Package ‘zoomerjoin’

January 30, 2026
Title Superlatively Fast Fuzzy Joins
Version 0.2.2

Description Empowers users to fuzzily-merge data frames with millions or tens of mil-
lions of rows in minutes with low memory usage. The package uses the locality sensitive hash-
ing algorithms developed by Datar, Immorlica, Indyk and Mir-
rokni (2004) <doi:10.1145/997817.997857>, and Broder (1998) <doi:10.1109/SEQUEN.1997.666900> to avoid hav-
ing to compare every pair of records in each dataset, resulting in fuzzy-merges that finish in lin-
ear time.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.3

SystemRequirements Cargo (>= 1.56) (Rust's package manager), rustc (>=
1.70)

Imports collapse, dplyr, tibble, tidyr, rlang,

Suggests babynames, covr, igraph, knitr, microbenchmark, profmem,
purrr, rmarkdown, stringdist, testthat (>= 3.0.0), tidyverse,
vdiffr

Config/testthat/edition 3

URL https://beniamino.org/zoomerjoin/,

https://github.com/beniaminogreen/zoomerjoin

BugReports https://github.com/beniaminogreen/zoomerjoin/issues
VignetteBuilder knitr

Depends R (>=4.2)

LazyData true

LazyDataCompression xz

Config/rextendr/version 0.4.2

NeedsCompilation yes

Author Beniamino Green [aut, cre, cph],
Etienne Bacher [ctb] (ORCID: <https://orcid.org/0000-0002-9271-5075>),
The authors of the dependency Rust crates [ctb, cph] (see inst/ AUTHORS
file for details)

https://doi.org/10.1145/997817.997857
https://doi.org/10.1109/SEQUEN.1997.666900
https://beniamino.org/zoomerjoin/
https://github.com/beniaminogreen/zoomerjoin
https://github.com/beniaminogreen/zoomerjoin/issues
https://orcid.org/0000-0002-9271-5075

dime_data

Maintainer Beniamino Green <beniamino.green@yale.edu>
Repository CRAN
Date/Publication 2026-01-30 13:10:02 UTC

Contents
dime _data s 2
em_linko e 3
euclidean_anti_join e e e 4
euclidean_curve Lo e 7
euclidean_probability L 7
fuzzy_join_core L 8
hamming_distance 9
hamming_inner_join L e 10
hamming_probability 13
jaccard_Curve e e e e e 13
jaccard_hyper_grid_search L Lo 14
jaccard_inner_join L. e e 15
jaccard_probability L. 18
jaccard_similarity L. e e 19
jaccard_string_group e e e e e e 20

Index 22

dime_data Donors from DIME Database
Description

A set of donor names from the Database on Ideology, Money in Politics, and Elections (DIME).
This dataset was used as a benchmark in the 2021 APSR paper Adaptive Fuzzy String Matching:
How to Merge Datasets with Only One (Messy) Identifying Field by Aaron R. Kaufman and Aja
Klevs, the dataset in this package is a subset of the data from the replication archive of that paper.
The full dataset can be found in the paper’s replication materials here: doi:10.7910/DVN/4031UL.

Usage

dime_data

Format
dime_data:
A data frame with 10,000 rows and 2 columns:

id Numeric ID / Row Number
x Donor Name ...

@source https://www.who.int/teams/global-tuberculosis-programme/data

https://doi.org/10.7910/DVN/4031UL
https://www.who.int/teams/global-tuberculosis-programme/data

em_link 3
Author(s)

Adam Bonica

References

doi:10.7910/DVN/4031UL

em_link Fit a Probabilistic Matching Model using Naive Bayes + E.M.

Description

A Rust implementation of the Naive Bayes / Fellegi-Sunter model of record linkage as detailed in
the article "Using a Probabilistic Model to Assist Merging of Large-Scale Administrative Records"
by Enamorado, Fifield and Imai (2019). Takes an integer matrix describing the similarities between
each possible pair of observations, and a vector of initial guesses of the probability each pair is a
match (these can either be set from domain knowledge, or one can hand-label a subset of the data
and leave the rest as p=.5). Iteratively refines these guesses using the Expectation Maximization
algorithm until an optima is reached. for more details, see doi:10.1017/S0003055418000783.

Usage

em_link(X, g, tol = 10%-6, max_iter = 10"3)

Arguments
X an integer matrix of similarities. Must go from 0 (the most disagreement) to the
maximum without any "gaps" or unused levels. As an example, a column with
values 0,1,2,3 is a valid column, but 0,1,2,4 is not as three is omitted
g a vector of initial guesses that are iteratively improved using the EM algorithm
(my personal approach is to guess at logistic regression coefficients and use
them to create the intitial probability guesses). This is chosen to avoid the model
getting stuck in a local optimum, and to avoid the problem of label-switching,
where the labels for matches and non-matches are reversed.
tol tolerance in the sense of the infinity norm. i.e. how close the parameters have to
be between iterations before the EM algorithm terminates.
max_iter iterations after which the algorithm will error out if it has not converged.
Value

a vector of probabilities representing the posterior probability each record pair is a match.

https://doi.org/10.7910/DVN/4031UL
https://doi.org/10.1017/S0003055418000783

4 euclidean_anti_join

Examples

inv_logit <- function(x) {
exp(x) / (1 + exp(x))

3

n <- 106

d<-1:n%%5==20

X <= cbind(
as.integer(ifelse(d, runif(n) < .8, runif(n) < .2)),
as.integer(ifelse(d, runif(n) < .9, runif(n) < .2)),
as.integer(ifelse(d, runif(n) < .7, runif(n) < .2)),
as.integer(ifelse(d, runif(n) < .6, runif(n) < .2)),
as.integer(ifelse(d, runif(n) < .5, runif(n) < .2)),
as.integer(ifelse(d, runif(n) < .1, runif(n) < .9)),
as.integer(ifelse(d, runif(n) < .1, runif(n) < .9)),
as.integer(ifelse(d, runif(n) < .8, runif(n) < .01))

inital guess at class assignments based on # a hypothetical logistic
regression. Should be based on domain knowledge, or a handful of hand-coded
observations.

X_sum <- rowSums (X)
g <- inv_logit((x_sum - mean(x_sum)) / sd(x_sum))

out <- em_link(X, g, tol = .0001, max_iter = 100)

euclidean_anti_join Fuzzy joins for Euclidean distance using Locality Sensitive Hashing

Description

Fuzzy joins for Euclidean distance using Locality Sensitive Hashing

Usage

euclidean_anti_join(
a,
b,
by = NULL,
threshold = 1,
n_bands = 30,
band_width = 5,
r=2=a.5,
progress = FALSE,
nthread = NULL

euclidean_anti_join

euclidean_inner_join(

a,

b,

by = NULL,
threshold = 1,
n_bands = 30,
band_width = 5,
r=20.5,

progress = FALSE,
nthread = NULL

)

euclidean_left_join(
a,
b7
by = NULL,
threshold = 1,
n_bands = 30,
band_width = 5,
r=20.5,
progress = FALSE,
nthread = NULL

)

euclidean_right_join(
a,
b,
by = NULL,
threshold = 1,
n_bands = 30,
band_width = 5,
r=20.5,
progress = FALSE,
nthread = NULL

)

euclidean_full_join(
a,
b,
by = NULL,
threshold = 1,
n_bands = 30,
band_width = 5,
r=20.5,
progress = FALSE,
nthread = NULL

Arguments
a, b
by

threshold

n_bands

band_width

progress
nthread

Value

euclidean_anti_join

The two dataframes to join.

A named vector indicating which columns to join on. Format should be the
same as dplyr: by = ¢("column_name_in_df_a" = "column_name_in_df_b"),
but two columns must be specified in each dataset (x column and y column).
Specification made with dplyr::join_by() are also accepted.

The distance threshold below which units should be considered a match. Note
that contrary to Jaccard joins, this value is about the distance and not the simi-
larity. Therefore, a lower value means a higher similarity.

The number of bands used in the minihash algorithm (default is 40). Use this in
conjunction with the band_width to determine the performance of the hashing.
The default settings are for a (.2, .8, .001, .999)-sensitive hash i.e. that pairs with
a similarity of less than .2 have a >.1% chance of being compared, while pairs
with a similarity of greater than .8 have a >99.9% chance of being compared.

The length of each band used in the minihashing algorithm (default is 8) Use this
in conjunction with the n_bands to determine the performance of the hashing.
The default settings are for a (.2, .8, .001, .999)-sensitive hash i.e. that pairs with
a similarity of less than .2 have a >.1% chance of being compared, while pairs
with a similarity of greater than .8 have a >99.9% chance of being compared.

Hyperparameter used to govern the sensitivity of the locality sensitive hash. Cor-
responds to the width of the hash bucket in the LSH algorithm. Increasing values
of r mean more hash collisions and higher sensitivity (fewer false-negatives) at
the cost of lower specificity (more false-positives and longer run time). For more
information, see the description in doi:10.1145/997817.997857.

Set to TRUE to print progress.

Maximum number of threads to use. If NULL (default), Rayon’s global thread
pool is used, which typically uses all logical CPU cores available.

A tibble fuzzily-joined on the basis of the variables in by. Tries to adhere to the same standards
as the dplyr-joins, and uses the same logical joining patterns (i.e. inner-join joins and keeps only
observations in both datasets).

References

Datar, Mayur, Nicole Immorlica, Pitor Indyk, and Vahab Mirrokni. "Locality-Sensitive Hashing
Scheme Based on p-Stable Distributions" SCG ’04: Proceedings of the twentieth annual symposium
on Computational geometry (2004): 253-262

Examples

n <- 10

Build two matrices that have close values
X_1 <- matrix(c(seq(@, 1, 1 / (n - 1)), seq(, 1, 1/ (n - 1))), nrow = n)
X_2 <= X_1 + .0000001

https://doi.org/10.1145/997817.997857

euclidean_curve 7

X_1 <- as.data.frame(X_1)
X_2 <- as.data.frame(X_2)

X_1$id_1 <- 1:n
X_2$id_2 <- 1:n

only keep observations that have a match
euclidean_inner_join(X_1, X_2, by = c("V1", "V2"), threshold = .00005)

keep all observations from X_1, regardless of whether they have a match
euclidean_inner_join(X_1, X_2, by = c("V1", "V2"), threshold = .00005)

euclidean_curve Plot S-Curve for a LSH with given hyperparameters

Description

Plot S-Curve for a LSH with given hyperparameters

Usage

euclidean_curve(n_bands, band_width, r, up_to = 100)

Arguments
n_bands The number of LSH bands calculated
band_width The number of hashes in each band
r the "r" hyperparameter used to govern the sensitivity of the hash.
up_to the right extent of the x axis.
Value

A plot showing the probability a pair is proposed as a match, given the Jaccard similarity of the two
items.

euclidean_probability Find Probability of Match Based on Similarity

Description

Find Probability of Match Based on Similarity

Usage

euclidean_probability(distance, n_bands, band_width, r)

8 fuzzy_join_core

Arguments
distance the euclidian distance between the two vectors you want to compare.
n_bands The number of LSH bands used in hashing.
band_width The number of hashes in each band.
r the "r" hyperparameter used to govern the sensitivity of the hash.
Value

a decimal number giving the proability that the two items will be returned as a candidate pair from
the minihash algorithm.

fuzzy_join_core Perform a Fuzzy-Join With an Arbitrary Distance Metric

Description

Code used by zoomerjoin to perform dplyr-style joins. Users wishing to write their own joining
functions can extend zoomerjoin’s functionality by writing joining functions to use with fuzzy_join_core.

Usage

fuzzy_join_core(
a,
b,
by,
join_func,
mode,
block_by = NULL,
similarity_column = NULL,

Arguments

a,b The two dataframes to join.

by A named vector indicating which columns to join on. Format should be the
same as dplyr: by = c("column_name_in_df_a" = "column_name_in_df_b"),
but two columns must be specified in each dataset (x column and y column).
Specification made with dplyr::join_by() are also accepted.

join_func the joining function responsible for performing the join.

mode the dplyr-style type of join you want to perform

block_by A named vector indicating which columns to "block’ (perform exact joining)

on. Format should be the same as dplyr: by = c(”"column_name_in_df_a" =
"column_name_in_df_b"), but two columns must be specified in each dataset
(x column and y column). Specification made with dplyr::join_by() are also
accepted.

hamming_distance 9

similarity_column
An optional character vector. If provided, the data frame will contain a column
with this name giving the similarity between the two fields. Extra column will
not be present if anti-joining.

Other parameters to be passed to the joining function

hamming_distance Calculate Hamming distance of two character vectors

Description

Calculate Hamming distance of two character vectors

Usage

hamming_distance(a, b, nthread = NULL)

Arguments
a the first character vector
b the first character vector
nthread Maximum number of threads to use. If NULL (default), Rayon’s global thread
pool is used, which typically uses all logical CPU cores available.
Value

a vector of hamming similarities of the strings

Examples

hamming_distance(
c("ACGTCGATGACGTGATGCGTAGCGTA", "ACGTCGATGTGCTCTCGTCGATCTAC"),
c("ACGTCGACGACGTGATGCGCAGCGTA", "ACGTCGATGGGGTCTCGTCGATCTAC")

)

10

hamming_inner_join

hamming_inner_join

Fuzzy joins for Hamming distance using Locality Sensitive Hashing

Description

Find similar rows between two tables using the hamming distance. The hamming distance is equal
to the number characters two strings differ by, or is equal to infinity if two strings are of different
lengths

Usage

hamming_inner_join(

)

a,

b)

by = NULL,
n_bands = 100,

band_width = 8,
threshold = 2,
progress = FALSE,
clean = FALSE,
similarity_column
nthread = NULL

hamming_anti_join(

)

a)

b’

by = NULL,
n_bands = 100,

band_width = 100,
threshold = 2,
progress = FALSE,
clean = FALSE,
similarity_column
nthread = NULL

hamming_left_join(

a,

b,

by = NULL,
n_bands = 100,
band_width = 100,
threshold = 2,
progress = FALSE,
clean = FALSE,
similarity_column

= NULL,

= NULL,

= NULL,

hamming_inner_join 11

nthread = NULL
)

hamming_right_join(
a,
b,
by = NULL,
n_bands = 100,
band_width = 100,
threshold = 2,
progress = FALSE,
clean = FALSE,
similarity_column = NULL,
nthread = NULL

)
hamming_full_join(
a,
b,
by = NULL,

n_bands = 100,

band_width = 100,
threshold = 2,

progress = FALSE,

clean = FALSE,
similarity_column = NULL,
nthread = NULL

)
Arguments

a, b The two dataframes to join.

by A named vector indicating which columns to join on. Format should be the
same as dplyr: by = c("column_name_in_df_a" = "column_name_in_df_b"),
but two columns must be specified in each dataset (x column and y column).
Specification made with dplyr: : join_by() are also accepted.

n_bands The number of bands used in the locality sensitive hashing algorithm (default
is 100). Use this in conjunction with the band_width to determine the perfor-
mance of the hashing. Generally speaking, a higher number of bands leads to
greater recall at the cost of higher runtime.

band_width The length of each band used in the minihashing algorithm (default is 8). Use
this in conjunction with the n_bands to determine the performance of the hash-
ing. Generally speaking a wider number of bands decreases the number of false
positives, decreasing runtime at the cost of lower sensitivity (true matches are
less likely to be found).

threshold The Hamming distance threshold below which two strings should be considered

a match. A distance of zero corresponds to complete equality between strings,

12 hamming_inner_join

while a distance of *x’ between two strings means that *x’ substitutions must be
made to transform one string into the other.

progress Set to TRUE to print progress.

clean Should the strings that you fuzzy join on be cleaned (coerced to lower-case,
stripped of punctuation and spaces)? Default is FALSE.

similarity_column
An optional character vector. If provided, the data frame will contain a column

with this name giving the Hamming distance between the two fields. Extra
column will not be present if anti-joining.

nthread Maximum number of threads to use. If NULL (default), Rayon’s global thread
pool is used, which typically uses all logical CPU cores available.

Value

A tibble fuzzily-joined on the basis of the variables in by. Tries to adhere to the same standards
as the dplyr-joins, and uses the same logical joining patterns (i.e. inner-join joins and keeps only
observations in both datasets).

Examples

if (requireNamespace("babynames”, quietly = TRUE)) {
baby_names <- data.frame(
name = tolower(unique(babynames: :babynames$name))[1:500]

)
baby_names_mispelled <- data.frame(
name_mispelled = gsub("[aeiouy]”, "x", baby_names$name)
)
hamming_inner_join(
baby_names,
baby_names_mispelled,
by = c("name” = "name_mispelled"),
threshold = 3,
n_bands = 150,

band_width = 10,
clean = FALSE
)

hamming_left_join(
baby_names,
baby_names_mispelled,
by = c("name” = "name_mispelled”),
threshold = 3,
n_bands = 150,
band_width = 10

hamming_probability 13

hamming_probability Find Probability of Match Based on Similarity

Description

Find Probability of Match Based on Similarity

Usage

hamming_probability(distance, input_length, n_bands, band_width)

Arguments

distance The hamming distance of the two strings you want to compare

input_length the length (number of characters) of the input strings you want to calculate.

n_bands The number of LSH bands used in hashing.
band_width The number of hashes in each band.
Value

A decimal number giving the probability that the two items will be returned as a candidate pair from
the Ish algotithm.

jaccard_curve Plot S-Curve for a LSH with given hyperparameters

Description

Plot S-Curve for a LSH with given hyperparameters

Usage

jaccard_curve(n_bands, band_width)

Arguments
n_bands The number of LSH bands calculated
band_width The number of hashes in each band
Value

A plot showing the probability a pair is proposed as a match, given the Jaccard similarity of the two
items.

14 jaccard_hyper_grid_search

Examples

Plot the probability two pairs will be matched as a function of their
jaccard similarity, given the hyperparameters n_bands and band_width.
jaccard_curve(40, 6)

jaccard_hyper_grid_search
Help Choose the Appropriate LSH Hyperparameters

Description

Runs a grid search to find the hyperparameters that will achieve an (s1,s2,p1,p2)-sensitive locality
sensitive hash. A locality sensitive hash can be called (s1,s2,p1l,p2)-sensitive if to strings with a
similarity less than s1 have a less than p1 chance of being compared, while two strings with similar-
ity s2 have a greater than p2 chance of being compared. As an example, a (.1,.7,.001,.999)-sensitive
LSH means that strings with similarity less than .1 will have a .1% chance of being compared, while
strings with .7 similarity have a 99.9% chance of being compared.

Usage

jaccard_hyper_grid_search(sl = 0.1, s2 = 0.7, pl = 0.001, p2 = 0.999)

Arguments
s1 the s1 parameter (the first similaity).
s2 the s2 parameter (the second similarity, must be greater than s1).
pl the pl parameter (the first probability).
p2 the p2 parameter (the second probability, must be greater than p1).
Value

a named vector with the hyperparameters that will meet the LSH criteria, while reducing runitme.

Examples

Help me find the parameters that will minimize runtime while ensuring that
two strings with similarity .1 will be compared less than .1% of the time,
strings with .8 similaity will have a 99.95% chance of being compared:
jaccard_hyper_grid_search(.1, .9, .001, .995)

Jjaccard_inner_join

jaccard_inner_join Fuzzy joins for Jaccard distance using MinHash

Description

Fuzzy joins for Jaccard distance using MinHash

Usage
jaccard_inner_join(
a,
b,
by = NULL,

block_by = NULL,
n_gram_width = 2,

n_bands = 50,

band_width = 8,

threshold = 0.7,

progress = FALSE,

clean = FALSE,
similarity_column = NULL,
nthread = NULL

)
jaccard_anti_join(
a,
b,
by = NULL,

block_by = NULL,
n_gram_width = 2,

n_bands = 50,

band_width = 8,

threshold = 0.7,

progress = FALSE,

clean = FALSE,
similarity_column = NULL,
nthread = NULL

)
jaccard_left_join(
a7
b,
by = NULL,

block_by = NULL,
n_gram_width = 2,
n_bands = 50,
band_width = 8,

16

Jjaccard_inner_join

threshold = 0.7,

progress = FALSE,

clean = FALSE,
similarity_column = NULL,
nthread = NULL

)
jaccard_right_join(
a)
b,
by = NULL,

block_by = NULL,
n_gram_width = 2,

n_bands =

50,

band_width = 8,

threshold = 0.7,

progress = FALSE,

clean = FALSE,
similarity_column = NULL,
nthread = NULL

)
jaccard_full_join(
a,
b,
by = NULL,

block_by = NULL,
n_gram_width = 2,

n_bands =

50,

band_width = 8,

threshold = 0.7,

progress = FALSE,

clean = FALSE,
similarity_column = NULL,
nthread = NULL

Arguments
a, b
by

block_by

n_gram_width

The two dataframes to join.

A named vector indicating which columns to join on. Format should be the
same as dplyr: by = c¢("column_name_in_df_a" = "column_name_in_df_b"),
but two columns must be specified in each dataset (x column and y column).
Specification made with dplyr::join_by() are also accepted.

A named vector indicating which column to block on, such that rows that dis-
agree on this field cannot be considered a match. Format should be the same as
dplyr: by = c("column_name_in_df_a" = "column_name_in_df_b")

The length of the n_grams used in calculating the Jaccard similarity. For best

Jjaccard_inner_join

n_bands

band_width

threshold

progress

clean

17

performance, I set this large enough that the chance any string has a specific
n_gram is low (i.e. n_gram_width = 2 or 3 when matching on first names, 5 or
6 when matching on entire sentences).

The number of bands used in the minihash algorithm (default is 40). Use this in
conjunction with the band_width to determine the performance of the hashing.
The default settings are for a (.2, .8, .001, .999)-sensitive hash i.e. that pairs with
a similarity of less than .2 have a >.1% chance of being compared, while pairs
with a similarity of greater than .8 have a >99.9% chance of being compared.

The length of each band used in the minihashing algorithm (default is 8) Use this
in conjunction with the n_bands to determine the performance of the hashing.
The default settings are for a (.2, .8, .001, .999)-sensitive hash i.e. that pairs with
a similarity of less than .2 have a >.1% chance of being compared, while pairs
with a similarity of greater than .8 have a >99.9% chance of being compared.

The Jaccard similarity threshold above which two strings should be considered a
match (default is .95). The similarity is equal to 1 - the Jaccard distance between
the two strings, so 1 implies the strings are identical, while a similarity of zero
implies the strings are completely dissimilar.

Set to TRUE to print progress.

Should the strings that you fuzzy join on be cleaned (coerced to lower-case,
stripped of punctuation and spaces)? Default is FALSE.

similarity_column

nthread

Value

An optional character vector. If provided, the data frame will contain a col-
umn with this name giving the Jaccard similarity between the two fields. Extra
column will not be present if anti-joining.

Maximum number of threads to use. If NULL (default), Rayon’s global thread
pool is used, which typically uses all logical CPU cores available.

A tibble fuzzily-joined on the basis of the variables in by. Tries to adhere to the same standards
as the dplyr-joins, and uses the same logical joining patterns (i.e. inner-join joins and keeps only
observations in both datasets).

Examples

load baby names data
install.packages("babynames™)
if (requireNamespace("babynames”, quietly = TRUE)) {
baby_names <- data.frame(
name = tolower(unique(babynames: :babynames$name))[1:500]

)

baby_names_sans_vowels <- data.frame(

name_wo_vowels = gsub("[aeiouy]”,

)

nn

, baby_names$name)

Check the probability two pairs of strings with similarity .8 will be
matched with a band width of 8 and 30 bands using the " jaccard_probability()"

18 Jjaccard_probability

function:
jaccard_probability(.8, 30, 8)

Run the join and only keep rows that have a match:
jaccard_inner_join(

baby_names,
baby_names_sans_vowels,

by = c("name"” = "name_wo_vowels"),
threshold = .8,

n_bands = 20,

band_width = 6,

n_gram_width = 1,

clean = FALSE # default
)

Run the join and keep all rows from the first dataset, regardless of whether
they have a match:
jaccard_left_join(

baby_names,
baby_names_sans_vowels,

by = c("name” = "name_wo_vowels"),
threshold = .8,

n_bands = 20,

band_width = 6,
n_gram_width = 1

jaccard_probability Find Probability of Match Based on Similarity

Description

This is a port of the Ish_probability function from the textreuse package, with arguments changed
to reflect the hyperparameters in this package. It gives the probability that two strings of jaccard
similarity similarity will be matched, given the chosen bandwidth and number of bands.

Usage

jaccard_probability(similarity, n_bands, band_width)

Arguments
similarity the similarity of the two strings you want to compare
n_bands The number of LSH bands used in hashing.

band_width The number of hashes in each band.

https://docs.ropensci.org/textreuse/reference/lsh_probability.html
https://cran.r-project.org/package=textreuse

Jjaccard_similarity 19

Value

a decimal number giving the probability that the two items will be returned as a candidate pair from
the minhash algorithm.

Examples

Find the probability two pairs will be matched given they have a
jaccard_similarity of .8, band width of 5, and 50 bands:
jaccard_probability(.8, n_bands = 50, band_width = 5)

jaccard_similarity Calculate Jaccard Similarity of two character vectors

Description

Calculate Jaccard Similarity of two character vectors

Usage

jaccard_similarity(a, b, ngram_width = 2, nthread = NULL)

Arguments
a the first character vector
b the first character vector
ngram_width the length of the shingles / ngrams used in the similarity calculation
nthread Maximum number of threads to use. If NULL (default), Rayon’s global thread
pool is used, which typically uses all logical CPU cores available.
Value

a vector of jaccard similarities of the strings

Examples

jaccard_similarity(
c("the quick brown fox", "jumped over the lazy dog"),
c("the quck bron fx", "jumped over hte lazy dog")

)

20

jaccard_string_group

jaccard_string_group Fuzzy String Grouping Using Minhashing

Description

Performs fuzzy string grouping in which similar strings are assigned to the same group. Uses the
cluster_fast_greedy() community detection algorithm from the igraph package to create the
groups. Must have igraph installed in order to use this function.

Usage

jaccard_string_group(

string,
n_gram_width
n_bands = 45,

:2’

band_width = 8,

threshold = 0.

7,

progress = FALSE,
nthread = NULL

Arguments

string
n_gram_width

n_bands

band_width

threshold

progress
nthread

a character you wish to perform entity resolution on.

the length of the n_grams used in calculating the jaccard similarity. For best
performance, I set this large enough that the chance any string has a specific
n_gram is low (i.e. n_gram_width = 2 or 3 when matching on first names, 5 or
6 when matching on entire sentences).

the number of bands used in the minihash algorithm (default is 40). Use this in
conjunction with the band_width to determine the performance of the hashing.
The default settings are for a (.2,.8,.001,.999)-sensitive hash i.e. that pairs with
a similarity of less than .2 have a >.1% chance of being compared, while pairs
with a similarity of greater than .8 have a >99.9% chance of being compared.

the length of each band used in the minihashing algorithm (default is 8) Use this
in conjunction with the n_bands to determine the performance of the hashing.
The default settings are for a (.2,.8,.001,.999)-sensitive hash i.e. that pairs with
a similarity of less than .2 have a >.1% chance of being compared, while pairs
with a similarity of greater than .8 have a >99.9% chance of being compared.

the jaccard similarity threshold above which two strings should be considered a
match (default is .95). The similarity is euqal to 1

* the jaccard distance between the two strings, so 1 implies the strings are
identical, while a similarity of zero implies the strings are completely dis-
similar.

set to true to report progress of the algorithm

Maximum number of threads to use. If NULL (default), Rayon’s global thread
pool is used, which typically uses all logical CPU cores available.

jaccard_string_group 21

Value

a string vector storing the group of each element in the original input strings. The input vector is
grouped so that similar strings belong to the same group, which is given a standardized name.

Examples

if (requireNamespace("igraph”, quietly = TRUE)) {
string <- c(

"beniamino”, "jack”, "benjamin”, "beniamin”,
"jacky", "giacomo”, "gaicomo"
)
jaccard_string_group(
string,
threshold = 0.2,
n_bands = 90,
n_gram_width = 1
)

Index

x datasets
dime_data, 2

dime_data, 2

em_link, 3
euclidean_anti_join, 4
euclidean_curve, 7
euclidean_full_join
(euclidean_anti_join), 4
euclidean_inner_join
(euclidean_anti_join), 4
euclidean_left_join
(euclidean_anti_join), 4
euclidean_probability, 7
euclidean_right_join
(euclidean_anti_join), 4

fuzzy_join_core, 8

hamming_anti_join (hamming_inner_join),

10
hamming_distance, 9

hamming_full_join (hamming_inner_join),

10
hamming_inner_join, 10

hamming_left_join (hamming_inner_join),

10
hamming_probability, 13
hamming_right_join

(hamming_inner_join), 10

jaccard_anti_join (jaccard_inner_join),

15
jaccard_curve, 13

jaccard_full_join (jaccard_inner_join),

15
jaccard_hyper_grid_search, 14
jaccard_inner_join, 15

jaccard_left_join (jaccard_inner_join),

15

22

jaccard_probability, 18
jaccard_right_join
(jaccard_inner_join), 15
jaccard_similarity, 19
jaccard_string_group, 20

	dime_data
	em_link
	euclidean_anti_join
	euclidean_curve
	euclidean_probability
	fuzzy_join_core
	hamming_distance
	hamming_inner_join
	hamming_probability
	jaccard_curve
	jaccard_hyper_grid_search
	jaccard_inner_join
	jaccard_probability
	jaccard_similarity
	jaccard_string_group
	Index

