
Package ‘spatstat.linnet’
January 31, 2026

Version 3.4-1

Date 2026-01-31

Title Linear Networks Functionality of the 'spatstat' Family

Maintainer Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Depends R (>= 3.5.0), stats, graphics, grDevices, methods, utils,
spatstat.data (>= 3.1-9), spatstat.univar (>= 3.1-6),
spatstat.geom (>= 3.7), spatstat.random (>= 3.4-4),
spatstat.explore (>= 3.7), spatstat.model (>= 3.6-1)

Imports Matrix, spatstat.utils (>= 3.2-1), spatstat.sparse (>= 3.1)

Suggests goftest, locfit, spatstat (>= 3.5)

Description Defines types of spatial data on a linear network
and provides functionality for geometrical operations,
data analysis and modelling of data on a linear network,
in the 'spatstat' family of packages.
Contains definitions and support for linear networks, including creation of networks, geomet-

rical measurements, topological connectivity, geometrical operations such as inserting and delet-
ing vertices, intersecting a network with another object, and interactive editing of networks.

Data types defined on a network include point patterns, pixel images, functions, and tessella-
tions.

Exploratory methods include kernel estimation of intensity on a network, K-
functions and pair correlation functions on a network, simulation envelopes, nearest neigh-
bour distance and empty space distance, relative risk estimation with cross-validated band-
width selection. Formal hypothesis tests of random pattern (chi-squared, Kolmogorov-
Smirnov, Monte Carlo, Diggle-Cressie-Loosmore-Ford, Dao-Genton, two-
stage Monte Carlo) and tests for covariate effects (Cox-Berman-Waller-Lawson, Kolmogorov-
Smirnov, ANOVA) are also supported.
Parametric models can be fitted to point pattern data using the function lppm() simi-
lar to glm(). Only Poisson models are implemented so far. Models may involve depen-
dence on covariates and dependence on marks. Models are fitted by maximum likelihood.
Fitted point process models can be simulated, automatically. Formal hypothesis tests of a fit-
ted model are supported (likelihood ratio test, analysis of de-
viance, Monte Carlo tests) along with basic tools for model selection (step-
wise(), AIC()) and variable selection (sdr). Tools for validating the fitted model include simula-
tion envelopes, residuals, residual plots and Q-Q plots, leverage and influence diagnostics, par-
tial residuals, and added variable plots.

1

2 Contents

Random point patterns on a network can be generated using a variety of models.

License GPL (>= 2)

URL http://spatstat.org/

NeedsCompilation yes

ByteCompile true

BugReports https://github.com/spatstat/spatstat.linnet/issues

Author Adrian Baddeley [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0001-9499-8382>),

Rolf Turner [aut, cph] (ORCID: <https://orcid.org/0000-0001-5521-5218>),
Ege Rubak [aut, cph] (ORCID: <https://orcid.org/0000-0002-6675-533X>),
Greg McSwiggan [aut, cph],
Tilman Davies [ctb, cph],
Mehdi Moradi [ctb, cph],
Suman Rakshit [ctb, cph],
Ottmar Cronie [ctb]

Repository CRAN

Date/Publication 2026-01-31 09:00:02 UTC

Contents
spatstat.linnet-package . 6
addVertices . 14
affine.linnet . 16
affine.lpp . 17
anova.lppm . 19
as.data.frame.lintess . 21
as.linfun . 22
as.linim . 24
as.linnet.linim . 26
as.linnet.psp . 27
as.lpp . 29
as.owin.lpp . 30
auc.lpp . 32
begins . 34
berman.test.lpp . 35
branchlabelfun . 37
bw.lppl . 38
bw.relrisk.lpp . 40
bw.voronoi . 43
cdf.test.lpp . 44
chop.linnet . 48
clickjoin . 49
clicklpp . 50
connected.linnet . 51
connected.lpp . 52

http://spatstat.org/
https://github.com/spatstat/spatstat.linnet/issues
https://orcid.org/0000-0001-9499-8382
https://orcid.org/0000-0001-5521-5218
https://orcid.org/0000-0002-6675-533X

Contents 3

crossdist.lpp . 53
crossing.linnet . 55
cut.lpp . 56
data.lppm . 57
delaunayNetwork . 58
deletebranch . 59
density.linnet . 61
density.lpp . 62
densityEqualSplit . 64
densityfun.lpp . 67
densityHeat.lpp . 69
densityQuick.lpp . 71
densityVoronoi.lpp . 74
diagnose.lppm . 75
diameter.linnet . 81
distfun.lpp . 82
distmap.lpp . 83
divide.linnet . 84
domain.lpp . 85
eem.lppm . 86
envelope.lpp . 88
eval.linim . 92
Extract.linim . 93
Extract.linnet . 94
Extract.lpp . 96
fitted.lppm . 97
harmonise.linim . 99
heatkernelapprox . 100
identify.linnet . 101
identify.lintess . 102
identify.lpp . 103
insertVertices . 104
integral.linim . 105
intensity.lpp . 107
intersect.lintess . 108
is.connected.linnet . 109
is.marked.lppm . 110
is.multitype.lpp . 111
is.multitype.lppm . 112
is.stationary.lppm . 113
joinVertices . 114
lineardirichlet . 115
lineardisc . 116
linearJinhom . 118
linearK . 120
linearKcross . 122
linearKcross.inhom . 123
linearKdot . 125

4 Contents

linearKdot.inhom . 126
linearKEuclid . 128
linearKEuclidInhom . 129
linearKinhom . 131
linearmarkconnect . 134
linearmarkequal . 135
linearpcf . 137
linearpcfcross . 138
linearpcfcross.inhom . 140
linearpcfdot . 142
linearpcfdot.inhom . 143
linearpcfEuclid . 145
linearpcfEuclidInhom . 146
linearpcfinhom . 148
lineartileindex . 151
linequad . 152
linfun . 153
linim . 154
linim.apply . 156
linnet . 157
lintess . 159
lixellate . 160
lpp . 162
lppm . 163
lurking.lppm . 166
marks.linnet . 170
marks.lintess . 171
Math.linim . 173
mean.linim . 174
methods.linfun . 176
methods.linim . 177
methods.linnet . 179
methods.lpp . 182
methods.lppm . 183
model.frame.lppm . 186
model.images.lppm . 187
model.matrix.lppm . 188
nncross.lpp . 189
nndist.lpp . 192
nnfromvertex . 193
nnfun.lpp . 194
nnwhich.lpp . 195
pairdist.lpp . 197
pairs.linim . 198
parres.lppm . 199
persp.linfun . 202
persp.linim . 203
plot.linim . 205

Contents 5

plot.linnet . 208
plot.lintess . 209
plot.lpp . 211
plot.lppm . 213
points.lpp . 214
predict.lppm . 215
pseudoR2.lppm . 217
qqplot.lppm . 218
quadrat.test.lpp . 222
quadratcount . 225
rcelllpp . 228
relrisk.lpp . 229
repairNetwork . 232
Replace.linim . 233
residuals.lppm . 234
rhohat.lpp . 236
rjitter.lpp . 243
rlpp . 244
roc.lpp . 246
rpoislpp . 248
rSwitzerlpp . 249
rThomaslpp . 251
runiflpp . 252
sdr.lpp . 253
shortestpath . 255
simulate.lppm . 256
Smooth.lpp . 257
subset.lpp . 260
superimpose.lpp . 261
terminalvertices . 263
text.lpp . 264
thinNetwork . 265
threads . 266
tile.lengths . 267
tilenames.lintess . 268
treebranchlabels . 269
treeprune . 270
unstack.lpp . 271
Window.lpp . 272

Index 274

6 spatstat.linnet-package

spatstat.linnet-package

The spatstat.linnet Package

Description

The spatstat.linnet package belongs to the spatstat family of packages. It contains the functionality
for analysing spatial data on a linear network.

Details

spatstat is a family of R packages for the statistical analysis of spatial data. Its main focus is the
analysis of spatial patterns of points in two-dimensional space.

The original spatstat package has now been split into several sub-packages.

This sub-package spatstat.linnet contains the user-level functions from spatstat that are concerned
with spatial data on a linear network.

Structure of the spatstat family

The orginal spatstat package grew to be very large. It has now been divided into several sub-
packages:

• spatstat.utils containing basic utilities

• spatstat.sparse containing linear algebra utilities

• spatstat.data containing datasets

• spatstat.univar containing functions for estimating probability distributions of random vari-
ables

• spatstat.geom containing geometrical objects and geometrical operations

• spatstat.explore containing the main functionality for exploratory and non-parametric analy-
sis of spatial data

• spatstat.model containing the main functionality for statistical modelling and inference for
spatial data

• spatstat.linnet containing functions for spatial data on a linear network

• spatstat, which simply loads the other sub-packages listed above, and provides documenta-
tion.

When you install spatstat, these sub-packages are also installed. Then if you load the spatstat
package by typing library(spatstat), the other sub-packages listed above will automatically be
loaded or imported. For an overview of all the functions available in these sub-packages, see the
help file for spatstat in the spatstat package,

Additionally there are several extension packages:

• spatstat.gui for interactive graphics

• spatstat.local for local likelihood (including geographically weighted regression)

spatstat.linnet-package 7

• spatstat.Knet for additional, computationally efficient code for linear networks

• spatstat.sphere (under development) for spatial data on a sphere, including spatial data on the
earth’s surface

The extension packages must be installed separately and loaded explicitly if needed. They also have
separate documentation.

Overview of spatstat.linnet

A linear network is a subset of the two-dimensional plane composed of straight line segments. It
could represent a road network, for example. Our code requires that, if two segments intersect each
other, then the intersection is a single point, and the intersection point is treated as a vertex of the
network.

The spatstat.linnet package supports spatial data analysis on a linear network. The primary aim is
to analyse spatial patterns of points on a network. The points could represent road accidents on a
road network, for example.

The spatstat.linnet package provides code for handling

• linear networks

• point patterns on a linear network

• pixel images on a linear network (where the network is divided into small segments and a
numerical value is assigned to each segment)

• functions on a linear network (i.e. functions that are defined at every location along the
network)

• tessellations of a linear network (where the network is subdivided into disjoint subsets
with different labels)

• point process models on a linear network

Here is a list of the main functionality provided in spatstat.linnet.
Linear networks
An object of class "linnet" represents a linear network. Examples of such objects include the
dataset simplenet provided in the package.

Linear network objects can be created by the following functions:

linnet create a linear network
as.linnet convert other data to a network
delaunayNetwork network of Delaunay triangulation
dirichletNetwork network of Dirichlet edges

Utilities for manipulating networks include:

[.linnet extract subset of linear network
clickjoin interactively join vertices in network
joinVertices join existing vertices in a network
insertVertices insert new vertices at positions along network

8 spatstat.linnet-package

addVertices add new vertices, extending a network
thinNetwork remove vertices or lines from a network
repairNetwork repair internal format
vertices.linnet extract the vertices of network
terminalvertices find terminal vertices of network
affine.linnet apply affine transformation
shift.linnet apply vector translation
rotate.linnet apply rotation
rescale.linnet rescale the unit of length
scalardilate.linnet physically rescale the network
diameter.linnet diameter of linear network
is.connected.linnet determine whether network is connected
lineardisc compute disc of given radius in network
marks.linnet extract marks of a network
marks<-.linnet assign marks to a network
plot.linnet plot a network
as.owin.linnet extract window containing network
as.psp.linnet extract line segments comprising network
nsegments.linnet number of segments in network
nvertices.linnet number of vertices in network
pixellate.linnet convert network to 2D pixel image
print.linnet print basic information
summary.linnet print summary information
unitname.linnet extract name of unit of length
unitname<-.linnet assign name of unit of length
vertexdegree number of segments meeting each vertex
volume.linnet total length of network
Window.linnet extract window containing network
density.linnet smoothed 2D spatial density of lines

A network is called a tree if it has no closed loops. The following functions support the creation
and manipulation of trees:

begins check start of character string
branchlabelfun tree branch membership labelling function
deletebranch delete a branch of a tree
extractbranch extract a branch of a tree
treebranchlabels label vertices of a tree by branch membership
treeprune prune tree to given level

Point patterns on a linear network
An object of class "lpp" represents a point pattern on a linear network (for example, road accidents
on a road network).

Examples of such objects include the following datasets provided in the spatstat.data package:

spatstat.linnet-package 9

chicago Chicago crime data
dendrite Dendritic spines data
spiders Spider webs on mortar lines of brick wall

There is also a dataset provided in the extension package spatstat.Knet:

wacrashes Road accidents in Western Australia

Point patterns on a network can be created by the following functions:

lpp create a point pattern on a linear network
as.lpp convert other data to point pattern on network
clicklpp interactively add points on a linear Network
crossing.linnet crossing points between network and other lines

Point patterns on a network can be generated randomly using the following functions:

rpoislpp Poisson points on linear network
runiflpp uniform random points on a linear network
rlpp random points on a linear network
rSwitzerlpp simulate Switzer-type point process on linear network
rThomaslpp simulate Thomas process on linear network
rcelllpp simulate cell process on linear network
rjitter.lpp randomly perturb a point pattern on a network

Functions for manipulating a point pattern on a network include the following. An object of class
"lpp" also belongs to the class "ppx", for which additional support is available.

as.ppp.lpp convert to 2D point pattern
as.psp.lpp extract line segments
marks.ppx extract marks associated with points
marks<-.ppx assign marks to points on network
nsegments.lpp count number of segments
print.lpp print basic information
summary.lpp print summary information
unitname.lpp extract name of unit of length
unitname<-.lpp assign name of unit of length
unmark.lpp remove marks
subset.lpp subset of points satisfying a condition
[.lpp extract subset of point pattern
Window.lpp extract window containing network
as.owin.lpp extract window containing network
affine.lpp apply affine transformation
shift.lpp apply vector translation
rotate.lpp apply rotation
rescale.lpp rescale the unit of length

10 spatstat.linnet-package

scalardilate.lpp physically rescale the network and points
connected.lpp find connected components of point pattern on network
cut.lpp classify points in a Point Pattern on a Network
distfun.lpp distance map (function)
distmap.lpp distance map (image)
domain.lpp extract the linear network
identify.lpp interactively identify points
is.multitype.lpp recognize whether point pattern is multitype
nncross.lpp nearest neighbours
nndist.lpp nearest neighbour distances
nnfromvertex nearest data point from each vertex
nnfun.lpp nearest neighbour map
nnwhich.lpp identify nearest neighbours
pairdist.lpp pairwise shortest-path distances
plot.lpp plot point pattern on linear Network
points.lpp draw points on existing plot
superimpose.lpp superimpose several point patterns
text.lpp add text labels
unstack.lpp separate multiple columns of marks

Pixel images on a network
An object of class "linim" represents a pixel image on a linear network. Effectively, the network
is divided into small segments (lixels) and each small segment is assigned a value, which could be
numeric, factor, logical or complex values.

Pixel images on a network can be created using the following functions:

linim create pixel image on linear network
as.linim convert other data to pixel image on network

Functions for manipulating a pixel image on a network include:

[.linim extract subset of pixel image on linear network
[<-.linim reset values in subset of image on linear network
Math.linim S3 group generic methods for images on a linear network
eval.linim evaluate expression involving pixel images on linear network
as.linnet.linim extract linear network
integral.linim integral of pixel image on a linear network
mean.linim mean of pixel values
median.linim median of pixel values
quantile.linim quantiles of pixel values
as.data.frame.linim convert to data frame
print.linim print basic information
summary.linim print summary information
affine.linim apply affine transformation
scalardilate.linim apply scalar dilation

spatstat.linnet-package 11

shift.linim apply vector translation
pairs.linim scatterplot matrix for images
persp.linim perspective view of pixel image on network
plot.linim plot pixel image on linear network

Functions on a linear network
An object of class "linfun" represents a function defined at any location along the network. Ob-
jects of this class are created by the following functions:

linfun create function on a linear network
as.linfun convert other data to function on network

The following supporting code is available:

print.linfun print basic information
summary.linfun print summary information
plot.linfun plot function on network
persp.linfun perspective view of function on network
as.data.frame.linfun convert to data frame
as.owin.linfun extract window containing network
as.function.linfun convert to ordinary R function

Tessellations of a linear network
An object of class "lintess" represents a tessellation of the network, that is, a subdivision of
the network into disjoint subsets called ‘tiles’. Objects of this class are created by the following
functions:

lintess create tessellation of network
chop.linnet divide a linear network into tiles using infinite lines
divide.linnet divide linear network at cut points
lineardirichlet Dirichlet tessellation on a linear network

The following functions are provided for manipulating a tessellation on a network:

as.data.frame.lintess convert to data frame
intersect.lintess intersection of two tessellations on network
lineartileindex determine which tile contains each given point on network
marks.lintess extract marks of each tile
marks<-.lintess assign marks to each tile
plot.lintess plot tessellation on network
tile.lengths compute lengths of tiles
tilenames.lintess names of tiles

12 spatstat.linnet-package

as.linfun.lintess convert tessellation to a function

Smoothing a point pattern on a linear network:
Given a point pattern dataset on a linear network, it is often desired to estimate the spatially-varying
density or intensity of points along the network. For example if the points represent road accidents,
then we may wish to estimate the spatially-varying density of accidents per unit length (over a given
period of time).

Related tasks include estimation of relative risk, and smoothing of of values observed at the data
points.

density.lpp kernel estimate of intensity
densityEqualSplit kernel estimate of intensity using equal-split algorithm
densityHeat.lpp kernel estimate of intensity using heat equation
densityQuick.lpp kernel estimate of intensity using a 2D kernel
densityVoronoi.lpp intensity estimate using Voronoi-Dirichlet Tessellation
densityfun.lpp kernel estimate of intensity as a function
bw.lppl Bandwidth selection for kernel estimate of intensity
bw.voronoi bandwidth selection for Voronoi estimator
relrisk.lpp kernel estimate of relative risk
bw.relrisk.lpp Bandwidth selection for relative risk
Smooth.lpp spatial smoothing of observations at points

Exploration of dependence on a covariate:
Another task is to investigate how the spatially-varying intensity of points depends on an explana-
tory variable (covariate). The covariate may be given as a pixel image on the network (class
"linim") or as a function on the network (class "linfun").

rhohat.lpp nonparametric estimate of intensity as function of a covariate
roc.lpp Receiver Operating Characteristic for data on a network
auc.lpp Area Under ROC Curve for data on a network
cdf.test.lpp spatial distribution test for points on a linear network
berman.test.lpp Berman’s tests for point pattern on a network
sdr.lpp Sufficient Dimension Reduction for a point pattern on a linear network

Summary statistics for a point pattern on a linear network:
These are for point patterns on a linear network (class lpp). For unmarked patterns:

linearK K function on linear network
linearKinhom inhomogeneous K function on linear network
linearpcf pair correlation function on linear network
linearpcfinhom inhomogeneous pair correlation on linear network
linearJinhom inhomogeneous J function on linear network
linearKEuclid K function on linear network using Euclidean distance

spatstat.linnet-package 13

linearKEuclidInhom inhomogeneous K function on linear network using Euclidean distance
linearpcfEuclid pair correlation function on linear network using Euclidean distance
linearpcfEuclidInhom inhomogeneous pair correlation on linear network using Euclidean distance

For multitype patterns:

linearKcross K function between two types of points
linearKdot K function from one type to any type
linearKcross.inhom Inhomogeneous version of linearKcross
linearKdot.inhom Inhomogeneous version of linearKdot
linearmarkconnect Mark connection function on linear network
linearmarkequal Mark equality function on linear network
linearpcfcross Pair correlation between two types of points
linearpcfdot Pair correlation from one type to any type
linearpcfcross.inhom Inhomogeneous version of linearpcfcross
linearpcfdot.inhom Inhomogeneous version of linearpcfdot

Related facilities:

pairdist.lpp distances between pairs
crossdist.lpp distances between pairs
nndist.lpp nearest neighbour distances
nncross.lpp nearest neighbour distances
nnwhich.lpp find nearest neighbours
nnfun.lpp find nearest data point
density.lpp kernel smoothing estimator of intensity
distfun.lpp distance transform
envelope.lpp simulation envelopes
rpoislpp simulate Poisson points on linear network
runiflpp simulate random points on a linear network

It is also possible to fit point process models to lpp objects.

Point process models on a linear network:
An object of class "lpp" represents a pattern of points on a linear network. Point process models
can also be fitted to these objects. Currently only Poisson models can be fitted.

lppm point process model on linear network
anova.lppm analysis of deviance for

point process model on linear network
envelope.lppm simulation envelopes for

point process model on linear network
fitted.lppm fitted intensity values
predict.lppm model prediction on linear network
data.lppm extract original data
berman.test.lppm Berman’s tests of goodness-of-fit
is.marked.lppm Recognise whether model is marked

14 addVertices

is.multitype.lppm Recognise whether model is multitype
is.stationary.lppm Recognise whether model is stationary
model.frame.lppm Extract the variables in model
model.images.lppm Compute images of constructed covariates
model.matrix.lppm Extract design matrix
plot.lppm Plot fitted point process model
pseudoR2.lppm Calculate Pseudo-R-Squared for model
simulate.lppm simulate fitted point process model

Licence

This library and its documentation are usable under the terms of the "GNU General Public License",
a copy of which is distributed with the package.

Acknowledgements

Ottmar Cronie, Tilman Davies, Greg McSwiggan and Suman Rakshit made substantial contribu-
tions of code.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

addVertices Add New Vertices to a Linear Network

Description

Adds new vertices to a linear network at specified locations outside the network.

Usage

addVertices(L, X, join=NULL, joinmarks=NULL)

Arguments

L Existing linear network (object of class "linnet") or point pattern on a linear
network (object of class "lpp").

X Point pattern (object of class "ppp") specifying the new vertices.

join Optional information specifying how to join the new vertices X to the existing
network. See Details. If join=NULL (the default), the new vertices are sim-
ply added to the list of network vertices without being joined to the rest of the
network.

joinmarks Optional vector or data frame of marks associated with the new edges specified
by join.

addVertices 15

Details

This function adds new vertices to an existing linear network L, at specified locations X outside the
network.

The argument L can be either a linear network (class "linnet") or some other object that includes
a linear network.

The new vertex locations are points outside the network, specified as a point pattern X (object of
class "ppp").

The argument join specifies how to join the new vertices to the existing network.

• If join=NULL (the default), the new vertices are simply added to the list of network vertices
without being joined to the rest of the network.

• If join is a vector of integers, then these are taken to be indices of existing vertices of L in
the order given in V = vertices(L). Then each new vertex X[i] will be joined to an existing
vertex V[j] where j = join[i]. Each new vertex is joined to exactly one existing vertex.

• If join="vertices" then each new vertex X[i] is joined to the nearest existing vertex V[j].
Each new vertex is joined to exactly one existing vertex.

• If join="nearest" then each new vertex is projected to the nearest location along on the
network; these locations are inserted as new vertices of L; and then each vertex X[i] is joined
to the corresponding projected point. Each new vertex is joined to exactly one newly-inserted
vertex.

• If join is a point pattern on a network (class "lpp"), it must be defined on the same network
as L and it must consist of the same number of points as X. The points of join will be inserted
as new vertices of L, and then each vertex X[i] is joined to the corresponding point join[i].
Each new vertex is joined to exactly one newly-inserted vertex.

The result is the modified object, with an attribute "id" such that the ith added vertex has become
the id[i]th vertex of the new network.

Value

An object of the same class as L representing the result of adding the new vertices. The result also
has an attribute "id" as described in Details.

Author(s)

Adrian Baddeley

See Also

insertVertices to insert vertices along an existing network.

as.lpp, linnet, methods.linnet, joinVertices, thinNetwork.

Examples

opa <- par(mfrow=c(1,3))
L <- simplenet
X <- runifpoint(20, Window(simplenet))

16 affine.linnet

plot(L)
plot(X, add=TRUE, cols="green", pch=16, cex=2)
plot(addVertices(L, X, "nearest"), col="red")
plot(L, add=TRUE, col="grey", lwd=3)
plot(X, add=TRUE, cols="green", pch=16, cex=2)
plot(addVertices(L, X, "vertices"), col="red")
plot(L, add=TRUE, col="grey", lwd=3)
plot(X, add=TRUE, cols="green", pch=16, cex=2)
par(opa)

affine.linnet Apply Geometrical Transformations to a Linear Network

Description

Apply geometrical transformations to a linear network.

Usage

S3 method for class 'linnet'
affine(X, mat=diag(c(1,1)), vec=c(0,0), ...)

S3 method for class 'linnet'
flipxy(X)

S3 method for class 'linnet'
shift(X, vec=c(0,0), ..., origin=NULL)

S3 method for class 'linnet'
rotate(X, angle=pi/2, ..., centre=NULL)

S3 method for class 'linnet'
scalardilate(X, f, ...)

S3 method for class 'linnet'
rescale(X, s, unitname)

Arguments

X Linear network (object of class "linnet").

mat Matrix representing a linear transformation.

vec Vector of length 2 representing a translation.

angle Rotation angle in radians.

f Scalar dilation factor.

s Unit conversion factor: the new units are s times the old units.

... Arguments passed to other methods.

affine.lpp 17

origin Character string determining a location that will be shifted to the origin. Options
are "centroid", "midpoint" and "bottomleft". Partially matched.

centre Centre of rotation. Either a vector of length 2, or a character string (partially
matched to "centroid", "midpoint" or "bottomleft"). The default is the
coordinate origin c(0,0).

unitname Optional. New name for the unit of length. A value acceptable to the function
unitname<-

Details

These functions are methods for the generic functions affine, flipxy, shift, rotate, rescale
and scalardilate applicable to objects of class "linnet".

All of these functions perform geometrical transformations on the object X, except for rescale,
which simply rescales the units of length.

Value

Another linear network (of class "linnet") representing the result of applying the geometrical
transformation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

linnet and as.linnet.

Generic functions affine, flipxy, shift, rotate, scalardilate, rescale.

Examples

U <- rotate(simplenet, pi)
stretch <- diag(c(2,3))
Y <- affine(simplenet, mat=stretch)
shear <- matrix(c(1,0,0.6,1),ncol=2, nrow=2)
Z <- affine(simplenet, mat=shear, vec=c(0, 1))

affine.lpp Apply Geometrical Transformations to Point Pattern on a Linear Net-
work

Description

Apply geometrical transformations to a point pattern on a linear network.

18 affine.lpp

Usage

S3 method for class 'lpp'
affine(X, mat=diag(c(1,1)), vec=c(0,0), ...)

S3 method for class 'lpp'
flipxy(X)

S3 method for class 'lpp'
shift(X, vec=c(0,0), ..., origin=NULL)

S3 method for class 'lpp'
rotate(X, angle=pi/2, ..., centre=NULL)

S3 method for class 'lpp'
scalardilate(X, f, ...)

S3 method for class 'lpp'
rescale(X, s, unitname)

Arguments

X Point pattern on a linear network (object of class "lpp").
mat Matrix representing a linear transformation.
vec Vector of length 2 representing a translation.
angle Rotation angle in radians.
f Scalar dilation factor.
s Unit conversion factor: the new units are s times the old units.
... Arguments passed to other methods.
origin Character string determining a location that will be shifted to the origin. Options

are "centroid", "midpoint" and "bottomleft". Partially matched.
centre Centre of rotation. Either a vector of length 2, or a character string (partially

matched to "centroid", "midpoint" or "bottomleft"). The default is the
coordinate origin c(0,0).

unitname Optional. New name for the unit of length. A value acceptable to the function
unitname<-

Details

These functions are methods for the generic functions affine, flipxy, shift, rotate, rescale
and scalardilate applicable to objects of class "lpp".

All of these functions perform geometrical transformations on the object X, except for rescale,
which simply rescales the units of length.

Value

Another point pattern on a linear network (object of class "lpp") representing the result of applying
the geometrical transformation.

anova.lppm 19

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

lpp.

Generic functions affine, flipxy, shift, rotate, scalardilate, rescale.

Examples

X <- rpoislpp(2, simplenet)
U <- rotate(X, pi)
V <- shift(X, c(0.1, 0.2))
stretch <- diag(c(2,3))
Y <- affine(X, mat=stretch)
shear <- matrix(c(1,0,0.6,1),ncol=2, nrow=2)
Z <- affine(X, mat=shear, vec=c(0, 1))

anova.lppm ANOVA for Fitted Point Process Models on Linear Network

Description

Performs analysis of deviance for two or more fitted point process models on a linear network.

Usage

S3 method for class 'lppm'
anova(object, ..., test=NULL)

Arguments

object A fitted point process model on a linear network (object of class "lppm").

... One or more fitted point process models on the same linear network.

test Character string, partially matching one of "Chisq", "F" or "Cp".

Details

This is a method for anova for fitted point process models on a linear network (objects of class
"lppm", usually generated by the model-fitting function lppm).

If the fitted models are all Poisson point processes, then this function performs an Analysis of
Deviance of the fitted models. The output shows the deviance differences (i.e. 2 times log likelihood
ratio), the difference in degrees of freedom, and (if test="Chi") the two-sided p-values for the chi-
squared tests. Their interpretation is very similar to that in anova.glm.

If some of the fitted models are not Poisson point processes, then the deviance difference is replaced
by the adjusted composite likelihood ratio (Pace et al, 2011; Baddeley et al, 2014).

20 anova.lppm

Value

An object of class "anova", or NULL.

Errors and warnings

models not nested: There may be an error message that the models are not “nested”. For an Anal-
ysis of Deviance the models must be nested, i.e. one model must be a special case of the
other. For example the point process model with formula ~x is a special case of the model
with formula ~x+y, so these models are nested. However the two point process models with
formulae ~x and ~y are not nested.
If you get this error message and you believe that the models should be nested, the problem
may be the inability of R to recognise that the two formulae are nested. Try modifying the
formulae to make their relationship more obvious.

different sizes of dataset: There may be an error message from anova.glmlist that “models were
not all fitted to the same size of dataset”. This generally occurs when the point process models
are fitted on different linear networks.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Ang, Q.W. (2010) Statistical methodology for events on a network. Master’s thesis, School of
Mathematics and Statistics, University of Western Australia.

Ang, Q.W., Baddeley, A. and Nair, G. (2012) Geometrically corrected second-order analysis of
events on a linear network, with applications to ecology and criminology. Scandinavian Journal of
Statistics 39, 591–617.

Baddeley, A., Turner, R. and Rubak, E. (2015) Adjusted composite likelihood ratio test for Gibbs
point processes. Journal of Statistical Computation and Simulation 86 (5) 922–941. DOI: 10.1080/00949655.2015.1044530.

McSwiggan, G., Nair, M.G. and Baddeley, A. (2012) Fitting Poisson point process models to events
on a linear network. Manuscript in preparation.

Pace, L., Salvan, A. and Sartori, N. (2011) Adjusting composite likelihood ratio statistics. Statistica
Sinica 21, 129–148.

See Also

lppm

Examples

X <- runiflpp(10, simplenet)
mod0 <- lppm(X ~1)
modx <- lppm(X ~x)
anova(mod0, modx, test="Chi")

as.data.frame.lintess 21

as.data.frame.lintess Convert Network Tessellation to Data Frame

Description

Converts a tessellation on a linear network into a data frame.

Usage

S3 method for class 'lintess'
as.data.frame(x, ...)

Arguments

x Tessellation on a linear network (object of class "lintess").

... Further arguments passed to as.data.frame.default to determine the row
names and other features.

Details

A tessellation on a linear network is a partition of the network into non-overlapping pieces (tiles).
Each tile consists of one or more line segments which are subsets of the line segments making up
the network. A tile can consist of several disjoint pieces.

This function converts the tessellation x to a data frame. Each row of the data frame specifies one
sub-segment of the network, and allocates it to a particular tile. The data frame has the following
columns:

• The seg column specifies which line segment of the network contains the sub-segment. Values
of seg are integer indices for the network segments in as.psp(as.linnet(x)).

• The t0 and t1 columns specify the start and end points of the sub-segment. They are numeric
values between 0 and 1 inclusive, where the values 0 and 1 representing the network vertices
that are joined by this network segment.

• The tile column specifies which tile of the tessellation includes this sub-segment. It is a
factor whose levels are the names of the tiles.

The tessellation may have marks, which are attached to the tiles of the tessellation. If marks are
present, the resulting data frame includes columns containing, for each sub-segment, the mark value
of the corresponding tile.

Value

A data frame with columns named seg, t0, t1, tile, and possibly other columns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

22 as.linfun

See Also

lintess

Examples

X <- lineardirichlet(runiflpp(3, simplenet))
marks(X) <- letters[1:3]
as.data.frame(X)

as.linfun Convert Data to a Function on a Linear Network

Description

Convert some kind of data to an object of class "linfun" representing a function on a linear net-
work.

Usage

as.linfun(X, ...)

S3 method for class 'linim'
as.linfun(X, ...)

S3 method for class 'linnet'
as.linfun(X, ..., values=marks(X))

S3 method for class 'lintess'
as.linfun(X, ..., values=marks(X), navalue=NA)

S3 method for class 'linim'
as.function(x, ...)

S3 method for class 'linnet'
as.function(x, ...)

S3 method for class 'lintess'
as.function(x, ...)

Arguments

X, x Some kind of data to be converted.

... Other arguments passed to methods.

values Optional. Vector of function values, one entry associated with each tile of the
tessellation.

navalue Optional. Function value associated with locations that do not belong to a tile
of the tessellation.

as.linfun 23

Details

An object of class "linfun" represents a function defined on a linear network. This page documents
methods for converting other kinds of objects to a "linfun" object.

The function as.linfun is generic. There are methods for converting linear networks (class "linnet"),
pixel images on a linear network (class "linnet") and tessellations on a linear network (class
"lintess") to functions on a network. Equivalent methods are also provided for the generic
as.function.

The methods as.linfun.linim and as.function.linim convert objects of class "linim" (pixel
images on a linear network) to functions on the network.

The methods as.linfun.linnet and as.function.linnet converts a linear network (object of
class "linnet") to a function on the network. The function values are specified by the argu-
ment values. It should be a vector with one entry for each segment of the network; any point
lying on segment number i will return the value values[i]. If values is missing or NULL, the
function values are taken to be the marks attached to the segments (values=marks(X)); if there
are no marks attached to the segments, the function value is the integer index of the segment
(values=seq_len(nsegments(X))).

The methods as.linfun.lintess and as.function.lintess convert a tessellation on a linear
network into a function with a different value on each tile of the tessellation. The function values
are specified by the argument values. It should be a vector with one entry for each tile of the
tessellation; any point lying in tile number i will return the value values[i]. If values is missing,
the marks of the tessellation are taken as the function values. If values is missing and the tessella-
tion has no marks, or if values is given as NULL, then the function returns factor values identifying
which tile contains each given point.

Value

Object of class "linfun".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

linfun

Examples

X <- runiflpp(2, simplenet)
Y <- runiflpp(5, simplenet)

image on network
D <- density(Y, 0.1)

f <- as.linfun(D)
f
f(X)

24 as.linim

h <- as.linfun(simplenet)

tessellation on network
Z <- lineardirichlet(Y)
g <- as.linfun(Z)
g(X)
h <- as.linfun(Z, values = runif(5))
h(X)

as.linim Convert to Pixel Image on Linear Network

Description

Converts various kinds of data to a pixel image on a linear network.

Usage

as.linim(X, ...)

S3 method for class 'linim'
as.linim(X, ...)

S3 method for class 'linfun'
as.linim(X, L=domain(X), ...,

eps = NULL, dimyx = NULL, xy = NULL,
rule.eps=c("adjust.eps",

"grow.frame", "shrink.frame"),
delta=NULL, nd=NULL)

S3 method for class 'function'
as.linim(X, L, ...,

eps = NULL, dimyx = NULL, xy = NULL,
rule.eps=c("adjust.eps",

"grow.frame", "shrink.frame"),
delta=NULL, nd=NULL)

Default S3 method:
as.linim(X, L, ...,

eps = NULL, dimyx = NULL, xy = NULL,
rule.eps=c("adjust.eps",

"grow.frame", "shrink.frame"),
delta=NULL, nd=NULL)

as.linim 25

Arguments

X Data to be converted to a pixel image on a linear network.

L Linear network (object of class "linnet"). Alternatively a pixel image on a
network (class "linim") to be used as a template.

... Additional arguments passed to X when X is a function.
eps, dimyx, xy, rule.eps

Optional arguments passed to as.mask to control the pixel resolution.

delta Optional. Numeric value giving the approximate distance (in coordinate units)
between successive sample points along each segment of the network, when L is
a network.

nd Optional. Integer giving the (approximate) number of sample points on the net-
work, when L is a network. Ignored if delta is given.

Details

This function converts the data X into a pixel image on a linear network, an object of class "linim"
(see linim).

The argument X may be any of the following:

• a function on a linear network, an object of class "linfun".

• a pixel image on a linear network, an object of class "linim".

• a pixel image, an object of class "im".

• a function(x,y) in the R language.

• any type of data acceptable to as.im, such as a function, numeric value, or window.

First X is converted to a pixel image object Y (object of class "im"). The conversion is performed
by as.im. The arguments eps, dimyx, xy and rule.eps determine the pixel resolution.

Next Y is converted to a pixel image on a linear network using linim. The argument L determines
the linear network. If L is missing or NULL, then X should be an object of class "linim", and L
defaults to the linear network on which X is defined.

In addition to converting the function to a pixel image, the algorithm also generates a fine grid
of sample points evenly spaced along each segment of the network. The function values at these
sample points are stored in the resulting object as a data frame (the argument df of linim). This
mechanism allows greater accuracy for some calculations (such as integral.linim). If L is a
"linim" object, then it is used as a template; the sample points are determined by the sample points
in L. Otherwise, L is treated as a network (class "linnet"), and new sample points are constructed
by placing them evenly-spaced along each segment of the network with separation delta.

Value

An image object on a linear network; an object of class "linim".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

26 as.linnet.linim

See Also

as.im

Examples

f <- function(x,y){ x + y }
plot(as.linim(f, simplenet))

as.linnet.linim Extract Linear Network from Data on a Linear Network

Description

Given some kind of data on a linear network, the command as.linnet extracts the linear network
itself.

Usage

S3 method for class 'linim'
as.linnet(X, ...)

S3 method for class 'linfun'
as.linnet(X, ...)

S3 method for class 'lintess'
as.linnet(X, ...)

S3 method for class 'lpp'
as.linnet(X, ..., fatal=TRUE, sparse)

Arguments

X Data on a linear network. A point pattern (class "lpp"), pixel image (class
"linim"), function (class "linfun") or tessellation (class "lintess") on a lin-
ear network.

... Ignored.

fatal Logical value indicating whether data in the wrong format should lead to an
error (fatal=TRUE) or a warning (fatal=FALSE).

sparse Logical value indicating whether to use a sparse matrix representation, as ex-
plained in linnet. Default is to keep the same representation as in X.

Details

These are methods for the generic as.linnet for various classes.

The network on which the data are defined is extracted.

as.linnet.psp 27

Value

A linear network (object of class "linnet").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

linnet, methods.linnet.

Examples

make some data
xcoord <- linfun(function(x,y,seg,tp) { x }, simplenet)
as.linnet(xcoord)
X <- as.linim(xcoord)
as.linnet(X)

as.linnet.psp Convert Line Segment Pattern to Linear Network

Description

Converts a line segment pattern to a linear network.

Usage

S3 method for class 'psp'
as.linnet(X, ..., eps, sparse=FALSE, chop=TRUE, fuse=TRUE)

Arguments

X Line segment pattern (object of class "psp").

... Ignored.

eps Optional. Distance threshold. If two segment endpoints are closer than eps units
apart, they will be treated as the same point, and will become a single vertex in
the linear network. Ignored if fuse=FALSE.

sparse Logical value indicating whether to use a sparse matrix representation, as ex-
plained in linnet.

chop Logical value specifying whether segments which cross each other should be
subdivided into separate segments of the network which meet at the intersection
point.

fuse Logical value specifying whether two vertices lyin closer than eps should be
treated as a single vertex.

28 as.linnet.psp

Details

This command converts any collection of line segments into a linear network by guessing the con-
nectivity of the network.

If chop=TRUE (the default), then if any segments in X cross over each other, they are first cut into
pieces using selfcut.psp.

If fuse=TRUE (the default), then any pair of segment endpoints lying closer than eps units apart, is
treated as a single vertex.

After these modifications, the linear network is constructed using linnet.

If chop=FALSE and fuse=FALSE, each segment in the segment pattern X becomes an edge in the
resulting network, and no other edges or vertices are created.

It would be wise to check the result by plotting the degree of each vertex, as shown in the Examples.

If X has marks, then these are stored in the resulting linear network Y <- as.linnet(X), and can be
extracted as marks(as.psp(Y)) or marks(Y$lines).

Value

A linear network (object of class "linnet").

The result also has an attribute "camefrom" indicating the provenance of each line in the resulting
network. For example camefrom[3]=2 means that the third line segment in the result is a piece of
the second segment of X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

linnet, selfcut.psp, methods.linnet.

Examples

make some data
A <- psp(0.09, 0.55, 0.79, 0.80, window=owin())
B <- superimpose(A, as.psp(simplenet))

convert to a linear network
L <- as.linnet(B)

check validity
L
plot(L)
text(vertices(L), labels=vertexdegree(L))

show the pieces that came from original segment number 1
S <- as.psp(L)
(camefrom <- attr(L, "camefrom"))
parts <- which(camefrom == 1)

as.lpp 29

plot(S[parts], add=TRUE, col="green", lwd=2)

convert to a network without changing the geometry
H <- as.linnet(B, chop=FALSE, fuse=FALSE)

as.lpp Convert Data to a Point Pattern on a Linear Network

Description

Convert various kinds of data to a point pattern on a linear network.

Usage

as.lpp(x=NULL, y=NULL, seg=NULL, tp=NULL, ...,
marks=NULL, L=NULL, check=FALSE, sparse)

Arguments

x, y Vectors of cartesian coordinates, or any data acceptable to xy.coords. Alterna-
tively x can be a point pattern on a linear network (object of class "lpp") or a
planar point pattern (object of class "ppp").

seg, tp Optional local coordinates. Vectors of the same length as x,y. See Details.

... Ignored.

marks Optional marks for the point pattern. A vector or factor with one entry for each
point, or a data frame or hyperframe with one row for each point.

L Linear network (object of class "linnet") on which the points lie.

check Logical. Whether to check the validity of the spatial coordinates.

sparse Optional logical value indicating whether to store the linear network data in a
sparse matrix representation or not. See linnet.

Details

This function converts data in various formats into a point pattern on a linear network (object of
class "lpp").

The possible formats are:

• x is already a point pattern on a linear network (object of class "lpp"). Then x is returned
unchanged.

• x is a planar point pattern (object of class "ppp"). Then x is converted to a point pattern on
the linear network L using lpp.

• x,y,seg,tp are vectors of equal length. These specify that the ith point has Cartesian coor-
dinates (x[i],y[i]), and lies on segment number seg[i] of the network L, at a fractional
position tp[i] along that segment (with tp=0 representing one endpoint and tp=1 the other
endpoint of the segment).

30 as.owin.lpp

• x,y are missing and seg,tp are vectors of equal length as described above.

• seg,tp are NULL, and x,y are data in a format acceptable to xy.coords specifying the Carte-
sian coordinates.

• Only the arguments x and L are given, and x is a data frame with one of the following types:

– two columns labelled seg,tp interpreted as local coordinates on the network.
– two columns labelled x,y interpreted as Cartesian coordinates.
– four columns labelled x,y,seg,tp interpreted as Cartesian coordinates and local coordi-

nates.

Value

A point pattern on a linear network (object of class "lpp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

and Rolf Turner <rolfturner@posteo.net>

See Also

lpp.

Examples

A <- as.psp(simplenet)
X <- runifpointOnLines(10, A)
is.ppp(X)
Y <- as.lpp(X, L=simplenet)

as.owin.lpp Convert Data on a Network to class owin

Description

Converts data on a linear network into an object of class "owin".

Usage

S3 method for class 'lpp'
as.owin(W, ..., fatal=TRUE)

S3 method for class 'lppm'
as.owin(W, ..., fatal=TRUE)

as.owin.lpp 31

Arguments

W Data specifying an observation window, in any of several formats described un-
der Details below.

fatal Logical value determining what to do if the data cannot be converted to an ob-
servation window. See Details.

... Ignored.

Details

The class "owin" is a way of specifying the observation window for a point pattern. See owin.object
for an overview.

The function as.owin converts data in any of several formats into an object of class "owin" for use
by the spatstat package. The function as.owin is generic, with methods for different classes of
objects, and a default method.

A long list of methods for as.owin is documented in the help file for as.owin in the spatstat.geom
package.

This help file documents additional methods applicable when W is

• an object of class "lpp" representing a point pattern on a linear network. In this case, as.owin
extracts the linear network and returns a window containing this network.

• an object of class "lppm" representing a fitted point process model on a linear network. In this
case, as.owin extracts the linear network and returns a window containing this network.

If the argument W cannot be converted to a window, then an error will be generated (if fatal=TRUE)
or a value of NULL will be returned (if fatal=FALSE).

Value

An object of class "owin" (see owin.object) specifying an observation window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

as.owin, owin.object, owin.

Additional methods for as.owin may be provided by other packages outside the spatstat family.

Examples

as.owin(simplenet)

32 auc.lpp

auc.lpp Area Under ROC Curve for Network Data

Description

Compute the AUC (area under the Receiver Operating Characteristic curve) for a point pattern on a
network, or a fitted point process model on a network.

Usage

S3 method for class 'lpp'
auc(X, covariate, ..., high = TRUE,

subset=NULL)

S3 method for class 'lppm'
auc(X, ..., subset=NULL)

Arguments

X Point pattern on a network (object of class "lpp") or fitted point process model
on a network (object of class "lppm").

covariate Spatial covariate. Either a function(x,y), a pixel image (object of class "im"
or "linim"), or one of the strings "x" or "y" indicating the Cartesian coordi-
nates.

... Arguments passed to roc, and arguments passed to as.mask controlling the
pixel resolution for calculations.

high Logical value indicating whether the threshold operation should favour high or
low values of the covariate.

subset Optional. A spatial window (object of class "owin") specifying a subset of the
data, for which the AUC should be calculated.

Details

The generic auc computes the AUC, the area under the curve of the Receiver Operating Character-
istic. The ROC curve itself is computed by the generic roc.

The functions auc.lpp and auc.lppm are methods for auc for point patterns on a linear network
(class "lpp") and fitted point process models on a linear network (class "lppm").

For a point pattern X and a covariate Z, the AUC is a numerical index that measures the ability of
the covariate to separate the spatial domain into areas of high and low density of points. Let xi be
a randomly-chosen data point from X and U a randomly-selected location in the study region. The
AUC is the probability that Z(xi) > Z(U) assuming high=TRUE. That is, AUC is the probability
that a randomly-selected data point has a higher value of the covariate Z than does a randomly-
selected spatial location. The AUC is a number between 0 and 1. A value of 0.5 indicates a
complete lack of discriminatory power.

auc.lpp 33

For a fitted point process model X, the AUC measures the ability of the fitted model intensity to
separate the spatial domain into areas of high and low density of points. Suppose λ(u) is the
intensity function of the model. The AUC is the probability that λ(xi) > λ(U). That is, AUC is the
probability that a randomly-selected data point has higher predicted intensity than does a randomly-
selected spatial location. The AUC is not a measure of the goodness-of-fit of the model (Lobo et
al, 2007).

Value

Numeric. For auc.lpp, the result is a single number giving the AUC value.

For auc.lppm, the result is a numeric vector of length 2 giving the AUC value and the theoretically
expected AUC value for this model.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ege Rubak <rubak@math.aau.dk> and
Suman Rakshit <Suman.Rakshit@curtin.edu.au>.

References

Baddeley, A., Rubak, E., Rakshit, S. and Nair, G. (2025) ROC curves for spatial point patterns and
presence-absence data. doi:10.48550/arXiv.2506.03414..

Lobo, J.M., Jiménez-Valverde, A. and Real, R. (2007) AUC: a misleading measure of the perfor-
mance of predictive distribution models. Global Ecology and Biogeography 17(2) 145–151.

Nam, B.-H. and D’Agostino, R. (2002) Discrimination index, the area under the ROC curve. Pages
267–279 in Huber-Carol, C., Balakrishnan, N., Nikulin, M.S. and Mesbah, M., Goodness-of-fit tests
and model validity, Birkhäuser, Basel.

See Also

roc.

auc, auc.ppm.

youden.

Examples

Crimes <- unmark(chicago)
fit <- lppm(Crimes ~ x)
auc(fit)
auc(Crimes, "x")

https://doi.org/10.48550/arXiv.2506.03414

34 begins

begins Check Start of Character String

Description

Checks whether a character string begins with a particular prefix.

Usage

begins(x, firstbit)

Arguments

x Character string, or vector of character strings, to be tested.

firstbit A single character string.

Details

This simple wrapper function checks whether (each entry in) x begins with the string firstbit,
and returns a logical value or logical vector with one entry for each entry of x. This function is
useful mainly for reducing complexity in model formulae.

Value

Logical vector of the same length as x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

Examples

begins(c("Hello", "Goodbye"), "Hell")
begins("anything", "")

berman.test.lpp 35

berman.test.lpp Berman’s Tests for Point Process Model on a Network

Description

Tests the goodness-of-fit of a Poisson point process model on a linear network, using the approach
of Berman (1986).

Usage

S3 method for class 'lpp'
berman.test(X, covariate,

which = c("Z1", "Z2"),
alternative = c("two.sided", "less", "greater"), ...)

S3 method for class 'lppm'
berman.test(model, covariate,

which = c("Z1", "Z2"),
alternative = c("two.sided", "less", "greater"), ...)

Arguments

X A point pattern (object of class "lpp").

model A fitted point process model (object of class "lppm").

covariate The spatial covariate on which the test will be based. An image (object of class
"im" or "linim") or a function.

which Character string specifying the choice of test.

alternative Character string specifying the alternative hypothesis.

... Additional arguments controlling the pixel resolution (arguments dimyx and eps
passed to as.mask) or other undocumented features.

Details

These functions perform a goodness-of-fit test of a Poisson point process model fitted to point
pattern data. The observed distribution of the values of a spatial covariate at the data points, and
the predicted distribution of the same values under the model, are compared using either of two test
statistics Z1 and Z2 proposed by Berman (1986). The Z1 test is also known as the Lawson-Waller
test.

The function berman.test is generic, with methods for point patterns ("ppp" or "lpp") and point
process models ("ppm" or "lppm").

See the help file for berman.test for information on the generic function and the methods for data
in two-dimensional space, classes "ppp" and "ppm".

This help file describes the methods for data on a linear network, classes "lpp" and "lppm".

36 berman.test.lpp

• If X is a point pattern dataset (object of class "ppp" or "lpp"), then berman.test(X, ...)
performs a goodness-of-fit test of the uniform Poisson point process (Complete Spatial Ran-
domness, CSR) for this dataset.

• If model is a fitted point process model (object of class "ppm" or "lppm") then berman.test(model,
...) performs a test of goodness-of-fit for this fitted model. In this case, model should be a
Poisson point process.

The test is performed by comparing the observed distribution of the values of a spatial covariate
at the data points, and the predicted distribution of the same covariate under the model. Thus, you
must nominate a spatial covariate for this test.

The argument covariate should be either a function(x,y) or a pixel image (object of class "im"
containing the values of a spatial function. If covariate is an image, it should have numeric values,
and its domain should cover the observation window of the model. If covariate is a function,
it should expect two arguments x and y which are vectors of coordinates, and it should return a
numeric vector of the same length as x and y.

First the original data point pattern is extracted from model. The values of the covariate at these
data points are collected.

Next the values of the covariate at all locations in the observation window are evaluated. The
point process intensity of the fitted model is also evaluated at all locations in the window.

• If which="Z1", the test statistic Z1 is computed as follows. The sum S of the covariate values
at all data points is evaluated. The predicted mean µ and variance σ2 of S are computed from
the values of the covariate at all locations in the window. Then we compute Z1 = (S − µ)/σ.
Closely-related tests were proposed independently by Waller et al (1993) and Lawson (1993)
so this test is often termed the Lawson-Waller test in epidemiological literature.

• If which="Z2", the test statistic Z2 is computed as follows. The values of the covariate at
all locations in the observation window, weighted by the point process intensity, are compiled
into a cumulative distribution function F . The probability integral transformation is then ap-
plied: the values of the covariate at the original data points are transformed by the predicted
cumulative distribution function F into numbers between 0 and 1. If the model is correct,
these numbers are i.i.d. uniform random numbers. The standardised sample mean of these
numbers is the statistic Z2.

In both cases the null distribution of the test statistic is the standard normal distribution, approxi-
mately.

The return value is an object of class "htest" containing the results of the hypothesis test. The
print method for this class gives an informative summary of the test outcome.

Value

An object of class "htest" (hypothesis test) and also of class "bermantest", containing the results
of the test. The return value can be plotted (by plot.bermantest) or printed to give an informative
summary of the test.

Warning

The meaning of a one-sided test must be carefully scrutinised: see the printed output.

branchlabelfun 37

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Berman, M. (1986) Testing for spatial association between a point process and another stochastic
process. Applied Statistics 35, 54–62.

Lawson, A.B. (1993) On the analysis of mortality events around a prespecified fixed point. Journal
of the Royal Statistical Society, Series A 156 (3) 363–377.

Waller, L., Turnbull, B., Clark, L.C. and Nasca, P. (1992) Chronic Disease Surveillance and testing
of clustering of disease and exposure: Application to leukaemia incidence and TCE-contaminated
dumpsites in upstate New York. Environmetrics 3, 281–300.

See Also

cdf.test, quadrat.test, ppm lppm

Examples

#' test of complete randomness
berman.test(spiders, "x")
#' test of fitted model
fit <- lppm(spiders ~ x)
berman.test(fit, "y", "Z2")

branchlabelfun Tree Branch Membership Labelling Function

Description

Creates a function which returns the tree branch membership label for any location on a linear
network.

Usage

branchlabelfun(L, root = 1)

Arguments

L Linear network (object of class "linnet"). The network must have no loops.

root Root of the tree. An integer index identifying which point in vertices(L) is
the root of the tree.

38 bw.lppl

Details

The linear network L must be an acyclic graph (i.e. must not contain any loops) so that it can be
interpreted as a tree.

The result of f <- branchlabelfun(L, root) is a function f which gives, for each location on the
linear network L, the tree branch label at that location.

Tree branch labels are explained in treebranchlabels.

The result f also belongs to the class "linfun". It can be called using several different kinds of
data, as explained in the help for linfun. The values of the function are character strings.

Value

A function (of class "linfun").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

See Also

treebranchlabels, linfun

Examples

make a simple tree
m <- simplenet$m
m[8,10] <- m[10,8] <- FALSE
L <- linnet(vertices(simplenet), m)
make function
f <- branchlabelfun(L, 1)
plot(f)
X <- runiflpp(5, L)
f(X)

bw.lppl Likelihood Cross Validation Bandwidth Selection for Kernel Density
on a Linear Network

Description

Uses likelihood cross-validation to select a smoothing bandwidth for the kernel estimation of point
process intensity on a linear network.

Usage

bw.lppl(X, ..., srange=NULL, ns=16, sigma=NULL, weights=NULL,
distance=c("euclidean", "path"), shortcut=TRUE, warn=TRUE)

bw.lppl 39

Arguments

X A point pattern on a linear network (object of class "lpp").
srange Optional numeric vector of length 2 giving the range of values of bandwidth to

be searched.
ns Optional integer giving the number of values of bandwidth to search.
sigma Optional. Vector of values of the bandwidth to be searched. Overrides the values

of ns and srange.
weights Optional. Numeric vector of weights for the points of X. Argument passed to

density.lpp.
distance Argument passed to density.lpp controlling the type of kernel estimator.
... Additional arguments passed to density.lpp.
shortcut Logical value indicating whether to speed up the calculation by omitting the

integral term in the cross-validation criterion.
warn Logical. If TRUE, issue a warning if the maximum of the cross-validation crite-

rion occurs at one of the ends of the search interval.

Details

This function selects an appropriate bandwidth sigma for the kernel estimator of point process
intensity computed by density.lpp.

The argument X should be a point pattern on a linear network (class "lpp").

The bandwidth σ is chosen to maximise the point process likelihood cross-validation criterion

LCV(σ) =
∑
i

log λ̂−i(xi)−
∫
L

λ̂(u) du

where the sum is taken over all the data points xi, where λ̂−i(xi) is the leave-one-out kernel-
smoothing estimate of the intensity at xi with smoothing bandwidth σ, and λ̂(u) is the kernel-
smoothing estimate of the intensity at a spatial location u with smoothing bandwidth σ. See
Loader(1999, Section 5.3).

The value of LCV(σ) is computed directly, using density.lpp, for ns different values of σ between
srange[1] and srange[2].

The result is a numerical value giving the selected bandwidth. The result also belongs to the class
"bw.optim" which can be plotted to show the (rescaled) mean-square error as a function of sigma.

If shortcut=TRUE, the computation is accelerated by omitting the integral term in the equation
above. This is valid because the integral is approximately constant.

Value

A single numerical value giving the selected bandwidth. The result also belongs to the class
"bw.optim" (see bw.optim.object) which can be plotted to show the bandwidth selection cri-
terion as a function of sigma.

Author(s)

Greg McSwiggan, Suman Rakshit and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

40 bw.relrisk.lpp

References

Loader, C. (1999) Local Regression and Likelihood. Springer, New York.

McSwiggan, G., Baddeley, A. and Nair, G. (2019) Estimation of relative risk for events on a linear
network. Statistics and Computing 30 (2) 469–484.

See Also

density.lpp, bw.scott.

bw.optim.object.

For point patterns in two-dimensional space, use bw.ppl.

Examples

if(interactive()) {
b <- bw.lppl(spiders)
plot(b, main="Likelihood cross validation for spiders")
plot(density(spiders, b, distance="e"))

} else {
b1 <- bw.lppl(spiders, ns=2)
b2 <- bw.lppl(spiders, ns=2, shortcut=FALSE)

}

bw.relrisk.lpp Cross Validated Bandwidth Selection for Relative Risk Estimation on
a Network

Description

Uses cross-validation to select a smoothing bandwidth for the estimation of relative risk on a linear
network.

Usage

S3 method for class 'lpp'
bw.relrisk(X, ...,

method = c("likelihood", "leastsquares", "KelsallDiggle", "McSwiggan"),
distance=c("path", "euclidean"),
hmin = NULL, hmax = NULL, nh = NULL,
fast = TRUE, fastmethod = "onestep",
floored = TRUE, reference = c("thumb", "uniform", "sigma"),
allow.infinite = TRUE, epsilon = 1e-20, fudge = 0,
verbose = FALSE, warn = TRUE)

bw.relrisk.lpp 41

Arguments

X A multitype point pattern on a linear network (object of class "lpp" which has
factor-valued marks).

... Arguments passed to density.lpp to control the resolution of the algorithm.

method Character string (partially matched) determining the cross-validation method.
See Details.

distance Character string (partially matched) specifying the type of smoothing kernel.
See density.lpp.

hmin, hmax Optional. Numeric values. Range of trial values of smoothing bandwith sigma
to consider. There is a sensible default.

nh Number of trial values of smoothing bandwidth sigma to consider.

fast Logical value specifying whether the leave-one-out density estimates should
be computed using a fast approximation (fast=TRUE, the default) or exactly
(fast=FALSE).

fastmethod, floored
Developer use only.

reference Character string (partially matched) specifying the bandwidth for calculating the
reference intensities used in the McSwiggan method (modified Kelsall-Diggle
method). reference="sigma" means the maximum bandwidth considered,
which is given by the argument sigma. reference="thumb" means the band-
widths selected by Scott’s rule of thumb bw.scott.iso. reference="uniform"
means infinite bandwidth corresponding to uniform intensity.

allow.infinite Logical value indicating whether an infinite bandwidth (corresponding to a con-
stant relative risk) should be permitted as a possible choice of bandwidth.

epsilon A small constant value added to the reference density in some of the cross-
validation calculations, to improve performance.

fudge Fudge factor to prevent very small density estimates in the leave-one-out calcu-
lation. If fudge > 0, then the lowest permitted value for a leave-one-out estimate
of intensity is fudge/L, where L is the total length of the network.

verbose Logical value indicating whether to print progress reports,

warn Logical. If TRUE, issue a warning if the minimum of the cross-validation crite-
rion occurs at one of the ends of the search interval.

Details

This function is a method for the generic bw.relrisk. It computes an optimal value of smoothing
bandwidth for the nonparametric estimation of relative risk on a linear network using relrisk.lpp.
The optimal value is found by minimising a cross-validation criterion.

The cross-validation criterion is selected by the argument method:

method="likelihood" (negative) likelihood cross-validation
method="leastsquares" least squares cross-validation
method="KelsallDiggle" Kelsall and Diggle (1995) density ratio cross-validation
method="McSwiggan" McSwiggan et al (2019) modified density ratio cross-validation

42 bw.relrisk.lpp

See McSwiggan et al (2019) for details.

The result is a numerical value giving the selected bandwidth sigma. The result also belongs to the
class "bw.optim" allowing it to be printed and plotted. The plot shows the cross-validation criterion
as a function of bandwidth. The ‘optimal’ bandwidth is the value of bandwidth which minimises
the cross-validation criterion.

The range of values for the smoothing bandwidth sigma is set by the arguments hmin, hmax. There
is a sensible default, based on the linear network version of Scott’s rule bw.scott.iso.

If the optimal bandwidth is achieved at an endpoint of the interval [hmin, hmax], the algorithm
will issue a warning (unless warn=FALSE). If this occurs, then it is probably advisable to expand the
interval by changing the arguments hmin, hmax.

The cross-validation procedure is based on kernel estimates of intensity, which are computed by
density.lpp. Any arguments ... are passed to density.lpp to control the kernel estimation
procedure. This includes the argument distance which specifies the type of kernel. The default is
distance="path"; the fastest option is distance="euclidean".

Value

A single numerical value giving the selected bandwidth. The result also belongs to the class
"bw.optim" (see bw.optim.object) which can be plotted to show the bandwidth selection cri-
terion as a function of sigma.

Author(s)

Greg McSwiggan and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Kelsall, J.E. and Diggle, P.J. (1995) Kernel estimation of relative risk. Bernoulli 1, 3–16.

McSwiggan, G., Baddeley, A. and Nair, G. (2019) Estimation of relative risk for events on a linear
network. Statistics and Computing 30 (2) 469–484.

See Also

relrisk.lpp, bw.relrisk, bw.optim.object

Examples

set.seed(2020)
X <- superimpose(A=runiflpp(20, simplenet),

B=runifpointOnLines(20, as.psp(simplenet)[1]))
plot(bw.relrisk(X, hmin=0.13, hmax=0.22, method="McSwiggan"))
plot(bw.relrisk(X, hmin=0.1, hmax=0.2, nh=8, distance="euclidean"))

bw.voronoi 43

bw.voronoi Cross Validated Bandwidth Selection for Voronoi Estimator of Inten-
sity on a Network

Description

Uses cross-validation to select a smoothing bandwidth for the Voronoi estimate of point process
intensity on a linear network.

Usage

bw.voronoi(X, ..., probrange = c(0.2, 0.8), nprob = 10,
prob = NULL, nrep = 100,
metric=c("shortestpath", "Euclidean"),
verbose = TRUE, warn=TRUE)

Arguments

X Point pattern on a linear network (object of class "lpp").

... Ignored.

probrange Numeric vector of length 2 giving the range of bandwidths (retention probabili-
ties) to be assessed.

nprob Integer. Number of bandwidths to be assessed.

prob Optional. A numeric vector of bandwidths (retention probabilities) to be as-
sessed. Entries must be probabilities between 0 and 1. Overrides nprob and
probrange.

nrep Number of simulated realisations to be used for the computation.

metric Character string (partially matched) specifying the distance metric used to define
the Dirichlet tessellation. Argument passed to lineardirichlet.

verbose Logical value indicating whether to print progress reports.

warn Logical. If TRUE, issue a warning if the maximum of the cross-validation crite-
rion occurs at one of the ends of the search interval.

Details

This function uses likelihood cross-validation to choose the optimal value of the thinning fraction f
(the retention probability) to be used in the smoothed Voronoi estimator of point process intensity
densityVoronoi.lpp.

Value

A single numerical value giving the selected bandwidth. The result also belongs to the class
"bw.optim" (see bw.optim.object) which can be plotted to show the bandwidth selection cri-
terion as a function of sigma.

44 cdf.test.lpp

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk> and Mehdi Moradi <m2.moradi@yahoo.com>.

References

Moradi, M., Cronie, 0., Rubak, E., Lachieze-Rey, R., Mateu, J. and Baddeley, A. (2019) Resample-
smoothing of Voronoi intensity estimators. Statistics and Computing 29 (5) 995–1010.

See Also

densityVoronoi.lpp, bw.optim.object

Examples

if(interactive()) {
X <- spiders
np <- 10
nr <- 100

} else {
X <- runiflpp(4, simplenet)
np <- 3
nr <- 2

}
b <- bw.voronoi(X, nprob=np, nrep=nr)
b
plot(b)
bE <- bw.voronoi(X, nprob=np, nrep=nr, metric="E")
bE

cdf.test.lpp Spatial Distribution Test for Points on a Linear Network

Description

Performs a test of goodness-of-fit of a point process model on a linear network. The observed and
predicted distributions of the values of a spatial covariate are compared using either the Kolmogorov-
Smirnov test, Cramér-von Mises test or Anderson-Darling test. For non-Poisson models, a Monte
Carlo test is used.

Usage

S3 method for class 'lpp'
cdf.test(X, covariate, test=c("ks", "cvm", "ad"), ...,

interpolate=TRUE, jitter=TRUE)

S3 method for class 'lppm'
cdf.test(model, covariate, test=c("ks", "cvm", "ad"), ...,

interpolate=TRUE, jitter=TRUE, nsim=99, verbose=TRUE)

cdf.test.lpp 45

Arguments

X A point pattern on a linear network (object of class "lpp").

model A fitted point process model on a linear network (object of class "lppm")

covariate The spatial covariate on which the test will be based. A function, a pixel image
(object of class "im" or "linim"), a list of pixel images, or one of the characters
"x" or "y" indicating the Cartesian coordinates.

test Character string identifying the test to be performed: "ks" for Kolmogorov-
Smirnov test, "cvm" for Cramér-von Mises test or "ad" for Anderson-Darling
test.

... Arguments passed to ks.test (from the stats package) or cvm.test or ad.test
(from the goftest package) to control the test.

interpolate Logical flag indicating whether to interpolate pixel images. If interpolate=TRUE,
the value of the covariate at each point of X will be approximated by interpolat-
ing the nearby pixel values. If interpolate=FALSE, the nearest pixel value will
be used.

jitter Logical flag. If jitter=TRUE, values of the covariate will be slightly perturbed
at random, to avoid tied values in the test.

nsim Number of simulated realisations from the model to be used for the Monte Carlo
test, when model is not a Poisson process.

verbose Logical value indicating whether to print progress reports when performing a
Monte Carlo test.

Details

These functions perform a goodness-of-fit test of a Poisson point process model fitted to point
pattern data on a linear network. The observed distribution of the values of a spatial covariate at the
data points, and the predicted distribution of the same values under the model, are compared using
the Kolmogorov-Smirnov test, the Cramér-von Mises test or the Anderson-Darling test. For Gibbs
models, a Monte Carlo test is performed using these test statistics.

The function cdf.test is generic, with methods for point patterns ("ppp" or "lpp"), point process
models ("ppm" or "lppm") and spatial logistic regression models ("slrm").

See the help file for cdf.test for information on the generic function and the methods for data in
two-dimensional space, classes "ppp", "ppm" and "slrm".

This help file describes the methods for data on a linear network, classes "lpp" and "lppm".

• If X is a point pattern on a linear network (object of class "lpp"), then cdf.test(X, ...)
performs a goodness-of-fit test of the uniform Poisson point process (Complete Spatial Ran-
domness, CSR) for this dataset. For a multitype point pattern, the uniform intensity is assumed
to depend on the type of point (sometimes called Complete Spatial Randomness and Indepen-
dence, CSRI).

• If model is a fitted point process model on a network (object of class "lppm") then cdf.test(model,
...) performs a test of goodness-of-fit for this fitted model.

46 cdf.test.lpp

The test is performed by comparing the observed distribution of the values of a spatial covariate
at the data points, and the predicted distribution of the same covariate under the model, using a
classical goodness-of-fit test. Thus, you must nominate a spatial covariate for this test.

If X is a point pattern that does not have marks, the argument covariate should be either a
function(x,y) or a pixel image (object of class "im" or "linim") containing the values of a spa-
tial function, or one of the characters "x" or "y" indicating the Cartesian coordinates. If covariate
is an image, it should have numeric values, and its domain should cover the observation window of
the model. If covariate is a function, it should expect two arguments x and y which are vectors of
coordinates, and it should return a numeric vector of the same length as x and y.

If X is a multitype point pattern, the argument covariate can be either a function(x,y,marks),
or a pixel image, or a list of pixel images corresponding to each possible mark value, or one of the
characters "x" or "y" indicating the Cartesian coordinates.

First the original data point pattern is extracted from model. The values of the covariate at these
data points are collected.

The predicted distribution of the values of the covariate under the fitted model is computed as
follows. The values of the covariate at all locations in the observation window are evaluated,
weighted according to the point process intensity of the fitted model, and compiled into a cumulative
distribution function F using ewcdf.

The probability integral transformation is then applied: the values of the covariate at the original
data points are transformed by the predicted cumulative distribution function F into numbers be-
tween 0 and 1. If the model is correct, these numbers are i.i.d. uniform random numbers. The A
goodness-of-fit test of the uniform distribution is applied to these numbers using stats::ks.test,
goftest::cvm.test or goftest::ad.test.

This test was apparently first described (in the context of two-dimensional spatial data, and using
Kolmogorov-Smirnov) by Berman (1986). See also Baddeley et al (2005).

If model is not a Poisson process, then a Monte Carlo test is performed, by generating nsim point
patterns which are simulated realisations of the model, re-fitting the model to each simulated point
pattern, and calculating the test statistic for each fitted model. The Monte Carlo p value is deter-
mined by comparing the simulated values of the test statistic with the value for the original data.

The return value is an object of class "htest" containing the results of the hypothesis test. The
print method for this class gives an informative summary of the test outcome.

The return value also belongs to the class "cdftest" for which there is a plot method plot.cdftest.
The plot method displays the empirical cumulative distribution function of the covariate at the data
points, and the predicted cumulative distribution function of the covariate under the model, plotted
against the value of the covariate.

The argument jitter controls whether covariate values are randomly perturbed, in order to avoid
ties. If the original data contains any ties in the covariate (i.e. points with equal values of the
covariate), and if jitter=FALSE, then the Kolmogorov-Smirnov test implemented in ks.test will
issue a warning that it cannot calculate the exact p-value. To avoid this, if jitter=TRUE each value
of the covariate will be perturbed by adding a small random value. The perturbations are normally
distributed with standard deviation equal to one hundredth of the range of values of the covariate.
This prevents ties, and the p-value is still correct. There is a very slight loss of power.

cdf.test.lpp 47

Value

An object of class "htest" containing the results of the test. See ks.test for details. The return
value can be printed to give an informative summary of the test.

The value also belongs to the class "cdftest" for which there is a plot method.

Warning

The outcome of the test involves a small amount of random variability, because (by default) the
coordinates are randomly perturbed to avoid tied values. Hence, if cdf.test is executed twice, the
p-values will not be exactly the same. To avoid this behaviour, set jitter=FALSE.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Berman, M. (1986) Testing for spatial association between a point process and another stochastic
process. Applied Statistics 35, 54–62.

See Also

plot.cdftest, quadrat.test, berman.test, ks.test, goftest::cvm.test, goftest::ad.test,
lppm

Examples

op <- options(useFancyQuotes=FALSE)

test of CSR using x coordinate
cdf.test(spiders, "x")

fit inhomogeneous Poisson model and test
model <- lppm(spiders ~x)
cdf.test(model, "y")

test of CSR using a function of x and y
fun <- function(x,y){2* x + y}
cdf.test(spiders, fun)

test of CSR using an image covariate
fim <- as.linim(fun, domain(spiders))
cdf.test(spiders, fim)

options(op)

48 chop.linnet

chop.linnet Divide a Linear Network into Tiles Using Infinite Lines

Description

Given a linear network and a set of infinite lines, divide the network into tiles demarcated by the
lines. The result is a tessellation of the network.

Usage

chop.linnet(X, L)

Arguments

X Linear network (object of class "linnet") or data acceptable to as.linnet.

L Infinite line or lines (object of class "infline").

Details

The first line of L divides X into two tiles. Subsequent lines divide each of these tiles. The result is
a tessellation of X. Tiles are not necessarily connected sets.

Value

Tessellation on a linear network (object of class "lintess").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

crossing.linnet to determine the crossing points between the lines and the network.

divide.linnet to divide a network into a tessellation using arbitrary cut points.

Examples

L <- infline(p=runif(3), theta=runif(3, max=pi/2))
Y <- chop.linnet(simplenet, L)
plot(Y, main="")
plot(L, col="red")

clickjoin 49

clickjoin Interactively join vertices on a plot

Description

Given a point pattern representing a set of vertices, this command gives a point-and-click interface
allowing the user to join pairs of selected vertices by edges.

Usage

clickjoin(X, ..., add = TRUE, m = NULL, join = TRUE)

Arguments

X Point pattern of vertices. An object of class "ppp".
... Arguments passed to segments to control the plotting of the new edges.
add Logical. Whether the point pattern X should be added to the existing plot (add=TRUE)

or a new plot should be created (add=FALSE).
m Optional. Logical matrix specifying an initial set of edges. There is an edge

between vertices i and j if m[i,j] = TRUE.
join Optional. If TRUE, then each user click will join a pair of vertices. If FALSE, then

each user click will delete an existing edge. This is only relevant if m is supplied.

Details

This function makes it easier for the user to create a linear network or a planar graph, given a set of
vertices.

The function first displays the point pattern X, then repeatedly prompts the user to click on a pair of
points in X. Each selected pair of points will be joined by an edge. The function returns a logical
matrix which has entries equal to TRUE for each pair of vertices joined by an edge.

The selection of points is performed using identify.ppp which typically expects the user to click
the left mouse button. This point-and-click interaction continues until the user terminates it, by
pressing the middle mouse button, or pressing the right mouse button and selecting stop.

The return value can be used in linnet to create a linear network.

Value

Logical matrix m with value m[i,j] = TRUE for every pair of vertices X[i] and X[j] that should be
joined by an edge.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

linnet, clickppp

50 clicklpp

clicklpp Interactively Add Points on a Linear Network

Description

Allows the user to create a point pattern on a linear network by point-and-click in the display.

Usage

clicklpp(L, n=NULL, types=NULL, ...,
add=FALSE, main=NULL, hook=NULL)

Arguments

L Linear network on which the points will be placed. An object of class "linnet".

n Number of points to be added (if this is predetermined).

types Vector of types, when creating a multitype point pattern.

... Optional extra arguments to be passed to locator to control the display.

add Logical value indicating whether to create a new plot (add=FALSE) or draw over
the existing plot (add=TRUE).

main Main heading for plot.

hook For internal use only. Do not use this argument.

Details

This function allows the user to create a point pattern on a linear network by interactively clicking
on the screen display.

First the linear network L is plotted on the current screen device. Then the user is prompted to point
the mouse at any desired locations and click the left mouse button to add each point. Interactive
input stops after n clicks (if n was given) or when the middle mouse button is pressed.

The return value is a point pattern on the network L, containing the locations of all the clicked
points, after they have been projected onto the network L. Any points that were clicked outside the
bounding window of the network will be ignored.

If the argument types is given, then a multitype point pattern will be created. The user is prompted
to input the locations of points of type type[i], for each successive index i. (If the argument n was
given, there will be n points of each type.) The return value is a multitype point pattern on a linear
network.

This function uses the R command locator to input the mouse clicks. It only works on screen de-
vices such as ‘X11’, ‘windows’ and ‘quartz’. Arguments that can be passed to locator through ...
include pch (plotting character), cex (character expansion factor) and col (colour). See locator
and par.

Value

A point pattern (object of class "lpp").

connected.linnet 51

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>, based on an idea by Dominic Schuhmacher.

See Also

clickppp, identify.lpp, locator, clickpoly, clickbox, clickdist

connected.linnet Connected Components of a Linear Network

Description

Find the topologically-connected components of a linear network.

Usage

S3 method for class 'linnet'
connected(X, ..., what = c("labels", "components"))

Arguments

X A linear network (object of class "linnet").

... Ignored.

what Character string specifying the kind of result.

Details

The function connected is generic. This is the method for linear networks (objects of class
"linnet").

Two vertices of the network are connected if they are joined by a path in the network. This function
divides the network into subsets, such that all points in a subset are connected to each other.

If what="labels" the return value is a factor with one entry for each vertex of X, identifying which
connected component the vertex belongs to.

If what="components" the return value is a list of linear networks, which are the connected com-
ponents of X.

Value

If what="labels", a factor. If what="components", a list of linear networks.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Suman Rakshit.

52 connected.lpp

See Also

thinNetwork

Examples

remove some edges from a network to make it disconnected
plot(simplenet, col="grey", main="", lty=2)
A <- thinNetwork(simplenet, retainedges=-c(3,5))
plot(A, add=TRUE, lwd=2)
find the connected components
connected(A)
cA <- connected(A, what="components")
plot(cA[[1]], add=TRUE, col="green", lwd=2)
plot(cA[[2]], add=TRUE, col="blue", lwd=2)

connected.lpp Connected Components of a Point Pattern on a Linear Network

Description

Finds the topologically-connected components of a point pattern on a linear network, when all pairs
of points closer than a threshold distance are joined.

Usage

S3 method for class 'lpp'
connected(X, R=Inf, ..., dismantle=TRUE)

Arguments

X A linear network (object of class "lpp").

R Threshold distance. Pairs of points will be joined together if they are closer than
R units apart, measured by the shortest path in the network. The default R=Inf
implies that points will be joined together if they are mutually connected by any
path in the network.

dismantle Logical. If TRUE (the default), the network itself will be divided into its path-
connected components using connected.linnet.

... Ignored.

Details

The function connected is generic. This is the method for point patterns on a linear network
(objects of class "lpp"). It divides the point pattern X into one or more groups of points.

If R=Inf (the default), then X is divided into groups such that any pair of points in the same group
can be joined by a path in the network.

crossdist.lpp 53

If R is a finite number, then two points of X are declared to be R-close if they lie closer than R units
apart, measured by the length of the shortest path in the network. Two points are R-connected if
they can be reached by a series of steps between R-close pairs of points of X. Then X is divided into
groups such that any pair of points in the same group is R-connected.

If dismantle=TRUE (the default) the algorithm first checks whether the network is connected (i.e.
whether any pair of vertices can be joined by a path in the network), and if not, the network is
decomposed into its connected components.

Value

A point pattern (of class "lpp") with marks indicating the grouping, or a list of such point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

thinNetwork

Examples

behaviour like connected.ppp
U <- runiflpp(20, simplenet)
plot(connected(U, 0.15, dismantle=FALSE))

behaviour like connected.owin
remove some edges from a network to make it disconnected
plot(simplenet, col="grey", main="", lty=2)
A <- thinNetwork(simplenet, retainedges=-c(3,5))
plot(A, add=TRUE, lwd=2)
X <- runiflpp(10, A)
find the connected components
cX <- connected(X)
plot(cX[[1]], add=TRUE, col="blue", lwd=2)

crossdist.lpp Pairwise distances between two point patterns on a linear network

Description

Computes the distances between pairs of points taken from two different point patterns on the same
linear network.

Usage

S3 method for class 'lpp'
crossdist(X, Y, ..., method="C", check=TRUE)

54 crossdist.lpp

Arguments

X, Y Point patterns on a linear network (objects of class "lpp"). They must lie on the
same network.

... Ignored.

method String specifying which method of calculation to use when the network data use
the non-sparse representation. Values are "C" and "interpreted".

check Logical value specifying whether to check that X and Y are defined on the same
network. Default is check=TRUE. Setting check=FALSE will save time, but should
only be used if it is certain that the two networks are identical.

Details

Given two point patterns on a linear network, this function computes the distance from each point
in the first pattern to each point in the second pattern, measuring distance by the shortest path along
the network.

This is a method for the generic function crossdist for the class of point patterns on a linear
network (objects of class "lpp").

This function expects two point pattern objects X and Y on the same linear network, and returns the
matrix whose [i,j] entry is the shortest-path distance from X[i] to Y[j].

If two points cannot be joined by a path, the distance between them is infinite (Inf).

The argument method is not normally used. It is retained only for developers to check the validity
of the software.

Value

A matrix whose [i,j] entry is the distance from the i-th point in X to the j-th point in Y. Matrix
entries are nonnegative numbers or infinity (Inf).

Algorithms and accuracy

Distances are accurate within the numerical tolerance of the network, summary(X)$toler.

For network data stored in the non-sparse representation described in linnet, then pairwise dis-
tances are computed using the matrix of path distances between vertices of the network, using R
code if method = "interpreted", or using C code if method="C" (the default).

For networks stored in the sparse representation, the argument method has no effect, and the dis-
tances are computed using an efficient C algorithm.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

crossdist, crossdist.ppp, pairdist, nndist

crossing.linnet 55

Examples

v <- split(chicago)
X <- v$cartheft
Y <- v$burglary
d <- crossdist(X, Y)
d[1:3,1:4]

crossing.linnet Crossing Points between Linear Network and Other Lines

Description

Find all the crossing-points between a linear network and another pattern of lines or line segments.

Usage

crossing.linnet(X, Y)

Arguments

X Linear network (object of class "linnet").

Y A linear network, or a spatial pattern of line segments (class "psp") or infinite
lines (class "infline").

Details

All crossing-points between X and Y are determined. The result is a point pattern on the network X.

Value

Point pattern on a linear network (object of class "lpp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

crossing.psp

Examples

plot(simplenet, main="")
L <- infline(p=runif(3), theta=runif(3, max=pi/2))
plot(L, col="red")
Y <- crossing.linnet(simplenet, L)
plot(Y, add=TRUE, cols="blue")

56 cut.lpp

cut.lpp Classify Points in a Point Pattern on a Network

Description

For a point pattern on a linear network, classify the points into distinct types according to the
numerical marks in the pattern, or according to another variable.

Usage

S3 method for class 'lpp'
cut(x, z=marks(x), ...)

Arguments

x A point pattern on a linear network (object of class "lpp").

z Data determining the classification. A numeric vector, a factor, a pixel im-
age on a linear network (class "linim"), a function on a linear network (class
"linfun"), a tessellation on a linear network (class "lintess"), a string giving
the name of a column of marks, or one of the coordinate names "x", "y", "seg"
or "tp".

... Arguments passed to cut.default. They determine the breakpoints for the
mapping from numerical values in z to factor values in the output. See cut.default.

Details

This function has the effect of classifying each point in the point pattern x into one of several
possible types. The classification is based on the dataset z, which may be either

• a factor (of length equal to the number of points in z) determining the classification of each
point in x. Levels of the factor determine the classification.

• a numeric vector (of length equal to the number of points in z). The range of values of z will
be divided into bands (the number of bands is determined by ...) and z will be converted to
a factor using cut.default.

• a pixel image on a network (object of class "linim"). The value of z at each point of x will
be used as the classifying variable.

• a function on a network (object of class "linfun", see linfun). The value of z at each point
of x will be used as the classifying variable.

• a tessellation on a network (object of class "lintess", see lintess). Each point of x will be
classified according to the tile of the tessellation into which it falls.

• a character string, giving the name of one of the columns of marks(x), if this is a data frame.

• a character string identifying one of the coordinates: the spatial coordinates "x", "y" or the
segment identifier "seg" or the fractional coordinate along the segment, "tp".

data.lppm 57

The default is to take z to be the vector of marks in x (or the first column in the data frame of marks
of x, if it is a data frame). If the marks are numeric, then the range of values of the numerical marks
is divided into several intervals, and each interval is associated with a level of a factor. The result
is a marked point pattern, on the same linear network, with the same point locations as x, but with
the numeric mark of each point discretised by replacing it by the factor level. This is a convenient
way to transform a marked point pattern which has numeric marks into a multitype point pattern,
for example to plot it or analyse it. See the examples.

To select some points from x, use the subset operators [.lpp or subset.lpp instead.

Value

A multitype point pattern on the same linear network, that is, a point pattern object (of class "lpp")
with a marks vector that is a factor.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

cut, lpp, lintess, linfun, linim

Examples

X <- runiflpp(20, simplenet)
f <- linfun(function(x,y,seg,tp) { x }, simplenet)
plot(cut(X, f, breaks=4))
plot(cut(X, "x", breaks=4))
plot(cut(X, "seg"))

data.lppm Extract Original Data from a Fitted Point Process Model on a Network

Description

Given a fitted point process model on a linear network, this function extracts the original point
pattern dataset to which the model was fitted.

Usage

data.lppm(object)

Arguments

object fitted point process model on a linear network (an object of class "lppm").

58 delaunayNetwork

Details

An object of class "lppm" represents a point process model that has been fitted to a point pattern
dataset on a linear network. It is typically produced by the model-fitting algorithm lppm. The object
contains complete information about the original data point pattern to which the model was fitted.
This function extracts the original data pattern.

Value

A point pattern on a linear network (object of class "lpp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

lppm, data.ppm

Examples

fit <- lppm(spiders ~ x)
X <- data.lppm(fit)
'X' is identical to 'spiders'

delaunayNetwork Linear Network of Delaunay Triangulation or Dirichlet Tessellation

Description

Computes the edges of the Delaunay triangulation or Dirichlet tessellation of a point pattern, and
returns the result as a linear network object.

Usage

delaunayNetwork(X)

dirichletNetwork(X, ...)

Arguments

X A point pattern (object of class "ppp").

... Arguments passed to as.linnet.psp

deletebranch 59

Details

For delaunayNetwork, points of X which are neighbours in the Delaunay triangulation (see delaunay)
will be joined by a straight line. The result will be returned as a linear network (object of class
"linnet").

For dirichletNetwork, the Dirichlet tessellation is computed (see dirichlet) and the edges of the
tiles of the tessellation are extracted. This is converted to a linear network using as.linnet.psp.

Value

Linear network (object of class "linnet") or NULL.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

See Also

delaunay, dirichlet, delaunayDistance

Examples

LE <- delaunayNetwork(cells)
LI <- dirichletNetwork(cells)

deletebranch Delete or Extract a Branch of a Tree

Description

Deletes or extracts a given branch of a tree.

Usage

deletebranch(X, ...)

S3 method for class 'linnet'
deletebranch(X, code, labels, ...)

S3 method for class 'lpp'
deletebranch(X, code, labels, ...)

extractbranch(X, ...)

S3 method for class 'linnet'

60 deletebranch

extractbranch(X, code, labels, ..., which=NULL)

S3 method for class 'lpp'
extractbranch(X, code, labels, ..., which=NULL)

Arguments

X Linear network (object of class "linnet") or point pattern on a linear network
(object of class "lpp").

code Character string. Label of the branch to be deleted or extracted.

labels Vector of character strings. Branch labels for the vertices of the network, usually
obtained from treebranchlabels.

... Arguments passed to methods.

which Logical vector indicating which vertices of the network should be extracted.
Overrides code and labels.

Details

The linear network L <- X or L <- as.linnet(X) must be a tree, that is, it has no loops.

The argument labels should be a character vector giving tree branch labels for each vertex of the
network. It is usually obtained by calling treebranchlabels.

The branch designated by the string code will be deleted or extracted.

The return value is the result of deleting or extracting this branch from X along with any data
associated with this branch (such as points or marks).

Value

Another object of the same type as X obtained by deleting or extracting the specified branch.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

treebranchlabels, branchlabelfun, linnet

Examples

make a simple tree
m <- simplenet$m
m[8,10] <- m[10,8] <- FALSE
L <- linnet(vertices(simplenet), m)
plot(L, main="")
compute branch labels
tb <- treebranchlabels(L, 1)
tbc <- paste0("[", tb, "]")

density.linnet 61

text(vertices(L), labels=tbc, cex=2)

delete branch B
LminusB <- deletebranch(L, "b", tb)
plot(LminusB, add=TRUE, col="green")

extract branch B
LB <- extractbranch(L, "b", tb)
plot(LB, add=TRUE, col="red")

density.linnet Kernel Smoothing of Linear Network

Description

Compute a kernel smoothed intensity function for the line segments of a linear network.

Usage

S3 method for class 'linnet'
density(x, ...)

Arguments

x Linear network (object of class "linnet")

... Arguments passed to density.psp to control the amount of smoothing and the
spatial resolution of the result.

Details

This is the method for the generic function density for the class "linnet" (linear networks).

The network x is first converted to a line segment pattern (object of class "psp"). Then the method
density.psp is applied to the segment pattern.

A kernel estimate of the intensity of the line segment pattern is computed. The result is the convo-
lution of the isotropic Gaussian kernel, of standard deviation sigma, with the line segments.

The intensity of a line segment pattern is the (spatially-varying) amount of segment length per unit
area, expressed in the same units as the coordinates of x. If the units of x are in metres, then an
intensity value of 3 means that there are 3 metres of segment length per square metre of spatial
domain.

See density.psp for more details.

Value

A pixel image in two dimensions (object of class "im") or a numeric vector.

62 density.lpp

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

density.psp, im.object, density.

Examples

D <- density(simplenet, 0.1)
plot(D)
plot(simplenet, add=TRUE, col="white")
compare with average intensity
volume(simplenet)/area(Window(simplenet))

density.lpp Kernel Estimate of Intensity on a Linear Network

Description

Estimates the intensity of a point process on a linear network by applying kernel smoothing to the
point pattern data.

Usage

S3 method for class 'lpp'
density(x, sigma=NULL, ...,

weights=NULL,
distance=c("path", "euclidean"),
continuous=TRUE,
kernel="gaussian")

S3 method for class 'splitppx'
density(x, sigma=NULL, ...)

Arguments

x Point pattern on a linear network (object of class "lpp") to be smoothed.

sigma Smoothing bandwidth (standard deviation of the kernel). A single numerical
value in the same units as the spatial coordinates of x. Alternatively sigma
may be a function which selects a bandwidth when applied to X, for example,
bw.scott.iso or bw.lppl. There is a sensible default.

... Additional arguments controlling the algorithm and the spatial resolution of the
result. These arguments are passed either to densityQuick.lpp, densityHeat.lpp
or densityEqualSplit depending on the algorithm chosen.

density.lpp 63

weights Optional. Numeric vector of weights associated with the points of x. Weights
may be positive, negative or zero.

distance Character string (partially matched) specifying whether to use a kernel based
on paths in the network (distance="path", the default) or a two-dimensional
kernel (distance="euclidean").

kernel Character string specifying the smoothing kernel. See dkernel for possible
options.

continuous Logical value indicating whether to compute the “equal-split continuous” smoother
(continuous=TRUE, the default) or the “equal-split discontinuous” smoother
(continuous=FALSE). Applies only when distance="path".

Details

Kernel smoothing is applied to the points of x using either a kernel based on path distances in the
network, or a two-dimensional kernel. The result is a pixel image on the linear network (class
"linim") which can be plotted.

• If distance="path" (the default) then the smoothing is performed using a kernel based on
path distances in the network, as described in described in Okabe and Sugihara (2012) and
McSwiggan et al (2016).

– If continuous=TRUE (the default), smoothing is performed using the “equal-split con-
tinuous” rule described in Section 9.2.3 of Okabe and Sugihara (2012). The resulting
function is continuous on the linear network.

– If continuous=FALSE, smoothing is performed using the “equal-split discontinuous” rule
described in Section 9.2.2 of Okabe and Sugihara (2012). The resulting function is con-
tinuous except at the network vertices.

– In the default case (where distance="path" and continuous=TRUE and kernel="gaussian"),
computation is performed rapidly by solving the classical heat equation on the network,
as described in McSwiggan et al (2016). The arguments are passed to densityHeat.lpp
which performs the computation. Computational time is short, but increases quadratically
with sigma.

– In all other cases, computation is performed by path-tracing as described in Okabe and
Sugihara (2012); the arguments are passed to densityEqualSplit which performs the
computation. Computation time can be extremely long, and increases exponentially with
sigma.

• If distance="euclidean", the smoothing is performed using a two-dimensional kernel. The
arguments are passed to densityQuick.lpp to perform the computation. Computation time
is very short. See the help for densityQuick.lpp for further details.

There is also a method for split point patterns on a linear network (class "splitppx") which will
return a list of pixel images.

The argument sigma specifies the smoothing bandwidth. If sigma is missing or NULL, the default is
one-eighth of the length of the shortest side of the bounding box of x. If sigma is a function in the
R language, it is assumed to be a bandwidth selection rule, and it will be applied to x to compute
the bandwidth value.

64 densityEqualSplit

Value

A pixel image on the linear network (object of class "linim"), or in some cases, a numeric vector
of length equal to npoints(x).

Infinite bandwidth

If sigma=Inf, the resulting density estimate is constant over all locations, and is equal to the average
density of points per unit length. (If the network is not connected, then this rule is applied separately
to each connected component of the network).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Greg McSwiggan.

References

McSwiggan, G., Baddeley, A. and Nair, G. (2016) Kernel density estimation on a linear network.
Scandinavian Journal of Statistics 44, 324–345.

Okabe, A. and Sugihara, K. (2012) Spatial analysis along networks. Wiley.

See Also

lpp, linim, densityQuick.lpp, densityHeat.lpp, densityVoronoi.lpp

Examples

X <- runiflpp(3, simplenet)
D <- density(X, 0.2, verbose=FALSE)
plot(D, style="w", main="", adjust=2)
Dq <- density(X, 0.2, distance="euclidean")
plot(Dq, style="w", main="", adjust=2)
Dw <- density(X, 0.2, weights=c(1,2,-1), verbose=FALSE)
De <- density(X, 0.2, kernel="epanechnikov", verbose=FALSE)
Ded <- density(X, 0.2, kernel="epanechnikov", continuous=FALSE, verbose=FALSE)

densityEqualSplit Equal-Split Algorithm for Kernel Density on a Network

Description

Computes a kernel density estimate on a linear network using the Okabe-Sugihara equal-split algo-
rithms.

densityEqualSplit 65

Usage

densityEqualSplit(x, sigma = NULL, ...,
at = c("pixels", "points"),
leaveoneout=TRUE,
weights = NULL,
kernel = "epanechnikov", continuous = TRUE,

epsilon = 1e-06, verbose = TRUE, debug = FALSE, savehistory = TRUE)

Arguments

x Point pattern on a linear network (object of class "lpp") to be smoothed.

sigma Smoothing bandwidth (standard deviation of the kernel). A numeric value in the
same units as the spatial coordinates of x. Alternatively sigma may be a function
which selects a bandwidth when applied to X, for example, bw.scott.iso or
bw.lppl. There is a sensible default.

... Arguments passed to as.mask determining the resolution of the result.

at String (partially matched) specifying whether to compute the intensity values at
a fine grid of locations on the network (at="pixels", the default) or only at the
points of x (at="points").

leaveoneout Logical value indicating whether to compute a leave-one-out estimator. Appli-
cable only when at="points".

weights Optional. Numeric vector of weights associated with the points of x. Weights
may be positive, negative or zero.

kernel Character string specifying the smoothing kernel. See dkernel for possible
options.

continuous Logical value indicating whether to compute the “equal-split continuous” smoother
(continuous=TRUE, the default) or the “equal-split discontinuous” smoother
(continuous=FALSE).

epsilon Tolerance value. A tail of the kernel with total mass less than epsilon may be
deleted.

verbose Logical value indicating whether to print progress reports.

debug Logical value indicating whether to print debugging information.

savehistory Logical value indicating whether to save the entire history of the algorithm, for
the purposes of evaluating performance.

Details

Kernel smoothing is applied to the points of x using a kernel based on path distances in the network.
The result is a pixel image on the linear network (class "linim") which can be plotted.

Smoothing is performed using one of the “equal-split” rules described in Okabe and Sugihara
(2012).

• If continuous=TRUE (the default), smoothing is performed using the “equal-split continu-
ous” rule described in Section 9.2.3 of Okabe and Sugihara (2012). The resulting function is
continuous on the linear network.

66 densityEqualSplit

• If continuous=FALSE, smoothing is performed using the “equal-split discontinuous” rule de-
scribed in Section 9.2.2 of Okabe and Sugihara (2012). The resulting function is not continu-
ous.

Computation is performed by path-tracing as described in Okabe and Sugihara (2012).

It is advisable to choose a kernel with bounded support such as kernel="epanechnikov". With a
Gaussian kernel, computation time can be long, and increases exponentially with sigma.

Faster algorithms are available through density.lpp.

The argument sigma specifies the smoothing bandwidth. If sigma is missing or NULL, the default is
one-eighth of the length of the shortest side of the bounding box of x. If sigma is a function in the
R language, it is assumed to be a bandwidth selection rule, and it will be applied to x to compute
the bandwidth value.

Value

If at="pixels" (the default), a pixel image on the linear network (object of class "linim").

If at="points", a numeric vector with one entry for each point of x.

Infinite bandwidth

If sigma=Inf, the resulting density estimate is constant over all locations, and is equal to the average
density of points per unit length. (If the network is not connected, then this rule is applied separately
to each connected component of the network).

Discretisation

The kernel estimate is computed exactly (apart from numerical error) but only at a discrete set of
sample points along the network. The spacing of sample points is determined by the default pixel
resolution. To increase accuracy, a finer pixellation should be specified using one of the arguments
dimyx, eps or xy passed to as.mask. To increase accuracy for the rest of the R session, specify a
larger value of spatstat.options('npixel'). For example dimyx=512 or spatstat.options(npixel=512)would
specify a 512 x 512 pixel grid, reducing the sample spacing by a factor of 4 from the default 128 x
128 grid. Refining the sample spacing will increase computation time.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Greg McSwiggan.

References

Okabe, A. and Sugihara, K. (2012) Spatial analysis along networks. Wiley.

See Also

density.lpp

densityfun.lpp 67

Examples

X <- runiflpp(3, simplenet)
De <- density(X, 0.2, kernel="epanechnikov", verbose=FALSE)
Ded <- density(X, 0.2, kernel="epanechnikov", continuous=FALSE, verbose=FALSE)

densityfun.lpp Kernel Estimate of Intensity on a Linear Network as a Spatial Function

Description

Computes a kernel estimate of the intensity of a point process on a linear network, and returns the
intensity estimate as a function of spatial location.

Usage

S3 method for class 'lpp'
densityfun(X, sigma, ..., weights=NULL, nsigma=1, verbose=FALSE)

Arguments

X Point pattern on a linear network (object of class "lpp").

sigma Bandwidth of kernel (standard deviation of Gaussian kernel), in the same units
of length as X.

... Arguments passed to density.lpp to control the discretisation.

weights Optional numeric vector of weights associated with the points of X.

nsigma Integer. The number of different bandwidths for which a result should be re-
turned. If nsigma=1 (the default), the result is a function giving kernel estimate
with bandwidth sigma. If nsigma > 1, the result is a function with an additional
argument k containing the kernel estimates for the nsigma+1 equally-spaced
time steps from 0 to sigma^2.

verbose Logical value indicating whether to print progress reports.

Details

Kernel smoothing is applied to the points of X using the diffusion algorithm of McSwiggan et al
(2016). The result is a function on the linear network (object of class "linfun") that can be printed,
plotted and evaluated at any location.

This is a method for the generic function densityfun for the class "lpp" of point patterns on a
linear network.

68 densityfun.lpp

Value

Function on a linear network (object of class "linfun").

If nsigma=1 (the default), the result is a function giving kernel estimate with bandwidth sigma.

If nsigma > 1, the result is a function with an additional argument k. If k is specified, the function
returns the kernel estimate for bandwidth tau = sigma * sqrt(k/nsigma). If k is not specified,
results are returned for all k = 1, 2, ..., nsigma.

The result also has attributes

• attr(result, "dt") giving the time step ∆t;

• attr(result, "dx") giving the spacing ∆x between sample points in the numerical algo-
rithm;

• attr(result, "sigma") giving the smoothing bandwidth σ used (or the successive band-
widths used at each sampled time step, if nsigma > 1).

Author(s)

Greg McSwiggan, with tweaks by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

McSwiggan, G., Baddeley, A. and Nair, G. (2016) Kernel Density Estimation on a Linear Network.
Scandinavian Journal of Statistics 44, 324–345.

See Also

density.lpp which returns a pixel image on the linear network.

methods.linfun for methods applicable to "linfun" objects.

Examples

X <- unmark(chicago)
single bandwidth
g <- densityfun(X, 30)
plot(g)
Y <- X[1:5]
g(Y)
weighted
gw <- densityfun(X, 30, weights=runif(npoints(X)))
sequence of bandwidths
g10 <- densityfun(X, 30, nsigma=10)
g10(Y, k=10)
g10(Y)
plot(as.linim(g10, k=5))

densityHeat.lpp 69

densityHeat.lpp Kernel Density on a Network using Heat Equation

Description

Given a point pattern on a linear network, compute a kernel estimate of intensity, by solving the
heat equation.

Usage

S3 method for class 'lpp'
densityHeat(x, sigma=NULL, ...,

at=c("pixels", "points"), leaveoneout=TRUE,
weights = NULL,
dx = NULL, dt = NULL, iterMax = 1e+06,
finespacing = TRUE, verbose=FALSE)

Arguments

x Point pattern on a linear network (object of class "lpp") to be smoothed.

sigma Smoothing bandwidth (standard deviation of the kernel). A numeric value in the
same units as the spatial coordinates of x. Alternatively sigma may be a function
which selects a bandwidth when applied to X, for example, bw.scott.iso or
bw.lppl. There is a sensible default.

... Arguments passed to as.mask determining the resolution of the result. (Any
other arguments are ignored.)

at String specifying whether to compute the intensity values at a fine grid of pixel
locations on the network (at="pixels", the default) or only at the data points
of x (at="points").

leaveoneout Logical value indicating whether to compute a leave-one-out estimator. Appli-
cable only when at="points".

weights Optional. Numeric vector of weights associated with the points of x. Weights
may be positive, negative or zero.

dx Optional. Spacing of the sampling points along the network. A single number
giving a distance value in the same units as x.

dt Optional. Time step in the heat equation solver. A single number.

iterMax Maximum number of iterations.

finespacing Logical value specifying whether the discrete approximation is required to be
accurate along every segment of the network, no matter how short the segment
is. See the section on Discretisation.

verbose Logical value specifying whether to print progress reports.

70 densityHeat.lpp

Details

The function densityHeat is generic. This is the method for the class "lpp" of points on a linear
network.

Kernel smoothing is applied to the points of x using a kernel based on path distances in the network.
If at="pixels" (the default), the result is a pixel image on the linear network (class "linim") which
can be plotted. If at="points" the result is a numeric vector giving the density estimates at the
data points of x.

The smoothing operation is equivalent to the “equal-split continuous” rule described in Section
9.2.3 of Okabe and Sugihara (2012). However, the actual computation is performed rapidly, by
solving the classical time-dependent heat equation on the network, as described in McSwiggan et
al (2016). Computational time is short, but increases quadratically with sigma.

If at="points" and leaveoneout=TRUE, a leave-one-out estimate is computed at each data point
(that is, the estimate at each data point x[i] is based on all of the points except x[i]) using the
truncated series approximation of McSwiggan et al (2019).

The argument sigma specifies the smoothing bandwidth. If sigma is missing or NULL, the default is
one-eighth of the length of the shortest side of the bounding box of x. If sigma is a function in the
R language, it is assumed to be a bandwidth selection rule, and it will be applied to x to compute
the bandwidth value.

Value

If at="pixels" (the default), a pixel image on the linear network (object of class "linim").

If at="points", a numeric vector with one entry for each point of x.

Infinite bandwidth

If sigma=Inf, the resulting density estimate is constant over all locations, and is equal to the average
density of points per unit length. (If the network is not connected, then this rule is applied separately
to each connected component of the network).

Discretisation and Error Messages

The computation is performed by discretising the network. Accuracy of the result can be increased
by using a finer discretisation, at the cost of slower computation.

The simplest way to increase accuracy is to specify the argument dx which controls the spacing
between sample points on the network. However, specifying a very small value of dx may result
in an error, because it implies a very large number of sample points or a very large number of
iterations.

If dx is not specified, then it will be determined by other arguments according to a set of rules. The
argument finespacing determines which rule will be applied.

• If finespacing=TRUE (the default), then the sample points will be chosen to ensure sufficient
accuracy along every segment of the network. The sample point spacing dx must not exceed
one-third of the length of the shortest segment of the network. The default value of dx is
smaller than this. This ensures that the discrete approximation is accurate along every seg-
ment, no matter how short the segment is. However, this may not be feasible if it implies a
very large number of sample points, or a large number of iterations: in such cases, the code

densityQuick.lpp 71

may terminate with an error about illegal values of dx, dt or iterMax. The user may increase
the value of iterMax to relax this constraint.

• If finespacing=FALSE, then the sample points will be chosen to ensure adequate accuracy
at every pixel in the default pixellation of the window of x. The default spacing of sample
points dx will be about one-half the width of a pixel. This is usually a much coarser resolution
than the one selected by finespacing=TRUE. If it is too coarse, the pixel resolution can be
refined by specifying one of the arguments dimyx, eps or xy which are passed to as.mask.
For example, dimyx=512 would specify a 512 x 512 pixel grid and would increase accuracy
relative to the default 128 x 128 grid. The default pixel resolution can be changed for the
remainder of the R session by spatstat.options('npixel').

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Greg McSwiggan.

References

McSwiggan, G., Baddeley, A. and Nair, G. (2016) Kernel density estimation on a linear network.
Scandinavian Journal of Statistics 44, 324–345.

McSwiggan, G., Baddeley, A. and Nair, G. (2019) Estimation of relative risk for events on a linear
network. Statistics and Computing 30, 469–484.

Okabe, A. and Sugihara, K. (2012) Spatial analysis along networks. Wiley.

See Also

density.lpp

Examples

X <- runiflpp(3, simplenet)
D <- densityHeat(X, 0.2)
plot(D, style="w", main="", adjust=2)
densityHeat.lpp(X, 0.2, at="points")
Dw <- densityHeat(X, 0.2, weights=c(1,2,-1))

densityQuick.lpp Kernel Estimation of Intensity on a Network using a 2D Kernel

Description

Estimates the intensity of a point process on a linear network using a two-dimensional smoothing
kernel.

72 densityQuick.lpp

Usage

densityQuick.lpp(x, sigma=NULL, ...,
kernel="gaussian",
at = c("pixels", "points"),
what = c("estimate", "se", "var"),
leaveoneout = TRUE,
diggle = FALSE,
edge2D = FALSE,
weights = NULL,
positive = FALSE)

Arguments

x Point pattern on a linear network (object of class "lpp").

sigma Smoothing bandwidth. A single numeric value, in the same units as the coor-
dinates of x. Alternatively sigma may be a function which selects a bandwidth
when applied to x, for example, bw.scott.iso or bw.lppl. There is a sensible
default.

... Additional arguments passed to as.mask to determine the pixel resolution, or
arguments passed to sigma if it is a function.

kernel String (partially matched) specifying the smoothing kernel. Current options are
"gaussian", "epanechnikov", "quartic" or "disc".

at String (partially matched) specifying whether to compute the intensity values at
a fine grid of locations on the network (at="pixels", the default) or only at the
points of x (at="points").

what String (partially matched) specifying whether to calculate the intensity estimate,
or its estimated standard error, or its estimated variance.

leaveoneout Logical value indicating whether to compute a leave-one-out estimator. Appli-
cable only when at="points".

diggle Logical value specifying whether to use the ‘Diggle’ correction.

edge2D Logical value specifying whether to apply the usual two-dimensional edge cor-
rection procedure to the numerator and denominator of the estimate.

weights Optional weights to be attached to the points. A numeric vector, an expression,
or a pixel image.

positive Logical value indicating whether to force the resulting values to be positive.
Default is FALSE for the sake of speed.

Details

Kernel smoothing is applied to the points of x using a two-dimensional Gaussian kernel, as de-
scribed in Rakshit et al (2019). The result is a pixel image on the linear network (class "linim")
which can be plotted.

Other techniques for kernel smoothing on a network are implemented in density.lpp. The main
advantages of using a two-dimensional kernel are very fast computation and insensitivity to changes

densityQuick.lpp 73

in the network geometry. The main disadvantage is that it ignores the connectivity of the network.
See Rakshit et al (2019) for further explanation.

The argument sigma specifies the smoothing bandwidth. If sigma is missing or NULL, the default is
one-eighth of the length of the shortest side of the bounding box of x. If sigma is a function in the
R language, it is assumed to be a bandwidth selection rule, and it will be applied to x to compute
the bandwidth value.

Value

If at="pixels" (the default), a pixel image on the linear network (object of class "linim").

If at="points", a numeric vector with one entry for each point of x.

Infinite bandwidth

If sigma=Inf, the resulting density estimate is constant over all locations, and is equal to the average
density of points per unit length. (If the network is not connected, then this rule is applied separately
to each connected component of the network).

Author(s)

Adrian Baddeley, Suman Rakshit and Tilman Davies

References

Rakshit, S., Davies, T., Moradi, M., McSwiggan, G., Nair, G., Mateu, J. and Baddeley, A. (2019)
Fast kernel smoothing of point patterns on a large network using 2D convolution. International
Statistical Review 87 (3) 531–556. DOI: 10.1111/insr.12327.

See Also

density.lpp, the main function for density estimation on a network.

bw.scott, bw.scott.iso, bw.lpplfor bandwidth selection.

Examples

X <- unmark(chicago)
plot(densityQuick.lpp(X, 500))
plot(densityQuick.lpp(X, 500, diggle=TRUE))
plot(densityQuick.lpp(X, bw.scott.iso))
plot(densityQuick.lpp(X, 500, what="se"))

74 densityVoronoi.lpp

densityVoronoi.lpp Intensity Estimate of Point Pattern on Linear Network Using Voronoi-
Dirichlet Tessellation

Description

Computes an adaptive estimate of the intensity function of a point pattern on a linear network, using
the Dirichlet-Voronoi tessellation on the network.

Usage

S3 method for class 'lpp'
densityVoronoi(X, f = 1, ...,

metric=c("shortestpath", "Euclidean"),
nrep = 1, verbose = TRUE)

Arguments

X Point pattern on a linear network (object of class "lpp").

f Fraction (between 0 and 1 inclusive) of the data points that will be used to build
a tessellation for the intensity estimate.

... Arguments passed to linim determining the pixel resolution of the result.

metric Character string (partially matched) specifying the distance metric used to define
the Dirichlet tessellation. Argument passed to lineardirichlet.

nrep Number of independent repetitions of the randomised procedure.

verbose Logical value indicating whether to print progress reports.

Details

This function is an alternative to density.lpp. It computes an estimate of the intensity function of
a point pattern dataset on a linear network. The result is a pixel image on the network, giving the
estimated intensity.

This function is a method for the generic densityVoronoi for the class "lpp" of point patterns on
a linear network.

If f=1 (the default), the Voronoi estimate (Barr and Schoenberg, 2010) is computed: the point pat-
tern X is used to construct a Voronoi/Dirichlet tessellation on the network (see lineardirichlet);
the lengths of the Dirichlet tiles are computed; the estimated intensity in each tile is the reciprocal
of the tile length. The result is a pixel image of intensity estimates which are constant on each tile
of the tessellation.

If f=0, the intensity estimate at every location is equal to the average intensity (number of points
divided by network length). The result is a pixel image of intensity estimates which are constant.

If f is strictly between 0 and 1, the smoothed Voronoi estimate (Moradi et al, 2019) is computed.
The dataset X is randomly thinned by deleting or retaining each point independently, with probability
f of retaining a point. The thinned pattern is used to construct a Dirichlet tessellation and form the

diagnose.lppm 75

Voronoi estimate, which is then adjusted by a factor 1/f. This procedure is repeated nrep times
and the results are averaged to obtain the smoothed Voronoi estimate.

The value f can be chosen automatically by bandwidth selection using bw.voronoi.

Value

Pixel image on a linear network (object of class "linim").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk> and Mehdi Moradi <m2.moradi@yahoo.com>.

References

Moradi, M., Cronie, 0., Rubak, E., Lachieze-Rey, R., Mateu, J. and Baddeley, A. (2019) Resample-
smoothing of Voronoi intensity estimators. Statistics and Computing 29 (5) 995–1010.

See Also

densityVoronoi is the generic, with a method for class "ppp".

lineardirichlet computes the Dirichlet-Voronoi tessellation on a network.

bw.voronoi performs bandwidth selection of the fraction f.

See also density.lpp.

Examples

if(interactive()) {
X <- spiders
nr <- 100

} else {
X <- runiflpp(10, simplenet)
nr <- 3

}
plot(densityVoronoi(X))
plot(densityVoronoi(X, 0.1, nrep=nr))
plot(densityVoronoi(X, metric="E"))
plot(dirichlet(as.ppp(X)), add=TRUE, lty=2)

diagnose.lppm Diagnostic Plots for Fitted Point Process Model on a Linear Network

Description

Given a point process model fitted to a point pattern on a linear network, produce diagnostic plots
based on residuals.

76 diagnose.lppm

Usage

S3 method for class 'lppm'
diagnose(object, ..., type="raw", which="all", sigma=NULL,

cumulative=TRUE,
plot.it=TRUE, rv = NULL,
compute.sd=is.poisson(object), compute.cts=TRUE,
envelope=FALSE, nsim=39, nrank=1,
typename, oldstyle=FALSE, splineargs=list(spar=0.5))

S3 method for class 'diaglppm'
plot(x, ..., which,

plot.neg=c("image", "discrete"),
plot.smooth=c("image", "persp"),
plot.sd, spacing=0.1, outer=3,
srange=NULL, monochrome=FALSE, main=NULL)

Arguments

object The fitted point process model (an object of class "lppm") for which diagnostics
should be produced. This object is usually obtained from lppm.

type String indicating the type of residuals or weights to be used. Current options are
"eem" for the Stoyan-Grabarnik exponential energy weights, "raw" for the raw
residuals, "inverse" for the inverse-lambda residuals, and "pearson" for the
Pearson residuals. A partial match is adequate.

which Character string or vector indicating the choice(s) of plots to be generated. Op-
tions are "all", "marks", "smooth", "x", "y" and "sum". Multiple choices
may be given but must be matched exactly. See Details.

sigma Bandwidth for kernel smoother in "smooth" option.

cumulative Logical flag indicating whether the lurking variable plots for the x and y coordi-
nates will be the plots of cumulative sums of marks (cumulative=TRUE) or the
plots of marginal integrals of the smoothed residual field (cumulative=FALSE).

plot.it Logical value indicating whether plots should be shown. If plot.it=FALSE, the
computed diagnostic quantities are returned without plotting them.

plot.neg String indicating how the density part of the residual measure should be plotted.

plot.smooth String indicating how the smoothed residual field should be plotted.
compute.sd, plot.sd

Logical values indicating whether error bounds should be computed and added
to the "x" and "y" plots. The default is TRUE for Poisson models and FALSE for
non-Poisson models. See Details.

envelope, nsim, nrank
Arguments passed to envelope.lppm in order to plot simulation envelopes for
the lurking variable plots.

rv Usually absent. Advanced use only. If this argument is present, the values of the
residuals will not be calculated from the fitted model object but will instead be
taken directly from rv.

diagnose.lppm 77

spacing The spacing between plot panels (when a four-panel plot is generated) expressed
as a fraction of the width of the window of the point pattern.

outer The distance from the outermost line of text to the nearest plot panel, expressed
as a multiple of the spacing between plot panels.

srange Vector of length 2 that will be taken as giving the range of values of the smoothed
residual field, when generating an image plot of this field. This is useful if you
want to generate diagnostic plots for two different fitted models using the same
colour map.

monochrome Flag indicating whether images should be displayed in greyscale (suitable for
publication) or in colour (suitable for the screen). The default is to display in
colour.

oldstyle Logical flag indicating whether error bounds should be plotted using the ap-
proximation given in the original paper (oldstyle=TRUE), or using the correct
asymptotic formula (oldstyle=FALSE).

splineargs Argument passed to smooth.spline to control the smoothing in the lurking
variable plot.

x The value returned from a previous call to diagnose.lppm. An object of class
"diaglppm".

typename String to be used as the name of the residuals.

main Main title for the plot.

... Extra arguments, controlling either the resolution of the smoothed image (passed
from diagnose.lppm to density.lpp) or the appearance of the plots (passed
from diagnose.lppm to plot.diaglppm and from plot.diaglppm to plot.default).

compute.cts Advanced use only.

Details

The function diagnose.lppm generates several diagnostic plots for a fitted point process model.
The plots display the residuals from the fitted model (Baddeley et al, 2005) or alternatively the ‘ex-
ponential energy marks’ (Stoyan and Grabarnik, 1991). These plots can be used to assess goodness-
of-fit, to identify outliers in the data, and to reveal departures from the fitted model.

The function diagnose is generic, with a method for class "lppm" which is documented in this
page.

The argument object must be a fitted point process model (object of class "lppm") typically pro-
duced by the maximum pseudolikelihood fitting algorithm lppm).

The argument type selects the type of residual or weight that will be computed. Current options
are:

"eem": exponential energy marks (Stoyan and Grabarnik, 1991) computed by eem.lppm. These
are positive weights attached to the data points (i.e. the points of the point pattern dataset to
which the model was fitted). If the fitted model is correct, then the sum of these weights for
all data points in a spatial region B has expected value equal to the area of B. See eem.lppm
for further explanation.

78 diagnose.lppm

"raw", "inverse" or "pearson": point process residuals (Baddeley et al, 2005) computed by the
function residuals.lppm. These are residuals attached both to the data points and to some
other points in the window of observation (namely, to the dummy points of the quadrature
scheme used to fit the model). If the fitted model is correct, then the sum of the residuals in a
spatial region B has mean zero. The options are

• "raw": the raw residuals;
• "inverse": the ‘inverse-lambda’ residuals, a counterpart of the exponential energy weights;
• "pearson": the Pearson residuals.

See residuals.lppm for further explanation.

The argument which selects the type of plot that is produced. Options are:

"marks": plot the residual measure. For the exponential energy weights (type="eem") this dis-
plays circles centred at the points of the data pattern, with radii proportional to the exponen-
tial energy weights. For the residuals (type="raw", type="inverse" or type="pearson")
this again displays circles centred at the points of the data pattern with radii proportional to
the (positive) residuals, while the plotting of the negative residuals depends on the argument
plot.neg. If plot.neg="image" then the negative part of the residual measure, which is a
density, is plotted as a colour image. If plot.neg="discrete" then the discretised negative
residuals (obtained by approximately integrating the negative density using the quadrature
scheme of the fitted model) are plotted as squares centred at the dummy points with side
lengths proportional to the (negative) residuals. [To control the size of the circles and squares,
use the argument maxsize.]

"smooth": plot a kernel-smoothed version of the residual measure. Each data or dummy point is
taken to have a ‘mass’ equal to its residual or exponential energy weight. (Note that residuals
can be negative). This point mass is then replaced by a bivariate isotropic Gaussian density
with standard deviation sigma. The value of the smoothed residual field at any point in the
window is the sum of these weighted densities. If the fitted model is correct, this smoothed
field should be flat, and its height should be close to 0 (for the residuals) or 1 (for the exponen-
tial energy weights). The field is plotted either as an image, contour plot or perspective view
of a surface, according to the argument plot.smooth. The range of values of the smoothed
field is printed if the option which="sum" is also selected.

"x": produce a ‘lurking variable’ plot for the x coordinate. This is a plot of h(x) against x (solid
lines) and of E(h(x)) against x (dashed lines), where h(x) is defined below, and E(h(x))
denotes the expectation of h(x) assuming the fitted model is true.

• if cumulative=TRUE then h(x) is the cumulative sum of the weights or residuals for all
points which have X coordinate less than or equal to x. For the residuals E(h(x)) = 0,
and for the exponential energy weights E(h(x)) = area of the subset of the window to
the left of the line X = x.

• if cumulative=FALSE then h(x) is the marginal integral of the smoothed residual field
(see the case which="smooth" described above) on the x axis. This is approximately the
derivative of the plot for cumulative=TRUE. The value of h(x) is computed by summing
the values of the smoothed residual field over all pixels with the given x coordinate. For
the residuals E(h(x)) = 0, and for the exponential energy weights E(h(x)) = length of
the intersection between the observation window and the line X = x.

If plot.sd = TRUE, then superimposed on the lurking variable plot are the pointwise two-
standard-deviation error limits for h(x) calculated for the inhomogeneous Poisson process.

diagnose.lppm 79

The default is plot.sd = TRUE for Poisson models and plot.sd = FALSE for non-Poisson
models.

"y": produce a similar lurking variable plot for the y coordinate.
"sum": print the sum of the weights or residuals for all points in the window (clipped by a margin

rbord if required) and the area of the same window. If the fitted model is correct the sum
of the exponential energy weights should equal the area of the window, while the sum of the
residuals should equal zero. Also print the range of values of the smoothed field displayed in
the "smooth" case.

"all": All four of the diagnostic plots listed above are plotted together in a two-by-two display.
Top left panel is "marks" plot. Bottom right panel is "smooth" plot. Bottom left panel is "x"
plot. Top right panel is "y" plot, rotated 90 degrees.

The argument rbord ensures there are no edge effects in the computation of the residuals. The
diagnostic calculations will be confined to those points of the data pattern which are at least rbord
units away from the edge of the window. The value of rbord should be greater than or equal to the
range of interaction permitted in the model.

By default, the two-standard-deviation limits are calculated from the exact formula for the asymp-
totic variance of the residuals under the asymptotic normal approximation, equation (37) of Bad-
deley et al (2006). However, for compatibility with the original paper of Baddeley et al (2005),
if oldstyle=TRUE, the two-standard-deviation limits are calculated using the innovation variance,
an over-estimate of the true variance of the residuals. (However, see the section about Replicated
Data).

The argument rv would normally be used only by experts. It enables the user to substitute arbitrary
values for the residuals or marks, overriding the usual calculations. If rv is present, then instead
of calculating the residuals from the fitted model, the algorithm takes the residuals from the object
rv, and plots them in the manner appropriate to the type of residual or mark selected by type. If
type ="eem" then rv should be similar to the return value of eem.lppm, namely, a numeric vector
of length equal to the number of points in the original data point pattern. Otherwise, rv should be
similar to the return value of residuals.lppm, that is, it should be an object of class "msr" (see
msr) representing a signed measure.

The return value of diagnose.lppm is an object of class "diaglppm". The plot method for this
class is documented here. There is also a print method. See the Examples.

In plot.diaglppm, if a four-panel diagnostic plot is produced (the default), then the extra arguments
xlab, ylab, rlab determine the text labels for the x and y coordinates and the residuals, respec-
tively. The undocumented arguments col.neg and col.smooth control the colour maps used in the
top left and bottom right panels respectively.

Value

An object of class "diaglppm" which contains the coordinates needed to reproduce the selected
plots. This object can be plotted using plot.diaglppm and printed using print.diaglppm.

Replicated Data

Note that if object is a model that was obtained by first fitting a model to replicated point pattern
data using mppm and then using subfits to extract a model for one of the individual point patterns,
then the variance calculations are only implemented for the innovation variance (oldstyle=TRUE)
and this is the default in such cases.

80 diagnose.lppm

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Baddeley, A., Møller, J. and Pakes, A.G. (2008) Properties of residuals for spatial point processes.
Annals of the Institute of Statistical Mathematics 60, 627–649.

Stoyan, D. and Grabarnik, P. (1991) Second-order characteristics for stochastic structures connected
with Gibbs point processes. Mathematische Nachrichten, 151:95–100.

See Also

residuals.lppm, eem.lppm, lppm, lurking.lppm.

Examples

if(interactive()) {
X <- unmark(chicago)

} else {
g <- function(x, y, seg, tp) { exp(x + 3*y) }
lambda <- linfun(g, simplenet)
X <- rpoislpp(lambda)

}
fit <- lppm(X ~ x + y)
diagnose(fit)

diagnose(fit, type="pearson")

diagnose(fit, which="marks")

diagnose(fit, type="raw", plot.neg="discrete")

diagnose(fit, type="pearson", which="smooth")

save the diagnostics and plot them later
u <- diagnose(fit, plot.it=FALSE)
if(interactive()) {

plot(u)
plot(u, which="marks")

}

diameter.linnet 81

diameter.linnet Diameter and Bounding Radius of a Linear Network

Description

Compute the diameter or bounding radius of a linear network measured using the shortest path
distance.

Usage

S3 method for class 'linnet'
diameter(x)

S3 method for class 'linnet'
boundingradius(x, ...)

Arguments

x Linear network (object of class "linnet").

... Ignored.

Details

The diameter of a linear network (in the shortest path distance) is the maximum value of the shortest-
path distance between any two points u and v on the network.

The bounding radius of a linear network (in the shortest path distance) is the minimum value, over
all points u on the network, of the maximum shortest-path distance from u to another point v on the
network.

The functions boundingradius and diameter are generic; the functions boundingradius.linnet
and diameter.linnet are the methods for objects of class linnet.

Value

A single numeric value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

boundingradius, diameter, linnet

Examples

diameter(simplenet)
boundingradius(simplenet)

82 distfun.lpp

distfun.lpp Distance Map on Linear Network

Description

Compute the distance function of a point pattern on a linear network.

Usage

S3 method for class 'lpp'
distfun(X, ..., k=1)

Arguments

X A point pattern on a linear network (object of class "lpp").

k An integer. The distance to the kth nearest point will be computed.

... Extra arguments are ignored.

Details

On a linear network L, the “geodesic distance function” of a set of points A in L is the mathematical
function f such that, for any location s on L, the function value f(s) is the shortest-path distance
from s to A.

The command distfun.lpp is a method for the generic command distfun for the class "lpp" of
point patterns on a linear network.

If X is a point pattern on a linear network, f <- distfun(X) returns a function in the R language
that represents the distance function of X. Evaluating the function f in the form v <- f(x,y), where
x and y are any numeric vectors of equal length containing coordinates of spatial locations, yields
the values of the distance function at these locations. More efficiently f can be called in the form
v <- f(x, y, seg, tp) where seg and tp are the local coordinates on the network. It can also be
called as v <- f(x) where x is a point pattern on the same linear network.

The function f obtained from f <- distfun(X) also belongs to the class "linfun". It can be
printed and plotted immediately as shown in the Examples. It can be converted to a pixel image
using as.linim.

Value

A function with arguments x,y and optional arguments seg,tp. It also belongs to the class
"linfun" which has methods for plot, print etc.

Distance values

The values returned by the distance function f <- distfun(X) are distances, expressed as multiples
of the unit of length of the spatial coordinates in X. The unit of length is given by unitname(X).

Note that, if the unit of length in X is a composite expression such as ‘2 microns’, then the values of
f are expressed as multiples of 2 microns, rather than being expressed in microns.

distmap.lpp 83

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

linfun, methods.linfun.

To identify which point is the nearest neighbour, see nnfun.lpp.

Examples

X <- runiflpp(3, simplenet)
f <- distfun(X)
f
plot(f)

using a distfun as a covariate in a point process model:
Y <- runiflpp(4, simplenet)
fit <- lppm(Y ~D, covariates=list(D=f))

f(Y)

distmap.lpp Distance Map of Point Pattern on Linear Network

Description

Computes the distance from each pixel to the nearest point in the given point pattern on a linear
network.

Usage

S3 method for class 'lpp'
distmap(X, ..., k=1)

Arguments

X A point pattern on a linear network (object of class "lpp").

k Integer. The distance to the k-th nearest data point will be computed.

... Arguments passed to as.linim.linfun to control pixel resolution.

Details

This is a method for the generic function distmap. It computes the distance map of the point pattern
X as a pixel image on the network.

At a pixel u, the greyscale value equals the distance from u to the nearest point of the pattern X (or
the k-th nearest point of X).

84 divide.linnet

Value

A pixel image on the network (object of class "linim") whose greyscale values are the values of
the distance map.

Distance values

The pixel values in the image distmap(X) are distances, expressed as multiples of the unit of length
of the spatial coordinates in X. The unit of length is given by unitname(X).

Note that, if the unit of length in X is a composite expression such as ‘2 microns’, then the values in
distmap(X) are expressed as multiples of 2 microns, rather than being expressed in microns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

Generic function distmap and methods.

Examples

plot(distmap(spiders))

divide.linnet Divide Linear Network at Cut Points

Description

Make a tessellation of a linear network by dividing it into pieces demarcated by the points of a point
pattern.

Usage

divide.linnet(X)

Arguments

X Point pattern on a linear network (object of class "lpp").

Details

The points X are interpreted as dividing the linear network L=as.linnet(X) into separate pieces.

Two locations on L belong to the same piece if and only if they can be joined by a path in L that
does not cross any of the points of X.

The result is a tessellation of the network (object of class "lintess") representing the division of
L into pieces.

domain.lpp 85

Value

A tessellation on a linear network (object of class "lintess").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk> and Greg McSwiggan.

See Also

linnet, lintess.

Examples

X <- runiflpp(5, simplenet)
plot(divide.linnet(X))
plot(X, add=TRUE, pch=16, show.network=FALSE)

domain.lpp Extract the Linear Network on which Spatial Data are Defined

Description

Given a spatial object representing data on a linear network, extract the network.

Usage

S3 method for class 'lpp'
domain(X, ...)

S3 method for class 'lppm'
domain(X, ...)

S3 method for class 'linfun'
domain(X, ...)

S3 method for class 'lintess'
domain(X, ...)

Arguments

X A spatial object representing data on a linear network. An object of class "lpp",
"lppm", "linfun" or "lintess".

... Extra arguments. They are ignored by all the methods listed here.

86 eem.lppm

Details

The function domain is generic, with methods for many classes.

For a spatial object X domain(X) extracts the spatial domain in which X is defined.

For a two-dimensional object X, typically domain(X) is the same as Window(X).

The exception is that, if X is a point pattern on a linear network (class "lpp") or a point process
model on a linear network (class "lppm"), then domain(X) is the linear network on which the points
lie, while Window(X) is the two-dimensional window containing the linear network.

Value

A linear network (object of class "linnet").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

domain, domain.rmhmodel, domain.ppm.

Window, Frame

Examples

domain(chicago)

eem.lppm Exponential Energy Marks on a Linear Network

Description

Given a point process model fitted to a point pattern on a linear network, compute the Stoyan-
Grabarnik diagnostic “exponential energy marks” for the data points.

Usage

S3 method for class 'lppm'
eem(fit, ...)

Arguments

fit The fitted point process model. An object of class "lppm".

... Ignored.

eem.lppm 87

Details

Stoyan and Grabarnik (1991) proposed a diagnostic tool for point process models fitted to spatial
point pattern data. Each point xi of the data pattern X is given a ‘mark’ or ‘weight’

mi =
1

λ̂(xi, X)

where λ̂(xi, X) is the conditional intensity of the fitted model. If the fitted model is correct, then
the sum of these marks for all points in a region B has expected value equal to the area of B.

The function eem is generic, with methods for various classes of models. This page documents the
method eem.lppm for the class "lppm".

The argument fit must be a fitted point process model on a linear network (object of class "lppm").
Such objects are produced by the fitting algorithm lppm). This fitted model object contains complete
information about the original data pattern and the model that was fitted to it.

The value returned by eem is the vector of weights m[i] associated with the points x[i] of the original
data pattern. The original data pattern (in corresponding order) can be extracted from fit using
response.lppm.

The function diagnose.lppm produces a set of sensible diagnostic plots based on these weights.

Value

A vector containing the values of the exponential energy mark for each point in the pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Stoyan, D. and Grabarnik, P. (1991) Second-order characteristics for stochastic structures connected
with Gibbs point processes. Mathematische Nachrichten, 151:95–100.

See Also

diagnose.ppm, residuals.lppm, lppm

Examples

fit <- lppm(spiders ~ x + y)
ee <- eem(fit)
sum(ee)/volume(domain(spiders)) # should be about 1 if model is correct

88 envelope.lpp

envelope.lpp Envelope for Point Patterns on Linear Network

Description

Enables envelopes to be computed for point patterns on a linear network.

Usage

S3 method for class 'lpp'
envelope(Y, fun=linearK, nsim=99, nrank=1, ...,
funargs=list(), funYargs=funargs,
simulate=NULL, fix.n=FALSE, fix.marks=FALSE, verbose=TRUE,
transform=NULL,global=FALSE,ginterval=NULL,use.theory=NULL,
alternative=c("two.sided", "less", "greater"),
scale=NULL, clamp=FALSE,
savefuns=FALSE, savepatterns=FALSE,
nsim2=nsim, VARIANCE=FALSE, nSD=2, Yname=NULL,
maxnerr=nsim, rejectNA=FALSE, silent=FALSE,
do.pwrong=FALSE, envir.simul=NULL)

S3 method for class 'lppm'
envelope(Y, fun=linearK, nsim=99, nrank=1, ...,
funargs=list(), funYargs=funargs,
simulate=NULL, fix.n=FALSE, fix.marks=FALSE, verbose=TRUE,
transform=NULL,global=FALSE,ginterval=NULL,use.theory=NULL,
alternative=c("two.sided", "less", "greater"),
scale=NULL, clamp=FALSE,
savefuns=FALSE, savepatterns=FALSE,
nsim2=nsim, VARIANCE=FALSE, nSD=2, Yname=NULL,
maxnerr=nsim, rejectNA=FALSE, silent=FALSE,
do.pwrong=FALSE, envir.simul=NULL)

Arguments

Y A point pattern on a linear network (object of class "lpp") or a fitted point
process model on a linear network (object of class "lppm").

fun Function that is to be computed for each simulated pattern.

nsim Number of simulations to perform.

nrank Integer. Rank of the envelope value amongst the nsim simulated values. A rank
of 1 means that the minimum and maximum simulated values will be used.

... Extra arguments passed to fun.

funargs A list, containing extra arguments to be passed to fun.

funYargs Optional. A list, containing extra arguments to be passed to fun when applied
to the original data Y only.

envelope.lpp 89

simulate Optional. Specifies how to generate the simulated point patterns. If simulate
is an expression in the R language, then this expression will be evaluated nsim
times, to obtain nsim point patterns which are taken as the simulated patterns
from which the envelopes are computed. If simulate is a function, then this
function will be repeatedly applied to the data pattern Y to obtain nsim simulated
patterns. If simulate is a list of point patterns, then the entries in this list will
be treated as the simulated patterns from which the envelopes are computed.
Alternatively simulate may be an object produced by the envelope command:
see Details.

fix.n Logical. If TRUE, simulated patterns will have the same number of points as the
original data pattern.

fix.marks Logical. If TRUE, simulated patterns will have the same number of points and
the same marks as the original data pattern. In a multitype point pattern this
means that the simulated patterns will have the same number of points of each
type as the original data.

verbose Logical flag indicating whether to print progress reports during the simulations.

transform Optional. A transformation to be applied to the function values, before the en-
velopes are computed. An expression object (see Details).

global Logical flag indicating whether envelopes should be pointwise (global=FALSE)
or simultaneous (global=TRUE).

ginterval Optional. A vector of length 2 specifying the interval of r values for the simul-
taneous critical envelopes. Only relevant if global=TRUE.

use.theory Logical value indicating whether to use the theoretical value, computed by fun,
as the reference value for simultaneous envelopes. Applicable only when global=TRUE.

alternative Character string determining whether the envelope corresponds to a two-sided
test (side="two.sided", the default) or a one-sided test with a lower critical
boundary (side="less") or a one-sided test with an upper critical boundary
(side="greater").

scale Optional. Scaling function for global envelopes. A function in the R language
which determines the relative scale of deviations, as a function of distance r,
when computing the global envelopes. Applicable only when global=TRUE.
Summary function values for distance r will be divided by scale(r) before
the maximum deviation is computed. The resulting global envelopes will have
width proportional to scale(r).

clamp Logical value indicating how to compute envelopes when alternative="less"
or alternative="greater". Deviations of the observed summary function
from the theoretical summary function are initially evaluated as signed real
numbers, with large positive values indicating consistency with the alternative
hypothesis. If clamp=FALSE (the default), these values are not changed. If
clamp=TRUE, any negative values are replaced by zero.

savefuns Logical flag indicating whether to save all the simulated function values.

savepatterns Logical flag indicating whether to save all the simulated point patterns.

nsim2 Number of extra simulated point patterns to be generated if it is necessary to
use simulation to estimate the theoretical mean of the summary function. Only
relevant when global=TRUE and the simulations are not based on CSR.

90 envelope.lpp

VARIANCE Logical. If TRUE, critical envelopes will be calculated as sample mean plus or
minus nSD times sample standard deviation.

nSD Number of estimated standard deviations used to determine the critical envelopes,
if VARIANCE=TRUE.

Yname Character string that should be used as the name of the data point pattern Y when
printing or plotting the results.

maxnerr Maximum number of rejected patterns. If fun yields a fatal error when applied
to a simulated point pattern (for example, because the pattern is empty and fun
requires at least one point), the pattern will be rejected and a new random point
pattern will be generated. If this happens more than maxnerr times, the algo-
rithm will give up.

rejectNA Logical value specifying whether to reject a simulated pattern if the resulting
values of fun are all equal to NA, NaN or infinite. If FALSE (the default), then
simulated patterns are rejected only when fun gives a fatal error.

silent Logical value specifying whether to print a report each time a simulated pattern
is rejected.

do.pwrong Logical. If TRUE, the algorithm will also estimate the true significance level of
the “wrong” test (the test that declares the summary function for the data to be
significant if it lies outside the pointwise critical boundary at any point). This
estimate is printed when the result is printed.

envir.simul Environment in which to evaluate the expression simulate, if not the current
environment.

Details

This is a method for the generic function envelope applicable to point patterns on a linear network.

The argument Y can be either a point pattern on a linear network, or a fitted point process model on
a linear network. The function fun will be evaluated for the data and also for nsim simulated point
patterns on the same linear network. The upper and lower envelopes of these evaluated functions
will be computed as described in envelope.

The type of simulation is determined as follows.

• if Y is a point pattern (object of class "lpp") and simulate is missing or NULL, then random
point patterns will be generated according to a Poisson point process on the linear network on
which Y is defined, with intensity estimated from Y.

• if Y is a fitted point process model (object of class "lppm") and simulate is missing or NULL,
then random point patterns will be generated by simulating from the fitted model.

• If simulate is present, it specifies the type of simulation as explained below.

• If simulate is an expression (typically including a call to a random generator), then the ex-
pression will be repeatedly evaluated, and should yield random point patterns on the same
linear network as Y.

• If simulate is a function (typically including a call to a random generator), then the func-
tion will be repeatedly applied to the original point pattern Y, and should yield random point
patterns on the same linear network as Y.

envelope.lpp 91

• If simulate is a list of point patterns, then these will be taken as the simulated point patterns.
They should be on the same linear network as Y.

The function fun should accept as its first argument a point pattern on a linear network (object of
class "lpp") and should have another argument called r or a ... argument.

Value

Function value table (object of class "fv") with additional information, as described in envelope.

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Ang, Q.W. (2010) Statistical methodology for events on a network. Master’s thesis, School of
Mathematics and Statistics, University of Western Australia.

Ang, Q.W., Baddeley, A. and Nair, G. (2012) Geometrically corrected second-order analysis of
events on a linear network, with applications to ecology and criminology. Scandinavian Journal of
Statistics 39, 591–617.

Okabe, A. and Yamada, I. (2001) The K-function method on a network and its computational im-
plementation. Geographical Analysis 33, 271-290.

See Also

envelope, linearK

Examples

if(interactive()) {
ns <- 39
np <- 40

} else { ns <- np <- 3 }
X <- runiflpp(np, simplenet)

uniform Poisson: random numbers of points
envelope(X, nsim=ns)

uniform Poisson: conditional on observed number of points
envelope(X, fix.n=TRUE, nsim=ns)

nonuniform Poisson
fit <- lppm(X ~x)
envelope(fit, nsim=ns)

#multitype
marks(X) <- sample(letters[1:2], np, replace=TRUE)
envelope(X, nsim=ns)

92 eval.linim

eval.linim Evaluate Expression Involving Pixel Images on Linear Network

Description

Evaluates any expression involving one or more pixel images on a linear network, and returns a
pixel image on the same linear network.

Usage

eval.linim(expr, envir, harmonize=TRUE, warn=TRUE)

Arguments

expr An expression in the R language, involving the names of objects of class "linim".

envir Optional. The environment in which to evaluate the expression.

harmonize Logical. Whether to resolve inconsistencies between the pixel grids.

warn Logical. Whether to issue a warning if the pixel grids were inconsistent.

Details

This function a wrapper to make it easier to perform pixel-by-pixel calculations. It is one of several
functions whose names begin with eval which work on objects of different types. This particular
function is designed to work with objects of class "linim" which represent pixel images on a linear
network.

Suppose X is a pixel image on a linear network (object of class "linim". Then eval.linim(X+3)
will add 3 to the value of every pixel in X, and return the resulting pixel image on the same linear
network.

Suppose X and Y are two pixel images on the same linear network, with compatible pixel dimensions.
Then eval.linim(X + Y) will add the corresponding pixel values in X and Y, and return the resulting
pixel image on the same linear network.

In general, expr can be any expression in the R language involving (a) the names of pixel images,
(b) scalar constants, and (c) functions which are vectorised. See the Examples.

First eval.linim determines which of the variable names in the expression expr refer to pixel
images. Each such name is replaced by a matrix containing the pixel values. The expression is then
evaluated. The result should be a matrix; it is taken as the matrix of pixel values.

The expression expr must be vectorised. There must be at least one linear pixel image in the
expression.

All images must have compatible dimensions. If harmonize=FALSE, images that are incompati-
ble will cause an error. If harmonize=TRUE, images that have incompatible dimensions will be
resampled so that they are compatible; if warn=TRUE, a warning will be issued.

Value

An image object of class "linim".

Extract.linim 93

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

eval.im, linim

Examples

M <- psp2mask(as.psp(simplenet))
Z <- as.im(function(x,y) {x-y}, W=M)
X <- linim(simplenet, Z)
X

Y <- linfun(function(x,y,seg,tp){y^2+x}, simplenet)
Y <- as.linim(Y)

eval.linim(X + 3)
eval.linim(X - Y)
eval.linim(abs(X - Y))
Z <- eval.linim(sin(X * pi) + Y)

Extract.linim Extract Subset of Pixel Image on Linear Network

Description

Extract a subset of a pixel image on a linear network.

Usage

S3 method for class 'linim'
x[i, ..., drop=TRUE]

Arguments

x A pixel image on a linear network (object of class "linim").

i Spatial window defining the subregion. Either a spatial window (an object of
class "owin"), or a logical-valued pixel image, or any type of index that applies
to a matrix, or a point pattern (an object of class "lpp" or "ppp"), or something
that can be converted to a point pattern by as.lpp (using the network on which
x is defined).

... Additional arguments passed to [.im.

drop Logical value indicating whether NA values should be omitted from the result.

94 Extract.linnet

Details

This function is a method for the subset operator "[" for pixel images on linear networks (objects
of class "linim").

The pixel image x will be restricted to the domain specified by i.

Pixels outside the domain of x are assigned the value NA; if drop=TRUE (the default) such NA values
are deleted from the result; if drop=FALSE, then NA values are retained.

If i is a window (or a logical-valued pixel image) then x[i] is another pixel image of class "linim",
representing the restriction of x to the spatial domain specified by i.

If i is a point pattern, then x[i] is the vector of pixel values of x at the locations specified by i.

Value

Another pixel image on a linear network (object of class "linim") or a vector of pixel values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

thinNetwork to extract the data lying on selected edges of the network.

linim to make a pixel image on a network.

Examples

M <- psp2mask(as.psp(simplenet))
Z <- as.im(function(x,y){x}, W=M)
Y <- linim(simplenet, Z)
X <- runiflpp(4, simplenet)
Y[X]
Y[square(c(0.3, 0.6))]

Extract.linnet Extract Subset of Linear Network

Description

Extract a subset of a linear network.

Usage

S3 method for class 'linnet'
x[i, ..., snip=TRUE]

Extract.linnet 95

Arguments

x A linear network (object of class "linnet").

i Spatial window defining the subregion. An object of class "owin".

snip Logical. If TRUE (the default), segments of x which cross the boundary of i will
be cut by the boundary. If FALSE, these segments will be deleted.

... Ignored.

Details

This function computes the intersection between the linear network x and the domain specified by
i.

This function is a method for the subset operator "[" for linear networks (objects of class "linnet").
It is provided mainly for completeness.

The index i should be a window.

The argument snip specifies what to do with segments of x which cross the boundary of i. If
snip=FALSE, such segments are simply deleted. If snip=TRUE (the default), such segments are cut
into pieces by the boundary of i, and those pieces which lie inside the window i are included in the
resulting network.

Value

Another linear network (object of class "linnet").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>,
Ege Rubak <rubak@math.aau.dk> and Suman Rakshit.

Examples

p <- par(mfrow=c(1,2), mar=0.2+c(0,0,1,0))
B <- owin(c(0.1,0.7),c(0.19,0.6))

plot(simplenet, main="x[w, snip=TRUE]")
plot(simplenet[B], add=TRUE, col="green", lwd=3)
plot(B, add=TRUE, border="red", lty=3)

plot(simplenet, main="x[w, snip=FALSE]")
plot(simplenet[B, snip=FALSE], add=TRUE, col="green", lwd=3)
plot(B, add=TRUE, border="red", lty=3)

par(p)

96 Extract.lpp

Extract.lpp Extract Subset of Point Pattern on Linear Network

Description

Extract a subset of a point pattern on a linear network.

Usage

S3 method for class 'lpp'
x[i, j, drop=FALSE, ..., snip=TRUE]

Arguments

x A point pattern on a linear network (object of class "lpp").

i Subset index. A valid subset index in the usual R sense, indicating which points
should be retained.

j Spatial window (object of class "owin") delineating the region that should be
retained.

drop Logical value indicating whether to remove unused levels of the marks, if the
marks are a factor.

snip Logical. If TRUE (the default), segments of the network which cross the boundary
of the window j will be cut by the boundary. If FALSE, these segments will be
deleted.

... Ignored.

Details

This function extracts a designated subset of a point pattern on a linear network.

The function [.lpp is a method for [for the class "lpp". It extracts a designated subset of a point
pattern. The argument i should be a subset index in the usual R sense: either a numeric vector
of positive indices (identifying the points to be retained), a numeric vector of negative indices
(identifying the points to be deleted) or a logical vector of length equal to the number of points in
the point pattern x. In the latter case, the points (x$x[i], x$y[i]) for which subset[i]=TRUE
will be retained, and the others will be deleted.

The argument j, if present, should be a spatial window. The pattern inside the region will be
retained. Line segments that cross the boundary of the window are deleted in the current implemen-
tation.

The argument drop determines whether to remove unused levels of a factor, if the point pattern is
multitype (i.e. the marks are a factor) or if the marks are a data frame or hyperframe in which some
of the columns are factors.

The argument snip specifies what to do with segments of the network which cross the boundary of
the window j. If snip=FALSE, such segments are simply deleted. If snip=TRUE (the default), such
segments are cut into pieces by the boundary of j, and those pieces which lie inside the window ji
are included in the resulting network.

fitted.lppm 97

Use unmark to remove all the marks in a marked point pattern, and subset.lpp to remove only
some columns of marks.

Value

A point pattern on a linear network (of class "lpp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

lpp, subset.lpp

Examples

Chicago crimes data - remove cases of assault
chicago[marks(chicago) != "assault"]
equivalent to subset(chicago, select=-assault)

spatial window subset
B <- owin(c(350, 700), c(600, 1000))
plot(chicago)
plot(B, add=TRUE, lty=2, border="red", lwd=3)
op <- par(mfrow=c(1,2), mar=0.6+c(0,0,1,0))
plot(B, main="chicago[B, snip=FALSE]", lty=3, border="red")
plot(chicago[, B, snip=FALSE], add=TRUE)
plot(B, main="chicago[B, snip=TRUE]", lty=3, border="red")
plot(chicago[, B, snip=TRUE], add=TRUE)
par(op)

fitted.lppm Fitted Intensity for Point Process on Linear Network

Description

Given a point process model fitted to a point pattern on a linear network, compute the fitted intensity
of the model at the points of the pattern, or at the points of the quadrature scheme used to fit the
model.

Usage

S3 method for class 'lppm'
fitted(object, ...,

dataonly = FALSE, new.coef = NULL,
leaveoneout = FALSE)

98 fitted.lppm

Arguments

object Fitted point process model on a linear network (object of class "lppm").

... Ignored.

dataonly Logical value indicating whether to computed fitted intensities at the points of
the original point pattern dataset (dataonly=TRUE) or at all the quadrature points
of the quadrature scheme used to fit the model (dataonly=FALSE, the default).

new.coef Numeric vector of parameter values to replace the fitted model parameters coef(object).

leaveoneout Logical. If TRUE the fitted value at each data point will be computed using a
leave-one-out method. See Details.

Details

This is a method for the generic function fitted for the class "lppm" of fitted point process models
on a linear network.

The locations u at which the fitted conditional intensity/trend is evaluated, are the points of the
quadrature scheme used to fit the model in ppm. They include the data points (the points of the
original point pattern dataset x) and other “dummy” points in the window of observation.

If leaveoneout=TRUE, fitted values will be computed for the data points only, using a ‘leave-one-
out’ rule: the fitted value at X[i] is effectively computed by deleting this point from the data and
re-fitting the model to the reduced pattern X[-i], then predicting the value at X[i]. (Instead of
literally performing this calculation, we apply a Taylor approximation using the influence function
computed in dfbetas.ppm.

Value

A vector containing the values of the fitted spatial trend.

Entries in this vector correspond to the quadrature points (data or dummy points) used to fit the
model. The quadrature points can be extracted from object by union.quad(quad.ppm(object)).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

lppm, predict.lppm

Examples

fit <- lppm(spiders~x+y)
a <- fitted(fit)
b <- fitted(fit, dataonly=TRUE)

harmonise.linim 99

harmonise.linim Make Pixel Images on a Network Compatible

Description

Convert several pixel images to a common pixel raster.

Usage

S3 method for class 'linim'
harmonise(...)

S3 method for class 'linim'
harmonize(...)

Arguments

... Any number of pixel images on a network (objects of class "linim") or data
which can be converted to pixel images on a network by as.linim.

Details

This function makes any number of pixel images on a network compatible, by converting them all
to a common pixel grid.

The command harmonise is generic. This is the method for objects of class "linim".

At least one of the arguments ... must be a pixel image on a network (object of class "linim") or
a network (class "linnet") so that the network is defined.

If several arguments contain network information then they must specify the same network.

Other arguments may be two-dimensional images (class "im"), windows (class "owin"), functions
(function(x,y)) or numerical constants. These will be converted to images using as.linim.

The return value is a list, with entries corresponding to the input arguments, in which each entry
is a pixel image on the same network. If the arguments were named (name=value) then the return
value also carries these names.

Value

A list, of length equal to the number of arguments ..., whose entries are pixel images on a network.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

harmonise, harmonise.im, as.linim

100 heatkernelapprox

Examples

g <- linfun(function(x,y, seg, tp) { seg }, simplenet)
Image1 <- as.linim(g)
Distfun <- distfun(runiflpp(3, simplenet))
Image2 <- as.im(function(x,y) { x }, Window(simplenet))
harmonise(Image1, Distfun, Image2)

heatkernelapprox Approximation to Heat Kernel on Linear Network at Source Point

Description

Computes an approximation to the value of the heat kernel on a network evaluated at its source
location.

Usage

heatkernelapprox(X, sigma, nmax = 20, floored=TRUE)

Arguments

X Point pattern on a linear network (object of class "lpp").

sigma Numeric. Bandwidth for kernel.

nmax Number of terms to be used in the sum.

floored Logical. If TRUE, all values are constrained to be greater than or equal to 1/L
where L is the total length of the network. This the exact value of the heat kernel
when the bandwidth is infinite.

Details

For each point X[i] in the pattern X, this algorithm computes an approximation to the value of the
heat kernel with source point X[i] evaluated at the same location.

The heat kernel κ(u, v) for a source location u evaluated at location v can be expressed as an infinite
sum of contributions from all possible paths from u to v. This algorithm applies to the special case
u = v where the source point and the query point are the same.

The algorithm computes an approximation to κ(u, u) by taking only the contributions from paths
which (a) remain in the line segment containing the point u and (b) visit a vertex at most nmax times.

Value

Numeric vector with one entry for each point in X.

Author(s)

Greg McSwiggan and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

identify.linnet 101

See Also

hotrod

Examples

X <- runiflpp(3,simplenet)
heatkernelapprox(X, 0.5)

identify.linnet Interactively Identify Segments of a Linear Network

Description

If a linear network is plotted in the graphics window, then each time the left mouse button is pressed,
this function will find the network segment which is closest the mouse position, and print its serial
number.

Usage

S3 method for class 'linnet'
identify(x, ...)

Arguments

x A linear network (object of class "linnet").

... Arguments passed to identify.psp and ultimately to identify.default.

Details

This is a method for the generic function identify for linear networks.

The network x should first be plotted using plot.linnet, plot.lpp or plot.linim. Then identify(x)
reads the position of the graphics pointer each time the left mouse button is pressed. It then deter-
mines which network segment lies closest to the mouse position. The index of this segment (and its
mark if any) will be returned as part of the value of the call.

Each time a segment is identified, text will be displayed at the midpoint of the segment, showing its
serial number.

Value

A vector containing the serial numbers of the network segments of x that were identified.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

102 identify.lintess

See Also

identify, identify.psp, plot.linnet.

identify.lintess Interactively Identify Tiles of a Tessellation on a Network

Description

If a tessellation on a linear network is plotted in the graphics window, then each time the left mouse
button is pressed, this function will find the tile which contains the mouse position, print the serial
number of the tile containing this position, and draw the tile in a different colour.

Usage

S3 method for class 'lintess'
identify(x, ..., labels=tilenames(x),

n=nobjects(x), plot=TRUE, paint=plot,
paint.args=list())

Arguments

x A tessellation on a linear network (object of class "lintess").

... Arguments passed to identify.default.

labels Labels associated with the tiles of the tessellation, to be plotted when the tiles are
identified. A character vector or numeric vector of length equal to the number
of tiles of x.

n Maximum number of tiles to be identified.

plot Logical. Whether to plot the labels when a tile is identified.

paint Logical. Whether to redraw each identified tile, using a different colour.

paint.args Optional list of arguments passed to plot.psp determining the colour and style
in which each identified tile will be redrawn, if paint=TRUE.

Details

This is a method for the generic function identify for tessellations on a linear network.

The tessellation x, or the underlying network, should first be plotted using plot.lintess or plot.linnet.

Then identify(x) reads the position of the graphics pointer each time the left mouse button is
pressed. It then determines which tile of x contains the mouse position. The index of this tile will
be returned as part of the value of the call.

Each time a tile is identified, text will be displayed alongside the tile showing the name of the tile,
and the tile will be re-drawn in a different colour.

The procedure terminates when the right mouse button is pressed.

identify.lpp 103

Value

A data.frame with columns id and name containing the serial numbers and names of the tiles of
x that were identified, in the order that they were identified; If x is marked, subsequent columns
contain the marks for these tiles.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

identify, plot.lintess, plot.psp

identify.lpp Identify Points in a Point Pattern on a Linear Network

Description

If a point pattern on a network is plotted in the graphics window, this function will find the point of
the pattern which is nearest to the mouse position, and print its mark value (or its serial number if
there is no mark).

Usage

S3 method for class 'lpp'
identify(x, ...)

Arguments

x A point pattern on a linear network (object of class "lpp").

... Arguments passed to identify.default.

Details

This is a method for the generic function identify for point patterns on a linear network (objects
of class "lpp").

The point pattern x should first be plotted using plot.lpp. Then identify(x) reads the position of
the graphics pointer each time the left mouse button is pressed. It then finds the point of the pattern
x closest to the mouse position. If this closest point is sufficiently close to the mouse pointer, its
index (and its mark if any) will be returned as part of the value of the call.

Each time a point of the pattern is identified, text will be displayed next to the point, showing its
serial number (if x is unmarked) or its mark value (if x is marked).

104 insertVertices

Value

If x is unmarked, the result is a vector containing the serial numbers of the points in the pattern x
that were identified. If x is marked, the result is a 2-column matrix, the first column containing the
serial numbers and the second containing the marks for these points.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

identify.ppp, identify, clicklpp

insertVertices Insert New Vertices in a Linear Network

Description

Adds new vertices to a linear network at specified locations along the network.

Usage

insertVertices(L, ...)

Arguments

L Linear network (object of class "linnet") or point pattern on a linear network
(object of class "lpp").

... Additional arguments passed to as.lpp specifying the positions of the new ver-
tices along the network.

Details

This function adds new vertices at locations along an existing linear network.

The argument L can be either a linear network (class "linnet") or some other object that includes
a linear network.

The new vertex locations can be specified either as a point pattern (class "lpp" or "ppp") or using
coordinate vectors x,y or seg,tp or x,y,seg,tp as explained in the help for as.lpp.

This function breaks the existing line segments of L into pieces at the locations specified by the
coordinates seg,tp and creates new vertices at these locations.

The result is the modified object, with an attribute "id" such that the ith added vertex has become
the id[i]th vertex of the new network.

integral.linim 105

Value

An object of the same class as L representing the result of adding the new vertices. The result also
has an attribute "id" as described in Details.

Author(s)

Adrian Baddeley

See Also

addVertices to create new vertices at locations which are not yet on the network.

as.lpp, linnet, methods.linnet, joinVertices, thinNetwork.

Examples

opa <- par(mfrow=c(1,3), mar=rep(0,4))
simplenet

plot(simplenet, main="")
plot(vertices(simplenet), add=TRUE)

add two new vertices at specified local coordinates
L <- insertVertices(simplenet, seg=c(3,7), tp=c(0.2, 0.5))
L
plot(L, main="")
plot(vertices(L), add=TRUE)
id <- attr(L, "id")
id
plot(vertices(L)[id], add=TRUE, pch=16)

add new vertices at three randomly-generated points
X <- runiflpp(3, simplenet)
LL <- insertVertices(simplenet, X)
plot(LL, main="")
plot(vertices(LL), add=TRUE)
ii <- attr(LL, "id")
plot(vertices(LL)[ii], add=TRUE, pch=16)
par(opa)

integral.linim Integral on a Linear Network

Description

Computes the integral (total value) of a function or pixel image over a linear network.

106 integral.linim

Usage

S3 method for class 'linim'
integral(f, domain=NULL, weight=NULL, ...)

S3 method for class 'linfun'
integral(f, domain=NULL, weight=NULL, ..., exact=FALSE, delta, nd)

Arguments

f A pixel image on a linear network (class "linim") or a function on a linear
network (class "linfun").

domain Optional window specifying the domain of integration. Alternatively a tessella-
tion (class "tess" or "lintess").

weight Optional numerical weight function for the integration. A pixel image (object
of class "linim" or "im"), a function (object of class "linfun", "funxy" or a a
function(x,y)) or anything acceptable to as.linim.

... Ignored.

exact Logical value specifying whether to use a more accurate (and slower) calculation
method. See Details.

delta Optional. The step length (in coordinate units) for computing the approximate
integral (if exact=FALSE). A single positive number.

nd Optional. Integer giving the approximate number of sample points on the net-
work (if exact=FALSE).

Details

The integral (total value of the function over the network) is calculated.

If domain is a window (class "owin") then the integration will be restricted to this window. If
domain is a tessellation (class "tess" or "lintess") then the integral of f in each tile of domain
will be computed.

If weight is given, effectively the integral of weight * f is computed.

For objects of class "linfun" there is the option of using a more accurate calculation method
in which the integral along each segment of the network is computed separately using the util-
ity integrate from the stats package. If exact=TRUE, additional arguments ... are passed to
integrate to control the computation.

Value

A single numeric or complex value (or a vector of such values if domain is a tessellation).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

intensity.lpp 107

See Also

linim, integral.im, integrate

Examples

make a function and image data
xcoord <- linfun(function(x,y,seg,tp) { x }, simplenet)
integral(xcoord)
integral(xcoord, exact=TRUE)
X <- as.linim(xcoord)
integral(X)

integrals inside each tile of a tessellation
A <- quadrats(Frame(simplenet), 3)
integral(X, A)

intensity.lpp Empirical Intensity of Point Pattern on Linear Network

Description

Computes the average number of points per unit length in a point pattern on a linear network.

Usage

S3 method for class 'lpp'
intensity(X, ...)

Arguments

X A point pattern on a linear network (object of class "lpp").

... Ignored.

Details

This is a method for the generic function intensity It computes the empirical intensity of a point
pattern on a linear network (object of class "lpp"), i.e. the average density of points per unit length.

If the point pattern is multitype, the intensities of the different types are computed separately.

Value

A numeric value (giving the intensity) or numeric vector (giving the intensity for each possible
type).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

108 intersect.lintess

See Also

intensity, intensity.ppp

Examples

intensity(chicago)

intersect.lintess Intersection of Tessellations on a Linear Network

Description

Yields the intersection (common refinement) of two tessellations on a linear network.

Usage

intersect.lintess(X, Y)

Arguments

X, Y Tessellations (objects of class "lintess") on the same linear network, or data
that define such tessellations. See Details.

Details

X and Y should be tessellations on a linear network (objects of class "lintess") and should be
defined on the same network. The algorithm finds the common refinement of the two tessellations.
Each tile in the resulting tessellation is the intersection of a tile of X with a tile of Y.

Alternatively, one of the arguments X or Y can be a two-dimensional tessellation (object of class
"tess") while the other argument is a network or a tessellation on a network. The two-dimensional
tessellation will be intersected with the network to produce a tessellation on the network, then
intersected with the other tessellation on the network.

Value

Another tessellation (object of class "lintess") on the same linear network as X and Y.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

lintess, divide.linnet, chop.linnet

is.connected.linnet 109

Examples

X <- divide.linnet(runiflpp(4, simplenet))
Y <- divide.linnet(runiflpp(3, simplenet))
opa <- par(mfrow=c(1,3))
plot(X)
plot(Y)
plot(intersect.lintess(X,Y))
par(opa)

is.connected.linnet Determine Whether a Linear Network is Connected

Description

Determine whether a linear network is topologically connected.

Usage

S3 method for class 'linnet'
is.connected(X, ...)

Arguments

X A linear network (object of class "linnet").

... Arguments passed to connected.linnet to determine the connected compo-
nents.

Details

The command is.connected(X) returns TRUE if the network X consists of a single, topologically-
connected piece, and returns FALSE if X consists of several pieces which are not joined together.

The function is.connected is generic, with methods for several classes. This help file documents
the method for linear networks, is.connected.linnet.

Value

A logical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

is.connected, connected, connected.lpp.

110 is.marked.lppm

Examples

is.connected(simplenet)

is.marked.lppm Test Whether A Point Process Model is Marked

Description

Tests whether a fitted point process model on a network involves “marks” attached to the points.

Usage

S3 method for class 'lppm'
is.marked(X, ...)

Arguments

X Fitted point process model on a linear networ (object of class "lppm") usually
obtained from lppm.

... Ignored.

Details

“Marks” are observations attached to each point of a point pattern. For example the chicago dataset
contains the locations of crimes, each crime location being marked by the type of crime.

The argument X is a fitted point process model on a network (an object of class "lppm") typically
obtained by fitting a model to point pattern data using lppm.

This function returns TRUE if the original data (to which the model X was fitted) were a marked
point pattern.

Note that this is not the same as testing whether the model involves terms that depend on the marks
(i.e. whether the fitted model ignores the marks in the data). See the Examples for a trick to do this.

If this function returns TRUE, the implications are (for example) that any simulation of this model
will require simulation of random marks as well as random point locations.

Value

Logical value, equal to TRUE if X is a model that was fitted to a marked point pattern dataset.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

is.marked.

is.multitype.lpp 111

Examples

fit <- lppm(chicago ~ x)
is.marked(fit)
result is TRUE, i.e. the data are marked

To check whether the model involves marks:
"marks" %in% spatstat.utils::variablesinformula(formula(fit))

is.multitype.lpp Test Whether A Point Pattern on a Network is Multitype

Description

Tests whether a point pattern on a network has “marks” attached to the points which classify the
points into several types.

Usage

S3 method for class 'lpp'
is.multitype(X, na.action="warn", ...)

Arguments

X Point pattern on a linear networl (object of class "lpp").

na.action String indicating what to do if NA values are encountered amongst the marks.
Options are "warn", "fatal" and "ignore".

... Ignored.

Details

“Marks” are observations attached to each point of a point pattern. For example the chicago dataset
contains the locations of crimes, each crime location being marked by the type of crime.

This function tests whether the point pattern X contains or involves marked points, and that the
marks are a factor. It is a method for the generic function is.multitype.

The argument na.action determines what action will be taken if the point pattern has a vector of
marks but some or all of the marks are NA. Options are "fatal" to cause a fatal error; "warn" to
issue a warning and then return TRUE; and "ignore" to take no action except returning TRUE.

Value

Logical value, equal to TRUE if X is a multitype point pattern.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

112 is.multitype.lppm

See Also

is.multitype, is.multitype.lppm

Examples

is.multitype(chicago)

is.multitype.lppm Test Whether A Point Process Model is Multitype

Description

Tests whether a fitted point process model on a network involves “marks” attached to the points that
classify the points into several types.

Usage

S3 method for class 'lppm'
is.multitype(X, ...)

Arguments

X Fitted point process model on a linear network (object of class "lppm") usually
obtained from lppm.

... Ignored.

Details

“Marks” are observations attached to each point of a point pattern. For example the chicago dataset
contains the locations of crimes, each crime location being marked by the type of crime.

The argument X is a fitted point process model on a network (an object of class "lppm") typically
obtained by fitting a model to point pattern data on a network using lppm.

This function returns TRUE if the original data (to which the model X was fitted) were a multitype
point pattern.

Note that this is not the same as testing whether the model involves terms that depend on the marks
(i.e. whether the fitted model ignores the marks in the data). See the Examples for a trick for doing
this.

If this function returns TRUE, the implications are (for example) that any simulation of this model
will require simulation of random marks as well as random point locations.

Value

Logical value, equal to TRUE if X is a model that was fitted to a multitype point pattern dataset.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

is.stationary.lppm 113

See Also

is.multitype, is.multitype.lpp

Examples

fit <- lppm(chicago ~ x)
is.multitype(fit)
TRUE because chicago data are multitype

To check whether the model involves marks:
"marks" %in% spatstat.utils::variablesinformula(formula(fit))

is.stationary.lppm Recognise Stationary and Poisson Point Process Models on a Network

Description

Given a point process model that has been fitted to data on a network, determine whether the model
is a stationary point process, and whether it is a Poisson point process.

Usage

S3 method for class 'lppm'
is.stationary(x)

S3 method for class 'lppm'
is.poisson(x)

Arguments

x A fitted spatial point process model on a linear network (object of class "lppm").

Details

The argument x represents a fitted spatial point process model on a linear network.

is.stationary(x) returns TRUE if x represents a stationary point process, and FALSE if not.

is.poisson(x) returns TRUE if x represents a Poisson point process, and FALSE if not.

The functions is.stationary and is.poisson are generic, with methods for many classes of
models.

Value

A logical value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

114 joinVertices

See Also

is.marked to determine whether a model is a marked point process.

is.stationary, is.poisson for generics.

summary.lppm for detailed information.

Model-fitting function lppm.

Examples

fit <- lppm(spiders ~ x)
is.stationary(fit)
is.poisson(fit)

joinVertices Join Vertices in a Network

Description

Join the specified vertices in a linear network, creating a new network.

Usage

joinVertices(L, from, to, marks=NULL)

Arguments

L A linear network (object of class "linnet") or point pattern on a linear network
(object of class "lpp").

from, to Integers, or integer vectors of equal length, specifying the vertices which should
be joined. Alternatively from can be a 2-column matrix of integers and to is
missing or NULL.

marks Optional vector or data frame of values associated with the new edges.

Details

Vertices of the network are numbered by their order of appearance in the point pattern vertices(L).

If from and to are single integers, then the pair of vertices numbered from and to will be joined to
make a new segment of the network. If from and to are vectors of integers, then vertex from[i]
will be joined to vertex to[i] for each i = 1,2,...

If L is a network (class "linnet"), the result is another network, created by adding new segments.
If L is a point pattern on a network (class "lpp"), the result is another point pattern object, created
by adding new segments to the underlying network, and retaining the points.

In the resulting object, the new line segments are appended to the existing list of line segments.

lineardirichlet 115

Value

A linear network (object of class "linnet") or point pattern on a linear network (object of class
"lpp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

linnet, methods.linnet, thinNetwork

Examples

snet <- joinVertices(simplenet, 4, 8)
plot(solist(simplenet, snet), main="")
X <- runiflpp(3, simplenet)
Y <- joinVertices(X, 4, 8)

lineardirichlet Dirichlet Tessellation on a Linear Network

Description

Given a point pattern on a linear network, compute the Dirichlet (or Voronoi or Thiessen) tessella-
tion induced by the points.

Usage

lineardirichlet(X, metric=c("shortestpath", "Euclidean"))

Arguments

X Point pattern on a linear network (object of class "lpp").

metric Character string (partially matched) specifying the distance metric used to define
the Dirichlet tessellation.

Details

The Dirichlet tessellation induced by a point pattern X on a linear network L is a partition of L into
subsets. The subset L[i] associated with the data point X[i] is the part of L lying closer to X[i]
than to any other data point X[j].

If metric="shortestpath" (the default), distance between points on the network is measured by
the shortest path in the network. If metric="Euclidean", distance is measured by the Euclidean
distance in two dimensions.

116 lineardisc

Value

A tessellation on a linear network (object of class "lintess").

Missing tiles

If the linear network is not connected, and if one of the connected components contains no data
points, then the Dirichlet tessellation using metric="shortestpath" is mathematically undefined
inside this component. The resulting tessellation object includes a tile with label NA, which contains
this component of the network. A plot of the tessellation will not show this tile.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

lintess.

For the Dirichlet tessellation in two-dimensional space, see dirichlet.

Examples

X <- runiflpp(5, simplenet)
plot(lineardirichlet(X), lwd=3)
points(X)
plot(lineardirichlet(X, metric="E"), lwd=3)
points(X)
plot(dirichlet(as.ppp(X)), add=TRUE, lty=2)

lineardisc Compute Disc of Given Radius in Linear Network

Description

Computes the ‘disc’ of given radius and centre in a linear network.

Usage

lineardisc(L, x = locator(1), r, plotit = TRUE,
cols=c("blue", "red","green"), add=TRUE)

lineardisclength(L, x = locator(1), r)

countends(L, x = locator(1), r, toler=NULL, internal=list())

lineardisc 117

Arguments

L Linear network (object of class "linnet").

x Location of centre of disc. Either a point pattern (object of class "ppp") con-
taining exactly 1 point, or a numeric vector of length 2.

r Radius of disc.

plotit Logical. Whether to plot the disc.

add Logical. If add=TRUE (the default), the disc will be plotted on the current plot
frame. If add=FALSE, a new plot frame will be started, the entire network will
be displayed, and then the disc will be plotted over this.

cols Colours for plotting the disc. A numeric or character vector of length 3 specify-
ing the colours of the disc centre, disc lines and disc endpoints respectively.

toler Optional. Distance threshold for countends. See Details. There is a sensible
default.

internal Argument for internal use by the package.

Details

The ‘disc’ B(u, r) of centre x and radius r in a linear network L is the set of all points u in L such
that the shortest path distance from x to u is less than or equal to r. This is a union of line segments
contained in L.

The relative boundary of the disc B(u, r) is the set of points v such that the shortest path distance
from x to u is equal to r.

The function lineardisc computes the disc of radius r and its relative boundary, optionally plots
them, and returns them. The faster function lineardisclength computes only the total length of
the disc, and countends computes only the number of endpoints of the disc.

Note that countends requires the linear network L to be given in the non-sparse matrix format (see
the argument sparse in linnet or as.linnet) while lineardisc and lineardisclength accept
both sparse and non-sparse formats.

The optional threshold toler is used to suppress numerical errors in countends. If the distance
from u to a network vertex v is between r-toler and r+toler, the vertex will be treated as lying
on the relative boundary.

Value

The value of lineardisc is a list with two entries:

lines Line segment pattern (object of class "psp") representing the interior disc

endpoints Point pattern (object of class "ppp") representing the relative boundary of the
disc.

The value of lineardisclength is a single number giving the total length of the disc.

The value of countends is an integer giving the number of points in the relative boundary.

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

118 linearJinhom

References

Ang, Q.W. (2010) Statistical methodology for events on a network. Master’s thesis, School of
Mathematics and Statistics, University of Western Australia.

Ang, Q.W., Baddeley, A. and Nair, G. (2012) Geometrically corrected second-order analysis of
events on a linear network, with applications to ecology and criminology. Scandinavian Journal of
Statistics 39, 591–617.

See Also

linnet

Examples

letter 'A'
v <- ppp(x=(-2):2, y=3*c(0,1,2,1,0), c(-3,3), c(-1,7))
edg <- cbind(1:4, 2:5)
edg <- rbind(edg, c(2,4))
letterA <- linnet(v, edges=edg)
plot(letterA)

di <- lineardisc(letterA, c(0,3), 1.6)
di

count the endpoints more efficiently
countends(letterA, c(0,3), 1.6)
cross-check
npoints(di$endpoints)

measure the length more efficiently
lineardisclength(letterA, c(0,3), 1.6)
cross-check
sum(lengths_psp(di$lines))

linearJinhom Inhomogeneous Linear J-function for Point Processes on Linear Net-
works

Description

Computes an estimate of the inhomogeneous linear J-function for a point pattern on a linear net-
work.

Usage

linearJinhom(X, lambda = NULL, lmin=NULL,
...,
r=NULL, rmax=NULL,
distance=c("path","euclidean"),

linearJinhom 119

densitymethod=c("kernel", "Voronoi"),
sigma=bw.scott.iso,
f=0.2, nrep=200, ngrid=256)

Arguments

X Point pattern on linear network (object of class "lpp").
lambda Intensity values for the point pattern. Either a numeric vector, a function, a

pixel image (object of class "im" or "linim") or a fitted point process model
(object of class "ppm" or "lppm").

lmin Optional. The minimum possible value of the intensity over the network. A
positive numerical value.

r Optional. Numeric vector of values of the function argument r. There is a
sensible default.

rmax Optional. Numeric value specifying the largest desired value of r. There is a
sensible default.

distance A string (partially matched) specifying the metric that will be used to measure
distances between points on the network: distance="path" is the shortest-path
distance, and distance="euclidean" is the Euclidean distance.

densitymethod String (partially matched) specifying the method that will be used to estimate
the intensity lambda, if lambda is not given: densitymethod="kernel" spec-
ifies kernel smoothing and densitymethod="Voronoi" specifies Voronoi esti-
mation. See Details.

sigma Smoothing bandwidth used to estimate lambda by kernel smoothing, if lambda
is not given and densitymethod="kernel". Either a numeric value, or a func-
tion that can be applied to X to compute the bandwidth.

f, nrep Arguments passed to the algorithm for estimating the intensity by Voronoi esti-
mation, if lambda is not given and densitymethod="Voronoi".

... Additional arguments passed to the algorithms that estimate the intensity, if
lambda is not given.

ngrid Integer specifying the number of sample points on the network that will be used
to estimate the inhomogeneous empty space function F .

Details

This function computes the geometrically corrected inhomogeneous linear J-function for point
processes on linear networks defined by Cronie et al (2020).

The argument lambda is the (estimated) intensity of the underlying point process. It should be either
a numeric vector (giving intensity values at the points of X), a function, a pixel image (object of
class "im" or "linim") or a fitted point process model (object of class "ppm" or "lppm").

If lambda is not given, it will be estimated from the observed point pattern X as follows:

• If densitymethod="kernel", the intensity will be estimated by kernel smoothing, using the
fast estimator densityQuick.lpp introduced by Rakshit et al (2019). The smoothing band-
width sigma is required. It may be specified as a numeric value, or as a function that can be
applied to X to obtain a bandwidth value. Examples of the latter include bw.scott.iso and
bw.lppl. Additional arguments ... will be passed to sigma and to densityQuick.lpp.

120 linearK

• If densitymethod = "Voronoi", the intensity will be estimated using the resample-smoothed
Voronoi estimator densityVoronoi.lpp introduced by Moradi et al (2019). The arguments f
and nrep are passed to densityVoronoi.lpp and determine the retention probability and the
number of replicates, respectively. Additional arguments ... will be passed to densityVoronoi.lpp.

Value

Function value table (object of class "fv").

Author(s)

Mehdi Moradi <m2.moradi@yahoo.com> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Cronie, O., Moradi, M., and Mateu, J. (2020) Inhomogeneous higher-order summary statistics for
point processes on linear networks. Statistics and Computing 30 (6) 1221–1239.

Moradi, M., Cronie, 0., Rubak, E., Lachieze-Rey, R., Mateu, J. and Baddeley, A. (2019) Resample-
smoothing of Voronoi intensity estimators. Statistics and Computing 29 (5) 995–1010.

Rakshit, S., Davies, T., Moradi, M., McSwiggan, G., Nair, G., Mateu, J. and Baddeley, A. (2019)
Fast kernel smoothing of point patterns on a large network using 2D convolution. International
Statistical Review 87 (3) 531–556. DOI: 10.1111/insr.12327.

See Also

bw.scott.iso, bw.lppl, densityVoronoi.lpp, densityQuick.lpp

linearKinhom

Jinhom

Examples

if(interactive()) {
plot(linearJinhom(spiders))

} else {
bottomhalf <- owin(c(0, 1125), c(0, 500))
plot(linearJinhom(spiders[bottomhalf]))

}

linearK Linear K Function

Description

Computes an estimate of the linear K function for a point pattern on a linear network.

Usage

linearK(X, r=NULL, ..., correction="Ang", ratio=FALSE)

linearK 121

Arguments

X Point pattern on linear network (object of class "lpp").

r Optional. Numeric vector of values of the function argument r. There is a
sensible default.

... Ignored.

correction Geometry correction. Either "none" or "Ang". See Details.

ratio Logical. If TRUE, the numerator and denominator of the estimate will also be
saved, for use in analysing replicated point patterns.

Details

This command computes the linear K function from point pattern data on a linear network.

If correction="none", the calculations do not include any correction for the geometry of the linear
network. The result is the network K function as defined by Okabe and Yamada (2001).

If correction="Ang", the pair counts are weighted using Ang’s correction (Ang, 2010; Ang et al,
2012).

Value

Function value table (object of class "fv").

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Ang, Q.W. (2010) Statistical methodology for spatial point patterns on a linear network. MSc thesis,
University of Western Australia.

Ang, Q.W., Baddeley, A. and Nair, G. (2012) Geometrically corrected second-order analysis of
events on a linear network, with applications to ecology and criminology. Scandinavian Journal of
Statistics 39, 591–617.

Okabe, A. and Yamada, I. (2001) The K-function method on a network and its computational im-
plementation. Geographical Analysis 33, 271-290.

See Also

compileK, lpp

Examples

X <- rpoislpp(5, simplenet)
linearK(X)
linearK(X, correction="none")

122 linearKcross

linearKcross Multitype K Function (Cross-type) for Linear Point Pattern

Description

For a multitype point pattern on a linear network, estimate the multitype K function which counts
the expected number of points of type j within a given distance of a point of type i.

Usage

linearKcross(X, i, j, r=NULL, ..., correction="Ang")

Arguments

X The observed point pattern, from which an estimate of the cross type K function
Kij(r) will be computed. An object of class "lpp" which must be a multitype
point pattern (a marked point pattern whose marks are a factor).

i Number or character string identifying the type (mark value) of the points in X
from which distances are measured. Defaults to the first level of marks(X).

j Number or character string identifying the type (mark value) of the points in X
to which distances are measured. Defaults to the second level of marks(X).

r numeric vector. The values of the argument r at which the K-function Kij(r)
should be evaluated. There is a sensible default. First-time users are strongly
advised not to specify this argument. See below for important conditions on r.

correction Geometry correction. Either "none" or "Ang". See Details.

... Ignored.

Details

This is a counterpart of the function Kcross for a point pattern on a linear network (object of class
"lpp").

The arguments i and j will be interpreted as levels of the factor marks(X). If i and j are missing,
they default to the first and second level of the marks factor, respectively.

The argument r is the vector of values for the distance r at which Kij(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

Value

An object of class "fv" (see fv.object).

Warnings

The arguments i and j are interpreted as levels of the factor marks(X). Beware of the usual trap
with factors: numerical values are not interpreted in the same way as character values.

linearKcross.inhom 123

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Baddeley, A, Jammalamadaka, A. and Nair, G. (2014) Multitype point process analysis of spines on
the dendrite network of a neuron. Applied Statistics (Journal of the Royal Statistical Society, Series
C), 63, 673–694.

See Also

linearKdot, linearK.

Examples

K <- linearKcross(chicago, "assault", "robbery")

linearKcross.inhom Inhomogeneous multitype K Function (Cross-type) for Linear Point
Pattern

Description

For a multitype point pattern on a linear network, estimate the inhomogeneous multitype K function
which counts the expected number of points of type j within a given distance of a point of type i.

Usage

linearKcross.inhom(X, i, j, lambdaI=NULL, lambdaJ=NULL,
r=NULL, ..., correction="Ang", normalise=TRUE,
sigma=NULL)

Arguments

X The observed point pattern, from which an estimate of the cross type K function
Kij(r) will be computed. An object of class "lpp" which must be a multitype
point pattern (a marked point pattern whose marks are a factor).

i Number or character string identifying the type (mark value) of the points in X
from which distances are measured. Defaults to the first level of marks(X).

j Number or character string identifying the type (mark value) of the points in X
to which distances are measured. Defaults to the second level of marks(X).

lambdaI Intensity values for the points of type i. Either a numeric vector, a function,
a pixel image (object of class "im" or "linim") or a fitted point process model
(object of class "ppm" or "lppm") or NULL.

lambdaJ Intensity values for the points of type j. Either a numeric vector, a function,
a pixel image (object of class "im" or "linim") or a fitted point process model
(object of class "ppm" or "lppm") or NULL.

124 linearKcross.inhom

r numeric vector. The values of the argument r at which the K-function Kij(r)
should be evaluated. There is a sensible default. First-time users are strongly
advised not to specify this argument. See below for important conditions on r.

correction Geometry correction. Either "none" or "Ang". See Details.

... Arguments passed to lambdaI and lambdaJ if they are functions.

normalise Logical. If TRUE (the default), the denominator of the estimator is data-dependent
(equal to the sum of the reciprocal intensities at the points of type i), which re-
duces the sampling variability. If FALSE, the denominator is the length of the
network.

sigma Smoothing bandwidth passed to density.lpp for estimation of intensities when
either lambdaI or lambdaJ is NULL.

Details

This is a counterpart of the function Kcross.inhom for a point pattern on a linear network (object
of class "lpp").

The arguments i and j will be interpreted as levels of the factor marks(X). If i and j are missing,
they default to the first and second level of the marks factor, respectively.

The argument r is the vector of values for the distance r at which Kij(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

If lambdaI or lambdaJ is missing or NULL, it will be estimated by kernel smoothing using density.lpp.

If lambdaI or lambdaJ is a fitted point process model, the default behaviour is to update the model
by re-fitting it to the data, before computing the fitted intensity. This can be disabled by setting
update=FALSE.

Value

An object of class "fv" (see fv.object).

Warnings

The arguments i and j are interpreted as levels of the factor marks(X). Beware of the usual trap
with factors: numerical values are not interpreted in the same way as character values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Baddeley, A, Jammalamadaka, A. and Nair, G. (2014) Multitype point process analysis of spines on
the dendrite network of a neuron. Applied Statistics (Journal of the Royal Statistical Society, Series
C), 63, 673–694.

See Also

linearKdot, linearK.

linearKdot 125

Examples

lam <- table(marks(chicago))/(summary(chicago)$totlength)
lamI <- function(x,y,const=lam[["assault"]]){ rep(const, length(x)) }
lamJ <- function(x,y,const=lam[["robbery"]]){ rep(const, length(x)) }

K <- linearKcross.inhom(chicago, "assault", "robbery", lamI, lamJ)

using fitted models for the intensity
fit <- lppm(chicago ~marks + x)
K <- linearKcross.inhom(chicago, "assault", "robbery", fit, fit)

linearKdot Multitype K Function (Dot-type) for Linear Point Pattern

Description

For a multitype point pattern on a linear network, estimate the multitype K function which counts
the expected number of points (of any type) within a given distance of a point of type i.

Usage

linearKdot(X, i, r=NULL, ..., correction="Ang")

Arguments

X The observed point pattern, from which an estimate of the dot type K function
Ki•(r) will be computed. An object of class "lpp" which must be a multitype
point pattern (a marked point pattern whose marks are a factor).

i Number or character string identifying the type (mark value) of the points in X
from which distances are measured. Defaults to the first level of marks(X).

r numeric vector. The values of the argument r at which the K-function Ki•(r)
should be evaluated. There is a sensible default. First-time users are strongly
advised not to specify this argument. See below for important conditions on r.

correction Geometry correction. Either "none" or "Ang". See Details.

... Ignored.

Details

This is a counterpart of the function Kdot for a point pattern on a linear network (object of class
"lpp").

The argument i will be interpreted as levels of the factor marks(X). If i is missing, it defaults to
the first level of the marks factor.

The argument r is the vector of values for the distance r at which Ki•(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

126 linearKdot.inhom

Value

An object of class "fv" (see fv.object).

Warnings

The argument i is interpreted as a level of the factor marks(X). Beware of the usual trap with
factors: numerical values are not interpreted in the same way as character values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Baddeley, A, Jammalamadaka, A. and Nair, G. (2014) Multitype point process analysis of spines on
the dendrite network of a neuron. Applied Statistics (Journal of the Royal Statistical Society, Series
C), 63, 673–694.

See Also

Kdot, linearKcross, linearK.

Examples

K <- linearKdot(chicago, "assault")

linearKdot.inhom Inhomogeneous multitype K Function (Dot-type) for Linear Point Pat-
tern

Description

For a multitype point pattern on a linear network, estimate the inhomogeneous multitype K function
which counts the expected number of points (of any type) within a given distance of a point of type
i.

Usage

linearKdot.inhom(X, i, lambdaI=NULL, lambdadot=NULL, r=NULL, ...,
correction="Ang", normalise=TRUE, sigma=NULL)

linearKdot.inhom 127

Arguments

X The observed point pattern, from which an estimate of the dot type K function
Ki•(r) will be computed. An object of class "lpp" which must be a multitype
point pattern (a marked point pattern whose marks are a factor).

i Number or character string identifying the type (mark value) of the points in X
from which distances are measured. Defaults to the first level of marks(X).

lambdaI Intensity values for the points of type i. Either a numeric vector, a function,
a pixel image (object of class "im" or "linim") or a fitted point process model
(object of class "ppm" or "lppm") or NULL.

lambdadot Intensity values for all points of X. Either a numeric vector, a function, a pixel
image (object of class "im" or "linim") or a fitted point process model (object
of class "ppm" or "lppm") or NULL.

r numeric vector. The values of the argument r at which the K-function Ki•(r)
should be evaluated. There is a sensible default. First-time users are strongly
advised not to specify this argument. See below for important conditions on r.

correction Geometry correction. Either "none" or "Ang". See Details.
... Arguments passed to lambdaI and lambdadot if they are functions.
normalise Logical. If TRUE (the default), the denominator of the estimator is data-dependent

(equal to the sum of the reciprocal intensities at the points of type i), which re-
duces the sampling variability. If FALSE, the denominator is the length of the
network.

sigma Smoothing bandwidth passed to density.lpp for estimation of intensities when
either lambdaI or lambdadot is NULL.

Details

This is a counterpart of the function Kdot.inhom for a point pattern on a linear network (object of
class "lpp").

The argument i will be interpreted as levels of the factor marks(X). If i is missing, it defaults to
the first level of the marks factor.

The argument r is the vector of values for the distance r at which Ki•(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

If lambdaI or lambdadot is missing, it will be estimated by kernel smoothing using density.lpp.

If lambdaI or lambdadot is a fitted point process model, the default behaviour is to update the
model by re-fitting it to the data, before computing the fitted intensity. This can be disabled by
setting update=FALSE.

Value

An object of class "fv" (see fv.object).

Warnings

The argument i is interpreted as a level of the factor marks(X). Beware of the usual trap with
factors: numerical values are not interpreted in the same way as character values.

128 linearKEuclid

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Baddeley, A, Jammalamadaka, A. and Nair, G. (2014) Multitype point process analysis of spines on
the dendrite network of a neuron. Applied Statistics (Journal of the Royal Statistical Society, Series
C), 63, 673–694.

See Also

linearKdot, linearK.

Examples

lam <- table(marks(chicago))/(summary(chicago)$totlength)
lamI <- function(x,y,const=lam[["assault"]]){ rep(const, length(x)) }
lam. <- function(x,y,const=sum(lam)){ rep(const, length(x)) }

K <- linearKdot.inhom(chicago, "assault", lamI, lam.)

using fitted models for the intensity
fit <- lppm(chicago ~marks + x)
linearKdot.inhom(chicago, "assault", fit, fit)

linearKEuclid Linear K Function Using Euclidean Distance

Description

Computes an estimate of the linear K function based on Euclidean distances, for a point pattern on
a linear network.

Usage

linearKEuclid(X, r = NULL, ...)

Arguments

X Point pattern on linear network (object of class "lpp").

r Optional. Numeric vector of values of the function argument r. There is a
sensible default.

... Ignored.

linearKEuclidInhom 129

Details

This command computes an estimate of the linear K function based on Euclidean distances between
the points, as described by Rakshit, Nair and Baddeley (2017).

This is different from the linear K function based on shortest-path distances, which is computed by
linearK.

The linear K function based on Euclidean distances is defined in equation (20) of Rakshit, Nair and
Baddeley (2017). The estimate is computed from the point pattern as described in equation (25).

Value

Function value table (object of class "fv").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Rakshit. S., Nair, G. and Baddeley, A. (2017) Second-order analysis of point patterns on a network
using any distance metric. Spatial Statistics 22 (1) 129–154.

See Also

linearpcfEuclid, linearKEuclidInhom.

See linearK for the corresponding function based on shortest-path distances.

Examples

X <- rpoislpp(5, simplenet)
K <- linearKEuclid(X)

linearKEuclidInhom Inhomogeneous Linear K Function Based on Euclidean Distances

Description

Computes an estimate of the inhomogeneous linear K function based on Euclidean distances, for a
point pattern on a linear network.

Usage

linearKEuclidInhom(X, lambda = NULL, r = NULL, ...,
normalise = TRUE, normpower = 2, update = TRUE,
leaveoneout = TRUE, sigma=NULL)

130 linearKEuclidInhom

Arguments

X Point pattern on linear network (object of class "lpp").

lambda Intensity values for the point pattern. Either a numeric vector, a function, a
pixel image (object of class "im" or "linim") or a fitted point process model
(object of class "ppm" or "lppm") or NULL.

r Optional. Numeric vector of values of the function argument r. There is a
sensible default.

... Ignored.

normalise Logical. If TRUE (the default), the denominator of the estimator is data-dependent
(equal to the sum of the reciprocal intensities at the data points, raised to normpower),
which reduces the sampling variability. If FALSE, the denominator is the length
of the network.

normpower Integer (usually either 1 or 2). Normalisation power. See Details.

update Logical value indicating what to do when lambda is a fitted model (class "lppm"
or "ppm"). If update=TRUE (the default), the model will first be refitted to the
data X (using update.lppm or update.ppm) before the fitted intensity is com-
puted. If update=FALSE, the fitted intensity of the model will be computed
without re-fitting it to X.

leaveoneout Logical value specifying whether to use a leave-one-out rule when calculating
the intensity. See Details.

sigma Smoothing bandwidth (passed to density.lpp) for kernel density estimation of
the intensity when lambda=NULL.

Details

This command computes the inhomogeneous version of the linear K function based on Euclidean
distances, for a point pattern on a linear network.

This is different from the inhomogeneous K function based on shortest-path distances, which is
computed by linearKinhom.

The inhomogeneous K function based on Euclidean distances is defined in equation (23) of Rakshit,
Nair and Baddeley (2017). Estimation is performed as described in equation (28).

The argument lambda should provide estimated values of the intensity of the point process at each
point of X.

If lambda=NULL, the intensity will be estimated by kernel smoothing by calling density.lpp with
the smoothing bandwidth sigma, and with any other relevant arguments that might be present in
.... A leave-one-out kernel estimate will be computed if leaveoneout=TRUE.

If lambda is given, then it is expected to provide estimated values of the intensity of the point
process at each point of X. The argument lambda may be a numeric vector (of length equal to the
number of points in X), or a function(x,y) that will be evaluated at the points of X to yield numeric
values, or a pixel image (object of class "im") or a fitted point process model (object of class "ppm"
or "lppm").

If lambda is a fitted point process model, the default behaviour is to update the model by re-fitting
it to the data, before computing the fitted intensity. This can be disabled by setting update=FALSE.

linearKinhom 131

The intensity at data points will be computed by fitted.lppm or fitted.ppm. A leave-one-out
estimate will be computed if leaveoneout=TRUE and update=TRUE.

If normalise=TRUE (the default), then the estimate is multiplied by cnormpower where c = length(L)/
∑

(1/λ(xi)).
This rescaling reduces the variability and bias of the estimate in small samples and in cases of very
strong inhomogeneity. The default value of normpower is 1 (for consistency with previous versions
of spatstat) but the most sensible value is 2, which would correspond to rescaling the lambda values
so that

∑
(1/λ(xi)) = area(W).

Value

Function value table (object of class "fv").

Warning

Older versions of linearKEuclidInhom interpreted lambda=NULL to mean that the homogeneous
function linearKEuclid should be computed. This was changed to the current behaviour in version
3.1-0 of spatstat.linnet.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Rakshit. S., Nair, G. and Baddeley, A. (2017) Second-order analysis of point patterns on a network
using any distance metric. Spatial Statistics 22 (1) 129–154.

See Also

linearpcfEuclidInhom, linearKEuclid.

See linearKinhom for the corresponding function based on shortest-path distances.

Examples

X <- rpoislpp(5, simplenet)
fit <- lppm(X ~x)
K <- linearKEuclidInhom(X, lambda=fit)
plot(K)

linearKinhom Inhomogeneous Linear K Function

Description

Computes an estimate of the inhomogeneous linear K function for a point pattern on a linear net-
work.

132 linearKinhom

Usage

linearKinhom(X, lambda=NULL, r=NULL, ..., correction="Ang",
normalise=TRUE, normpower=1,

update=TRUE, leaveoneout=TRUE, sigma=NULL, ratio=FALSE)

Arguments

X Point pattern on linear network (object of class "lpp").

lambda Intensity values for the point pattern. Either a numeric vector, a function, a
pixel image (object of class "im" or "linim") or a fitted point process model
(object of class "ppm" or "lppm") or NULL.

r Optional. Numeric vector of values of the function argument r. There is a
sensible default. Users are advised not to specify r in normal usage.

... Ignored.

correction Geometry correction. Either "none" or "Ang". See Details.

normalise Logical. If TRUE (the default), the denominator of the estimator is data-dependent
(equal to the sum of the reciprocal intensities at the data points, raised to normpower),
which reduces the sampling variability. If FALSE, the denominator is the length
of the network.

normpower Integer (usually either 1 or 2). Normalisation power. See Details.

update Logical value indicating what to do when lambda is a fitted model (class "lppm"
or "ppm"). If update=TRUE (the default), the model will first be refitted to the
data X (using update.lppm or update.ppm) before the fitted intensity is com-
puted. If update=FALSE, the fitted intensity of the model will be computed
without re-fitting it to X.

leaveoneout Logical value specifying whether to use a leave-one-out rule when calculating
the intensity. See Details.

sigma Smoothing bandwidth (passed to density.lpp) for kernel density estimation of
the intensity when lambda=NULL.

ratio Logical. If TRUE, the numerator and denominator of the estimate will also be
saved, for use in analysing replicated point patterns.

Details

This command computes the inhomogeneous version of the linear K function from point pattern
data on a linear network.

The argument lambda should provide estimated values of the intensity of the point process at each
point of X.

If lambda=NULL, the intensity will be estimated by kernel smoothing by calling density.lpp with
the smoothing bandwidth sigma, and with any other relevant arguments that might be present in
.... A leave-one-out kernel estimate will be computed if leaveoneout=TRUE.

If lambda is given, it may be a numeric vector (of length equal to the number of points in X), or a
function(x,y) that will be evaluated at the points of X to yield numeric values, or a pixel image
(object of class "im") or a fitted point process model (object of class "ppm" or "lppm").

linearKinhom 133

If lambda is a fitted point process model, the default behaviour is to update the model by re-fitting
it to the data, before computing the fitted intensity. This can be disabled by setting update=FALSE.
The intensity at data points will be computed by fitted.lppm or fitted.ppm. A leave-one-out
estimate will be computed if leaveoneout=TRUE and update=TRUE.

If correction="none", the calculations do not include any correction for the geometry of the linear
network. If correction="Ang", the pair counts are weighted using Ang’s correction (Ang, 2010).

Each estimate is initially computed as

K̂inhom(r) =
1

length(L)

∑
i

∑
j

1{dij ≤ r}e(xi, xj)

λ(xi)λ(xj)

where L is the linear network, dij is the distance between points xi and xj , and e(xi, xj) is a
weight. If correction="none" then this weight is equal to 1, while if correction="Ang" the
weight is e(xi, xj , r) = 1/m(xi, dij) where m(u, t) is the number of locations on the network that
lie exactly t units distant from location u by the shortest path.

If normalise=TRUE (the default), then the estimates described above are multiplied by cnormpower

where c = length(L)/
∑

(1/λ(xi)). This rescaling reduces the variability and bias of the estimate
in small samples and in cases of very strong inhomogeneity. The default value of normpower is 1
(for consistency with previous versions of spatstat) but the most sensible value is 2, which would
correspond to rescaling the lambda values so that

∑
(1/λ(xi)) = area(W).

Value

Function value table (object of class "fv").

Warning

Older versions of linearKinhom interpreted lambda=NULL to mean that the homogeneous function
linearK should be computed. This was changed to the current behaviour in version 3.1-0 of
spatstat.linnet.

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Ang, Q.W. (2010) Statistical methodology for spatial point patterns on a linear network. MSc thesis,
University of Western Australia.

Ang, Q.W., Baddeley, A. and Nair, G. (2012) Geometrically corrected second-order analysis of
events on a linear network, with applications to ecology and criminology. Scandinavian Journal of
Statistics 39, 591–617.

See Also

lpp

134 linearmarkconnect

Examples

X <- rpoislpp(5, simplenet)
fit <- lppm(X ~x)
K <- linearKinhom(X, lambda=fit)
plot(K)
Ke <- linearKinhom(X, sigma=bw.lppl)
plot(Ke)

linearmarkconnect Mark Connection Function for Multitype Point Pattern on Linear Net-
work

Description

For a multitype point pattern on a linear network, estimate the mark connection function from points
of type i to points of type j.

Usage

linearmarkconnect(X, i, j, r=NULL, ...)

Arguments

X The observed point pattern, from which an estimate of the mark connection
function pij(r) will be computed. An object of class "lpp" which must be a
multitype point pattern (a marked point pattern whose marks are a factor).

i Number or character string identifying the type (mark value) of the points in X
from which distances are measured. Defaults to the first level of marks(X).

j Number or character string identifying the type (mark value) of the points in X
to which distances are measured. Defaults to the second level of marks(X).

r numeric vector. The values of the argument r at which the function pij(r) should
be evaluated. There is a sensible default. First-time users are strongly advised
not to specify this argument. See below for important conditions on r.

... Arguments passed to linearpcfcross and linearpcf.

Details

This is a counterpart of the function markconnect for a point pattern on a linear network (object of
class "lpp").

The argument i will be interpreted as levels of the factor marks(X). If i is missing, it defaults to
the first level of the marks factor.

The argument r is the vector of values for the distance r at which pij(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

linearmarkequal 135

Value

An object of class "fv" (see fv.object).

Warnings

The argument i is interpreted as a level of the factor marks(X). Beware of the usual trap with
factors: numerical values are not interpreted in the same way as character values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Baddeley, A, Jammalamadaka, A. and Nair, G. (2014) Multitype point process analysis of spines on
the dendrite network of a neuron. Applied Statistics (Journal of the Royal Statistical Society, Series
C), 63, 673–694.

See Also

linearpcfcross, linearpcf, linearmarkequal, markconnect.

Examples

pab <- linearmarkconnect(chicago, "assault", "burglary")

plot(alltypes(chicago, linearmarkconnect))

linearmarkequal Mark Connection Function for Multitype Point Pattern on Linear Net-
work

Description

For a multitype point pattern on a linear network, estimate the mark connection function from points
of type i to points of type j.

Usage

linearmarkequal(X, r=NULL, ...)

136 linearmarkequal

Arguments

X The observed point pattern, from which an estimate of the mark connection
function pij(r) will be computed. An object of class "lpp" which must be a
multitype point pattern (a marked point pattern whose marks are a factor).

r numeric vector. The values of the argument r at which the function pij(r) should
be evaluated. There is a sensible default. First-time users are strongly advised
not to specify this argument. See below for important conditions on r.

... Arguments passed to linearpcfcross and linearpcf.

Details

This is the mark equality function for a point pattern on a linear network (object of class "lpp").

The argument r is the vector of values for the distance r at which pij(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

Value

An object of class "fv" (see fv.object).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Baddeley, A, Jammalamadaka, A. and Nair, G. (2014) Multitype point process analysis of spines on
the dendrite network of a neuron. Applied Statistics (Journal of the Royal Statistical Society, Series
C), 63, 673–694.

See Also

linearpcfcross, linearpcf, linearmarkconnect, markconnect.

Examples

if(interactive()) {
X <- chicago

} else {
m <- sample(factor(c("A","B")), 20, replace=TRUE)
X <- runiflpp(20, simplenet) %mark% m

}
p <- linearmarkequal(X)

linearpcf 137

linearpcf Linear Pair Correlation Function

Description

Computes an estimate of the linear pair correlation function for a point pattern on a linear network.

Usage

linearpcf(X, r=NULL, ..., correction="Ang", ratio=FALSE)

Arguments

X Point pattern on linear network (object of class "lpp").

r Optional. Numeric vector of values of the function argument r. There is a
sensible default.

... Arguments passed to density.default to control the smoothing.

correction Geometry correction. Either "none" or "Ang". See Details.

ratio Logical. If TRUE, the numerator and denominator of each estimate will also be
saved, for use in analysing replicated point patterns.

Details

This command computes the linear pair correlation function from point pattern data on a linear
network.

The pair correlation function is estimated from the shortest-path distances between each pair of
data points, using the fixed-bandwidth kernel smoother density.default, with a bias correction
at each end of the interval of r values. To switch off the bias correction, set endcorrect=FALSE.

The bandwidth for smoothing the pairwise distances is determined by arguments ... passed to
density.default, mainly the arguments bw and adjust. The default is to choose the bandwidth
by Silverman’s rule of thumb bw="nrd0" explained in density.default.

If correction="none", the calculations do not include any correction for the geometry of the linear
network. The result is an estimate of the first derivative of the network K function defined by Okabe
and Yamada (2001).

If correction="Ang", the pair counts are weighted using Ang’s correction (Ang, 2010). The result
is an estimate of the pair correlation function in the linear network.

Value

Function value table (object of class "fv").

If ratio=TRUE then the return value also has two attributes called "numerator" and "denominator"
which are "fv" objects containing the numerators and denominators of each estimate of g(r).

138 linearpcfcross

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Ang, Q.W. (2010) Statistical methodology for spatial point patterns on a linear network. MSc thesis,
University of Western Australia.

Ang, Q.W., Baddeley, A. and Nair, G. (2012) Geometrically corrected second-order analysis of
events on a linear network, with applications to ecology and criminology. Scandinavian Journal of
Statistics 39, 591–617.

Okabe, A. and Yamada, I. (2001) The K-function method on a network and its computational im-
plementation. Geographical Analysis 33, 271-290.

See Also

linearK, linearpcfinhom, lpp

Examples

X <- rpoislpp(5, simplenet)
linearpcf(X)
linearpcf(X, correction="none")

linearpcfcross Multitype Pair Correlation Function (Cross-type) for Linear Point Pat-
tern

Description

For a multitype point pattern on a linear network, estimate the multitype pair correlation function
from points of type i to points of type j.

Usage

linearpcfcross(X, i, j, r=NULL, ..., correction="Ang")

Arguments

X The observed point pattern, from which an estimate of the i-to-any pair correla-
tion function gij(r) will be computed. An object of class "lpp" which must be
a multitype point pattern (a marked point pattern whose marks are a factor).

i Number or character string identifying the type (mark value) of the points in X
from which distances are measured. Defaults to the first level of marks(X).

j Number or character string identifying the type (mark value) of the points in X
to which distances are measured. Defaults to the second level of marks(X).

linearpcfcross 139

r numeric vector. The values of the argument r at which the function gij(r) should
be evaluated. There is a sensible default. First-time users are strongly advised
not to specify this argument. See below for important conditions on r.

correction Geometry correction. Either "none" or "Ang". See Details.

... Arguments passed to density.default to control the kernel smoothing.

Details

This is a counterpart of the function pcfcross for a point pattern on a linear network (object of
class "lpp").

The argument i will be interpreted as levels of the factor marks(X). If i is missing, it defaults to
the first level of the marks factor.

The argument r is the vector of values for the distance r at which gij(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

Value

An object of class "fv" (see fv.object).

Warnings

The argument i is interpreted as a level of the factor marks(X). Beware of the usual trap with
factors: numerical values are not interpreted in the same way as character values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Baddeley, A, Jammalamadaka, A. and Nair, G. (2014) Multitype point process analysis of spines on
the dendrite network of a neuron. Applied Statistics (Journal of the Royal Statistical Society, Series
C), 63, 673–694.

See Also

linearpcfdot, linearpcf, pcfcross.

Examples

g <- linearpcfcross(chicago, "assault")

140 linearpcfcross.inhom

linearpcfcross.inhom Inhomogeneous Multitype Pair Correlation Function (Cross-type) for
Linear Point Pattern

Description

For a multitype point pattern on a linear network, estimate the inhomogeneous multitype pair cor-
relation function from points of type i to points of type j.

Usage

linearpcfcross.inhom(X, i, j, lambdaI, lambdaJ, r=NULL, ...,
correction="Ang", normalise=TRUE,
sigma=NULL, adjust.sigma=1,
bw="nrd0", adjust.bw=1)

Arguments

X The observed point pattern, from which an estimate of the i-to-any pair correla-
tion function gij(r) will be computed. An object of class "lpp" which must be
a multitype point pattern (a marked point pattern whose marks are a factor).

i Number or character string identifying the type (mark value) of the points in X
from which distances are measured. Defaults to the first level of marks(X).

j Number or character string identifying the type (mark value) of the points in X
to which distances are measured. Defaults to the second level of marks(X).

lambdaI Intensity values for the points of type i. Either a numeric vector, a function,
a pixel image (object of class "im" or "linim") or a fitted point process model
(object of class "ppm" or "lppm").

lambdaJ Intensity values for the points of type j. Either a numeric vector, a function,
a pixel image (object of class "im" or "linim") or a fitted point process model
(object of class "ppm" or "lppm").

r numeric vector. The values of the argument r at which the function gij(r) should
be evaluated. There is a sensible default. First-time users are strongly advised
not to specify this argument. See below for important conditions on r.

correction Geometry correction. Either "none" or "Ang". See Details.

... Arguments passed to density.default to control the kernel smoothing.

normalise Logical. If TRUE (the default), the denominator of the estimator is data-dependent
(equal to the sum of the reciprocal intensities at the points of type i), which re-
duces the sampling variability. If FALSE, the denominator is the length of the
network.

sigma Smoothing bandwidth passed to density.lpp for estimation of intensities when
either lambdaI or lambdaJ is NULL.

adjust.sigma Numeric value. sigma will be multiplied by this value.

linearpcfcross.inhom 141

bw Smoothing bandwidth (passed to density.default) for one-dimensional ker-
nel smoothing of the pair correlation function. Either a numeric value, or a
character string recognised by density.default.

adjust.bw Numeric value. bw will be multiplied by this value.

Details

This is a counterpart of the function pcfcross.inhom for a point pattern on a linear network (object
of class "lpp").

The argument i will be interpreted as levels of the factor marks(X). If i is missing, it defaults to
the first level of the marks factor.

The argument r is the vector of values for the distance r at which gij(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

If lambdaI or lambdaJ is missing or NULL, it will be estimated by kernel smoothing using density.lpp.

If lambdaI or lambdaJ is a fitted point process model, the default behaviour is to update the model
by re-fitting it to the data, before computing the fitted intensity. This can be disabled by setting
update=FALSE.

Value

An object of class "fv" (see fv.object).

Warnings

The argument i is interpreted as a level of the factor marks(X). Beware of the usual trap with
factors: numerical values are not interpreted in the same way as character values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Baddeley, A, Jammalamadaka, A. and Nair, G. (2014) Multitype point process analysis of spines on
the dendrite network of a neuron. Applied Statistics (Journal of the Royal Statistical Society, Series
C), 63, 673–694.

See Also

linearpcfdot, linearpcf, pcfcross.inhom.

Examples

lam <- table(marks(chicago))/(summary(chicago)$totlength)
lamI <- function(x,y,const=lam[["assault"]]){ rep(const, length(x)) }
lamJ <- function(x,y,const=lam[["robbery"]]){ rep(const, length(x)) }

g <- linearpcfcross.inhom(chicago, "assault", "robbery", lamI, lamJ)

142 linearpcfdot

using fitted models for intensity
fit <- lppm(chicago ~marks + x)
linearpcfcross.inhom(chicago, "assault", "robbery", fit, fit)

linearpcfdot Multitype Pair Correlation Function (Dot-type) for Linear Point Pat-
tern

Description

For a multitype point pattern on a linear network, estimate the multitype pair correlation function
from points of type i to points of any type.

Usage

linearpcfdot(X, i, r=NULL, ..., correction="Ang")

Arguments

X The observed point pattern, from which an estimate of the i-to-any pair correla-
tion function gi•(r) will be computed. An object of class "lpp" which must be
a multitype point pattern (a marked point pattern whose marks are a factor).

i Number or character string identifying the type (mark value) of the points in X
from which distances are measured. Defaults to the first level of marks(X).

r numeric vector. The values of the argument r at which the function gi•(r) should
be evaluated. There is a sensible default. First-time users are strongly advised
not to specify this argument. See below for important conditions on r.

correction Geometry correction. Either "none" or "Ang". See Details.

... Arguments passed to density.default to control the kernel smoothing.

Details

This is a counterpart of the function pcfdot for a point pattern on a linear network (object of class
"lpp").

The argument i will be interpreted as levels of the factor marks(X). If i is missing, it defaults to
the first level of the marks factor.

The argument r is the vector of values for the distance r at which gi•(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

Value

An object of class "fv" (see fv.object).

linearpcfdot.inhom 143

Warnings

The argument i is interpreted as a level of the factor marks(X). Beware of the usual trap with
factors: numerical values are not interpreted in the same way as character values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Baddeley, A, Jammalamadaka, A. and Nair, G. (2014) Multitype point process analysis of spines on
the dendrite network of a neuron. Applied Statistics (Journal of the Royal Statistical Society, Series
C), 63, 673–694.

See Also

linearpcfcross, linearpcf, pcfdot.

Examples

g <- linearpcfdot(chicago, "assault")

linearpcfdot.inhom Inhomogeneous Multitype Pair Correlation Function (Dot-type) for
Linear Point Pattern

Description

For a multitype point pattern on a linear network, estimate the inhomogeneous multitype pair cor-
relation function from points of type i to points of any type.

Usage

linearpcfdot.inhom(X, i, lambdaI, lambdadot, r=NULL, ...,
correction="Ang", normalise=TRUE,
sigma=NULL, adjust.sigma=1,
bw="nrd0", adjust.bw=1)

Arguments

X The observed point pattern, from which an estimate of the i-to-any pair correla-
tion function gi•(r) will be computed. An object of class "lpp" which must be
a multitype point pattern (a marked point pattern whose marks are a factor).

i Number or character string identifying the type (mark value) of the points in X
from which distances are measured. Defaults to the first level of marks(X).

lambdaI Intensity values for the points of type i. Either a numeric vector, a function,
a pixel image (object of class "im" or "linim") or a fitted point process model
(object of class "ppm" or "lppm") or NULL.

144 linearpcfdot.inhom

lambdadot Intensity values for all points of X. Either a numeric vector, a function, a pixel
image (object of class "im" or "linim") or a fitted point process model (object
of class "ppm" or "lppm") or NULL.

r numeric vector. The values of the argument r at which the function gi•(r) should
be evaluated. There is a sensible default. First-time users are strongly advised
not to specify this argument. See below for important conditions on r.

correction Geometry correction. Either "none" or "Ang". See Details.
... Arguments passed to density.default to control the kernel smoothing.
normalise Logical. If TRUE (the default), the denominator of the estimator is data-dependent

(equal to the sum of the reciprocal intensities at the points of type i), which re-
duces the sampling variability. If FALSE, the denominator is the length of the
network.

sigma Smoothing bandwidth passed to density.lpp for estimation of intensities when
either lambdaI or lambdadot is NULL.

adjust.sigma Numeric value. sigma will be multiplied by this value.
bw Smoothing bandwidth (passed to density.default) for one-dimensional ker-

nel smoothing of the pair correlation function. Either a numeric value, or a
character string recognised by density.default.

adjust.bw Numeric value. bw will be multiplied by this value.

Details

This is a counterpart of the function pcfdot.inhom for a point pattern on a linear network (object
of class "lpp").

The argument i will be interpreted as levels of the factor marks(X). If i is missing, it defaults to
the first level of the marks factor.

The argument r is the vector of values for the distance r at which gi•(r) should be evaluated. The
values of r must be increasing nonnegative numbers and the maximum r value must not exceed the
radius of the largest disc contained in the window.

If lambdaI or lambdadot is missing or NULL, it will be estimated by kernel smoothing using
density.lpp.

If lambdaI or lambdadot is a fitted point process model, the default behaviour is to update the
model by re-fitting it to the data, before computing the fitted intensity. This can be disabled by
setting update=FALSE.

Value

An object of class "fv" (see fv.object).

Warnings

The argument i is interpreted as a level of the factor marks(X). Beware of the usual trap with
factors: numerical values are not interpreted in the same way as character values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

linearpcfEuclid 145

References

Baddeley, A, Jammalamadaka, A. and Nair, G. (2014) Multitype point process analysis of spines on
the dendrite network of a neuron. Applied Statistics (Journal of the Royal Statistical Society, Series
C), 63, 673–694.

See Also

linearpcfcross.inhom, linearpcfdot, pcfdot.inhom.

Examples

lam <- table(marks(chicago))/(summary(chicago)$totlength)
lamI <- function(x,y,const=lam[["assault"]]){ rep(const, length(x)) }
lam. <- function(x,y,const=sum(lam)){ rep(const, length(x)) }

g <- linearpcfdot.inhom(chicago, "assault", lamI, lam.)

using fitted models for the intensity
fit <- lppm(chicago, ~marks + x)
linearpcfdot.inhom(chicago, "assault", fit, fit)

linearpcfEuclid Linear Pair Correlation Function Using Euclidean Distance

Description

Computes an estimate of the pair correlation function based on Euclidean distances, for a point
pattern on a linear network.

Usage

linearpcfEuclid(X, r = NULL, ...)

Arguments

X Point pattern on linear network (object of class "lpp").
r Optional. Numeric vector of values of the function argument r. There is a

sensible default.
... Ignored.

Details

This command computes an estimate of the pair correlation function based on Euclidean distances
between the points, as described by Rakshit, Nair and Baddeley (2017).

This is different from the linear pair correlation function based on shortest-path distances, which is
computed by linearpcf.

The linear pair correlation function based on Euclidean distances is defined in equation (15) of
Rakshit, Nair and Baddeley (2017). The estimate is computed from the point pattern as described
in equation (31).

146 linearpcfEuclidInhom

Value

Function value table (object of class "fv").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Rakshit. S., Nair, G. and Baddeley, A. (2017) Second-order analysis of point patterns on a network
using any distance metric. Spatial Statistics 22 (1) 129–154.

See Also

linearKEuclid, linearpcfEuclidInhom.

See linearpcf for the corresponding function based on shortest-path distances.

Examples

X <- rpoislpp(5, simplenet)
g <- linearpcfEuclid(X)

linearpcfEuclidInhom Inhomogeneous Linear Pair Correlation Function Based on Euclidean
Distances

Description

Computes an estimate of the inhomogeneous pair correlation function based on Euclidean distances,
for a point pattern on a linear network.

Usage

linearpcfEuclidInhom(X, lambda = NULL, r = NULL, ...,
normalise = TRUE, normpower = 2,
update = TRUE, leaveoneout = TRUE,
sigma=NULL, adjust.sigma=1, bw="nrd0", adjust.bw=1)

Arguments

X Point pattern on linear network (object of class "lpp").

lambda Intensity values for the point pattern. Either a numeric vector, a function, a
pixel image (object of class "im" or "linim") or a fitted point process model
(object of class "ppm" or "lppm") or NULL.

r Optional. Numeric vector of values of the function argument r. There is a
sensible default.

... Ignored.

linearpcfEuclidInhom 147

normalise Logical. If TRUE (the default), the denominator of the estimator is data-dependent
(equal to the sum of the reciprocal intensities at the data points, raised to normpower),
which reduces the sampling variability. If FALSE, the denominator is the length
of the network.

normpower Integer (usually either 1 or 2). Normalisation power. See Details.
update Logical value indicating what to do when lambda is a fitted model (class "lppm"

or "ppm"). If update=TRUE (the default), the model will first be refitted to the
data X (using update.lppm or update.ppm) before the fitted intensity is com-
puted. If update=FALSE, the fitted intensity of the model will be computed
without re-fitting it to X.

leaveoneout Logical value specifying whether to use a leave-one-out rule when calculating
the intensity. See Details.

sigma Smoothing bandwidth (passed to density.lpp) for kernel density estimation of
the intensity when lambda=NULL.

adjust.sigma Numeric value. sigma will be multiplied by this value.
bw Smoothing bandwidth (passed to density.default) for one-dimensional ker-

nel smoothing of the pair correlation function. Either a numeric value, or a
character string recognised by density.default.

adjust.bw Numeric value. bw will be multiplied by this value.

Details

This command computes the inhomogeneous version of the pair correlation function based on Eu-
clidean distances, for a point pattern on a linear network.

This is different from the inhomogeneous pair correlation function based on shortest-path distances,
which is computed by linearpcfinhom.

The inhomogeneous pair correlation function based on Euclidean distances is defined in equation
(30) of Rakshit, Nair and Baddeley (2017). Estimation is performed as described in equation (34)
of Rakshit, Nair and Baddeley (2017).

The argument lambda should provide estimated values of the intensity of the point process at each
point of X.

If lambda=NULL, the intensity will be estimated by kernel smoothing by calling density.lpp with
the smoothing bandwidth sigma, and with any other relevant arguments that might be present in
.... A leave-one-out kernel estimate will be computed if leaveoneout=TRUE.

If lambda is given, then it may be a numeric vector (of length equal to the number of points in X), or
a function(x,y) that will be evaluated at the points of X to yield numeric values, or a pixel image
(object of class "im") or a fitted point process model (object of class "ppm" or "lppm").

If lambda is a fitted point process model, the default behaviour is to update the model by re-fitting
it to the data, before computing the fitted intensity. This can be disabled by setting update=FALSE.
The intensity at data points will be computed by fitted.lppm or fitted.ppm. A leave-one-out
estimate will be computed if leaveoneout=TRUE and update=TRUE.

If normalise=TRUE (the default), then the estimate is multiplied by cnormpower where c = length(L)/
∑

(1/λ(xi)).
This rescaling reduces the variability and bias of the estimate in small samples and in cases of very
strong inhomogeneity. The default value of normpower is 1 (for consistency with previous versions
of spatstat) but the most sensible value is 2, which would correspond to rescaling the lambda values
so that

∑
(1/λ(xi)) = area(W).

148 linearpcfinhom

Value

Function value table (object of class "fv").

Warning

Older versions of linearpcfEuclidInhom interpreted lambda=NULL to mean that the homogeneous
function linearpcfEuclid should be computed. This was changed to the current behaviour in
version 3.1-0 of spatstat.linnet.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Rakshit. S., Nair, G. and Baddeley, A. (2017) Second-order analysis of point patterns on a network
using any distance metric. Spatial Statistics 22 (1) 129–154.

See Also

linearKEuclidInhom, linearpcfEuclid.

See linearpcfinhom for the corresponding function based on shortest-path distances.

Examples

X <- rpoislpp(5, simplenet)
fit <- lppm(X ~x)
g <- linearpcfEuclidInhom(X, lambda=fit)
plot(g)

linearpcfinhom Inhomogeneous Linear Pair Correlation Function

Description

Computes an estimate of the inhomogeneous linear pair correlation function for a point pattern on
a linear network.

Usage

linearpcfinhom(X, lambda=NULL, r=NULL, ..., correction="Ang",
normalise=TRUE, normpower=1,

update = TRUE, leaveoneout = TRUE,
sigma=NULL, adjust.sigma=1,
bw="nrd0", adjust.bw=1,

ratio = FALSE)

linearpcfinhom 149

Arguments

X Point pattern on linear network (object of class "lpp").

lambda Intensity values for the point pattern. Either a numeric vector, a function, a
pixel image (object of class "im") or a fitted point process model (object of
class "ppm" or "lppm").

r Optional. Numeric vector of values of the function argument r. There is a
sensible default.

... Arguments passed to density.default to control the smoothing of the esti-
mates of pair correlation.

correction Geometry correction. Either "none" or "Ang". See Details.

normalise Logical. If TRUE (the default), the denominator of the estimator is data-dependent
(equal to the sum of the reciprocal intensities at the data points, raised to normpower),
which reduces the sampling variability. If FALSE, the denominator is the length
of the network.

normpower Integer (usually either 1 or 2). Normalisation power. See explanation in linearKinhom.

update Logical value indicating what to do when lambda is a fitted model (class "lppm"
or "ppm"). If update=TRUE (the default), the model will first be refitted to the
data X (using update.lppm or update.ppm) before the fitted intensity is com-
puted. If update=FALSE, the fitted intensity of the model will be computed
without re-fitting it to X.

leaveoneout Logical value specifying whether to use a leave-one-out rule when calculating
the intensity. See Details.

sigma Smoothing bandwidth (passed to density.lpp) for kernel density estimation of
the intensity when lambda=NULL.

adjust.sigma Numeric value. sigma will be multiplied by this value.

bw Smoothing bandwidth (passed to density.default) for one-dimensional ker-
nel smoothing of the pair correlation function. Either a numeric value, or a
character string recognised by density.default.

adjust.bw Numeric value. bw will be multiplied by this value.

ratio Logical. If TRUE, the numerator and denominator of each estimate will also be
saved, for use in analysing replicated point patterns.

Details

This command computes the inhomogeneous version of the linear pair correlation function from
point pattern data on a linear network.

The argument lambda should provide estimated values of the intensity of the point process at each
point of X.

If lambda=NULL, the intensity will be estimated by kernel smoothing by calling density.lpp with
the smoothing bandwidth sigma, and with any other relevant arguments that might be present in
.... A leave-one-out kernel estimate will be computed if leaveoneout=TRUE.

If lambda is given, it may be a numeric vector (of length equal to the number of points in X), or a
function(x,y) that will be evaluated at the points of X to yield numeric values, or a pixel image
(object of class "im") or a fitted point process model (object of class "ppm" or "lppm").

150 linearpcfinhom

If lambda is a fitted point process model, the default behaviour is to update the model by re-fitting
it to the data, before computing the fitted intensity. This can be disabled by setting update=FALSE.
The intensity at data points will be computed by fitted.lppm or fitted.ppm. A leave-one-out
estimate will be computed if leaveoneout=TRUE and update=TRUE.

If correction="none", the calculations do not include any correction for the geometry of the linear
network. If correction="Ang", the pair counts are weighted using Ang’s correction (Ang, 2010).

The bandwidth for smoothing the pairwise distances is determined by arguments ... passed to
density.default, mainly the arguments bw and adjust. The default is to choose the bandwidth
by Silverman’s rule of thumb bw="nrd0" explained in density.default.

Value

Function value table (object of class "fv").

If ratio=TRUE then the return value also has two attributes called "numerator" and "denominator"
which are "fv" objects containing the numerators and denominators of each estimate of g(r).

Warning

Older versions of linearpcfinhom interpreted lambda=NULL to mean that the homogeneous func-
tion linearpcf should be computed. This was changed to the current behaviour in version 3.1-0
of spatstat.linnet.

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Ang, Q.W. (2010) Statistical methodology for spatial point patterns on a linear network. MSc thesis,
University of Western Australia.

Ang, Q.W., Baddeley, A. and Nair, G. (2012) Geometrically corrected second-order analysis of
events on a linear network, with applications to ecology and criminology. Scandinavian Journal of
Statistics 39, 591–617.

Okabe, A. and Yamada, I. (2001) The K-function method on a network and its computational im-
plementation. Geographical Analysis 33, 271-290.

See Also

linearpcf, linearKinhom, lpp

Examples

X <- rpoislpp(5, simplenet)
fit <- lppm(X ~x)
g <- linearpcfinhom(X, lambda=fit, update=FALSE)
plot(g)
ge <- linearpcfinhom(X, sigma=bw.lppl)

lineartileindex 151

lineartileindex Determine Which Tile Contains Each Given Point on a Linear Network

Description

Given a tessellation on a linear network, and a list of points on the network, determine which tile of
the tessellation contains each of the given points.

Usage

lineartileindex(seg, tp, Z, method = c("encode", "C", "interpreted"))

Arguments

seg, tp Vectors of local coordinates of the query points. See Details.

Z A tessellation on a linear network (object of class "lintess").

method Internal use only.

Details

This low-level function is the analogue of tileindex for linear networks. For a tessellation Z on a
linear network, and a list of query points on the same network, the function determines which tile
of the tessellation contains each query point.

Argument Z should be a tessellation on a linear network (object of class "lintess").

The vectors seg and tp specify the locations of the query points, on the same network, using local
coordinates: seg contains integer values specifying which segment of the network contains each
query point; tp contains numeric values between 0 and 1 specifying the fractional position along
that segment.

The result is a factor, of the same length as seg and tp, indicating which tile contains each point.
The levels of the factor are the names of the tiles of Z.

Value

A factor, of the same length as seg and tp, whose levels are the names of the tiles of Z.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

lintess.

as.linfun.lintess to create a function whose value is the tile index.

cut.lpp for a neater way to classify the points of a point pattern on a linear network according to a
tessellation on the network.

152 linequad

Examples

Z <- lineardirichlet(runiflpp(15, simplenet))
X <- runiflpp(10, simplenet)
coX <- coords(X)
ii <- lineartileindex(coXseg, coXtp, Z)

linequad Quadrature Scheme on a Linear Network

Description

Generates a quadrature scheme (an object of class "quad") on a linear network.

Usage

linequad(X, Y, ..., eps = NULL, nd = 1000, random = FALSE)

Arguments

X Data points. An object of class "lpp" or "ppp".

Y Line segments on which the points of X lie. An object of class "psp" or "linnet".
Required only when X is a "ppp" object.

... Ignored.

eps Optional. Spacing between successive dummy points along each segment. (This
is the maximum spacing; some spacings will be shorter.)

nd Optional. Total number of dummy locations to be generated. (Actual number
may be larger.)

random Logical value indicating whether the sequence of dummy points should start at
a randomly-chosen position along each segment.

Details

This command generates a quadrature scheme (object of class "quad") from a pattern of points on
a linear network.

Normally the user does not need to call linequad explicitly. It is invoked by spatstat functions
when needed. A quadrature scheme is required by lppm in order to fit point process models to
point pattern data on a linear network. A quadrature scheme is also used by rhohat.lpp and other
functions.

In order to create the quadrature scheme, dummy points are placed along each line segment of the
network. The dummy points are evenly-spaced with spacing eps. The default is eps = totlen/nd
where totlen is the total length of all line segments in the network.

Every line segment of the network will contain at least one dummy location. Consequently the
actual number of dummy location generated will typically be greater than nd, especially when nd
is small. If eps is specified, the number of dummy locations will be greater than totlen/eps,
especially when eps is large.

linfun 153

If X is a multitype point pattern with m possible types, the dummy points will also be a marked point
pattern. At each dummy location, m marked dummy points will be placed, one dummy point of
each possible type. Additionally at each data location, a further m−1 dummy points will be placed,
one dummy point of each possible type other than the type of the data point. The total number of
dummy points will be mk + (m− 1)n = m(k + n)− n and the total number of quadrature points
will be m(k+ n), where k is the number of dummy locations and n is the number of data points in
X.

Value

A quadrature scheme (object of class "quad").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Greg McSwiggan and Suman Rakshit.

See Also

lppm

linfun Function on a Linear Network

Description

Create a function on a linear network.

Usage

linfun(f, L)

Arguments

f A function in the R language.

L A linear network (object of class "linnet") on which f is defined.

Details

This creates an object of class "linfun". This is a simple mechanism for handling a function
defined on a linear network, to make it easier to display and manipulate.

f should be a function in the R language, with formal arguments x,y,seg,tp (and optional addi-
tional arguments) where x,y are Cartesian coordinates of locations on the linear network, seg, tp
are the local coordinates.

The function f should be vectorised: that is, if x,y,seg,tp are numeric vectors of the same length
n, then v <- f(x,y,seg,tp) should be a vector of length n.

L should be a linear network (object of class "linnet") on which the function f is well-defined.

154 linim

The result is a function g in the R language which belongs to the special class "linfun". There are
several methods for this class including print, plot and as.linim.

This function can be called as g(X) where X is an "lpp" object, or called as g(x,y) or g(x,y,seg,tp)
where x,y,seg,tp are coordinates. If the original function f had additional arguments, then these
may be included in the call to g, and will be passed to f.

Value

A function in the R\ language. It also belongs to the class "linfun" which has methods for plot,
print etc.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Rolf Turner <rolfturner@posteo.net>

See Also

methods.linfun for methods applicable to "linfun" objects.

distfun.lpp, nnfun.lpp.

Examples

f <- function(x,y,seg,tp) { x+y }
g <- linfun(f, simplenet)
plot(g)
X <- runiflpp(3, simplenet)
g(X)
Z <- as.linim(g)

f <- function(x,y,seg,tp, mul=1) { mul*(x+y) }
g <- linfun(f, simplenet)
plot(g)
plot(g, mul=10)
g(X, mul=10)
Z <- as.linim(g, mul=10)

linim Create Pixel Image on Linear Network

Description

Creates an object of class "linim" that represents a pixel image on a linear network.

Usage

linim(L, Z, ..., restrict=TRUE, df=NULL)

linim 155

Arguments

L Linear network (object of class "linnet").

Z Pixel image (object of class "im").

... Ignored.

restrict Advanced use only. Logical value indicating whether to ensure that all pixels in
Z which do not lie on the network L have pixel value NA. This condition must
be satisfied, but if you set restrict=FALSE it will not be checked, and the code
will run faster.

df Advanced use only. Data frame giving full details of the mapping between the
pixels of Z and the lines of L. See Details.

Details

This command creates an object of class "linim" that represents a pixel image defined on a linear
network. Typically such objects are used to represent the result of smoothing or model-fitting on
the network. Most users will not need to call linim directly.

The argument L is a linear network (object of class "linnet"). It gives the exact spatial locations
of the line segments of the network, and their connectivity.

The argument Z is a pixel image object of class "im" that gives a pixellated approximation of the
function values.

For increased efficiency, advanced users may specify the optional argument df. This is a data frame
giving the precomputed mapping between the pixels of Z and the line segments of L. It should
have columns named xc, yc containing the coordinates of the pixel centres, x,y containing the
projections of these pixel centres onto the linear network, mapXY identifying the line segment on
which each projected point lies, and tp giving the parametric position of (x,y) along the segment.

Value

Object of class "linim" that also inherits the class "im". There is a special method for plotting this
class.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Ang, Q.W. (2010) Statistical methodology for events on a network. Master’s thesis, School of
Mathematics and Statistics, University of Western Australia.

Ang, Q.W., Baddeley, A. and Nair, G. (2012) Geometrically corrected second-order analysis of
events on a linear network, with applications to ecology and criminology. Scandinavian Journal of
Statistics 39, 591–617.

McSwiggan, G., Nair, M.G. and Baddeley, A. (2012) Fitting Poisson point process models to events
on a linear network. Manuscript in preparation.

156 linim.apply

See Also

plot.linim, linnet, eval.linim, Math.linim, im.

Examples

Z <- as.im(function(x,y) {x-y}, Frame(simplenet))
X <- linim(simplenet, Z)
X

linim.apply Apply Function Pixelwise to List of Images on a Network

Description

Returns a pixel image obtained by applying a given function to corresponding pixels in a list of
several pixel images on a linear network.

Usage

linim.apply(X, FUN, ..., fun.handles.na=FALSE, check=TRUE, verbose=TRUE)

Arguments

X A list of pixel images on the same network (objects of class "linim").
FUN A function that can be applied to vectors, or a character string giving the name

of such a function.
... Additional arguments to FUN.
fun.handles.na Logical value specifying what to do when the data include NA values. See De-

tails.
check Logical value specifying whether to check that the images in X are compatible

(for example that they have the same grid of pixel locations) and to convert them
to compatible images if necessary.

verbose Logical value specifying whether to print informative messages.

Details

The argument X should be a list of pixel images on a network (objects of class "linim"). They
should all be defined on the same network. If the images do not have identical pixel grids, they will
be converted to a common grid using harmonise.linim.

At each pixel location, the values of the images in X at that pixel will be extracted as a vector; the
function FUN will be applied to this vector; and the return value of FUN will become the pixel value
of the resulting image. For example linim.apply(X, mean) will return a pixel image in which the
value of each pixel is the average of the corresponding pixel values in the images in X.

If the result of FUN is a vector, then the result of linim.apply will be a list of images. For example
linim.apply(X, range) will return a list of two images containing the pixelwise minimum and
pixelwise maximum, respectively, of the input images in X.

The argument fun.handles.na specifies what to do when some of the pixel values are NA.

linnet 157

• If fun.handles.na=FALSE (the default), the function FUN is never applied to data that include
NA values; the result is defined to be NA whenever the data contain NA.

• If fun.handles.na=TRUE, the function FUN will be applied to all pixel data, including those
which contain NA values.

Value

A pixel image on a network (object of class "linim") or a list of pixel images on the same network.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

eval.linim for algebraic operations with images.

Examples

list of two pixel images
X <- runiflpp(5, simplenet, nsim=2)
Y <- solapply(lapply(X, distfun), as.linim)
plot(Y)
linim.apply(Y, max)
linim.apply(Y, sum)
linim.apply(Y, range)

linnet Create a Linear Network

Description

Creates an object of class "linnet" representing a network of line segments.

Usage

linnet(vertices, m, edges, sparse=FALSE, warn=TRUE)

Arguments

vertices Point pattern (object of class "ppp") specifying the vertices of the network.
m Adjacency matrix. A matrix or sparse matrix of logical values equal to TRUE

when the corresponding vertices are joined by a line. (Specify either m or edges.)
edges Edge list. A two-column matrix of integers, specifying all pairs of vertices that

should be joined by an edge. (Specify either m or edges.)
sparse Optional. Logical value indicating whether to use a sparse matrix representation

of the network. See Details.
warn Logical value indicating whether to issue a warning if the resulting network is

not connected.

158 linnet

Details

An object of class "linnet" represents a network of straight line segments in two dimensions. The
function linnet creates such an object from the minimal information: the spatial location of each
vertex (endpoint, crossing point or meeting point of lines) and information about which vertices are
joined by an edge.

If sparse=FALSE (the default), the algorithm will compute and store various properties of the net-
work, including the adjacency matrix m and a matrix giving the shortest-path distances between each
pair of vertices in the network. This is more efficient for small datasets. However it can require large
amounts of memory and can take a long time to execute.

If sparse=TRUE, then the shortest-path distances will not be computed, and the network adjacency
matrix m will be stored as a sparse matrix. This saves a lot of time and memory when creating the
linear network.

If the argument edges is given, then it will also determine the ordering of the line segments when
they are stored or extracted. For example, edges[i,] corresponds to as.psp(L)[i].

Value

Object of class "linnet" representing the linear network.

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

simplenet for an example of a linear network.

methods.linnet for methods applicable to linnet objects.

Special tools: thinNetwork, insertVertices, joinVertices, connected.linnet, lixellate.

delaunayNetwork for the Delaunay triangulation as a network.

ppp, psp.

Examples

letter 'A' specified by adjacency matrix
v <- ppp(x=(-2):2, y=3*c(0,1,2,1,0), c(-3,3), c(-1,7))
m <- matrix(FALSE, 5,5)
for(i in 1:4) m[i,i+1] <- TRUE
m[2,4] <- TRUE
m <- m | t(m)
letterA <- linnet(v, m)
plot(letterA)

letter 'A' specified by edge list
edg <- cbind(1:4, 2:5)
edg <- rbind(edg, c(2,4))
letterA <- linnet(v, edges=edg)

lintess 159

lintess Tessellation on a Linear Network

Description

Create a tessellation on a linear network.

Usage

lintess(L, df, marks=NULL)

Arguments

L Linear network (object of class "linnet").

df Data frame of local coordinates for the pieces that make up the tiles of the tes-
sellation. See Details.

marks Vector or data frame of marks associated with the tiles of the tessellation.

Details

A tessellation on a linear network L is a partition of the network into non-overlapping pieces (tiles).
Each tile consists of one or more line segments which are subsets of the line segments making up
the network. A tile can consist of several disjoint pieces.

The data frame df should have columns named seg, t0, t1 and tile. Any additional columns will
be ignored.

Each row of the data frame specifies one sub-segment of the network and allocates it to a particular
tile.

The seg column specifies which line segment of the network contains the sub-segment. Values of
seg are integer indices for the segments in as.psp(L).

The t0 and t1 columns specify the start and end points of the sub-segment. They should be numeric
values between 0 and 1 inclusive, where the values 0 and 1 representing the network vertices that
are joined by this network segment.

The tile column specifies which tile of the tessellation includes this sub-segment. It will be coerced
to a factor and its levels will be the names of the tiles.

If df is missing or NULL, the result is a tessellation with only one tile, consisting of the entire network
L.

Additional data called marks may be associated with each tile of the tessellation. The argument
marks should be a vector with one entry for each tile (that is, one entry for each level of df$tile)
or a data frame with one row for each tile. In general df and marks will have different numbers of
rows.

Value

An object of class "lintess". There are methods for print, plot and summary for this object.

160 lixellate

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Greg McSwiggan.

See Also

linnet for linear networks.

plot.lintess for plotting.

divide.linnet to make a tessellation demarcated by given points.

chop.linnet to make a tessellation demarcated by infinite lines.

lineardirichlet to create the Dirichlet-Voronoi tessellation from a point pattern on a linear net-
work.

as.linfun.lintess, as.linnet.lintess and as.linim to convert to other classes.

tile.lengths to compute the length of each tile in the tessellation.

lineartileindex and identify.lintess to identify which tile of the tessellation contains a given
location on the network.

The undocumented methods Window.lintess and as.owin.lintess extract the spatial window.

Examples

tessellation consisting of one tile for each existing segment
ns <- nsegments(simplenet)
df <- data.frame(seg=1:ns, t0=0, t1=1, tile=letters[1:ns])
u <- lintess(simplenet, df)
u
plot(u)
S <- as.psp(simplenet)
marks(u) <- data.frame(len=lengths_psp(S), ang=angles.psp(S))
u
plot(u)

lixellate Subdivide Segments of a Network

Description

Each line segment of a linear network will be divided into several shorter segments (line elements
or lixels).

Usage

lixellate(X, ..., nsplit, eps, sparse = TRUE)

lixellate 161

Arguments

X A linear network (object of class "linnet") or a point pattern on a linear net-
work (object of class "lpp").

... Ignored.
nsplit Number of pieces into which each line segment of X should be divided. Either

a single integer, or an integer vector with one entry for each line segment in X.
Incompatible with eps.

eps Maximum length of the resulting pieces of line segment. A single numeric value.
Incompatible with nsplit.

sparse Optional. Logical value specifying whether the resulting linear network should
be represented using a sparse matrix. If sparse=NULL, then the representation
will be the same as in X.

Details

Each line segment in X will be subdivided into equal pieces. The result is an object of the same kind
as X, representing the same data as X except that the segments have been subdivided.

Splitting is controlled by the arguments nsplit and eps, exactly one of which should be given.

If nsplit is given, it specifies the number of pieces into which each line segment of X should be
divided. It should be either a single integer, or an integer vector of length equal to the number of
line segments in X.

If eps is given, it specifies the maximum length of any resulting piece of line segment.

It is strongly advisable to use sparse=TRUE (the default) to limit the computation time.

If X is a point pattern (class "lpp") then the spatial coordinates and marks of each data point are
unchanged, but the local coordinates will change, because they are adjusted to map them to the new
subdivided network.

Value

Object of the same kind as X.

Author(s)

Greg McSwiggan, Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

linnet, lpp.

Examples

A <- lixellate(simplenet, nsplit=4)
plot(A, main="lixellate(simplenet, nsplit=4)")
points(vertices(A), pch=16)

spiders
lixellate(spiders, nsplit=3)

162 lpp

lpp Create Point Pattern on Linear Network

Description

Creates an object of class "lpp" that represents a point pattern on a linear network.

Usage

lpp(X, L, ...)

Arguments

X Locations of the points. A matrix or data frame of coordinates, or a point pattern
object (of class "ppp") or other data acceptable to as.ppp.

L Linear network (object of class "linnet").

... Ignored.

Details

This command creates an object of class "lpp" that represents a point pattern on a linear network.

Normally X is a point pattern. The points of X should lie on the lines of L.

Alternatively X may be a matrix or data frame containing at least two columns.

• Usually the first two columns of X will be interpreted as spatial coordinates, and any remaining
columns as marks.

• An exception occurs if X is a data frame with columns named x, y, seg and tp. Then x and
y will be interpreted as spatial coordinates, and seg and tp as local coordinates, with seg
indicating which line segment of L the point lies on, and tp indicating how far along the
segment the point lies (normalised to 1). Any remaining columns will be interpreted as marks.

• Another exception occurs if X is a data frame with columns named seg and tp. Then seg and
tp will be interpreted as local coordinates, as above, and the spatial coordinates x,y will be
computed from them. Any remaining columns will be interpreted as marks.

If X is missing or NULL, the result is an empty point pattern (i.e. containing no points).

Value

An object of class "lpp". Also inherits the class "ppx".

Note on changed format

The internal format of "lpp" objects was changed in spatstat version 1.28-0. Objects in the old
format are still handled correctly, but computations are faster in the new format. To convert an
object X from the old format to the new format, use X <- lpp(as.ppp(X), as.linnet(X)).

lppm 163

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

Installed datasets which are "lpp" objects: chicago, dendrite, spiders.

See as.lpp for converting data to an lpp object.

See methods.lpp and methods.ppx for other methods applicable to lpp objects.

Calculations on an lpp object: intensity.lpp, distfun.lpp, nndist.lpp, nnwhich.lpp, nncross.lpp,
nnfun.lpp.

Summary functions: linearK, linearKinhom, linearpcf, linearKdot, linearKcross, linearmarkconnect,
etc.

Random point patterns on a linear network can be generated by rpoislpp or runiflpp.

See linnet for linear networks.

Examples

letter 'A'
v <- ppp(x=(-2):2, y=3*c(0,1,2,1,0), c(-3,3), c(-1,7))
edg <- cbind(1:4, 2:5)
edg <- rbind(edg, c(2,4))
letterA <- linnet(v, edges=edg)

points on letter A
xx <- list(x=c(-1.5,0,0.5,1.5), y=c(1.5,3,4.5,1.5))
X <- lpp(xx, letterA)

plot(X)
X
summary(X)

empty pattern
lpp(L=letterA)

lppm Fit Point Process Model to Point Pattern on Linear Network

Description

Fit a point process model to a point pattern dataset on a linear network

164 lppm

Usage

lppm(X, ...)

S3 method for class 'formula'
lppm(X, interaction=NULL, ..., data=NULL)

S3 method for class 'lpp'
lppm(X, ..., eps=NULL, nd=1000, random=FALSE)

Arguments

X Either an object of class "lpp" specifying a point pattern on a linear network, or
a formula specifying the point process model.

... Arguments passed to ppm.

interaction An object of class "interact" describing the point process interaction struc-
ture, or NULL indicating that a Poisson process (stationary or nonstationary)
should be fitted.

data Optional. The values of spatial covariates (other than the Cartesian coordinates)
required by the model. A list whose entries are images, functions, windows,
tessellations or single numbers.

eps Optional. Spacing between dummy points along each segment of the network.

nd Optional. Total number of dummy points placed on the network. Ignored if eps
is given.

random Logical value indicating whether the grid of dummy points should be placed at
a randomised starting position.

Details

This function fits a point process model to data that specify a point pattern on a linear network. It is
a counterpart of the model-fitting function ppm designed to work with objects of class "lpp" instead
of "ppp".

The function lppm is generic, with methods for the classes formula and lppp.

In lppm.lpp the first argument X should be an object of class "lpp" (created by the command lpp)
specifying a point pattern on a linear network.

In lppm.formula, the first argument is a formula in the R language describing the spatial trend
model to be fitted. It has the general form pattern ~ trend where the left hand side pattern is
usually the name of a point pattern on a linear network (object of class "lpp") to which the model
should be fitted, or an expression which evaluates to such a point pattern; and the right hand side
trend is an expression specifying the spatial trend of the model. Variable names which appear in
the trend can be

• the name of an object in the current environment

• the name of an entry in the list covariates

• one of the reserved names x, y, seg, tp representing respectively the spatial coordinates x
and y, and the local coordinates seg (line segment index) and tp (relative position along the
segment).

lppm 165

Covariates which are objects in the environment or entries in the list covariates may have any of
the following formats:

a pixel image, giving the values of a spatial covariate at a fine grid of locations. It should be an
object of class "im", see im.object, or class "linim", see linim.

a function, which can be evaluated at any location on the network to obtain the value of the spatial
covariate. This may be a function of class "linfun" (function on a network) or "funxy"
(function in two dimensional space). Alternatively it may be any function in the R language:
the first two arguments of the function should be the Cartesian coordinates x and y. The
function may have additional arguments include seg, tp and marks and other arguments.

a window, interpreted as a logical variable which is TRUE inside the window and FALSE outside it.
This should be an object of class "owin".

a tessellation, interpreted as a factor covariate. For each spatial location, the factor value indi-
cates which tile of the tessellation it belongs to. This should be an object of class "tess" or
"lintess".

a single number, indicating a covariate that is constant in this dataset.

Other arguments ... are passed from lppm.formula to lppm.lpp and from lppm.lpp to ppm.

Value

An object of class "lppm" representing the fitted model. There are methods for print, predict,
coef and similar functions.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Greg McSwiggan.

References

McSwiggan, G. (2019) Spatial point process methods for linear networks with applications to road
accident analysis. PhD thesis, University of Western Australia.

See Also

methods.lppm, predict.lppm, ppm, lpp.

Examples

X <- runiflpp(15, simplenet)
lppm(X ~1)
lppm(X ~x)
marks(X) <- factor(rep(letters[1:3], 5))
lppm(X ~ marks)
lppm(X ~ marks * x)

166 lurking.lppm

lurking.lppm Lurking Variable Plot on a Linear Network

Description

Plot point process residuals against a covariate, for a point process model on a linear network, or a
point pattern on a linear network.

Usage

S3 method for class 'lppm'
lurking(object, covariate,

type="raw",
cumulative=TRUE,
...,
plot.it = TRUE,
plot.sd = is.poisson(object),
clipwindow=NULL,
rv = NULL,
envelope=FALSE, nsim=39, nrank=1,
typename,
covname,
oldstyle=FALSE,
check=TRUE,
verbose=TRUE,
nx=128,
splineargs=list(spar=0.5),
internal=NULL)

S3 method for class 'lpp'
lurking(object, covariate,

type="raw",
cumulative=TRUE,
...,
plot.it = TRUE,
plot.sd = is.poisson(object),
clipwindow=NULL,
rv = NULL,
envelope=FALSE, nsim=39, nrank=1,
typename,
covname,
oldstyle=FALSE,
check=TRUE,
verbose=TRUE,
nx=128,
splineargs=list(spar=0.5),
internal=NULL)

lurking.lppm 167

Arguments

object The fitted point process model on a linear network (an object of class "lppm")
for which diagnostics should be produced. This object is usually obtained from
lppm. Alternatively, object may be a point pattern on a linear network (object
of class "lpp").

covariate The covariate against which residuals should be plotted. Either a numeric vector,
a pixel image, a function(x,y), an expression, or one of the strings "x", "y"
or "tp". See Details below.

type String indicating the type of residuals or weights to be computed. Choices in-
clude "eem", "raw", "inverse" and "pearson".

cumulative Logical value indicating whether to plot a cumulative sum of marks (cumulative=TRUE,
the default) or the derivative of this sum, a marginal density of the smoothed
residual field (cumulative=FALSE).

... Arguments passed to plot.default and lines to control the plot behaviour.

plot.it Logical value indicating whether plots should be shown. If plot.it=FALSE,
only the computed coordinates for the plots are returned. See Value.

plot.sd Logical value indicating whether error bounds should be added to plot. The
default is TRUE for Poisson models and FALSE for non-Poisson models. See
Details.

clipwindow If not NULL this argument indicates that residuals shall only be computed in-
side a subregion of the window containing the original point pattern data. Then
clipwindow should be a window object of class "owin".

rv Usually absent. If this argument is present, the point process residuals will not
be calculated from the fitted model object, but will instead be taken directly
from rv.

envelope Logical value indicating whether to compute simulation envelopes for the plot.
Alternatively envelope may be a list of point patterns to use for computing the
simulation envelopes, or an object of class "envelope" containing simulated
point patterns.

nsim Number of simulated point patterns to be generated to produce the simulation
envelope, if envelope=TRUE.

nrank Integer. Rank of the envelope value amongst the nsim simulated values. A rank
of 1 means that the minimum and maximum simulated values will be used.

typename Usually absent. If this argument is present, it should be a string, and will be used
(in the axis labels of plots) to describe the type of residuals.

covname A string name for the covariate, to be used in axis labels of plots.

oldstyle Logical flag indicating whether error bounds should be plotted using the ap-
proximation given in the original paper (oldstyle=TRUE), or using the correct
asymptotic formula (oldstyle=FALSE).

check Logical flag indicating whether the integrity of the data structure in object
should be checked.

verbose Logical value indicating whether to print progress reports during Monte Carlo
simulation.

168 lurking.lppm

nx Integer. Number of covariate values to be used in the plot.

splineargs A list of arguments passed to smooth.spline for the estimation of the deriva-
tives in the case cumulative=FALSE.

internal Internal use only.

Details

This function generates a ‘lurking variable’ plot for a fitted point process model on a linear network.
Residuals from the model represented by object are plotted against the covariate specified by
covariate. This plot can be used to reveal departures from the fitted model, in particular, to reveal
that the point pattern depends on the covariate.

The function lurking is generic, with methods for lppm and lpp documented here.

The argument object would usually be a fitted point process model on a network, obtained from the
model-fitting algorithm lppm). If object is a point pattern on a network (object of class "lpp") then
the model is taken to be the uniform Poisson process on the network (Complete Spatial Randomness
on the Network).

First the residuals from the fitted model (Baddeley et al, 2004) are computed at each pixel, or
alternatively the ‘exponential energy marks’ (Stoyan and Grabarnik, 1991) are computed at each
data point. The argument type selects the type of residual or weight. See diagnose.ppm for
options and explanation.

A lurking variable plot for point processes (Baddeley et al, 2004) displays either the cumulative sum
of residuals/weights (if cumulative = TRUE) or a kernel-weighted average of the residuals/weights
(if cumulative = FALSE) plotted against the covariate. The empirical plot (solid lines) is shown
together with its expected value assuming the model is true (dashed lines) and optionally also the
pointwise two-standard-deviation limits (grey shading).

To be more precise, let Z(u) denote the value of the covariate at a spatial location u on the network.

• If cumulative=TRUE then we plot H(z) against z, where H(z) is the sum of the residuals
over all quadrature points where the covariate takes a value less than or equal to z, or the sum
of the exponential energy weights over all data points where the covariate takes a value less
than or equal to z.

• If cumulative=FALSE then we plot h(z) against z, where h(z) is the derivative of H(z),
computed approximately by spline smoothing.

For the point process residuals E(H(z)) = 0, while for the exponential energy weights E(H(z)) =
length of the subset of the network satisfying Z(u) <= z.

If the empirical and theoretical curves deviate substantially from one another, the interpretation is
that the fitted model does not correctly account for dependence on the covariate. The correct form
(of the spatial trend part of the model) may be suggested by the shape of the plot.

If plot.sd = TRUE, then superimposed on the lurking variable plot are the pointwise two-standard-
deviation error limits for H(x) calculated for the inhomogeneous Poisson process. The default is
plot.sd = TRUE for Poisson models and plot.sd = FALSE for non-Poisson models.

By default, the two-standard-deviation limits are calculated from the exact formula for the asymp-
totic variance of the residuals under the asymptotic normal approximation, equation (37) of Bad-
deley et al (2006). However, for compatibility with the original paper of Baddeley et al (2005), if

lurking.lppm 169

oldstyle=TRUE, the two-standard-deviation limits are calculated using the innovation variance, an
over-estimate of the true variance of the residuals.

The argument covariate is either:

• a numeric vector, containing the values of the covariate for each of the quadrature points in
the fitted model.

• a pixel image, containing the values of the covariate at each location in the window. The
values of this image at the quadrature points will be extracted.

• a function(x,y). The values of this function at the quadrature points will be evaluated.

• an expression in the R language. The expression will be evaluated in the same environment
as the model formula used in fitting the model object. It must yield a vector of the same length
as the number of quadrature points. The expression may contain the terms x and y representing
the cartesian coordinates, and may also contain other variables that were available when the
model was fitted. Certain variable names are reserved words; see lppm.

• one of the strings "x" or "y" representing the cartesian coordinates.

• the string "tp" representing the local coordinate tp which measures relative position along
the network segment.

Lurking variable plots for the x and y coordinates are also generated by diagnose.lppm, amongst
other types of diagnostic plots. The function lurking is more general, in that it enables the user to
plot the residuals against any chosen covariate that may have been present.

Value

The (invisible) return value is an object belonging to the class "lurk", for which there are methods
for plot and print.

This object is a list containing two dataframes empirical and theoretical. The first dataframe
empirical contains columns covariate and value giving the coordinates of the lurking variable
plot. The second dataframe theoretical contains columns covariate, mean and sd giving the
coordinates of the plot of the theoretical mean and standard deviation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Baddeley, A., Møller, J. and Pakes, A.G. (2006) Properties of residuals for spatial point processes.
Annals of the Institute of Statistical Mathematics 60, 627–649.

Stoyan, D. and Grabarnik, P. (1991) Second-order characteristics for stochastic structures connected
with Gibbs point processes. Mathematische Nachrichten, 151:95–100.

See Also

lppm, lurking

170 marks.linnet

Examples

fit <- lppm(spiders ~ y)
(b <- lurking(fit, expression(x), type="raw"))
lurking(fit, "x", type="raw", cumulative=FALSE)

marks.linnet Marks of a Network

Description

Extract or change the marks attached to vertices or segments of a linear network.

Usage

S3 method for class 'linnet'
marks(x, of=c("segments", "vertices"), ...)

S3 replacement method for class 'linnet'
marks(x, of=c("segments", "vertices"), ...) <- value

S3 method for class 'linnet'
unmark(X)

Arguments

x, X Linear network (object of class "linnet").

of Character string (partially matched) specifying whether the marks are attached
to the vertices of the network (of="vertices") or to the line segments of the
network (of="segments", the default).

... Ignored.

value Vector or data frame of mark values, or NULL.

Details

These functions extract or change the marks attached to the network x. They are methods for the
generic functions marks, marks<- and unmark for the class "linnet" of linear networks.

A linear network may include a set of marks attached to the line segments, and a separate set of
marks attached to the vertices. Each set of marks can be a vector, a factor, or a data frame.

The expression marks(x, of) extracts the marks from x. The assignment marks(x, of) <- value
assigns new marks to the dataset x, and updates the dataset x in the current environment. The
argument of specifies whether we are referring to the segments or the vertices.

For the assignment marks(x, "segments") <- value, the value should be a vector or factor of
length equal to the number of segments in x, or a data frame with as many rows as there are segments
in x. If value is a single value, or a data frame with one row, then it will be replicated so that the

marks.lintess 171

same marks will be attached to each segment. Similarly for marks(x, "vertices") <- value the
number of marks must match the number of vertices.

To remove marks, use unmark(x) to remove all marks, or marks(x, of) <- NULL to remove the
specified kind of marks.

To extract the vertices (including their marks) as a point pattern, use vertices(x). To extract the
segments (including their marks) as a line segment pattern, use as.psp(x).

Value

For marks(x), the result is a vector, factor or data frame, containing the mark values attached to the
vertices or the segments of x. If there are no marks, the result is NULL.

For marks(x) <- value, the result is the updated network x (with the side-effect that the dataset x
is updated in the current environment).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

linnet, marks, marks<-

Examples

L <- simplenet
marks(L, "vertices") <- letters[1:nvertices(L)]
marks(L, "segments") <- runif(nsegments(L))
L
marks(L, "v")
marks(L, "s")
unmark(L)

marks.lintess Marks of a Tessellation on a Network

Description

Extract or change the marks attached to the tiles of a tessellation on a linear network.

Usage

S3 method for class 'lintess'
marks(x, ...)

S3 replacement method for class 'lintess'
marks(x, ...) <- value

172 marks.lintess

S3 method for class 'lintess'
unmark(X)

Arguments

x, X Tessellation on a linear network (object of class "lintess").

... Ignored.

value Vector or data frame of mark values, or NULL.

Details

These functions extract or change the marks attached to each of the tiles in the tessellation x. They
are methods for the generic functions marks, marks<- and unmark for the class "lintess" of
tessellations on a network.

The expression marks(x) extracts the marks of x. The assignment marks(x) <- value assigns new
marks to the dataset x, and updates the dataset x in the current environment.

The marks can be a vector, a factor, or a data frame.

For the assignment marks(x) <- value, the value should be a vector or factor of length equal to
the number of tiles in x, or a data frame with as many rows as there are tiles in x. If value is a
single value, or a data frame with one row, then it will be replicated so that the same marks will be
attached to each tile.

To remove marks, use marks(x) <- NULL or unmark(x).

Value

For marks(x), the result is a vector, factor or data frame, containing the mark values attached to the
tiles of x. If there are no marks, the result is NULL.

For unmark(x), the result is the tessellation without marks.

For marks(x) <- value, the result is the updated tessellation x (with the side-effect that the dataset
x is updated in the current environment).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

lintess, marks, marks<-

Examples

B <- lineardirichlet(runiflpp(5, simplenet))
marks(B) <- letters[1:5]

Math.linim 173

Math.linim S3 Group Generic Methods for Images on a Linear Network

Description

These are group generic methods for images of class "linim", which allows for usual mathematical
functions and operators to be applied directly to pixel images on a linear network. See Details for a
list of implemented functions.

Usage

S3 methods for group generics have prototypes:
Math(x, ...)
Ops(e1, e2)
Complex(z)
Summary(..., na.rm = FALSE)

Arguments

x, z, e1, e2 objects of class "linim".

... further arguments passed to methods.

na.rm logical: should missing values be removed?

Details

An object of class "linim" represents a pixel image on a linear network. See linim.

Below is a list of mathematical functions and operators which are defined for these images. Not
all functions will make sense for all types of images. For example, none of the functions in the
"Math" group make sense for character-valued images. Note that the "Ops" group methods are
implemented using eval.linim.

1. Group "Math":

• abs, sign, sqrt,
floor, ceiling, trunc,
round, signif

• exp, log, expm1, log1p,
cos, sin, tan,
cospi, sinpi, tanpi,
acos, asin, atan
cosh, sinh, tanh,
acosh, asinh, atanh

• lgamma, gamma, digamma, trigamma
• cumsum, cumprod, cummax, cummin

2. Group "Ops":

• "+", "-", "*", "/", "^", "%%", "%/%"

174 mean.linim

• "&", "|", "!"
• "==", "!=", "<", "<=", ">=", ">"

3. Group "Summary":

• all, any
• sum, prod
• min, max
• range

4. Group "Complex":

• Arg, Conj, Im, Mod, Re

Value

The return value is another object of class "linim", except in the following cases: all and any
return a single logical value; sum, prod, min and max return a single numerical value; range returns
a vector of two numerical values.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

eval.linim for evaluating expressions involving images.

Examples

fx <- function(x,y,seg,tp) { (x - y)^2 }
fL <- linfun(fx, simplenet)
Z <- as.linim(fL)
A <- Z+2
A <- -Z
A <- sqrt(Z)
A <- !(Z > 0.1)

mean.linim Mean, Median, Quantiles of Pixel Values on a Linear Network

Description

Calculates the mean, median, or quantiles of the pixel values in a pixel image on a linear network.

mean.linim 175

Usage

S3 method for class 'linim'
mean(x, ...)

S3 method for class 'linim'
median(x, ...)

S3 method for class 'linim'
quantile(x, probs=seq(0,1,0.25), ...)

S3 method for class 'linim'
quantilefun(x, ..., type=1)

Arguments

x A pixel image on a linear network (object of class "linim").

probs Vector of probabilities for which quantiles should be calculated.

... Arguments passed to other methods.

type Integer specifying the type of quantiles, as explained in quantile.default.
Only types 1 and 2 are currently implemented.

Details

These functions calculate the mean, median and quantiles of the pixel values in the image x on a
linear network.

An object of class "linim" describes a pixel image on a linear network. See linim.

The functions described here are methods for the generic mean, median and quantile for the class
"linim".

Value

For mean and median, a single number. For quantile, a numeric vector of the same length as
probs. For quantilefun, a function.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

mean, median, quantile,

mean.im, quantile.im, quantilefun

176 methods.linfun

Examples

M <- psp2mask(as.psp(simplenet))
Z <- as.im(function(x,y) {x-y}, W=M)
X <- linim(simplenet, Z)
X
mean(X)
median(X)
quantile(X)
f <- quantilefun(X)

methods.linfun Methods for Functions on Linear Network

Description

Methods for the class "linfun" of functions on a linear network.

Usage

S3 method for class 'linfun'
print(x, ...)

S3 method for class 'linfun'
summary(object, ...)

S3 method for class 'linfun'
plot(x, ..., L=NULL, main)

S3 method for class 'linfun'
as.data.frame(x, ...)

S3 method for class 'linfun'
as.owin(W, ...)

S3 method for class 'linfun'
as.function(x, ...)

Arguments

x, object, W A function on a linear network (object of class "linfun").

L A linear network

... Extra arguments passed to as.linim, plot.linim, plot.im or print.default,
or arguments passed to x if it is a function.

main Main title for plot.

methods.linim 177

Details

These are methods for the generic functions plot, print, summary as.data.frame and as.function,
and for the spatstat generic function as.owin.

An object of class "linfun" represents a mathematical function that could be evaluated at any
location on a linear network. It is essentially an R function with some extra attributes.

The method as.owin.linfun extracts the two-dimensional spatial window containing the linear
network.

The method plot.linfun first converts the function to a pixel image using as.linim.linfun, then
plots the image using plot.linim.

Note that a linfun function may have additional arguments, other than those which specify the
location on the network (see linfun). These additional arguments may be passed to plot.linfun.

Value

For print.linfun and summary.linfun the result is NULL.

For plot.linfun the result is the same as for plot.linim.

For the conversion methods, the result is an object of the required type: as.owin.linfun returns
an object of class "owin", and so on.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

Examples

X <- runiflpp(3, simplenet)
f <- nnfun(X)
f
plot(f)
as.function(f)
as.owin(f)
head(as.data.frame(f))

methods.linim Methods for Images on a Linear Network

Description

Methods for the class "linim" of functions on a linear network.

178 methods.linim

Usage

S3 method for class 'linim'
print(x, ...)

S3 method for class 'linim'
summary(object, ...)

S3 method for class 'linim'
as.im(X, ...)

S3 method for class 'linim'
as.data.frame(x, ...)

S3 method for class 'linim'
shift(X, ...)

S3 method for class 'linim'
scalardilate(X, f, ..., origin=NULL)

S3 method for class 'linim'
affine(X, mat=diag(c(1,1)), vec=c(0,0), ...)

Arguments

X, x, object A pixel image on a linear network (object of class "linim").

... Extra arguments passed to other methods.

f Numeric. Scalar dilation factor.

mat Numeric matrix representing the linear transformation.

vec Numeric vector of length 2 specifying the shift vector.

origin Character string determining a location that will be shifted to the origin. Options
are "centroid", "midpoint" and "bottomleft". Partially matched.

Details

These are methods for the generic functions print, summary and as.data.frame, and the spatstat
generic functions as.im, shift, scalardilate and affine.

An object of class "linfun" represents a pixel image defined on a linear network.

The method as.im.linim extracts the pixel values and returns a pixel image of class "im".

The method as.data.frame.linim returns a data frame giving spatial locations (in cartesian and
network coordinates) and corresponding function values.

The methods shift.linim, scalardilate.linim and affine.linim apply geometric transfor-
mations to the pixels and the underlying linear network, without changing the pixel values.

methods.linnet 179

Value

For print.linim the result is NULL.

The function summary.linim returns an object of class "summary.linim". In normal usage this
summary is automatically printed by print.summary.linim.

For as.im.linim the result is an object of class "im".

For the geometric transformations shift.linim, scalardilate.linim and affine.linim, the
result is another object of class "linim".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

Examples

M <- psp2mask(as.psp(simplenet))
Z <- as.im(function(x,y) {x-y}, W=M)
X <- linim(simplenet, Z)
............ print basic details
X
............ print gory details
summary(X)
...
shift(X, c(1,1))
scalardilate(X, 2)
head(as.data.frame(X))

methods.linnet Methods for Linear Networks

Description

These are methods for the class "linnet" of linear networks.

Usage

as.linnet(X, ...)

S3 method for class 'linnet'
as.linnet(X, ..., sparse, maxsize=30000)

S3 method for class 'linnet'
as.owin(W, ...)

S3 method for class 'linnet'
as.psp(x, ..., fatal=TRUE)

180 methods.linnet

S3 method for class 'linnet'
nsegments(x)

S3 method for class 'linnet'
nvertices(x, ...)

S3 method for class 'linnet'
pixellate(x, ...)

S3 method for class 'linnet'
print(x, ...)

S3 method for class 'linnet'
summary(object, ...)

S3 method for class 'linnet'
unitname(x)

S3 replacement method for class 'linnet'
unitname(x) <- value

vertexdegree(x)

S3 method for class 'linnet'
vertices(w)

S3 method for class 'linnet'
volume(x)

S3 method for class 'linnet'
Window(X, ...)

Arguments

x, X, object, w, W An object of class "linnet" representing a linear network.

... Arguments passed to other methods.

value A valid name for the unit of length for x. See unitname.

fatal Logical value indicating whether data in the wrong format should lead to an
error (fatal=TRUE) or a warning (fatal=FALSE).

sparse Logical value indicating whether to use a sparse matrix representation, as ex-
plained in linnet. Default is to keep the same representation as in X.

maxsize Maximum permitted number of network vertices (to prevent a system crash due
to lack of memory) when creating a network with sparse=FALSE.

Details

The function as.linnet is generic. It converts data from some other format into an object of
class "linnet". The method as.linnet.lpp extracts the linear network information from an lpp

methods.linnet 181

object. The method as.linnet.linnet converts a linear network into another linear network with
the required format.

The other functions are methods for the generic commands as.owin, as.psp, nsegments, nvertices,
pixellate, print, summary, unitname, unitname<-, vertices, volume and Window for the class
"linnet".

The methods as.owin.linnet and Window.linnet extract the window containing the linear net-
work, and return it as an object of class "owin".

The method as.psp.linnet extracts the lines of the linear network as a line segment pattern (object
of class "psp") while nsegments.linnet simply counts the number of line segments.

The method vertices.linnet extracts the vertices (nodes) of the linear network and nvertices.linnet
simply counts the vertices. The function vertexdegree calculates the topological degree of each
vertex (the number of lines emanating from that vertex) and returns these values as an integer vector.

The method pixellate.linnet applies as.psp.linnet to convert the network to a collection of
line segments, then invokes pixellate.psp.

Value

For as.linnet the value is an object of class "linnet". For other functions, see the help file for
the corresponding generic function.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

linnet.

Generic functions: as.owin, as.psp, nsegments, nvertices, pixellate, print, summary, unitname,
unitname<-, vertices, volume and Window.

Special tools: thinNetwork, insertVertices, joinVertices, connected.linnet.

lixellate for dividing segments into shorter segments.

Examples

simplenet
summary(simplenet)
nsegments(simplenet)
nvertices(simplenet)
pixellate(simplenet)
volume(simplenet)
unitname(simplenet) <- c("cubit", "cubits")
Window(simplenet)

182 methods.lpp

methods.lpp Methods for Point Patterns on a Linear Network

Description

These are methods specifically for the class "lpp" of point patterns on linear networks.

Usage

S3 method for class 'lpp'
as.ppp(X, ..., fatal=TRUE)

S3 method for class 'lpp'
as.psp(x, ..., fatal=TRUE)

S3 replacement method for class 'lpp'
marks(x, ...) <- value

S3 method for class 'lpp'
nsegments(x)

S3 method for class 'lpp'
print(x, ...)

S3 method for class 'summary.lpp'
print(x, ...)

S3 method for class 'lpp'
summary(object, ...)

S3 method for class 'lpp'
unitname(x)

S3 replacement method for class 'lpp'
unitname(x) <- value

S3 method for class 'lpp'
unmark(X)

Arguments

x, X, object An object of class "lpp" representing a point pattern on a linear network.

... Arguments passed to other methods.

value Replacement value for the marks or unitname of x. See Details.

fatal Logical value indicating whether data in the wrong format should lead to an
error (fatal=TRUE) or a warning (fatal=FALSE).

methods.lppm 183

Details

These are methods for the generic functions as.ppp, as.psp, marks<-, nsegments, print, summary,
unitname, unitname<- and unmark for objects of the class "lpp".

For "marks<-.lpp" the replacement value should be either NULL, or a vector of length equal to the
number of points in x, or a data frame with one row for each point in x.

For "unitname<-.lpp" the replacement value should be a valid name for the unit of length, as
described in unitname.

Value

See the documentation on the corresponding generic function.

Other methods

An object of class "lpp" also inherits the class "ppx" for which many other methods are available.
See methods.ppx.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

lpp, intensity.lpp, methods.ppx

Examples

X <- runiflpp(10, simplenet)
unitname(X) <- c("furlong", "furlongs")
X
summary(X)
summary(chicago)
nsegments(X)
Y <- as.ppp(X)

methods.lppm Methods for Fitted Point Process Models on a Linear Network

Description

These are methods for the class "lppm" of fitted point process models on a linear network.

184 methods.lppm

Usage

S3 method for class 'lppm'
coef(object, ...)

S3 method for class 'lppm'
emend(object, ...)

S3 method for class 'lppm'
extractAIC(fit, ...)

S3 method for class 'lppm'
formula(x, ...)

S3 method for class 'lppm'
logLik(object, ...)

S3 method for class 'lppm'
deviance(object, ...)

S3 method for class 'lppm'
nobs(object, ...)

S3 method for class 'lppm'
print(x, ...)

S3 method for class 'lppm'
summary(object, ...)

S3 method for class 'lppm'
terms(x, ...)

S3 method for class 'lppm'
update(object, ...)

S3 method for class 'lppm'
valid(object, ...)

S3 method for class 'lppm'
vcov(object, ...)

S3 method for class 'lppm'
as.linnet(X, ...)

S3 method for class 'lppm'
response(object)

methods.lppm 185

Arguments

object, fit, x, X An object of class "lppm" representing a fitted point process model on a linear
network.

... Arguments passed to other methods, usually the method for the class "ppm".

Details

These are methods for the R generic commands coef, extractAIC, formula, logLik, deviance,
nobs, print, summary, terms, update and vcov, and the spatstat generic commands as.linnet,
emend, response and valid, for the class "lppm".

Value

For as.linnet.lppm a linear network (object of class "linnet"). For emend.lppm another fitted
model of the same class "lppm". For response.lppm a spatial point pattern on a linear network
(object of class "lpp"). For valid.lppm a logical value.

For the other methods, see the help for the default methods.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

lppm, plot.lppm.

Examples

X <- runiflpp(15, simplenet)
fit <- lppm(X ~ x)
print(fit)
coef(fit)
formula(fit)
terms(fit)
logLik(fit)
deviance(fit)
nobs(fit)
extractAIC(fit)
update(fit, ~1)
valid(fit)
vcov(fit)
response(fit)

186 model.frame.lppm

model.frame.lppm Extract the Variables in a Point Process Model on a Network

Description

Given a fitted point process model on a network, this function returns a data frame containing all
the variables needed to fit the model using the Berman-Turner device.

Usage

S3 method for class 'lppm'
model.frame(formula, ...)

Arguments

formula A fitted point process model on a linear network. An object of class "lppm".

... Additional arguments passed to model.frame.glm.

Details

The function model.frame is generic. This function is a method for model.frame for fitted point
process models on a linear network (objects of class "lppm").

The first argument should be a fitted point process model; it has to be named formula for consis-
tency with the generic function.

The result is a data frame containing all the variables used in fitting the model. The data frame has
one row for each quadrature point used in fitting the model. The quadrature scheme can be extracted
using quad.ppm.

Value

A data.frame containing all the variables used in the fitted model, plus additional variables speci-
fied in It has an additional attribute "terms" containing information about the model formula.
For details see model.frame.glm.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns.
Australian and New Zealand Journal of Statistics 42, 283–322.

See Also

lppm, model.frame, model.matrix.ppm

model.images.lppm 187

Examples

fit <- lppm(spiders ~ x)
mf <- model.frame(fit)

model.images.lppm Compute Images of Constructed Covariates

Description

For a point process model fitted to spatial point pattern data on a linear network, this function
computes pixel images of the covariates in the design matrix.

Usage

S3 method for class 'lppm'
model.images(object, L = as.linnet(object), ...)

Arguments

object Fitted point process model on a linear network. An object of class "lppm".

L A linear network (object of class "linnet") in which the images should be
computed. Defaults to the network in which the model was fitted.

... Other arguments (such as na.action) passed to model.matrix.lm.

Details

This command is similar to model.matrix.lppm except that it computes pixel images of the co-
variates, instead of computing the covariate values at certain points only.

The object must be a fitted spatial point process model on a linear network (object of class "lppm"
produced by the model-fitting function lppm).

The spatial covariates required by the model-fitting procedure are computed at every location on
the network L.

Note that the spatial covariates computed here are not necessarily the original covariates that were
supplied when fitting the model. Rather, they are the canonical covariates, the covariates that appear
in the loglinear representation of the (conditional) intensity and in the columns of the design ma-
trix. For example, they might include dummy or indicator variables for different levels of a factor,
depending on the contrasts that are in force.

The format of the result depends on whether the original point pattern data were marked or un-
marked.

• If the original dataset was unmarked, the result is a named list of pixel images on the network
(objects of class "linim") containing the values of the spatial covariates. The names of the
list elements are the names of the covariates determined by model.matrix.lm. The result is
also of class "solist" so that it can be plotted immediately.

188 model.matrix.lppm

• If the original dataset was a multitype point pattern, the result is a hyperframe with one
column for each possible type of points. Each column is a named list of pixel images on the
network (objects of class "linim") containing the values of the spatial covariates. The row
names of the hyperframe are the names of the covariates determined by model.matrix.lm.

The pixel resolution is determined by the arguments ... and spatstat.options.

Value

A list (of class "solist") or array (of class "hyperframe") containing pixel images on the network
(objects of class "linim").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

model.matrix.ppm, model.matrix, lppm.

Examples

fit <- lppm(spiders ~ x + polynom(y, 2))
model.images(fit)

model.matrix.lppm Extract Design Matrix from Point Process Model on a Network

Description

Given a point process model that has been fitted to spatial point pattern data on a linear network,
this function extracts the design matrix of the model.

Usage

S3 method for class 'lppm'
model.matrix(object,

data=model.frame(object, na.action=NULL),
...,
keepNA=TRUE)

Arguments

object The fitted point process model. An object of class "lppm".
data A model frame, containing the data required for the Berman-Turner device.
keepNA Logical. Determines whether rows containing NA values will be deleted or

retained.
... Other arguments (such as na.action) passed to model.matrix.lm.

nncross.lpp 189

Details

This is a method for the generic function model.matrix. It extracts the design matrix of a spatial
point process model on a linear network (object of class "lppm").

More precisely, this command extracts the design matrix of the generalised linear model associated
with a spatial point process model.

The object must be a fitted point process model on a network (object of class "lppm") produced
by the model-fitting function lppm. The method model.matrix.lppm extracts the model matrix for
the GLM.

The result is a matrix, with one row for every quadrature point in the fitting procedure, and one
column for every canonical covariate in the design matrix.

If there are NA values in the covariates, the argument keepNA determines whether to retain or delete
the corresponding rows of the model matrix. The default keepNA=TRUE is to retain them. Note that
this differs from the default behaviour of many other methods for model.matrix, which typically
delete rows containing NA.

Value

A matrix. Columns of the matrix are canonical covariates in the model. Rows of the matrix corre-
spond to quadrature points in the fitting procedure (provided keepNA=TRUE).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

model.matrix, model.images.lppm, lppm

Examples

fit <- lppm(spiders ~ x + y)
head(model.matrix(fit))

nncross.lpp Nearest Neighbours on a Linear Network

Description

Given two point patterns X and Y on a linear network, finds the nearest neighbour in Y of each point
of X using the shortest path in the network.

190 nncross.lpp

Usage

S3 method for class 'lpp'
nncross(X, Y,

iX=NULL, iY=NULL,
what = c("dist", "which"),
...,
k = 1,
method="C")

Arguments

X, Y Point patterns on a linear network (objects of class "lpp"). They must lie on the
same linear network.

iX, iY Optional identifiers, used to determine whether a point in X is identical to a point
in Y. See Details.

what Character string specifying what information should be returned. Either the
nearest neighbour distance ("dist"), the identifier of the nearest neighbour
("which"), or both.

... Ignored.

k Integer, or integer vector. The algorithm will compute the distance to the kth
nearest neighbour, for each value of k.

method Internal use only.

Details

Given two point patterns X and Y on the same linear network, this function finds, for each point of X,
the nearest point of Y, measuring distance by the shortest path in the network. The distance between
these points is also computed.

The return value is a data frame, with rows corresponding to the points of X. The first column gives
the nearest neighbour distances (i.e. the ith entry is the distance from the ith point of X to the
nearest element of Y). The second column gives the indices of the nearest neighbours (i.e.\ the ith
entry is the index of the nearest element in Y.) If what="dist" then only the vector of distances is
returned. If what="which" then only the vector of indices is returned.

Note that this function is not symmetric in X and Y. To find the nearest neighbour in X of each point
in Y, use nncross(Y,X).

The arguments iX and iY are used when the two point patterns X and Y have some points in common.
In this situation nncross(X, Y) would return some zero distances. To avoid this, attach a unique
integer identifier to each point, such that two points are identical if their identifying numbers are
equal. Let iX be the vector of identifier values for the points in X, and iY the vector of identifiers
for points in Y. Then the code will only compare two points if they have different values of the
identifier. See the Examples.

The kth nearest neighbour may be undefined, for example if there are fewer than k+1 points in the
dataset, or if the linear network is not connected. In this case, the kth nearest neighbour distance is
infinite.

nncross.lpp 191

Value

By default (if what=c("dist", "which") and k=1) a data frame with two columns:

dist Nearest neighbour distance

which Nearest neighbour index in Y

If what="dist", a vector of nearest neighbour distances.

If what="which", a vector of nearest neighbour indices.

If k is a vector of integers, the result is a matrix with one row for each point in X, giving the distances
and/or indices of the kth nearest neighbours in Y.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

nndist.lpp for nearest neighbour distances in a single point pattern.

nnwhich.lpp to identify which points are nearest neighbours in a single point pattern.

Examples

two different point patterns
X <- runiflpp(3, simplenet)
Y <- runiflpp(5, simplenet)
nn <- nncross(X,Y)
nn
plot(simplenet, main="nncross")
plot(X, add=TRUE, cols="red")
plot(Y, add=TRUE, cols="blue", pch=16)
XX <- as.ppp(X)
YY <- as.ppp(Y)
i <- nn$which
arrows(XXx, XXy, YY[i]$x, YY[i]$y, length=0.15)

nearest and second-nearest neighbours
nncross(X, Y, k=1:2)

two patterns with some points in common
X <- Y[1:2]
iX <- 1:2
iY <- 1:5
nncross(X,Y, iX, iY)

192 nndist.lpp

nndist.lpp Nearest neighbour distances on a linear network

Description

Given a pattern of points on a linear network, compute the nearest-neighbour distances, measured
by the shortest path in the network.

Usage

S3 method for class 'lpp'
nndist(X, ..., k=1, by=NULL, method="C")

Arguments

X Point pattern on linear network (object of class "lpp").

k Integer, or integer vector. The algorithm will compute the distance to the kth
nearest neighbour.

by Optional. A factor, which separates X into groups. The algorithm will compute
the distance to the nearest point in each group.

method Optional string determining the method of calculation. Either "interpreted"
or "C".

... Ignored.

Details

Given a pattern of points on a linear network, this function computes the nearest neighbour distance
for each point (i.e. the distance from each point to the nearest other point), measuring distance by
the shortest path in the network.

If method="C" the distances are computed using code in the C language. If method="interpreted"
then the computation is performed using interpreted R code. The R code is much slower, but is pro-
vided for checking purposes.

The kth nearest neighbour distance is infinite if the kth nearest neighbour does not exist. This can
occur if there are fewer than k+1 points in the dataset, or if the linear network is not connected.

If the argument by is given, it should be a factor, of length equal to the number of points in X.
This factor effectively partitions X into subsets, each subset associated with one of the levels of X.
The algorithm will then compute, for each point of X, the distance to the nearest neighbour in each
subset.

Value

A numeric vector, of length equal to the number of points in X, or a matrix, with one row for each
point in X and one column for each entry of k. Entries are nonnegative numbers or infinity (Inf).

nnfromvertex 193

Distance values

The values returned by nndist(X) are distances, expressed as multiples of the unit of length of the
spatial coordinates in X. The unit of length is given by unitname(X).
Note that, if the unit of length in X is a composite expression such as ‘2 microns’, then the values of
nndist(X) are expressed as multiples of 2 microns, rather than being expressed in microns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

lpp

Examples

X <- runiflpp(12, simplenet)
nndist(X)
nndist(X, k=2)

marks(X) <- factor(rep(letters[1:3], 4))
nndist(X, by=marks(X))

nnfromvertex Nearest Data Point From Each Vertex in a Network

Description

Given a point pattern on a linear network, for each vertex of the network find the nearest data point.

Usage

nnfromvertex(X, what = c("dist", "which"), k = 1)

Arguments

X Point pattern on a linear network (object of class "lpp").
what Character string specifying whether to return the nearest-neighbour distances,

nearest-neighbour identifiers, or both.
k Integer, or integer vector, specifying that the kth nearest neighbour should be

returned.

Details

For each vertex (node) of the linear network, this algorithm finds the nearest data point to the vertex,
and returns either the distance from the vertex to its nearest neighbour in X, or the serial number of
the nearest neighbour in X, or both.

If k is an integer, then the k-th nearest neighbour is found instead.
If k is an integer vector, this is repeated for each integer in k.

194 nnfun.lpp

Value

A numeric vector, matrix, or data frame.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

nndist.lpp

Examples

X <- runiflpp(5, simplenet)
nnfromvertex(X)
nnfromvertex(X, k=1:3)

nnfun.lpp Nearest Neighbour Map on Linear Network

Description

Compute the nearest neighbour function of a point pattern on a linear network.

Usage

S3 method for class 'lpp'
nnfun(X, ..., k=1, value=c("index", "mark"))

Arguments

X A point pattern on a linear network (object of class "lpp").

k Integer. The algorithm finds the kth nearest neighbour in X from any spatial
location.

value String (partially matched) specifying whether to return the index of the neigh-
bour (value="index", the default) or the mark value of the neighbour (value="mark").

... Other arguments are ignored.

Details

The (geodesic) nearest neighbour function of a point pattern X on a linear network L tells us which
point of X is closest to any given location.

If X is a point pattern on a linear network L, the nearest neighbour function of X is the mathematical
function f defined for any location s on the network by f(s) = i, where X[i] is the closest point of
X to the location s measured by the shortest path. In other words the value of f(s) is the identifier
or serial number of the closest point of X.

nnwhich.lpp 195

The command nnfun.lpp is a method for the generic command nnfun for the class "lpp" of point
patterns on a linear network.

If X is a point pattern on a linear network, f <- nnfun(X) returns a function in the R language, with
arguments x,y, ..., that represents the nearest neighbour function of X. Evaluating the function
f in the form v <- f(x,y), where x and y are any numeric vectors of equal length containing
coordinates of spatial locations, yields a vector of identifiers or serial numbers of the data points
closest to these spatial locations. More efficiently f can take the arguments x, y, seg, tp where
seg and tp are the local coordinates on the network.

The result of f <- nnfun(X) also belongs to the class "linfun". It can be printed and plotted
immediately as shown in the Examples. It can be converted to a pixel image using as.linim.

Value

A function in the R language, with arguments x,y and optional arguments seg,tp. It also belongs
to the class "linfun" which has methods for plot, print etc.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

linfun, methods.linfun.

To compute the distance to the nearest neighbour, see distfun.lpp.

Examples

X <- runiflpp(3, simplenet)
f <- nnfun(X)
f
plot(f)
plot(nnfun(chicago, value="m"))

nnwhich.lpp Identify Nearest Neighbours on a Linear Network

Description

Given a pattern of points on a linear network, identify the nearest neighbour for each point, mea-
sured by the shortest path in the network.

Usage

S3 method for class 'lpp'
nnwhich(X, ..., k=1, method="C")

196 nnwhich.lpp

Arguments

X Point pattern on linear network (object of class "lpp").

method Optional string determining the method of calculation. Either "interpreted"
or "C".

k Integer, or integer vector. The algorithm will find the kth nearest neighbour.

... Ignored.

Details

Given a pattern of points on a linear network, this function finds the nearest neighbour of each point
(i.e. for each point it identifies the nearest other point) measuring distance by the shortest path in
the network.

If method="C" the task is performed using code in the C language. If method="interpreted" then
the computation is performed using interpreted R code. The R code is much slower, but is provided
for checking purposes.

The result is NA if the kth nearest neighbour does not exist. This can occur if there are fewer than
k+1 points in the dataset, or if the linear network is not connected.

Value

An integer vector, of length equal to the number of points in X, identifying the nearest neighbour of
each point. If nnwhich(X)[2] = 4 then the nearest neighbour of point 2 is point 4.

Alternatively a matrix with one row for each point in X and one column for each entry of k.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

lpp

Examples

X <- runiflpp(10, simplenet)
nnwhich(X)
nnwhich(X, k=2)

pairdist.lpp 197

pairdist.lpp Pairwise shortest-path distances between points on a linear network

Description

Given a pattern of points on a linear network, compute the matrix of distances between all pairs of
points, measuring distance by the shortest path in the network.

Usage

S3 method for class 'lpp'
pairdist(X, ..., method="C")

Arguments

X Point pattern on linear network (object of class "lpp").
method Optional string determining the method of calculation. Either "interpreted"

or "C".
... Ignored.

Details

Given a pattern of points on a linear network, this function computes the matrix of distances between
all pairs of points, measuring distance by the shortest path in the network.

If two points cannot be joined by a path, the distance between them is infinite (Inf).

The argument method is not normally used. It is retained only for developers to check the validity
of the software.

Value

A symmetric matrix, whose values are nonnegative numbers or infinity (Inf).

Algorithms and accuracy

Distances are accurate within the numerical tolerance of the network, summary(X)$toler.

For network data stored in the non-sparse representation described in linnet, then pairwise dis-
tances are computed using the matrix of path distances between vertices of the network, using R
code if method = "interpreted", or using C code if method="C" (the default).

For networks stored in the sparse representation, the argument method has no effect, and the dis-
tances are computed using an efficient C algorithm.

Distance values

The values returned by pairdist(X) are distances, expressed as multiples of the unit of length of
the spatial coordinates in X. The unit of length is given by unitname(X).

Note that, if the unit of length in X is a composite expression such as ‘2 microns’, then the values of
pairdist(X) are expressed as multiples of 2 microns, rather than being expressed in microns.

198 pairs.linim

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

lpp

Examples

X <- runiflpp(12, simplenet)
d <- pairdist(X)
d[1:3, 1:3]

pairs.linim Scatterplot Matrix for Pixel Images on a Linear Network

Description

Produces a scatterplot matrix of the pixel values in two or more pixel images on a linear network.

Usage

S3 method for class 'linim'
pairs(..., plot=TRUE, eps=NULL)

Arguments

... Any number of arguments, each of which is either a pixel image on a linear
network (object of class "linim"), a pixel image (object of class "im"), or a
named argument to be passed to pairs.default.

plot Logical. If TRUE, the scatterplot matrix is plotted.

eps Optional. Spacing between sample points on the network. A positive number.

Details

This is a method for the generic function pairs for the class of pixel images on a linear network.

It produces a square array of plot panels, in which each panel shows a scatterplot of the pixel values
of one image against the corresponding pixel values of another image.

At least two of the arguments ... should be a pixel image on a linear network (object of class
"linim"). They should be defined on the same linear network, but may have different pixel resolu-
tions.

First the pixel values of each image are extracted at a set of sample points equally-spaced across the
network. Then pairs.default is called to plot the scatterplot matrix.

Any arguments in ... which are not pixel images will be passed to pairs.default to control the
plot.

parres.lppm 199

Value

Invisible. A data.frame containing the corresponding pixel values for each image. The return
value also belongs to the class plotpairsim which has a plot method, so that it can be re-plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

pairs.default, pairs.im

Examples

fit <- lppm(chicago ~ marks * (x+y))
lam <- predict(fit)
do.call(pairs, lam)

parres.lppm Partial Residuals for Point Process Model on a Linear Network

Description

Computes the smoothed partial residuals, a diagnostic for transformation of a covariate in a Poisson
point process model on a linear network.

Usage

S3 method for class 'lppm'
parres(model, covariate, ...,

smooth.effect=FALSE, subregion=NULL,
bw = "nrd0", adjust=1, from = NULL, to = NULL, n = 512,
bw.input = c("points", "quad"), bw.restrict=FALSE, covname)

Arguments

model Fitted point process model on a linear network (object of class "lppm").

covariate The covariate of interest. Either a character string matching the name of one of
the canonical covariates in the model, or one of the names "x" or "y" referring
to the Cartesian coordinates, or one of the names of the covariates given when
model was fitted, or a pixel image (object of class "im") or function(x,y)
supplying the values of a covariate at any location. If the model depends on
only one covariate, then this covariate is the default; otherwise a covariate must
be specified.

smooth.effect Logical. Determines the choice of algorithm. See Details.

200 parres.lppm

subregion Optional. A window (object of class "owin") specifying a subset of the spatial
domain of the data. The calculation will be confined to the data in this subregion.

bw Smoothing bandwidth or bandwidth rule (passed to density.default).

adjust Smoothing bandwidth adjustment factor (passed to density.default).

n, from, to Arguments passed to density.default to control the number and range of val-
ues at which the function will be estimated.

... Additional arguments passed to density.default.

bw.input Character string specifying the input data used for automatic bandwidth selec-
tion.

bw.restrict Logical value, specifying whether bandwidth selection is performed using data
from the entire spatial domain or from the subregion.

covname Optional. Character string to use as the name of the covariate.

Details

This command computes the smoothed partial residual diagnostic (Baddeley, Chang, Song and
Turner, 2012) for the transformation of a covariate in a Poisson point process model.

The function parres is generic, with methods for different classes of point process models. This
page documents the method parres.lppm. The argument model must be a fitted point process
model on a linear network.

The diagnostic works in two different ways:

Canonical covariate: The argument covariate may be a character string which is the name of
one of the canonical covariates in the model. The canonical covariates are the functions Zj

that appear in the expression for the Poisson point process intensity

λ(u) = exp(β1Z1(u) + . . .+ βpZp(u))

at spatial location u. Type names(coef(model)) to see the names of the canonical covariates
in model. If the selected covariate is Zj , then the diagnostic plot concerns the model term
βjZj(u). The plot shows a smooth estimate of a function h(z) that should replace this linear
term, that is, βjZj(u) should be replaced by h(Zj(u)). The linear function is also plotted as
a dotted line.

New covariate: If the argument covariate is a pixel image (object of class "im") or a function(x,y),
it is assumed to provide the values of a covariate that is not present in the model. Alternatively
covariate can be the name of a covariate that was supplied when the model was fitted (i.e.
in the call to ppm) but which does not feature in the model formula. In either case we speak
of a new covariate Z(u). If the fitted model intensity is λ(u) then we consider modifying this
to λ(u) exp(h(Z(u))) where h(z) is some function. The diagnostic plot shows an estimate
of h(z). Warning: in this case the diagnostic is not theoretically justified. This option is
provided for research purposes.

Alternatively covariate can be one of the character strings "x" or "y" signifying the Cartesian
coordinates. The behaviour here depends on whether the coordinate was one of the canonical co-
variates in the model.

parres.lppm 201

If there is more than one canonical covariate in the model that depends on the specified covariate,
then the covariate effect is computed using all these canonical covariates. For example in a log-
quadratic model which includes the terms x and I(x^2), the quadratic effect involving both these
terms will be computed.

There are two choices for the algorithm. If smooth.effect=TRUE, the fitted covariate effect (ac-
cording to model) is added to the point process residuals, then smoothing is applied to these values.
If smooth.effect=FALSE, the point process residuals are smoothed first, and then the fitted covari-
ate effect is added to the result.

The smoothing bandwidth is controlled by the arguments bw, adjust, bw.input and bw.restrict.
If bw is a numeric value, then the bandwidth is taken to be adjust * bw. If bw is a string representing
a bandwidth selection rule (recognised by density.default) then the bandwidth is selected by this
rule.

The data used for automatic bandwidth selection are specified by bw.input and bw.restrict. If
bw.input="points" (the default) then bandwidth selection is based on the covariate values at the
points of the original point pattern dataset to which the model was fitted. If bw.input="quad" then
bandwidth selection is based on the covariate values at every quadrature point used to fit the model.
If bw.restrict=TRUE then the bandwidth selection is performed using only data from inside the
subregion.

Value

A function value table (object of class "fv") containing the values of the smoothed partial residual,
the estimated variance, and the fitted effect of the covariate. Also belongs to the class "parres"
which has methods for print and plot.

Variance estimation and confidence bands

If the fitted model is a Poisson point process, the variance of the partial residual will also be calcu-
lated, and 95 percent confidence bands will be derived from this. The default plot of the result will
show the confidence bands in grey shading.

Slow computation

In a large dataset, computation can be very slow if the default settings are used, because the smooth-
ing bandwidth is selected automatically. To avoid this, specify a numerical value for the bandwidth
bw. One strategy is to use a coarser subset of the data to select bw automatically. The selected
bandwidth can be read off the print output for parres.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>,
Ya-Mei Chang and Yong Song.

References

Baddeley, A., Chang, Y.-M., Song, Y. and Turner, R. (2013) Residual diagnostics for covariate
effects in spatial point process models. Journal of Computational and Graphical Statistics, 22,
886–905.

202 persp.linfun

See Also

addvar, rhohat, rho2hat

Examples

X <- rpoispp(function(x,y){exp(3+x+2*x^2)})
model <- ppm(X ~x+y)
tra <- parres(model, "x")
plot(tra)
tra
plot(parres(model, "x", subregion=square(0.5)))
model2 <- ppm(X ~x+I(x^2)+y)
plot(parres(model2, "x"))
Z <- setcov(owin())
plot(parres(model2, Z))

#' when the model involves only one covariate
modelb <- ppm(bei ~ elev + I(elev^2), data=bei.extra)
plot(parres(modelb))

persp.linfun Perspective View of Function on a Linear Network

Description

Given a function on a linear network, generate a perspective view.

Usage

S3 method for class 'linfun'
persp(x, ..., main, eps = NULL, dimyx = NULL, xy = NULL)

Arguments

x The function to be plotted. An object of class "linfun".

... Arguments passed to persp.linim controlling the appearance of the plot.

main Main title for the plot.

eps, dimyx, xy Arguments passed to as.linim determining the spatial resolution when the
function is converted to an image.

Details

The function x is converted to a pixel image on the linear network using as.linim. Then persp.linim
is invoked to generate the perspective plot.

This style of plot is often attributed to Okabe and Sugihara (2012).

persp.linim 203

Value

(Invisibly) the perspective transformation matrix, as described in the help for persp.default.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Greg McSwiggan.

References

Okabe, A. and Sugihara, K. (2012) Spatial Analysis Along Networks. John Wiley and Sons, New
York.

See Also

persp.linim

Examples

f <- linfun(function(x,y,seg,tp) { abs(sin(25*x)) + abs(sin(15*y)) }, simplenet)
persp(f, phi=20)

persp.linim Perspective View of Pixel Image on a Linear Network

Description

Given a pixel image on a linear network, generate a perspective view.

Usage

S3 method for class 'linim'
persp(x, ..., main,

grid = TRUE, ngrid = 10,
col.grid = "grey", col.base = "white",
neg.args=list(), warncross=FALSE,
zadjust=1,
extrapolate=c("linear", "constant"))

Arguments

x Pixel image on a linear network (object of class "linim").

... Arguments passed to persp.default to control the perspective view, or passed
to segments or polygon to control the appearance of the vertical panes.

main Main title for the plot.

grid Logical value indicating whether to draw a rectangular grid on the base plane
(at height zero), to assist the perception of perspective.

204 persp.linim

ngrid Number of grid lines to draw, if grid=TRUE.

col.grid Colour of grid lines, if grid=TRUE.

col.base Colour of base plane. A single colour value, or a pixel image.

neg.args Optional list of arguments passed to polygon when displaying negative values
of the function.

warncross Logical value indicating whether to issue a warning if two segments of the net-
work cross each other (which causes difficulty for the algorithm).

zadjust Adjustment factor for vertical scale, relative to the default scale.

extrapolate Character string (partially matched) specifying how to extrapolate the value at
the endpoint of each segment.

Details

The pixel values are interpreted as the spatially-varying height of a vertical surface erected on each
segment of the linear network. These surfaces are drawn in perspective view. This style of plot is
often attributed to Okabe and Sugihara (2012).

1. The horizontal plane at height zero is drawn, in perspective view, in the colour specified by
col.base.
If col.base is a pixel image, it will be rendered as a colour image shown in perspective view
on the horizontal plane. The argument colmap controls the mapping from pixel values of
col.base to physical colours.

2. A grid of lines on the horizontal plane is drawn if grid=TRUE (the default).

3. For each segment of the network, a vertical polygon is constructed, with a straight lower edge
aligned with the network segment, and a crooked upper edge whose height is proportional to
values of x. The polygon linearly interpolates between the values of pixels that lie along the
segment. At each end of the segment,

• If extrapolate="linear" (the default), the polygon height at the end of the segment is
determined by linearly extrapolating from the two nearest pixel values.

• If extrapolate="constant", the polygon height at the end of the segment is defined to
be equal to the nearest pixel value.

The vertical polygons are drawn in the colour and style specified by the additional arguments
..., for example, col for colour.

If x contains negative values, they will be represented as polygons extending downwards below the
horizontal plane. These would be obscured if col.base is an opaque colour other than white, or if
col.base is a pixel image. A transparent colour for col.base can be used if it is supported by the
graphics device.

Like all spatial plots in the spatstat family, persp.linim does not independently rescale the x and y
coordinates. A long narrow window will be represented as a long narrow window in the perspective
view. To override this and allow the coordinates to be independently rescaled, use the argument
scale=TRUE which will be passed to persp.default.

Value

(Invisibly) the perspective transformation matrix, as described in the help for persp.default.

plot.linim 205

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Greg McSwiggan.

References

Okabe, A. and Sugihara, K. (2012) Spatial Analysis Along Networks. John Wiley and Sons, New
York.

See Also

persp.linfun

Examples

if(interactive()) {
Z <- density(chicago, 100)

} else {
X <- runiflpp(10, simplenet)
Z <- density(X, 0.1)

}
persp(Z, theta=30, phi=20)

plot.linim Plot Pixel Image on Linear Network

Description

Given a pixel image on a linear network, the pixel values are displayed either as colours or as line
widths.

Usage

S3 method for class 'linim'
plot(x, ..., style = c("colour", "width"),

scale, adjust = 1, fatten = 0,
negative.args = list(col=2),
legend=TRUE,
leg.side=c("right", "left", "bottom", "top"),
leg.sep=0.1,
leg.wid=0.1,
leg.args=list(),
leg.scale=1,
zlim,
box=FALSE,
do.plot=TRUE)

206 plot.linim

Arguments

x The pixel image to be plotted. An object of class "linim".
... Extra graphical parameters, passed to plot.im if style="colour", or to polygon

if style="width".
style Character string (partially matched) specifying the type of plot. See Details.
scale Physical scale factor for representing the pixel values as line widths.
adjust Adjustment factor for the conversion of pixel value to line width, when style="width".
fatten Distance by which the line segments should be thickened, when style="colour".
negative.args A list of arguments to be passed to polygon specifying how to plot negative

values of x when style="width".
legend Logical value indicating whether to plot a legend (colour ribbon or scale bar).
leg.side Character string (partially matched) indicating where to display the legend rela-

tive to the main image.
leg.sep Factor controlling the space between the legend and the image.
leg.wid Factor controlling the width of the legend.
leg.scale Rescaling factor for annotations on the legend. The values on the numerical

scale printed beside the legend will be multiplied by this rescaling factor.
leg.args List of additional arguments passed to image.default, axis or text.default

to control the display of the legend. These may override the ... arguments.
zlim The range of numerical values that should be mapped. A numeric vector of

length 2. Defaults to the range of values of x.
box Logical value indicating whether to draw a bounding box.
do.plot Logical value indicating whether to actually perform the plot.

Details

This is the plot method for objects of class "linim". Such an object represents a pixel image
defined on a linear network.

If style="colour" (the default) then the pixel values of x are plotted as colours, using plot.im.
The mapping from pixel values to colours is determined by any additional arguments ... which are
passed to plot.im.

If style="width" then the pixel values of x are used to determine the widths of thick lines centred
on the line segments of the linear network. This style of plot is often attributed to Xie and Yan
(2008). The mapping from pixel values to line widths is determined by the arguments scale and
adjust. The plotting of colours and borders of the lines is controlled by the additional arguments
... which are passed to polygon. A different set of colours and borders can be assigned to negative
pixel values by passing a list of arguments in negative.args as shown in the Examples.

A legend is displayed alongside the plot if legend=TRUE (the default). The legend displays the
relationship between pixel values and colours (if style="colour") or between pixel values and
line widths (if style="width").

The plotting of the legend itself is controlled by the arguments leg.side, leg.sep, leg.wid,
leg.scale and the list of arguments leg.args, which are described above. If style="colour",
these arguments are mapped to the arguments ribside, ribsep, ribwid, ribscale and ribargs
respectively, which are passed to plot.im.

plot.linim 207

Value

If style="colour", the result is an object of class "colourmap" specifying the colour map used.
If style="width", the result is a numeric value v giving the physical scale: one unit of pixel value
is represented as v physical units on the plot.

The result also has an attribute "bbox" giving a bounding box for the plot. The bounding box
includes the ribbon or scale bar, if present, but not the main title.

Thin lines

When style="colour" it often appears that the lines are drawn too thin. This occurs because x is a
pixel image, in which the only pixels that have a defined value are those which lie directly over the
network. To make the lines appear thicker in the plot, use the argument fatten. The domain of the
image will be expanded by a distance equal to fatten/2 in every direction using dilation.owin;
the pixel values will be extrapolated to this expanded domain using nearestValue. This may
improve the visual appearance of the plot.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Ang, Q.W., Baddeley, A. and Nair, G. (2012) Geometrically corrected second-order analysis of
events on a linear network, with applications to ecology and criminology. Scandinavian Journal of
Statistics 39, 591–617.

Xie, Z. and Yan, J. (2008) Kernel Density Estimation of traffic accidents in a network space. Com-
puters, Environment and Urban Systems 32, 396–406.

See Also

linim, plot.im, polygon, default.image.colours

Examples

X <- linfun(function(x,y,seg,tp){y^2+x}, simplenet)
X <- as.linim(X)

plot(X, main="Colour represents function value")
plot(X, fatten=0.02, main="fattened")

plot(X, style="width", main="Width proportional to function value")

signed values
f <- linfun(function(x,y,seg,tp){y-x}, simplenet)
plot(f, style="w", main="Negative values in red")

plot(f, style="w", negative.args=list(density=10),
main="Negative values are hatched")

208 plot.linnet

plot.linnet Plot a linear network

Description

Plots a linear network

Usage

S3 method for class 'linnet'
plot(x, ..., main=NULL, add=FALSE,

do.plot=TRUE,
show.vertices=FALSE, show.window=FALSE,
args.vertices=list(), args.segments=list())

Arguments

x Linear network (object of class "linnet").

... Graphics arguments passed to plot.psp and plot.ppp.

main Main title for plot. Use main="" to suppress it.

add Logical. If TRUE, superimpose the graphics over the current plot. If FALSE,
generate a new plot.

do.plot Logical value specifying whether to actually perform the plot.

show.vertices Logical value specifying whether to plot the vertices as well.

show.window Logical value specifying whether to plot the window containing the linear net-
work.

args.segments Optional list of arguments passed to plot.psp when plotting the line segments
of the network. These arguments override any arguments in

args.vertices Optional list of arguments passed to plot.ppp when plotting the vertices of the
network (only when vertices=TRUE). These arguments override any arguments
in

Details

This is the plot method for class "linnet".

The line segments of the network x are plotted using plot.psp. If show.vertices=TRUE, the
vertices of the network will also be plotted, using plot.ppp. If show.window=TRUE, the window
surrounding the network will also be plotted.

If the vertices or line segments of x are marked, the marks are not displayed by default. To plot the
marks, set use.marks=TRUE. To plot the marks and plot the associated legends, set use.marks=TRUE,
legend=TRUE. To plot only the marks of the segments and not the marks of the vertices, set args.segments=list(use.marks=TRUE)
and so on.

plot.lintess 209

Value

An (invisible) list with two elements, segments and vertices describing the representation of the
marks. The element segments contains the result of plot.psp (either a colourmap, a numeric
value or an owin). The element vertices contains the result of plot.ppp (a symbolmap) or NULL.

The result also has attribute "bbox" giving the bounding box for the plot.

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

linnet

Examples

plot(simplenet)

L <- simplenet
marks(L, "vertices") <- letters[1:nvertices(L)]
marks(L, "segments") <- runif(nsegments(L))
plot(L, show.vertices=TRUE, use.marks=TRUE, legend=TRUE)

plot.lintess Plot a Tessellation on a Linear Network

Description

Plot a tessellation or division of a linear network into tiles.

Usage

S3 method for class 'lintess'
plot(x, ...,

main, add = FALSE,
style = c("colour", "width", "image"),
col = NULL, values=marks(x),
ribbon=TRUE, ribargs=list(), multiplot=TRUE, do.plot=TRUE)

Arguments

x Tessellation on a linear network (object of class "lintess").

... Arguments passed to segments (if style="segments") or to plot.im (if style="image")
to control the plot.

main Optional main title for the plot.

add Logical value indicating whether the plot is to be added to an existing plot.

210 plot.lintess

style Character string (partially matched) specifying the type of plot. If style="colour"
(the default), tiles are plotted using segments using colours to distinguish the
different tiles or values. If style="width", tiles are plotted using segments
using different segment widths to distinguish the different tiles or values. If
style="image", the tessellation is converted to a pixel image and plotted by
plot.im.

col Vector of colours, or colour map, determining the colours used to plot the dif-
ferent tiles of the tessellation.

values Values associated with each tile of the tessellation, used to determine the colours
or widths. A vector with one entry for each tile, or a data frame with one row
for each tile. The default is marks(x), or if that is null, then tilenames(x).

ribbon Logical value specifying whether to print an explanatory legend for the colour
map or width map.

ribargs Arguments passed to plot.colourmap controlling the display of the colour map
legend.

multiplot Logical value determining what should happen if marks(x) has more than one
column. If multiplot=TRUE (the default), several plot panels will be generated,
one panel for each column of marks. If multiplot=FALSE, the first column of
marks will be selected.

do.plot Logical value specifying whether to actually generate the plot (do.plot=TRUE,
the default) or just to compute the colour map and return it (do.plot=FALSE).

Details

A tessellation on a linear network L is a partition of the network into non-overlapping pieces (tiles).
Each tile consists of one or more line segments which are subsets of the line segments making up
the network. A tile can consist of several disjoint pieces.

This function plots the tessellation on the current device. It is a method for the generic plot.

If style="colour", each tile is plotted using segments, drawing segments of different colours.

If style="width", each tile is plotted using segments, drawing segments of different widths.

If style="image", the tessellation is converted to a pixel image, and plotted as a colour image
using plot.im.

The colours or widths are determined by the values associated with each tile of the tessellation. If
values is missing, the default is to use the marks of the tessellation, or if there are no marks, the
names of the tiles.

Value

(Invisible) colour map.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

lintess

plot.lpp 211

Examples

X <- runiflpp(7, simplenet)
Z <- divide.linnet(X)
plot(Z, main="tessellation on network")
points(as.ppp(X))
plot(Z, main="tessellation on network",

values=1:nobjects(Z), style="w")

plot.lpp Plot Point Pattern on Linear Network

Description

Plots a point pattern on a linear network. Plot method for the class "lpp" of point patterns on a
linear network.

Usage

S3 method for class 'lpp'
plot(x, ..., main, add = FALSE,

type = c("p", "n"),
use.marks=TRUE, which.marks=NULL,
legend=TRUE,
leg.side=c("left", "bottom", "top", "right"),
leg.args=list(),
show.all = !add, show.window=FALSE, show.network=TRUE,
do.plot = TRUE, multiplot=TRUE)

Arguments

x Point pattern on a linear network (object of class "lpp").

... Additional arguments passed to plot.linnet or plot.ppp.

main Main title for plot.

add Logical value indicating whether the plot is to be added to the existing plot
(add=TRUE) or whether a new plot should be initialised (add=FALSE, the default).

type Type of plot: either "p" or "n". If type="p" (the default), both the points and
the observation window are plotted. If type="n", only the window is plotted.

use.marks logical flag; if TRUE, plot points using a different plotting symbol for each mark;
if FALSE, only the locations of the points will be plotted, using points().

which.marks Index determining which column of marks to use, if the marks of x are a data
frame. A character or integer vector identifying one or more columns of marks.
If add=FALSE then the default is to plot all columns of marks, in a series of
separate plots. If add=TRUE then only one column of marks can be plotted, and
the default is which.marks=1 indicating the first column of marks.

212 plot.lpp

legend Logical value indicating whether to add a legend showing the mapping between
mark values and graphical symbols (for a marked point pattern).

leg.side Position of legend relative to main plot.
leg.args List of additional arguments passed to plot.symbolmap or symbolmap to con-

trol the legend. In addition to arguments documented under plot.symbolmap,
and graphical arguments recognised by symbolmap, the list may also include the
argument sep giving the separation between the main plot and the legend, or
sep.frac giving the separation as a fraction of the relevant dimension (width or
height) of the main plot.

show.all Logical value indicating whether to plot everything including the main title and
the window containing the network.

show.window Logical value indicating whether to plot the window containing the network.
Overrides show.all.

show.network Logical value indicating whether to plot the network.
do.plot Logical value determining whether to actually perform the plotting.
multiplot Logical value giving permission to display multiple plots.

Details

The linear network is plotted by plot.linnet, then the points are plotted using code equivalent to
plot.ppp.

Commonly-used arguments include:

• col and lwd for the colour and width of lines in the linear network
• cols for the colour or colours of the points
• chars for the plot characters representing different types of points
• shape to control the shape of the symbol (this argument takes precedence over chars).

These are documented in the help file for plot.ppp.

If shape="crossticks", the points are drawn as short line segments perpendicular to the network.

Note that the linear network will be plotted even when add=TRUE, unless show.network=FALSE.

Value

(Invisible) object of class "symbolmap" giving the correspondence between mark values and plot-
ting characters.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

lpp.

See plot.ppp for options for representing the points.

See also points.lpp, text.lpp.

plot.lppm 213

Examples

plot(chicago, cols=1:7)
plot(dendrite, shape="crossticks", cols=2:4, size=8,

leg.side="bottom", leg.args=list(lwd=3))

plot.lppm Plot a Fitted Point Process Model on a Linear Network

Description

Plots the fitted intensity of a point process model on a linear network.

Usage

S3 method for class 'lppm'
plot(x, ..., type="trend")

Arguments

x An object of class "lppm" representing a fitted point process model on a linear
network.

... Arguments passed to plot.linim to control the plot.

type Character string (either "trend" or "cif") determining whether to plot the fitted
first order trend or the conditional intensity.

Details

This function is the plot method for the class "lppm". It computes the fitted intensity of the point
process model, and displays it using plot.linim.

The default is to display intensity values as colours. Alternatively if the argument style="width"
is given, intensity values are displayed as the widths of thick lines drawn over the network.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

lppm, plot.linim, methods.lppm, predict.lppm.

214 points.lpp

Examples

X <- runiflpp(10, simplenet)
fit <- lppm(X ~x)
plot(fit)
plot(fit, style="width")

points.lpp Draw Points on Existing Plot

Description

For a point pattern on a linear network, this function draws the coordinates of the points only, on
the existing plot display.

Usage

S3 method for class 'lpp'
points(x, ...)

Arguments

x A point pattern on a linear network (object of class "lpp").

... Additional arguments passed to points.default.

Details

This is a method for the generic function points for the class "lpp" of point patterns on a linear
network.

If x is a point pattern on a linear network, then points(x) plots the spatial coordinates of the points
only, on the existing plot display, without plotting the underlying network. It is an error to call this
function if a plot has not yet been initialised.

The spatial coordinates are extracted and passed to points.default along with any extra argu-
ments. Arguments controlling the colours and the plot symbols are interpreted by points.default.
For example, if the argument col is a vector, then the ith point is drawn in the colour col[i].

Value

Null.

Difference from plot method

The more usual way to plot the points is using plot.lpp. For example plot(x) would plot both the
points and the underlying network, while plot(x, add=TRUE) would plot only the points. The in-
terpretation of arguments controlling the colours and plot symbols is different here: they determine
a symbol map, as explained in the help for plot.ppp.

predict.lppm 215

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

plot.lpp, points.default

Examples

plot(Frame(spiders), main="Spiders on a Brick Wall")
points(spiders)

predict.lppm Predict Point Process Model on Linear Network

Description

Given a fitted point process model on a linear network, compute the fitted intensity or conditional
intensity of the model.

Usage

S3 method for class 'lppm'
predict(object, ..., type = "trend",

locations = NULL, covariates = NULL,
se = FALSE,
new.coef=NULL)

Arguments

object The fitted model. An object of class "lppm", see lppm.

type Type of values to be computed. Either "trend" or "cif". Currently ignored.

locations Optional. Locations at which predictions should be computed. Either a point
pattern (class "lpp" or "ppp"), a data frame containing spatial coordinates, or a
binary image mask, or a pixel image.

covariates Values of external covariates required by the model. Either a data frame, or a
list of images and/or functions.

se Logical value indicating whether to calculate standard errors as well.

new.coef Optional. Numeric vector of model coefficients, to be used instead of the fitted
coefficients coef(object) when calculating the prediction.

... Optional arguments passed to as.mask to determine the pixel resolution (if
locations is missing).

216 predict.lppm

Details

This function computes the fitted point process intensity, optionally with standard errors, for a point
process model on a linear network. It is a method for the generic predict for the class "lppm".

The argument object should be an object of class "lppm" (produced by lppm) representing a point
process model on a linear network.

Currently the argument type has no effect. The fitted intensity is computed in all cases. This occurs
because currently all fitted models of class "lppm" are Poisson point processes, where the trend,
intensity, and conditional intensity are the same.

Predicted values are computed at the locations given by the argument locations. If this argument
is missing, then predicted values are computed at a fine grid of points on the linear network.

• If locations is missing or NULL (the default), the return value is a pixel image (object of
class "linim" and "im") corresponding to a discretisation of the linear network, with numeric
pixel values giving the predicted values at each location on the linear network. (If the model
is multitype, the result is a list of such pixel images, one for each possible type of point.)

• If locations is a data frame containing spatial coordinates x and y, and/or local coordinates
seg and tp, the result is a numeric vector of predicted values at the locations specified by the
data frame.

• If locations is a binary mask or pixel image, the result is a pixel image with predicted values
computed at the pixels of the mask. (If the model is multitype, the result is a list of such pixel
images, one for each possible type of point.)

If se=TRUE, standard errors are also computed. The result is a list of two elements, each following
the format described above; the first element contains the fitted estimates, and the second element
contains the standard errors.

Value

If se=FALSE (the default), the result is a pixel image (object of class "linim" and "im") or a list of
pixel images, or a numeric vector, depending on the argument locations. See Details.

If se=TRUE, the result is a list of two elements, each with the format described above.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

References

Ang, Q.W. (2010) Statistical methodology for events on a network. Master’s thesis, School of
Mathematics and Statistics, University of Western Australia.

Ang, Q.W., Baddeley, A. and Nair, G. (2012) Geometrically corrected second-order analysis of
events on a linear network, with applications to ecology and criminology. Scandinavian Journal of
Statistics 39, 591–617.

Rakshit, S., McSwiggan, G., Nair, G. and Baddeley, A. (2021) Variable selection using penalised
likelihoods for point patterns on a linear network. Australian and New Zealand Journal of Statistics
63. DOI 10.1111/anzs.12341.

pseudoR2.lppm 217

Baddeley, A., Nair, G., Rakshit, S., McSwiggan, G. and Davies, T.M. (2021) Analysing point pat-
terns on networks — a review. Spatial Statistics 42, 100435.

See Also

lpp, linim

Examples

X <- runiflpp(12, simplenet)
fit <- lppm(X ~ x)
v <- predict(fit, type="trend")
plot(v)

pseudoR2.lppm Calculate Pseudo-R-Squared for Point Process Model on Linear Net-
work

Description

Given a fitted point process model on a linear network, calculate the pseudo-R-squared value, which
measures the fraction of variation in the data that is explained by the model.

Usage

S3 method for class 'lppm'
pseudoR2(object, ..., keepoffset=TRUE)

Arguments

object Fitted point process model on a linear network. An object of class "lppm".
keepoffset Logical value indicating whether to retain offset terms in the model when com-

puting the deviance difference. See Details.
... Additional arguments passed to deviance.lppm.

Details

The function pseudoR2 is generic, with methods for fitted point process models of class "ppm" and
"lppm".

This function computes McFadden’s pseudo-Rsquared

R2 = 1− D

D0

where D is the deviance of the fitted model object, and D0 is the deviance of the null model.
Deviance is defined as twice the negative log-likelihood or log-pseudolikelihood.

The null model is usually obtained by re-fitting the model using the trend formula ~1. However
if the original model formula included offset terms, and if keepoffset=TRUE (the default), then
the null model formula consists of these offset terms. This ensures that the pseudoR2 value is
non-negative.

218 qqplot.lppm

Value

A single numeric value.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

pseudoR2, deviance.lppm.

Examples

X <- rpoislpp(10, simplenet)
fit <- lppm(X ~ y)
pseudoR2(fit)

qqplot.lppm Q-Q Plot of Residuals from Fitted Point Process Model on a Linear
Network

Description

Given a point process model fitted to a point pattern on a linear network, produce a Q-Q plot based
on residuals from the model.

Usage

qqplot.lppm(fit, nsim=100, expr=NULL, ..., type="raw",
style="mean", fast=TRUE, verbose=TRUE, plot.it=TRUE,
probs=NULL,
saveall=FALSE,
monochrome=FALSE,
limcol=if(monochrome) "black" else "red",
maxerr=max(100, ceiling(nsim/10)),
envir.expr)

Arguments

fit The fitted point process model on a network, which is to be assessed using the
Q-Q plot. An object of class "lppm". Smoothed residuals obtained from this
fitted model will provide the “data” quantiles for the Q-Q plot.

nsim The number of simulations from the “reference” point process model.

expr Determines the simulation mechanism which provides the “theoretical” quan-
tiles for the Q-Q plot. See Details.

... Arguments passed to diagnose.lppm influencing the computation of residuals.

qqplot.lppm 219

type String indicating the type of residuals or weights to be used. Current options are
"eem" for the Stoyan-Grabarnik exponential energy weights, "raw" for the raw
residuals, "inverse" for the inverse-lambda residuals, and "pearson" for the
Pearson residuals. A partial match is adequate.

style Character string controlling the type of Q-Q plot. Options are "classical" and
"mean". See Details.

fast Logical flag controlling the speed and accuracy of computation. Use fast=TRUE
for interactive use and fast=FALSE for publication standard plots. See Details.

verbose Logical value controlling whether the algorithm prints progress reports during
long computations.

plot.it Logical value controlling whether the function produces a plot or simply returns
a value (silently).

probs Probabilities for which the quantiles should be calculated and plotted. A nu-
meric vector of values between 0 and 1.

saveall Logical flag indicating whether to save all the intermediate calculations.

monochrome Logical flag indicating whether the plot should be in black and white (monochrome=TRUE),
or in colour (monochrome=FALSE).

limcol String. The colour to be used when plotting the 95% limit curves.

maxerr Maximum number of failures tolerated while generating simulated realisations.
See Details.

envir.expr Optional. An environment in which the expression expr should be evaluated.

Details

This function generates a Q-Q plot of the residuals from a fitted point process model on a linear net-
work. It is an addendum to the suite of diagnostic plots produced by the function diagnose.lppm,
kept separate because it is computationally intensive. The quantiles of the theoretical distribution
are estimated by simulation.

In classical statistics, a Q-Q plot of residuals is a useful diagnostic for checking the distributional
assumptions. Analogously, in spatial statistics, a Q-Q plot of the (smoothed) residuals from a fitted
point process model is a useful way to check the interpoint interaction part of the model (Baddeley
et al, 2005). The systematic part of the model (spatial trend, covariate effects, etc) is assessed using
other plots made by diagnose.lppm.

The argument fit represents the fitted point process model. It must be an object of class "lppm"
(typically produced by the maximum pseudolikelihood fitting algorithm lppm). Residuals will be
computed for this fitted model using residuals.lppm, and the residuals will be kernel-smoothed
to produce a “residual field”. The values of this residual field will provide the “data” quantiles for
the Q-Q plot.

The argument expr is not usually specified. It provides a way to modify the “theoretical” or “refer-
ence” quantiles for the Q-Q plot.

In normal usage we set expr=NULL. The default is to generate nsim simulated realisations of the
fitted model fit using simulate.lppm, re-fit this model to each of the simulated patterns, evaluate
the residuals from these fitted models, and use the kernel-smoothed residual field from these fitted
models as a sample from the reference distribution for the Q-Q plot.

220 qqplot.lppm

In advanced use, expr may be an expression. It will be re-evaluated nsim times, and should
include random computations so that the results are not identical each time. The result of evaluating
expr should be either a point pattern on a network (object of class "lpp") or a fitted point process
model on a network (object of class "lppm"). If the value is a point pattern, then the original fitted
model fit will be re-fitted to this new point pattern using update.lppm, to yield another fitted
model. Smoothed residuals obtained from these nsim fitted models will yield the “theoretical”
quantiles for the Q-Q plot.

Alternatively expr can be a list of point patterns, or an envelope object that contains a list of point
patterns (typically generated by calling envelope.lpp or envelope.lppm with savepatterns=TRUE).
These point patterns will be used as the simulated patterns.

The argument type selects the type of residual or weight that will be computed. For options, see
diagnose.lppm.

The argument style determines the type of Q-Q plot. It is highly recommended to use the default,
style="mean".

style="classical" The quantiles of the residual field for the data (on the y axis) are plotted
against the quantiles of the pooled simulations (on the x axis). This plot is biased, and there-
fore difficult to interpret, because of strong autocorrelations in the residual field and the large
differences in sample size.

style="mean" Quantiles of the residual field for the original data are plotted against the sample
means, over the nsim simulations, of the corresponding quantiles of the residual field for the
simulated datasets. Dotted lines show the 2.5 and 97.5 percentiles, over the nsim simulations,
of each of these quantiles.

The argument fast is a simple way to control the accuracy and speed of computation. If fast=FALSE,
the residual field is computed on a fine grid of pixels (by default 100 by 100 pixels, see below) and
the Q-Q plot is based on the complete set of order statistics (up to 10,000 quantiles). If fast=TRUE,
the residual field is computed on a coarse grid (at most 40 by 40 pixels) and the Q-Q plot is based
on the percentiles only. This is about 7 times faster. It is recommended to use fast=TRUE for
interactive data analysis and fast=FALSE for definitive plots for publication.

Since the computation is so time-consuming, qqplot.lppm returns a list containing all the data nec-
essary to re-display the Q-Q plot. It is advisable to assign the result of qqplot.lppm to something
(or use .Last.value if you forgot to.) The return value is an object of class "qqlppm". There are
methods for plot and print. See the Examples.

The argument saveall is usually set to FALSE. If saveall=TRUE, then the intermediate results
of calculation for each simulated realisation are saved and returned. The return value includes a
3-dimensional array sim containing the smoothed residual field images for each of the nsim real-
isations. When saveall=TRUE, the return value is an object of very large size, and should not be
saved on disk.

Errors may occur during the simulation process, because random data are generated. For example:

• one of the simulated patterns may be empty.

• one of the simulated patterns may cause an error in the code that fits the point process model.

• the user-supplied argument expr may have a bug.

Empty point patterns do not cause a problem for the code, but they are reported. Other problems that
would lead to a crash are trapped; the offending simulated data are discarded, and the simulation is

qqplot.lppm 221

retried. The argument maxerr determines the maximum number of times that such errors will be
tolerated (mainly as a safeguard against an infinite loop).

Value

An object of class "qqlppm" containing the information needed to reproduce the Q-Q plot. Entries
x and y are numeric vectors containing quantiles of the simulations and of the data, respectively.

Side Effects

Produces a Q-Q plot if plot.it=TRUE (the default).

Warning messages

A warning message will be issued if any of the simulations trapped an error (a potential crash).

A warning message will be issued if all, or many, of the simulated point patterns are empty. This
usually indicates a problem with the simulation procedure.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

Stoyan, D. and Grabarnik, P. (1991) Second-order characteristics for stochastic structures connected
with Gibbs point processes. Mathematische Nachrichten, 151:95–100.

See Also

diagnose.lppm, lurking.lppm, residuals.lppm, lppm

Examples

if(online <- interactive()) {
X <- unmark(chicago)
fit <- lppm(X ~ x + y)
ns <- 100

} else {
X <- runiflpp(20, simplenet)
fit <- lppm(X ~ y)
ns <- 4

}

qqplot.lppm(fit, nsim=ns)
qqplot.lppm(fit, nsim=ns, type="pearson")

capture the plot coordinates

222 quadrat.test.lpp

mypreciousdata <- qqplot.lppm(fit, ns, type="pearson")
or use the idiom .Last.value if you forgot to assign them
qqplot.lppm(fit, ns, type="pearson")
mypreciousdata <- .Last.value
plot(mypreciousdata)

quadrat.test.lpp Dispersion Test for Point Pattern on a Network Based on Quadrat
Counts

Description

Performs a test of Complete Spatial Randomness for a given point pattern on a linear network, based
on quadrat counts. Alternatively performs a goodness-of-fit test of a fitted inhomogeneous Poisson
model on a network. By default performs chi-squared tests; can also perform power-divergence
tests and Monte Carlo tests.

Usage

S3 method for class 'lpp'
quadrat.test(X, ...,

tess=NULL,
nx=5, ny=nx,
xbreaks=NULL, ybreaks=NULL,
alternative=c("two.sided", "regular", "clustered"),
method=c("Chisq", "MonteCarlo"),
conditional=TRUE, CR=1,
lambda=NULL, df.est=NULL,
nsim=1999)

S3 method for class 'lppm'
quadrat.test(X,...,

tess=NULL,
nx=5, ny=nx,
xbreaks=NULL, ybreaks=NULL,
alternative=c("two.sided", "regular", "clustered"),
method=c("Chisq", "MonteCarlo"),
conditional=TRUE, CR=1, df.est=NULL,
nsim=1999)

S3 method for class 'linearquadratcount'
quadrat.test(X, ...,

alternative=c("two.sided", "regular", "clustered"),
method=c("Chisq", "MonteCarlo"),
conditional=TRUE, CR=1,
lambda=NULL, df.est=NULL,
nsim=1999)

quadrat.test.lpp 223

Arguments

X A point pattern on a network (object of class "lpp") to be subjected to the
goodness-of-fit test. Alternatively a fitted point process model on a network
(object of class "lppm") to be tested. Alternatively X can be the result of apply-
ing quadratcount to a point pattern on a network.

tess Tessellation (object of class "tess" or "lintess") determining the quadrats.
Incompatible with nx,ny,xbreaks,ybreaks.

nx, ny Numbers of quadrats in the x and y directions. Incompatible with xbreaks and
ybreaks.

xbreaks Optional. Numeric vector giving the x coordinates of the boundaries of the
quadrats. Incompatible with nx.

ybreaks Optional. Numeric vector giving the y coordinates of the boundaries of the
quadrats. Incompatible with ny.

alternative Character string (partially matched) specifying the alternative hypothesis.

method Character string (partially matched) specifying the test to use: either method="Chisq"
for the chi-squared test (the default), or method="MonteCarlo" for a Monte
Carlo test.

conditional Logical. Should the Monte Carlo test be conducted conditionally upon the ob-
served number of points of the pattern? Ignored if method="Chisq".

CR Optional. Numerical value. The exponent for the Cressie-Read test statistic. See
Details.

lambda Optional. Pixel image (object of class "im" or "linim") or function (class
"funxy") giving the predicted intensity of the point process.

df.est Optional. Advanced use only. The number of fitted parameters, or the number
of degrees of freedom lost by estimation of parameters.

... Ignored.

nsim The number of simulated samples to generate when method="MonteCarlo".

Details

These functions perform χ2 tests or Monte Carlo tests of goodness-of-fit for a point process model
on a linear network, based on quadrat counts.

The function quadrat.test is generic, with methods for many classes. This page documents the
methods for data on a linear network.

• if X is a point pattern on a network (object of class "lpp"), we test the null hypothesis that
the data pattern is a realisation of Complete Spatial Randomness (the uniform Poisson point
process) on the network. Marks in the point pattern are ignored. (If lambda is given then the
null hypothesis is the Poisson process with intensity lambda.)

• If X is a fitted point process model on a network (object of class "lppm"), then it should be a
Poisson point process model. The data to which this model was fitted are extracted from the
model object, and are treated as the data point pattern for the test. We test the null hypothesis
that the data pattern is a realisation of the (inhomogeneous) Poisson point process specified
by X.

224 quadrat.test.lpp

First the network is divided into pieces to form a tessellation (object of class "lintess") as follows:

• By default, if none of the arguments nx, ny, xbreaks, ybreaks, tess is given, every seg-
ment of the network is taken as a separate piece. The number of points in each segment of the
network is counted.

• If nx, ny are given, the window containing the point pattern X is divided into an nx * ny grid
of rectangular tiles or ‘quadrats’. These tiles are then intersected with the network on which X
is defined. The number of points falling in each rectangle is counted.

• If xbreaks is given, the window containing the point pattern X will be divided into rectan-
gles, with xbreaks and ybreaks giving the x and y coordinates of the rectangle boundaries,
respectively. The lengths of xbreaks and ybreaks may be different.

• The argument tess can be a tessellation on the network (object of class "lintess") whose
tiles will serve as the quadrats.

• Alternatively tess can be a two-dimensional tessellation (object of class "tess") which will
be intersected with the network to determine the tessellation of the network.

Next the number of data points in each tile of the tessellation is counted.

The expected number of points in each quadrat is also calculated, as determined by CSR (in the first
case) or by the fitted model (in the second case).

Then the Pearson X2 statistic

X2 = sum((observed− expected)2/expected)

is computed.

If method="Chisq" then a χ2 test of goodness-of-fit is performed by comparing the test statistic to
the χ2 distribution with m− k degrees of freedom, where m is the number of quadrats and k is the
number of fitted parameters (equal to 1 for quadrat.test.ppp). The default is to compute the two-
sided p-value, so that the test will be declared significant if X2 is either very large or very small.
One-sided p-values can be obtained by specifying the alternative. An important requirement of
the χ2 test is that the expected counts in each quadrat be greater than 5.

If method="MonteCarlo" then a Monte Carlo test is performed, obviating the need for all expected
counts to be at least 5. In the Monte Carlo test, nsim random point patterns are generated from
the null hypothesis (either CSR or the fitted point process model). The Pearson X2 statistic is
computed as above. The p-value is determined by comparing the X2 statistic for the observed
point pattern, with the values obtained from the simulations. Again the default is to compute the
two-sided p-value.

If conditional is TRUE then the simulated samples are generated from the multinomial distribution
with the number of “trials” equal to the number of observed points and the vector of probabilities
equal to the expected counts divided by the sum of the expected counts. Otherwise the simulated
samples are independent Poisson counts, with means equal to the expected counts.

If the argument CR is given, then instead of the Pearson X2 statistic, the Cressie-Read (1984) power
divergence test statistic

2nI =
2

CR(CR+ 1)

∑
i

[(
Xi

Ei

)C

R− 1

]

quadratcount 225

is computed, where Xi is the ith observed count and Ei is the corresponding expected count. The
value CR=1 gives the Pearson X2 statistic; CR=0 gives the likelihood ratio test statistic G2; CR=-1/2
gives the Freeman-Tukey statistic T 2; CR=-1 gives the modified likelihood ratio test statistic GM2;
and CR=-2 gives Neyman’s modified statistic NM2. In all cases the asymptotic distribution of this
test statistic is the same χ2 distribution as above.

The return value is an object of class "htest". Printing the object gives comprehensible output
about the outcome of the test.

The return value also belongs to the special class "quadrat.test". Plotting the object will display
the quadrats, annotated by their observed and expected counts and the Pearson residuals. See the
examples.

Value

An object of class "htest". See chisq.test for explanation.

The return value is also an object of the special class "quadrattest", and there is a plot method
for this class. See the examples.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Cressie, N. and Read, T.R.C. (1984) Multinomial goodness-of-fit tests. Journal of the Royal Statis-
tical Society, Series B 46, 440–464.

See Also

quadrat.test, quadratcount.lpp, lintess.

Examples

X <- runiflpp(100, simplenet)

quadrat.test(X)

quadrat.test(X, nx=2)

quadratcount Quadrat counting for a point pattern on a linear network

Description

Given a point pattern on a linear network, divide the network into tiles, and count the numbers of
points in each file.

226 quadratcount

Usage

S3 method for class 'lpp'
quadratcount(X, ..., nx=5, ny=nx,

xbreaks=NULL, ybreaks=NULL, left.open=TRUE,
tess=NULL)

Arguments

X A point pattern on a linear network (object of class "lpp").

nx, ny Numbers of rectangular quadrats in the x and y directions. Incompatible with
xbreaks and ybreaks.

... Additional arguments are ignored.

xbreaks Numeric vector giving the x coordinates of the boundaries of the rectangular
quadrats. Incompatible with nx.

ybreaks Numeric vector giving the y coordinates of the boundaries of the rectangular
quadrats. Incompatible with ny.

tess Tessellation (object of class "tess" or "lintess") determining the quadrats.
Incompatible with nx,ny,xbreaks,ybreaks.

left.open Logical value specifying whether rectangular quadrats are left-open and right-
closed (left.open=TRUE, the default) or left-closed and right-open (left.open=FALSE).

Details

Quadrat counting is an elementary technique for analysing spatial point patterns. See Diggle (2003).

The function quadratcount is generic. This page documents the method quadratcount.lpp for
the class "lpp" of point patterns on a linear network.

First the network is divided into pieces, as described below. Then the number of points of X falling
in each piece of the network is counted. These numbers are returned as a contingency table.

• By default, if none of the arguments nx, ny, xbreaks, ybreaks, tess is given, every seg-
ment of the network is taken as a separate piece. The number of points in each segment of the
network is counted.

• If nx, ny are given, the window containing the point pattern X is divided into an nx * ny grid
of rectangular tiles or ‘quadrats’. These tiles are then intersected with the network on which X
is defined. The number of points falling in each rectangle is counted.

• If xbreaks is given, the window containing the point pattern X will be divided into rectan-
gles, with xbreaks and ybreaks giving the x and y coordinates of the rectangle boundaries,
respectively. The lengths of xbreaks and ybreaks may be different.

• The argument tess can be a tessellation on the network (object of class "lintess") whose
tiles will serve as the quadrats.

• Alternatively tess can be a two-dimensional tessellation (object of class "tess") which will
be intersected with the network to determine the tessellation of the network.

quadratcount 227

The algorithm counts the number of points of X falling in each tile of the tessellation, and returns
these counts as a contingency table.

The return value is a table which can be printed neatly. The return value is also a member of the
special class "linearquadratcount". Plotting the object will display the quadrats, annotated by
their counts. See the examples.

To calculate an estimate of intensity based on the quadrat counts, use intensity.linearquadratcount.

To extract the quadrats used in a linearquadratcount object, use as.lintess.

Marks attached to the points are ignored by quadratcount.lpp. To obtain a separate contingency
table for each type of point in a multitype point pattern, first separate the different points using
split.ppx, then apply quadratcount.lpp to each pattern.

Value

Contingency table containing the number of points counted in each tile. The table is also an object
of the special class "linearquadratcount" and there is a plot method for this class.

Treament of data points on the boundary

The treatment of points which lie on the boundary of two quadrats is undefined, and may depend
on the hardware.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 2003.

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical
statistics. John Wiley and Sons.

See Also

lintess.

Examples

X <- runiflpp(40, simplenet)
A <- quadratcount(X)
A
plot(A)
B <- quadratcount(X, nx=2)
B
plot(B)

228 rcelllpp

rcelllpp Simulate Cell Process on Linear Network

Description

Generate a realisation of the cell process on a linear network.

Usage

rcelllpp(L, lambda, rnumgen = NULL, ..., saveid=FALSE)

Arguments

L Either a linear network (object of class "linnet") or a tessellation on a linear
network (object of class "lintess").

lambda Intensity of the process (expected number of points per unit length),

rnumgen Optional. Random number generator for the number of points in each cell.

... Additional arguments to rnumgen.

saveid Logical value indicating whether to save information about cell membership.

Details

This function generates simulated realisations of a cell point process on a network, as described in
Baddeley et al (2017). This is the analogue on a linear network of the two-dimensional cell point
process of Baddeley and Silverman (1988).

The argument L should be a tessellation on a linear network. Alternatively if L is a linear network,
it is converted to a tessellation by treating each network segment as a tile in the tessellation.

The cell process generates a point process by generating independent point processes inside each
tile of the tessellation. Within each tile, given the number of random points in the tile, the points
are independent and uniformly distributed within the tile.

By default (when rnumgen is not given), the number of points in a tile of length t is a random
variable with mean and variance equal to lambda * t, generated by calling rcellnumber.

If rnumgen is given, it should be a function with arguments rnumgen(n, mu, ...) where n is the
number of random integers to be generated, mu is the mean value of the distribution, and ... are
additional arguments, if needed. It will be called in the form rnumgen(1, lambda * t, ...) to
determine the number of random points falling in each tile of length t.

Value

Point pattern on a linear network (object of class "lpp"). If saveid=TRUE, the result has an attribute
"cellid" which is a factor specifying the cell that contains each point.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

relrisk.lpp 229

References

Baddeley, A.J. and Silverman, B.W. (1984) A cautionary example on the use of second-order meth-
ods for analyzing point patterns. Biometrics 40, 1089-1094.

Baddeley, A., Nair, G., Rakshit, S. and McSwiggan, G. (2017) ‘Stationary’ point processes are
uncommon on linear networks. STAT 6, 68–78.

See Also

rSwitzerlpp

Examples

X <- rcelllpp(domain(spiders), 0.01)
plot(X)
plot(linearK(X))

relrisk.lpp Nonparametric Estimate of Spatially-Varying Relative Risk on a Net-
work

Description

Given a multitype point pattern on a linear network, this function estimates the spatially-varying
probability of each type of point, or the ratios of such probabilities, using kernel smoothing.

Usage

S3 method for class 'lpp'
relrisk(X, sigma, ...,

at = c("pixels", "points"),
relative=FALSE,
adjust=1,
casecontrol=TRUE, control=1, case,
finespacing=FALSE)

Arguments

X A multitype point pattern (object of class "lpp" which has factor valued marks).

sigma The numeric value of the smoothing bandwidth (the standard deviation of Gaus-
sian smoothing kernel) passed to density.lpp. Alternatively sigma may be a
function which can be used to select the bandwidth. See Details.

... Arguments passed to density.lpp to control the pixel resolution.

at Character string specifying whether to compute the probability values at a grid
of pixel locations (at="pixels") or only at the points of X (at="points").

230 relrisk.lpp

relative Logical. If FALSE (the default) the algorithm computes the probabilities of each
type of point. If TRUE, it computes the relative risk, the ratio of probabilities of
each type relative to the probability of a control.

adjust Optional. Adjustment factor for the bandwidth sigma.
casecontrol Logical. Whether to treat a bivariate point pattern as consisting of cases and

controls, and return only the probability or relative risk of a case. Ignored if
there are more than 2 types of points. See Details.

control Integer, or character string, identifying which mark value corresponds to a con-
trol.

case Integer, or character string, identifying which mark value corresponds to a case
(rather than a control) in a bivariate point pattern. This is an alternative to the
argument control in a bivariate point pattern. Ignored if there are more than 2
types of points.

finespacing Logical value specifying whether to use a finer spatial resolution (with longer
computation time but higher accuracy).

Details

The command relrisk is generic and can be used to estimate relative risk in different ways.

This function relrisk.lpp is the method for point patterns on a linear network (objects of class
"lpp"). It computes nonparametric estimates of relative risk by kernel smoothing.

If X is a bivariate point pattern (a multitype point pattern consisting of two types of points) then by
default, the points of the first type (the first level of marks(X)) are treated as controls or non-events,
and points of the second type are treated as cases or events. Then by default this command computes
the spatially-varying probability of a case, i.e. the probability p(u) that a point at location u on the
network will be a case. If relative=TRUE, it computes the spatially-varying relative risk of a case
relative to a control, r(u) = p(u)/(1− p(u)).

If X is a multitype point pattern with m > 2 types, or if X is a bivariate point pattern and casecontrol=FALSE,
then by default this command computes, for each type j, a nonparametric estimate of the spatially-
varying probability of an event of type j. This is the probability pj(u) that a point at location u on
the network will belong to type j. If relative=TRUE, the command computes the relative risk of
an event of type j relative to a control, rj(u) = pj(u)/pk(u), where events of type k are treated as
controls. The argument control determines which type k is treated as a control.

If at = "pixels" the calculation is performed for every location u on a fine pixel grid over the
network, and the result is a pixel image on the network representing the function p(u), or a list
of pixel images representing the functions pj(u) or rj(u) for j = 1, . . . ,m. An infinite value of
relative risk (arising because the probability of a control is zero) will be returned as NA.

If at = "points" the calculation is performed only at the data points xi. By default the result is
a vector of values p(xi) giving the estimated probability of a case at each data point, or a matrix
of values pj(xi) giving the estimated probability of each possible type j at each data point. If
relative=TRUE then the relative risks r(xi) or rj(xi) are returned. An infinite value of relative risk
(arising because the probability of a control is zero) will be returned as Inf.

Estimation is performed by a Nadaraja-Watson type kernel smoother (McSwiggan et al., 2019).

The smoothing bandwidth sigma should be a single numeric value, giving the standard deviation of
the isotropic Gaussian kernel. If adjust is given, the smoothing bandwidth will be adjust * sigma
before the computation of relative risk.

relrisk.lpp 231

Alternatively, sigma may be a function that can be applied to the point pattern X to select a band-
width; the function must return a single numerical value; examples include the functions bw.relrisk.lpp
and bw.scott.iso.

Accuracy depends on the spatial resolution of the density computations. If the arguments dx and
dt are present, they are passed to density.lpp to determine the spatial resolution. Otherwise,
the spatial resolution is determined by a default rule that depends on finespacing and sigma. If
finespacing=FALSE (the default), the spatial resolution is equal to the default resolution for pixel
images. If finespacing=TRUE, the spatial resolution is much finer and is determined by a rule
which guarantees higher accuracy, but takes a longer time.

Value

If X consists of only two types of points, and if casecontrol=TRUE, the result is a pixel image on
the network (if at="pixels") or a vector (if at="points"). The pixel values or vector values are
the probabilities of a case if relative=FALSE, or the relative risk of a case (probability of a case
divided by the probability of a control) if relative=TRUE.

If X consists of more than two types of points, or if casecontrol=FALSE, the result is:

• (if at="pixels") a list of pixel images on the network, with one image for each possible type
of point. The result also belongs to the class "solist" so that it can be printed and plotted.

• (if at="points") a matrix of probabilities, with rows corresponding to data points xi, and
columns corresponding to types j.

The pixel values or matrix entries are the probabilities of each type of point if relative=FALSE,
or the relative risk of each type (probability of each type divided by the probability of a control) if
relative=TRUE.

If relative=FALSE, the resulting values always lie between 0 and 1. If relative=TRUE, the results
are either non-negative numbers, or the values Inf or NA.

Author(s)

Greg McSwiggan and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

McSwiggan, G., Baddeley, A. and Nair, G. (2019) Estimation of relative risk for events on a linear
network. Statistics and Computing 30 (2) 469–484.

See Also

relrisk

Examples

case-control data: 2 types of points
set.seed(2020)
X <- superimpose(A=runiflpp(20, simplenet),

B=runifpointOnLines(20, as.psp(simplenet)[5]))
plot(X)

232 repairNetwork

plot(relrisk(X, 0.15))
plot(relrisk(X, 0.15, case="B"))
head(relrisk(X, 0.15, at="points"))
cross-validated bandwidth selection
plot(relrisk(X, bw.relrisk.lpp, hmax=0.3, allow.infinite=FALSE))

more than 2 types
if(interactive()) {

U <- chicago
sig <- 170

} else {
U <- do.call(superimpose,

split(chicago)[c("theft", "cartheft", "burglary")])
sig <- 40

}
plot(relrisk(U, sig))
head(relrisk(U, sig, at="points"))
plot(relrisk(U, sig, relative=TRUE, control="theft"))

repairNetwork Repair Internal Data in a Linear Network

Description

Detect and repair inconsistencies or duplication in the internal data of a network object.

Usage

repairNetwork(X)

Arguments

X A linear network (object of class "linnet") or a point pattern on a linear net-
work (object of class "lpp").

Details

This function detects and repairs inconsistencies in the internal data of X. Currently it does the
following:

• checks that different ways of calculating the number of edges give the same answer

• removes any duplicated edges of the network

• ensures that each edge is recorded as a pair of vertex indices (from, to) with from < to.

Value

An object of the same kind as X.

Replace.linim 233

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

thinNetwork

Replace.linim Reset Values in Subset of Image on Linear Network

Description

Reset the values in a subset of a pixel image on a linear network.

Usage

S3 replacement method for class 'linim'
x[i, j] <- value

Arguments

x A pixel image on a linear network. An object of class "linim".

i Object defining the subregion or subset to be replaced. Either a spatial window
(an object of class "owin"), or a pixel image with logical values, or a point
pattern (an object of class "ppp"), or any type of index that applies to a matrix, or
something that can be converted to a point pattern by as.ppp (using the window
of x).

j An integer or logical vector serving as the column index if matrix indexing is
being used. Ignored if i is appropriate to some sort of replacement other than
matrix indexing.

value Vector, matrix, factor or pixel image containing the replacement values. Short
vectors will be recycled.

Details

This function changes some of the pixel values in a pixel image. The image x must be an object of
class "linim" representing a pixel image on a linear network.

The pixel values are replaced according to the rules described in the help for [<-.im. Then the
auxiliary data are updated.

Value

The image x with the values replaced.

234 residuals.lppm

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

[<-.im.

Examples

make a function
Y <- as.linim(distfun(runiflpp(5, simplenet)))
replace some values
B <- square(c(0.25, 0.55))
Y[B] <- 2
plot(Y, main="")
plot(B, add=TRUE, lty=3)
X <- runiflpp(4, simplenet)
Y[X] <- 5

residuals.lppm Residuals for Fitted Point Process Model on a Network

Description

Given a point process model fitted to a point pattern on a linear network, compute residuals of the
fitted model.

Usage

S3 method for class 'lppm'
residuals(object, type="raw", ...)

Arguments

object The fitted point process model (an object of class "ppm") for which residuals
should be calculated.

type String indicating the type of residuals to be calculated. Current options are
"raw", "inverse", "pearson" and "score". A partial match is adequate.

... Other arguments are currently ignored.

residuals.lppm 235

Details

This function computes several kinds of residuals for the fit of a point process model to a spatial
point pattern on a linear network. It is an extension of the method of Baddeley et al (2005) to point
process models on a network. Use plot.msr to plot the residuals directly.

The argument object must be a fitted point process model on a network (object of class "lppm").
Such objects are produced by the model-fitting algorithm lppm. This fitted model object contains
complete information about the original data pattern.

Residuals are attached both to the data points and to some other points in the window of observation
(namely, to the dummy points of the quadrature scheme used to fit the model). If the fitted model
is correct, then the sum of the residuals over all (data and dummy) points in a spatial region B has
mean zero. For further explanation, see Baddeley et al (2005).

The type of residual is chosen by the argument type. Current options are

"raw": the raw residuals
rj = zj − wjλj

at the quadrature points uj , where zj is the indicator equal to 1 if uj is a data point and 0 if uj

is a dummy point; wj is the quadrature weight attached to uj ; and

λj = λ̂(uj , x)

is the conditional intensity of the fitted model at uj . These are the spatial analogue of the
martingale residuals of a one-dimensional counting process.

"inverse": the ‘inverse-lambda’ residuals (Baddeley et al, 2005)

r
(I)
j =

rj
λj

=
zj
λj

− wj

obtained by dividing the raw residuals by the fitted conditional intensity. These are a counter-
part of the exponential energy marks (see eem).

"pearson": the Pearson residuals (Baddeley et al, 2005)

r
(P)
j =

rj√
λj

=
zj√
λj

− wj

√
λj

obtained by dividing the raw residuals by the square root of the fitted conditional intensity. The
Pearson residuals are standardised, in the sense that if the model (true and fitted) is Poisson,
then the sum of the Pearson residuals in a spatial region B has variance equal to the area of B.

"score": the score residuals (Baddeley et al, 2005)

rj = (zj − wjλj)xj

obtained by multiplying the raw residuals rj by the covariates xj for quadrature point j. The
score residuals always sum to zero.

The result of residuals.ppm is a measure (object of class "msr"). Use plot.msr to plot the
residuals directly. Use integral.msr to compute the total residual.

236 rhohat.lpp

Value

An object of class "msr" representing a signed measure or vector-valued measure (see msr). This
object can be plotted.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Turner, R., Møller, J. and Hazelton, M. (2005) Residual analysis for spatial point
processes. Journal of the Royal Statistical Society, Series B 67, 617–666.

See Also

lppm, msr, residuals.ppm.

Examples

fit <- lppm(unmark(chicago) ~ x + y)

raw residuals
rr <- residuals(fit)
rr

Pearson residuals
rp <- residuals(fit, type="pe")
rp
plot(rp, main="Pearson residuals")

multitype data
fitm <- lppm(chicago ~ (x+y) * marks, eps=100)
rpm <- residuals(fitm, type="pe")
plot(rpm) would display 7 panels, one for each crime type
Select residuals for crime type = Assault
plot(split(rpm)[["assault"]], markscale=2)

rhohat.lpp Nonparametric Estimate of Intensity as Function of a Covariate

Description

Computes a nonparametric estimate of the intensity of a point process on a linear network, as a
function of a (continuous) spatial covariate.

rhohat.lpp 237

Usage

S3 method for class 'lpp'
rhohat(object, covariate, ...,

weights=NULL,
method=c("ratio", "reweight", "transform"),
horvitz=FALSE,
smoother=c("kernel", "local", "decreasing", "increasing",

"mountain", "valley", "piecewise"),
subset=NULL,
do.CI=TRUE,
jitter=TRUE, jitterfactor=1, interpolate=TRUE,
nd=1000, eps=NULL, random=TRUE,
n = 512, bw = "nrd0", adjust=1, from = NULL, to = NULL,
bwref=bw,
covname, confidence=0.95, positiveCI, breaks=NULL)

S3 method for class 'lppm'
rhohat(object, covariate, ...,

weights=NULL,
method=c("ratio", "reweight", "transform"),
horvitz=FALSE,
smoother=c("kernel", "local", "decreasing", "increasing",

"mountain", "valley", "piecewise"),
subset=NULL,
do.CI=TRUE,
jitter=TRUE, jitterfactor=1, interpolate=TRUE,
nd=1000, eps=NULL, random=TRUE,
n = 512, bw = "nrd0", adjust=1, from = NULL, to = NULL,
bwref=bw,
covname, confidence=0.95, positiveCI, breaks=NULL)

Arguments

object A point pattern on a linear network (object of class "lpp"), or a fitted point
process model on a linear network (object of class "lppm").

covariate Either a function(x,y) or a pixel image (object of class "im" or "linim")
providing the values of the covariate at any location. Alternatively one of the
strings "x" or "y" signifying the Cartesian coordinates.

weights Optional weights attached to the data points. Either a numeric vector of weights
for each data point, or a pixel image (object of class "im") or a function(x,y)
providing the weights.

method Character string determining the estimation method. See Details.

horvitz Logical value indicating whether to use Horvitz-Thompson weights. See De-
tails.

smoother Character string determining the smoothing algorithm and the type of curve that
will be estimated. See Details.

238 rhohat.lpp

subset Optional. A spatial window (object of class "owin") specifying a subset of the
data, from which the estimate should be calculated.

do.CI Logical value specifying whether to calculate standard errors and confidence
bands.

jitter Logical value. If jitter=TRUE (the default), the values of the covariate at the
data points will be jittered (randomly perturbed by adding a small amount of
noise) using the function jitter. If jitter=FALSE, the covariate values at the
data points will not be altered. See the section on Randomisation and discreti-
sation.

jitterfactor Numeric value controlling the scale of jittering. Passed to jitter as the argu-
ment factor.

interpolate Logical value specifying whether to use spatial interpolation to obtain the values
of the covariate at the data points, when the covariate is a pixel image (object
of class "im" or "linim"). If interpolate=FALSE, the covariate value for each
data point is simply the value of the covariate image at the pixel centre that
is nearest to the data point. If interpolate=TRUE, the covariate value for each
data point is obtained by interpolating the nearest pixel values using interp.im.

eps, nd, random Arguments controlling the pixel resolution at which the covariate will be evalu-
ated. See Details.

bw Smoothing bandwidth or bandwidth rule (passed to density.default).

adjust Smoothing bandwidth adjustment factor (passed to density.default).

n, from, to Arguments passed to density.default to control the number and range of val-
ues at which the function will be estimated.

bwref Optional. An alternative value of bw to use when smoothing the reference den-
sity (the density of the covariate values observed at all locations in the window).

... Additional arguments passed to density.default or locfit::locfit.

covname Optional. Character string to use as the name of the covariate.

confidence Confidence level for confidence intervals. A number between 0 and 1.

positiveCI Logical value. If TRUE, confidence limits are always positive numbers; if FALSE,
the lower limit of the confidence interval may sometimes be negative. Default is
FALSE if smoother="kernel" and TRUE if smoother="local". See Details.

breaks Breakpoints for the piecewise-constant function computed when smoother='piecewise'.
Either a vector of numeric values specifying the breakpoints, or a single integer
specifying the number of equally-spaced breakpoints. There is a sensible de-
fault.

Details

This command estimates the relationship between point process intensity and a given spatial co-
variate. Such a relationship is sometimes called a resource selection function (if the points are
organisms and the covariate is a descriptor of habitat) or a prospectivity index (if the points are min-
eral deposits and the covariate is a geological variable). This command uses nonparametric methods
which do not assume a particular form for the relationship.

rhohat.lpp 239

If object is a point pattern, and baseline is missing or null, this command assumes that object
is a realisation of a point process with intensity function λ(u) of the form

λ(u) = ρ(Z(u))

where Z is the spatial covariate function given by covariate, and ρ(z) is the resource selection
function or prospectivity index. A nonparametric estimator of the function ρ(z) is computed.

If object is a point pattern, and baseline is given, then the intensity function is assumed to be

λ(u) = ρ(Z(u))B(u)

where B(u) is the baseline intensity at location u. A nonparametric estimator of the relative inten-
sity ρ(z) is computed.

If object is a fitted point process model, suppose X is the original data point pattern to which the
model was fitted. Then this command assumes X is a realisation of a Poisson point process with
intensity function of the form

λ(u) = ρ(Z(u))κ(u)

where κ(u) is the intensity of the fitted model object. A nonparametric estimator of the relative
intensity ρ(z) is computed.

The nonparametric estimation procedure is controlled by the arguments smoother, method and
horvitz.

The argument smoother selects the type of estimation technique.

• If smoother="kernel" (the default), the nonparametric estimator is a kernel smoothing es-
timator of ρ(z) (Guan, 2008; Baddeley et al, 2012). The estimated function ρ(z) will be a
smooth function of z which takes nonnegative values. If do.CI=TRUE (the default), confi-
dence bands are also computed, assuming a Poisson point process. See the section on Smooth
estimates.

• If smoother="local", the nonparametric estimator is a local regression estimator of ρ(z)
(Baddeley et al, 2012) obtained using local likelihood. The estimated function ρ(z) will be
a smooth function of z. If do.CI=TRUE (the default), confidence bands are also computed,
assuming a Poisson point process. See the section on Smooth estimates.

• If smoother="increasing", we assume that ρ(z) is an increasing function of z, and use
the nonparametric maximum likelihood estimator of ρ(z) described by Sager (1982). The
estimated function will be a step function, that is increasing as a function of z. Confidence
bands are not computed. See the section on Monotone estimates.

• If smoother="decreasing", we assume that ρ(z) is a decreasing function of z, and use the
nonparametric maximum likelihood estimator of ρ(z) described by Sager (1982). The esti-
mated function will be a step function, that is decreasing as a function of z. Confidence bands
are not computed. See the section on Monotone estimates.

• If smoother="mountain", we assume that ρ(z) is a function with an inverted U shape, with a
single peak at a value z0, so that ρ(z) is an increasing function of z for z < z0 and a decreasing
function of z for z > z0. We compute the nonparametric maximum likelihood estimator.
The estimated function will be a step function, which is increasing and then decreasing as a
function of z. Confidence bands are not computed. See the section on Unimodal estimates.

240 rhohat.lpp

• If smoother="valley", we assume that ρ(z) is a function with a U shape, with a single
minimum at a value z0, so that ρ(z) is a decreasing function of z for z < z0 and an increasing
function of z for z > z0. We compute the nonparametric maximum likelihood estimator.
The estimated function will be a step function, which is decreasing and then increasing as a
function of z. Confidence bands are not computed. See the section on Unimodal estimates.

• If smoother="piecewise", the estimate of ρ(z) is piecewise constant. The range of covariate
values is divided into several intervals (ranges or bands). The endpoints of these intervals are
the breakpoints, which may be specified by the argument breaks; there is a sensible default.
The estimate of ρ(z) takes a constant value on each interval. The estimate of ρ(z) in each
interval of covariate values is simply the average intensity (number of points per unit length)
in the relevant sub-region of the network. If do.CI=TRUE (the default), confidence bands are
also computed, assuming a Poisson point process.

See Baddeley (2018) for a comparison of these estimation techniques for two-dimensional point
patterns.

If the argument weights is present, then the contribution from each data point X[i] to the estimate
of ρ is multiplied by weights[i].

If the argument subset is present, then the calculations are performed using only the data inside
this spatial region.

This technique assumes that covariate has continuous values. It is not applicable to covariates
with categorical (factor) values or discrete values such as small integers.

The argument covariate should be a pixel image, or a function, or one of the strings "x" or
"y" signifying the cartesian coordinates. It will be evaluated on a fine grid of locations, with spatial
resolution controlled by the arguments eps,nd,random. The argument nd specifies the total number
of test locations on the linear network, eps specifies the linear separation between test locations,
and random specifies whether the test locations have a randomised starting position.

Value

A function value table (object of class "fv") containing the estimated values of ρ (and confidence
limits) for a sequence of values of Z. Also belongs to the class "rhohat" which has special methods
for print, plot and predict.

Smooth estimates

Smooth estimators of ρ(z) were proposed by Baddeley and Turner (2005) and Baddeley et al (2012).
Similar estimators were proposed by Guan (2008) and in the literature on relative distributions
(Handcock and Morris, 1999).

The estimated function ρ(z) will be a smooth function of z.

The smooth estimation procedure involves computing several density estimates and combining
them. The algorithm used to compute density estimates is determined by smoother:

• If smoother="kernel", the smoothing procedure is based on fixed-bandwidth kernel density
estimation, performed by density.default.

• If smoother="local", the smoothing procedure is based on local likelihood density estima-
tion, performed by locfit::locfit.

rhohat.lpp 241

The argument method determines how the density estimates will be combined to obtain an estimate
of ρ(z):

• If method="ratio", then ρ(z) is estimated by the ratio of two density estimates, The numer-
ator is a (rescaled) density estimate obtained by smoothing the values Z(yi) of the covariate
Z observed at the data points yi. The denominator is a density estimate of the reference dis-
tribution of Z. See Baddeley et al (2012), equation (8). This is similar but not identical to an
estimator proposed by Guan (2008).

• If method="reweight", then ρ(z) is estimated by applying density estimation to the values
Z(yi) of the covariate Z observed at the data points yi, with weights inversely proportional to
the reference density of Z. See Baddeley et al (2012), equation (9).

• If method="transform", the smoothing method is variable-bandwidth kernel smoothing, im-
plemented by applying the Probability Integral Transform to the covariate values, yielding
values in the range 0 to 1, then applying edge-corrected density estimation on the interval
[0, 1], and back-transforming. See Baddeley et al (2012), equation (10).

If horvitz=TRUE, then the calculations described above are modified by using Horvitz-Thompson
weighting. The contribution to the numerator from each data point is weighted by the reciprocal
of the baseline value or fitted intensity value at that data point; and a corresponding adjustment is
made to the denominator.

If do.CI=TRUE (the default), pointwise confidence intervals for the true value of ρ(z) are also cal-
culated for each z, and will be plotted as grey shading. The confidence intervals are derived us-
ing the central limit theorem, based on variance calculations which assume a Poisson point pro-
cess. If positiveCI=FALSE, the lower limit of the confidence interval may sometimes be negative,
because the confidence intervals are based on a normal approximation to the estimate of ρ(z).
If positiveCI=TRUE, the confidence limits are always positive, because the confidence interval
is based on a normal approximation to the estimate of log(ρ(z)). For consistency with earlier
versions, the default is positiveCI=FALSE for smoother="kernel" and positiveCI=TRUE for
smoother="local".

Monotone estimates

The nonparametric maximum likelihood estimator of a monotone function ρ(z) was described by
Sager (1982). This method assumes that ρ(z) is either an increasing function of z, or a decreasing
function of z. The estimated function will be a step function, increasing or decreasing as a function
of z.

This estimator is chosen by specifying smoother="increasing" or smoother="decreasing".
The argument method is ignored this case.

To compute the estimate of ρ(z), the algorithm first computes several primitive step-function esti-
mates, and then takes the maximum of these primitive functions.

If smoother="decreasing", each primitive step function takes the form ρ(z) = λ when z ≤ t, and
ρ(z) = 0 when z > t, where and λ is a primitive estimate of intensity based on the data for Z ≤ t.
The jump location t will be the value of the covariate Z at one of the data points. The primitive
estimate λ is the average intensity (number of points divided by area) for the region of space where
the covariate value is less than or equal to t.

If horvitz=TRUE, then the calculations described above are modified by using Horvitz-Thompson
weighting. The contribution to the numerator from each data point is weighted by the reciprocal

242 rhohat.lpp

of the baseline value or fitted intensity value at that data point; and a corresponding adjustment is
made to the denominator.

Confidence intervals are not available for the monotone estimators.

Unimodal estimators

If smoother="valley" then we estimate a U-shaped function. A function ρ(z) is U-shaped if it is
decreasing when z < z0 and increasing when z > z0, where z0 is called the critical value. The
nonparametric maximum likelihood estimate of such a function can be computed by profiling over
z0. The algorithm considers all possible candidate values of the critical value z0, and estimates
the function ρ(z) separately on the left and right of z0 using the monotone estimators described
above. These function estimates are combined into a single function, and the Poisson point process
likelihood is computed. The optimal value of z0 is the one which maximises the Poisson point
process likelihood.

If smoother="mountain" then we estimate a function which has an inverted U shape. A function
ρ(z) is inverted-U-shaped if it is increasing when z < z0 and decreasing when z > z0. The
nonparametric maximum likelihood estimate of such a function can be computed by profiling over
z0 using the same technique mutatis mutandis.

Confidence intervals are not available for the unimodal estimators.

Randomisation

By default, rhohat adds a small amount of random noise to the data. This is designed to suppress
the effects of discretisation in pixel images.

This strategy means that rhohat does not produce exactly the same result when the computation is
repeated. If you need the results to be exactly reproducible, set jitter=FALSE and random=FALSE.

The values of the covariate at the data points are randomly perturbed by adding a small amount of
noise using the function jitter. To reduce this effect, set jitterfactor to a number smaller than
1. To suppress this effect entirely, set jitter=FALSE.

The values of the covariate along the network are sampled at a regularly-spaced grid on the network.
The grid starts from a random position on each segment of the network. To suppress this behaviour,
set random=FALSE.

Author(s)

Smoothing algorithm by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Ya-Mei Chang,
Yong Song, and Rolf Turner <rolfturner@posteo.net>.

Nonparametric maximum likelihood algorithm by Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Baddeley, A., Chang, Y.-M., Song, Y. and Turner, R. (2012) Nonparametric estimation of the de-
pendence of a point process on spatial covariates. Statistics and Its Interface 5 (2), 221–236.

Baddeley, A. and Turner, R. (2005) Modelling spatial point patterns in R. In: A. Baddeley, P. Gre-
gori, J. Mateu, R. Stoica, and D. Stoyan, editors, Case Studies in Spatial Point Pattern Modelling,
Lecture Notes in Statistics number 185. Pages 23–74. Springer-Verlag, New York, 2006. ISBN:
0-387-28311-0.

rjitter.lpp 243

Baddeley, A. (2018) A statistical commentary on mineral prospectivity analysis. Chapter 2, pages
25–65 in Handbook of Mathematical Geosciences: Fifty Years of IAMG, edited by B.S. Daya Sagar,
Q. Cheng and F.P. Agterberg. Springer, Berlin.

Guan, Y. (2008) On consistent nonparametric intensity estimation for inhomogeneous spatial point
processes. Journal of the American Statistical Association 103, 1238–1247.

Handcock, M.S. and Morris, M. (1999) Relative Distribution Methods in the Social Sciences.
Springer, New York.

Sager, T.W. (1982) Nonparametric maximum likelihood estimation of spatial patterns. Annals of
Statistics 10, 1125–1136.

See Also

rho2hat, methods.rhohat, parres.

See lppm for a parametric method for the same problem.

Examples

Y <- runiflpp(30, simplenet)
rhoY <- rhohat(Y, "y")

do spiders prefer to be in the middle of a segment?
teepee <- linfun(function(x,y,seg,tp){ tp }, domain(spiders))
rhotee <- rhohat(spiders, teepee)
rhoteeM <- rhohat(spiders, teepee, smoother="mountain")
if(interactive()) {

plot(rhotee, main="Spider preference for mid-segment")
plot(rhoteeM, add=TRUE, .y ~ .x, lwd=3)

}

rjitter.lpp Random Perturbation of a Point Pattern on a Network

Description

Applies independent random displacements to each point in a point pattern on a network.

Usage

S3 method for class 'lpp'
rjitter(X, radius, ..., nsim = 1, drop = TRUE)

Arguments

X A point pattern on a linear network (object of class "lpp").

radius Scale of perturbations. A positive numerical value. Each point will be displaced
by a random distance, with maximum displacement equal to this value.

... Ignored.

244 rlpp

nsim Number of simulated realisations to be generated.

drop Logical. If nsim=1 and drop=TRUE (the default), the result will be a point pat-
tern, rather than a list containing a point pattern.

Details

The function rjitter is generic. This function is the method for the class "lpp" of point patterns
on a linear network.

Each of the points in X will be displaced along the network by a random amount, independently of
other points. The maximum displacement distance is specified by radius. Each point remains on
the same line segment of the network as it originally was.

Value

A point pattern on a linear network (object of class "lpp") or a list of such point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

rjitter for point patterns in two dimensions.

Examples

X <- runiflpp(3, simplenet)
plot(X, pch=16)
Y <- rjitter(X, 0.1)
plot(Y, add=TRUE, cols=3)

rlpp Random Points on a Linear Network

Description

Generates n independent random points on a linear network with a specified probability density.

Usage

rlpp(n, f, ..., nsim=1, drop=TRUE)

rlpp 245

Arguments

n Number of random points to generate. A nonnegative integer giving the number
of points, or an integer vector giving the numbers of points of each type.

f Probability density (not necessarily normalised). A pixel image on a linear net-
work (object of class "linim") or a function on a linear network (object of class
"linfun"). Alternatively, f can be a list of functions or pixel images, giving the
densities of points of each type.

... Additional arguments passed to f if it is a function or a list of functions.

nsim Number of simulated realisations to generate.

drop Logical value indicating what to do when nsim=1. If drop=TRUE (the default),
the result is a point pattern. If drop=FALSE, the result is a list with one entry
which is a point pattern.

Details

The linear network L, on which the points will be generated, is determined by the argument f.

If f is a function, it is converted to a pixel image on the linear network, using any additional function
arguments

If n is a single integer and f is a function or pixel image, then independent random points are
generated on L with probability density proportional to f.

If n is an integer vector and f is a list of functions or pixel images, where n and f have the same
length, then independent random points of several types are generated on L, with n[i] points of
type i having probability density proportional to f[[i]].

Value

If nsim = 1 and drop=TRUE, a point pattern on the linear network, i.e.\ an object of class "lpp".
Otherwise, a list of such point patterns.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

runiflpp

Examples

g <- function(x, y, seg, tp) { exp(x + 3*y) }
f <- linfun(g, simplenet)

rlpp(20, f)

plot(rlpp(20, f, nsim=3))

246 roc.lpp

roc.lpp Receiver Operating Characteristic for Data on a Network

Description

Computes the Receiver Operating Characteristic curve for a point pattern on a linear network or a
fitted point process model on a linear network.

Usage

S3 method for class 'lpp'
roc(X, covariate,

...,
baseline = NULL, high = TRUE, weights = NULL,
method = "raw",
CI = "none", alpha=0.05,
subset=NULL)

S3 method for class 'lppm'
roc(X, covariate=NULL,

..., baseline=NULL, high=TRUE,
method = "raw",
CI = "none", alpha=0.05,
leaveoneout=FALSE, subset=NULL)

Arguments

X Point pattern on a network (object of class "lpp") or fitted point process model
on a network (object of class "lppm").

covariate Spatial covariate. Either a function(x,y), a pixel image (object of class "im"
or "linim"), or one of the strings "x" or "y" indicating the Cartesian coordi-
nates. Traditionally omitted when X is a fitted model.

... Arguments passed to as.mask controlling the pixel resolution for calculations.

baseline Optional. A spatial object giving a baseline intensity. Usually a function(x,y)
or a pixel image (object of class "im" or "linim") giving the baseline intensity
at any location on the network. Alternatively a point pattern on the network
(object of class "lpp") giving the locations of the reference population.

high Logical value indicating whether the threshold operation should favour high or
low values of the covariate.

weights Optional. Numeric vector of weights attached to the data points.

method The method or methods that should be used to estimate the ROC curve. A char-
acter vector: current choices are "raw", "monotonic", "smooth" and "all".
See Details.

CI Character string (partially matched) specifying whether confidence intervals should
be computed, and for which method. See Details.

roc.lpp 247

alpha Numeric value between 0 and 1. The confidence intervals will have confidence
level 1-alpha. The default gives 95% confidence intervals.

subset Optional. A spatial window (object of class "owin") specifying a subset of the
data, from which the ROC should be calculated.

leaveoneout Logical value specifying (for roc.lppm) whether the fitted intensity of the model
at each of the original data points should be computed by the leave-one-out
procedure (i.e. by removing the data point in question from the point pattern,
re-fitting the model to the reduced point pattern, and computing the intensity
of this modified model at the point in question) as described in Baddeley et al
(2025). It is also possible to specify leaveoneout=c(TRUE,FALSE) so that both
versions are calculated.

Details

The command roc computes the Receiver Operating Characteristic curve. The area under the ROC
is computed by auc.

The function roc is generic, with methods for point patterns, fitted point process models and other
kinds of data.

This help file describes the methods for classes "lpp" and "lppm".

For a point pattern X and a covariate Z, the ROC is a plot showing the ability of the covariate to
separate the spatial domain into areas of high and low density of points. For each possible threshold
z, the algorithm calculates the fraction a(z) of area in the study region where the covariate takes
a value greater than z, and the fraction b(z) of data points for which the covariate value is greater
than z. The ROC is a plot of b(z) against a(z) for all thresholds z.

For a fitted point process model, the ROC shows the ability of the fitted model intensity to separate
the spatial domain into areas of high and low density of points. The ROC is not a diagnostic for the
goodness-of-fit of the model (Lobo et al, 2007).

Value

Function value table (object of class "fv") which can be plotted to show the ROC curve. Also
belongs to class "roc".

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Baddeley, A., Rubak, E., Rakshit, S. and Nair, G. (2025) ROC curves for spatial point patterns and
presence-absence data. doi:10.48550/arXiv.2506.03414..

Lobo, J.M., Jiménez-Valverde, A. and Real, R. (2007) AUC: a misleading measure of the perfor-
mance of predictive distribution models. Global Ecology and Biogeography 17(2) 145–151.

Nam, B.-H. and D’Agostino, R. (2002) Discrimination index, the area under the ROC curve. Pages
267–279 in Huber-Carol, C., Balakrishnan, N., Nikulin, M.S. and Mesbah, M., Goodness-of-fit tests
and model validity, Birkhäuser, Basel.

https://doi.org/10.48550/arXiv.2506.03414

248 rpoislpp

See Also

auc

Examples

plot(roc(spiders, "x"))
fit <- lppm(spiders ~ x)
plot(roc(fit))

rpoislpp Poisson Point Process on a Linear Network

Description

Generates a realisation of the Poisson point process with specified intensity on the given linear
network.

Usage

rpoislpp(lambda, L, ..., nsim=1, drop=TRUE, ex=NULL)

Arguments

lambda Intensity of the Poisson process. A single number, a function(x,y), a pixel
image (object of class "im"), or a vector of numbers, a list of functions, or a list
of images.

L A linear network (object of class "linnet", see linnet). Can be omitted in
some cases: see Details.

... Arguments passed to rpoisppOnLines.
nsim Number of simulated realisations to generate.
drop Logical value indicating what to do when nsim=1. If drop=TRUE (the default),

the result is a point pattern. If drop=FALSE, the result is a list with one entry
which is a point pattern.

ex Optional. A point pattern on a network (object of class "lpp") which serves as
an example to determine the default values of lambda and L. See Details.

Details

A random number of random points is generated on the network L, according to a Poisson point pro-
cess with intensity lambda points per unit length. The random points are generated by rpoisppOnLines.
See the help file for rpoisppOnLines for information.

Argument L can be omitted, and defaults to as.linnet(lambda), when lambda is a function on a
linear network (class "linfun") or a pixel image on a linear network ("linim").

If ex is given, then it serves as an example for determining lambda and L. The default value of
lambda will be the average intensity (number per unit length) of points in ex (or the average intensity
of the points of each type if ex is multitype). The default value of L will be the network on which
ex is defined.

rSwitzerlpp 249

Value

If nsim = 1 and drop=TRUE, a point pattern on the linear network, i.e.\ an object of class "lpp".
Otherwise, a list of such point patterns.

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

rpoisppOnLines, runiflpp, rlpp, lpp, linnet.

Examples

X <- rpoislpp(5, simplenet)
plot(X)
multitype
Y <- rpoislpp(c(a=5, b=5), simplenet)
using argument 'ex' to make a pattern like 'X'
Z <- rpoislpp(ex=X)

rSwitzerlpp Switzer-type Point Process on Linear Network

Description

Generate a realisation of the Switzer-type point process on a linear network.

Usage

rSwitzerlpp(L, lambdacut, rintens = rexp, ...,
cuts=c("points", "lines"))

Arguments

L Linear network (object of class "linnet").

lambdacut Intensity of Poisson process of breakpoints.

rintens Optional. Random variable generator used to generate the random intensity in
each component.

... Additional arguments to rintens.

cuts String (partially matched) specifying the type of random cuts to be generated.

250 rSwitzerlpp

Details

This function generates simulated realisations of the Switzer-type point process on a network, as
described in Baddeley et al (2017).

The linear network is first divided into pieces by a random mechanism:

• if cuts="points", a Poisson process of breakpoints with intensity lambdacut is generated on
the network, and these breakpoints separate the network into connected pieces.

• if cuts="lines", a Poisson line process in the plane with intensity lambdacut is generated;
these lines divide space into tiles; the network is divided into subsets associated with the tiles.
Each subset may not be a connected sub-network.

In each piece of the network, a random intensity is generated using the random variable generator
rintens (the default is a negative exponential random variable with rate 1). Given the intensity
value, a Poisson process is generated with the specified intensity.

The intensity of the final process is determined by the mean of the values generated by rintens. If
rintens=rexp (the default), then the parameter rate specifies the inverse of the intensity.

Value

Point pattern on a linear network (object of class "lpp") with an attribute "breaks" containing the
breakpoints (if cuts="points") or the random lines (if cuts="lines").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

References

Baddeley, A., Nair, G., Rakshit, S. and McSwiggan, G. (2017) ‘Stationary’ point processes are
uncommon on linear networks. STAT 6, 68–78.

See Also

rcelllpp

Examples

plot(rSwitzerlpp(domain(spiders), 0.01, rate=100))

plot(rSwitzerlpp(domain(spiders), 0.0005, rate=100, cuts="l"))

rThomaslpp 251

rThomaslpp Simulate Thomas Process on Linear Network

Description

Generate a random point pattern, a realisation of the Thomas cluster process, on a linear network.

Usage

rThomaslpp(kappa, scale, mu, L, ..., nsim=1, drop=TRUE)

Arguments

kappa Intensity of the Poisson process of cluster centres. A single positive number, a
function(x,y), or a pixel image (object of class "im" or "linim").

scale Standard deviation of random displacement (along the network) of a point from
its cluster centre.

mu Mean number of points per cluster (a single positive number) or reference inten-
sity for the cluster points (a function or a pixel image).

L Linear network (object of class "linnet") on which the point pattern should be
generated.

... Arguments passed to rpoisppOnLines.

nsim Number of simulated realisations to generate.

drop Logical value indicating what to do when nsim=1. If drop=TRUE (the default),
the result is a point pattern. If drop=FALSE, the result is a list with one entry
which is a point pattern.

Details

This function generates realisations of the Thomas cluster process on a linear network, described
by Baddeley et al (2017).

Argument L can be omitted, and defaults to as.linnet(kappa), when kappa is a function on a
linear network (class "linfun") or a pixel image on a linear network ("linim").

Value

A point pattern on a network (object of class "lpp") or a list of point patterns on the network.

Author(s)

Greg McSwiggan and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

252 runiflpp

References

Baddeley, A., Nair, G., Rakshit, S. and McSwiggan, G. (2017) ‘Stationary’ point processes are
uncommon on linear networks. STAT 6 (1) 68–78.

Baddeley, A., Nair, G., Rakshit, S., McSwiggan, G. and Davies, T.M. (2021) Analysing point pat-
terns on networks — a review. Spatial Statistics 42, 100435, DOI 10.1016/j.spasta.2020.100435.

See Also

rpoislpp

Examples

plot(rThomaslpp(4, 0.07, 5, simplenet))

runiflpp Uniform Random Points on a Linear Network

Description

Generates n random points, independently and uniformly distributed, on a linear network.

Usage

runiflpp(n, L, nsim=1, drop=TRUE, ex=NULL)

Arguments

n Number of random points to generate. A nonnegative integer, or a vector of
integers specifying the number of points of each type.

L A linear network (object of class "linnet", see linnet).

nsim Number of simulated realisations to generate.

drop Logical value indicating what to do when nsim=1. If drop=TRUE (the default),
the result is a point pattern. If drop=FALSE, the result is a list with one entry
which is a point pattern.

ex Optional. A point pattern on a network (object of class "lpp") which serves as
an example to determine the default values of n and L. See Details.

Details

The specified number n of random points is generated with uniform distribution on the network L.
The random points are generated using runifpointOnLines.

If n is an integer vector, then a multitype point pattern is generated, with n[i] random points of
type i.

If ex is given, then it serves as an example for determining n and L. The default value of n will be
the number of points in ex (or the number of points of each type in ex if it is multitype). The default
value of L will be the network on which ex is defined.

sdr.lpp 253

Value

If nsim = 1 and drop=TRUE, a point pattern on a linear network (object of class "lpp"). Otherwise,
a list of such point patterns.

Author(s)

Ang Qi Wei <aqw07398@hotmail.com> and Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

rlpp for non-uniform random points; rpoislpp for Poisson point process;

lpp, linnet

Examples

X <- runiflpp(10, simplenet)
plot(X)
marked
Z <- runiflpp(c(a=10, b=3), simplenet)
using 'ex'
U <- runiflpp(ex=Z)

sdr.lpp Sufficient Dimension Reduction for a Point Pattern on a Linear Net-
work

Description

Given a point pattern on a linear network, and a set of predictors, find a minimal set of new predic-
tors, each constructed as a linear combination of the original predictors.

Usage

S3 method for class 'lpp'
sdr(X, covariates,

method = c("DR", "NNIR", "SAVE", "SIR", "TSE"),
Dim1 = 1, Dim2 = 1, predict=FALSE, ...)

Arguments

X A point pattern on a linear network (object of class "lpp").

covariates A list of pixel images (objects of class "im" or "linim") to serve as predictor
variables.

method Character string indicating which method to use. See Details.

Dim1 Dimension of the first order Central Intensity Subspace (applicable when method
is "DR", "NNIR", "SAVE" or "TSE").

254 sdr.lpp

Dim2 Dimension of the second order Central Intensity Subspace (applicable when
method="TSE").

predict Logical value indicating whether to compute the new predictors as well.

... Extra arguments are ignored.

Details

This is the method for sdr for the class "lpp" of point patterns on a linear network.

Given a point pattern X and predictor variables Z1, . . . , Zp, Sufficient Dimension Reduction meth-
ods (Guan and Wang, 2010) attempt to find a minimal set of new predictor variables, each con-
structed by taking a linear combination of the original predictors, which explain the dependence
of X on Z1, . . . , Zp. The methods do not assume any particular form of dependence of the point
pattern on the predictors. The predictors are assumed to be Gaussian random fields.

Available methods are:

method="DR" directional regression
method="NNIR" nearest neighbour inverse regression
method="SAVE" & sliced average variance estimation
method="SIR" & sliced inverse regression
method="TSE" & two-step estimation

The result includes a matrix B whose columns are estimates of the basis vectors of the space of new
predictors. That is, the jth column of B expresses the jth new predictor as a linear combination of
the original predictors.

If predict=TRUE, the new predictors are also evaluated. They can also be evaluated using sdrPredict.

Value

A list with components B, M or B, M1, M2 where B is a matrix whose columns are estimates of the
basis vectors for the space, and M or M1,M2 are matrices containing estimates of the kernel.

If predict=TRUE, the result also includes a component Y which is a list of pixel images giving the
values of the new predictors.

Author(s)

Based on a Matlab original, for two-dimensional point patterns, by Yongtao Guan. Adapted to R,
and to linear networks, by Suman Rakshit.

References

Guan, Y. and Wang, H. (2010) Sufficient dimension reduction for spatial point processes directed
by Gaussian random fields. Journal of the Royal Statistical Society, Series B, 72, 367–387.

shortestpath 255

See Also

sdrPredict to compute the new predictors from the coefficient matrix.

dimhat to estimate the subspace dimension.

subspaceDistance

Examples

sdr(bei, bei.extra)

xim <- as.linim(function(x,y) { x }, simplenet)
yim <- as.linim(function(x,y) { y }, simplenet)
X <- runiflpp(30, simplenet)
sdr(X, list(x=xim, y=yim))

shortestpath Shortest Path Between Two Points on a Linear Network

Description

Find the shortest path between two given points on a linear network.

Usage

shortestpath(X, i=1, j=2)

Arguments

X Point pattern on a linear network (object of class "lpp").

i Integer index of the start point

j Integer index of the end point

Details

The shortest path in the network between the two specified points X[i] and X[j] is determined.

The result is a line segment pattern (object of class "psp") consisting of (in order) a line segment
joining X[i] to a vertex of the network, then a series of segments joining adjacent vertices of the
network, then a line segment joining a vertex to X[j].

The result has an attribute "steps" which is an integer vector giving the sequence of vertices of the
network through which the shortest path passes. This vector will have length zero if X[i] and X[j]
lie on the same segment of the network. Otherwise it will contain a sequence of integers which
index the vertices as given in vertices(domain(X)).

Value

Line segment pattern (object of class "psp") with an attribute "steps" which is an integer vector.

256 simulate.lppm

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>.

See Also

The length of the shortest path is computed by pairdist.lpp.

Examples

X <- if(interactive()) chicago[c(20, 39)] else runiflpp(2, simplenet)
P <- shortestpath(X)
if(interactive()) {

plot(X, pch=16, main="shortest path")
draw the path
plot(P, add=TRUE, col=2, lwd=2)
draw the vertices on the path
V <- vertices(L)
steps <- attr(P, "steps")
plot(V[steps], add=TRUE, col=3)

}

simulate.lppm Simulate a Fitted Point Process Model on a Linear Network

Description

Generates simulated realisations from a fitted Poisson point process model on a linear network.

Usage

S3 method for class 'lppm'
simulate(object, nsim=1, ...,

new.coef=NULL,
progress=(nsim > 1),
drop=FALSE)

Arguments

object Fitted point process model on a linear network. An object of class "lppm".
nsim Number of simulated realisations.
progress Logical flag indicating whether to print progress reports for the sequence of

simulations.
new.coef New values for the canonical parameters of the model. A numeric vector of the

same length as coef(object).
... Arguments passed to predict.lppm to determine the spatial resolution of the

image of the fitted intensity used in the simulation.
drop Logical. If nsim=1 and drop=TRUE, the result will be a point pattern, rather than

a list containing a point pattern.

Smooth.lpp 257

Details

This function is a method for the generic function simulate for the class "lppm" of fitted point
process models on a linear network.

Only Poisson process models are supported so far.

Simulations are performed by rpoislpp.

Value

A list of length nsim containing simulated point patterns (objects of class "lpp") on the same linear
network as the original data used to fit the model. The result also belongs to the class "solist", so
that it can be plotted, and the class "timed", so that the total computation time is recorded.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

, Rolf Turner <rolfturner@posteo.net>

and Ege Rubak <rubak@math.aau.dk>

See Also

lppm, rpoislpp, simulate

Examples

fit <- lppm(unmark(chicago) ~ y)
simulate(fit)[[1]]

Smooth.lpp Spatial Smoothing of Observations on a Network

Description

Performs spatial smoothing of numeric values observed at a set of locations on a network. Uses
kernel smoothing.

Usage

S3 method for class 'lpp'
Smooth(X, sigma,

...,
at=c("pixels", "points"),
weights=rep(1, npoints(X)),
leaveoneout=TRUE)

258 Smooth.lpp

Arguments

X A marked point pattern on a linear network (object of class "lpp").

sigma Smoothing bandwidth. A single positive number. See density.lpp.

... Further arguments passed to density.lpp to control the kernel smoothing and
the pixel resolution of the result.

at String specifying whether to compute the smoothed values at a grid of pixel
locations (at="pixels") or only at the points of X (at="points").

weights Optional numeric vector of weights attached to the observations.

leaveoneout Logical value indicating whether to compute a leave-one-out estimator. Appli-
cable only when at="points".

Details

The function Smooth.lpp performs spatial smoothing of numeric values observed at a set of irreg-
ular locations on a linear network.

Smooth.lpp is a method for the generic function Smooth for the class "lpp" of point patterns. Thus
you can type simply Smooth(X).

Smoothing is performed by kernel weighting, using the Gaussian kernel by default. If the observed
values are v1, . . . , vn at locations x1, . . . , xn respectively, then the smoothed value at a location u
is

g(u) =

∑
i k(u, xi)vi∑
i k(u, xi)

where k is the kernel. This is known as the Nadaraya-Watson smoother (Nadaraya, 1964, 1989;
Watson, 1964). The type of kernel is determined by further arguments ... which are passed to
density.lpp

The argument X must be a marked point pattern on a linear network (object of class "lpp"). The
points of the pattern are taken to be the observation locations xi, and the marks of the pattern are
taken to be the numeric values vi observed at these locations.

The marks are allowed to be a data frame. Then the smoothing procedure is applied to each column
of marks.

The numerator and denominator are computed by density.lpp. The arguments ... control the
smoothing kernel parameters.

The optional argument weights allows numerical weights to be applied to the data. If a weight wi

is associated with location xi, then the smoothed function is (ignoring edge corrections)

g(u) =

∑
i k(u, xi)viwi∑
i k(u, xi)wi

Value

If X has a single column of marks:

• If at="pixels" (the default), the result is a pixel image on the network (object of class
"linim"). Pixel values are values of the interpolated function.

Smooth.lpp 259

• If at="points", the result is a numeric vector of length equal to the number of points in X.
Entries are values of the interpolated function at the points of X.

If X has a data frame of marks:

• If at="pixels" (the default), the result is a named list of pixel images on the network (objects
of class "linim"). There is one image for each column of marks. This list also belongs to the
class "solist", for which there is a plot method.

• If at="points", the result is a data frame with one row for each point of X, and one column
for each column of marks. Entries are values of the interpolated function at the points of X.

The return value has attribute "sigma" which reports the smoothing bandwidth that was used.

Very small bandwidth

If the chosen bandwidth sigma is very small, kernel smoothing is mathematically equivalent to
nearest-neighbour interpolation.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

References

Nadaraya, E.A. (1964) On estimating regression. Theory of Probability and its Applications 9,
141–142.

Nadaraya, E.A. (1989) Nonparametric estimation of probability densities and regression curves.
Kluwer, Dordrecht.

Watson, G.S. (1964) Smooth regression analysis. Sankhya A 26, 359–372.

See Also

Smooth, density.lpp.

Examples

X <- spiders
if(!interactive()) X <- X[owin(c(0,1100), c(0, 500))]
marks(X) <- coords(X)$x
plot(Smooth(X, 50))
Smooth(X, 50, at="points")

260 subset.lpp

subset.lpp Subset of Point Pattern Satisfying A Condition

Description

Given a point pattern on a linear network, return the subset of points which satisfy a specified
condition.

Usage

S3 method for class 'lpp'
subset(x, subset, select, drop=FALSE, ...)

Arguments

x A point pattern on a linear network (object of class "lpp").

subset Logical expression indicating which points are to be kept. The expression may
involve the names of spatial coordinates (x, y), network coordinates (seg, tp),
the marks, and (if there is more than one column of marks) the names of indi-
vidual columns of marks. Missing values are taken as false. See Details.

select Expression indicating which columns of marks should be kept. The names of
columns of marks can be used in this expression, and will be treated as if they
were column indices. See Details.

drop Logical value indicating whether to remove unused levels of the marks, if the
marks are a factor.

... Ignored.

Details

This is a method for the generic function subset. It extracts the subset of points of x that satisfy
the logical expression subset, and retains only the columns of marks that are specified by the
expression select. The result is always a point pattern, with the same window as x.

The argument subset determines the subset of points that will be extracted. It should be a logical
expression. It may involve the variable names x and y representing the Cartesian coordinates; the
names of other spatial coordinates or local coordinates; the name marks representing the marks;
and (if there is more than one column of marks) the names of individual columns of marks. The
default is to keep all points.

The argument select determines which columns of marks will be retained (if there are several
columns of marks). It should be an expression involving the names of columns of marks (which
will be interpreted as integers representing the positions of these columns). For example if there are
columns of marks named A to Z, then select=D:F is a valid expression and means that columns D,
E and F will be retained. Similarly select=-(A:C) is valid and means that columns A to C will be
deleted. The default is to retain all columns.

Setting subset=FALSE will produce an empty point pattern (i.e. containing zero points) in the same
window as x. Setting select=FALSE or select= -marks will remove all the marks from x.

superimpose.lpp 261

The argument drop determines whether to remove unused levels of a factor, if the resulting point
pattern is multitype (i.e. the marks are a factor) or if the marks are a data frame in which some of
the columns are factors.

The result is always a point pattern, of the same class as x. Spatial coordinates (and local coordi-
nates) are always retained. To extract only some columns of marks or coordinates as a data frame,
use subset(as.data.frame(x), ...)

Value

A point pattern of the same class as x, in the same spatial window as x. The result is a subset of x,
possibly with some columns of marks removed.

Other kinds of subset arguments

Alternatively the argument subset can be any kind of subset index acceptable to [.lpp. This
argument selects which points of x will be retained.

Warning: if the argument subset is a window, this is interpreted as specifying the subset of points
that fall inside that window, but the resulting point pattern has the same window as the original
pattern x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

subset.ppp, [.lpp.

Examples

v <- subset(chicago, x + y > 1100 & marks == "assault")

vv <- subset(chicago, x + y > 1100 & marks == "assault", drop=TRUE)

superimpose.lpp Superimpose Several Point Patterns on Linear Network

Description

Superimpose any number of point patterns on the same linear network.

Usage

S3 method for class 'lpp'
superimpose(..., L=NULL)

262 superimpose.lpp

Arguments

... Any number of arguments, each of which represents a point pattern on the same
linear network. Each argument can be either an object of class "lpp", giving
both the spatial coordinates of the points and the linear network, or a list(x,y)
or list(x,y,seg,tp) giving just the spatial coordinates of the points.

L Optional. The linear network. An object of class "linnet". This argument is
required if none of the other arguments is of class "lpp".

Details

This function is used to superimpose several point patterns on the same linear network. It is a
method for the generic function superimpose.

Each of the arguments ... can be either a point pattern on a linear network (object of class
"lpp" giving both the spatial coordinates of the points and the linear network), or a list(x,y)
or list(x,y,seg,tp) giving just the spatial coordinates of the points. These arguments must rep-
resent point patterns on the same linear network.

The argument L is an alternative way to specify the linear network, and is required if none of the
arguments ... is an object of class "lpp".

The arguments ... may be marked patterns. The marks of each component pattern must have
the same format. Numeric and character marks may be “mixed”. If there is such mixing then the
numeric marks are coerced to character in the combining process. If the mark structures are all data
frames, then these data frames must have the same number of columns and identical column names.

If the arguments ... are given in the form name=value, then the names will be used as an extra
column of marks attached to the elements of the corresponding patterns.

Value

An object of class "lpp" representing the combined point pattern on the linear network.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

Rolf Turner <rolfturner@posteo.net>

Ege Rubak <rubak@math.aau.dk>

and Greg McSwiggan.

See Also

superimpose

Examples

X <- rpoislpp(5, simplenet)
Y <- rpoislpp(10, simplenet)
superimpose(X,Y) # not marked
superimpose(A=X, B=Y) # multitype with types A and B

terminalvertices 263

terminalvertices Terminal Vertices of a Linear Network

Description

Finds the terminal vertices of a linear network.

Usage

terminalvertices(L)

Arguments

L A linear network (object of class "linnet").

Details

Given the linear network L, this function examines the vertices (segment endpoints) of the network
and determines which of them are ‘terminal’ vertices (i.e. the endpoint of only one segment). These
terminal vertices are returned as a point pattern on the network.

Value

A point pattern on the same linear network (object of class "lpp").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk> and Mehdi Moradi <m2.moradi@yahoo.com>.

See Also

vertices.linnet.

Examples

B <- terminalvertices(simplenet)
plot(simplenet, main="")
plot(B, add=TRUE, pch=16, cex=2)

264 text.lpp

text.lpp Add Text Labels to Point Pattern on a Network

Description

Plots a text label at the location of each point, for a point pattern on a linear network.

Usage

S3 method for class 'lpp'
text(x, ...)

Arguments

x A point pattern on a linear network (class "lpp").

... Additional arguments passed to text.default.

Details

This function is a method for the generic text. A text label is added to the existing plot, at the
location of each point in the point pattern x, or near the location of the midpoint of each segment in
the segment pattern x.

Additional arguments ... are passed to text.default and may be used to control the placement
of the labels relative to the point locations, and the size and colour of the labels.

By default, the labels are the serial numbers 1 to n, where n is the number of points or segments in
x. This can be changed by specifying the argument labels, which should be a vector of length n.

Value

Null.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

text.default, text.ppp

Examples

X <- runiflpp(5, simplenet)
plot(X)
text(X, pos=2, col="blue")

thinNetwork 265

thinNetwork Remove Vertices or Segments from a Linear Network

Description

Delete some vertices and/or segments from a linear network or related object.

Usage

thinNetwork(X, retainvertices=NULL, retainedges=NULL)

Arguments

X A linear network (object of class "linnet"), a point pattern on a linear network
(object of class "lpp") or a pixel image on a linear network (object of class
"linim").

retainvertices Optional. Subset index specifying which vertices should be retained (not deleted).

retainedges Optional. Subset index specifying which edges (segments) should be retained
(not deleted).

Details

This function deletes some of the vertices and edges (segments) in the linear network.

The arguments retainvertices and retainedges can be any kind of subset index: a vector of
positive integers specifying which vertices/edges should be retained; a vector of negative integers
specifying which vertices/edges should be deleted; or a logical vector specifying whether each
vertex/edge should be retained (TRUE) or deleted (FALSE).

Vertices are indexed in the same sequence as in vertices(as.linnet(X)). Segments are indexed
in the same sequence as in as.psp(as.linnet(X)).

The argument retainedges has higher precedence than retainvertices in the sense that:

• If retainedges is given, then any vertex which is an endpoint of a retained edge will also be
retained.

• If retainvertices is given and retainedges is missing, then any segment joining two re-
tained vertices will also be retained.

• Thus, when both retainvertices and retainedges are given, it is possible that more ver-
tices will be retained than those specified by retainvertices.

After the network has been altered, other consequential changes will occur, including renumbering
of the segments and vertices. If X is a point pattern on a linear network, then data points will be
deleted if they lie on a deleted edge. If X is a pixel image on a linear network, then the image will
be restricted to the new sub-network.

Value

An object of the same kind as X.

266 threads

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au> and Suman Rakshit.

See Also

linnet to make a network;

connected.linnet to extract connected components.

repairNetwork.

Examples

L <- simplenet
plot(L, main="thinNetwork(L, retainedges=c(-3, -5))")
text(midpoints.psp(as.psp(L)), labels=1:nsegments(L), pos=3)
Lsub <- thinNetwork(L, retainedges=c(-3, -5))
plot(Lsub, add=TRUE, col="blue", lwd=2)

threads Identify Uninterrupted Threads in a Linear Network

Description

Given a linear network, find the threads. A thread is a set of connected edges which do not pass
through any forks in the network.

Usage

threads(X, what = c("tessellation", "labels"))

Arguments

X A linear network (object of class "linnet").

what String (partially matched) specifying the kind of result.

Details

A ‘thread’ in a network is a subset of the edges of the network which does not pass through any
forks in the network.

Given a linear network X, this function identifies the threads in X and assigns a label to each edge
(segment) of the network indicating which thread it belongs to.

Formally a thread is a set of edges joining successive vertices v1, . . . , vn of the network such that

• there is an edge of the network joining vi and vi+1 for each i

• each of the intermediate vertices vertices v2, . . . , vn−1 has degree 2 (i.e. there are exactly 2
edges of the network which end at the vertex)

• the terminal vertices v1 and vn do not have degree 2, unless they are the same vertex.

tile.lengths 267

Every edge (segment) of the network belomgs to a unique thread. This algorithm assigns a label to
each edge indicating which thread it belongs to. If what="labels" (the default), the result is a factor
of length equal to nsegments(X) giving the classification of segments. If what="tessellation",
the result is a tessellation of X (object of class "lintess") in which the tiles of the tessellation are
the threads.

Value

A factor, or a tessellation on the network (object of class "lintess").

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>

See Also

connected.linnet

Examples

A <- edges(letterR)
B <- edges(disc(npoly=16, centre=centroid.owin(letterR)))
L <- as.linnet(superimpose(A,B))
plot(threads(L),

col=rainbow, scramble.cols=TRUE,
lwd=2, show.window=FALSE)

tile.lengths Compute Lengths of Tiles in a Tessellation on a Network

Description

Computes the length of each tile in a tessellation on a linear network.

Usage

tile.lengths(x)

Arguments

x A tessellation on a linear network (object of class "lintess").

Details

A tessellation on a linear network L is a partition of the network into non-overlapping pieces (tiles).
Each tile consists of one or more line segments which are subsets of the line segments making up
the network. A tile can consist of several disjoint pieces.

This command computes the length of each of the tiles that make up the tessellation x. The result
is a numeric vector.

268 tilenames.lintess

Value

A numeric vector.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

lintess

Examples

X <- runiflpp(5, simplenet)
A <- lineardirichlet(X)
plot(A)
tile.lengths(A)

tilenames.lintess Names of Tiles in a Tessellation on a Network

Description

Extract or Change the Names of the Tiles in a Tessellation on a Network.

Usage

S3 method for class 'lintess'
tilenames(x)

S3 replacement method for class 'lintess'
tilenames(x) <- value

Arguments

x A tessellation on a linear network (object of class "lintess").

value Character vector giving new names for the tiles.

Details

These functions extract or change the names of the tiles that make up the tessellation x.

If the tessellation is a regular grid, the tile names cannot be changed.

Value

tilenames returns a character vector.

treebranchlabels 269

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

lintess, tiles

Examples

B <- lineardirichlet(runiflpp(5, simplenet))
tilenames(B)
tilenames(B) <- letters[1:5]

treebranchlabels Label Vertices of a Tree by Branch Membership

Description

Given a linear network which is a tree (acyclic graph), this function assigns a label to each vertex,
indicating its position in the tree.

Usage

treebranchlabels(L, root = 1)

Arguments

L Linear network (object of class "linnet"). The network must have no loops.
root Root of the tree. An integer index identifying which point in vertices(L) is

the root of the tree.

Details

The network L should be a tree, that is, it must have no loops.

This function computes a character string label for each vertex of the network L. The vertex iden-
tified by root (that is, vertices(L)[root]) is taken as the root of the tree and is given the empty
label "".

• If there are several line segments which meet at the root vertex, each of these segments is the
start of a new branch of the tree; the other endpoints of these segments are assigned the labels
"a", "b", "c" and so on.

• If only one segment issues from the root vertex, the other endpoint of this segment is assigned
the empty label "".

A similar rule is then applied to each of the newly-labelled vertices. If the vertex labelled "a" is
joined to two other unlabelled vertices, these will be labelled "aa" and "ab". The rule is applied
recursively until all vertices have been labelled.

If L is not a tree, the algorithm will terminate, but the results will be nonsense.

270 treeprune

Value

A vector of character strings, with one entry for each point in vertices(L).

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

deletebranch, extractbranch, treeprune for manipulating a network using the branch labels.

linnet for creating a network.

Examples

make a simple tree
m <- simplenet$m
m[8,10] <- m[10,8] <- FALSE
L <- linnet(vertices(simplenet), m)
plot(L, main="")
compute branch labels
tb <- treebranchlabels(L, 1)
tbc <- paste0("[", tb, "]")
text(vertices(L), labels=tbc, cex=2)

treeprune Prune Tree to Given Level

Description

Prune a tree by removing all the branches above a given level.

Usage

treeprune(X, root = 1, level = 0)

Arguments

X Object of class "linnet" or "lpp".
root Index of the root vertex amongst the vertices of as.linnet(X).
level Integer specifying the level above which the tree should be pruned.

Details

The object X must be either a linear network, or a derived object such as a point pattern on a linear
network. The linear network must be an acyclic graph (i.e. must not contain any loops) so that it
can be interpreted as a tree.

This function removes all vertices for which treebranchlabels gives a string more than level
characters long.

unstack.lpp 271

Value

Object of the same kind as X.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>

See Also

treebranchlabels for calculating the branch labels.

deletebranch for removing entire branches. extractbranch for extracting entire branches.

linnet for creating networks.

Examples

make a simple tree
m <- simplenet$m
m[8,10] <- m[10,8] <- FALSE
L <- linnet(vertices(simplenet), m)
plot(L, main="")
compute branch labels
tb <- treebranchlabels(L, 1)
tbc <- paste0("[", tb, "]")
text(vertices(L), labels=tbc, cex=2)
prune tree
tp <- treeprune(L, root=1, 1)
plot(tp, add=TRUE, col="blue", lwd=3)

unstack.lpp Separate Multiple Columns of Marks

Description

Given a spatial pattern on a network, with several columns of marks, take one column at a time, and
return a list of spatial patterns each having only one column of marks.

Usage

S3 method for class 'lpp'
unstack(x, ...)

S3 method for class 'lintess'
unstack(x, ...)

272 Window.lpp

Arguments

x A spatial point pattern (object of class "lpp") or a tessellation on a linear net-
work (object of class "lintess").

... Ignored.

Details

The functions defined here are methods for the generic unstack. The functions expect a spatial
object x which has several columns of marks; they separate the columns, and return a list of spatial
objects, each having only one column of marks.

If x has several columns of marks (i.e. marks(x) is a matrix, data frame or hyperframe with several
columns), then y <- unstack(x) is a list of spatial objects, each of the same kind as x. The jth
entry y[[j]] is equivalent to x except that it only includes the jth column of marks(x).

If x has no marks, or has only a single column of marks, the result is a list consisting of one entry,
which is x.

Value

A list, of class "solist", whose entries are objects of the same type as x.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

unstack

unstack.ppp, unstack.msr.

See also methods for the generic split such as split.ppx which applies to "lpp" objects.

Examples

X <- runiflpp(5, simplenet)
marks(X) <- data.frame(id=1:5, code=factor(letters[1:5]))
unstack(X)

Window.lpp Extract Window of Spatial Object on a Network

Description

Given a spatial object on a network, these functions extract the window in which the network is
defined.

Window.lpp 273

Usage

S3 method for class 'lpp'
Window(X, ...)

S3 method for class 'lppm'
Window(X, ...)

Arguments

X A spatial object.

... Ignored.

Details

These are methods for the generic function Window which extract the spatial window in which the
object X is defined.

For the methods defined here, X should be a spatial object on a linear network (object of class "lpp"
or "lppm").

Value

An object of class "owin" (see owin.object) specifying an observation window.

Author(s)

Adrian Baddeley <Adrian.Baddeley@curtin.edu.au>, Rolf Turner <rolfturner@posteo.net>
and Ege Rubak <rubak@math.aau.dk>.

See Also

Window.

Examples

Window(spiders)

Index

∗ Adaptive smoothing
densityVoronoi.lpp, 74

∗ Bandwidth selection
bw.lppl, 38
bw.relrisk.lpp, 40
bw.voronoi, 43

∗ Dirichlet tessellation
lineardirichlet, 115

∗ Envelope of simulations
envelope.lpp, 88

∗ Geometrical transformations
affine.linnet, 16
affine.lpp, 17

∗ Goodness-of-fit
berman.test.lpp, 35
cdf.test.lpp, 44
envelope.lpp, 88

∗ Linear network
addVertices, 14
affine.linnet, 16
affine.lpp, 17
anova.lppm, 19
as.data.frame.lintess, 21
as.linfun, 22
as.linim, 24
as.linnet.linim, 26
as.linnet.psp, 27
as.lpp, 29
as.owin.lpp, 30
berman.test.lpp, 35
branchlabelfun, 37
bw.lppl, 38
bw.relrisk.lpp, 40
cdf.test.lpp, 44
chop.linnet, 48
clicklpp, 50
connected.linnet, 51
connected.lpp, 52
crossdist.lpp, 53

crossing.linnet, 55
cut.lpp, 56
data.lppm, 57
density.linnet, 61
density.lpp, 62
densityfun.lpp, 67
densityHeat.lpp, 69
densityQuick.lpp, 71
densityVoronoi.lpp, 74
diameter.linnet, 81
distfun.lpp, 82
distmap.lpp, 83
divide.linnet, 84
domain.lpp, 85
envelope.lpp, 88
eval.linim, 92
Extract.linim, 93
Extract.linnet, 94
Extract.lpp, 96
fitted.lppm, 97
identify.lpp, 103
integral.linim, 105
intensity.lpp, 107
intersect.lintess, 108
is.connected.linnet, 109
is.marked.lppm, 110
is.multitype.lpp, 111
is.multitype.lppm, 112
is.stationary.lppm, 113
lineardirichlet, 115
lineardisc, 116
linearJinhom, 118
linearK, 120
linearKcross, 122
linearKcross.inhom, 123
linearKdot, 125
linearKdot.inhom, 126
linearKEuclid, 128
linearKEuclidInhom, 129

274

INDEX 275

linearKinhom, 131
linearmarkconnect, 134
linearmarkequal, 135
linearpcf, 137
linearpcfcross, 138
linearpcfcross.inhom, 140
linearpcfdot, 142
linearpcfdot.inhom, 143
linearpcfEuclid, 145
linearpcfEuclidInhom, 146
linearpcfinhom, 148
lineartileindex, 151
linequad, 152
linfun, 153
linim, 154
linnet, 157
lintess, 159
lpp, 162
lppm, 163
lurking.lppm, 166
marks.linnet, 170
marks.lintess, 171
Math.linim, 173
mean.linim, 174
methods.linfun, 176
methods.linim, 177
methods.linnet, 179
methods.lpp, 182
methods.lppm, 183
model.frame.lppm, 186
model.images.lppm, 187
model.matrix.lppm, 188
nncross.lpp, 189
nndist.lpp, 192
nnfun.lpp, 194
nnwhich.lpp, 195
pairdist.lpp, 197
pairs.linim, 198
persp.linfun, 202
persp.linim, 203
plot.linim, 205
plot.linnet, 208
plot.lintess, 209
plot.lpp, 211
plot.lppm, 213
points.lpp, 214
predict.lppm, 215
pseudoR2.lppm, 217

rcelllpp, 228
relrisk.lpp, 229
Replace.linim, 233
rhohat.lpp, 236
rjitter.lpp, 243
rlpp, 244
roc.lpp, 246
rpoislpp, 248
rSwitzerlpp, 249
rThomaslpp, 251
runiflpp, 252
sdr.lpp, 253
shortestpath, 255
simulate.lppm, 256
Smooth.lpp, 257
spatstat.linnet-package, 6
subset.lpp, 260
superimpose.lpp, 261
text.lpp, 264
threads, 266
tilenames.lintess, 268
unstack.lpp, 271
Window.lpp, 272

∗ Model diagnostics
parres.lppm, 199

∗ Model selection
anova.lppm, 19

∗ Prospectivity
rhohat.lpp, 236

∗ Resource Selection Function
rhohat.lpp, 236

∗ Tessellation
as.data.frame.lintess, 21
divide.linnet, 84
intersect.lintess, 108
lineartileindex, 151
lintess, 159
marks.lintess, 171
plot.lintess, 209
tilenames.lintess, 268

∗ Test of clustering
quadrat.test.lpp, 222

∗ Test of randomness
envelope.lpp, 88
quadrat.test.lpp, 222

∗ character
begins, 34

∗ datagen

276 INDEX

clickjoin, 49
linequad, 152
lintess, 159
rcelllpp, 228
rjitter.lpp, 243
rlpp, 244
rpoislpp, 248
rSwitzerlpp, 249
rThomaslpp, 251
runiflpp, 252

∗ graphs
terminalvertices, 263

∗ hplot
diagnose.lppm, 75
lurking.lppm, 166
pairs.linim, 198
persp.linfun, 202
persp.linim, 203
plot.lintess, 209
plot.lpp, 211
points.lpp, 214
qqplot.lppm, 218
text.lpp, 264

∗ htest
berman.test.lpp, 35
cdf.test.lpp, 44
quadrat.test.lpp, 222

∗ iplot
clicklpp, 50
identify.linnet, 101
identify.lintess, 102
identify.lpp, 103

∗ manip
addVertices, 14
as.linfun, 22
as.linim, 24
as.linnet.linim, 26
as.linnet.psp, 27
as.owin.lpp, 30
chop.linnet, 48
connected.linnet, 51
connected.lpp, 52
crossing.linnet, 55
data.lppm, 57
delaunayNetwork, 58
deletebranch, 59
divide.linnet, 84
domain.lpp, 85

eval.linim, 92
Extract.linim, 93
Extract.linnet, 94
Extract.lpp, 96
harmonise.linim, 99
insertVertices, 104
intersect.lintess, 108
is.marked.lppm, 110
is.multitype.lpp, 111
is.multitype.lppm, 112
joinVertices, 114
lineardirichlet, 115
lineartileindex, 151
linim.apply, 156
lixellate, 160
marks.linnet, 170
marks.lintess, 171
repairNetwork, 232
Replace.linim, 233
subset.lpp, 260
superimpose.lpp, 261
thinNetwork, 265
threads, 266
tile.lengths, 267
tilenames.lintess, 268
treeprune, 270
unstack.lpp, 271
Window.lpp, 272

∗ math
affine.linnet, 16
affine.lpp, 17
as.lpp, 29
branchlabelfun, 37
crossdist.lpp, 53
diameter.linnet, 81
distfun.lpp, 82
distmap.lpp, 83
heatkernelapprox, 100
integral.linim, 105
is.connected.linnet, 109
linfun, 153
methods.linfun, 176
methods.linim, 177
nncross.lpp, 189
nnfromvertex, 193
nnfun.lpp, 194
pairdist.lpp, 197
quadratcount, 225

INDEX 277

shortestpath, 255
treebranchlabels, 269

∗ methods
anova.lppm, 19
as.data.frame.lintess, 21
bw.lppl, 38
bw.relrisk.lpp, 40
bw.voronoi, 43
cut.lpp, 56
density.linnet, 61
density.lpp, 62
densityEqualSplit, 64
densityHeat.lpp, 69
densityVoronoi.lpp, 74
fitted.lppm, 97
Math.linim, 173
mean.linim, 174
methods.linnet, 179
methods.lpp, 182
relrisk.lpp, 229
residuals.lppm, 234
Smooth.lpp, 257

∗ models
anova.lppm, 19
data.lppm, 57
diagnose.lppm, 75
eem.lppm, 86
fitted.lppm, 97
is.marked.lppm, 110
is.multitype.lppm, 112
is.stationary.lppm, 113
lppm, 163
lurking.lppm, 166
methods.lppm, 183
model.frame.lppm, 186
model.images.lppm, 187
model.matrix.lppm, 188
parres.lppm, 199
plot.lppm, 213
predict.lppm, 215
pseudoR2.lppm, 217
qqplot.lppm, 218
residuals.lppm, 234
rhohat.lpp, 236
simulate.lppm, 256

∗ multivariate
sdr.lpp, 253

∗ nonparametric

densityfun.lpp, 67
densityQuick.lpp, 71
intensity.lpp, 107
linearJinhom, 118
linearK, 120
linearKcross, 122
linearKcross.inhom, 123
linearKdot, 125
linearKdot.inhom, 126
linearKEuclid, 128
linearKEuclidInhom, 129
linearKinhom, 131
linearmarkconnect, 134
linearmarkequal, 135
linearpcf, 137
linearpcfcross, 138
linearpcfcross.inhom, 140
linearpcfdot, 142
linearpcfdot.inhom, 143
linearpcfEuclid, 145
linearpcfEuclidInhom, 146
linearpcfinhom, 148
rhohat.lpp, 236

∗ package
spatstat.linnet-package, 6

∗ programming
eval.linim, 92
linim.apply, 156

∗ smooth
bw.lppl, 38
bw.relrisk.lpp, 40
bw.voronoi, 43
density.linnet, 61
density.lpp, 62
densityEqualSplit, 64
densityHeat.lpp, 69
densityVoronoi.lpp, 74
relrisk.lpp, 229
Smooth.lpp, 257

∗ spatial
addVertices, 14
affine.linnet, 16
affine.lpp, 17
anova.lppm, 19
as.data.frame.lintess, 21
as.linfun, 22
as.linim, 24
as.linnet.linim, 26

278 INDEX

as.linnet.psp, 27
as.lpp, 29
as.owin.lpp, 30
auc.lpp, 32
berman.test.lpp, 35
branchlabelfun, 37
bw.lppl, 38
bw.relrisk.lpp, 40
bw.voronoi, 43
cdf.test.lpp, 44
chop.linnet, 48
clickjoin, 49
clicklpp, 50
connected.linnet, 51
connected.lpp, 52
crossdist.lpp, 53
crossing.linnet, 55
cut.lpp, 56
data.lppm, 57
delaunayNetwork, 58
deletebranch, 59
density.linnet, 61
density.lpp, 62
densityEqualSplit, 64
densityfun.lpp, 67
densityHeat.lpp, 69
densityQuick.lpp, 71
densityVoronoi.lpp, 74
diagnose.lppm, 75
diameter.linnet, 81
distfun.lpp, 82
distmap.lpp, 83
divide.linnet, 84
domain.lpp, 85
eem.lppm, 86
envelope.lpp, 88
eval.linim, 92
Extract.linim, 93
Extract.linnet, 94
Extract.lpp, 96
fitted.lppm, 97
harmonise.linim, 99
identify.linnet, 101
identify.lintess, 102
identify.lpp, 103
insertVertices, 104
integral.linim, 105
intensity.lpp, 107

intersect.lintess, 108
is.connected.linnet, 109
is.marked.lppm, 110
is.multitype.lpp, 111
is.multitype.lppm, 112
is.stationary.lppm, 113
joinVertices, 114
lineardirichlet, 115
lineardisc, 116
linearJinhom, 118
linearK, 120
linearKcross, 122
linearKcross.inhom, 123
linearKdot, 125
linearKdot.inhom, 126
linearKEuclid, 128
linearKEuclidInhom, 129
linearKinhom, 131
linearmarkconnect, 134
linearmarkequal, 135
linearpcf, 137
linearpcfcross, 138
linearpcfcross.inhom, 140
linearpcfdot, 142
linearpcfdot.inhom, 143
linearpcfEuclid, 145
linearpcfEuclidInhom, 146
linearpcfinhom, 148
lineartileindex, 151
linequad, 152
linfun, 153
linim, 154
linim.apply, 156
linnet, 157
lintess, 159
lixellate, 160
lpp, 162
lppm, 163
lurking.lppm, 166
marks.linnet, 170
marks.lintess, 171
Math.linim, 173
mean.linim, 174
methods.linfun, 176
methods.linim, 177
methods.linnet, 179
methods.lpp, 182
methods.lppm, 183

INDEX 279

model.frame.lppm, 186
model.images.lppm, 187
model.matrix.lppm, 188
nncross.lpp, 189
nndist.lpp, 192
nnfromvertex, 193
nnfun.lpp, 194
nnwhich.lpp, 195
pairdist.lpp, 197
pairs.linim, 198
parres.lppm, 199
persp.linfun, 202
persp.linim, 203
plot.linim, 205
plot.linnet, 208
plot.lintess, 209
plot.lpp, 211
plot.lppm, 213
points.lpp, 214
predict.lppm, 215
pseudoR2.lppm, 217
qqplot.lppm, 218
quadrat.test.lpp, 222
quadratcount, 225
rcelllpp, 228
relrisk.lpp, 229
repairNetwork, 232
Replace.linim, 233
residuals.lppm, 234
rhohat.lpp, 236
rjitter.lpp, 243
rlpp, 244
roc.lpp, 246
rpoislpp, 248
rSwitzerlpp, 249
rThomaslpp, 251
runiflpp, 252
sdr.lpp, 253
shortestpath, 255
simulate.lppm, 256
Smooth.lpp, 257
spatstat.linnet-package, 6
subset.lpp, 260
superimpose.lpp, 261
terminalvertices, 263
text.lpp, 264
thinNetwork, 265
threads, 266

tile.lengths, 267
tilenames.lintess, 268
treebranchlabels, 269
treeprune, 270
unstack.lpp, 271
Window.lpp, 272

∗ univar
mean.linim, 174

[, 96
[.linim, 10
[.linim (Extract.linim), 93
[.linnet, 7
[.linnet (Extract.linnet), 94
[.lpp, 9, 57, 261
[.lpp (Extract.lpp), 96
[<-.linim, 10
[<-.linim (Replace.linim), 233

ad.test, 45–47
addvar, 202
addVertices, 8, 14, 105
affine, 17–19, 178
affine.linim, 10
affine.linim (methods.linim), 177
affine.linnet, 8, 16
affine.lpp, 9, 17
anova, 19
anova.glm, 19
anova.lppm, 13, 19
as.data.frame, 177, 178
as.data.frame.default, 21
as.data.frame.linfun, 11
as.data.frame.linfun (methods.linfun),

176
as.data.frame.linim, 10
as.data.frame.linim (methods.linim), 177
as.data.frame.lintess, 11, 21
as.function, 23, 177
as.function.linfun, 11
as.function.linfun (methods.linfun), 176
as.function.linim (as.linfun), 22
as.function.linnet (as.linfun), 22
as.function.lintess (as.linfun), 22
as.im, 25, 26, 178
as.im.linim (methods.linim), 177
as.linfun, 11, 22
as.linfun.lintess, 12, 151, 160
as.linim, 10, 24, 82, 99, 106, 154, 160, 176,

195, 202

280 INDEX

as.linim.linfun, 83, 177
as.linnet, 7, 17, 26, 48, 117, 185
as.linnet (methods.linnet), 179
as.linnet.linfun (as.linnet.linim), 26
as.linnet.linim, 10, 26
as.linnet.lintess, 160
as.linnet.lintess (as.linnet.linim), 26
as.linnet.lpp (as.linnet.linim), 26
as.linnet.lppm (methods.lppm), 183
as.linnet.psp, 27, 58, 59
as.lintess, 227
as.lpp, 9, 15, 29, 93, 104, 105, 163
as.mask, 25, 32, 35, 65, 66, 69, 71, 72, 215,

246
as.owin, 31, 177, 181
as.owin.linfun, 11
as.owin.linfun (methods.linfun), 176
as.owin.linnet, 8
as.owin.linnet (methods.linnet), 179
as.owin.lpp, 9, 30
as.owin.lppm (as.owin.lpp), 30
as.ppp, 162, 183, 233
as.ppp.lpp, 9
as.ppp.lpp (methods.lpp), 182
as.psp, 181, 183
as.psp.linnet, 8, 181
as.psp.linnet (methods.linnet), 179
as.psp.lpp, 9
as.psp.lpp (methods.lpp), 182
auc, 32, 33, 247, 248
auc.lpp, 12, 32
auc.lppm (auc.lpp), 32
auc.ppm, 33
axis, 206

begins, 8, 34
berman.test, 35, 47
berman.test.lpp, 12, 35
berman.test.lppm, 13
berman.test.lppm (berman.test.lpp), 35
boundingradius, 81
boundingradius.linnet

(diameter.linnet), 81
branchlabelfun, 8, 37, 60
bw.lppl, 12, 38, 62, 65, 69, 72, 73, 119, 120
bw.optim.object, 39, 40, 42–44
bw.ppl, 40
bw.relrisk, 41, 42
bw.relrisk.lpp, 12, 40, 231

bw.scott, 40, 73
bw.scott.iso, 41, 42, 62, 65, 69, 72, 73, 119,

120, 231
bw.voronoi, 12, 43, 75

cdf.test, 37, 45
cdf.test.lpp, 12, 44
cdf.test.lppm (cdf.test.lpp), 44
chicago, 9, 110–112, 163
chisq.test, 225
chop.linnet, 11, 48, 108, 160
clickbox, 51
clickdist, 51
clickjoin, 7, 49
clicklpp, 9, 50, 104
clickpoly, 51
clickppp, 49, 51
coef, 185
coef.lppm (methods.lppm), 183
compileK, 121
Complex.linim (Math.linim), 173
connected, 109
connected.linnet, 51, 52, 109, 158, 181,

266, 267
connected.lpp, 10, 52, 109
countends (lineardisc), 116
crossdist, 54
crossdist.lpp, 13, 53
crossdist.ppp, 54
crossing.linnet, 9, 48, 55
crossing.psp, 55
cut, 57
cut.default, 56
cut.lpp, 10, 56, 151
cvm.test, 45–47

data.lppm, 13, 57
data.ppm, 58
default.image.colours, 207
delaunay, 59
delaunayDistance, 59
delaunayNetwork, 7, 58, 158
deletebranch, 8, 59, 270, 271
dendrite, 9, 163
density, 61, 62
density.default, 137, 139–142, 144, 147,

149, 150, 200, 201, 238, 240
density.linnet, 8, 61

INDEX 281

density.lpp, 12, 13, 39–42, 62, 66–68,
71–75, 77, 124, 127, 130, 132, 140,
141, 144, 147, 149, 229, 231, 258,
259

density.psp, 61, 62
density.splitppx (density.lpp), 62
densityEqualSplit, 12, 62, 63, 64
densityfun, 67
densityfun.lpp, 12, 67
densityHeat, 70
densityHeat.lpp, 12, 62–64, 69
densityQuick.lpp, 12, 62–64, 71, 119, 120
densityVoronoi, 74, 75
densityVoronoi.lpp, 12, 43, 44, 64, 74, 120
deviance, 185
deviance.lppm, 217, 218
deviance.lppm (methods.lppm), 183
dfbetas.ppm, 98
diagnose.lppm, 75, 87, 169, 218–221
diagnose.ppm, 87, 168
diameter, 81
diameter.linnet, 8, 81
dilation.owin, 207
dimhat, 255
dirichlet, 59, 116
dirichletNetwork, 7
dirichletNetwork (delaunayNetwork), 58
distfun, 82
distfun.lpp, 10, 13, 82, 154, 163, 195
distmap, 83, 84
distmap.lpp, 10, 83
divide.linnet, 11, 48, 84, 108, 160
dkernel, 63, 65
domain, 86
domain.linfun (domain.lpp), 85
domain.lintess (domain.lpp), 85
domain.lpp, 10, 85
domain.lppm (domain.lpp), 85
domain.ppm, 86
domain.rmhmodel, 86

eem, 87, 235
eem.lppm, 77, 79, 80, 86
emend, 185
emend.lppm (methods.lppm), 183
envelope, 90, 91
envelope.lpp, 13, 88, 220
envelope.lppm, 13, 76, 220
envelope.lppm (envelope.lpp), 88

eval.im, 93
eval.linim, 10, 92, 156, 157, 173, 174
ewcdf, 46
Extract.linim, 93
Extract.linnet, 94
Extract.lpp, 96
extractAIC, 185
extractAIC.lppm (methods.lppm), 183
extractbranch, 8, 270, 271
extractbranch (deletebranch), 59

fitted, 98
fitted.lppm, 13, 97, 131, 133, 147, 150
fitted.ppm, 131, 133, 147, 150
flipxy, 17–19
flipxy.linnet (affine.linnet), 16
flipxy.lpp (affine.lpp), 17
formula, 185
formula.lppm (methods.lppm), 183
Frame, 86
fv.object, 122, 124, 126, 127, 135, 136, 139,

141, 142, 144

harmonise, 99
harmonise.im, 99
harmonise.linim, 99, 156
harmonize.linim (harmonise.linim), 99
heatkernelapprox, 100
hotrod, 101
hyperframe, 188

identify, 101–104
identify.default, 101–103
identify.linnet, 101
identify.lintess, 102, 160
identify.lpp, 10, 51, 103
identify.ppp, 49, 104
identify.psp, 101, 102
im, 156
im.object, 62, 165
image.default, 206
insertVertices, 7, 15, 104, 158, 181
integral.im, 107
integral.linfun (integral.linim), 105
integral.linim, 10, 25, 105
integral.msr, 235
integrate, 106, 107
intensity, 107, 108
intensity.linearquadratcount, 227

282 INDEX

intensity.lpp, 107, 163, 183
intensity.ppp, 108
interp.im, 238
intersect.lintess, 11, 108
is.connected, 109
is.connected.linnet, 8, 109
is.marked, 110, 114
is.marked.lppm, 13, 110
is.multitype, 111–113
is.multitype.lpp, 10, 111, 113
is.multitype.lppm, 14, 112, 112
is.poisson, 113, 114
is.poisson.lppm (is.stationary.lppm),

113
is.stationary, 113, 114
is.stationary.lppm, 14, 113

Jinhom, 120
jitter, 238, 242
joinVertices, 7, 15, 105, 114, 158, 181

Kcross, 122
Kcross.inhom, 124
Kdot, 125, 126
Kdot.inhom, 127
ks.test, 45–47

lineardirichlet, 11, 43, 74, 75, 115, 160
lineardisc, 8, 116
lineardisclength (lineardisc), 116
linearJinhom, 12, 118
linearK, 12, 91, 120, 123, 124, 126, 128, 129,

133, 138, 163
linearKcross, 13, 122, 126, 163
linearKcross.inhom, 13, 123
linearKdot, 13, 123, 124, 125, 128, 163
linearKdot.inhom, 13, 126
linearKEuclid, 12, 128, 131, 146
linearKEuclidInhom, 13, 129, 129, 131, 148
linearKinhom, 12, 120, 130, 131, 131, 133,

149, 150, 163
linearmarkconnect, 13, 134, 136, 163
linearmarkequal, 13, 135, 135
linearpcf, 12, 134–136, 137, 139, 141, 143,

145, 146, 150, 163
linearpcfcross, 13, 134–136, 138, 143
linearpcfcross.inhom, 13, 140, 145
linearpcfdot, 13, 139, 141, 142, 145
linearpcfdot.inhom, 13, 143

linearpcfEuclid, 13, 129, 145, 148
linearpcfEuclidInhom, 13, 131, 146, 146,

148
linearpcfinhom, 12, 138, 147, 148, 148, 150
lineartileindex, 11, 151, 160
linequad, 152
lines, 167
linfun, 11, 23, 38, 56, 57, 83, 153, 177, 195
linim, 10, 25, 57, 64, 74, 93, 94, 107, 154,

165, 173, 175, 207, 217
linim.apply, 156
linnet, 7, 15, 17, 26–29, 49, 54, 60, 81, 85,

105, 115, 117, 118, 156, 157, 160,
161, 163, 171, 180, 181, 197, 209,
248, 249, 252, 253, 266, 270, 271

lintess, 11, 22, 56, 57, 85, 108, 116, 151,
159, 172, 210, 225, 227, 268, 269

lixellate, 158, 160, 181
locator, 50, 51
locfit, 238, 240
logLik, 185
logLik.lppm (methods.lppm), 183
lpp, 9, 19, 29, 30, 57, 64, 97, 121, 133, 138,

150, 161, 162, 164, 165, 183, 193,
196, 198, 212, 217, 249, 253

lppm, 13, 19, 20, 37, 47, 58, 76, 77, 80, 87, 98,
110, 112, 114, 152, 153, 163,
167–169, 185–189, 213, 215, 216,
219, 221, 235, 236, 243, 257

lurking, 169
lurking.lpp (lurking.lppm), 166
lurking.lppm, 80, 166, 221

markconnect, 134–136
marks, 170–172
marks.linnet, 8, 170
marks.lintess, 11, 171
marks.ppx, 9
marks<-.linnet, 8
marks<-.lintess, 11
marks<-.ppx, 9
marks<-.linnet (marks.linnet), 170
marks<-.lintess (marks.lintess), 171
marks<-.lpp (methods.lpp), 182
Math.linim, 10, 156, 173
mean, 175
mean.im, 175
mean.linim, 10, 174
median, 175

INDEX 283

median.linim, 10
median.linim (mean.linim), 174
methods.linfun, 68, 83, 154, 176, 195
methods.linim, 177
methods.linnet, 15, 27, 28, 105, 115, 158,

179
methods.lpp, 163, 182
methods.lppm, 165, 183, 213
methods.ppx, 163, 183
methods.rhohat, 243
model.frame, 186
model.frame.glm, 186
model.frame.lppm, 14, 186
model.images.lppm, 14, 187, 189
model.matrix, 188, 189
model.matrix.lm, 187, 188
model.matrix.lppm, 14, 187, 188
model.matrix.ppm, 186, 188
mppm, 79
msr, 79, 236

nearestValue, 207
nncross.lpp, 10, 13, 163, 189
nndist, 54
nndist.lpp, 10, 13, 163, 191, 192, 194
nnfromvertex, 10, 193
nnfun, 195
nnfun.lpp, 10, 13, 83, 154, 163, 194
nnwhich.lpp, 10, 13, 163, 191, 195
nobs, 185
nobs.lppm (methods.lppm), 183
nsegments, 181, 183
nsegments.linnet, 8
nsegments.linnet (methods.linnet), 179
nsegments.lpp, 9
nsegments.lpp (methods.lpp), 182
nvertices, 181
nvertices.linnet, 8
nvertices.linnet (methods.linnet), 179

Ops.linim (Math.linim), 173
owin, 31
owin.object, 31, 273

pairdist, 54
pairdist.lpp, 10, 13, 197, 256
pairs, 198
pairs.default, 198, 199
pairs.im, 199

pairs.linim, 11, 198
par, 50
parres, 200, 243
parres.lppm, 199
pcfcross, 139
pcfcross.inhom, 141
pcfdot, 142, 143
pcfdot.inhom, 144, 145
persp.default, 203, 204
persp.linfun, 11, 202, 205
persp.linim, 11, 202, 203, 203
pixellate, 181
pixellate.linnet, 8
pixellate.linnet (methods.linnet), 179
pixellate.psp, 181
plot, 177
plot.bermantest, 36
plot.cdftest, 46, 47
plot.colourmap, 210
plot.default, 77, 167
plot.diaglppm (diagnose.lppm), 75
plot.im, 176, 206, 207, 209, 210
plot.linfun, 11
plot.linfun (methods.linfun), 176
plot.linim, 11, 101, 156, 176, 177, 205, 213
plot.linnet, 8, 101, 102, 208, 211, 212
plot.lintess, 11, 102, 103, 160, 209
plot.lpp, 10, 101, 103, 211, 214, 215
plot.lppm, 14, 185, 213
plot.msr, 235
plot.ppp, 208, 209, 211, 212, 214
plot.psp, 102, 103, 208, 209
plot.symbolmap, 212
points, 211, 214
points.default, 214, 215
points.lpp, 10, 212, 214
polygon, 203, 204, 206, 207
ppm, 37, 98, 164, 165, 200
ppp, 158
predict, 216
predict.lppm, 13, 98, 165, 213, 215, 256
print, 177, 178, 181, 183, 185
print.default, 176
print.linfun, 11
print.linfun (methods.linfun), 176
print.linim, 10
print.linim (methods.linim), 177
print.linnet, 8

284 INDEX

print.linnet (methods.linnet), 179
print.lpp, 9
print.lpp (methods.lpp), 182
print.lppm (methods.lppm), 183
print.summary.linim, 179
print.summary.lpp (methods.lpp), 182
pseudoR2, 217, 218
pseudoR2.lppm, 14, 217
psp, 158

qqplot.lppm, 218
quad.ppm, 186
quadrat.test, 37, 47, 223, 225
quadrat.test.linearquadratcount

(quadrat.test.lpp), 222
quadrat.test.lpp, 222
quadrat.test.lppm (quadrat.test.lpp),

222
quadratcount, 223, 225, 226
quadratcount.lpp, 225
quantile, 175
quantile.default, 175
quantile.im, 175
quantile.linim, 10
quantile.linim (mean.linim), 174
quantilefun, 175
quantilefun.linim (mean.linim), 174

rcelllpp, 9, 228, 250
rcellnumber, 228
relrisk, 230, 231
relrisk.lpp, 12, 41, 42, 229
repairNetwork, 8, 232, 266
Replace.linim, 233
rescale, 17–19
rescale.linnet, 8
rescale.linnet (affine.linnet), 16
rescale.lpp, 9
rescale.lpp (affine.lpp), 17
residuals.lppm, 78–80, 87, 219, 221, 234
residuals.ppm, 236
response, 185
response.lppm, 87
response.lppm (methods.lppm), 183
rho2hat, 202, 243
rhohat, 202
rhohat.lpp, 12, 152, 236
rhohat.lppm (rhohat.lpp), 236
rjitter, 244

rjitter.lpp, 9, 243
rlpp, 9, 244, 249, 253
roc, 32, 33, 247
roc.lpp, 12, 246
roc.lppm (roc.lpp), 246
rotate, 17–19
rotate.linnet, 8
rotate.linnet (affine.linnet), 16
rotate.lpp, 9
rotate.lpp (affine.lpp), 17
rpoislpp, 9, 13, 163, 248, 252, 253, 257
rpoisppOnLines, 248, 249, 251
rSwitzerlpp, 9, 229, 249
rThomaslpp, 9, 251
runiflpp, 9, 13, 163, 245, 249, 252
runifpointOnLines, 252

scalardilate, 17–19, 178
scalardilate.linim, 10
scalardilate.linim (methods.linim), 177
scalardilate.linnet, 8
scalardilate.linnet (affine.linnet), 16
scalardilate.lpp, 10
scalardilate.lpp (affine.lpp), 17
sdr, 254
sdr.lpp, 12, 253
sdrPredict, 254, 255
segments, 49, 203, 209, 210
selfcut.psp, 28
shift, 17–19, 178
shift.linim, 11
shift.linim (methods.linim), 177
shift.linnet, 8
shift.linnet (affine.linnet), 16
shift.lpp, 9
shift.lpp (affine.lpp), 17
shortestpath, 255
simplenet, 7, 158
simulate, 257
simulate.lppm, 14, 219, 256
Smooth, 258, 259
Smooth.lpp, 12, 257
smooth.spline, 77
spatstat.linnet

(spatstat.linnet-package), 6
spatstat.linnet-package, 6
spatstat.options, 71, 188
spiders, 9, 163
split, 272

INDEX 285

split.ppx, 227, 272
subfits, 79
subset, 260
subset.lpp, 9, 57, 97, 260
subset.ppp, 261
subspaceDistance, 255
summary, 177, 178, 181, 183, 185
summary.linfun, 11
summary.linfun (methods.linfun), 176
Summary.linim (Math.linim), 173
summary.linim, 10
summary.linim (methods.linim), 177
summary.linnet, 8
summary.linnet (methods.linnet), 179
summary.lpp, 9
summary.lpp (methods.lpp), 182
summary.lppm, 114
summary.lppm (methods.lppm), 183
superimpose, 262
superimpose.lpp, 10, 261
symbolmap, 212

terminalvertices, 8, 263
terms, 185
terms.lppm (methods.lppm), 183
text, 264
text.default, 206, 264
text.lpp, 10, 212, 264
text.ppp, 264
thinNetwork, 8, 15, 52, 53, 94, 105, 115, 158,

181, 233, 265
threads, 266
tile.lengths, 11, 160, 267
tileindex, 151
tilenames.lintess, 11, 268
tilenames<-.lintess

(tilenames.lintess), 268
tiles, 269
treebranchlabels, 8, 38, 60, 269, 270, 271
treeprune, 8, 270, 270

unitname, 82, 84, 180, 181, 183, 193, 197
unitname.linnet, 8
unitname.linnet (methods.linnet), 179
unitname.lpp, 9
unitname.lpp (methods.lpp), 182
unitname<-.linnet, 8
unitname<-.lpp, 9
unitname<-.linnet (methods.linnet), 179

unitname<-.lpp (methods.lpp), 182
unmark, 97, 170, 172, 183
unmark.linnet (marks.linnet), 170
unmark.lintess (marks.lintess), 171
unmark.lpp, 9
unmark.lpp (methods.lpp), 182
unstack, 272
unstack.lintess (unstack.lpp), 271
unstack.lpp, 10, 271
unstack.msr, 272
unstack.ppp, 272
update, 185
update.lppm, 130, 132, 147, 149, 220
update.lppm (methods.lppm), 183
update.ppm, 130, 132, 147, 149

valid, 185
valid.lppm (methods.lppm), 183
vcov, 185
vcov.lppm (methods.lppm), 183
vertexdegree, 8
vertexdegree (methods.linnet), 179
vertices, 181
vertices.linnet, 8, 263
vertices.linnet (methods.linnet), 179
volume, 181
volume.linnet, 8
volume.linnet (methods.linnet), 179

Window, 86, 181, 273
Window.linnet, 8
Window.linnet (methods.linnet), 179
Window.lpp, 9, 272
Window.lppm (Window.lpp), 272

xy.coords, 29, 30

youden, 33

	spatstat.linnet-package
	addVertices
	affine.linnet
	affine.lpp
	anova.lppm
	as.data.frame.lintess
	as.linfun
	as.linim
	as.linnet.linim
	as.linnet.psp
	as.lpp
	as.owin.lpp
	auc.lpp
	begins
	berman.test.lpp
	branchlabelfun
	bw.lppl
	bw.relrisk.lpp
	bw.voronoi
	cdf.test.lpp
	chop.linnet
	clickjoin
	clicklpp
	connected.linnet
	connected.lpp
	crossdist.lpp
	crossing.linnet
	cut.lpp
	data.lppm
	delaunayNetwork
	deletebranch
	density.linnet
	density.lpp
	densityEqualSplit
	densityfun.lpp
	densityHeat.lpp
	densityQuick.lpp
	densityVoronoi.lpp
	diagnose.lppm
	diameter.linnet
	distfun.lpp
	distmap.lpp
	divide.linnet
	domain.lpp
	eem.lppm
	envelope.lpp
	eval.linim
	Extract.linim
	Extract.linnet
	Extract.lpp
	fitted.lppm
	harmonise.linim
	heatkernelapprox
	identify.linnet
	identify.lintess
	identify.lpp
	insertVertices
	integral.linim
	intensity.lpp
	intersect.lintess
	is.connected.linnet
	is.marked.lppm
	is.multitype.lpp
	is.multitype.lppm
	is.stationary.lppm
	joinVertices
	lineardirichlet
	lineardisc
	linearJinhom
	linearK
	linearKcross
	linearKcross.inhom
	linearKdot
	linearKdot.inhom
	linearKEuclid
	linearKEuclidInhom
	linearKinhom
	linearmarkconnect
	linearmarkequal
	linearpcf
	linearpcfcross
	linearpcfcross.inhom
	linearpcfdot
	linearpcfdot.inhom
	linearpcfEuclid
	linearpcfEuclidInhom
	linearpcfinhom
	lineartileindex
	linequad
	linfun
	linim
	linim.apply
	linnet
	lintess
	lixellate
	lpp
	lppm
	lurking.lppm
	marks.linnet
	marks.lintess
	Math.linim
	mean.linim
	methods.linfun
	methods.linim
	methods.linnet
	methods.lpp
	methods.lppm
	model.frame.lppm
	model.images.lppm
	model.matrix.lppm
	nncross.lpp
	nndist.lpp
	nnfromvertex
	nnfun.lpp
	nnwhich.lpp
	pairdist.lpp
	pairs.linim
	parres.lppm
	persp.linfun
	persp.linim
	plot.linim
	plot.linnet
	plot.lintess
	plot.lpp
	plot.lppm
	points.lpp
	predict.lppm
	pseudoR2.lppm
	qqplot.lppm
	quadrat.test.lpp
	quadratcount
	rcelllpp
	relrisk.lpp
	repairNetwork
	Replace.linim
	residuals.lppm
	rhohat.lpp
	rjitter.lpp
	rlpp
	roc.lpp
	rpoislpp
	rSwitzerlpp
	rThomaslpp
	runiflpp
	sdr.lpp
	shortestpath
	simulate.lppm
	Smooth.lpp
	subset.lpp
	superimpose.lpp
	terminalvertices
	text.lpp
	thinNetwork
	threads
	tile.lengths
	tilenames.lintess
	treebranchlabels
	treeprune
	unstack.lpp
	Window.lpp
	Index

