Package ‘rules’

January 27, 2026

Title Model Wrappers for Rule-Based Models
Version 1.0.3

Description Bindings for additional models for use with the 'parsnip’
package. Models include prediction rule ensembles (Friedman and
Popescu, 2008) <doi:10.1214/07-A0AS 148>, C5.0 rules (Quinlan, 1992
ISBN: 1558602380), and Cubist (Kuhn and Johnson, 2013)
<doi:10.1007/978-1-4614-6849-3>.

License MIT + file LICENSE
URL https://github.com/tidymodels/rules, https://rules.tidymodels.org/

BugReports https://github.com/tidymodels/rules/issues
Depends parsnip (>=1.0.3), R (>=4.1)

Imports cli, dials (>=0.1.1.9001), dplyr, generics (>= 0.1.0), purrr,
rlang, stats, stringr, tidyr, utils

Suggests C50, covr, Cubist, knitr, modeldata, recipes, rmarkdown,
spelling, testthat (>= 3.0.0), tibble, xrf (>= 0.2.0)

Config/Needs/website tidyr, tidyverse/tidytemplate, recipes, xrf
Config/testthat/edition 3

Config/usethis/last-upkeep 2025-04-24

Encoding UTF-8

Language en-US

RoxygenNote 7.3.3

NeedsCompilation no

Author Emil Hvitfeldt [aut, cre] (ORCID:
<https://orcid.org/0000-0002-0679-1945>),
Max Kuhn [aut] (ORCID: <https://orcid.org/0000-0003-2402-136X>),
Posit Software, PBC [cph, fnd] (ROR: <https://ror.org/03wc8by49>)

Maintainer Emil Hvitfeldt <emil.hvitfeldt@posit.co>
Repository CRAN
Date/Publication 2026-01-27 06:10:24 UTC

https://doi.org/10.1214/07-AOAS148
https://doi.org/10.1007/978-1-4614-6849-3
https://github.com/tidymodels/rules
https://rules.tidymodels.org/
https://github.com/tidymodels/rules/issues
https://orcid.org/0000-0002-0679-1945
https://orcid.org/0000-0003-2402-136X
https://ror.org/03wc8by49

2 committees

Contents
COMMILIBES o v v e et it e e e e e e e e e e e e 2
multi_predict._cubist L. 3
tidy.C5.0 L 3
Index 9
committees Parameter functions for Cubist models
Description

Committee-based models enact a boosting-like procedure to produce ensembles. committees pa-
rameter is for the number of models in the ensembles while max_rules can be used to limit the
number of possible rules.

Usage

committees(range = c(1L, 100L), trans = NULL)

max_rules(range = c(1L, 500L), trans = NULL)

Arguments
range A two-element vector holding the defaults for the smallest and largest possible
values, respectively.
trans A trans object from the scales package, such as scales::logl@_trans()
or scales: :reciprocal_trans(). If not provided, the default is used which
matches the units used in range. If no transformation, NULL.
Value

A function with classes "quant_param" and "param"

Examples

committees()
committees(4:5)

max_rules()

multi_predict._cubist 3

multi_predict._cubist multi_predict() methods for rule-based models

Description

multi_predict() methods for rule-based models

Usage

S3 method for class '~ _cubist™'
multi_predict(object, new_data, type = NULL, neighbors = NULL, ...)

S3 method for class '~_xrf™'

multi_predict(object, new_data, type = NULL, penalty = NULL, ...)
Arguments
object A model fit.
new_data A rectangular data object, such as a data frame.
type A single character value or NULL. This argument is ignored in the method for
_cubist objects and is handled internally (since type = "numeric” is always
used).
neighbors A numeric vector of neighbors values between zero and nine.
Not currently used.
penalty Non-negative penalty values.
tidy.C5.0 Turn C5.0 and rule-based models into tidy tibbles
Description

Turn C5.0 and rule-based models into tidy tibbles

Usage
S3 method for class 'C5.0'
tidy(x, trees = x$trials["Actual”], ...)

S3 method for class 'cubist'
tidy(x, committees = x$committee, ...)

S3 method for class 'xrf'
tidy(x, penalty = NULL, unit = c("rules”, "columns"), ...)

4 tidy.C5.0

Arguments
X A Cubist, C5.0, or xrf object.
trees The number of boosting iterations to tidy (defaults to the entire ensemble).
Not currently used.
committees The number of committees to tidy (defaults to the entire ensemble).
penalty A single numeric value for the 1ambda penalty value.
unit What data should be returned? For unit = 'rules’, each row corresponds to a
rule. For unit = 'columns', each row is a predictor column. The latter can be
helpful when determining variable importance.
Details

The outputs for these tidy functions are different since the model structures are different.

Let’s look at Cubist and RuleFit first, using the Ames data, then C5.0 with a different data set.

An example using the Ames data:
First we will fit a Cubist model and tidy it:

library(tidymodels)
library(rules)
library(rlang)

data(ames, package = "modeldata”)

ames <- ames |>
mutate(Sale_Price = logl@(Sale_Price)) |>
select(Sale_Price, Longitude, Latitude, Central_Air)

ch_fit <-
cubist_rules(committees = 10) |>
set_engine("Cubist”) |>
fit(Sale_Price ~ ., data = ames)

cb_res <- tidy(cb_fit)

cb_res

A tibble: 223 x 5

#i# committee rule_num rule estimate statistic
<int> <int> <chr> <list> <list>
##H 1 1 1 (Central_Air == 'N') & (Latitude <=~ <tibble> <tibble>
2 1 2 (Latitude <= 41.992611) & (Latitude~ <tibble> <tibble>
3 1 3 (Central_Air == 'N') & (Latitude > ~ <tibble> <tibble>
##t 4 1 4 (Latitude <= 42.026997) & (Longitud~ <tibble> <tibble>
5 1 5 (Longitude > -93.63002) & (Latitude~ <tibble> <tibble>
6 1 6 (Latitude <= 42.035858) & (Longitud~ <tibble> <tibble>
o7 1 7 (Latitude <= 42.024029) & (Latitude~ <tibble> <tibble>

tidy.C5.0 5

8 1 8 (Longitude > -93.602348) & (Latitud~ <tibble> <tibble>
9 1 9 (Latitude <= 41.991756) & (Longitud~ <tibble> <tibble>
10 1 10 (Latitude > 42.041813) & (Longitude~ <tibble> <tibble>
1 213 more rows

Since Cubist fits linear regressions within the data from each rule, the coefficients are in the
estimate column and other information are in statistic:

cb_res$estimate[[1]]

A tibble: 3 x 2

term estimate
<chr> <dbl>
1 (Intercept) -509.

2 Longitude -5.05
3 Latitude 0.99

cb_res$statistic[[1]]

A tibble: 1 x 6

num_conditions coverage mean min max error
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 3 38 4.87 4.12 5.22 0.149

Note that we can get the data for this rule by using rlang: :parse_expr() with it:

rule_1_expr <- parse_expr(cb_res$rule[1])
rule_1_expr

(Central_Air == "N") & (Latitude <= 42.026997) & (Longitude >
#H# -93.639572)

then use it to get the data back:
filter(ames, !!'rule_1_expr)

A tibble: 38 x 4
Sale_Price Longitude Latitude Central_Air

<dbl> <dbl> <dbl> <fct>
1 5.04 -93.6 42.0 N
2 4.74 -93.6 42.0 N
3 4.75 -93.6 42.0 N
#H 4 4.54 -93.6 42.0 N
5 4.64 -93.6 42.0 N
6 5.22 -93.6 42.0 N
##H 7 4.80 -93.6 42.0 N
#H 8 4.99 -93.6 42.0 N
9 5.09 -93.6 42.0 N
#H# 10 4.89 -93.6 42.0 N

i 28 more rows

Now let’s fit a RuleFit model. First, we’ll use a recipe to convert the Central Air predictor to an
indicator:

xrf_reg_mod <-
rule_fit(trees = 3, penalty = .001) |>
set_engine("xrf") |>
set_mode("regression”)

Make dummy variables since xgboost will not

ames_rec <-
recipe(Sale_Price ~ ., data = ames) |[>
step_dummy(Central_Air) |>
step_zv(all_predictors())

ames_processed <- prep(ames_rec) |> bake(new_data = NULL)
xrf_reg_fit <-

xrf_reg_mod |>

fit(Sale_Price ~ ., data = ames_processed)

xrf_rule_res <- tidy(xrf_reg_fit, penalty = .001)

xrf_rule_res

A tibble: 86 x 3

tidy.C5.0

rule_id rule estimate
#i <chr> <chr> <dbl>
1 (Intercept) (TRUE) 5.01
2 Central_Air_Y (Central_Air_Y) 0.245
3 ro_13 (Latitude >= 42.0586929) & (Longitude < -93.62364~ 0.145
4 ro_19 (Latitude >= 42.0430069) & (Longitude < -93.62990~ 0.0379
5 ro_32 (Central_Air_Y < 1) & (Latitude < 42.0430069) & 0.313
6 ro_40 (Latitude >= 42.0430069) & (Latitude >= 42.0624161~ 0.167
7 ro_42 (Central_Air_Y < 1) & (Latitude < 42.0251541) & -0.0927
8 ro_50 (Latitude >= 42.0586929) & (Longitude < -93.62210~ -0.0403
9 ro_51 (Central_Air_Y < 1) & (Latitude < 42.0222397) & -0.0552
10 ro_53 (Central_Air_Y < 1) & (Latitude < 42.0182838) &~ -0.0407

1 76 more rows

Here, the focus is on the model coefficients produced by glmnet. We can also break down the

results and sort them by the original predictor columns:
tidy(xrf_reg_fit, penalty = .001, unit = "columns”)

A tibble: 484 x 3

rule_id term estimate
<chr> <chr> <dbl>
1 ro_51 Longitude -@.0552
2 r0_53 Longitude -0.0407
3 r0_54 Longitude 0.0693
4 ro_55 Longitude 0.00468
5 r0_32 Longitude 0.313
6 r0_57 Longitude 0.0687

tidy.C5.0 7

7 ro_59 Longitude 0.0121
8 ro_60 Longitude -0.0110
9 ro_61 Longitude -0.0517

10 ro_62 Longitude 0.0317
i 474 more rows

C5.0 classification models:

Here, we’ll use the Palmer penguin data:
data(penguins, package = "modeldata”)
penguins <- drop_na(penguins)

First, let’s fit a boosted rule-based model and tidy:

rule_model <-
C5_rules(trees = 3) |>
fit(island ~ ., data = penguins)

rule_info <- tidy(rule_model)

rule_info

A tibble: 25 x 4

trial rule_num rule statistic
<int> <int> <chr> <list>
1 1 1 (bill_length_mm > 37.5) <tibble>
2 1 2 (species == 'Chinstrap') <tibble>
3 1 3 (body_mass_g > 3200) & (body_mass_g < 3700) & (~ <tibble>
4 1 4 (flipper_length_mm < 193) <tibble>
5 1 5 (species == 'Adelie') & (bill_length_mm > 38.299~ <tibble>
6 1 6 (bill_length_mm < 40.799999) & (bill_depth_mm > ~ <tibble>
7 1 7 (species == 'Adelie') & (bill_length_mm > 41.599~ <tibble>
8 1 8 (species == 'Adelie') & (bill_depth_mm > 18.9) ~ <tibble>
9 2 1 (species == 'Gentoo') <tibble>
10 2 2 (body_mass_g > 3700) & (sex == 'female') <tibble>

1 15 more rows

The statistic column has the pre-computed data about the
data covered by the rule:
rule_info$statistic[[1]]

A tibble: 1 x 4

num_conditions coverage 1lift class
<dbl> <dbl> <dbl> <chr>
1 1 286 1.10 Biscoe

Tree-based models can also be tidied. Rather than saving the results in a recursive tree structure,
we can show the paths to each of the terminal nodes (which is just a rule).

Let’s fit a model and tidy:

tree_model <-
boost_tree(trees = 3)
set_engine("C5.0") |>

set_mode("classification”) |>
penguins)

fit(island ~ ., data

| >

tree_info <- tidy(tree_model)

tree_info

A tibble: 34 x 4

trial node rule

<int> <int> <chr>
1 1 1 "(species
##H 2 1 2 "(species
##H 3 1 3 "(species
4 1 4 "(species
##H 5 1 5 "(species
6 1 6 "(species
##t 7 1 7 "(species
##H 8 1 8 "(species
9 1 9 "(species
10 1 10 "(species

i 24 more rows

%in%
%in%
%1in%
%in%
%in%
%in%
%in%
%in%
%in%
%in%

c(\"Adelie\")) & (sex == \"female\"
c(\"Adelie\")) & (sex == \"female\"
c(\"Adelie\")) & (sex == \"female\"
c(\"Adelie\")) & (sex == \"female\”
c(\"Adelie\")) & (sex == \"female\”
c(\"Adelie\")) & (sex == \"female\”
c(\"Adelie\")) & (sex == \"female\"
c(\"Adelie\")) & (sex == \"male\")
c(\"Adelie\")) & (sex == \"male\")
c(\"Adelie\")) & (sex == \"male\")

The statistic column has the class breakdown:

tree_info$statistic[[1]]

A tibble: 3 x 2
value count
<chr> <dbl>
1 Biscoe 3
2 Dream 1
3 Torgersen 0

Note that C5.0 models can have fractional estimates of counts in the terminal nodes.

tidy.C5.0

statistic

<list>
<tibble>
<tibble>
<tibble>
<tibble>
<tibble>
<tibble>
<tibble>
<tibble>
<tibble>
<tibble>

Index

committees, 2

max_rules (committees), 2

model fit, 3

multi_predict._cubist, 3

multi_predict._xrf
(multi_predict._cubist), 3

rlang: :parse_expr(), 5

tidy.C5.0,3
tidy.cubist (tidy.C5.0), 3
tidy.xrf (tidy.C5.0), 3

	committees
	multi_predict._cubist
	tidy.C5.0
	Index

