
Handling shapefiles in the spatstat package

Adrian Baddeley, Rolf Turner and Ege Rubak

2026-02-01
spatstat version 3.5-1

This vignette explains how to read data into the spatstat package from files in the popular
‘shapefile’ format.

This vignette is part of the documentation included in spatstat version 3.5-1. The information
applies to spatstat versions 1.36-0 and above.

1 Shapefiles

A shapefile represents a list of spatial objects — a list of points, a list of lines, or a list of polygonal
regions — and each object in the list may have additional variables attached to it.

A dataset stored in shapefile format is actually stored in a collection of text files, for example

mydata.shp

mydata.prj

mydata.sbn

mydata.dbf

which all have the same base name mydata but different file extensions. To refer to this collection you
will always use the filename with the extension shp, for example mydata.shp.

2 Helper package

We’ll use the sf package to handle shapefile data. Previously the now defunct package maptools was
used in this vignette together with the older (still functional) sp.

Both sf and sp support a standard set of spatial data types in R. The sp package uses S4 classes
and sf uses S3 classes. These standard data types can be handled by many other packages, so it
is useful to convert your spatial data into one of the data types supported by sf or sp. With the
retirement of maptools there are no direct conversion tools between spatstat data types and sp data
types and for this reason we recommend using sf if possible. However, if you are already using sp

formats you can convert data from sp format to sf format and then to spatstat format.

To read and write files in shapefile format sf uses the system library GDAL and newer versions of
sp uses sf under the hood.

3 Caveat about longitude-latitude coordinates

The shapefile format supports geographical coordinates, usually longitude-latitude coordinates, which
specify locations on the curved surface of the Earth. However, spatstat deals only with spatial data
on a flat two-dimensional plane.

1



If you follow the recommendation to read in shapefile (or other formats) data with sf and then
converting to spatstat format you should encounter an error if you try to convert data in longitude-
latitude coordinates directly to spatstat format. However, if you manage to read in longitude-latitude
data and convert them into spatstat objects without sf, longitude and latitude coordinates will most
likely be treated as x and y coordinates, so that the Earth’s surface is effectively mapped to a rectangle.
This mapping distorts distances and areas.

If your study region is a small region of the Earth’s surface (about 3 degrees, 180 nautical miles,
200 statute miles, 320 km across) then a reasonable approach is to use the latitude and longitude as
x and y coordinates, after multiplying the longitude coordinates by the cosine of the latitude of the
centre of the region. This will approximately preserve areas and distances. This calculation is a simple
example of a geographical projection and there are some much better projections available. It may be
wise to use st_transform() in sf to perform the appropriate projection for you, and then to convert
the projected data into spatstat objects.

If your study region is a large part of the sphere, then your data may not be amenable to the
techniques provided by spatstat because the geometry is fundamentally different. Please consider the
extension package spatstat.sphere.

4 How to read shapefiles into spatstat

To read shapefile data into spatstat, you follow two steps:

1. using the facilities of sf, read the shapefiles and store the data in one of the standard formats
supported by sf.

2. convert the sf data type into one of the data types supported by spatstat.

4.1 Read shapefiles using sf

Here’s how to read shapefile data.

1. ensure that the package sf is installed.

2. start R and load the package:

> library(sf)

3. read the shapefile into an object in the sf package using st_read, for example

> x <- st_read(system.file("shape/nc.shp", package="sf"))

4. This will read in the data as an object of class sf. This is basically a data.frame with a
designated geometry column (of class sfc). All other columns contain information/features
(marks in spatstat terminology) related to the geometries. For example the geometry column
could be a list of polygonal boundaries of the counties of a state and the other columns could
contain the name of the county and other registered values of interest. To find out what kind of
spatial objects are represented by the dataset, inspect the class of the geometry column:

> st_geometry_type(x, by_geometry = FALSE)

There are many possible classes but the ones of main interest here are:

• POINT (or MULTIPOINT) indicating each row refers to a point (or several points)

2



• LINESTRING (or MULTILINESTRING) indicating each row refers to a collection of sequentially
connected straight line segments (or several of these)

• POLYGON (or MULTIPOLYGON) indicating each row refers to a polygon which may have holes
inside (or several of these)

4.2 Convert data to spatstat format

To convert the dataset to an object in the spatstat package, the procedure depends on the type of
the geometry column, as explained below.

Both packages sf and spatstat must be loaded in order to convert the data.

4.2.1 Geometries of class POINT/MULTIPOINT

A sf object x with geometry column of class POINT represents a spatial point pattern. Use as.ppp(x)

to convert it to a spatial point pattern in spatstat:

> X <- as.ppp(x)

(The conversion is performed by as.ppp.sf, a function in sf.)

The window for the point pattern will be taken from the bounding box of the points. You will
probably wish to change this window, usually by taking another dataset to provide the window in-
formation. Use [.ppp to change the window: if X is a point pattern object of class "ppp" and W is a
window object of class "owin", type

> X <- X[W]

If the sf object x contains other columns than the geometry column these are additional variables
(‘marks’) attached to each point.

At the time of writing as.ppp(x) will unfortunately only use the first column of additional data
as the marks of the point pattern X. In that case you can extract the data frame of auxiliary data by
df <- st_drop_geometry(x) and manually assign them as marks in spatstat:

> df <- st_drop_geometry(x)

> X <- as.ppp(x)

> marks(X) <- df

If the class of the geometry column is MULTIPOINT you need to first cast to POINT and then convert
as described above:

> x_point <- st_cast(x, "POINT")

> X <- as.ppp(x_point)

If you have a combination of POINT and MULTIPOINT you may first need an intermediate cast to
MULTIPOINT before casting to POINT:

> x_multipoint <- st_cast(x, "MULTIPOINT")

> x_point <- st_cast(x, "POINT")

> X <- as.ppp(x_point)

3



4.2.2 Geometries of class LINESTRING or MULTILINESTRING

A “line segment” is the straight line between two points in the plane.

In the spatstat package, an object of class psp (“planar segment pattern”) represents a pattern of
line segments, which may or may not be connected to each other (like matches which have fallen at
random on the ground).

In the sf package, a geometry column of class LINESTRING represents a list of connected curves,
each curve consisting of a sequence of straight line segments that are joined together (like several pieces
of a broken bicycle chain.)

For a geometry column of class MULTILINESTRING each element of the top list (the geometry column)
is it self a list of connected curves.

list of lists

So the spatstat and sf data types do not correspond exactly.

The list of connected curves in a LINESTRING column may be useful when representing a single
river system where each branch of the river may be in its own element of the list (row of the column).

The list-of-lists hierarchy in a MULTILINESTRING column is useful when representing river of a
continent where each element of the primary list (row in the column) would correspond to a river
system and each of these would be a list of the branches of the river system.

For example, if Africa is an object of class sf with geometry column of class MULTILINESTRING

representing the main rivers of Africa, then Africa will have hundreds of rows representing each of
the rivers. The geometry column geo <- st_geometry(Africa) is then a list, where geo[[i]] might
represent the total river system the i-th river (e.g. the Nile). The branches of each river system consist
of several different curved lines. Thus geo[[i]][[j]] would represent the jth branch of the i-th river
and would be of class LINESTRING.

For an object x of class sf with geometry column of class MULTILINESTRING or LINESTRING, there
are several things that you might want to do:

1. collect together all the line segments (all the segments that make up all the connected curves)
and store them as a single object of class psp.

To do this, use as.psp(x) to convert it to a spatial line segment pattern.

Note: Any auxilliary information stored in other columns is automatically attached as marks to
the line segments of the spatstat psp object.

2. convert each connected curve to an object of class psp, keeping different connected curves sepa-
rate.

To do this, type something like the following:

> out <- lapply(geo, function(z) { lapply(z, as.psp) })

(The conversion is performed by as.psp.MULTILINESTRING, a function in sf. So the sf and
spatstat packages must be loaded in order for this to work.)

Any auxiliary data in other columns can be attached as marks by this command:

> dat <- st_drop_geometry(Africa)

> for(i in seq(nrow(dat))){

+ out[[i]] <- lapply(out[[i]], "marks<-", value=dat[i, , drop=FALSE])

+ }

4



The result will be a list of lists of objects of class psp. Each one of these objects represents
a connected curve, although the spatstat package does not know that. The list structure will
reflect the list structure of the original MULTILINESTRING object x. If that’s not what you want,
then use curvelist <- do.call("c", out) or

> curvegroup <- lapply(out, function(z) { do.call("superimpose", z)})

to collapse the list-of-lists-of-psp’s into a list-of-psp’s. In the first case, curvelist[[i]] is a
psp object representing the i-th connected curve. In the second case, curvegroup[[i]] is a psp

object containing all the line segments in the i-th group of connected curves (for example the
i-th river system – the Nile – in the Africa example).

The window for the spatial line segment pattern can be specified as an argument window to the
function as.psp.

In the spatstat package, an object of class psp (representing a collection of line segments) may
have a data frame of marks. Note that each line segment in a psp object may have different mark
values. For the converted data the mark variables attached to a particular group of connected lines in
the sf object, will be duplicated and attached to each line segment in the resulting psp object.

4.2.3 Geometries of class POLYGON or MULTIPOLYGON

First, so that we don’t go completely crazy, let’s introduce some terminology. A polygon is a closed
curve that is composed of straight line segments. You can draw a polygon without lifting your pen
from the paper. This is called a POLYGON in sf terminology.

polygon

A polygonal region is a region in space whose boundary is composed of straight line segments.
A polygonal region may consist of several unconnected pieces, and each piece may have holes. The
boundary of a polygonal region consists of one or more polygons. To draw the boundary of a polygonal
region, you may need to lift and drop the pen several times. This is called a MULTIPOLYGON in sf

terminology.

5



polygonal region

An object of class owin in spatstat represents a polygonal region. It is a region of space that is
delimited by boundaries made of lines.

An object x with geometry column of class MULTIPOLYGON represents a list of polygonal regions.
For example, a single geometry column of class MULTIPOLYGON could store information about every
State in the United States of America (or the United States of Malaysia). Each State would be a
separate polygonal region (and it might contain holes such as lakes).

There are two things that you might want to do with a geometry column of class MULTIPOLYGON:

1. combine all the polygonal regions together into a single polygonal region, and convert this to a
single object of class owin.

For example, you could combine all the States of the USA together and obtain a single
object that represents the territory of the USA.

To do this, use as.owin(x). The result is a single window (object of class "owin") in
the spatstat package.

2. keep the different polygonal regions separate; convert each one of the polygonal regions to an
object of class owin.

For example, you could keep the States of the USA separate, and convert each State
to an object of class owin.

To do this, type the following:

> geo <- st_geometry(x)

> windows <- lapply(geo, as.owin)

The result is a list of objects of class owin. Often it would make sense to convert this to a
tessellation object, by typing

> te <- tess(tiles=windows)

(The conversion is performed by as.owin.MULTIPOLYGON, a function in sf. So the sf and spatstat

packages must be loaded in order for this to work.)

The following is different from what happened in previous versions of spatstat (prior
to version 1.36-0.)

6



During the conversion process, the geometry of the polygons will be automatically “repaired” if
needed. Polygon data from shapefiles often contain geometrical inconsistencies such as self-intersecting
boundaries and overlapping pieces. For example, these can arise from small errors in curve-tracing.
Geometrical inconsistencies are tolerated in an object with geometry column of class MULTIPOLYGON

which is a list of lists of polygonal curves. However, they are not tolerated in an object of class
owin, because an owin must specify a well-defined region of space. These data inconsistencies must be
repaired to prevent technical problems. In spatstat polygon-clipping code is used to automatically
convert polygonal lines into valid polygon boundaries. The repair process changes the number of
vertices in each polygon, and the number of polygons (if you chose option 1). To disable the repair
process, set spatstat.options(fixpolygons=FALSE).

4.2.4 Auxiliary information

Typically an object x of class sf with geometry column of type (MULTI)POLYGON has other columns
with additional variables attached to each polygon. The data frame of auxiliary data is extracted by
df <- st_drop_geometry(x).

There is currently no facility in spatstat for attaching marks to an owin object directly, but if
you have collected the separate regions in a tessellation you can attach marks to the tessellation, so
the entire workflow becomes:

> geo <- st_geometry(x)

> df <- st_drop_geometry(x)

> windows <- lapply(geo, as.owin)

> te <- tess(tiles=windows)

> marks(te) <- df

However, if the regions are kept as a list of owin objects it is possible to take advantage of spatstat’s
support of objects called hyperframes, which are like data frames except that the entries can be any
type of object. Thus we can represent the data in spatstat as follows:

> h <- hyperframe(window=windows)

> h <- cbind.hyperframe(h, df)

Then h is a hyperframe containing a column of owin objects followed by the columns of auxiliary
data.

7


	Shapefiles
	Helper package
	Caveat about longitude-latitude coordinates
	How to read shapefiles into spatstat
	Read shapefiles using sf
	Convert data to spatstat format
	Geometries of class POINT/MULTIPOINT
	Geometries of class LINESTRING or MULTILINESTRING
	Geometries of class POLYGON or MULTIPOLYGON
	Auxiliary information



