE is interpreted as
positive and FALSE is interpreted as negative.

method Currently available methods include qnorm and absLog10.

replaceZero Logical, whether to replace zero p-values with the minimal double value speci-
fied by the machine. Default is TRUE. If set to FALSE, results will contain infinite
values.

Value

A numeric vector of transformed p-values using the specified method.

See Also

pAbsLog10Score, pQnormScore

Examples

testPvals <- c(0.001, 0.01, 0.05, 0.1, 0.5, 1)
pScore(testPvals, method="absLog10")
pScore(testPvals, method="qnorm")
testPvalSign <- rep(c(-1,1), 3)
pScore(testPvals, sign=testPvalSign, method="absLog10")
pScore(testPvals, sign=testPvalSign, method="qnorm")
testLog <- rep(c(TRUE, FALSE),3)
pScore(testPvals, testLog, method="absLog10")
pScore(testPvals, testLog, method="qnorm")

testPvals <- 10^seq(-5, 0, 0.05)

64 putColsFirst

plot(pScore(testPvals, method="qnorm"),
pScore(testPvals, method="absLog10"),
xlab="pQnormScore", ylab="pAbsLog10Score"); abline(0,1, col="red", lty=2)

putColsFirst Rearrange columns to put some columns to far left

Description

This function is helpful to export tables where certain columns are desired to be placed to the most
left of the data.frame

Usage

putColsFirst(data.frame, columns)

Arguments

data.frame Data.frame

columns Character vector, names of columns which are to be put to the left

Value

data.frame with re-arranged columns

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

Examples

clubs <- data.frame(Points=c(21,23,28,24), Name=c("BVB", "FCB", "HSV",
"FCK"), games=c(12,11,11,12))
putColsFirst(clubs, c("Name"))
putColsFirst(clubs, c("Name", "games"))

pwdecode 65

pwdecode Decode password with function implemented with pwencode

Description

Decode password encypted with pwencode.

Usage

pwdecode(password)

Arguments

password Character string to be decoded. If starting with a empty character, the string is
sent for decoding; otherwise, it is deemed as clear text password and returned.

Details

See pwdecode function documentation in BIOS for implemetnation details.

Note that since R does not support strings embedding null values (\000), the password to be decoded
has to be given with two slashes, e.g. ‘ \001\000\129\235’.

Value

Decoded character string, or empty string if decoding fails

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>. The C library code was written by Detlef
Wolf.

Examples

mycode <- " \\001\\000\\141\\314\\033\\033\\033\\033\\033\\142\\303\\056\\166\\311\\037\\042"
pwdecode(mycode)

66 qqmsg

pwencode Encode a password

Description

Encode a password

Usage

pwencode(label = "VAR", key)

Arguments

label label used to encode the password

key password key

Value

Character string, encoded password

qqmsg Quitely Quit with Messages

Description

Quitely quit R with messages in non-interactive sessions

Usage

qqmsg(..., status = 0, save = FALSE, runLast = TRUE)

Arguments

... Messages to be passed to message

status Quit stats

save Logical, should current working environment be saved?

runLast Logical, should .Last() be executed?

Details

The function prints messages in any case, and quits R if the current session is non-interactive, e.g.
in the command-line running Rscript mode

Value

Invisible NULL, only side effect is used.

qsystem 67

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

quit

Examples

the example should not run because it will lead the R session to quit
Not run:

qqmsg()
qqmsg("die", status=0)
qqmsg("Avada kedavra", status=-1)
qqmsg("Crucio!", "\n", "Avada kedavra", status=-100)

End(Not run)

qsystem Quietly runs a system command

Description

Quietly runs a system command: the output is internalized and returned as an invisible variable, and
the standard error output is ignored.

Usage

qsystem(command)

Arguments

command A system command

Details

The function runs the system command in a quiet mode. The function can be useful in CGI scripts,
for instance

Value

(Invisibly) the internalized output of the command

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

68 refactorNum

Examples

dateIntern <- system("date")

refactorNum Sort numeric factor levels by values

Description

Factor variables with numbers as levels are alphabetically ordered by default, which requires rear-
rangements for various purposes, e.g. modelling or visualizations. This function re-orders levels of
numeric factor variables numerically.

Usage

refactorNum(x, decreasing = FALSE)

Arguments

x A factor variable with numeric values as levels

decreasing Logical, should the levels sorted descendingly?

Value

A factor variable, with sorted numeric values as levels

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

Examples

(nums <- factor(c("2","4","24","1","2","125","1","2","125")))
(nums.new <- refactorNum(nums))

registerLog 69

registerLog The functions registerLog and doLog provide a simple mechanism
to handle loggings (printing text messages to files or other types of
connections) in R.

Description

Users can register arbitrary numbers of loggers with registerLog, and the functions take care of
low-level details such as openning and closing the connections.

Usage

registerLog(..., append = FALSE)

Arguments

... Arbitrary numbers of file names (character strings) or connection objects (see
example).

append Logical, log will be appended to the existing file but not overwriting. Only valid
for files but not for connections such as standard output.

Details

Input parameters can be either character strings or connections (such as the objects returned by
stdout() or pipe().

If a character string is registered as a logger, it is assumed as a file name (user must make sure that it
is writable/appendable). In case the file exists, new logging messages will be appended; otherwise
if the file does not exists, it will be created and the logging messages will be written to the file.

A special case is the parameter value "-": it will be interpreted as standard output.

if a connection is registered as a logger, it must be writable in order to write the logging messages.

Each parameter will be converted to a connection object, which will be closed (when applicable)
automatically before R quits.

If the parameter is missing (or set to NA or NULL), no logging will take place.

Value

No value returned: its side effect is used.

Note

Currently, the loggers are stored in a variable in the namespace of ribiosUtils named RIBIOS_LOGGERS.
This is only for internal use of the package and may change any time, therefore users are not advised
to manipulate this variable directly.

To clear the registered loggers, use clearLog.To flush the registered loggers, use flushLog. Usu-
ally it is not necessary to use flushLog in R scripts, since by program exit the active R session

70 registerLog

will automatically flush and close the connections (in addition, frequent flushing may decrease the
program’s efficiency). However, if used in interactive sessions, sometimes flushLog is needed to
force R write all log files to all connections that are registered.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

doLog writes messages iteratively to each connection registered by registerLog.

Examples

logfile1 <- tempfile()
logfile2 <- tempfile()
logcon3 <- stdout()
if(.Platform$OS.type == "unix") {

registerLog("/dev/null")
} else {

registerLog(tempfile())
}
registerLog(logfile1)
registerLog(logfile2)
registerLog(logcon3)

doLog("Start logging")
doLog("Do something...")
doLog("End logging")

flushLog() ## usually not needed, see notes

txt1 <- readLines(logfile1)
txt2 <- readLines(logfile2)

cat(txt1)
cat(txt2)

clearLog()

registerLog(logfile1, logfile2, logcon3)

doLog("Start logging - round 2")
doLog("Do something again ...")
doLog("End logging - for good")

flushLog() ## usually not needed, see notes

txt1 <- readLines(logfile1)
txt2 <- readLines(logfile2)

cat(txt1)

relevels 71

cat(txt2)

clean up files and objects to close unused connections
closeLoggerConnections()

relevels Relevel a factor by a named or unnamed vector.

Description

This function wraps relevelsByNamedVec for named vector and relevelsByNotNamedVec for not
named vectors

Usage

relevels(
x,
refs,
missingLevels = c("pass", "warning", "error"),
unrecognisedLevels = c("warning", "pass", "error")

)

Arguments

x A factor or a character string vector that will be cast into factor
refs A named vector or unnamed vector.
missingLevels Actions taken in case existing levels are missing: ’pass’, ’warning’, or ’error’.
unrecognisedLevels

Actions taken in case unrecognised levels are found: ’pass’, ’warning’, or ’er-
ror’.

Value

A vector of factor

See Also

relevelsByNamedVec and relevelsByNotNamedVec

Examples

oldFactor <- factor(c("A", "B", "A", "C", "B"), levels=LETTERS[1:3])
refLevels <- c("B", "C", "A")
refDict <- c("A"="a", "B"="b", "C"="c")
newFactor <- relevels(oldFactor, refLevels)
stopifnot(identical(newFactor, factor(c("A", "B", "A", "C", "B"), levels=c("B", "C", "A"))))
newFactor2 <- relevels(oldFactor, refDict)
stopifnot(identical(newFactor2, factor(c("a", "b", "a", "c", "b"), levels=c("a", "b", "c"))))

72 relevelsByNamedVec

relevelsByNamedVec Relevel a factor by a named vector.

Description

If names contain character strings other than the levels in the old factor and warning is set to TRUE,
a warning will be raised.

Usage

relevelsByNamedVec(
x,
refs,
missingLevels = c("pass", "warning", "error"),
unrecognisedLevels = c("warning", "pass", "error")

)

Arguments

x A factor

refs A named vector. The names of the vector are all or a subset of levels in the old
factor. And the values are new levels

missingLevels Actions taken in case existing levels are missing: ’pass’, ’warning’, or ’error’.
unrecognisedLevels

Actions taken in case unrecognised levels are found: ’pass’, ’warning’, or ’er-
ror’.

Details

The levels of the factor are the names of the ref vector, and the order of the ref vector matters: it
is the levels of the new factor.

Value

A vector of factor

Examples

oldFactor <- factor(c("A", "B", "A", "C", "B"), levels=LETTERS[1:3])
factorDict <- c("A"="a", "B"="b", "C"="c")
newFactor <- relevelsByNamedVec(oldFactor, factorDict)
stopifnot(identical(newFactor, factor(c("a", "b", "a", "c", "b"), levels=c("a", "b", "c"))))
TODO: test warning and error

relevelsByNotNamedVec 73

relevelsByNotNamedVec Relevel a factor by a unnamed vector.

Description

If names contain character strings other than the levels in the old factor and warning is set to TRUE,
a warning will be raised

Usage

relevelsByNotNamedVec(
x,
refs,
missingLevels = c("pass", "warning", "error"),
unrecognisedLevels = c("warning", "pass", "error")

)

Arguments

x A factor

refs A unnamed vector. The values of the vector are levels of x.

missingLevels Actions taken in case existing levels are missing: ’pass’, ’warning’, or ’error’.

unrecognisedLevels

Actions taken in case unrecognised levels are found: ’pass’, ’warning’, or ’er-
ror’.

Value

A vector of factor

Examples

oldFactor <- factor(c("A", "B", "A", "C", "B"), levels=LETTERS[1:3])
refLevels <- c("B", "C", "A")
newFactor <- relevelsByNotNamedVec(oldFactor, refLevels)
stopifnot(identical(newFactor, factor(c("A", "B", "A", "C", "B"), levels=c("B", "C", "A"))))
TODO: test warning and error

74 reload

reload Reload a package

Description

Reload a package by first detaching and loading the library.

Usage

reload(pkg)

Arguments

pkg Character string, name of the package

Value

Side effect is used.

Note

So far only character is accepted

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

detach and library

Examples

the example should not run because it will reload the package
Not run:

reload(ribiosUtils)

End(Not run)

removeColumns 75

removeColumns Remove columns

Description

Remove columns from a data.frame object

Usage

removeColumns(data.frame, columns, drop = FALSE)

Arguments

data.frame data.frame

columns names of columns to be removed

drop Logical, whether the matrix should be dropped to vector if only one column is
left

Details

The function is equivalent to the subsetting operation with brackets. It provides a tidy programming
interface to manupulate data.frames.

Value

data.frame with specified columns removed

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

Examples

clubs <- data.frame(Points=c(21,23,28,24), Name=c("BVB", "FCB", "HSV",
"FCK"), games=c(12,11,11,12))
removeColumns(clubs,c("Name"))

76 removeColumnsWithNA

removeColumnsByFunc Remove rows or column by function

Description

Remove rows or column by function

Usage

removeColumnsByFunc(matrix, removeFunc)

removeRowsByFunc(matrix, removeFunc)

Arguments

matrix A matrix

removeFunc A function which should return boolean results

Value

A matrix with rows or columns whose return value of removeFunc is TRUE

Examples

myMat <- matrix(c(1, 3 ,5, 4, 5, 6, 7, 9, 11), byrow=FALSE, nrow=3)
removeColumnsByFunc(myMat, removeFunc=function(x) any(x %% 2 == 0))
removeRowsByFunc(myMat, removeFunc=function(x) any(x %% 2 == 0))

removeColumnsWithNA Remove columns in a matrix that contains one or more NAs

Description

Remove columns in a matrix that contains one or more NAs

Usage

removeColumnsWithNA(mat)

Arguments

mat A matrix

Value

A matrix, with columns containing one or more NAs removed

removeInvarCol 77

Examples

myMat <- matrix(c(1:9, NA, 10:17), nrow=6, byrow=TRUE,
dimnames=list(sprintf("R%d", 1:6), sprintf("C%d", 1:3)))

removeColumnsWithNA(myMat)

removeInvarCol Remove invariable columns from a data frame or matrix

Description

Columns with one unique value are invariable. The functions help to remove such columns from a
data frame (or matrix) in order to highlight the variables.

Usage

removeInvarCol(df)

Arguments

df A data frame or matrix

Details

removeInvarCol the data frame removing invariable column(s).

isVarCol and isInvarCol are helper functions, returning a logical vector indicating the variable
and invariable columns respectively.

Value

isVarCol and isInvarCol return a logical vector indicating the variable and invariable columns
respectively.

removeInvarCol removes invariable columns.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

Examples

testDf <- data.frame(a=1:4, b=7, c=LETTERS[1:4])
isVarCol(testDf)
isInvarCol(testDf)
removeInvarCol(testDf)

78 replaceColumnName

removeRowsWithNA Remove rows in a matrix that contains one or more NAs

Description

Remove rows in a matrix that contains one or more NAs

Usage

removeRowsWithNA(mat)

Arguments

mat A matrix

Value

A matrix, with rows containing one or more NAs removed

Examples

myMat <- matrix(c(1:9, NA, 10:17), nrow=6, byrow=TRUE,
dimnames=list(sprintf("R%d", 1:6), sprintf("C%d", 1:3)))

removeRowsWithNA(myMat)

replaceColumnName Replace column names in data.frame

Description

Replace column names in data.frame

Usage

replaceColumnName(data.frame, old.names, new.names)

Arguments

data.frame A data.frame

old.names Old column names to be replaced

new.names New column names

Value

Data.frame with column names updated

replaceZeroPvalue 79

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

Examples

clubs <- data.frame(Points=c(21,23,28,24), Name=c("BVB", "FCB", "HSV",
"FCK"), games=c(12,11,11,12))
replaceColumnName(clubs, c("Points", "games"), c("Punkte", "Spiele"))

replaceZeroPvalue Replace p-values of zero

Description

Replace p-values of zero

Usage

replaceZeroPvalue(p, factor = 1)

Arguments

p A numeric vector, containing p-values. Zero values will be replaced by a small,
non-zero value.

factor A numeric vector, the minimal p-value will be multiplied by it. Useful for
pQnormScore, because there the p-value needs to be divided by two, therefore a
factor of two makes sense.

Value

A numeric vector of the same length as the input vector, with zeros replaced by the minimal absolute
double value defined by the machine multiplied by the factor.

Note

Values under the minimal positive double value are considered zero and replaced.

Examples

ps <- seq(0,1,0.1)
replaceZeroPvalue(ps)
replaceZeroPvalue(ps, factor=2)

80 ribiosTempfile

ribiosTempdir A temporary directory which (1) every machine in the cluster has ac-
cess to and (2) has sufficient space

Description

A temporary directory which (1) every machine in the cluster has access to and (2) has sufficient
space

Usage

ribiosTempdir()

Value

a character string of the directory name

See Also

ribiosTempfile

ribiosTempfile A temporary file which (1) every machine in the cluster has access to
and (2) there is sufficient space

Description

A temporary file which (1) every machine in the cluster has access to and (2) there is sufficient
space

Usage

ribiosTempfile(pattern = "file", tmpdir = ribiosTempdir(), fileext = "")

Arguments

pattern Character string, file pattern
tmpdir Character string, temp directory
fileext CHaracter string, file name extension (suffix)

Value

a character string of the file name

See Also

ribiosTempdir

ribiosUtils 81

ribiosUtils ribiosUtils

Description

ribiosUtils is a swiss-knife package providing misc utilities

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>, with inputs from Clemens Broger, Martin
Ebeling, Laura Badi and Roland Schmucki

rmat Remove temporary files at a specified time interval from now

Description

Send a at job to remove (probably temporary) files in the future with a specified time interval from
now

Usage

rmat(..., days = NULL, hours = NULL, minutes = NULL, dry = TRUE)

Arguments

... Files to be removed

days Numeric, interval in days

hours Numeric, interval in hours

minutes Numeric, interval in minutes

dry Logical, if set to TRUE, only the command will be returned and files are not really
removed.

Details

The command will delete files, and there is usually no way to get deleted files back. So make sure
you know what you are doing!

Days, hours, and minutes can be given in a mixed way: they will be summed up to give the interval.

Value

(Invisibly) the output of the at job.

82 rocheCore

Note

Since the command uses at internally, it is unlikely the command will work in the Windows system
“out of box”.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

qsystem for running system commands quietly.

Examples

tmp1 <- tempfile()
tmp2 <- tempfile()
rmat(tmp1, tmp2, minutes=1)

rocheCore Extract core identifiers from Roche compound IDs

Description

Extract core identifiers from Roche compound IDs

Usage

rocheCore(str, short = FALSE)

Arguments

str Character strings

short Logical, if TRUE, the short version of Roche identifiers (RO[0-9]{4}) is returned.
Default: FALSE

Value

Core identifiers if the element is a Roche compound ID, the original element otherwise Non-
character input will be converted to character strings first.

See Also

isRocheCompoundID

rowscale 83

Examples

rocheCore(c("RO1234567-001", "RO1234567-001-000", "RO1234567",
"ROnoise-001", "anyOther-not-affected"))

rocheCore(c("RO1234567-001", "RO1234567-001-000", "RO1234567",
"ROnoise-001","anyOther-not-affected"), short=TRUE)

rowscale S3 method for row-scaling

Description

S3 method for row-scaling

Usage

rowscale(x, center = TRUE, scale = TRUE)

Arguments

x Any object

center Logical, whether centering should be done before scaling

scale Logical, whether scaling should be done

Value

The input object with rows scaled

rowscale.matrix Scale a matrix by row

Description

Scaling a matrix by row can be slightly slower due to a transposing step.

Usage

S3 method for class 'matrix'
rowscale(x, center = TRUE, scale = TRUE)

Arguments

x An matrix

center Logical, passed to scale. to TRUE

scale Logical, passed to scale. TRUE

84 rowscale.table

Value

A matrix with each row scaled.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

scale

Examples

mat <- matrix(rnorm(20), nrow=4)
rs.mat <- rowscale(mat)

print(mat)
print(rs.mat)
rowMeans(rs.mat)
apply(rs.mat, 1L, sd)

rowscale(mat, center=FALSE, scale=FALSE) ## equal to mat
rowscale(mat, center=TRUE, scale=FALSE)
rowscale(mat, center=FALSE, scale=TRUE)

rowscale.table Scale a table by row

Description

Scaling a table by row can be slightly slower due to a transposing step.

Usage

S3 method for class 'table'
rowscale(x, center = TRUE, scale = TRUE)

Arguments

x An matrix

center Logical, passed to scale. to TRUE

scale Logical, passed to scale. TRUE

Value

A table with each row scaled.

rrank 85

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

scale

Examples

letterDf <- data.frame(from=c("A", "A", "B", "C"), to=c("A", "B", "C", "A"))
tbl <- table(letterDf$from, letterDf$to)
tblRowscale <- rowscale(tbl)

print(tbl)
print(tblRowscale)
rowMeans(tblRowscale)
apply(tblRowscale, 1L, sd)

rowscale(tbl, center=FALSE, scale=FALSE) ## equal to mat
rowscale(tbl, center=TRUE, scale=FALSE)
rowscale(tbl, center=FALSE, scale=TRUE)

rrank Reverse rank order

Description

Reverse rank order

Usage

rrank(x, ...)

Default S3 method:
rrank(x, ...)

Arguments

x A numeric, complex, character or logical vector

... Passed to rank

Value

A vector of numbers of the same length as the input, giving reverse rank orders.

The function returns the reverse rank order, i.e. in the descending order

86 rrank.matrix

See Also

rank

Examples

testVec <- c(3,6,4,5)
rank(testVec)
rrank(testVec)

rrank.matrix Get reverse rank orders in each column

Description

Get reverse rank orders in each column

Usage

S3 method for class 'matrix'
rrank(x, ...)

Arguments

x A matrix

... Passed to rank

Value

A matrix of the same dimension and attributes of the input matrix, with reverse rank orders of each
column

Examples

testMatrix <- matrix(c(3,6,4,5,2,4,8,3,2,5,4,7), ncol=3, byrow=FALSE)
rrank(testMatrix)

rrankInd 87

rrankInd Return a matrix that highlights reverse rank orders of features of in-
terest by column

Description

Return a matrix that highlights reverse rank orders of features of interest by column

Usage

rrankInd(matrix, ind, inValue = 1L, outValue = 0L, ...)

Arguments

matrix A matrix

ind An integer vector or a logical vector that gives the index

inValue Value to highlight the reverse ranks indexed by ind, see details below

outValue Values assigned to other values not indexed by ind

... Passed to rank

Value

A matrix of the same dimension and attributes of the input matrix, each column contains a vector
of inValue and outValue. Positions that match the reverse ranks of matrix values indexed by ind
are assigned the inValue, otherwise, the outValue.

The function can be used to visualize the reverse ranks of features of interest (rows of the input
matrix) in each sample (columns of the input matrix). This is for instance useful for rank plots of
features for gene-set enrichment analysis.

Imagine that all features indexed by ind are the larger than all other features in each sample, then
the returned matrix will have value 1 in the first rows (the number determined by the features indxed
by ind), and 0 in the rest rows.

See Also

rank

Examples

testMatrix <- matrix(c(3,6,4,5,2,4,8,3,2,5,4,7), ncol=3, byrow=FALSE)
print(testMatrix)
testInd <- c(2,4)
verify that the command below returns 1 in positions occupied by
the reverse ranks of the values indexed by testInd
rrankInd(testMatrix, testInd)
testIndBool <- c(FALSE, TRUE, FALSE, TRUE)
rrankInd(testMatrix, testIndBool)

88 scriptInit

rsetdiff Reverse setdiff

Description

reverse setdiff, i.e. rsetdiff(x,y) equals setdiff(y,x)

Usage

rsetdiff(x, y)

Arguments

x a vector

y another vector

Value

Similar to setdiff, but with elements in y but not in x

Author(s)

Jitao David Zhang

Examples

testVec1 <- LETTERS[3:6]
testVec2 <- LETTERS[5:7]
rsetdiff(testVec1, testVec2)

scriptInit Prepare R for an interactive script

Description

The function prepares R for an interactive session (e.g. in a script). Currently it defines behaviour
in case of errors: a file named “ribios.dump” is written.

Usage

scriptInit()

Value

Side effect is used.

setDebug 89

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

options

Examples

do not run unless the script mode is needed

scriptInit()

setDebug Functions for command-line Rscript debugging

Description

These functions are used to debug command-line executable Rscripts in R sessions

Usage

setDebug()

Details

setDebug sets the environmental variable RIBIOS_SCRIPT_DEBUG as TRUE. unsetDebug unsets the
variable. isDebugging checks whether the variable is set or not. isIntDebugging tests whether the
scripts runs interactively or runs in the debugging mode. The last one can be useful when debugging
Rscript in a R session.

A programmer wishing to debug a Rscript can explicitly set (or unset) the RIBIOS_SCRIPT_DEBUG
variable in order to activate (inactivate) certain trunks of codes. This can be automated via isDebugging,
or probably more conveniently, by isIntDebugging: if the script runs in an interactive mode, or
the debugging flag is set, the function returns TRUE.

Value

setDebug and unsetDebug returns an invisible value indicating whether the variable setting (unset-
ting) was successful.

isDebugging and isIntDebugging returns logical values.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

90 shortenRocheCompoundID

Examples

unsetDebug()
print(isDebugging())
setDebug()
print(isDebugging())
unsetDebug()
print(isDebugging())
print(isIntDebugging())

shortenRocheCompoundID

Shorten Roche compounds identifiers

Description

Shorten Roche compounds identifiers

Usage

shortenRocheCompoundID(str)

Arguments

str Character strings that contains one or more Roche core identifiers (RO followed
by seven-digit numbers)

Value

Character strings of the same length as the input, with all core identifiers shortened

In contrast to rocheCore, which only handles character strings that are valid Roche compound
identifiers, this function takes any input string and performs a gsub operation to shorten Roche core
numbers. Therefore, it even works when only a substring matches the pattern of a Roche compound
name.

Examples

shortenRocheCompoundID(c("RO1234567-001", "RO1234567-001-000",
"RO1234567", "ROnoise-001", "anyOther-not-affected",
"RO1234567 and RO9876543 are two imaginary compounds."))

shortenStr 91

shortenStr Shorten strings to a given number of characters

Description

Shorten strings to a given number of characters

Usage

shortenStr(str, nchar = 8)

Arguments

str A vector of strings

nchar The maximal number of characters to keep

Value

A vector of strings of the same length as the input, with each string shortened to the desired length

Strings with more characters than nchar will be shortened.

Note

NA will be kept as they are

Examples

inputStrs <- c("abc", "abcd", "abcde", NA)
shortenStr(inputStrs, nchar=4)
expected outcome: abc, abcd, abcd..., NA

silencio Keep silent by suppressing warnings and messages

Description

The function is used to keep the command silent by suppressing warnings and messages

Usage

silencio(...)

Arguments

... Any function call

92 sortAndFilterByCumsumprop

Value

The same as the function call

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

suppressWarnings, suppressMessages

Examples

wsqrt <- function(x) {warning("Beep");message("Calculating square");return(x^2)}
silencio(wsqrt(3))

sortAndFilterByCumsumprop

Sort a numeric vector and filter by a threshold of cumsumprop

Description

Sort a numeric vector and filter by a threshold of cumsumprop

Usage

sortAndFilterByCumsumprop(x, thr = 0.9)

Arguments

x Numeric vector, usually named

thr Threshold, default 0.9, meaning that items whose proportion of cumulative sum
just above 0.9 are kept.

Value

Another numeric vector, likely shorter than x, items whose cumsumprop is equal or lower than thr.
The rest items are summed into one new item, with the name rest

This function can be useful to extract from a long numeric vector the largest items that dominate
the sum of the vector

Examples

x <- c("A"=1,"B"=2,"C"=3,"D"=4,"E"=400,"F"=500)
sortAndFilterByCumsumprop(x, thr=0.99) ## F and E should be returned

sortByCol 93

sortByCol Sort data.frame rows by values in specified columns

Description

Sort rows of an data.frame by values in specified columns.

Usage

sortByCol(
data.frame,
columns,
na.last = TRUE,
decreasing = TRUE,
orderAsAttr = FALSE

)

Arguments

data.frame A data.frame object

columns Column name(s) which sould be ordered

na.last Logical, whether NA should be sorted as last

decreasing Logical, whether the sorting should be in the decreasing order

orderAsAttr Logical, whether the order index vectors should be returned in the attribute “or-
der” of the sorted data.frame

Details

Columns can be specified by integer indices, logical vectors or character names.

Value

Sorted data.frame

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

Examples

sample.df <- data.frame(teams=c("HSV", "BVB", "FCB", "FCN"),pts=c(18,17,17,9), number=c(7,7,6,6))
sortByCol(sample.df, 1L)
sortByCol(sample.df, 1L, decreasing=FALSE)

sortByCol(sample.df, c(3L, 1L))
sortByCol(sample.df, c(3L, 1L), decreasing=FALSE)
sortByCol(sample.df, c(3L, 2L))

94 sortByDimnames

sortByCol(sample.df, c(TRUE, FALSE, TRUE))

sortByCol(sample.df, c("teams", "pts"))
sortByCol(sample.df, c("pts", "number", "teams"))
sortByCol(sample.df, c("pts", "teams", "number"))

sortByDimnames Sort matrix by dim names

Description

Rearrange rows and columns of a matrix by dim names

Usage

sortByDimnames(x, row.decreasing = FALSE, col.decreasing = FALSE)

Arguments

x A matrix or data.frame

row.decreasing Logical, whether rows should be sorted decreasingly

col.decreasing Logical, whether columns should be sorted decreasingly

Value

Resorted matrix or data frame

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

Examples

testMat <- matrix(1:16, nrow=4, dimnames=list(c("B", "D", "A", "C"), c("t", "f", "a", "g")))
sortByDimnames(testMat)
sortByDimnames(testMat, row.decreasing=TRUE, col.decreasing=FALSE)

strtoken 95

strtoken Tokenize strings by character

Description

Tokenize strings by character in a similar way as the strsplit function in the base package. The
function can return a matrix of tokenized items when index is missing. If index is given, tokenized
items in the selected position(s) are returned. See examples.

Usage

strtoken(x, split, index, ...)

Arguments

x A vector of character strings; non-character vectors are cast into characters.

split A character to split the strings.

index Numeric vector indicating which fields should be returned; if missing or set to
NULL, a matrix containing all fields are returned.

... Other parameters passed to strsplit

Value

A matrix if index is missing, NULL, or contains more than one integer indices; otherwise a character
vector.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

References

The main body of the function is modified from the strsplit2 function in the limma package.

See Also

strsplit

Examples

myStr <- c("HSV\t1887", "FCB\t1900", "FCK\t1948")
strsplit(myStr, "\t")

strtoken(myStr, "\t")
strtoken(myStr, "\t", index=1L)
strtoken(myStr, "\t", index=2L)

myFac <- factor(myStr)

96 stubborngc

strtoken(myFac, "\t")
strtoken(myFac, "\t", index=1L)

stubborngc Repeat garbage-collecting until all resource is freed

Description

stubborngc repeats collecting garbage untill no more resource can be freed

Usage

stubborngc(verbose = FALSE, reset = TRUE)

Arguments

verbose Logical, verbose or not

reset Logical, reset or not.

Value

Side effect is used.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

gc

Examples

stubborngc()

subsetByColumnName 97

subsetByColumnName Subset a data.frame by column name, allowing differences in cases

Description

The function calls assertColumnName internally to match the column names.

Usage

subsetByColumnName(data.frame, reqCols, ignore.case = FALSE)

Arguments

data.frame A data.frame object

reqCols required columns

ignore.case logical, whether the case is considered

Value

If all required column names are present, the data.frame object will be subset to include only these
columns and the result data.frame is returned. Otherwise an error message is printed.

Examples

myTestDf <- data.frame(HBV=1:3, VFB=0:2, BVB=4:6, FCB=2:4)
myFavTeams <- c("HBV", "BVB")
subsetByColumnName(myTestDf, myFavTeams)
myFavTeamsCase <- c("hbv", "bVb")
subsetByColumnName(myTestDf, myFavTeamsCase, ignore.case=TRUE)

summarizeRows Summarizing rows/columns by a factor

Description

Apply a function to summarize rows/columns that assigned to the same level by a factor vector.

Usage

summarizeRows(matrix, factor, fun = mean, ...)

98 summarizeRows

Arguments

matrix A numeric matrix

factor A vector of factors, either of the length of nrow(matrix) (for summarizeRows),
or the length of ncol(matrix) (for summarizeColumns).

fun A function or a name for a function, the summarizing function applied to rows/columns
sharing the same level

... Further parameters passed to the function

Details

NA levels are neglected, and corresponding rows/columns will not contribute to the summarized
matrix.

summarizeCols is synonymous to summarizeColumns

Value

A matrix, the dimension will be determined by the number of levels of the factor vector.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

Examples

my.matrix <- matrix(1:25, nrow=5)
print(my.matrix)

my.factor <- factor(c("A", "B", "A", "C", "B"))
summarizeRows(matrix=my.matrix, factor=my.factor, fun=mean)
summarizeRows(matrix=my.matrix, factor=my.factor, fun=prod)
summarizeColumns(matrix=my.matrix, factor=my.factor, fun=mean)
summarizeColumns(matrix=my.matrix, factor=my.factor, fun=prod)

NA values in factor
my.na.factor <- factor(c("A", "B", "A", "C", NA))
summarizeRows(matrix=my.matrix, factor=my.na.factor, fun=mean)
summarizeRows(matrix=my.matrix, factor=my.na.factor, fun=prod)
summarizeColumns(matrix=my.matrix, factor=my.na.factor, fun=mean)
summarizeColumns(matrix=my.matrix, factor=my.na.factor, fun=prod)

trim 99

trim Trim leading and tailing spaces from string

Description

The function trims leading and/or tailing spaces from string(s), using C function implemented in
the BIOS library.

Usage

trim(x, left = " \n\r\t", right = " \n\r\t")

Arguments

x A character string, or a vector of strings

left Characters that are trimmed from the left side.

right Characters that are trimmed from the right side

Details

left and right can be set to NULL. In such cases no trimming will be performed.

Value

Trimmed string(s)

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

Examples

myStrings <- c("This is a fine day\n",
" Hallo Professor!",
" NUR DER HSV ")

trim(myStrings)

100 uniqueLength

uniqueLength Length of unique elements in a vector

Description

Length of unique elements in a vector

Usage

uniqueLength(x, incomparables = FALSE)

Arguments

x A vector

incomparables See unique

Value

An integer indicating the number of unique elements in the input vector

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

unique

Examples

test.vec1 <- c("HSV", "FCB", "BVB", "HSV", "BVB")
uniqueLength(test.vec1)

test.vec2 <- c(1L, 2L, 3L, 5L, 3L, 4L, 2L, 1L, 5L)
ulen(test.vec2)

uniqueNonNA 101

uniqueNonNA Make a vector free of NA and unique

Description

Make a vector free of NA and unique

Usage

uniqueNonNA(x)

Arguments

x A vector

Value

A unique vector without NA

Examples

testVec <- c(3,4,5,NA,3,5)
uniqueNonNA(testVec)

verbose Print messages conditional on the verbose level

Description

The verbose level can be represented by non-negative integers. The larger the number is, the more
verbose is the program: it prints then more messages for users’ information.

Usage

verbose(..., global = 1L, this = 1L)

Arguments

... Messages to be printed, will be passed to the message function

global Integer, the global verbose level

this Integer, the verbose level of this message

102 wellIndex2position

Details

This function decides whether or not to print a message, dependent on the global verbose level and
the specific level of the message. If the specific level is larger than the global level, the message is
suppresed; otherwise it is printed. see the details section for an example.

Suppose the global verbose level is set to 5, and two messages have levels of 1 and 7 repsectively.
Since 1 suggests a low-threshold of being verbose, the first message is printed; whereas the message
of level 7 is only printed when the program should run in a more verbose way (7,8,9,...{}), it is
suppressed in the current global verbose level.

Value

The function is used for its side effect by printing messages.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

Examples

Gv <- 5L
verbose("Slightly verbosing", global=Gv, this=1L)
verbose("Moderately verbosing", global=Gv, this=5L)
verbose("Heavily verbosing", global=Gv, this=9L)

wellIndex2position Translate well index numbers to well positions

Description

Translate well index numbers to well positions

Usage

wellIndex2position(ind, format = c("96", "384"))

Arguments

ind Well index, integer numbers starting from 1, running rowwise. Non-integer
parameters will be coereced to integers.

format Character string, well format

Value

A data.frame containing three columns: input WellIndex, Row (characters) and Column (integers)

whoami 103

Examples

wellIndex2position(1:96, format="96")
wellIndex2position(c(3,2,5,34,85, NA), format="96")
wellIndex2position(1:384, format="384")

whoami System user name

Description

System user name

Usage

whoami()

Value

System user name

Examples

whoami()

writeLog Write text as log to a connection

Description

The function writeLog can be used to log outputs and/or running status of scripts to one connection.
To use it one does not need to run registerLog first.

Usage

writeLog(fmt, ..., con = stdout(), level = 0)

Arguments

fmt Format string to passed on to sprintf

... Parameters passed on to sprintf

con A connection, for instance a file (or its name) or stdout()

level Logging level: each higher level will add one extra space before the message.
See examples

104 writeLog

Details

In contrast, doLog can be used to log on multiple connections that are registered by registerLog.
Therefore, to register logger(s) with registerLog is a prerequisite of calling doLog. Internally
doLog calls writeLog sequentially to make multiple-connection logging.

Value

Side effect is used.

Author(s)

Jitao David Zhang <jitao_david.zhang@roche.com>

See Also

registerLog to register more than one loggers so that doLog can write to them sequentially.

Examples

writeLog("This is the start of a log")
writeLog("Message 1", level=1)
writeLog("Message 1.1", level=2)
writeLog("Message 1.2", level=2)
writeLog("Message 2", level=1)
writeLog("Message 3", level=1)
writeLog("Message 3 (special)", level=4)
writeLog("End of the log");

log with format
writeLog("This is Message %d", 1)
writeLog("Square of 2 is %2.2f", sqrt(2))

NA is handled automatically
writeLog("This is a not available value: %s", NA, level=1)
writeLog("This is a NULL value: %s", NULL, level=1)

Index

allIdentical, 4
apply1 (summarizeRows), 97
apply2 (summarizeRows), 97
applyTopOrIncAndNotExclFilter, 5
asNumMatrix, 6
assertColumnName, 7, 97
assertContrast, 7, 9
assertDesign, 8, 9
assertDesignContrast, 9
assertDir, 13
assertDir (isDir), 34
assertFile, 34
assertFile (checkFile), 12
atofMatrix (asNumMatrix), 6

basefilename (extname), 25
bedaInfo, 9, 62
biomicsPstorePath2URL, 10
bound, 10
boundNorm (bound), 10

cbindByRownames, 11
checkDir (isDir), 34
checkFile, 12, 34
chosenFew, 13
clearLog (registerLog), 69
closeLoggerConnections, 14
columnOverlapCoefficient, 15
compTwoVecs, 15
corByRownames, 16
countTokens, 17
createDir, 18
cumJaccardDistance (cumJaccardIndex), 18
cumJaccardIndex, 18
cumOverlapCoefficient, 19, 19
cumOverlapDistance

(cumOverlapCoefficient), 19
cumsumprop, 20
cut, 21, 22
cutInterval, 21

cutree, 22
cutreeIntoOrderedGroups, 22

detach, 74
dfFactor, 23
dfFactor2Str, 24
dir.create, 18
doLog (writeLog), 103
double, 62

equateWellLabelWidth, 25
extname, 25

file.info, 34
firstUp, 26
fixWidthStr, 27
flushLog (registerLog), 69

gc, 96

haltifnot, 28
hclust, 22
head, 29, 30
headhead, 29
headtail, 30

identical, 5, 50
identicalMatrix, 31
identicalMatrixValue, 31
imatch, 32
imatchv (imatch), 32
intersect, 53
invertList, 33
ipmatch (imatch), 32
ipmatchv (imatch), 32
isDebugging (setDebug), 89
isDir, 13, 34
isError, 35
isEven (isOdd), 36
isIntDebugging (setDebug), 89
isInvarCol (removeInvarCol), 77

105

106 INDEX

isMaxStatRow (keepMaxStatRow), 39
isOdd, 36
isRocheCompoundID, 36, 82
isTopOrIncAndNotExcl, 37
isVarCol (removeInvarCol), 77

jaccardDistance (jaccardIndex), 38
jaccardIndex, 38, 57

keepMaxStatRow, 39
keepMaxStatRowInd (keepMaxStatRow), 39

lastChar, 41
libordie, 41
library, 74
list2df, 42
listOverlapCoefficient, 43
longdf2matrix, 44

match, 33, 46
matchColumn, 45
matchColumnIndex (matchColumn), 45
matchColumnName, 7, 47
matchv (imatch), 32
matrix2longdf, 48
mergeInfreqLevelsByCumsumprop, 49
midentical, 50
mintersect (munion), 52
mmatch, 51
mset (munion), 52
msetdiff (munion), 52
munion, 52

na.false, 53
naivePairwiseDist, 54
nField (countTokens), 17

ofactor, 55
options, 89
orderCutgroup, 56
overlapCoefficient, 56
overlapDistance (overlapCoefficient), 56
overwriteDir, 57

pAbsLog10Score, 58, 62, 63
pairwiseJaccardDistance

(pairwiseJaccardIndex), 59
pairwiseJaccardIndex, 59
pairwiseOverlapCoefficient

(pairwiseOverlapDistance), 60

pairwiseOverlapDistance, 60
percentage, 61
pmatch, 33
pQnormScore, 59, 61, 63
print.BEDAinfo, 62
pScore, 59, 62, 63
putColsFirst, 64
pwdecode, 65
pwencode, 66

qqmsg, 42, 66
qsystem, 67, 82
quit, 67

rank, 85–87
rbindByColnames (cbindByRownames), 11
refactorNum, 68
registerLog, 14, 69
relevels, 71
relevelsByNamedVec, 71, 72
relevelsByNotNamedVec, 71, 73
reload, 74
removeColumns, 75
removeColumnsByFunc, 76
removeColumnsWithNA, 76
removeInvarCol, 77
removeRowsByFunc (removeColumnsByFunc),

76
removeRowsWithNA, 78
replaceColumnName, 78
replaceZeroPvalue, 59, 79
ribiosTempdir, 80, 80
ribiosTempfile, 80, 80
ribiosUtils, 81
rmat, 81
rocheCore, 82, 90
rowscale, 83
rowscale.matrix, 83
rowscale.table, 84
rrank, 85
rrank.matrix, 86
rrankInd, 87
rsetdiff, 88

scale, 84, 85
scriptInit, 88
setDebug, 89
setdiff, 53
shortenRocheCompoundID, 90

INDEX 107

shortenStr, 27, 91
silencio, 91
sortAndFilterByCumsumprop, 92
sortByCol, 93
sortByDimnames, 94
stop, 28
stopifnot, 28
stringDataFrame2numericMatrix

(asNumMatrix), 6
strsplit, 17, 95
strtoken, 17, 95
stubborngc, 96
subsetByColumnName, 97
summarizeCols (summarizeRows), 97
summarizeColumns (summarizeRows), 97
summarizeRows, 97
suppressMessages, 92
suppressWarnings, 92

tail, 29, 30
tailtail (headhead), 29
toTitleCase, 27
trim, 99

ulen (uniqueLength), 100
union, 53
unique, 100
uniqueLength, 100
uniqueNonNA, 101
unsetDebug (setDebug), 89

verbose, 101

warning, 28
wellIndex2position, 102
whoami, 103
writeLog, 103

	allIdentical
	applyTopOrIncAndNotExclFilter
	asNumMatrix
	assertColumnName
	assertContrast
	assertDesign
	assertDesignContrast
	bedaInfo
	biomicsPstorePath2URL
	bound
	cbindByRownames
	checkFile
	chosenFew
	closeLoggerConnections
	columnOverlapCoefficient
	compTwoVecs
	corByRownames
	countTokens
	createDir
	cumJaccardIndex
	cumOverlapCoefficient
	cumsumprop
	cutInterval
	cutreeIntoOrderedGroups
	dfFactor
	dfFactor2Str
	equateWellLabelWidth
	extname
	firstUp
	fixWidthStr
	haltifnot
	headhead
	headtail
	identicalMatrix
	identicalMatrixValue
	imatch
	invertList
	isDir
	isError
	isOdd
	isRocheCompoundID
	isTopOrIncAndNotExcl
	jaccardIndex
	keepMaxStatRow
	lastChar
	libordie
	list2df
	listOverlapCoefficient
	longdf2matrix
	matchColumn
	matchColumnName
	matrix2longdf
	mergeInfreqLevelsByCumsumprop
	midentical
	mmatch
	munion
	na.false
	naivePairwiseDist
	ofactor
	orderCutgroup
	overlapCoefficient
	overwriteDir
	pAbsLog10Score
	pairwiseJaccardIndex
	pairwiseOverlapDistance
	percentage
	pQnormScore
	print.BEDAinfo
	pScore
	putColsFirst
	pwdecode
	pwencode
	qqmsg
	qsystem
	refactorNum
	registerLog
	relevels
	relevelsByNamedVec
	relevelsByNotNamedVec
	reload
	removeColumns
	removeColumnsByFunc
	removeColumnsWithNA
	removeInvarCol
	removeRowsWithNA
	replaceColumnName
	replaceZeroPvalue
	ribiosTempdir
	ribiosTempfile
	ribiosUtils
	rmat
	rocheCore
	rowscale
	rowscale.matrix
	rowscale.table
	rrank
	rrank.matrix
	rrankInd
	rsetdiff
	scriptInit
	setDebug
	shortenRocheCompoundID
	shortenStr
	silencio
	sortAndFilterByCumsumprop
	sortByCol
	sortByDimnames
	strtoken
	stubborngc
	subsetByColumnName
	summarizeRows
	trim
	uniqueLength
	uniqueNonNA
	verbose
	wellIndex2position
	whoami
	writeLog
	Index

